A collection of scholarly work published by and supporting the Center for Earth Systems Engineering and Management (CESEM) at Arizona State University.

CESEM focuses on "earth systems engineering and management," providing a basis for understanding, designing, and managing the complex integrated built/human/natural systems that increasingly characterize our planet.

Works in this collection are particularly important in linking engineering, technology, and sustainability, and are increasingly intertwined with the work of ASU's Global Institute of Sustainability (GIOS).

Collaborating Institutions:
School of Sustainable Engineering and the Built Environment (SSEBE), Center for Earth Systems Engineering and Management
Displaying 11 - 20 of 85
Description

Public transportation systems are often part of strategies to reduce urban environmental impacts from passenger transportation, yet comprehensive energy and environmental life-cycle measures, including upfront infrastructure effects and indirect and supply chain processes, are rarely considered. Using the new bus rapid transit and light rail lines in Los Angeles, near-term

Public transportation systems are often part of strategies to reduce urban environmental impacts from passenger transportation, yet comprehensive energy and environmental life-cycle measures, including upfront infrastructure effects and indirect and supply chain processes, are rarely considered. Using the new bus rapid transit and light rail lines in Los Angeles, near-term and long-term life-cycle impact assessments are developed, including consideration of reduced automobile travel. Energy consumption and emissions of greenhouse gases and criteria pollutants are assessed, as well the potential for smog and respiratory impacts.

Results show that life-cycle infrastructure, vehicle, and energy production components significantly increase the footprint of each mode (by 48–100% for energy and greenhouse gases, and up to 6200% for environmental impacts), and emerging technologies and renewable electricity standards will significantly reduce impacts. Life-cycle results are identified as either local (in Los Angeles) or remote, and show how the decision to build and operate a transit system in a city produces environmental impacts far outside of geopolitical boundaries. Ensuring shifts of between 20–30% of transit riders from automobiles will result in passenger transportation greenhouse gas reductions for the city, and the larger the shift, the quicker the payback, which should be considered for time-specific environmental goals.

Description

Better methods are necessary to fully account for anthropogenic impacts on ecosystems and the essential services provided by ecosystems that sustain human life. Current methods for assessing sustainability, such as life cycle assessment (LCA), typically focus on easily quantifiable indicators such as air emissions with no accounting for the essential

Better methods are necessary to fully account for anthropogenic impacts on ecosystems and the essential services provided by ecosystems that sustain human life. Current methods for assessing sustainability, such as life cycle assessment (LCA), typically focus on easily quantifiable indicators such as air emissions with no accounting for the essential ecosystem benefits that support human or industrial processes. For this reason, more comprehensive, transparent, and robust methods are necessary for holistic understanding of urban technosphere and ecosphere systems, including their interfaces. Incorporating ecosystem service indicators into LCA is an important step in spanning this knowledge gap.

For urban systems, many built environment processes have been investigated but need to be expanded with life cycle assessment for understanding ecosphere impacts. To pilot these new methods, a material inventory of the building infrastructure of Phoenix, Arizona can be coupled with LCA to gain perspective on the impacts assessment for built structures in Phoenix. This inventory will identify the origins of materials stocks, and the solid and air emissions waste associated with their raw material extraction, processing, and construction and identify key areas of future research necessary to fully account for ecosystem services in urban sustainability assessments. Based on this preliminary study, the ecosystem service impacts of metropolitan Phoenix stretch far beyond the county boundaries. A life cycle accounting of the Phoenix’s embedded building materials will inform policy and decision makers, assist with community education, and inform the urban sustainability community of consequences.

Description

Providers of systems engineering services and their employees are not always able to be the masters of their own destiny. When working in staff augmentation roles under the auspices of another company, they are typically forced to operate within the corporate culture from which they derive their livelihood, following “foreign”

Providers of systems engineering services and their employees are not always able to be the masters of their own destiny. When working in staff augmentation roles under the auspices of another company, they are typically forced to operate within the corporate culture from which they derive their livelihood, following “foreign” processes and procedures, responding to orders and directives. This situation calls for an alternative maturity model for those that provide systems engineering services. While a client organization might be maturing according to any of several proposed models (SEI 1993, SEI 1995, EPIC 1995, ISO 1990, IEEE 1994), the services contractor cannot necessarily be said to be achieving a similar status.

This should not, however, preclude significant maturation goals on the part of the service provider. The Phoenix Imperative is both a business model and maturity model that has worked effectively in several corporations providing system engineering services. It was developed in the context described above and honed over a period of several years with several customers. It provides not only an alternative to the other organizational maturity models that have been proposed, but also delivers the potential for adoption as a personal maturity model for individuals interested in increasing their effectiveness within the context of employment with a service provider.

Created2010
Description

In his writings over the past decade, Brad Allenby has proposed (at least) 16 principles of sustainable engineering (see references) that are collectively known as the Earth Systems Engineering and Management (ESEM) principles. These principles have merit and applicability in many disciplines and domains of discourse, but are sometimes awkward

In his writings over the past decade, Brad Allenby has proposed (at least) 16 principles of sustainable engineering (see references) that are collectively known as the Earth Systems Engineering and Management (ESEM) principles. These principles have merit and applicability in many disciplines and domains of discourse, but are sometimes awkward to use due to the quantity of words required to accurately express their meaning. In light of this, it has become necessary to formulate a simplified list of “abbreviated tags” for ease of reference in conversation and concise writing. This list of tags also makes the principles immediately accessible to those who may want to pursue the more thorough definitions offered by Allenby. The following tags have been proposed for use when a concise phrasing is required. The citation provided after the tag is, in my opinion, the most complete expression of Allenby’s thought on this principle. It can be used when citing the principle in written assignments or publications.

Created2011-05-20
Description

Hemcrete is an alternative, environmentally‐friendly building material gaining adherents in Great Britain and other European countries. It is an attractive choice as a building material because it is made from a renewable resource, hemp, a hardy plant that is a close, but non‐hallucinogenic relative of marijuana. This plant is relatively easy to cultivate,

Hemcrete is an alternative, environmentally‐friendly building material gaining adherents in Great Britain and other European countries. It is an attractive choice as a building material because it is made from a renewable resource, hemp, a hardy plant that is a close, but non‐hallucinogenic relative of marijuana. This plant is relatively easy to cultivate, requires little in the way of pesticides or fertilizers, and almost all parts can be used for various products from paper to textiles to food.

Hemcrete is made from a mixture of lime, water, and the fibrous outer portion of the hemp plant called the “hurd” or “shive”. When mixed, it is worked and placed much like conventional concrete ‐ hence the name. However, that is where the similarities with concrete end. Hemcrete is not comparable to concrete on a strength basis, and is better described as an alternative insulation product. When built into walls of sufficient thickness, Hemcrete offers high thermal efficiency, and has strong claims to being carbon negative. The purpose of this study
was to evaluate this claim of carbon negativity, and to compare these environmentally friendly qualities against conventional fiberglass batt insulation.

Our model was constructed using two identically sized “walls” measuring eight feet square by one foot in depth, one insulated using Hemcrete, and the other using fiberglass. Our study focused on three areas: water usage, cost, and carbon dioxide emissions. We chose water
usage because we wanted to determine the feasibility of using Hemcrete in the Phoenix metropolitan region where water is a troubled resource. Secondly, we wished to evaluate the claim on carbon negativity, so CO2 equivalents throughout the production process were measured. Finally, we wished to know whether Hemcrete could compete on a cost basis with more conventional insulation methods, so we also built in a price comparison.

Since the cultivation of hemp is currently unlawful in the United States, this study can help determine whether these restrictions should be relaxed in order to allow the construction of buildings insulated with Hemcrete.

Created2013-05
Description

This paper applies LCA methodology using local variables to assess the environmental impacts of the food grade glass containers that are disposed of on Arizona State University’s Tempe campus throughout their two distinct end-of-life scenarios: glass to be recycled or glass to be sent to the landfill as refuse.

Created2013-05
Description

Many relationships exist between humans and their animal companions. Regardless of the relationship, the costs of pet ownership are more than just veterinary bills and the purchase of pet food. The purpose of this study is to examine the environmental impacts associated with ownership of canus lupus familiaris, more commonly

Many relationships exist between humans and their animal companions. Regardless of the relationship, the costs of pet ownership are more than just veterinary bills and the purchase of pet food. The purpose of this study is to examine the environmental impacts associated with ownership of canus lupus familiaris, more commonly known as the domesticated dog. Since dogs are carnivorous by nature, there has already been significant interest in the ecological ‘pawprint’ of pet food, or the pressure that dog food production exerts on the environment.

This study utilizes Life Cycle Assessment (LCA) to determine the environmental impacts of industrial pet food production and furthermore, pet ownership through nutritional requirements. Additionally, this study aims to examine how pet food type—beef or lamb—can influence greenhouse gas (GHG) emissions. The approach taken by this study is that of a hybrid input-output LCA, combining Economic Input Output (EIO-LCA) data and process-level data to examine how supply chain decisions made by pet food manufactures can affect the ecological ‘pawprint’ of the domestic dog. The EIO-LCA provides an economy-wide lens, whereas, process-based LCAs provide data relevant to specific materials and processes. This approach was used to compare the environmental impacts associated with environmentally friendly supply chain decisions compared to the typical environmental impact of dog food.

Created2013-05
Description

Urban landscaping palm tree waste in the form of palm frond trimmings and bark shavings that is currently handled as municipal solid waste by the City of Phoenix and other major municipalities can be handled in more cost effective ways and lead to reductions in emissions and greenhouse gases. While many cities have

Urban landscaping palm tree waste in the form of palm frond trimmings and bark shavings that is currently handled as municipal solid waste by the City of Phoenix and other major municipalities can be handled in more cost effective ways and lead to reductions in emissions and greenhouse gases. While many cities have green organics collection and diversion programs, they always exclude palm tree waste due to its unique properties. As a result, an unknown tonnage of palm tree waste is annually landfilled as municipal solid waste. Additionally, as the tonnage is unknown, so are the associated emissions, greenhouse gases, and costs. An attributional lifecycle assessment was conducted in the City of Phoenix from the perspective responsibility of the City of Phoenix’s Public Works Department.

Created2013-05
134-Thumbnail Image.png
Description

An increase in population and need to protect the planet has created many initiatives and research goals in developing alternatives methods of fueling. Federal and state policies have provided a push for industries to find ways to of reducing their impact on the environment while maintaining competitiveness. In the sector

An increase in population and need to protect the planet has created many initiatives and research goals in developing alternatives methods of fueling. Federal and state policies have provided a push for industries to find ways to of reducing their impact on the environment while maintaining competitiveness. In the sector of alternative fuels, large policies such as the Renewable Fuel Standards (RFS) in the United States are making goals to reduce vehicular fuel from coal and oil, and focus on alternative fuels such as ethanol and biodiesel. Along with the RFS and other federal policies, states are introducing independent initiatives to promote the use of alternative fuels.

Research has shown that other crops besides corn can feasibly be used to produce ethanol for fuel use. One of the major crops of interest currently is switchgrass (Panicum Virgatum L.) because of its ability to grow under a variety of weather conditions and soil types. Switchgrass does not require as much maintenance as corn and is a perennial grass that can have high yielding fields for up to 9 years.

This report focuses on the impacts from using switchgrass-derived ethanol to meet the state of Arizona’s policy to have government fleet vehicles operating on alternative fuels. The study uses a life cycle assessment (LCA) approach to evaluate 22 million gallons of ethanol produced in Arizona and stored at fueling stations for use. Impacts in land use, global warming, and water quality are evaluated using software tools and databases in Ecoinvent and Simapro.

The results of the study indicate that the cultivation and harvest phase of the process will contribute the most to negative environmental impacts. According to the study, application of heavy nutrient fertilizer and the machinery needed for the additional agriculture have the potential to contribute over 36 million moles of hydrogen and 89 million CTU eq. to the air, soil, and water.

Created2013-05