The Embryo Project Encyclopedia (https://embryo.asu.edu) is an open-access digital encyclopedia devoted to recording and contextualizing the science of embryos, development, and reproduction. The collection of documents, images, and multimedia housed here serves as the Encyclopedia's permanent archive.

Jane Maienschein, ASU University Professor, Regents Professor, and Director of the Biology and Society Program, started the Embryo Project Encyclopedia in 2007 with support from the National Science Foundation.

Displaying 1 - 10 of 16
Filtering by

Clear all filters

173888-Thumbnail Image.png
Description

"Induction and Patterning of the Primitive Streak, an Organizing Center of Gastrulation in the Amniote," (hereafter referred to as "Induction") examines the mechanisms underlying early amniote gastrulation and the formation of the primitive streak and midline axis. The review, authored by Takashi Mikawa and colleagues at Cornell University Medical College,

"Induction and Patterning of the Primitive Streak, an Organizing Center of Gastrulation in the Amniote," (hereafter referred to as "Induction") examines the mechanisms underlying early amniote gastrulation and the formation of the primitive streak and midline axis. The review, authored by Takashi Mikawa and colleagues at Cornell University Medical College, was published in Developmental Dynamics in 2004. The article primarily discusses chick embryos as a model organism for nonrodent amniote gastrulation, although it intermittently touches on nonamniote gastrulation for comparative purposes. "Induction" attempts to explain the initiation of cell differentiation and embryo organization, one of the most intriguing processes of embryology.

Created2011-04-14
173766-Thumbnail Image.png
Description

Conrad Hal Waddington's "Experiments on the Development of Chick and Duck Embryos, Cultivated in vitro," published in 1932 in Philosophical Transactions of the Royal Society of London, Series B, compares the differences in the development of birds and amphibians. Previous experiments focused on the self differentiation of individual tissues in

Conrad Hal Waddington's "Experiments on the Development of Chick and Duck Embryos, Cultivated in vitro," published in 1932 in Philosophical Transactions of the Royal Society of London, Series B, compares the differences in the development of birds and amphibians. Previous experiments focused on the self differentiation of individual tissues in birds, but Waddington wanted to study induction in greater detail. The limit to these studies had been the amount of time an embryo could be successfully cultivated ex vivo. Waddington applied in vitro cell culturing techniques to this experiment, as opposed to the chorio-allantoic technique used in many earlier studies. Culturing in vitro consisted of placing the embryo on a clot of adult chicken blood plasma and chick embryo extract in a watch glass. Experiments reported in this paper were divided into three main sections: the development of the embryos in vitro, induction by the endoderm, and induction by the primitive streak.

Created2007-11-08
173767-Thumbnail Image.png
Description

German embryologist Viktor Hamburger came to the US in 1932 with a fellowship provided by the Rockefeller Foundation. Hamburger started his research in Frank Rattray Lillie's laboratory at the University of Chicago. His two-year work on the development of the central nervous system (CNS) in chick embryos was crystallized in

German embryologist Viktor Hamburger came to the US in 1932 with a fellowship provided by the Rockefeller Foundation. Hamburger started his research in Frank Rattray Lillie's laboratory at the University of Chicago. His two-year work on the development of the central nervous system (CNS) in chick embryos was crystallized in his 1934 paper, "The Effects of Wing Bud Extirpation on the Development of the Central Nervous System in Chick Embryos," published in The Journal of Experimental Zoology. Hamburger was able to use the microsurgical techniques that he had learned from Hans Spemann to show how wing buds influence the development of the CNS in chick embryos. This paper is one of several among Hamburger's important studies on chick embryos and represents the empirical and theoretical cornerstone for his further research on central-peripheral relations in the development of the nervous system.

Created2010-11-22
173784-Thumbnail Image.png
Description

In the 1910s, Alexis Carrel, a French surgeon and biologist, concluded that cells are intrinsically immortal. His claim was based on chick-heart tissue cultures in his laboratory that seemed to be able to proliferate forever. Carrel's ideas about cellular immortality convinced his many contemporaries that cells could be maintained indefinitely.

In the 1910s, Alexis Carrel, a French surgeon and biologist, concluded that cells are intrinsically immortal. His claim was based on chick-heart tissue cultures in his laboratory that seemed to be able to proliferate forever. Carrel's ideas about cellular immortality convinced his many contemporaries that cells could be maintained indefinitely. In the 1960s, however, Carrel's thesis about cell immortality was put into question by the discovery that human diploid cells can only proliferate for a finite period. As it was gradually recognized that chick cells only have a finite proliferative life span in vitro as well, historians and scientists alike attempted to identify experimental errors that could have led to the extremely long life of Carrel's "immortal" chick-heart tissue cultures. Those reassessments not only point out potential experimental mistakes in pioneer tissue culture work in the early twentieth century, but are also relevant to current discussions about the different life spans of germ line cells, embryonic and adult stem cells, normal somatic cells, and cancer cells.

Created2010-06-28
173809-Thumbnail Image.png
Description

Nerve growth factor (NGF) is a signaling protein and growth factor implicated in a wide range of development and maintenance functions. NGF was discovered through a series of experiments in the 1950s on the development of the chick nervous system. Since its discovery, NGF has been found to act in

Nerve growth factor (NGF) is a signaling protein and growth factor implicated in a wide range of development and maintenance functions. NGF was discovered through a series of experiments in the 1950s on the development of the chick nervous system. Since its discovery, NGF has been found to act in a variety of tissues throughout development and adulthood. It has been implicated in immune function, stress response, nerve maintenance, and in neurodegenerative diseases. It is named for its effect on the critical role it plays in the growth and organization of the nervous system during embryonic development.

Created2007-10-30
173843-Thumbnail Image.png
Description

In "Selective Growth Stimulating Effects of Mouse Sarcoma on the Sensory and Sympathetic Nervous System of the Chick Embryo," Rita Levi-Montalcini and Viktor Hamburger explored the effects of two nerve growth stimulating tumors; mouse sarcomas 180 and 37. This experiment led to the discovery that nerve growth factor was a

In "Selective Growth Stimulating Effects of Mouse Sarcoma on the Sensory and Sympathetic Nervous System of the Chick Embryo," Rita Levi-Montalcini and Viktor Hamburger explored the effects of two nerve growth stimulating tumors; mouse sarcomas 180 and 37. This experiment led to the discovery that nerve growth factor was a diffusible chemical and later to discoveries that the compound was a protein. Although this paper was an important step in the discovery of nerve growth factor, the term "nerve growth factor" was not used in this paper. It was instead referred to as a "growth promoting agent." The discovery of nerve growth factor earned Levi-Montalcini and Stanley Cohen, who also discovered epidermal growth factor, the 1986 Nobel Prize in Physiology or Medicine.

Created2007-10-30
173848-Thumbnail Image.png
Description

The developmental stages of the chick embryo were examined by Viktor Hamburger and Howard L. Hamilton in "A Series of Normal Stages in the Development of the Chick Embryo," published in the Journal of Morphology in 1951. These stages were published to standardize the development of the chick based on

The developmental stages of the chick embryo were examined by Viktor Hamburger and Howard L. Hamilton in "A Series of Normal Stages in the Development of the Chick Embryo," published in the Journal of Morphology in 1951. These stages were published to standardize the development of the chick based on varying laboratory conditions and genetic differences. The stages Hamburger and Hamilton assigned were determined by the visible features of the chick embryo. The first stage begins just prior to the primitive streak, with the formation of the embryonic shield, and the final stage, forty-six, ends at the hatching of the chick.

Created2007-10-30
173866-Thumbnail Image.png
Description

In this paper Viktor Hamburger and Rita Levi-Montalcini collaborated to examine the effects of limb transplantation and explantation on neural development. In 1947 Hamburger invited Levi-Montalcini to his lab at Washington University in St. Louis to examine this question. Independently, each had previously arrived at opposing conclusions based

In this paper Viktor Hamburger and Rita Levi-Montalcini collaborated to examine the effects of limb transplantation and explantation on neural development. In 1947 Hamburger invited Levi-Montalcini to his lab at Washington University in St. Louis to examine this question. Independently, each had previously arrived at opposing conclusions based on the same data. Hamburger concluded that limb transplantations caused the ganglia to develop more connections and grow larger while Levi-Montalcini concluded that the ganglia first produce a large amount of neurons, then degenerate the unsuccessful neurons. She concluded that larger ganglia must be due to the increase in successful connections. This joint paper, published in the Journal of Experimental Zoology in 1949, corroborated the findings reported by Levi-Montalcini and established that nerve degeneration is an integral part of development.

Created2007-10-30
173872-Thumbnail Image.png
Description

Christian Heinrich Pander, often remembered as the father of embryology, also explored the fields of osteology, zoology, geology, and anatomy. He was born in Riga, Latvia, on 24 July 1794. Pander, with an eclectic history of research, is best remembered for his discovery and explanation of the structure of the

Christian Heinrich Pander, often remembered as the father of embryology, also explored the fields of osteology, zoology, geology, and anatomy. He was born in Riga, Latvia, on 24 July 1794. Pander, with an eclectic history of research, is best remembered for his discovery and explanation of the structure of the chick blastoderm, a term he coined. In doing so, Pander was able to achieve the goal set forth by his teacher, Ignaz Döllinger, to reinvigorate the study of the chick embryo as a means of further exploring the science of embryology as a whole. His findings paved the way for the work of Karl Ernst von Baer, who would later revolutionize the field of embryology with his research.

Created2009-07-22
173744-Thumbnail Image.png
Description

August Antonius Rauber was an embryologist and anatomist who examined gastrulation in avian embryos. He examined the formation of the blastopore, epiblast, and primitive streak during chick development. Subsequent researchers have further studied Rauber's findings, which has led to new discoveries in embryology and developmental biology.

Created2011-06-10