This collection includes most of the ASU Theses and Dissertations from 2011 to present. ASU Theses and Dissertations are available in downloadable PDF format; however, a small percentage of items are under embargo. Information about the dissertations/theses includes degree information, committee members, an abstract, supporting data or media.

In addition to the electronic theses found in the ASU Digital Repository, ASU Theses and Dissertations can be found in the ASU Library Catalog.

Dissertations and Theses granted by Arizona State University are archived and made available through a joint effort of the ASU Graduate College and the ASU Libraries. For more information or questions about this collection contact or visit the Digital Repository ETD Library Guide or contact the ASU Graduate College at gradformat@asu.edu.

Displaying 1 - 10 of 47
150389-Thumbnail Image.png
Description
Radiation-induced gain degradation in bipolar devices is considered to be the primary threat to linear bipolar circuits operating in the space environment. The damage is primarily caused by charged particles trapped in the Earth's magnetosphere, the solar wind, and cosmic rays. This constant radiation exposure leads to early end-of-life expectancies

Radiation-induced gain degradation in bipolar devices is considered to be the primary threat to linear bipolar circuits operating in the space environment. The damage is primarily caused by charged particles trapped in the Earth's magnetosphere, the solar wind, and cosmic rays. This constant radiation exposure leads to early end-of-life expectancies for many electronic parts. Exposure to ionizing radiation increases the density of oxide and interfacial defects in bipolar oxides leading to an increase in base current in bipolar junction transistors. Radiation-induced excess base current is the primary cause of current gain degradation. Analysis of base current response can enable the measurement of defects generated by radiation exposure. In addition to radiation, the space environment is also characterized by extreme temperature fluctuations. Temperature, like radiation, also has a very strong impact on base current. Thus, a technique for separating the effects of radiation from thermal effects is necessary in order to accurately measure radiation-induced damage in space. This thesis focuses on the extraction of radiation damage in lateral PNP bipolar junction transistors and the space environment. It also describes the measurement techniques used and provides a quantitative analysis methodology for separating radiation and thermal effects on the bipolar base current.
ContributorsCampola, Michael J (Author) / Barnaby, Hugh J (Thesis advisor) / Holbert, Keith E. (Committee member) / Vasileska, Dragica (Committee member) / Arizona State University (Publisher)
Created2011
149937-Thumbnail Image.png
Description
There will always be a need for high current/voltage transistors. A transistor that has the ability to be both or either of these things is the silicon metal-silicon field effect transistor (MESFET). An additional perk that silicon MESFET transistors have is the ability to be integrated into the standard silicon

There will always be a need for high current/voltage transistors. A transistor that has the ability to be both or either of these things is the silicon metal-silicon field effect transistor (MESFET). An additional perk that silicon MESFET transistors have is the ability to be integrated into the standard silicon on insulator (SOI) complementary metal oxide semiconductor (CMOS) process flow. This makes a silicon MESFET transistor a very valuable device for use in any standard CMOS circuit that may usually need a separate integrated circuit (IC) in order to switch power on or from a high current/voltage because it allows this function to be performed with a single chip thereby cutting costs. The ability for the MESFET to cost effectively satisfy the needs of this any many other high current/voltage device application markets is what drives the study of MESFET optimization. Silicon MESFETs that are integrated into standard SOI CMOS processes often receive dopings during fabrication that would not ideally be there in a process made exclusively for MESFETs. Since these remnants of SOI CMOS processing effect the operation of a MESFET device, their effect can be seen in the current-voltage characteristics of a measured MESFET device. Device simulations are done and compared to measured silicon MESFET data in order to deduce the cause and effect of many of these SOI CMOS remnants. MESFET devices can be made in both fully depleted (FD) and partially depleted (PD) SOI CMOS technologies. Device simulations are used to do a comparison of FD and PD MESFETs in order to show the advantages and disadvantages of MESFETs fabricated in different technologies. It is shown that PD MESFET have the highest current per area capability. Since the PD MESFET is shown to have the highest current capability, a layout optimization method to further increase the current per area capability of the PD silicon MESFET is presented, derived, and proven to a first order.
ContributorsSochacki, John (Author) / Thornton, Trevor J (Thesis advisor) / Schroder, Dieter (Committee member) / Vasileska, Dragica (Committee member) / Goryll, Michael (Committee member) / Arizona State University (Publisher)
Created2011
150289-Thumbnail Image.png
Description
A primary motivation of research in photovoltaic technology is to obtain higher efficiency photovoltaic devices at reduced cost of production so that solar electricity can be cost competitive. The majority of photovoltaic technologies are based on p-n junction, with efficiency potential being much lower than the thermodynamic limits of individual

A primary motivation of research in photovoltaic technology is to obtain higher efficiency photovoltaic devices at reduced cost of production so that solar electricity can be cost competitive. The majority of photovoltaic technologies are based on p-n junction, with efficiency potential being much lower than the thermodynamic limits of individual technologies and thereby providing substantial scope for further improvements in efficiency. The thesis explores photovoltaic devices using new physical processes that rely on thin layers and are capable of attaining the thermodynamic limit of photovoltaic technology. Silicon heterostructure is one of the candidate technologies in which thin films induce a minority carrier collecting junction in silicon and the devices can achieve efficiency close to the thermodynamic limits of silicon technology. The thesis proposes and experimentally establishes a new theory explaining the operation of silicon heterostructure solar cells. The theory will assist in identifying the optimum properties of thin film materials for silicon heterostructure and help in design and characterization of the devices, along with aiding in developing new devices based on this technology. The efficiency potential of silicon heterostructure is constrained by the thermodynamic limit (31%) of single junction solar cell and is considerably lower than the limit of photovoltaic conversion (~ 80 %). A further improvement in photovoltaic conversion efficiency is possible by implementing a multiple quasi-fermi level system (MQFL). A MQFL allows the absorption of sub band gap photons with current being extracted at a higher band-gap, thereby allowing to overcome the efficiency limit of single junction devices. A MQFL can be realized either by thin epitaxial layers of alternating higher and lower band gap material with nearly lattice matched (quantum well) or highly lattice mismatched (quantum dot) structure. The thesis identifies the material combination for quantum well structure and calculates the absorption coefficient of a MQFl based on quantum well. GaAsSb (barrier)/InAs(dot) was identified as a candidate material for MQFL using quantum dot. The thesis explains the growth mechanism of GaAsSb and the optimization of GaAsSb and GaAs heterointerface.
ContributorsGhosha, Kuṇāla (Author) / Bowden, Stuart (Thesis advisor) / Honsberg, Christiana (Thesis advisor) / Vasileska, Dragica (Committee member) / Goodnick, Stephen (Committee member) / Arizona State University (Publisher)
Created2011
150299-Thumbnail Image.png
Description
Semiconductor devices are generally analyzed with relatively simple equations or with detailed computer simulations. Most text-books use these simple equations and show device diagrams that are frequently very simplified and occasionally incorrect. For example, the carrier densities near the pinch-off point in MOSFETs and JFETs and the minority carrier density

Semiconductor devices are generally analyzed with relatively simple equations or with detailed computer simulations. Most text-books use these simple equations and show device diagrams that are frequently very simplified and occasionally incorrect. For example, the carrier densities near the pinch-off point in MOSFETs and JFETs and the minority carrier density in the base near the reverse-biased base-collector junction are frequently assumed to be zero or near zero. Also the channel thickness at the pinch-off point is often shown to approach zero. None of these assumptions can be correct. The research in thesis addresses these points. I simulated the carrier densities, potentials, electric fields etc. of MOSFETs, BJTs and JFETs at and near the pinch-off regions to determine exactly what happens there. I also simulated the behavior of the quasi-Fermi levels. For MOSFETs, the channel thickness expands slightly before the pinch-off point and then spreads out quickly in a triangular shape and the space-charge region under the channel actually shrinks as the potential increases from source to drain. For BJTs, with collector-base junction reverse biased, most minority carriers diffuse through the base from emitter to collector very fast, but the minority carrier concentration at the collector-base space-charge region is not zero. For JFETs, the boundaries of the space-charge region are difficult to determine, the channel does not disappear after pinch off, the shape of channel is always tapered, and the carrier concentration in the channel decreases progressively. After simulating traditional sized devices, I also simulated typical nano-scaled devices and show that they behave similarly to large devices. These simulation results provide a more complete understanding of device physics and device operation in those regions usually not addressed in semiconductor device physics books.
ContributorsYang, Xuan (Author) / Schroder, Dieter K. (Thesis advisor) / Vasileska, Dragica (Committee member) / Yu, Hongbin (Committee member) / Arizona State University (Publisher)
Created2011
152277-Thumbnail Image.png
Description
Silicon solar cells with heterojunction carrier collectors based on a-Si/c-Si heterojunction (SHJ) have a potential to overcome the limitations of the conventional diffused junction solar cells and become the next industry standard manufacturing technology of solar cells. A brand feature of SHJ technology is ultrapassivated surfaces with already demonstrated 750

Silicon solar cells with heterojunction carrier collectors based on a-Si/c-Si heterojunction (SHJ) have a potential to overcome the limitations of the conventional diffused junction solar cells and become the next industry standard manufacturing technology of solar cells. A brand feature of SHJ technology is ultrapassivated surfaces with already demonstrated 750 mV open circuit voltages (Voc) and 24.7% efficiency on large area solar cell. Despite very good results achieved in research and development, large volume manufacturing of high efficiency SHJ cells remains a fundamental challenge. The main objectives of this work were to develop a SHJ solar cell fabrication flow using industry compatible tools and processes in a pilot production environment, study the interactions between the used fabrication steps, identify the minimum set of optimization parameters and characterization techniques needed to achieve 20% baseline efficiency, and analyze the losses of power in fabricated SHJ cells by numerical and analytical modeling. This manuscript presents a detailed description of a SHJ solar cell fabrication flow developed at ASU Solar Power Laboratory (SPL) which allows large area solar cells with >750 mV Voc. SHJ cells on 135 um thick 153 cm2 area wafers with 19.5% efficiency were fabricated. Passivation quality of (i)a-Si:H film, bulk conductivity of doped a-Si films, bulk conductivity of ITO, transmission of ITO and the thickness of all films were identified as the minimum set of optimization parameters necessary to set up a baseline high efficiency SHJ fabrication flow. The preparation of randomly textured wafers to minimize the concentration of surface impurities and to avoid epitaxial growth of a-Si films was found to be a key challenge in achieving a repeatable and uniform passivation. This work resolved this issue by using a multi-step cleaning process based on sequential oxidation in nitric/acetic acids, Piranha and RCA-b solutions. The developed process allowed state of the art surface passivation with perfect repeatability and negligible reflectance losses. Two additional studies demonstrated 750 mV local Voc on 50 micron thick SHJ solar cell and < 1 cm/s effective surface recombination velocity on n-type wafers passivated by a-Si/SiO2/SiNx stack.
ContributorsHerasimenka, Stanislau Yur'yevich (Author) / Honsberg, C. (Christiana B.) (Thesis advisor) / Bowden, Stuart G (Thesis advisor) / Tracy, Clarence (Committee member) / Vasileska, Dragica (Committee member) / Holman, Zachary (Committee member) / Sinton, Ron (Committee member) / Arizona State University (Publisher)
Created2013
152285-Thumbnail Image.png
Description
Zinc oxide (ZnO), a naturally n-type semiconductor has been identified as a promising candidate to replace indium tin oxide (ITO) as the transparent electrode in solar cells, because of its wide bandgap (3.37 eV), abundant source materials and suitable refractive index (2.0 at 600 nm). Spray deposition is a convenient

Zinc oxide (ZnO), a naturally n-type semiconductor has been identified as a promising candidate to replace indium tin oxide (ITO) as the transparent electrode in solar cells, because of its wide bandgap (3.37 eV), abundant source materials and suitable refractive index (2.0 at 600 nm). Spray deposition is a convenient and low cost technique for large area and uniform deposition of semiconductor thin films. In particular, it provides an easier way to dope the film by simply adding the dopant precursor into the starting solution. In order to reduce the resistivity of undoped ZnO, many works have been done by doping in the ZnO with either group IIIA elements or VIIA elements using spray pyrolysis. However, the resistivity is still too high to meet TCO's resistivity requirement. In the present work, a novel co-spray deposition technique is developed to bypass a fundamental limitation in the conventional spray deposition technique, i.e. the deposition of metal oxides from incompatible precursors in the starting solution. With this technique, ZnO films codoped with one cationic dopant, Al, Cr, or Fe, and an anionic dopant, F, have been successfully synthesized, in which F is incompatible with all these three cationic dopants. Two starting solutions were prepared and co-sprayed through two separate spray heads. One solution contained only the F precursor, NH 4F. The second solution contained the Zn and one cationic dopant precursors, Zn(O 2CCH 3) 2 and AlCl 3, CrCl 3, or FeCl 3. The deposition was carried out at 500 &degC; on soda-lime glass in air. Compared to singly-doped ZnO thin films, codoped ZnO samples showed better electrical properties. Besides, a minimum sheet resistance, 55.4 Ω/sq, was obtained for Al and F codoped ZnO films after vacuum annealing at 400 &degC;, which was lower than singly-doped ZnO with either Al or F. The transmittance for the Al and F codoped ZnO samples was above 90% in the visible range. This co-spray deposition technique provides a simple and cost-effective way to synthesize metal oxides from incompatible precursors with improved properties.
ContributorsZhou, Bin (Author) / Tao, Meng (Thesis advisor) / Goryll, Michael (Committee member) / Vasileska, Dragica (Committee member) / Yu, Hongbin (Committee member) / Arizona State University (Publisher)
Created2013
151418-Thumbnail Image.png
Description
ABSTRACT This work seeks to develop a practical solution for short range ultrasonic communications and produce an integrated array of acoustic transmitters on a flexible substrate. This is done using flexible thin film transistor (TFT) and micro electromechanical systems (MEMS). The goal is to develop a flexible system capable of

ABSTRACT This work seeks to develop a practical solution for short range ultrasonic communications and produce an integrated array of acoustic transmitters on a flexible substrate. This is done using flexible thin film transistor (TFT) and micro electromechanical systems (MEMS). The goal is to develop a flexible system capable of communicating in the ultrasonic frequency range at a distance of 10 - 100 meters. This requires a great deal of innovation on the part of the FDC team developing the TFT driving circuitry and the MEMS team adapting the technology for fabrication on a flexible substrate. The technologies required for this research are independently developed. The TFT development is driven primarily by research into flexible displays. The MEMS development is driving by research in biosensors and micro actuators. This project involves the integration of TFT flexible circuit capabilities with MEMS micro actuators in the novel area of flexible acoustic transmitter arrays. This thesis focuses on the design, testing and analysis of the circuit components required for this project.
ContributorsDaugherty, Robin (Author) / Allee, David R. (Thesis advisor) / Chae, Junseok (Thesis advisor) / Aberle, James T (Committee member) / Vasileska, Dragica (Committee member) / Arizona State University (Publisher)
Created2012
150874-Thumbnail Image.png
Description
A dual chamber molecular beam epitaxy (MBE) system was rebuilt for the growth of 6.1 Angstrom II-VI and III-V compound semiconductor materials that are to be used in novel optoelectronic devices that take advantage of the nearly continuous bandgap availability between 0 eV and 3.4 eV. These devices include multijunction

A dual chamber molecular beam epitaxy (MBE) system was rebuilt for the growth of 6.1 Angstrom II-VI and III-V compound semiconductor materials that are to be used in novel optoelectronic devices that take advantage of the nearly continuous bandgap availability between 0 eV and 3.4 eV. These devices include multijunction solar cells and multicolor detectors. The MBE system upgrade involved the conversion of a former III-V chamber for II-VI growth. This required intensive cleaning of the chamber and components to prevent contamination. Special features including valved II-VI sources and the addition of a cold trap allowed for the full system to be baked to 200 degrees Celsius to improve vacuum conditions and reduce background impurity concentrations in epilayers. After the conversion, the system was carefully calibrated and optimized for the growth of ZnSe and ZnTe on GaAs (001) substrates. Material quality was assessed using X-ray diffraction rocking curves. ZnSe layers displayed a trend of improving quality with decreasing growth temperature reaching a minimum full-width half-maximum (FWHM) of 113 arcsec at 278 degrees Celsius. ZnTe epilayer quality increased with growth temperature under Zn rich conditions attaining a FWHM of 84 arcsec at 440 degrees Celsius. RHEED oscillations were successfully observed and used to obtain growth rate in situ for varying flux and temperature levels. For a fixed flux ratio, growth rate decreased with growth temperature as the desorption rate increased. A directly proportional dependence of growth rate on Te flux was observed for Zn rich growth. Furthermore, a method for determining the flux ratio necessary for attaining the stoichiometric condition was demonstrated.
ContributorsDettlaff, W. Hank G (Author) / Zhang, Yong-Hang (Thesis advisor) / Vasileska, Dragica (Committee member) / Johnson, Shane (Committee member) / Arizona State University (Publisher)
Created2012
150443-Thumbnail Image.png
Description
ABSTRACT An Ensemble Monte Carlo (EMC) computer code has been developed to simulate, semi-classically, spin-dependent electron transport in quasi two-dimensional (2D) III-V semiconductors. The code accounts for both three-dimensional (3D) and quasi-2D transport, utilizing either 3D or 2D scattering mechanisms, as appropriate. Phonon, alloy, interface roughness, and impurity scattering mechanisms

ABSTRACT An Ensemble Monte Carlo (EMC) computer code has been developed to simulate, semi-classically, spin-dependent electron transport in quasi two-dimensional (2D) III-V semiconductors. The code accounts for both three-dimensional (3D) and quasi-2D transport, utilizing either 3D or 2D scattering mechanisms, as appropriate. Phonon, alloy, interface roughness, and impurity scattering mechanisms are included, accounting for the Pauli Exclusion Principle via a rejection algorithm. The 2D carrier states are calculated via a self-consistent 1D Schrödinger-3D-Poisson solution in which the charge distribution of the 2D carriers in the quantization direction is taken as the spatial distribution of the squared envelope functions within the Hartree approximation. The wavefunctions, subband energies, and 2D scattering rates are updated periodically by solving a series of 1D Schrödinger wave equations (SWE) over the real-space domain of the device at fixed time intervals. The electrostatic potential is updated by periodically solving the 3D Poisson equation. Spin-polarized transport is modeled via a spin density-matrix formalism that accounts for D'yakanov-Perel (DP) scattering. Also, the code allows for the easy inclusion of additional scattering mechanisms and structural modifications to devices. As an application of the simulator, the current voltage characteristics of an InGaAs/InAlAs HEMT are simulated, corresponding to nanoscale III-V HEMTs currently being fabricated by Intel Corporation. The comparative effects of various scattering parameters, material properties and structural attributes are investigated and compared with experiments where reasonable agreement is obtained. The spatial evolution of spin-polarized carriers in prototypical Spin Field Effect Transistor (SpinFET) devices is then simulated. Studies of the spin coherence times in quasi-2D structures is first investigated and compared to experimental results. It is found that the simulated spin coherence times for GaAs structures are in reasonable agreement with experiment. The SpinFET structure studied is a scaled-down version of the InGaAs/InAlAs HEMT discussed in this work, in which spin-polarized carriers are injected at the source, and the coherence length is studied as a function of gate voltage via the Rashba effect.
ContributorsTierney, Brian David (Author) / Goodnick, Stephen (Thesis advisor) / Ferry, David (Committee member) / Akis, Richard (Committee member) / Saraniti, Marco (Committee member) / Vasileska, Dragica (Committee member) / Arizona State University (Publisher)
Created2011
150535-Thumbnail Image.png
Description
Infrared photodetectors, used in applications for sensing and imaging, such as military target recognition, chemical/gas detection, and night vision enhancement, are predominantly comprised of an expensive II-VI material, HgCdTe. III-V type-II superlattices (SLs) have been studied as viable alternatives for HgCdTe due to the SL advantages over HgCdTe: greater control

Infrared photodetectors, used in applications for sensing and imaging, such as military target recognition, chemical/gas detection, and night vision enhancement, are predominantly comprised of an expensive II-VI material, HgCdTe. III-V type-II superlattices (SLs) have been studied as viable alternatives for HgCdTe due to the SL advantages over HgCdTe: greater control of the alloy composition, resulting in more uniform materials and cutoff wavelengths across the wafer; stronger bonds and structural stability; less expensive substrates, i.e., GaSb; mature III-V growth and processing technologies; lower band-to-band tunneling due to larger electron effective masses; and reduced Auger recombination enabling operation at higher temperatures and longer wavelengths. However, the dark current of InAs/Ga1-xInxSb SL detectors is higher than that of HgCdTe detectors and limited by Shockley-Read-Hall (SRH) recombination rather than Auger recombination. This dissertation work focuses on InAs/InAs1-xSbx SLs, another promising alternative for infrared laser and detector applications due to possible lower SRH recombination and the absence of gallium, which simplifies the SL interfaces and growth processes. InAs/InAs1-xSbx SLs strain-balanced to GaSb substrates were designed for the mid- and long-wavelength infrared (MWIR and LWIR) spectral ranges and were grown using MOCVD and MBE by various groups. Detailed characterization using high-resolution x-ray diffraction, atomic force microscopy, photoluminescence (PL), and photoconductance revealed the excellent structural and optical properties of the MBE materials. Two key material parameters were studied in detail: the valence band offset (VBO) and minority carrier lifetime. The VBO between InAs and InAs1-xSbx strained on GaSb with x = 0.28 - 0.41 was best described by Qv = ÄEv/ÄEg = 1.75 ± 0.03. Time-resolved PL experiments on a LWIR SL revealed a lifetime of 412 ns at 77 K, one order of magnitude greater than that of InAs/Ga1-xInxSb LWIR SLs due to less SRH recombination. MWIR SLs also had 100's of ns lifetimes that were dominated by radiative recombination due to shorter periods and larger wave function overlaps. These results allow InAs/InAs1-xSbx SLs to be designed for LWIR photodetectors with minority carrier lifetimes approaching those of HgCdTe, lower dark currents, and higher operating temperatures.
ContributorsSteenbergen, Elizabeth H (Author) / Zhang, Yong-Hang (Thesis advisor) / Brown, Gail J. (Committee member) / Vasileska, Dragica (Committee member) / Johnson, Shane R. (Committee member) / Arizona State University (Publisher)
Created2012