This collection includes most of the ASU Theses and Dissertations from 2011 to present. ASU Theses and Dissertations are available in downloadable PDF format; however, a small percentage of items are under embargo. Information about the dissertations/theses includes degree information, committee members, an abstract, supporting data or media.

In addition to the electronic theses found in the ASU Digital Repository, ASU Theses and Dissertations can be found in the ASU Library Catalog.

Dissertations and Theses granted by Arizona State University are archived and made available through a joint effort of the ASU Graduate College and the ASU Libraries. For more information or questions about this collection contact or visit the Digital Repository ETD Library Guide or contact the ASU Graduate College at gradformat@asu.edu.

Displaying 1 - 10 of 34
149977-Thumbnail Image.png
Description
Reliable extraction of human pose features that are invariant to view angle and body shape changes is critical for advancing human movement analysis. In this dissertation, the multifactor analysis techniques, including the multilinear analysis and the multifactor Gaussian process methods, have been exploited to extract such invariant pose features from

Reliable extraction of human pose features that are invariant to view angle and body shape changes is critical for advancing human movement analysis. In this dissertation, the multifactor analysis techniques, including the multilinear analysis and the multifactor Gaussian process methods, have been exploited to extract such invariant pose features from video data by decomposing various key contributing factors, such as pose, view angle, and body shape, in the generation of the image observations. Experimental results have shown that the resulting pose features extracted using the proposed methods exhibit excellent invariance properties to changes in view angles and body shapes. Furthermore, using the proposed invariant multifactor pose features, a suite of simple while effective algorithms have been developed to solve the movement recognition and pose estimation problems. Using these proposed algorithms, excellent human movement analysis results have been obtained, and most of them are superior to those obtained from state-of-the-art algorithms on the same testing datasets. Moreover, a number of key movement analysis challenges, including robust online gesture spotting and multi-camera gesture recognition, have also been addressed in this research. To this end, an online gesture spotting framework has been developed to automatically detect and learn non-gesture movement patterns to improve gesture localization and recognition from continuous data streams using a hidden Markov network. In addition, the optimal data fusion scheme has been investigated for multicamera gesture recognition, and the decision-level camera fusion scheme using the product rule has been found to be optimal for gesture recognition using multiple uncalibrated cameras. Furthermore, the challenge of optimal camera selection in multi-camera gesture recognition has also been tackled. A measure to quantify the complementary strength across cameras has been proposed. Experimental results obtained from a real-life gesture recognition dataset have shown that the optimal camera combinations identified according to the proposed complementary measure always lead to the best gesture recognition results.
ContributorsPeng, Bo (Author) / Qian, Gang (Thesis advisor) / Ye, Jieping (Committee member) / Li, Baoxin (Committee member) / Spanias, Andreas (Committee member) / Arizona State University (Publisher)
Created2011
149993-Thumbnail Image.png
Description
Many products undergo several stages of testing ranging from tests on individual components to end-item tests. Additionally, these products may be further "tested" via customer or field use. The later failure of a delivered product may in some cases be due to circumstances that have no correlation with the product's

Many products undergo several stages of testing ranging from tests on individual components to end-item tests. Additionally, these products may be further "tested" via customer or field use. The later failure of a delivered product may in some cases be due to circumstances that have no correlation with the product's inherent quality. However, at times, there may be cues in the upstream test data that, if detected, could serve to predict the likelihood of downstream failure or performance degradation induced by product use or environmental stresses. This study explores the use of downstream factory test data or product field reliability data to infer data mining or pattern recognition criteria onto manufacturing process or upstream test data by means of support vector machines (SVM) in order to provide reliability prediction models. In concert with a risk/benefit analysis, these models can be utilized to drive improvement of the product or, at least, via screening to improve the reliability of the product delivered to the customer. Such models can be used to aid in reliability risk assessment based on detectable correlations between the product test performance and the sources of supply, test stands, or other factors related to product manufacture. As an enhancement to the usefulness of the SVM or hyperplane classifier within this context, L-moments and the Western Electric Company (WECO) Rules are used to augment or replace the native process or test data used as inputs to the classifier. As part of this research, a generalizable binary classification methodology was developed that can be used to design and implement predictors of end-item field failure or downstream product performance based on upstream test data that may be composed of single-parameter, time-series, or multivariate real-valued data. Additionally, the methodology provides input parameter weighting factors that have proved useful in failure analysis and root cause investigations as indicators of which of several upstream product parameters have the greater influence on the downstream failure outcomes.
ContributorsMosley, James (Author) / Morrell, Darryl (Committee member) / Cochran, Douglas (Committee member) / Papandreou-Suppappola, Antonia (Committee member) / Roberts, Chell (Committee member) / Spanias, Andreas (Committee member) / Arizona State University (Publisher)
Created2011
149915-Thumbnail Image.png
Description
Spotlight mode synthetic aperture radar (SAR) imaging involves a tomo- graphic reconstruction from projections, necessitating acquisition of large amounts of data in order to form a moderately sized image. Since typical SAR sensors are hosted on mobile platforms, it is common to have limitations on SAR data acquisi- tion, storage

Spotlight mode synthetic aperture radar (SAR) imaging involves a tomo- graphic reconstruction from projections, necessitating acquisition of large amounts of data in order to form a moderately sized image. Since typical SAR sensors are hosted on mobile platforms, it is common to have limitations on SAR data acquisi- tion, storage and communication that can lead to data corruption and a resulting degradation of image quality. It is convenient to consider corrupted samples as missing, creating a sparsely sampled aperture. A sparse aperture would also result from compressive sensing, which is a very attractive concept for data intensive sen- sors such as SAR. Recent developments in sparse decomposition algorithms can be applied to the problem of SAR image formation from a sparsely sampled aperture. Two modified sparse decomposition algorithms are developed, based on well known existing algorithms, modified to be practical in application on modest computa- tional resources. The two algorithms are demonstrated on real-world SAR images. Algorithm performance with respect to super-resolution, noise, coherent speckle and target/clutter decomposition is explored. These algorithms yield more accu- rate image reconstruction from sparsely sampled apertures than classical spectral estimators. At the current state of development, sparse image reconstruction using these two algorithms require about two orders of magnitude greater processing time than classical SAR image formation.
ContributorsWerth, Nicholas (Author) / Karam, Lina (Thesis advisor) / Papandreou-Suppappola, Antonia (Committee member) / Spanias, Andreas (Committee member) / Arizona State University (Publisher)
Created2011
149962-Thumbnail Image.png
Description
In the last few years, significant advances in nanofabrication have allowed tailoring of structures and materials at a molecular level enabling nanofabrication with precise control of dimensions and organization at molecular length scales, a development leading to significant advances in nanoscale systems. Although, the direction of progress seems to follow

In the last few years, significant advances in nanofabrication have allowed tailoring of structures and materials at a molecular level enabling nanofabrication with precise control of dimensions and organization at molecular length scales, a development leading to significant advances in nanoscale systems. Although, the direction of progress seems to follow the path of microelectronics, the fundamental physics in a nanoscale system changes more rapidly compared to microelectronics, as the size scale is decreased. The changes in length, area, and volume ratios due to reduction in size alter the relative influence of various physical effects determining the overall operation of a system in unexpected ways. One such category of nanofluidic structures demonstrating unique ionic and molecular transport characteristics are nanopores. Nanopores derive their unique transport characteristics from the electrostatic interaction of nanopore surface charge with aqueous ionic solutions. In this doctoral research cylindrical nanopores, in single and array configuration, were fabricated in silicon-on-insulator (SOI) using a combination of electron beam lithography (EBL) and reactive ion etching (RIE). The fabrication method presented is compatible with standard semiconductor foundries and allows fabrication of nanopores with desired geometries and precise dimensional control, providing near ideal and isolated physical modeling systems to study ion transport at the nanometer level. Ion transport through nanopores was characterized by measuring ionic conductances of arrays of nanopores of various diameters for a wide range of concentration of aqueous hydrochloric acid (HCl) ionic solutions. Measured ionic conductances demonstrated two distinct regimes based on surface charge interactions at low ionic concentrations and nanopore geometry at high ionic concentrations. Field effect modulation of ion transport through nanopore arrays, in a fashion similar to semiconductor transistors, was also studied. Using ionic conductance measurements, it was shown that the concentration of ions in the nanopore volume was significantly changed when a gate voltage on nanopore arrays was applied, hence controlling their transport. Based on the ion transport results, single nanopores were used to demonstrate their application as nanoscale particle counters by using polystyrene nanobeads, monodispersed in aqueous HCl solutions of different molarities. Effects of field effect modulation on particle transition events were also demonstrated.
ContributorsJoshi, Punarvasu (Author) / Thornton, Trevor J (Thesis advisor) / Goryll, Michael (Thesis advisor) / Spanias, Andreas (Committee member) / Saraniti, Marco (Committee member) / Arizona State University (Publisher)
Created2011
149902-Thumbnail Image.png
Description
For synthetic aperture radar (SAR) image formation processing, the chirp scaling algorithm (CSA) has gained considerable attention mainly because of its excellent target focusing ability, optimized processing steps, and ease of implementation. In particular, unlike the range Doppler and range migration algorithms, the CSA is easy to implement since it

For synthetic aperture radar (SAR) image formation processing, the chirp scaling algorithm (CSA) has gained considerable attention mainly because of its excellent target focusing ability, optimized processing steps, and ease of implementation. In particular, unlike the range Doppler and range migration algorithms, the CSA is easy to implement since it does not require interpolation, and it can be used on both stripmap and spotlight SAR systems. Another transform that can be used to enhance the processing of SAR image formation is the fractional Fourier transform (FRFT). This transform has been recently introduced to the signal processing community, and it has shown many promising applications in the realm of SAR signal processing, specifically because of its close association to the Wigner distribution and ambiguity function. The objective of this work is to improve the application of the FRFT in order to enhance the implementation of the CSA for SAR processing. This will be achieved by processing real phase-history data from the RADARSAT-1 satellite, a multi-mode SAR platform operating in the C-band, providing imagery with resolution between 8 and 100 meters at incidence angles of 10 through 59 degrees. The phase-history data will be processed into imagery using the conventional chirp scaling algorithm. The results will then be compared using a new implementation of the CSA based on the use of the FRFT, combined with traditional SAR focusing techniques, to enhance the algorithm's focusing ability, thereby increasing the peak-to-sidelobe ratio of the focused targets. The FRFT can also be used to provide focusing enhancements at extended ranges.
ContributorsNorthrop, Judith (Author) / Papandreou-Suppappola, Antonia (Thesis advisor) / Spanias, Andreas (Committee member) / Tepedelenlioğlu, Cihan (Committee member) / Arizona State University (Publisher)
Created2011
151656-Thumbnail Image.png
Description
Image resolution limits the extent to which zooming enhances clarity, restricts the size digital photographs can be printed at, and, in the context of medical images, can prevent a diagnosis. Interpolation is the supplementing of known data with estimated values based on a function or model involving some or all

Image resolution limits the extent to which zooming enhances clarity, restricts the size digital photographs can be printed at, and, in the context of medical images, can prevent a diagnosis. Interpolation is the supplementing of known data with estimated values based on a function or model involving some or all of the known samples. The selection of the contributing data points and the specifics of how they are used to define the interpolated values influences how effectively the interpolation algorithm is able to estimate the underlying, continuous signal. The main contributions of this dissertation are three fold: 1) Reframing edge-directed interpolation of a single image as an intensity-based registration problem. 2) Providing an analytical framework for intensity-based registration using control grid constraints. 3) Quantitative assessment of the new, single-image enlargement algorithm based on analytical intensity-based registration. In addition to single image resizing, the new methods and analytical approaches were extended to address a wide range of applications including volumetric (multi-slice) image interpolation, video deinterlacing, motion detection, and atmospheric distortion correction. Overall, the new approaches generate results that more accurately reflect the underlying signals than less computationally demanding approaches and with lower processing requirements and fewer restrictions than methods with comparable accuracy.
ContributorsZwart, Christine M. (Author) / Frakes, David H (Thesis advisor) / Karam, Lina (Committee member) / Kodibagkar, Vikram (Committee member) / Spanias, Andreas (Committee member) / Towe, Bruce (Committee member) / Arizona State University (Publisher)
Created2013
151542-Thumbnail Image.png
Description
Asymptotic comparisons of ergodic channel capacity at high and low signal-to-noise ratios (SNRs) are provided for several adaptive transmission schemes over fading channels with general distributions, including optimal power and rate adaptation, rate adaptation only, channel inversion and its variants. Analysis of the high-SNR pre-log constants of the ergodic capacity

Asymptotic comparisons of ergodic channel capacity at high and low signal-to-noise ratios (SNRs) are provided for several adaptive transmission schemes over fading channels with general distributions, including optimal power and rate adaptation, rate adaptation only, channel inversion and its variants. Analysis of the high-SNR pre-log constants of the ergodic capacity reveals the existence of constant capacity difference gaps among the schemes with a pre-log constant of 1. Closed-form expressions for these high-SNR capacity difference gaps are derived, which are proportional to the SNR loss between these schemes in dB scale. The largest one of these gaps is found to be between the optimal power and rate adaptation scheme and the channel inversion scheme. Based on these expressions it is shown that the presence of space diversity or multi-user diversity makes channel inversion arbitrarily close to achieving optimal capacity at high SNR with sufficiently large number of antennas or users. A low-SNR analysis also reveals that the presence of fading provably always improves capacity at sufficiently low SNR, compared to the additive white Gaussian noise (AWGN) case. Numerical results are shown to corroborate our analytical results. This dissertation derives high-SNR asymptotic average error rates over fading channels by relating them to the outage probability, under mild assumptions. The analysis is based on the Tauberian theorem for Laplace-Stieltjes transforms which is grounded on the notion of regular variation, and applies to a wider range of channel distributions than existing approaches. The theory of regular variation is argued to be the proper mathematical framework for finding sufficient and necessary conditions for outage events to dominate high-SNR error rate performance. It is proved that the diversity order being d and the cumulative distribution function (CDF) of the channel power gain having variation exponent d at 0 imply each other, provided that the instantaneous error rate is upper-bounded by an exponential function of the instantaneous SNR. High-SNR asymptotic average error rates are derived for specific instantaneous error rates. Compared to existing approaches in the literature, the asymptotic expressions are related to the channel distribution in a much simpler manner herein, and related with outage more intuitively. The high-SNR asymptotic error rate is also characterized under diversity combining schemes with the channel power gain of each branch having a regularly varying CDF. Numerical results are shown to corroborate our theoretical analysis. This dissertation studies several problems concerning channel inclusion, which is a partial ordering between discrete memoryless channels (DMCs) proposed by Shannon. Specifically, majorization-based conditions are derived for channel inclusion between certain DMCs. Furthermore, under general conditions, channel equivalence defined through Shannon ordering is shown to be the same as permutation of input and output symbols. The determination of channel inclusion is considered as a convex optimization problem, and the sparsity of the weights related to the representation of the worse DMC in terms of the better one is revealed when channel inclusion holds between two DMCs. For the exploitation of this sparsity, an effective iterative algorithm is established based on modifying the orthogonal matching pursuit algorithm. The extension of channel inclusion to continuous channels and its application in ordering phase noises are briefly addressed.
ContributorsZhang, Yuan (Author) / Tepedelenlioğlu, Cihan (Thesis advisor) / Zhang, Junshan (Committee member) / Reisslein, Martin (Committee member) / Spanias, Andreas (Committee member) / Arizona State University (Publisher)
Created2013
151383-Thumbnail Image.png
Description
Motion capture using cost-effective sensing technology is challenging and the huge success of Microsoft Kinect has been attracting researchers to uncover the potential of using this technology into computer vision applications. In this thesis, an upper-body motion analysis in a home-based system for stroke rehabilitation using novel RGB-D camera -

Motion capture using cost-effective sensing technology is challenging and the huge success of Microsoft Kinect has been attracting researchers to uncover the potential of using this technology into computer vision applications. In this thesis, an upper-body motion analysis in a home-based system for stroke rehabilitation using novel RGB-D camera - Kinect is presented. We address this problem by first conducting a systematic analysis of the usability of Kinect for motion analysis in stroke rehabilitation. Then a hybrid upper body tracking approach is proposed which combines off-the-shelf skeleton tracking with a novel depth-fused mean shift tracking method. We proposed several kinematic features reliably extracted from the proposed inexpensive and portable motion capture system and classifiers that correlate torso movement to clinical measures of unimpaired and impaired. Experiment results show that the proposed sensing and analysis works reliably on measuring torso movement quality and is promising for end-point tracking. The system is currently being deployed for large-scale evaluations.
ContributorsDu, Tingfang (Author) / Turaga, Pavan (Thesis advisor) / Spanias, Andreas (Committee member) / Rikakis, Thanassis (Committee member) / Arizona State University (Publisher)
Created2012
150788-Thumbnail Image.png
Description
Interictal spikes, together with seizures, have been recognized as the two hallmarks of epilepsy, a brain disorder that 1% of the world's population suffers from. Even though the presence of spikes in brain's electromagnetic activity has diagnostic value, their dynamics are still elusive. It was an objective of this dissertation

Interictal spikes, together with seizures, have been recognized as the two hallmarks of epilepsy, a brain disorder that 1% of the world's population suffers from. Even though the presence of spikes in brain's electromagnetic activity has diagnostic value, their dynamics are still elusive. It was an objective of this dissertation to formulate a mathematical framework within which the dynamics of interictal spikes could be thoroughly investigated. A new epileptic spike detection algorithm was developed by employing data adaptive morphological filters. The performance of the spike detection algorithm was favorably compared with others in the literature. A novel spike spatial synchronization measure was developed and tested on coupled spiking neuron models. Application of this measure to individual epileptic spikes in EEG from patients with temporal lobe epilepsy revealed long-term trends of increase in synchronization between pairs of brain sites before seizures and desynchronization after seizures, in the same patient as well as across patients, thus supporting the hypothesis that seizures may occur to break (reset) the abnormal spike synchronization in the brain network. Furthermore, based on these results, a separate spatial analysis of spike rates was conducted that shed light onto conflicting results in the literature about variability of spike rate before and after seizure. The ability to automatically classify seizures into clinical and subclinical was a result of the above findings. A novel method for epileptogenic focus localization from interictal periods based on spike occurrences was also devised, combining concepts from graph theory, like eigenvector centrality, and the developed spike synchronization measure, and tested very favorably against the utilized gold rule in clinical practice for focus localization from seizures onset. Finally, in another application of resetting of brain dynamics at seizures, it was shown that it is possible to differentiate with a high accuracy between patients with epileptic seizures (ES) and patients with psychogenic nonepileptic seizures (PNES). The above studies of spike dynamics have elucidated many unknown aspects of ictogenesis and it is expected to significantly contribute to further understanding of the basic mechanisms that lead to seizures, the diagnosis and treatment of epilepsy.
ContributorsKrishnan, Balu (Author) / Iasemidis, Leonidas (Thesis advisor) / Tsakalis, Kostantinos (Committee member) / Spanias, Andreas (Committee member) / Si, Jennie (Committee member) / Arizona State University (Publisher)
Created2012
151028-Thumbnail Image.png
Description
In this thesis, we consider the problem of fast and efficient indexing techniques for time sequences which evolve on manifold-valued spaces. Using manifolds is a convenient way to work with complex features that often do not live in Euclidean spaces. However, computing standard notions of geodesic distance, mean etc. can

In this thesis, we consider the problem of fast and efficient indexing techniques for time sequences which evolve on manifold-valued spaces. Using manifolds is a convenient way to work with complex features that often do not live in Euclidean spaces. However, computing standard notions of geodesic distance, mean etc. can get very involved due to the underlying non-linearity associated with the space. As a result a complex task such as manifold sequence matching would require very large number of computations making it hard to use in practice. We believe that one can device smart approximation algorithms for several classes of such problems which take into account the geometry of the manifold and maintain the favorable properties of the exact approach. This problem has several applications in areas of human activity discovery and recognition, where several features and representations are naturally studied in a non-Euclidean setting. We propose a novel solution to the problem of indexing manifold-valued sequences by proposing an intrinsic approach to map sequences to a symbolic representation. This is shown to enable the deployment of fast and accurate algorithms for activity recognition, motif discovery, and anomaly detection. Toward this end, we present generalizations of key concepts of piece-wise aggregation and symbolic approximation for the case of non-Euclidean manifolds. Experiments show that one can replace expensive geodesic computations with much faster symbolic computations with little loss of accuracy in activity recognition and discovery applications. The proposed methods are ideally suited for real-time systems and resource constrained scenarios.
ContributorsAnirudh, Rushil (Author) / Turaga, Pavan (Thesis advisor) / Spanias, Andreas (Committee member) / Li, Baoxin (Committee member) / Arizona State University (Publisher)
Created2012