This collection includes most of the ASU Theses and Dissertations from 2011 to present. ASU Theses and Dissertations are available in downloadable PDF format; however, a small percentage of items are under embargo. Information about the dissertations/theses includes degree information, committee members, an abstract, supporting data or media.

In addition to the electronic theses found in the ASU Digital Repository, ASU Theses and Dissertations can be found in the ASU Library Catalog.

Dissertations and Theses granted by Arizona State University are archived and made available through a joint effort of the ASU Graduate College and the ASU Libraries. For more information or questions about this collection contact or visit the Digital Repository ETD Library Guide or contact the ASU Graduate College at gradformat@asu.edu.

Displaying 1 - 10 of 36
157622-Thumbnail Image.png
Description
Admittance control with fixed damping has been a successful control strategy in previous human-robotic interaction research. This research implements a variable damping admittance controller in a 7-DOF robotic arm coupled with a human subject’s arm at the end effector to study the trade-off of agility and stability and

Admittance control with fixed damping has been a successful control strategy in previous human-robotic interaction research. This research implements a variable damping admittance controller in a 7-DOF robotic arm coupled with a human subject’s arm at the end effector to study the trade-off of agility and stability and aims to produce a control scheme which displays both fast rise time and stability. The variable damping controller uses a measure of intent of movement to vary damping to aid the user’s movement to a target. The range of damping values is bounded by incorporating knowledge of a human arm to ensure the stability of the coupled human-robot system. Human subjects completed experiments with fixed positive, fixed negative, and variable damping controllers to evaluate the variable damping controller’s ability to increase agility and stability. Comparisons of the two fixed damping controllers showed as fixed damping increased, the coupled human-robot system reacted with less overshoot at the expense of rise time, which is used as a measure of agility. The inverse was also true; as damping became increasingly negative, the overshoot and stability of the system was compromised, while the rise time became faster. Analysis of the variable damping controller demonstrated humans could extract the benefits of the variable damping controller in its ability to increase agility in comparison to a positive damping controller and increase stability in comparison to a negative damping controller.
ContributorsBitz, Tanner Jacob (Author) / Lee, Hyunglae (Thesis advisor) / Marvi, Hamidreza (Committee member) / Yong, Sze Zheng (Committee member) / Arizona State University (Publisher)
Created2019
168636-Thumbnail Image.png
Description
The ability for aerial manipulators to stay aloft while interacting with dynamic environments is critical for successfully in situ data acquisition methods in arboreal environments. One widely used platform utilizes a six degree of freedom manipulator attached to quadcoper or octocopter, to sample a tree leaf by maintaining the system

The ability for aerial manipulators to stay aloft while interacting with dynamic environments is critical for successfully in situ data acquisition methods in arboreal environments. One widely used platform utilizes a six degree of freedom manipulator attached to quadcoper or octocopter, to sample a tree leaf by maintaining the system in a hover while the arm pulls the leaf for a sample. Other system are comprised of simpler quadcopter with a fixed mechanical device to physically cut the leaf while the system is manually piloted. Neither of these common methods account or compensate for the variation of inherent dynamics occurring in the arboreal-aerial manipulator interaction effects. This research proposes force and velocity feedback methods to control an aerial manipulation platform while allowing waypoint navigation within the work space to take place. Using these methods requires minimal knowledge of the system and the dynamic parameters. This thesis outlines the Robot Operating System (ROS) based Open Autonomous Air Vehicle (OpenUAV) simulations performed on the purposed three degree of freedom redundant aerial manipulation platform.
ContributorsCohen, Daniel (Author) / Das, Jnaneshwar (Thesis advisor) / Marvi, Hamidreza (Committee member) / Saldaña, David (Committee member) / Arizona State University (Publisher)
Created2022
190725-Thumbnail Image.png
Description
Tire blowout often occurs during driving, which can suddenly disturb vehicle motions and seriously threaten road safety. Currently, there is still a lack of effective methods to mitigate tire blowout risks in everyday traffic, even for automated vehicles. To fundamentally study and systematically resolve the tire blowout issue for automated

Tire blowout often occurs during driving, which can suddenly disturb vehicle motions and seriously threaten road safety. Currently, there is still a lack of effective methods to mitigate tire blowout risks in everyday traffic, even for automated vehicles. To fundamentally study and systematically resolve the tire blowout issue for automated vehicles, a collaborative project between General Motors (GM) and Arizona State University (ASU) has been conducted since 2018. In this dissertation, three main contributions of this project will be presented. First, to explore vehicle dynamics with tire blowout impacts and establish an effective simulation platform for close-loop control performance evaluation, high-fidelity tire blowout models are thoroughly developed by explicitly considering important vehicle parameters and variables. Second, since human cooperation is required to control Level 2/3 partially automated vehicles (PAVs), novel shared steering control schemes are specifically proposed for tire blowout to ensure safe vehicle stabilization via cooperative driving. Third, for Level 4/5 highly automated vehicles (HAVs) without human control, the development of control-oriented vehicle models, controllability study, and automatic control designs are performed based on impulsive differential systems (IDS) theories. Co-simulations Matlab/Simulink® and CarSim® are conducted to validate performances of all models and control designs proposed in this dissertation. Moreover, a scaled test vehicle at ASU and a full-size test vehicle at GM are well instrumented for data collection and control implementation. Various tire blowout experiments for different scenarios are conducted for more rigorous validations. Consequently, the proposed high-fidelity tire blowout models can correctly and more accurately describe vehicle motions upon tire blowout. The developed shared steering control schemes for PAVs and automatic control designs for HAVs can effectively stabilize a vehicle to maintain path following performance in the driving lane after tire blowout. In addition to new research findings and developments in this dissertation, a pending patent for tire blowout detection is also generated in the tire blowout project. The obtained research results have attracted interest from automotive manufacturers and could have a significant impact on driving safety enhancement for automated vehicles upon tire blowout.
ContributorsLi, Ao (Author) / Chen, Yan (Thesis advisor) / Berman, Spring (Committee member) / Kannan, Arunachala Mada (Committee member) / Liu, Yongming (Committee member) / Lin, Wen-Chiao (Committee member) / Marvi, Hamidreza (Committee member) / Arizona State University (Publisher)
Created2023
189279-Thumbnail Image.png
Description
For the past two centuries, coal has played a vital role as the primary carbon source, fueling industries and enabling the production of essential carbon-rich materials, including carbon nanotubes, graphite, and diamond. However, the global transition towards sustainable energy production has resulted in a decline in coal usage for energy

For the past two centuries, coal has played a vital role as the primary carbon source, fueling industries and enabling the production of essential carbon-rich materials, including carbon nanotubes, graphite, and diamond. However, the global transition towards sustainable energy production has resulted in a decline in coal usage for energy purposes, with the United States alone witnessing a substantial 50% reduction over the past decade. This shift aligns with the UN’s 2030 sustainability goals, which emphasize the reduction of greenhouse gas emissions and the promotion of cleaner energy sources. Despite the decreased use in energy production, the abundance of coal has sparked interest in exploring its potential for other sustainable and valuable applications.In this context, Direct Ink Writing (DIW) has emerged as a promising additive manufacturing technique that employs liquid or gel-like resins to construct three-dimensional structures. DIW offers a unique advantage by allowing the incorporation of particulate reinforcements, which enhance the properties and functionalities of the materials. This study focuses on evaluating the viability of coal as a sustainable and cost-effective substitute for other carbon-based reinforcements, such as graphite or carbon nanotubes. The research utilizes a thermosetting resin based on phenol-formaldehyde (commercially known as Bakelite) as the matrix, while pulverized coal (250 µm) and carbon black (CB) function as the reinforcements. The DIW ink is meticulously formulated to exhibit shear-thinning behavior, facilitating uniform and continuous printing of structures. Mechanical property testing of the printed structures was conducted following ASTM standards. Interestingly, the study reveals that incorporating a 2 wt% concentration of coal in the resin yields the most significant improvements in tensile modulus and flexural strength, with enhancements of 35% and 12.5% respectively. These findings underscore the promising potential of coal as a sustainable and environmentally friendly reinforcement material in additive manufacturing applications. By harnessing the unique properties of coal, this research opens new avenues for its utilization in the pursuit of greener and more efficient manufacturing processes.
ContributorsSundaravadivelan, Barath (Author) / Song, Kenan (Thesis advisor) / Marvi, Hamidreza (Committee member) / Zhuang, Houlong (Committee member) / Arizona State University (Publisher)
Created2023
190916-Thumbnail Image.png
Description
Soft robotics has garnered attention for its substantial prospective in various domains, such as manipulation and interactions with humans, by offering competitive advantages against rigid robotic systems, including inherent compliance and variable stiffness. Despite these benefits, their theoretically infinite degrees of freedom and prominent nonlinearities pose significant challenges in developing

Soft robotics has garnered attention for its substantial prospective in various domains, such as manipulation and interactions with humans, by offering competitive advantages against rigid robotic systems, including inherent compliance and variable stiffness. Despite these benefits, their theoretically infinite degrees of freedom and prominent nonlinearities pose significant challenges in developing dynamic models and guiding the robots along desired paths. Additionally, soft robots may exhibit rigid behaviors and potentially collide with their surroundings during path tracking tasks, particularly when possible contact points are unknown. In this dissertation, reduced-order models are used to describe the behaviors of three different soft robot designs, including both linear parameter varying (LPV) and augmented rigid robot (ARR) models. While the reduced-order model captures the majority of the soft robot's dynamics, modeling uncertainties notably remain. Non-repeated modeling uncertainties are addressed by categorizing them as a lumped disturbance, employing two methodologies, $H_\infty$ method and nonlinear disturbance observer (NDOB) based sliding mode control, for its rejection. For repeated disturbances, an iterative learning control (ILC) with a P-type learning function is implemented to enhance trajectory tracking efficacy. Furthermore,for non-repeated disturbances, the NDOB facilitates the contact estimation, and its results are jointly used with a switching algorithm to modify the robot trajectories. The stability proof of all controllers and corresponding simulation and experimental results are provided. For a path tracking task of a soft robot with multi-segments, a robust control strategy that combines a LPV model with an innovative improved nonlinear disturbance observer-based adaptive sliding mode control (INASMC). The control framework employs a first-order LPV model for dynamic representation, leverages an improved disturbance observer for accurate disturbance forecasting, and utilizes adaptive sliding mode control to effectively counteract uncertainties. The tracking error under the proposed controller is proven to be asymptotically stable, and the controller's effectiveness is is validated with simulation and experimental results. Ultimately, this research mitigates the inherent uncertainty in soft robot modeling, thereby enhancing their functionality in contact-intensive tasks.
ContributorsQIAO, ZHI (Author) / Zhang, Wenlong (Thesis advisor) / Marvi, Hamidreza (Committee member) / Lee, Hyunglae (Committee member) / Berman, Spring (Committee member) / Sugar, Thomas (Committee member) / Arizona State University (Publisher)
Created2023
171848-Thumbnail Image.png
Description
Multi-segment manipulators and mobile robot collectives are examples of multi-agent robotic systems, in which each segment or robot can be considered an agent. Fundamental motion control problems for such systems include the stabilization of one or more agents to target configurations or trajectories while preventing inter-agent collisions, agent collisions with

Multi-segment manipulators and mobile robot collectives are examples of multi-agent robotic systems, in which each segment or robot can be considered an agent. Fundamental motion control problems for such systems include the stabilization of one or more agents to target configurations or trajectories while preventing inter-agent collisions, agent collisions with obstacles, and deadlocks. Despite extensive research on these control problems, there are still challenges in designing controllers that (1) are scalable with the number of agents; (2) have theoretical guarantees on collision-free agent navigation; and (3) can be used when the states of the agents and the environment are only partially observable. Existing centralized and distributed control architectures have limited scalability due to their computational complexity and communication requirements, while decentralized control architectures are often effective only under impractical assumptions that do not hold in real-world implementations. The main objective of this dissertation is to develop and evaluate decentralized approaches for multi-agent motion control that enable agents to use their onboard sensors and computational resources to decide how to move through their environment, with limited or absent inter-agent communication and external supervision. Specifically, control approaches are designed for multi-segment manipulators and mobile robot collectives to achieve position and pose (position and orientation) stabilization, trajectory tracking, and collision and deadlock avoidance. These control approaches are validated in both simulations and physical experiments to show that they can be implemented in real-time while remaining computationally tractable. First, kinematic controllers are proposed for position stabilization and trajectory tracking control of two- or three-dimensional hyper-redundant multi-segment manipulators. Next, robust and gradient-based feedback controllers are presented for individual holonomic and nonholonomic mobile robots that achieve position stabilization, trajectory tracking control, and obstacle avoidance. Then, nonlinear Model Predictive Control methods are developed for collision-free, deadlock-free pose stabilization and trajectory tracking control of multiple nonholonomic mobile robots in known and unknown environments with obstacles, both static and dynamic. Finally, a feedforward proportional-derivative controller is defined for collision-free velocity tracking of a moving ground target by multiple unmanned aerial vehicles.
ContributorsSalimi Lafmejani, Amir (Author) / Berman, Spring (Thesis advisor) / Tsakalis, Konstantinos (Thesis advisor) / Papandreou-Suppappola, Antonia (Committee member) / Marvi, Hamidreza (Committee member) / Arizona State University (Publisher)
Created2022
168484-Thumbnail Image.png
Description
The Soft Robotic Hip Exosuit (SR-HExo) was designed, fabricated, and tested in treadmill walking experiments with healthy participants to gauge effectivity of the suit in assisting locomotion and in expanding the basin of entrainment as a method of rehabilitation. The SR-HExo consists of modular, compliant materials to move freely with

The Soft Robotic Hip Exosuit (SR-HExo) was designed, fabricated, and tested in treadmill walking experiments with healthy participants to gauge effectivity of the suit in assisting locomotion and in expanding the basin of entrainment as a method of rehabilitation. The SR-HExo consists of modular, compliant materials to move freely with a user’s range of motion and is actuated with X-oriented flat fabric pneumatic artificial muscles (X-ff-PAM) that contract when pressurized and can generate 190N of force at 200kPa in a 0.3 sec window. For use in gait assistance experiments, X-ff-PAM actuators were placed anterior and posterior to the right hip joint. Extension assistance and flexion assistance was provided in 10-45% and 50-90% of the gait cycle, respectively. Device effectivity was determined through range of motion (ROM) preservation and hip flexor and extensor muscular activity reduction. While the active suit reduced average hip ROM by 4o from the target 30o, all monitored muscles experienced significant reductions in electrical activity. The gluteus maximus and biceps femoris experienced electrical activity reduction of 13.1% and 6.6% respectively and the iliacus and rectus femoris experienced 10.7% and 27.7% respectively. To test suit rehabilitative potential, the actuators were programmed to apply periodic torque perturbations to induce locomotor entrainment. An X-ff-PAM was contracted at the subject’s preferred gait frequency and, in randomly ordered increments of 3%, increased up to 15% beyond. Perturbations located anterior and posterior to the hip were tested separately to assess impact of location on entrainment characteristics. All 11 healthy participants achieved entrainment in all 12 experimental conditions in both suit orientations. Phase-locking consistently occurred around toe-off phase of the gait cycle (GC). Extension perturbations synchronized earlier in the gait cycle (before 60% GC where peak hip extension occurs) than flexion perturbations (just after 60% GC at the transition from full hip extension to hip flexion), across group averaged results. The study demonstrated the suit can significantly extend the basin of entrainment and improve transient response compared to previously reported results and confirms that a single stable attractor exists during gait entrainment to unidirectional hip perturbations.
ContributorsBaye-Wallace, Lily (Author) / Lee, Hyunglae (Thesis advisor) / Marvi, Hamidreza (Committee member) / Berman, Spring (Committee member) / Arizona State University (Publisher)
Created2021
161969-Thumbnail Image.png
Description
This thesis lays down a foundation for more advanced work on bipeds by carefully examining cart-inverted pendulum systems (CIPS, often used to approximate each leg of a biped) and associated closed loop performance tradeoffs. A CIPS is characterized by an instability (associated with the tendency of the pendulum

This thesis lays down a foundation for more advanced work on bipeds by carefully examining cart-inverted pendulum systems (CIPS, often used to approximate each leg of a biped) and associated closed loop performance tradeoffs. A CIPS is characterized by an instability (associated with the tendency of the pendulum to fall) and a right half plane (RHP, non-minimum phase) zero (associated with the cart displacement x). For such a system, the zero is typically close to (and smaller) than the instability. As such, a classical PK control structure would result in very poor sensitivity properties.It is therefore common to use a hierarchical inner-outer loop structure. As such, this thesis examines how such a structure can be used to improve sensitivity properties beyond a classic PK structure and systematically tradeoff sensitivity properties at the plant input/output. While the instability requires a minimum bandwidth at the plant input, the RHP zero imposes a maximum bandwidth on the cart displacement x. Three CIPs are examined – one with a long, short and an intermediately sized pendulum. We show that while the short pendulum system is the most unstable and requires the largest bandwidth at the plant input for stabilization (hardest to control), it also has the largest RHP zero. Consequently, it will permit the largest cart displacement x-bandwidth, and hence, one can argue that the short pendulum system is easiest to control. Similarly, the long pendulum system is the least unstable and requires smallest bandwidth at the plant input for stabilization (easiest to control). However, because this system also possesses the smallest RHP zero it will permit the smallest cart displacement x-bandwidth, and hence, one can argue that the long pendulum system is the hardest to control. Analogous “intermediate conclusions” can be drawn for the system with the “intermediately sized” pendulum. A set of simple academic examples (growing in plant and controller complexity) are introduced to illustrate basic tradeoffs and guide the presentation of the trade studies.
ContributorsSarkar, Soham (Author) / Rodriguez, Armando (Thesis advisor) / Berman, Spring (Thesis advisor) / Marvi, Hamidreza (Committee member) / Arizona State University (Publisher)
Created2021
168324-Thumbnail Image.png
Description
This thesis work presents two separate studies:The first study assesses standing balance under various 2-dimensional (2D) compliant environments simulated using a dual-axis robotic platform and vision conditions. Directional virtual time-to-contact (VTC) measures were introduced to better characterize postural balance from both temporal and spatial aspects, and enable prediction of fall-relevant

This thesis work presents two separate studies:The first study assesses standing balance under various 2-dimensional (2D) compliant environments simulated using a dual-axis robotic platform and vision conditions. Directional virtual time-to-contact (VTC) measures were introduced to better characterize postural balance from both temporal and spatial aspects, and enable prediction of fall-relevant directions. Twenty healthy young adults were recruited to perform quiet standing tasks on the platform. Conventional stability measures, namely center-of-pressure (COP) path length and COP area, were also adopted for further comparisons with the proposed VTC. The results indicated that postural balance was adversely impacted, evidenced by significant decreases in VTC and increases in COP path length/area measures, as the ground compliance increased and/or in the absence of vision (ps < 0.001). Interaction effects between environment and vision were observed in VTC and COP path length measures (ps ≤ 0.05), but not COP area (p = 0.103). The estimated likelihood of falls in anterior-posterior (AP) and medio-lateral (ML) directions converged to nearly 50% (almost independent of the foot setting) as the experimental condition became significantly challenging. The second study introduces a deep learning approach using convolutional neural network (CNN) for predicting environments based on instant observations of sway during balance tasks. COP data were collected from fourteen subjects while standing on the 2D compliant environments. Different window sizes for data segmentation were examined to identify its minimal length for reliable prediction. Commonly-used machine learning models were also tested to compare their effectiveness with that of the presented CNN model. The CNN achieved above 94.5% in the overall prediction accuracy even with 2.5-second length data, which cannot be achieved by traditional machine learning models (ps < 0.05). Increasing data length beyond 2.5 seconds slightly improved the accuracy of CNN but substantially increased training time (60% longer). Importantly, averaged normalized confusion matrices revealed that CNN is much more capable of differentiating the mid-level environmental condition. These two studies provide new perspectives in human postural balance, which cannot be interpreted by conventional stability analyses. Outcomes of these studies contribute to the advancement of human interactive robots/devices for fall prevention and rehabilitation.
ContributorsPhan, Vu Nguyen (Author) / Lee, Hyunglae (Thesis advisor) / Peterson, Daniel (Committee member) / Marvi, Hamidreza (Committee member) / Arizona State University (Publisher)
Created2021
193483-Thumbnail Image.png
Description
Shape memory alloys (SMAs) are a class of smart materials that can recover their predetermined shape when subjected to an appropriate thermal cycle. This unique property makes SMAs attractive for actuator applications, where the material’s phase transformation can be used to generate controlled motion or force. The actuator design leverages

Shape memory alloys (SMAs) are a class of smart materials that can recover their predetermined shape when subjected to an appropriate thermal cycle. This unique property makes SMAs attractive for actuator applications, where the material’s phase transformation can be used to generate controlled motion or force. The actuator design leverages the one-way shape memory effect of NiTi (Nickel-Titanium) alloy wire, which contracts upon heating and recovers its original length when cooled. A bias spring opposes the SMA wire contraction, enabling a cyclical actuation motion. Thermal actuation is achieved through joule heating by passing an electric current through the SMA wire. This thesis presents the design of a compact, lightweight SMA-based actuator, providing controlled and precise motion in various engineering applications. A design of a soft actuator is presented exploiting the responses of the shape memory alloy (SMA) to trigger intrinsically mono-stable shape reconfiguration. The proposed class of soft actuators will perform bending actuation by selectively activating the SMA. The transition sequences were optimized by geometric parameterizations and energy-based criteria. The reconfigured structure is capable of arbitrary bending, which is reported here. The proposed class of robots has shown promise as a fast actuator or shape reconfigurable structure, which will bring new capabilities in future long-duration missions in space or undersea, as well as in bio-inspired robotics.
ContributorsShankar, Kaushik (Author) / Ma, Leixin (Thesis advisor) / Berman, Spring (Committee member) / Marvi, Hamidreza (Committee member) / Arizona State University (Publisher)
Created2024