Fabrication, Characterization, and Device Applications of Few-Layer Black Phosphorus

168524-Thumbnail Image.png
Description
Few-layer black phosphorous (FLBP) is one of the most important two-dimensional (2D) materials due to its strongly layer-dependent quantized bandstructure, which leads to wavelength-tunable optical and electrical properties. This thesis focuses on the preparation of stable, high-quality FLBP, the characterization

Few-layer black phosphorous (FLBP) is one of the most important two-dimensional (2D) materials due to its strongly layer-dependent quantized bandstructure, which leads to wavelength-tunable optical and electrical properties. This thesis focuses on the preparation of stable, high-quality FLBP, the characterization of its optical properties, and device applications.Part I presents an approach to preparing high-quality, stable FLBP samples by combining O2 plasma etching, boron nitride (BN) sandwiching, and subsequent rapid thermal annealing (RTA). Such a strategy has successfully produced FLBP samples with a record-long lifetime, with 80% of photoluminescence (PL) intensity remaining after 7 months. The improved material quality of FLBP allows the establishment of a more definitive relationship between the layer number and PL energies. Part II presents the study of oxygen incorporation in FLBP. The natural oxidation formed in the air environment is dominated by the formation of interstitial oxygen and dangling oxygen. By the real-time PL and Raman spectroscopy, it is found that continuous laser excitation breaks the bonds of interstitial oxygen, and free oxygen atoms can diffuse around or form dangling oxygen under low heat. RTA at 450 °C can turn the interstitial oxygen into dangling oxygen more thoroughly. Such oxygen-containing samples show similar optical properties to the pristine BP samples. The bandgap of such FLBP samples increases with the concentration of the incorporated oxygen. Part III deals with the investigation of emission natures of the prepared samples. The power- and temperature-dependent measurements demonstrate that PL emissions are dominated by excitons and trions, with a combined percentage larger than 80% at room temperature. Such measurements allow the determination of trion and exciton binding energies of 2-, 3-, and 4-layer BP, with values around 33, 23, 15 meV for trions and 297, 276, 179 meV for excitons at 77K, respectively. Part IV presents the initial exploration of device applications of such FLBP samples. The coupling between photonic crystal cavity (PCC) modes and FLBP's emission is realized by integrating the prepared sandwich structure onto 2D PCC. Electroluminescence has also been achieved by integrating such materials onto interdigital electrodes driven by alternating electric fields.
Date Created
2022
Agent

Light-Induced Al Plating on Si for Fabrication of an Ag-Free All Al Solar Cell

168295-Thumbnail Image.png
Description
A general review of film growth with various mechanisms is given. Additives and their potential effects on film properties are also discussed. Experimental light-induced aluminum (Al) plating tool design is discussed. Light-induced electroplating of Al as the front electrode on

A general review of film growth with various mechanisms is given. Additives and their potential effects on film properties are also discussed. Experimental light-induced aluminum (Al) plating tool design is discussed. Light-induced electroplating of Al as the front electrode on the n-type emitter of silicon (Si) solar cells is proposed as a substitute for screen-printed Silver (Ag). The advantages and disadvantages of Al over copper (Cu) as a suitable Ag replacement are examined. Optimization of the power given to a green laser for silicon nitride (SiNx) anitreflection coating patterning is performed. Laser damage and contamination removal conditions on post-patterned cell surfaces are identified. Plating and post-annealing temperature effects on Al morphology and film resistivity are explored. Morphology and resistivity improvement of the Al film are also investigated through several plating additives. The lowest resistivity of 3.1 µΩ-cm is given by nicotinic acid. Laser induced damage to the cell emitter experimentally limits the contact resistivity between light-induced Al and Si to approximately 69 mΩ-cm2. Phosphorus pentachloride (PCl5) is introduced into the plating bath and improved the the contact resistivity between light induced Al and Si to a range of 0.1-1 mΩ-cm2. Secondary ion mass spectroscopy (SIMS) was performed on a film deposited with PCl5 and showed a phosphorus peak, indicating emitter phosphorus concentration may be the reason for the low contact resistivity between light-induced Al and Si. SEM also shows that PCl5 improves Al film density and plating throwing power. Post plating annealing performed at a temperature of 500°C allows Al to spike through the thin n-type emitter causing cell failure. Atmospheric moisture causes poor process reproducibility.
Date Created
2021
Agent

Machine Learning and Vision Using Edge Devices for Multimodal Chatbots and Bio-meteorological Sensing

161987-Thumbnail Image.png
Description
Machine learning (ML) and deep learning (DL) has become an intrinsic part of multiple fields. The ability to solve complex problems makes machine learning a panacea. In the last few years, there has been an explosion of data generation, which

Machine learning (ML) and deep learning (DL) has become an intrinsic part of multiple fields. The ability to solve complex problems makes machine learning a panacea. In the last few years, there has been an explosion of data generation, which has greatly improvised machine learning models. But this comes with a cost of high computation, which invariably increases power usage and cost of the hardware. In this thesis we explore applications of ML techniques, applied to two completely different fields - arts, media and theater and urban climate research using low-cost and low-powered edge devices. The multi-modal chatbot uses different machine learning techniques: natural language processing (NLP) and computer vision (CV) to understand inputs of the user and accordingly perform in the play and interact with the audience. This system is also equipped with other interactive hardware setups like movable LED systems, together they provide an experiential theatrical play tailored to each user. I will discuss how I used edge devices to achieve this AI system which has created a new genre in theatrical play. I will then discuss MaRTiny, which is an AI-based bio-meteorological system that calculates mean radiant temperature (MRT), which is an important parameter for urban climate research. It is also equipped with a vision system that performs different machine learning tasks like pedestrian and shade detection. The entire system costs around $200 which can potentially replace the existing setup worth $20,000. I will further discuss how I overcame the inaccuracies in MRT value caused by the system, using machine learning methods. These projects although belonging to two very different fields, are implemented using edge devices and use similar ML techniques. In this thesis I will detail out different techniques that are shared between these two projects and how they can be used in several other applications using edge devices.
Date Created
2021
Agent

Wide Bandgap Semiconductor Power Devices using Ga2O3 GaN and BN

161899-Thumbnail Image.png
Description
Wide bandgap semiconductors, also known as WBG semiconductors are materials which have larger bandgaps than conventional semiconductors such as Si or GaAs. They permit devices to operate at much higher voltages, frequencies and temperatures. They are the key material used

Wide bandgap semiconductors, also known as WBG semiconductors are materials which have larger bandgaps than conventional semiconductors such as Si or GaAs. They permit devices to operate at much higher voltages, frequencies and temperatures. They are the key material used to make LEDs, lasers, radio frequency applications, military applications, and power electronics. Their intrinsic qualities make them promising for next-generation devices for general semiconductor use. Their ability to handle higher power density is particularly attractive for attempts to sustain Moore's law, as conventional technologies appear to be reaching a bottleneck. Apart from WBG materials, ultra-wide bandgap (UWBG) materials, such as Ga2O3, AlN, diamond, or BN, are also attractive since they have even more extreme properties. Although this field is relatively new, which still remains a lot of effort to study and investigate, people can still expect that these materials could be the main characters for more advanced applications in the near future. In the dissertation, three topics with power devices made by WBG or UWBG semiconductors were introduced. In chapter 1, a generally background knowledge introduction is given. This helps the reader to learn current research focuses. In chapter 2, a comprehensive study of temperature-dependent characteristics of Ga2O3 SBDs with highly-doped substrate is demonstrated. A modified thermionic emission model over an inhomogeneous barrier with a voltage-dependent barrier height is investigated. Besides, the mechanism of surface leakage current is also discussed. These results are beneficial for future developments of low-loss β-Ga2O3 electronics and optoelectronics. In chapter 3, vertical GaN Schottky barrier diodes (SBDs) with floating metal rings (FMRs) as edge termination structures on bulk GaN substrates was introduced. This work represents a useful reference for the FMR termination design for GaN power devices. In chapter 4, AlGaN/GaN metal-insulator-semiconductor high electron mobility transistors (MISHEMTs) fabricated on Si substrates with a 10 nm boron nitride (BN) layer as gate dielectric was demonstrated. The material characterization was investigated by X-ray photoelectric spectroscopy (XPS) and UV photoelectron spectroscopy (UPS). And the gate leakage current mechanisms were also investigated by temperature-dependent current-voltage measurements. Although still in its infancy, past and projected future progress of electronic designs will ultimately achieve this very goal that WBG and UWBG semiconductors will be indispensable for today and future’s science, technologies and society.
Date Created
2021
Agent

Advanced Electronic Devices Based on Wide/Ultra-wide Bandgap Semiconductor

161822-Thumbnail Image.png
Description
Wurtzite (B, Ga, Al) N semiconductors, especially (Ga, Al) N material systems, demonstrate immense promises to boost the economic growth in the semiconductor industry that is approaching the end of Moore’s law. At the material level, their high electric field

Wurtzite (B, Ga, Al) N semiconductors, especially (Ga, Al) N material systems, demonstrate immense promises to boost the economic growth in the semiconductor industry that is approaching the end of Moore’s law. At the material level, their high electric field strength, high saturation velocity, and unique heterojunction polarization charge have enabled tremendous potentials for high power, high frequency, and photonic applications. With the availability of large-area bulk GaN substrates and high-quality epilayer on foreign substrates, the power conversion applications of GaN are now at the cusp of commercialization.Despite these encouraging advances, there remain two critical hurdles in GaN-based technology: selective area doping and hole-based p-channel devices. Current selective area doping methods are still immature and lead to low-quality lateral p-n junctions, which prevent the realization of advanced power transistors and rectifiers. The missing of hole-based p-channel devices hinders the development of GaN complementary integrated circuits. This thesis comprehensively studied these challenges. The first part (chapter 2) researched the selective area doping by etch-then-regrow. A GaN-based vertical-channel junction field-effect transistors (VC-JFETs) was experimentally demonstrated by blanket regrowth and self-planarization. The devices’ electrical performances were characterized to understand the regrowth quality. The non-ideal factors during p-GaN regrowth were also discussed. The second part (chapter 3-5) systematically studied the application of the hydrogen plasma treatment process to change the p-GaN properties selectively. A novel GaN-based metal-insulator-semiconductor junction was demonstrated. Then a novel edge termination design with avalanche breakdown capability achieved in GaN power rectifiers is proposed. The last part (Chapter 6) demonstrated a GaN-based p-channel heterojunction field-effect transistor, with record low leakage, subthreshold swing, and a record high on/off ratio. In the end, some outlook and future work have also been proposed. Although in infancy, the demonstrated etch-then-regrow and the hydrogen plasma treatment methods have the potential to ultimately solve the challenges in GaN and benefit the development of the wide-ultra-wide bandgap industry, technology, and society.
Date Created
2021
Agent

Quantum Transport and Scattering in Dirac Materials and Molecular Systems

161797-Thumbnail Image.png
Description
This dissertation aims to study the electron and spin transport, scattering in two dimensional pseudospin-1 lattice systems, hybrid systems of topological insulator and magnetic insulators, and molecule chain systems. For pseudospin-1 systems, the energy band consists of a pair of

This dissertation aims to study the electron and spin transport, scattering in two dimensional pseudospin-1 lattice systems, hybrid systems of topological insulator and magnetic insulators, and molecule chain systems. For pseudospin-1 systems, the energy band consists of a pair of Dirac cones and a flat band through the connecting point of the cones. First, contrary to the conditional wisdom that flatband can localize electrons, I find that in a non-equilibrium situation where a constant electric field is suddenly switched on, the flat band can enhance the resulting current in both the linear and nonlinear response regimes compared to spin-1/2 system. Second, in the setup of massive pseudospin-1 electron scattering over a gate potential scatterer, I discover the large resonant skew scattering called super skew scattering, which does not arise in the corresponding spin-1/2 system and massless pseudospin-1 system. Third, by applying an appropriate gate voltage to generate a cavity in an alpha-T3 lattice, I find the exponential decay of the quasiparticles from a chaotic cavity, with a one-to-one correspondence between the exponential decay rate and the Berry phase for the entire family of alpha-T3 materials. Based on the hybrid system of a ferromagnetic insulator on top of a topological insulator, I first investigate the magnetization dynamics of a pair of ferromagnetic insulators deposited on the surface of a topological insulator. The spin polarized current on the surface of topological insulator can affect the magnetization of the two ferromagnetic insulators through proximity effect, which in turn modulates the electron transport, giving rise to the robust phase locking between the two magnetization dynamics. Second, by putting a skyrmion structure on top of a topological insulator, I find robust electron skew scattering against skyrmion structure even with deformation, due to the emergence of resonant modes. The chirality of molecule can lead to spin polarized transport due to the spin orbit interaction. I investigate spin transport through a chiral polyacetylene molecule and uncover the emergence of spin Fano resonances as a manifestation of the chiral induced spin selectivity effect.
Date Created
2021
Agent

Food‐Based Edible Electronics

161725-Thumbnail Image.png
Description
A new class of electronic materials from food and foodstuff was developed to form a “toolkit” for edible electronics along with inorganic materials. Electrical components like resistors, capacitors and inductors were fabricated with such materials and tested. Applicable devices such

A new class of electronic materials from food and foodstuff was developed to form a “toolkit” for edible electronics along with inorganic materials. Electrical components like resistors, capacitors and inductors were fabricated with such materials and tested. Applicable devices such as filters, microphones and pH sensors were built with edible materials. Among the applications, a wireless edible pH sensor was optimized in terms of form factor, fabrication process and cost. This dissertation discusses the material sciences of food industry, design and fabrication of electronics and biomedical engineering by demonstrating edible electronic materials, components and devices such as filters, microphones and pH sensors. pH sensors are optimized for two different generations of design and fabrication.
Date Created
2021
Agent

Dynamic Radiative Thermal Management and Optical Force Modulation with Tunable Nanophotonic Structures Based on Thermochromic Vanadium Dioxide

158870-Thumbnail Image.png
Description
This research focuses mainly on employing tunable materials to achieve dynamic radiative properties for spacecraft and building thermal management. A secondary objective is to investigate tunable materials for optical propulsion applications. The primary material investigated is vanadium dioxide (VO2), which

This research focuses mainly on employing tunable materials to achieve dynamic radiative properties for spacecraft and building thermal management. A secondary objective is to investigate tunable materials for optical propulsion applications. The primary material investigated is vanadium dioxide (VO2), which is a thermochromic material with an insulator-to-metal phase transition. VO2 typically undergoes a dramatic shift in optical properties at T = 341 K, which can be reduced through a variety of techniques to a temperature more suitable for thermal control applications. A VO2-based Fabry-Perot variable emitter is designed, fabricated, characterized, and experimentally demonstrated. The designed emitter has high emissivity when the radiating surface temperature is above 345 K and low emissivity when the temperature is less than 341 K. A uniaxial transfer matrix method and Bruggeman effective medium theory are both introduced to model the anisotropic properties of the VO2 to facilitate the design of multilayer VO2-based devices. A new furnace oxidation process is developed for fabricating high quality VO2 and the resulting thin films undergo comprehensive material and optical characterizations. The corresponding measurement platform is developed to measure the temperature-dependent transmittance and reflectance of the fabricated Fabry-Perot samples. The variable heat rejection of the fabricated samples is demonstrated via bell jar and cryothermal vacuum calorimetry measurements. Thermal modeling of a spacecraft equipped with variable emittance radiators is also conducted to elucidate the requirements and the impact for thermochromic variable emittance technology.
The potential of VO2 to be used as an optical force modulating device is also investigated for spacecraft micropropulsion. The preliminary design considers a Fabry-Perot cavity with an anti-reflection coating which switches between an absorptive “off” state (for insulating VO2) and a reflective “on” state (for metallic VO2), thereby modulating the incident solar radiation pressure. The visible and near-infrared optical properties of the fabricated vanadium dioxide are examined to determine if there is a sufficient optical property shift in those regimes for a tunable device.
Date Created
2020
Agent

Harnessing Multiscale Nonimaging Optics for Automotive Flash LiDAR and Heterogenous Semiconductor Integration

158680-Thumbnail Image.png
Description
Though a single mode of energy transfer, optical radiation meaningfully interacts with its surrounding environment at over a wide range of physical length scales. For this reason, its reconstruction and measurement are of great importance in remote sensing, as these

Though a single mode of energy transfer, optical radiation meaningfully interacts with its surrounding environment at over a wide range of physical length scales. For this reason, its reconstruction and measurement are of great importance in remote sensing, as these multi-scale interactions encode a great deal of information about distant objects, surfaces, and physical phenomena. For some remote sensing applications, obtaining a desired quantity of interest does not necessitate the explicit mapping of each point in object space to an image space with lenses or mirrors. Instead, only edge rays or physical boundaries of the sensing instrument are considered, while the spatial intensity distribution of optical energy received from a distant object informs its position, optical characteristics, or physical/chemical state.

Admittedly specialized, the principals and consequences of non-imaging optics are nevertheless applicable to heterogeneous semiconductor integration and automotive light detection and ranging (LiDAR), two important emerging technologies. Indeed, a review of relevant engineering literature finds two under-addressed remote sensing challenges. The semiconductor industry lacks an optical strain metrology with displacement resolution smaller than 100 nanometers capable of measuring strain fields between high-density interconnect lines. Meanwhile, little attention is paid to the per-meter sensing characteristics of scene-illuminating flash LiDAR in the context of automotive applications, despite the technology’s much lower cost. It is here that non-imaging optics offers intriguing instrument design and explanations of observed sensor performance at vastly different length scales.

In this thesis, an effective non-contact technique for mapping nanoscale mechanical strain fields and out-of-plane surface warping via laser diffraction is demonstrated, with application as a novel metrology for next-generation semiconductor packages. Additionally, object detection distance of low-cost automotive flash LiDAR, on the order of tens of meters, is understood though principals of optical energy transfer from the surface of a remote object to an extended multi-segment detector. Such information is of consequence when designing an automotive perception system to recognize various roadway objects in low-light scenarios.
Date Created
2020
Agent

Synthesis of Highly Conductive Stretchable Interconnect with Polymer Composite and its Evaluation Against Market-Available Materials

158675-Thumbnail Image.png
Description
Flexible conducting materials have been in the forefront of a rapidly transforming electronics industry, focusing on wearable devices for a variety of applications in recent times. Over the past few decades, bulky, rigid devices have been replaced with a surging

Flexible conducting materials have been in the forefront of a rapidly transforming electronics industry, focusing on wearable devices for a variety of applications in recent times. Over the past few decades, bulky, rigid devices have been replaced with a surging demand for thin, flexible, light weight, ultra-portable yet high performance electronics. The interconnects available in the market today only satisfy a few of the desirable characteristics, making it necessary to compromise one feature over another. In this thesis, a method to prepare a thin, flexible, and stretchable inter-connect is presented with improved conductivity compared to previous achievements. It satisfies most mechanical and electrical conditions desired in the wearable electronics industry. The conducting composite, prepared with the widely available, low cost silicon-based organic polymer - polydimethylsiloxane (PDMS) and silver (Ag), is sandwiched between two cured PDMS layers. These protective layers improve the mechanical stability of the inter-connect. The structure can be stretched up to 120% of its original length which can further be enhanced to over 250% by cutting it into a serpentine shape without compromising its electrical stability. The inter-connect, around 500 µm thick, can be integrated into thin electronic packaging. The synthesis process of the composite material, along with its electrical and mechanical and properties are presented in detail. Testing methods and results for mechanical and electrical stability are also illustrated over extensive flexing and stretching cycles. The materials put into test, along with conductive silver (Ag) - polydimethylsiloxane (PDMS) composite in a sandwich structure, are copper foils, copper coated polyimide (PI) and aluminum (Al) coated polyethylene terephthalate (PET).
Date Created
2020
Agent