## Improving Patient Outcomes through Use of a Stroke Navigator Program

Nicolas Schoenfeld and Laura Organes

Edson College of Nursing and Health Innovation, Arizona State University

#### Abstract

BACKGROUND: Stroke is a serious condition associated with significant morbidity and mortality. Of the 800,000 strokes that occur in the United States annually, one quarter can be described as recurrent events. Timeliness of care and patient education are considered critical tenets of stroke management. These interventions limit neuronal loss and prepare the patient to adopt lifestyle changes that prevent recurrent stroke. Several previous studies demonstrate that the use of patient navigator programs can improve clinical outcomes in this patient population. METHODS: A stroke navigator quality improvement program was designed and deployed at a stroke center in the American Southwest. During the 3-month study, patients diagnosed with stroke were enrolled by means of implied consent (n=52). Subjects were followed from emergency department presentation to discharge. Interventions aimed to reduce times from door to computed tomography (CT), door to alteplase, and door to thrombectomy. Patients were also provided education, emotional support, and case management. Positive response was defined as reduction in time taken to achieve core measures when compared with baseline institutional data. **RESULTS:** Two-tailed Wilcoxon signed rank tests were utilized to compare two large data sets: baseline door to CT, alteplase, and thrombectomy mean times for three months preceding the intervention to the three month period during which the intervention was deployed. No statistical significance was demonstrated. Next, the same test was used to compare baseline CT time data to the smaller group of patients that were treated by the stroke navigator. This showed that the stroke navigator yielded significant reduction in door to CT times when compared to baseline institutional performance (p=0.015). CONCLUSION: In concurrence with previous research, the stroke navigator program was successful in improving the quality of stroke care, notably during the acute phase when expedited computed tomography is needed to prevent neuronal loss. Further research is needed to determine if the intervention could improve door to alteplase and thrombectomy times as well as prevent stroke readmissions.

Keywords: Ischemic Stroke, Hemorrhagic Stroke, CVA, Navigation, Stroke Navigator

# Improving Patient Outcomes through Use of a Stroke Navigator Program Background and Significance

Stroke is the fifth leading cause of death in the United States with a prevalence of 2.6% in individuals under the age of twenty (Guzik & Bushnell, 2017). While all strokes have the potential to yield devastating consequences, data suggests that secondary stroke is linked with increased length of hospital stays, increased mortality rates, and greater extent of debilitation (Oza et al., 2017). Unfortunately, Oza et al. (2017) assert that one quarter of all national stroke incidence can be described as preventable recurrent events. Many individuals diagnosed with stroke are left with permanent neurological deficits that negatively impact functional capacity and quality of life. In addition, from an economic standpoint, this diagnosis is a costly phenomenon. Societal spending related to both direct and indirect costs of stroke care was estimated to be just over \$105 billion in 2012 and is expected to increase to \$240.7 billion by the year 2030 (Stuntz et al., 2017). This causes further insult to an already strained health system and urges improved performance related to the diagnosis of stroke.

Globally, stroke is the second leading cause of death worldwide with an estimated 17 million cases occurring annually (Feigin & Krishnamurthi, 2015). While stroke incidence has declined in developed, high-income countries over the past decades, both incidence and prevalence have been on the steady increase in low to mid-income countries as a result of health disparity. Regarding recurrent stroke, global statistics are showing signs of improvement. In 2001, the cumulative incidence of recurrent stroke was 15% whereas incidence of the same phenomenon decreased to 12% in 2010 (Bergstrom et al., 2017). This reduction is attributed to various efforts aimed at risk reduction and secondary stroke prevention interventions.

The State of New Mexico has published interesting data regarding mortality rates associated with stroke. Between the years of 2004 and 2015, the state demonstrated death rates below the national average and well-aligned with the Healthy People 2020 initiative goals. However, during the last year in which data was published, 2016, New Mexico saw an increase in stroke-related mortality rates. In addition, the most recent data shows a consistent national decline in stroke mortality while New Mexico did not (New Mexico Department of Health [NMDOH], 2018). It is important to note that actual incidence and prevalence of stroke in New Mexico is not reported as the state has only recently developed a database to collect and trend this data.

While it is evident that improving comprehensive stroke management would greatly benefit society in both public health and economic domains, meeting this goal is difficult due to the of the complexity of inpatient stroke care. First, hospitals must ensure that patients receive the right interventions at the right time early in the hospital course to prevent neuronal death associated with ischemic stroke. This appropriate, timely delivery of indicated tests, medications, and invasive procedures requires a great degree of coordination and demands the utilization of a team approach. Second, prevention of recurrent stroke depends largely on the expert delivery of education to ensure that the patient will be able to perform self-care after hospital discharge. This includes meticulous management of existing chronic diseases, most notably hypertension, diabetes, hyperlipidemia, heart disease, and obstructive sleep apnea. It also includes making significant lifestyle changes such as smoking cessation, reduction of alcohol intake, and increasing physical activity (Oza et al., 2017). Unfortunately, a body of emerging qualitative data reveals that the current methods of providing stroke education to inpatients is falling short of meeting intended goals. A common complaint by former patients is that they lacked the ability to

understand discharge instructions upon returning home and did not know how to access ongoing care services or community support infrastructures. Most of these patients endorse receiving education solely through the provision of a written pamphlet containing information that was difficult to comprehend (Denham et al., 2019). Other evidence indicates that although nurses and other hospital staff understand the dire need to educate stroke patients and their families, obstacles frequently prevent the provision of proper education. These obstacles most commonly include being unable to allot the time for patient education delivery and lack of administrative support as evidenced by written supplemental stroke information being unavailable or outdated within stroke facilities (Roy et al., 2015). Alarmingly, in stroke patients discharged from the acute care setting, 73.8% of these individuals had not had their needs met regarding stroke education and knowledge, more than half did not know how to prevent stroke, and nearly a quarter did not know what a stroke was (Hughes et al., 2020). Hughes et al. (2020) make the important assertion that such knowledge deficits have been associated with increased disability, decreased quality of life, and lower levels of community integration. They would also serve to increase the risk of stroke recurrence.

Further complexity attributed by the current Covid-19 pandemic must also be acknowledged. Several factors are currently at play. First, patients with onset of classic stroke symptoms are delaying presentation to emergency departments due to fear of viral transmission or due to social distancing practices which prevent contacts of the patient from noticing symptoms promptly. Secondly, the significant additional strain placed upon existing emergency systems has resulted in disorganized care and failure to adhere to usual protocols and timesensitive metrics typically utilized with stroke patients. Lastly, new visitation policies in place prevent the presence of family members who are often essential to provide critical health history and medical consents. This leads to catastrophic delays in the provision of life saving medications or surgical interventions (Dafer et al., 2020). The importance of timely stroke care cannot be under emphasized considering that for every minute that an ischemic stroke is left untreated, approximately 1.9 million neurons die (Saver, 2006). This realization has prompted the American Heart Association (AHA) to provide guidelines that dictate the length of time it should take a hospital to procure critical interventions. The current standard is to obtain computed tomography (CT) within 25 minutes of patient arrival, deliver alteplase within 45 minutes of arrival, and initiate mechanical thrombectomy within 75 minutes of arrival to the emergency department (ED) (American Heart Association [AHA], 2019).

A critical access hospital and primary stroke center in the New Mexico was examined and identified as being unable to deliver adequate inpatient services to the approximate 600 stroke patients it sees on an annual basis. Over the past two years, systemic changes including the institution's loss of its neurosurgical residency accreditation have culminated in unprecedented staff turnover, loss of experienced neurocritical care nurses, and unsafe staffing ratios. A topic that frequently emerges in staff meetings is that nurses are having difficulty budgeting time for stroke education and frequently omit this action from their care plans. If able to provide education, they feel clinically unprepared to meet the patients' educational needs. Subsequently, significant knowledge deficit is apparent upon discharge as patients often cannot verbalize what their diagnosis is or how they should care for themselves post-discharge. Additional internal evidence reveals institutional non-compliance with time-sensitive Joint Commission stroke mandates, inability to deliver appropriate care management and educational resources to prevent recurrent stroke, inability to link individuals with stroke to pertinent community resources that would serve to improve outcomes, and considerable delays related to profound system fragmentation in the setting of the Covid-19 pandemic. These findings demonstrate the need for an intervention that would simultaneously improve timeliness of stroke care while also improving education delivery.

The preceding discussion influenced the development of the following PICOT question: In hospitalized stroke patients (P), would the adoption of a nurse navigator program (I) impact patient education and acute care delivery (O) when compared to standard practice (C) over the duration of a twelve-week period (T)? Taking this into consideration, the purpose of this paper is to explore the effects of a stroke navigator program on improving hospital performance and key patient outcomes in the target population.

#### **Evidence Synthesis**

Some hospitals systems have adopted nurse navigator programs to better adhere to stroke compliance measures as well as to improve the quality of care delivered to this patient population. This is an emerging nursing role in which the nurse navigator is responsible for delivering patient education, psychosocial support, and smoothing care transitions. The usual approach is for the navigator to initiate contact during the acute period of illness in the hospital setting and continue contact with the patient as he or she is discharged into the community. This allows for continuity of care and support that cannot be delivered by staff nurses and physicians alone. Nurse navigators have demonstrated that their work results in increased adherence to medication regimens, increased attendance to follow up appointments, improved quality of life, improved satisfaction with care, and reduced 30-day hospital admission (Deen et al., 2018). Utilization of nurse navigators could not only decrease incidence of stroke recurrence but also serve to reduce some of the health disparity seen in stroke by better linking those with obstacles to receiving care to community resources. This promising data influenced an exhaustive

literature review and, ultimately, the development of the stroke navigator quality improvement (QI) project.

Exhaustive searches were employed in three separate research databases. Selected databases included the Cumulative Index of Nursing and Allied Health (CINAHL), PubMed, and the Cochrane Database based on the rationale that all three have a dedication to scientific rigor and evidence-based practice in health care. Key search terms were chosen to reflect all aspects of the PICOT question and included stroke patients, post-stroke, stroke survivors, chronic disease, chronic conditions, nurse navigator, nurse coordinator, patient navigation, patient navigator, patient education, and improve outcomes. All terms were connected using Boolean phrases to ensure that the search captured research featuring the topic of patient navigation regardless of what term was used to describe this emerging role. In addition, although stroke patients are the patient population of focus, the concept of patient navigation is new to the field of neurosciences. As a result, it was decided that a relevant search should include the impact of this intervention on patients suffering from any chronic disease or long-term condition. Filters were then applied, narrowing the search to include only peer-reviewed articles published within the past five years, and to omit any articles published in a language other than English. This strategy yielded manageable quantities of high-quality articles from each database.

All results yielded from the three databases were evaluated for validity, reliability, and relevance to clinical practice. Inclusion criteria included any nurse navigator program intervention that aimed to improve patient outcomes or assess the impact that such a program would have on the its research subjects. Articles were included whether or not the intervention yielded positive results to avoid personal bias in presenting data. In addition, articles deploying a navigator intervention to subjects suffering from any chronic disease were included even though

stroke is the primary focus of the current research. Because the proposed quality improvement project focuses only on adult patients, any article featuring a pediatric patient population was excluded. The searches described yielded several meta analyses and systematic reviews. Because there was overlap in the studies being analyzed in these publications, in order to avoid redundancy, all were excluded expect for two high-quality, recent publications. After exclusions were made, the remaining articles underwent critical appraisal and only the ten highest-quality research articles were retained. This final selection included one systematic review, one metaanalysis, two randomized controlled trials, four cohort studies, one case series study, and one qualitative study. The qualitative study was retained as it was deemed important to understand the subjective experience of individuals impacted by a patient navigator program.

The ten articles retained for appraisal consisted of varying levels of evidence ranging from high quality to relatively low quality (see Appendix A, Table 1). While the qualitative study utilized was not considered the highest level of evidence, it produced rich data revealing the subjective impact of a patient navigator (PN) intervention on individuals with complex needs post hospitalization (see Appendix A, Table 2). Studies were carefully reviewed to determine sources of funding and to identify the presence of bias that could potentially skew results. Five of ten studies provided funding information and no potential conflicts of interest were identified. Possible publication bias was identified in only one study while no overt or inferred bias was evident in any of the remaining studies. The studies disseminated the patient navigator (PN) intervention in a variety of settings ranging from hospital units to community-based clinics. In some cases, the intervention followed subjects from the inpatient setting to the community post discharge to assess the effect of the intervention on care transitions. Appropriate sample size was difficult to deduce secondary to the fact that power analyses were not routinely performed. A fair degree of homogeneity was identified when comparing the interventions deployed in all ten studies. While all studies utilized patient navigation as an independent variable, there were some subtle differences in the exact nature of the intervention (see Appendix A, Table 3). This was deemed acceptable considering that the target populations varied in terms of diagnosis. While the intervention was specifically aimed at stroke patients in two studies, other studies featured subjects with different disease processes such as heart disease or cancer. In some cases, the precise characteristics of the navigator intervention could not be appraised as they were not thoroughly described. This can be viewed as one area of weakness consistent throughout the body of evidence. Meanwhile, the most common dependent variables studies were the effects of patient navigation on hospital readmissions, emergency room usage, adherence to care regimens post discharge, and appropriate utilization of aftercare services (see Appendix A, Table 3).

All ten studies utilized sound analytical methodology in yielding published data and similar results were appreciated across all ten studies. The research unanimously demonstrates statistically significant effects of a PN intervention, most notably reduction in emergency department visits and all-cause hospitalizations within thirty days as well as increased adherence to post-discharge self-care interventions and attendance of follow up clinic visits. Only two studies quantified the magnitude of cost savings that can be appreciated through use of this intervention. It can be inferred that the PN programs featured in the studies yielded positive outcomes by delivering improved transitional care, ongoing support, and improved patient education. However, because some studies utilized lay navigators while others used nurses or multidisciplinary teams to deliver the intervention, it is difficult to deduce which PN design is most effective. While the appraised studies were of high quality and demonstrated high levels of validity and reliability, there is some question of applicability across patient populations.

Because the research generally featured underserved or vulnerable patients with chronic or complex disease, one cannot say with certainty how the PN navigator intervention might affect stroke patients of varying socioeconomic statuses.

Because the current Covid-19 pandemic added significant complexity to existing healthcare infrastructures, it was deemed important to investigate whether the nurse navigator role could also be utilized to improve the timeliness and coordination of care that occurs when stroke patients arrive in the Emergency Department (ED). Current research on the topic demonstrates that nurse-led stroke teams increase hospital adherence to time-sensitive metrics put in place by the American Heart Association (AHA) and improve compliance with quality indicators imposed by regulatory bodies (Heiberger et al., 2019). Nurses are also considered pivotal members of the acute stroke team for their ability to rapidly assess, triage, and promote the smooth, appropriate flow of patients through the health system (Middleton et al., 2015). Based on this data, the proposed Stroke Navigator role was expanded to include involvement with the stroke team to improve acute stroke management as well as providing both education and emotional support.

#### **Theoretical Framework and Implementation Framework**

Because smoothing of care transitions from the hospital to the community is an important tenet of improving stroke outcomes, the Transitional Care Model (TCM) was selected to guide the evolution of the proposed project. The TCM was developed to address the high incidence of poor outcomes in medically complex patients. According to Hirschman et al. (2015), these problems can be resolved through early identification of high-risk patients, personalized care management, establishment of trusting patient/caregiver relationships, patient engagement, education regarding disease process and self-care, and caregiver collaboration (See Appendix B,

Figure 1). These interventions, when systematically implemented, can achieve seamless continuity of care as the patient transitions from the hospital to home. This model promotes many of the ideas and interventions that the patient navigator role is designed to employ in practice. In addition, the TCM also specifically addresses many of the systemic issues identified at the site that lead to undesirable sequelae in the targeted patient population.

The Plan Do Study Act (PDSA) framework was chosen to organize the planning and implementation process of the proposed quality improvement project (see Appendix B, Figure 2). Developed by the Institute for Healthcare Improvement (IHI), this framework promotes developing process change in a systematic manner, implementing change quickly on a smaller scale, and revising interventions as needed before broader implementation occurs (Institute for Healthcare Improvement, 2020). Because the project site was a large, academic, fiscally conservative hospital who is aiming to achieve comprehensive stroke designation, it was deemed pertinent to utilize a framework that would promote continuous cost and benefit analysis as well as evaluation of the intervention's impact on trended quality metrics. The first PDSA cycle was based on delivery of an in-person intervention to patients diagnosed with stroke as well as their family members. During this initial cycle, Covid-19 became an increasingly dangerous phenomenon that led to restriction of hospital visitation. This prompted the co-investigators to launch cycle two, which augmented the project's interventions so that they could be delivered to family members in a virtual format. This included revision of educational materials to better suit an online platform as well as utilization of handheld technological devices that would allow face to face discussion across distance. During cycle two, these virtual interventions were only delivered to family members when the patient could not speak or understand the information being presented. However, it was discovered that patients who appeared to have fluent speech

and comprehension were often not able to demonstrate acceptable understanding of all educational topics by the time of discharge. This prompted the third and final PDSA cycle which incorporated utilization of virtual platforms with all patients regardless of lack of disability. In this cycle, the Stroke Navigators met with alert, oriented patients in person while family was present on a virtual platform. Using this technique allowed simultaneous delivery of education to both patients and family members. This ensured that any education not comprehended by the patient would be grasped by close family members who would be instrumental in aftercare. Additionally, the new methodology appeared to improve patient motivation and morale as it increased the frequency of interaction with loved ones.

#### Methods

This project was considered to pose minimal risk to participants and there was no chance for harm above and beyond what may be endured during the normal course of hospitalization from stroke. As a result, the achievement of applied consent was deemed appropriate for patients to become subjects in this project. There were no overt ethical considerations as the project did not aim its intervention at vulnerable populations. Great care was dedicated to the collection and utilization of patient data. Lists of participants that included patient-specific MRNs were stored on site in a secure, password-enabled, encrypted database that could only be accessed by the project co-investigators. The project's protocol was submitted to the Arizona State University's Institutional Review Board on July 23, 2020 and achieved approval on September 8, 2020.

The chosen site for the Stroke Navigator intervention was a 556 bed, primary stroke center in central New Mexico which had recently applied for comprehensive stroke designation. The population targeted by this study was adult patients over the age of 18 diagnosed with either ischemic or hemorrhagic stroke. Other inclusion criteria included the ability to read and understand English. Pediatric patients were excluded from this study. For patients not able to communicate effectively or understand language, family members or caregivers became the primary recipients of the intervention. The total sample included 52 patients diagnosed with ischemic stroke (n=28), intraparenchymal hemorrhage (n=11), and subarachnoid hemorrhage (n=9). The remainder of the sample was comprised of patients who presented with conditions that mimic stroke (n=4). Other patient demographic data tracked were age, race, and race (see Appendix C).

The Stroke Navigator project deployed a variety of specific interventions using a threephase design. The first phase was referred to as the hyperacute phase and spanned from initial Emergency Department presentation until the patient had received hospital unit disposition. Interventions during this phase included collaboration with the stroke team to ensure expedition of care and strict adherence to national stroke guidelines. Phase one began when notification was received of a potential stroke patient inbound to the ED. A secure communications platform entitled Tiger Connect was utilized to receive this information. Each patient was met in the ambulance bay or elevator by the helipad and ushered directly to the radiology suite for rapid CT. If intravenous access was needed for contrasted imagery or if the patient required resuscitative actions due to clinical instability, the Navigator independently delivered these interventions. The Navigator also acted as a critical point of family contact in the setting of current visitation restrictions due to the current pandemic. This aided in the gathering of information pertinent to care provision and obtaining consents for treatment. It also served to keep the family abreast of any changes, test results, and planned procedures. The Navigator remained with the patient delivering routine care throughout phase one and was immediately available to give alteplase to potential candidates. The second phase, termed the acute phase,

began at the time the patient was admitted to a hospital unit and terminated seventy-two hours post admission. This phase focused on emotional support, orientation to the hospital environment and predicted hospital course, as well as initiation of education. During this phase, the education delivered generally focused on yielding patient and family understanding of the stroke diagnosis as well as clinical rationale for care plans. In addition, each participant was given a curated folder of information developed by the Stroke Navigators. This included a carefully-designed booklet outlining community resources for individuals diagnosed with stroke, a tip sheet that guided the individual through the process of applying for financial assistance, a blank notebook that could be utilized to take notes or participate in journaling, and an educational pamphlet focusing on either ischemic or hemorrhagic stroke. The third phase, termed the pre-discharge phase, began at seventy-two hours post admission and continued until discharge. The Navigator responsibilities during this time included performing informal needs assessments which, in turn, allowed appropriate community resource referral. Education was systematically delivered using teach-back method and focused on patient empowerment as well as teaching self-care practices that would serve to mitigate the risk of recurrent stroke. Additionally, the Navigator ensured that all appropriate referrals were in place, appropriate discharge medications were ordered, and follow-up appointments were organized prior to discharge. Patients were enrolled in the study at any phase of the intervention. The demographics table outlines how many patients were enrolled in each phase (see Appendix C).

The data utilized to evaluate this project was already being gathered on a continuous basis by the site's stroke data abstractor. The Stroke Navigator program was designed as a QI project that utilized a pretest posttest design to demonstrate effectiveness of the intervention. First, two groups of de-identified, aggregate data describing hospital adherence to time sensitive measures were collected for comparison. The first set of data represented the three months preceding the intervention, and the second group represented the three months during which the intervention was deployed. The specific time sensitive metrics selected for analysis include the times from door to CT, from door to needle (alteplase administration), and from door to puncture (initiation of invasive, mechanical thrombectomy). It is important to note that while the Stroke Navigators were often involved in expediting patients to CT, only one case of alteplase administration was encountered during a Navigator shift and no cases of mechanical thrombectomy were encountered. While it was understood that the intervention would have no effect on these variables, the data was analyzed to enable better understanding of general performance trends during the time surrounding the intervention. The resulting data was not normally distributed, so Wilcoxon signed rank tests were utilized to analyze these two large groups of data representing two different time periods. This analysis was able to compare variables during two time frames, but because the stroke navigators were only on site two days per week and only worked with a small fraction of all stroke patients in the data set, a second statistical analysis was performed to better elucidate the impact of the intervention. This analysis compared the hospital's baseline door-to-CT times to the door-to-CT times achieved in the small subgroup of patients who were accompanied by the Stroke Navigators throughout the acute phase of hospitalization. A two tailed Wilcoxon signed rank test was conducted to examine differences between these two groups. Intellectus was utilized for all data analysis and an alpha value of 0.05 was selected to indicate significance. Additionally, a project budget was developed to reveal a cost-benefit analysis of the Stroke Navigator intervention (see Appendix D).

#### Results

For analysis purposes, the variables associated with door to CT, alteplase, and mechanical thrombectomy times during the three months prior to deployment of the Stroke Navigator project were labeled CT standard, TPA standard, and Thromb standard. The same variables associated with the three months during which the intervention was in progress were termed CT intervention, TPA intervention, and Thromb intervention. As previously described, the co-investigators understood that the Navigator intervention would not affect alteplase or thrombectomy times as there was no or almost no engagement with these processes. These variables were analyzed first to identify systemic trends. For door to alteplase administration, the mean pre-intervention time in minutes was 37.31 (SD = 18.53) and the mean intra-intervention time was 39.92 (SD = 10.17). This did not represent a significant change between time periods (p = 0.576). For door to mechanical thrombectomy, the mean pre-intervention time in minutes was 86.77 (SD = 45.54) and the mean intra-intervention time was 96.23 (SD = 40.95). Again, there was significance between compared data sets (p = 0.583). However, an appraisal of descriptive statistics reveals that hospital performance in these two domains was slightly worse during the three months that the Stroke Navigator project was implemented. This could likely be explained by a variety of factors including the impact of Covid-19 on ED processes or random variation. Descriptive statistics further describing alteplase and thrombectomy times can be found in table 1.

#### Table 1

Summary Statistics Table for Interval and Ratio Variables

| Variable        | М     | SD    | n  | $SE_M$ | Min   | Max   | Skewness | Kurtosis |
|-----------------|-------|-------|----|--------|-------|-------|----------|----------|
| TPAintervention | 39.92 | 10.17 | 13 | 2.82   | 23.00 | 55.00 | -0.25    | -1.20    |
| TPAstandard     | 37.31 | 18.53 | 13 | 5.14   | 17.00 | 78.00 | 0.77     | -0.27    |

Note. '-' indicates the statistic is undefined due to constant data or an insufficient sample size

| Variable                    | М                                                                                                          | SD    | п  | $SE_M$ | Min   | Max    | Skewness | Kurtosis |  |  |  |
|-----------------------------|------------------------------------------------------------------------------------------------------------|-------|----|--------|-------|--------|----------|----------|--|--|--|
| Thromintervention           | 96.23                                                                                                      | 40.95 | 13 | 11.36  | 41.00 | 198.00 | 1.06     | 0.95     |  |  |  |
| Thromstandard               | 86.77                                                                                                      | 45.54 | 13 | 12.63  | 18.00 | 195.00 | 0.77     | 0.58     |  |  |  |
| Note. '-' indicates the sta | <i>Note.</i> '-' indicates the statistic is undefined due to constant data or an insufficient sample size. |       |    |        |       |        |          |          |  |  |  |

Summary Statistics Table for Interval and Ratio Variables

Door to CT times underwent the same statistical analysis and revealed statistical findings that followed the same trend as was identified for both alteplase administration and mechanical thrombectomy timing. The pre-intervention sample revealed a mean time in minutes of 28.54 (SD = 19.38), while the intra-intervention group had a mean time of 30.69 (SD = 21.47). Again, no statistical significance was appreciated (p = 0.366) and hospital performance again appeared to decline slightly during the intervention period. However, it was noted that the relatively small sample of patients treated by the Stroke Navigator during the three months in question was not enough to show an impact in the intervention group when viewed as a whole. For this reason, an additional test was applied to compare the control group to the smaller group of patients who were accompanied through the ED course by the Stroke Navigator. The new subgroup was labeled SNwithpt\_ct. A subsequent analysis revealed a mean door-to-CT time in minutes of 18 (SD = 15.53). This demonstrated a significant reduction in door-to-CT time when compared with the pre-intervention group mean time (p = 0.015). Descriptive statistics further describing CT times can be found in table 2.

#### Table 2

Summary Statistics Table for Interval and Ratio Variables

| Variable       | М     | SD    | n   | $SE_M$ | Min  | Max   | Skewness | Kurtosis |
|----------------|-------|-------|-----|--------|------|-------|----------|----------|
| CTintervention | 30.69 | 21.47 | 112 | 2.03   | 2.00 | 83.00 | 0.80     | -0.18    |
| CTstandard     | 28.54 | 19.38 | 112 | 1.83   | 3.00 | 85.00 | 1.04     | 0.34     |
| SNwithpt_ct    | 18.00 | 15.53 | 10  | 4.91   | 2.00 | 45.00 | 0.82     | -0.74    |

*Note.* '-' indicates the statistic is undefined due to constant data or an insufficient sample size.

Important clinical significance was achieved through the three-month implementation of the Stroke Navigator program. Most notably, the hospital was able to achieve comprehensive stroke designation and is now the only hospital in the state to have earned this status. During the live audit in which the Joint Commission (TJC) was evaluating the project site for comprehensive designation suitability, the Stroke Navigators were given the opportunity to present the intervention. In a post-audit debriefing during which comprehensive stroke designation was granted, the TJC auditors praised the Stroke Navigator program as an innovative solution to improving stroke care and urged the hospital to adopt it as a permanent role. Stroke department leaders have attributed the hospital's important achievement to the Stroke Navigator intervention. Hospital administration immediately saw the value in the role and will be hiring three permanent Stroke Navigators that will serve the hospital for the foreseeable future.

Although it was desired to determine the impact of phases II and III of the Stroke Navigator intervention on hospital readmissions and patient satisfaction, this was not feasible. Likely due to Covid-19-induced complexity, the project site's quality department was not able to collect and disseminate the requested data by the time the project had concluded. This data will be trended in the future to determine impact of the work of the permanent Stroke Navigators.

#### Discussion

The results of this study were in concurrence with previous work that reveals improved hospital performance through utilization of patient navigator programs. The Stroke Navigator role expanded upon the traditional PN concept by placing the Navigator at the patient's side during the acute phase of hospitalization. This was supported by recent evidence showing expedition of acute stroke interventions via implementation of nurse-led stroke teams. Data analysis demonstrated that the Stroke Navigators' work resulted in a reduction of door-to-CT times by more than 10 minutes in the patients who received the intervention. This is an important finding because the attainment of computed tomography is arguably the most important step of acute stroke care. CT findings dictate all further actions of the stroke team. In the absence of this pertinent imagery, no other critical interventions such as alteplase administration or mechanical thrombectomy can even be considered.

This study had several strengths. One significant strength was that the project supported the hospital during a global pandemic and allowed for the delivery of quality stroke care during a time of increased complexity. This led to the achievement of comprehensive stroke status designation despite Covid-19 presenting major obstacles to success. Another identified strength was the ability of the co-investigators to collect a large body of quantitative data that revealed not only the impact of the intervention, but also revealed systemic trends that will guide future practice improvement. Several weaknesses were also identified. First, the Stroke Navigators were only able to deliver the intervention two days a week. This limited the amount of impact that could be achieved and did not allow for the extension of the intervention to every stroke patient. The small sample size could not produce significant results when a true pre/post study analysis was conducted. Another weakness is that the Stroke Navigators, by chance, were not on site when alteplase or thrombectomy candidates presented to the ED. This resulted in a lack of usable data. Additional research is recommended to determine if the intervention would have a positive impact on these variables. Lastly, data was not available to determine the impact of the Stroke Navigator role on hospital readmissions and patient satisfaction.

#### References

- Ali-Faisal, S. F., Colella, T. J., Medina-Jaudes, N., & Scott, L. B. (2016). The effectiveness of patient navigation to improve healthcare utilization outcomes: A meta-analysis of randomized controlled trials. *Patient Education and Counseling*, 100(3), 436–448. https://doi.org/10.1016/j.pec.2016.10.014
- American Heart Association. (2019). *Suggested time interval goals*. Phase III Target: Stroke. https://www.stroke.org/-/media/files/professional/quality-improvement/targetstroke/target-stroke-phase-iii/9-17-update/ds14860-time-interval-one-pager\_v2.pdf?la=en
- Balaban, R. B., Galbraith, A. A., Burns, M. E., Vialle-Valentin, C. E., Larochelle, M. R., & Ross-Degnan, D. (2015). A patient navigator intervention to reduce hospital readmissions among high-risk safety-net patients: A randomized controlled trial. *Journal of General Internal Medicine*, 30(7), 907–915. https://doi.org/10.1007/s11606-015-3185-x
- Balaban, R., Zhang, F., Vialle-Valentin, C. E., Galbraith, A. A., Burns, M. E., Larochelle, M. R., & Ross-Degnan, D. (2017). Impact of a patient navigator program on hospital-based and outpatient utilization over 180 days in a safety-net health system. *Journal of General Internal Medicine*, *32*(9), 981–989. https://doi.org/10.1007/s11606-017-4074-2
- Bergstrom, L., Irewall, A.-L., Soderstrom, L., Ogren, J., Laurell, K., & Mooe, T. (2017). Oneyear incidence, time trends, and predictors of recurrent ischemic stroke in sweden from 1998 to 2010. *Stroke*, 48(8), 2046–2051.

https://doi.org/10.1161/STROKEAHA.117.016815

Dafer, R. M., Osteraas, N. D., & Biller, J. (2020). Acute stroke care in the coronavirus disease 2019 pandemic. *Journal of Stroke and Cerebrovascular Diseases*, 29(7), Article 104881. https://doi.org/10.1016/j.jstrokecerebrovasdis.2020.104881

- Deen, T., Terna, T., Kim, E., Leahy, B., & Fedder, W. (2018). The impact of stroke nurse navigation on patient compliance post discharge. *Rehabilitation Nursing*, 43(2), 65–72. https://doi.org/10.1002/rnj.305
- Denham, A. M., Wynne, O., Baker, A. L., Spratt, N. J., Turner, A., Magin, P., Janssen, H., English, C., Loh, M., & Bonevski, B. (2019). "This is our life now. our new normal": a qualitative study of the unmet needs of carers of stroke survivors. *PloSONE*, *14*(5), 1–13. https://doi.org/10.1371/journal.pone.0216682
- Di Palo, K. E., Patel, K., Assafin, M., & Pina, I. L. (2017). Implementation of a patient navigator program to reduce 30-day heart failure readmission rate. *Progress in Cardiovascular Diseases*, 60(2), 259–266. https://doi.org/10.1016/j.pcad.2017.07.004
- Feigin, V. L., & Krishnamurthi, R. V. (2015). Global burden of stroke. In J. C. Grotta, G. W.
  Albers, J. P. Broderick, S. E. Kasner, E. H. Lo, D. Mendelow, R. L. Sacco, & L. K.
  Wong (Eds.), *Stroke: pathophysiology, diagnosis, and management* (pp. 165–206).
  Elsevier.
- Guzik, A., & Bushnell, C. (2017). Stroke epidemiology and risk factor management. *Lifelong Learning in Neurology*, *23*(1), 15–39. https://doi.org/10.1212/CON.00000000000416
- Heiberger, C. J., Kazi, S., Mehta, T. I., Busch, C., Wolf, J., & Sandhu, D. (2019). Effects on stroke metrics and outcomes of a nurse-led stroke triage team in acute stroke management. *Cureus*, 11(9), 1–8. https://doi.org/10.7759/cureus.5590
- Hirschman, K. B., Shaid, E., McCauley, K., Pauly, M. V., & Naylor, M. D. (2015). Continuity of care: The transitional care model. *The Online Journal of Issues in Nursing*, 20(3), Article 1. https://doi.org/10.3912/OJIN.Vol20No03Man01

- Horyna, T. J., Jimenez, R., McMurry, L., Buscemi, D., Cherry, B., & Seifert, C. F. (2020). An evaluation of interprofessional patient navigation services in high utilizers at a county tertiary teaching health system. *American College of Healthcare Executives*, 65(1), 62–70. https://doi.org/10.1097/JHM-D-19-00123
- Hudson, A. P., Spooner, A. J., Booth, N., Penny, R. A., Gordon, L. G., Downer, T.-R., Yates, P., Henderson, R., Bradford, N., Conway, A., O'Donnell, C., Geary, A., & Chan, R. J. (2018). Qualitative insights of patients and carers under the care of nurse navigators. *Collegian*, *26*(1), 110–117. https://doi.org/10.1016/j.colegn.2018.05.002
- Hughes, A. K., Woodward, A. T., Fritz, M. C., Swierenga, S. J., Freddolino, P. P., & Reeves, M. J. (2020). Unmet needs of US acute stroke survivors enrolled in a transitional care intervention trial. *Journal of Stroke and Cerebrovascular Diseases*, *29*(2), Article 104462. https://doi.org/10.1016/j.jstrokecerebrovasdis.2019.104462
- Institute for Healthcare Improvement. (2020). Science of improvement: Testing changes. Improving Health and Health Care Worldwide. http://www.ihi.org/resources/Pages/HowtoImprove/ScienceofImprovementTestingChanges.aspx
- Kitzman, P., Hudson, K., Sylvia, V., Feltner, F., & Lovins, J. (2017). Care coordination for community transitions for individuals post-stroke returning to low-resource rural communities. *Journal of Community Health*, *42*(3), 565–572. https://doi.org/10.1007/s10900-016-0289-0
- McBrien, K. A., Ivers, N., Barnieh, L., Bailey, J. J., Lorenzetti, D. L., Nicholas, D., Tonelli, M., Hemmiegarn, B., Lewanczuk, R., Edwards, A., Braun, T., & Manns, B. (2018). Patient

navigators for people with chronic disease: A systematic review. *PLoS One*, *13*(2), Article e0191980. https://doi.org/10.1371/journal.pone.0191980

- Middleton, S., Grimley, R., & Alexandrov, A. W. (2015). Triage, treatment, and transfer:
  Evidence-based clinical practice recommendations and models of nursing care for the
  first 72 hours of admission to hospital for acute stroke. *AJA Journals*, *46*(2), 18–25.
  https://doi.org/10.1161/STROKEAHA.114.006139
- New Mexico Department of Health. (2018). Complete health indicator report of cardiovascular disease - stroke deaths. New Mexico's Indicator-Based Information System (NM-IBIS). Retrieved February 11, 2020, from https://ibis.health.state.nm.us/indicator/complete\_profile/CardioVasDiseaseStrokeDeath. html
- Oza, R., Rundell, K., & Garcellano, M. (2017). Recurrent ischemic stroke: strategies for prevention. *American Family Physician*, 96(7), 436–440. aafp.org/afp/2017/1001/p436.html
- Rocque, G. B., Williams, C. P., Jones, M. I., Kenzik, K. M., Williams, G. R., Azuero, A.,
  Jackson, B. E., Halilova, K. I., Meneses, K., Taylor, R. A., Partridge, E., Pisu, M., &
  Kvale, E. A. (2017). Healthcare utilization, medicare spending, and sources of patient
  distress identified during implementation of a lay navigation program for older patients
  with breast cancer. *Breast Cancer Research and Treatment*, *167*(1), 215–223.
  https://doi.org/10.1007/s10549-017-4498-8
- Roy, D., Gasquione, S., Caldwell, S., & Nash, D. (2015). Health professional and family perceptions of post-stroke information. *Nursing Praxis in New Zealand*, 31(2), 7–24. https://hdl.handle.net/10652/3459

Saver, J. L. (2006). Time is brain - Quantified. *AHA Journals*, *37*(1), 263–266. https://doi.org/10.1161/01.STR.0000196957.55928.ab

Stuntz, M., Busko, K., Irshad, S., Paige, T., Razhkova, V., & Coan, T. (2017). Nationwide trends of clinical characteristics and economic burden of emergency department visits due to acute ischemic stroke. *Open Access Emergency Medicine*, 9, 89–96. https://doi.org/10.2147/OAEM.S146654

## Appendix A

## **Evaluation and Synthesis Tables**

### Table 1

## Evaluation Table Quantitative Studies

| Citation             | Theory/     | Design/       | Sample/       | Major              | Measurement       | Data              | Findings/         | Level/Quality of                |
|----------------------|-------------|---------------|---------------|--------------------|-------------------|-------------------|-------------------|---------------------------------|
|                      | Conceptual  | Method        | Setting       | Variables          | /                 | Analysis          | Results           | Evidence; Decision for          |
|                      | Framework   |               |               | &                  | Instruments       |                   |                   | Practice/                       |
|                      |             |               |               | Definitions        |                   |                   |                   | <b>Application to Practice</b>  |
| Ali-Faisal, S.F. et  | Andersen    | Design: MA    | N: 25         | IV:                | No specific       | CI and OR         | DV1: PN           | LOE: I                          |
| al. (2016)           | Healthcare  | of RCTs       |               | Utilization of     | tools/instruments | used to           | increased         |                                 |
|                      | Utilization |               | Databases     | a PN to            | specified.        | describe          | likelihood of     | Strengths: Properly designed    |
| Funding: Author      | Model       | Purpose:      | Searched:     | improve            | PRISMA            | RCT               | patient access    | MA with use of high-quality     |
| states no receipt of | (Inferred)  | Employ        | MEDLINE,      | healthcare         | recommendations   | outcome           | to health         | studies, appropriate            |
| grant from funding   |             | meta-analysis | PsycINFO,     | utilization        | used to guide MA  | measures,         | screening: OR     | inclusion/exclusion criteria    |
| agencies in public,  |             | of existing   | EBM Reviews-  | and/or patient     | development       | I <sup>2</sup> to | 2.48, 95% CI      | and appropriate analytic        |
| commercial, or       |             | data to       | Cochrane      | outcomes           |                   | evaluate          | 1.93-3.18,        | methodology. Use of forest      |
| not-for-profit       |             | determine     | Central       |                    |                   | heterogene        | <i>p</i> <0.00001 | plots further elucidated study  |
| sectors              |             | what effects  | Registrar of  | <b>DV1:</b> Health |                   | ity,              |                   | results and authors deliver a   |
| Bias: None           |             | PN has on     | Controlled    | screening          |                   | Egger's           | DV2: PN           | clear, concise discussion of    |
| identified           |             | healthcare    | Trials,       | behaviors          |                   | regression        | increased         | MA results.                     |
|                      |             | utilization   | Cochrane      |                    |                   | to test           | likelihood that   |                                 |
| Country: USA         |             | outcomes      | Database of   | <b>DV2:</b>        |                   | publication       | patient would     | Weaknesses: PN                  |
|                      |             | when          | Systematic    | Attendance of      |                   | bias, study       | attend care       | interventions varied from       |
|                      |             | compared to   | Reviews,      | care events        |                   | quality           | event: OR         | study to study so it may be     |
|                      |             | usual care    | Healthstar,   | (Rehab, or         |                   | grading           | 2.55, 95% CI      | difficult to determine which    |
|                      |             |               | Joanna Briggs | other              |                   | applied and       | 1.27-5.10,        | interventions were most         |
|                      |             |               | Institute EBP | prescribed         |                   | tested            | p = 0.008         | effective. Majority of patients |
|                      |             |               |               | treatments)        |                   | using 2-          |                   | were female or from minority    |

| Database,         |            | tailed α of | DV3: PN         | ethnic groups. It cannot be     |
|-------------------|------------|-------------|-----------------|---------------------------------|
| Embase            | DV3:       | 0.05        | increased       | determined how the PN           |
| Emouse            | Follow up  | 0.05        | likelihood that | intervention would affect       |
| Inclusion         | treatment  |             | patient would   | other populations.              |
| Criteria:         | adherence  |             | attend follow   | Heterogeneity is considerable   |
| RCT with          | udiference |             | up treatment:   | for all investigated variables. |
| comparison        | DV4:       |             | OR 2.53, CI     | for all investigated variables. |
| group, term       | Diagnostic |             | 95% 1.02-6.30,  | <b>Conclusions:</b> MA of RCTs  |
| navigation or a   | resolution |             | p=0.05          | shows promise in several        |
| variant           | resolution |             | <i>p</i> 0.05   | areas regarding the use of PN   |
| appeared in       |            |             | DV4: No         | interventions in improving      |
| description of    |            |             | significant     | necessary utilization of        |
| intervention,     |            |             | effect of PN on | available health services in    |
| study tested PN   |            |             | likelihood of   | those with chronic disease.     |
| intervention,     |            |             | obtaining       | The bulk of studies analyzed    |
| measured          |            |             | diagnostic      | feature the effect of PNs on    |
| intervention      |            |             | resolution: OR  | cancer patients; however, the   |
| components,       |            |             | 1.57, CI 95%    | intervention may also be        |
| and assessed a    |            |             | 0.85-2.88,      | successful in stroke patients.  |
| health outcome,   |            |             | p=0.15          | successian in succe patients.   |
| published in      |            |             | p one           |                                 |
| peer-reviewed     |            |             |                 |                                 |
| journal,          |            |             |                 |                                 |
| available in      |            |             |                 |                                 |
| English           |            |             |                 |                                 |
| language          |            |             |                 |                                 |
|                   |            |             |                 |                                 |
| Exclusion         |            |             |                 |                                 |
| Criteria:         |            |             |                 |                                 |
| Studies that      |            |             |                 |                                 |
| were quasi-       |            |             |                 |                                 |
| experimental,     |            |             |                 |                                 |
| qualitative, case |            |             |                 |                                 |
| studies, articles |            |             |                 |                                 |
| which were        |            |             |                 |                                 |

|                 |              |                           | MAs, SRs,<br>comments,<br>editorials,<br>conference<br>proceedings,<br>case series,<br>notes, non peer-<br>reviewed<br>publications,<br>articles using<br>non-human<br>navigators |                               |                               |                      |                |                                                        |
|-----------------|--------------|---------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------|-------------------------------|----------------------|----------------|--------------------------------------------------------|
| Citation        | Theory/      | Design/                   | Sample/                                                                                                                                                                           | Major                         | Measurement                   | Data                 | Findings/      | Level/Quality of                                       |
|                 | Conceptual   | Method                    | Setting                                                                                                                                                                           | Variables                     | /                             | Analysis             | Results        | <b>Evidence; Decision for</b>                          |
|                 | Framework    |                           |                                                                                                                                                                                   | &                             | Instruments                   |                      |                | Practice/                                              |
|                 |              |                           |                                                                                                                                                                                   | Definitions                   |                               |                      |                | Application to Practice                                |
| Balaban et al.  | Transitional | Design: RCT               | N: 1510                                                                                                                                                                           | IV: Use of a                  | Charlson                      | Chi-square           | Statistically  | LOE: II                                                |
| (2015)          | Care Model   |                           | n: 585 (EG)                                                                                                                                                                       | PN program                    | Comorbidity                   | analysis, t-         | significant    |                                                        |
|                 | (Inferred)   | Purpose:                  | n: 925 (Ctrl)                                                                                                                                                                     | in which                      | Index used to                 | tests,               | reduction in   | Strengths: RCT design with                             |
| Funding:        |              | Determine                 | <b>n:</b> 1009 (>60                                                                                                                                                               | patients EG                   | determine                     | logical              | hospital       | proper randomization,                                  |
| The study was   |              | the                       | years old)                                                                                                                                                                        | patients                      | medical                       | regression.          | readmissions   | appropriate stratification by                          |
| funded by the   |              | effectiveness             | <b>n:</b> 501 (≤60                                                                                                                                                                | received                      | complexity of                 | Intention to         | with use of PN | age group to appreciate age-                           |
| Agency for      |              | of a PN                   | years old)                                                                                                                                                                        | hospital visits               | subjects in both              | treat                | intervention   | dependent variances in                                 |
| Healthcare      |              | intervention              |                                                                                                                                                                                   | and post-                     | Ctrl and EG.                  | analysis             | and increased  | intervention effect, proper                            |
| Research and    |              | in reducing               | Setting: Two                                                                                                                                                                      | discharge                     | Inter-rater                   | performed            | outpatient     | adjustment of study results                            |
| Quality         |              | 30-day                    | hospitals within                                                                                                                                                                  | outreach calls                | reliability ( $\kappa =$      | and                  | visits within  | based on gender, language,                             |
|                 |              | readmission               | Cambridge                                                                                                                                                                         | for the                       | 0.74 to 0.945),               | subgroup             | both 7 and 30  | race/ethnicity, readmission                            |
| Bias:           |              | rates in                  | Health Alliance                                                                                                                                                                   | duration of 30                | good test re-test             | analyses             | days post      | risk factors, comorbidities,                           |
| None identified |              | underserved,              | in                                                                                                                                                                                | days                          | reliability (a 0.91           | performed            | discharge in   | behavioral health issues                               |
|                 |              | safety-net                | Massachusetts,                                                                                                                                                                    |                               | to 0.92)                      | according            | patients older |                                                        |
| Country:        |              | patients who              | a system with                                                                                                                                                                     | <b>DV 1:</b> In-              |                               | to                   | than age 60    | Weaknesses: Blinding not                               |
| USA             |              | suffer from               | ethnically                                                                                                                                                                        | network, all                  | 30 day                        | Medicare             |                | feasible for study so some                             |
|                 |              | multiple<br>comorbidities | diverse and traditionally                                                                                                                                                         | cause hospital readmission to | readmissions,<br>primary care | enrollment<br>status | DV 1:          | bias is possible even though not asserted, control and |

|  | underserved<br>patient<br>populations<br>Sample<br>Demographics:<br><u>Ctrl Group:</u><br>Mean age: 63.7<br>(SD 16.7);<br>Female gender<br>59.2%; Race:<br>White 57.5%,<br>Black 15.6%,<br>Hispanic<br>16.3%, Other<br>10.6%<br><u>EG:</u><br>Mean age: 66.4<br>(SD 15.5);<br>Female gender<br>55.2%; Race:<br>White 57.6%,<br>Black 16.1%,<br>Hispanic<br>14.7%, Other<br>11.6% | any hospital<br>service within<br>30 days of<br>discharge<br><b>DV 2:</b><br>Attending a<br>primary care<br>appointment<br>within seven<br>days of<br>discharge<br><b>DV 3:</b> Any<br>outpatient or<br>ED visit<br>within 30 days<br>of discharge | encounters within<br>7 days of<br>discharge, and<br>primary care<br>encounters within<br>30 days of<br>discharge tracked<br>throughout<br>duration of<br>intervention |  | Readmissions<br>in age 60+:<br>4.1% decrease,<br>[95% CI -8.0, -<br>0.2], $p < 0.05Readmissionsin age \leq 60:11.8%increase, [95\%CI 4.4, 19], p <0.05DV 2:All ages:5.1%$ increase<br>in PCP follow<br>up visits within<br>7 days $[95\%$<br>CI 0.6, 9.6], $p <$<br>< 0.05<br><b>DV 3:</b><br>All ages:<br>4.9% increase<br>in PCP follow<br>up visits within<br>30 days $[95\%$<br>CI 0.9, 8.9], $p <$<br>< 0.05<br><b>Age</b> 60+:<br>6.7% increase<br>in PCP follow<br>up visits within<br>30 days $[95\%$ | intervention groups not equal<br>in size, intervention not<br>equally distributed to each<br>subject in intervention group,<br>study places focus on<br>underserved populations and<br>may not be applicable to<br>other populations<br><b>Application to Practice:</b> The<br>study intervention shows<br>promise in preventing 30 day<br>all cause readmissions in<br>medically complex<br>individuals in vulnerable SES<br>subgroups. However, the<br>intervention only<br>demonstrated positive<br>outcomes in individuals older<br>than 60 years as it actually<br>increased readmissions in<br>individuals 60 years or<br>younger. More research is<br>needed to determine if patient<br>navigation is appropriate for<br>younger patients. |
|--|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|--|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|

30

|                   |              |                |                       |                 |                  |              | CI 2.0, 11], <i>p</i> < |                                 |
|-------------------|--------------|----------------|-----------------------|-----------------|------------------|--------------|-------------------------|---------------------------------|
|                   |              |                |                       |                 |                  |              | 0.05                    |                                 |
| Citation          | Theory/      | Design/        | Sample/               | Major           | Measurement      | Data         | Findings/               | Level/Quality of                |
|                   | Conceptual   | Method         | Setting               | Variables       | /                | Analysis     | Results                 | <b>Evidence; Decision for</b>   |
|                   | Framework    |                | _                     | &               | Instruments      | -            |                         | Practice/                       |
|                   |              |                |                       | Definitions     |                  |              |                         | <b>Application to Practice</b>  |
| Balaban et al.    | Transitional | Design: RCT    | N: 1921               | IV: Use of a    | No specific tool | Estimated    | As with                 | LOE: II                         |
| (2017)            | Care Model   |                | <b>n:</b> 739 (EG)    | PN              | utilized. ED     | propensity   | researcher's            |                                 |
|                   | (Inferred)   | Purpose: To    | <b>n:</b> 1182 (Ctrl) | intervention in | encounters,      | scores and   | previous study,         | Strengths: Well-designed        |
| Funding: The      |              | examine the    |                       | which           | hospital         | inverse      | the                     | RCT, appropriate methods of     |
| study was funded  |              | effectiveness  | *Only 79.9%           | navigators      | admissions, and  | probability  | intervention            | randomization, proper           |
| by the Agency for |              | of a 30 day    | of subjects in        | provide         | primary care     | weights      | has positive,           | adjustment of results based     |
| Healthcare        |              | PN             | EG and 64.8%          | hospital visits | encounters       | used         | clinically              | on gender, language, race,      |
| Research and      |              | intervention   | of subjects in        | and weekly      | tracked during   | during       | significant             | comorbidities, chronic          |
| Quality           |              | on hospital-   | Ctrl group            | phone calls     | study period     | randomizat   | effects only on         | behavioral health issues, etc., |
|                   |              | based          | could be              | post discharge  |                  | ion          | subjects over           | fairly large sample size,       |
| Bias: None        |              | utilization    | followed for          | for 60 days     |                  | process.     | the age of 60           | utilization of tables and       |
| identified        |              | (ED visits     | 180 days post         |                 |                  | Data         | years (reduced          | graphs to express subject       |
|                   |              | and inpatient  | discharge             | DV 1:           |                  | analysis by  | hospital usage,         | demographics and study          |
| Country: USA      |              | admissions)    |                       | Hospital-       |                  | chi-square   | increased PCP           | results.                        |
|                   |              | as well as     | Setting:              | based           |                  | tests, t-    | utilization)            |                                 |
|                   |              | primary care   | Ethnically and        | utilization     |                  | tests, non-  |                         | Weaknesses: Blinding not        |
|                   |              | services       | linguistically        | over 180 day    |                  | parametric   | DV 1:                   | feasible for study creating     |
|                   |              | utilization in | diverse,              | period post     |                  | tests. GEE   | <u>Age 60+</u>          | potential for bias, ctrl and EG |
|                   |              | high-risk,     | underserved           | discharge       |                  | models       | Percent                 | not equal in size,              |
|                   |              | medically      | patients in           | DV 2:           |                  | with .       | change: -18.7,          | readmissions only tracked       |
|                   |              | complex        | Cambridge             | Admissions      |                  | negative     | [95% CI -0.41,          | within one hospital system,     |
|                   |              | patients over  | Health Alliance       | during 180      |                  | binomial     | -0.01], $p =$           | cannot account for              |
|                   |              | 180 days post  | including two         | day period      |                  | distribution | 0.038                   | readmissions out of network,    |
|                   |              | discharge      | hospitals, three      | post discharge  |                  | and inverse  | A < (0)                 | researchers not able to track   |
|                   |              |                | EDs, ten              | DV 3:           |                  | probability  | Age < 60                | all patients across entire 180  |
|                   |              |                | community             | Outpatient      |                  | weights to   | Percent                 | study duration due to subjects  |
|                   |              |                | health centers        | visits over 180 |                  | model        | change: 31.7,           | being lost to follow up for     |
|                   |              |                |                       |                 |                  |              | [95% CI 0.14,           | unstated reasons, subjects      |

| 2 | $\mathbf{r}$ |  |
|---|--------------|--|
| Э | L            |  |
| _ |              |  |

| <b>Demographics:</b> | day period     | outcome | 1.45], <i>p</i> =               | underserved and ethnically      |
|----------------------|----------------|---------|---------------------------------|---------------------------------|
| Ctrl Group age       | post discharge | rates   | 0.017                           | diverse so results may not be   |
| <u>60+:</u>          | r 8-           |         |                                 | applicable to other             |
| Mean age 75.1,       |                |         | DV 2:                           | populations.                    |
| Gender: 61.3%        |                |         | <u>Age 60+</u>                  | h ob analours.                  |
| female, Race:        |                |         | Percent                         | <b>Application to Practice:</b> |
| White 61.5%,         |                |         | change: -12.6,                  | Like with the author's          |
| Black 16.4%,         |                |         | [95% CI -0.18,                  | previous research, results      |
| Hispanic             |                |         | $[9570 \text{ Cl}^{-0.10}, p =$ | show a clinically significant   |
| 11.5%, Other         |                |         | 0.05 J, <i>p</i> = 0.188        | positive impact on reduction    |
| 10.5%                |                |         | 0.100                           | of hospital system utilization  |
| <u>Ctrl Group</u>    |                |         | $\Lambda a_2 < 60$              | and readmissions for            |
|                      |                |         | <u>Age &lt; 60</u><br>Percent   |                                 |
| under age 60:        |                |         |                                 | medically complex patients      |
| Mean age: 45.7,      |                |         | change: 41.0,                   | over age 60 after hospital      |
| Gender: 52%          |                |         | [95% CI 0.04,                   | discharge. The study also       |
| female, Race:        |                |         | 0.55], $p =$                    | reinforces earlier findings     |
| White 61.2%,         |                |         | 0.024                           | that use of nurse navigation    |
| Black 11.2%,         |                |         | DUA                             | may increase hospital           |
| Hispanic             |                |         | DV 3:                           | admissions in younger           |
| 20.8%, Other         |                |         | <u>Age 60+</u>                  | individuals. More research      |
| 6.9%                 |                |         | Percent                         | would need to be evaluated to   |
| EG age 60+:          |                |         | change: 6.8,                    | ensure that the intervention    |
| Mean age 74.5,       |                |         | [95% CI -0.23,                  | does not cause harm in          |
| Gender: 57.8%        |                |         | 1.11], <i>p</i> =               | subjects under age 60.          |
| female, Race:        |                |         | 0.197                           |                                 |
| White 64%,           |                |         |                                 |                                 |
| Black 14.9%,         |                |         | <u>Age &lt; 60</u>              |                                 |
| Hispanic 9.9%,       |                |         | Percent                         |                                 |
| Other 11.2%          |                |         | change: 10.6,                   |                                 |
| EG under age         |                |         | [95% CI -0.46,                  |                                 |
| 60:                  |                |         | 2.17], <i>p</i> =               |                                 |
| Mean age 46.2,       |                |         | 0.202                           |                                 |
| Gender: 49%          |                |         |                                 |                                 |
| female, Race:        |                |         |                                 |                                 |
| White 58.2%,         |                |         |                                 |                                 |

|                       |                    | D:/                    | Black 12.9%,<br>Hispanic<br>21.1%, Other<br>7.7% |                         |                            | D. (       |                                                   |                                 |
|-----------------------|--------------------|------------------------|--------------------------------------------------|-------------------------|----------------------------|------------|---------------------------------------------------|---------------------------------|
| Citation              | Theory/            | Design/                | Sample/                                          | Major                   | Measurement                | Data       | Findings/                                         | Level/Quality of                |
|                       | Conceptual         | Method                 | Setting                                          | Variables               | - /                        | Analysis   | Results                                           | Evidence; Decision for          |
|                       | Framework          |                        |                                                  | &                       | Instruments                |            |                                                   | Practice/                       |
|                       |                    |                        |                                                  | Definitions             |                            |            |                                                   | <b>Application to Practice</b>  |
| Deen et al., (2018)   | Cancer             | Design:                | Phase I                                          | Phase I                 | Chart review               | Chi-square | Use of a stroke                                   | LOE: IV                         |
|                       | Navigation         | Observational          | <b>N:</b> Group A 73,                            |                         | performed for              | analysis,  | NN program                                        |                                 |
| Funding: Not          | Model &            | Longitudinal           | Group B 69 for                                   | Group A:                | DVs dysphagia,             | ANOVA,     | improved                                          | Strengths: Well-designed        |
| stated                | Dorothea           | cohort study           | dysphagia                                        | IV: None                | statin at                  | F-test     | outcomes                                          | cohort study, appropriate use   |
| <b>D</b> ' <b>) 1</b> | Orem's Self-       | D                      |                                                  | Observed                | discharge, stroke          |            | pertaining to                                     | of analytical tools, detailed   |
| Bias: None            | Care Deficit       | Purpose:               | N: Group A 51,                                   | variables:              | education, ED              |            | several                                           | discussion of intervention,     |
| identified            | Nursing            | Examine<br>effect of a | Group B 50 for                                   | Dysphagia               | visits,<br>readmissions    |            | dependent                                         | tables used in data             |
| Country: USA          | Theory<br>(Stated) | NN program             | discharge on<br>Statin                           | Screening,<br>statin at | readmissions               |            | variables:                                        | presentation                    |
| Country: USA          | (Stated)           | on patient             | Statili                                          | discharge,              | Patient self-report        |            | Phase I                                           | Weaknesses: High attrition      |
|                       |                    | adherence              | N: Group A 68,                                   | stroke                  | Obtained for <b>DV</b> s   |            | $\frac{1 \text{ mase I}}{\text{DV 1: } \chi^2} =$ | rate, small final sample size,  |
|                       |                    | post                   | Group B 68 for                                   | education               | Medication                 |            | 17.04 (p < 17.04)                                 | homogenous sample with          |
|                       |                    | discharge as           | stroke                                           | before                  | adherence,                 |            | 0.001)                                            | possible poor applicability,    |
|                       |                    | well as                | education                                        | discharge               | physician follow           |            | 0.001)                                            | use of too many dependent       |
|                       |                    | quality of             | before                                           | e                       | up, smoking                |            | <b>DV 2:</b> $\chi^2 =$                           | variables, use of convenience   |
|                       |                    | life,                  | discharge                                        | Group B:                |                            |            | $0.73 \ (p = .394),$                              | sample                          |
|                       |                    | functional             | _                                                | IV:                     | <b>BI</b> for functional   |            | no statistical                                    | -                               |
|                       |                    | status, and            | Phase II                                         | Employment              | status ( $\alpha 0.87$ to  |            | significance                                      | <b>Application to Practice:</b> |
|                       |                    | hospital               | N: 61                                            | of a stroke NN          | 0.92)                      |            |                                                   | Routine dysphagia screening,    |
|                       |                    | readmission            |                                                  | program                 |                            |            | <b>DV 3:</b> $\chi^2 =$                           | stroke teaching before          |
|                       |                    |                        | Setting: Both                                    | DV 1:                   | QoL for quality            |            | 11.38 ( <i>p</i> =                                | discharge, medication           |
|                       |                    |                        | acute care and                                   | Dysphagia               | of life ( $\alpha 0.82$ to |            | 0.001)                                            | adherence, adherence with       |
|                       |                    |                        | post-hospital                                    | screening               | 0.92)                      |            | ын                                                | physical follow up              |
|                       |                    |                        | setting at a                                     | <b>DV 2:</b>            |                            |            | Phase II                                          | appointments, functional        |
|                       |                    |                        | primary stroke                                   | Statin at               |                            |            | DV 1:                                             | status, and quality of life     |
|                       |                    |                        | center                                           | discharge               |                            |            | Compliance                                        | were all improved with a        |

33

|                 | DV 3:          | 96.7% at 30                 | stroke navigator intervention. |
|-----------------|----------------|-----------------------------|--------------------------------|
| Demographics    | Stroke         | days, 95.1% at              | This shows promise for         |
| Phase I:        | education      | 3 months,                   | application to practice, but   |
| Group A was     | before         | 98.4% at 6 and              | more research is necessary to  |
| 53% male, 47%   | discharge      | 12 months                   | determine if study findings    |
| female, average |                | DV 2:                       | are applicable to stroke       |
| age 69.8. Group | Phase II       | Physician                   | patients in other ethnic or    |
| B was 49%       |                | follow ups in               | socioeconomic groups.          |
| male, 51%       | IV:            | 98.4% of                    |                                |
| female, average | Employment     | subjects at 7               |                                |
| age 71.2        | of a stroke NN | days, 100% at               |                                |
| _               | program        | 3 months                    |                                |
| Phase II:       | DV 1:          | DV 3:                       |                                |
| Over half were  | Medication     | Highest                     |                                |
| male, age range | adherence      | number of                   |                                |
| 31 to 86 with   | DV 2:          | stroke visits               |                                |
| mean of 65.3.   | Physician      | within first 3              |                                |
| Predominantly   | follow up      | months post                 |                                |
| Caucasian from  | adherence      | discharge                   |                                |
| affluent        | DV 3:          | <b>DV 4:</b>                |                                |
| community       | ED visits      | Pre stroke,                 |                                |
|                 | DV 4:          | 21.3% of                    |                                |
|                 | Smoking        | subjects                    |                                |
|                 | DV 5:          | smoked, 1.6%                |                                |
|                 | Functional     | smoked at 7                 |                                |
|                 | status         | days, 3.3%                  |                                |
|                 | DV 6:          | smoked at 3                 |                                |
|                 | QOL            | months, 4.9%                |                                |
|                 | DV 7:          | smoked at 12                |                                |
|                 | Readmissions   | months                      |                                |
|                 |                | DV 5:                       |                                |
|                 |                | <i>F</i> = 8.12, <i>p</i> < |                                |
|                 |                | 0.001                       |                                |
|                 |                | <b>DV 6:</b>                |                                |
|                 |                | Mobility ( $F =$            |                                |

| 25 |  |
|----|--|
| 33 |  |

|                     |              |                                 |                                |                         |                                      |                 | 4.91, p <<br>0.001); Self-<br>Care ( $F = 6.53$ ,<br>p < 0.001);<br>Usual<br>Activities ( $F =$<br>3.21, p <<br>0.001); no<br>significant<br>difference in<br>pain, anxiety,<br>or depression |                                                        |
|---------------------|--------------|---------------------------------|--------------------------------|-------------------------|--------------------------------------|-----------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------|
| Citation            | Theory/      | Design/                         | Sample/                        | Major                   | Measurement                          | Data            | Findings/                                                                                                                                                                                     | Level/Quality of                                       |
|                     | Conceptual   | Method                          | Setting                        | Variables               | /                                    | Analysis        | Results                                                                                                                                                                                       | Evidence; Decision for                                 |
|                     | Framework    |                                 |                                | &                       | Instruments                          |                 |                                                                                                                                                                                               | practice/Application to                                |
|                     |              |                                 |                                | Definitions             |                                      |                 |                                                                                                                                                                                               | practice                                               |
| Di Palo, K. et al., | Transitional | Design:                         | N: 94                          | IV: Use of a            | No specific tool                     | Descriptive     | Statistically                                                                                                                                                                                 | LOE: IV                                                |
| (2017)              | Care Model   | Cohort study                    | <b>n:</b> 51 (EG)              | PN team to              | was utilized to                      | analyses,       | significant                                                                                                                                                                                   |                                                        |
|                     | (Inferred)   | using                           | <b>n:</b> 43 (Ctrl)            | increase                | measure                              | categorical     | improvements                                                                                                                                                                                  | Strengths: This is a well-                             |
| Funding: ACC        |              | retrospective                   | ~ <b>.</b>                     | inpatient               | outcomes.                            | variables       | in frequency of                                                                                                                                                                               | designed cohort study that                             |
| <b>D:</b> ) ]       |              | chart review                    | Setting:                       | education               | Severity of HF of                    | described       | HF specific                                                                                                                                                                                   | evaluates effect of                                    |
| Bias: None          |              | Durmaga, T-                     | Subjects were<br>selected from | delivery,               | all subjects                         | using           | education                                                                                                                                                                                     | intervention in 35 different                           |
| identified          |              | <b>Purpose:</b> To determine if | 35 hospitals                   | ensure<br>scheduling of | assessed utilizing<br>NYHA criteria. | frequencies and | delivery,<br>adherence to                                                                                                                                                                     | medical centers. Unlike single center trials, findings |
| Country: USA        |              | the utilization                 | across the                     | follow up               |                                      | percentage;     | 14-day follow                                                                                                                                                                                 | are assumed to be more                                 |
| Country, 05/1       |              | of a PN team                    | United States                  | appointments,           |                                      | continuous      | up                                                                                                                                                                                            | applicable to the general                              |
|                     |              | comprised of                    |                                | ensure initial          |                                      | variables       | appointments,                                                                                                                                                                                 | population. Control and pilot                          |
|                     |              | a nurse and                     | Demographics:                  | and follow up           |                                      | described       | and evaluation                                                                                                                                                                                | groups had baseline                                    |
|                     |              | pharmacist                      | EG:                            | NT-proBNP               |                                      | using           | of repeat                                                                                                                                                                                     | homogeneity which reduces                              |
|                     |              | could serve to                  | Mean age 69.7;                 | labs ordered,           |                                      | means and       | cardiac                                                                                                                                                                                       | potential for bias.                                    |
|                     |              | improve                         | female n=22;                   | ensure ACE-I,           |                                      | SDs;            | biomarker labs                                                                                                                                                                                |                                                        |
|                     |              | identification                  | male n=29,                     | ARB, or BB              |                                      | outcomes        | to trend disease                                                                                                                                                                              |                                                        |

| <br> | CHE            | FF             |                      | 1 1              |                     |                                |
|------|----------------|----------------|----------------------|------------------|---------------------|--------------------------------|
|      | of HF          | mean EF        | prescribed at        | analyzed         | progress            | Weaknesses: PN team varied     |
|      | inpatients and | 36.5%; HFrEF   | discharge            | using Chi-       | accomplished        | depending on location: Some    |
|      | reduce 30-     | n=35; HFpEF    |                      | square test;     | with PN team.       | hospitals utilized only nurse  |
|      | day all cause  | n=14; HFmrEF   | DV1: HF              | medical          | Reduction in        | and clinical pharmacist while  |
|      | readmission    | n=2            | education            | center data      | readmissions        | others incorporated other      |
|      | rates          |                | delivery             | analyzed         | trended toward      | members of the                 |
|      |                | Ctrl:          |                      | using <i>t</i> - | significance.       | interdisciplinary team. The    |
|      |                | Mean age 67.9; | <b>DV2:</b> 14-day   | test.            |                     | intervention may not have      |
|      |                | female n=19;   | clinic follow        |                  | <b>DV1:</b> EG      | been identical from one        |
|      |                | male n=24;     | up                   |                  | 56.5%, Ctrl         | setting to another. Sample     |
|      |                | mean EF        | _                    |                  | 23.3%;              | size was small and there was   |
|      |                | 46.3%; HFrEF   | <b>DV3:</b> NT-      |                  | p=0.0002            | no randomization or blinding.  |
|      |                | n=20; HFpEF    | proBNP               |                  | -                   |                                |
|      |                | n=22; HFmrEF   | monitoring           |                  | <b>DV2:</b> EG      | Conclusions: PN                |
|      |                | n=1            |                      |                  | 68.6%, Ctrl         | intervention had profound      |
|      |                |                | DV4: ACE-I,          |                  | 39.5%;              | positive results in terms of   |
|      |                |                | ARB, or BB           |                  | <i>p</i> =0.0044    | increasing patient education,  |
|      |                |                | at discharge         |                  | 1                   | improving adherence to clinic  |
|      |                |                | 0                    |                  | <b>DV3:</b> EG      | follow-up, and improving       |
|      |                |                | <b>DV5:</b> Hospital |                  | 58.8%, Ctrl         | laboratory monitoring of       |
|      |                |                | readmission          |                  | 22%;                | disease progression.           |
|      |                |                | (30-day, all         |                  | p=0.0002            | Presumably, this intervention  |
|      |                |                | cause)               |                  | p 0.0002            | could have similar positive    |
|      |                |                | cuuse)               |                  | DV4: ACE-           | results when applied to stroke |
|      |                |                |                      |                  | I/ARB: EG           | population.                    |
|      |                |                |                      |                  | 85.2%, Ctrl         | population.                    |
|      |                |                |                      |                  | 68.4%;              |                                |
|      |                |                |                      |                  | p=0.17.             |                                |
|      |                |                |                      |                  | p=0.17.<br>BB: EG   |                                |
|      |                |                |                      |                  |                     |                                |
|      |                |                |                      |                  | 90.9%, Ctrl         |                                |
|      |                |                |                      |                  | 75%; <i>p</i> =0.12 |                                |
|      |                |                |                      |                  | DV5. DN             |                                |
|      |                |                |                      |                  | DV5: PN             |                                |
|      |                |                |                      |                  | program             |                                |
|      |                |                |                      |                  | resulted in         |                                |

|                     |            |                |                      |                      |                   |             | 4 = 0.04               | 1                              |
|---------------------|------------|----------------|----------------------|----------------------|-------------------|-------------|------------------------|--------------------------------|
|                     |            |                |                      |                      |                   |             | 15.8%                  |                                |
|                     |            |                |                      |                      |                   |             | decrease in            |                                |
|                     |            |                |                      |                      |                   |             | unplanned              |                                |
|                     |            |                |                      |                      |                   |             | readmission            |                                |
|                     |            |                |                      |                      |                   |             | rate ( $p=0.15$ )      |                                |
| Citation            | Theory/    | Design/        | Sample/              | Major                | Measurement       | Data        | Findings/              | Level/Quality of               |
|                     | Conceptual | Method         | Setting              | Variables            | /                 | Analysis    | Results                | <b>Evidence; Decision for</b>  |
|                     | Framework  |                | _                    | &                    | Instruments       | _           |                        | <b>Practice/Application to</b> |
|                     |            |                |                      | Definitions          |                   |             |                        | Practice                       |
| Horyna, T.J. et al. | Health     | Design:        | <b>N:</b> 364        | IV: Use of PN        | No specific tools | Descriptive | <b>DV1</b> : ED visits | LOE: IV                        |
| (2020)              | Promotion  | Retrospective  |                      | comprised of         | or instruments    | statistics  | pre-enrollment:        |                                |
|                     | Model      | Cohort study   | (Patients served     | lay navigators       | utilized          | for         | Median 3.10,           | Strengths: Well-designed       |
| Funding: Not        | (Inferred) |                | as their own         | and physician,       |                   | demograph   | IQR 2.93. ED           | cohort study uses patients as  |
| stated              |            | Purpose: To    | controls in this     | NP,                  |                   | ic data,    | visits post-           | their own controls and         |
|                     |            | determine if   | study)               | pharmacist,          |                   | continuous  | enrollment:            | evaluates pre and post PN      |
| Bias: None          |            | employment     | Setting:             | data                 |                   | data        | Median 1.13,           | intervention. Result is clear  |
| identified          |            | of an          | University           | coordinator,         |                   | evaluated   | IQR 3.21.              | cause/effect relationship.     |
|                     |            | interdisciplin | Medical Center       | administrator        |                   | with        | <i>p</i> <0.0001       | Highly diverse sample          |
| Country: USA        |            | ary PN         | in Lubbock, TX       |                      |                   | Shapiro-    |                        | studied demonstrating          |
|                     |            | program in     |                      | DV1: ED              |                   | Wilk test,  | <b>DV2:</b>            | effectiveness of intervention  |
|                     |            | high utilizers | <b>Demographics:</b> | visits per           |                   | central     | Admissions             | in various ethnic groups.      |
|                     |            | serves to      | Median age: 59;      | patient/year         |                   | tendencies  | pre-enrollment:        | Appropriate use of analytic    |
|                     |            | reduce         | Gender: 62.9%        |                      |                   | reported as | Median 1.53,           | methodology to derive          |
|                     |            | inappropriate  | female; Race:        | <b>DV2:</b> Hospital |                   | medians     | IQR 2.49.              | presented data.                |
|                     |            | health         | 0.5% Asian,          | admissions           |                   | with IQR,   | Admissions             |                                |
|                     |            | utilization    | 17.9% Black,         | per                  |                   | Wilcoxon    | post-                  | Weaknesses: No                 |
|                     |            | and related    | 47.5%                | patient/year         |                   | Signed      | enrollment:            | randomization or blinding.     |
|                     |            | hospital       | Hispanic, 0.3%       |                      |                   | Rank for    | Median 0.00,           | Study only tracked             |
|                     |            | expenses       | Native               | DV3: Cost            |                   | pre/post    | IQR 1.78.              | admissions, ED visits in-      |
|                     |            |                | American,            | savings              |                   | PN data     | <i>p</i> <0.0001       | network, could not account     |
|                     |            |                | 33.8% White;         |                      |                   | compariso   |                        | for health encounters in other |
|                     |            |                | Insurance:           |                      |                   | n, nominal  | DV3: Annual            | health systems. Cost analysis  |
|                     |            |                | 56.3%                |                      |                   | data        | cost avoidance         | based on average costs rather  |
|                     |            |                | Medicare,            |                      |                   | evaluated   | with PN                |                                |

| $\mathbf{r}$ | 0 |
|--------------|---|
|              | 0 |
| -            | ~ |

|                              |              |                                | remainder<br>comprised of<br>Medicaid,<br>Private,<br>Indigent,<br>Veterans |                      |                   | by Chi-<br>square test | program, 1<br>year:<br>\$1,266,573;<br>over three full<br>years:<br>\$3,799,719 | than actual costs, so data is<br>not exact.<br><b>Conclusions:</b> Study<br>demonstrates that PN<br>program is effective for older<br>adults with two or more<br>chronic conditions and at<br>high risk for disconnect from<br>health care systems. More<br>evidence is required to<br>determine if PN program<br>would be effective in other<br>populations. |
|------------------------------|--------------|--------------------------------|-----------------------------------------------------------------------------|----------------------|-------------------|------------------------|---------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Citation                     | Theory/      | Design/                        | Sample/                                                                     | Major                | Measurement       | Data                   | Findings/                                                                       | Level/Quality of                                                                                                                                                                                                                                                                                                                                              |
|                              | Conceptual   | Method                         | Setting                                                                     | Variables            | /                 | Analysis               | Results                                                                         | Evidence; Decision for                                                                                                                                                                                                                                                                                                                                        |
|                              | Framework    |                                |                                                                             | &                    | Instruments       |                        |                                                                                 | <b>Practice/Application to</b>                                                                                                                                                                                                                                                                                                                                |
|                              |              |                                |                                                                             | Definitions          |                   |                        |                                                                                 | Practice                                                                                                                                                                                                                                                                                                                                                      |
| Kitzman, P. et al.           | Transitional | Design: Pilot                  | <b>N:</b> 30                                                                | IV: Use of           | No specific tools | No specific            | <b>DV1:</b> 70% of                                                              | LOE: IV                                                                                                                                                                                                                                                                                                                                                       |
| (2017)                       | Care Model   | study with                     |                                                                             | KC <sup>3</sup> T PN | or instruments    | analytical             | subjects (n-21)                                                                 |                                                                                                                                                                                                                                                                                                                                                               |
|                              | (Inferred)   | case series                    | Setting: Seven                                                              | program in           | utilized          | methods                | found to have                                                                   | Strengths: Relatively long                                                                                                                                                                                                                                                                                                                                    |
| Funding: Funded              |              | design                         | rural,                                                                      | care                 |                   | specified.             | 5 or more                                                                       | study duration, meticulous                                                                                                                                                                                                                                                                                                                                    |
| by grant money               |              | D                              | economically<br>distressed                                                  | transitions          |                   | Data<br>housed in      | comorbid                                                                        | intervention development,                                                                                                                                                                                                                                                                                                                                     |
| through the<br>University of |              | <b>Purpose:</b> To examine the | counties in one                                                             | over 11-month        |                   | secure                 | diseases. No information                                                        | comprehensive discussion of background, significance,                                                                                                                                                                                                                                                                                                         |
| Kentucky Center              |              | effect of a                    | geographic                                                                  | period               |                   | database,              | provided about                                                                  | internal/external evidence.                                                                                                                                                                                                                                                                                                                                   |
| for Clinical and             |              | novel PN                       | location of                                                                 | <b>DV1:</b> Number   |                   | presented              | effect of IV                                                                    | Focus is on effect of PN with                                                                                                                                                                                                                                                                                                                                 |
| Translational                |              | program on                     | Kentucky                                                                    | and type of          |                   | as de-                 |                                                                                 | stroke patients thus                                                                                                                                                                                                                                                                                                                                          |
| Sciences                     |              | smoothing                      |                                                                             | stroke-related       |                   | identified             | <b>DV2&amp;3:</b> PN                                                            | demonstrating novel                                                                                                                                                                                                                                                                                                                                           |
|                              |              | transitions of                 | Demographics:                                                               | risk factors         |                   | aggregates             | provided 214                                                                    | research.                                                                                                                                                                                                                                                                                                                                                     |
| Bias: None                   |              | stroke                         | Female: n=17,                                                               |                      |                   |                        | educational                                                                     |                                                                                                                                                                                                                                                                                                                                                               |
| identified                   |              | patients from                  | male: n=13,                                                                 | DV2: Follow-         |                   |                        | encounters,                                                                     | Weaknesses: No defined                                                                                                                                                                                                                                                                                                                                        |
|                              |              | acute care                     | mean age 65                                                                 | up education         |                   |                        | assisted                                                                        | control for outcome                                                                                                                                                                                                                                                                                                                                           |
| Country: USA                 |              | settings to                    | (range 38-88),                                                              | provision            |                   |                        | patients with                                                                   | comparison, small study                                                                                                                                                                                                                                                                                                                                       |
|                              |              |                                | 70% (n=21)                                                                  |                      |                   |                        | DME (n=17),                                                                     | group, significant attrition.                                                                                                                                                                                                                                                                                                                                 |

|                                |                         | rural<br>communities  | insured through<br>Medicare | DV3:<br>Resources<br>accessed<br>DV4: 30-day<br>readmissions<br>and ED visits<br>DV5: |                             |                     | insurance<br>enrollment<br>(n=11),<br>medication<br>access (n=13)<br><b>DV4:</b> One<br>subject<br>readmitted                                                               | Results may not be<br>applicable to general<br>population as setting is one<br>small geographical location.<br><b>Conclusions:</b> Although study<br>has flaws, it features the<br>effect of PN on stroke<br>patients and demonstrates |
|--------------------------------|-------------------------|-----------------------|-----------------------------|---------------------------------------------------------------------------------------|-----------------------------|---------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                |                         |                       |                             | Compliance<br>with<br>medications,<br>physician<br>visits, rehab<br>visits            |                             |                     | (n=1)<br><b>DV5:</b> 92%<br>adherent to<br>medication<br>regimens<br>(n=25); 96%<br>attended<br>outpatient<br>rehab<br>appointments<br>(n=26); 70%<br>attended<br>follow up | that the intervention can have<br>significant positive outcomes<br>on this population.<br>Additional research is<br>necessary to determine if<br>broader impact can be<br>achieved in featured<br>population.                          |
|                                |                         |                       |                             |                                                                                       |                             |                     | physician visits<br>(n=19)                                                                                                                                                  |                                                                                                                                                                                                                                        |
| Citation                       | Theory/                 | Design/               | Sample/                     | Major<br>Variables                                                                    | Measurement                 | Data                | Findings/                                                                                                                                                                   | Level/Quality of                                                                                                                                                                                                                       |
|                                | Conceptual<br>Framework | Method                | Setting                     | Variables<br>&                                                                        | /<br>Instruments            | Analysis            | Results                                                                                                                                                                     | Evidence; Decision for<br>Practice/Application to                                                                                                                                                                                      |
|                                | rramework               |                       |                             | &<br>Definitions                                                                      | Instruments                 |                     |                                                                                                                                                                             | Practice/Application to<br>Practice                                                                                                                                                                                                    |
| McBrien, K.A. et<br>al. (2018) | Chronic Care<br>Model   | Design: SR<br>of RCTs | <b>N:</b> 74                | IV: Use of a PN services to                                                           | Risk of bias<br>criteria by | Logistic regression | Most studies<br>demonstrated                                                                                                                                                | LOE: I                                                                                                                                                                                                                                 |
| al. (2010)                     | (Inferred)              | 01 KC 15              | Databases                   | determine                                                                             | Cochrane                    | used to             | statistically                                                                                                                                                               | Strengths: SR demonstrates                                                                                                                                                                                                             |
| Funding: Not                   | ()                      | Purpose: To           | Searched:                   | effects on                                                                            | Effective Practice          | explore             | significant                                                                                                                                                                 | thorough literature review                                                                                                                                                                                                             |
| stated                         |                         | determine             | MEDLINE,                    | patient                                                                               | and Organization            | association         | positive effect                                                                                                                                                             | and extends consideration of                                                                                                                                                                                                           |

Key: ACC- American College of Cardiology; ACE-I- Ace Inhibitor; ARB- Angiotensin Receptor Blocker; ANOVA- Analysis of variance; BB- Beta Blocker; BI- Barthel Index;
CI- Confidence Interval; Ctrl- Control Group; DME- Durable Medical Equipment; DV- Dependent Variable; ED- Emergency Department; EF- Ejection Fraction; EGExperimental Group; GEE- Generalized Estimating Equation; Grp- Group; F- Female; HF- Heart Failure; HFmrEF- Heart Failure with mid-range Ejection Fraction; HFpEFHeart Failure with Preserved Ejection Fraction; HFrEF- Heart Failure with Reduced Ejection Fraction; IQR- Interquartile Range; IV- Independent Variable; KC<sup>3</sup>T- Kentucky
Care Coordination for Community Transitions; N- Number of studies (SR) or number of study participants; n- Number of participants (SR) or number of participants in subset;
MA- Meta-Analysis; MC- Matched Comparison; NN- Nurse Navigator; NP- Nurse Practitioner; NS- No Significance; NT-proBNP- N-terminal pro b-type Natriuretic Peptide;
PCCP- Patient Care Connection Program; PCP- Primary Care Provider; PN- Patient Navigator; QoL- Quality of Life; RCT- Randomized Controlled Trial; SD- Standard Deviation; SES- Socioeconomic Status; SR- Systematic Review

|                    |               |                  |                 |                    |                           | 1               |                               |
|--------------------|---------------|------------------|-----------------|--------------------|---------------------------|-----------------|-------------------------------|
|                    | effectiveness | EMBASE, The      | outcomes and    | or Care Group      | between                   | of PN on        | PN intervention to a          |
| Bias: Possible     | and specific  | Cochrane         | processes in    | utilized to assess | program                   | studied         | multitude of chronic disease  |
| publication bias   | attributes of | Central Register | chronic         | quality of studies | features                  | primary         | states. Multiple primary and  |
|                    | PNs when      | of Controlled    | disease         |                    | and                       | outcomes. No    | secondary outcomes            |
| Country:           | compared to   | Trials,          |                 |                    | statistically             | studies found a | evaluated to demonstrate full |
| Publisher country  | standard care | CINAHL,          | DVs: A          |                    | significant               | negative effect | scope of PN effect.           |
| of origin is USA.  | by assessing  | PsycINFO,        | multitude of    |                    | outcomes.                 | of the          | -                             |
| Research featured  | outcomes and  | Social work      | DVs were        |                    | Manual                    | intervention.   | Weaknesses: No strong         |
| in SR published in | processes in  | abstracts,       | identified:     |                    | tabulation                |                 | quantitative analysis of      |
| various countries. | patients with | systematic       | Primary         |                    | of primary                |                 | identified PN outcomes.       |
|                    | chronic       | search of        | outcomes        |                    | outcomes.                 |                 | Narrative approach to         |
|                    | illness       | reference lists  | included        |                    | Narrative                 |                 | synthesis not thoroughly      |
|                    |               | of included      | health status,  |                    | approach                  |                 | descriptive. Mixed quality of |
|                    |               | studies          | A1C level       |                    | to data                   |                 | studies in SR. Variation of   |
|                    |               |                  | alteration,     |                    | synthesis                 |                 | techniques used by PN         |
|                    |               | Inclusion        | viral load in   |                    | <i>by</i> <b>mino</b> bib |                 | navigator programs =          |
|                    |               | Criteria: RCTs   | HIV, change     |                    |                           |                 | inability to determine which  |
|                    |               | evaluating       | in GFR,         |                    |                           |                 | method has best efficacy.     |
|                    |               | effectiveness of | screening       |                    |                           |                 | Possibility of publication    |
|                    |               | PN, adults and   | completion,     |                    |                           |                 | bias.                         |
|                    |               | pediatrics that  | adherence to    |                    |                           |                 | <b>Conclusions:</b> While the |
|                    |               | either had or    | follow up       |                    |                           |                 | majority of PN research       |
|                    |               | were being       | procedures or   |                    |                           |                 | focuses on cancer care, this  |
|                    |               | screened for     | appointments,   |                    |                           |                 | SR demonstrates that PN       |
|                    |               | chronic disease  | hospitalization |                    |                           |                 | intervention can produce      |
|                    |               | chilonne uisease | or ER visits,   |                    |                           |                 | positive outcomes with a      |
|                    |               | Exclusion        | patient         |                    |                           |                 | wide variety of chronic       |
|                    |               | Criteria:        | satisfaction.   |                    |                           |                 | diseases. This further        |
|                    |               |                  |                 |                    |                           |                 |                               |
|                    |               | Studies that did | Secondary       |                    |                           |                 | supports the use of PN in     |
|                    |               | not test a PN    | outcomes:       |                    |                           |                 | patients with stroke. Further |
|                    |               | program, study   | diagnostic      |                    |                           |                 | research is necessary to      |
|                    |               | designs not      | resolution,     |                    |                           |                 | describe which specific PN    |
|                    |               | considered an    | mental health   |                    |                           |                 | interventions are most useful |
|                    |               | RCT, studies     | status, QoL,    |                    |                           |                 | in achieving positive         |
|                    |               | featuring        |                 |                    |                           |                 | outcomes.                     |

Key: ACC- American College of Cardiology; ACE-I- Ace Inhibitor; ARB- Angiotensin Receptor Blocker; ANOVA- Analysis of variance; BB- Beta Blocker; BI- Barthel Index;
CI- Confidence Interval; Ctrl- Control Group; DME- Durable Medical Equipment; DV- Dependent Variable; ED- Emergency Department; EF- Ejection Fraction; EGExperimental Group; GEE- Generalized Estimating Equation; Grp- Group; F- Female; HF- Heart Failure; HFmrEF- Heart Failure with mid-range Ejection Fraction; HFpEFHeart Failure with Preserved Ejection Fraction; HFrEF- Heart Failure with Reduced Ejection Fraction; IQR- Interquartile Range; IV- Independent Variable; KC<sup>3</sup>T- Kentucky
Care Coordination for Community Transitions; N- Number of studies (SR) or number of study participants; n- Number of participants (SR) or number of participants in subset;
MA- Meta-Analysis; MC- Matched Comparison; NN- Nurse Navigator; NP- Nurse Practitioner; NS- No Significance; NT-proBNP- N-terminal pro b-type Natriuretic Peptide;
PCCP- Patient Care Connection Program; PCP- Primary Care Provider; PN- Patient Navigator; QoL- Quality of Life; RCT- Randomized Controlled Trial; SD- Standard Deviation; SES- Socioeconomic Status; SR- Systematic Review

| Citation                                                                                            | Theory/<br>Conceptual<br>Framework          | Design/<br>Method                                                                                                                                                                                                                              | patients with<br>non-chronic<br>diseases,<br>protocols,<br>systematic<br>reviews<br>Sample/<br>Setting                                                                                                                                                              | distress,<br>mortality<br>Major<br>Variables<br>&<br>Definitions                                                                                                                                                                                                         | Measurement<br>/<br>Instruments                               | Data<br>Analysis                                                                                                                                                                                                        | Findings/<br>Results                                                                                                                                                                                                                                                                                        | Level/Quality of<br>Evidence; Decision for<br>Practice/Application to<br>Practice                                                                                                                                                                                                                                                                                                                                                                                                             |
|-----------------------------------------------------------------------------------------------------|---------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Rocque, G.B. et al.<br>(2017)<br>Funding: Not<br>stated<br>Bias: None<br>identified<br>Country: USA | Socio-<br>Ecological<br>Model<br>(Inferred) | Design:<br>Retrospective<br>cohort study<br>Purpose: To<br>determine<br>how PCCP<br>navigation<br>program<br>affects breast<br>cancer<br>patients in<br>terms of<br>Medicare<br>spending,<br>hospital<br>admissions/<br>ED visits,<br>distress | N: 1552<br>n: 776 (PCCP)<br>n: 776 (MC)<br>Setting: 12<br>cancer centers<br>(both academic<br>and private) in<br>Alabama,<br>Georgia,<br>Florida,<br>Mississippi,<br>Tennessee<br>Demographics:<br>PCCP:<br>Age: Mean<br>73.8, SD 6.7;<br>Race: 13.8%<br>Non-White, | <ul> <li>IV: *PCCP</li> <li>DV1:<br/>Medicare<br/>spending</li> <li>DV2: Hospital<br/>admissions/<br/>ED visits</li> <li>DV3: Distress<br/>levels</li> <li>*PCCP: A lay<br/>navigation<br/>program<br/>targeting<br/>geriatric<br/>breast cancer<br/>patients</li> </ul> | Adapted version<br>of the Distress<br>Thermometer<br>(α=0.90) | Covariates<br>to match<br>compariso<br>n groups,<br>suitability<br>of match<br>assessed<br>using two-<br>sample <i>t</i> -<br>tests and<br>chi-square<br>tests. Mean<br>and SD<br>calculated<br>for distress<br>scores. | DV1: Average<br>quarterly cost<br>savings of<br>\$528/quarter<br>95% CI (-667,<br>-388), p<0.001<br>for stages I-III.<br>No significant<br>cost savings<br>for stage IV<br>DV2: For<br>stages I-IV<br>combined, ED<br>visits<br>decreased by<br>6% per quarter<br>95% CI (0.90,<br>0.98). No<br>significant | LOE: IV<br>Strengths: Multi-center<br>study with relatively large<br>sample size. Well-designed<br>cohort study with clearly<br>presented methodology and<br>graphic representation to<br>display pertinent findings.<br>Well-matched comparison<br>groups established.<br>Utilization of a well-<br>established navigator<br>program ensures uniformity<br>of intervention disseminated<br>to all PCCP subjects.<br>Weaknesses: Cohort study<br>with no blinding or<br>randomization. Sample |
|                                                                                                     |                                             |                                                                                                                                                                                                                                                | 86.2% White;<br>Cancer stage:<br>95% I-III, 5%<br>IV                                                                                                                                                                                                                | targeting<br>vulnerable<br>Medicare<br>patients                                                                                                                                                                                                                          |                                                               |                                                                                                                                                                                                                         | change in<br>hospitalization<br>rates between<br>groups                                                                                                                                                                                                                                                     | groups comprised of<br>geriatric, Medicare-utilizing<br>women with breast cancer in<br>southern USA. It is unclear if                                                                                                                                                                                                                                                                                                                                                                         |

| MC:<br>Mean age: 74.3,<br>SD 6.9; Race:<br>13.1% Non-<br>White, 86.9%<br>White; Cancer<br>Stage: 94.9% I-<br>III, 5.1% IV<br>Inclusion<br>Criteria:<br>Females $\geq 65$<br>with Medicare<br>insurance<br>coverage and<br>breast cancer<br>stage I-IV<br>Exclusion | <b>DV3:</b> Most<br>patients in<br>PCCP sample<br>reported low<br>distress scores<br>(76%, score 0-<br>3) | study results can be<br>generalized to other<br>populations.<br><b>Conclusions:</b> This is one of<br>few studies to analyze cost<br>benefit of employment of PN<br>programs. Previous research<br>has only focused on benefit<br>in terms of patient outcomes.<br>This demonstrates feasibility<br>of intervention related to<br>health system finances. |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <b>Criteria:</b><br>Patients with                                                                                                                                                                                                                                  |                                                                                                           |                                                                                                                                                                                                                                                                                                                                                           |
| HMO coverage                                                                                                                                                                                                                                                       |                                                                                                           |                                                                                                                                                                                                                                                                                                                                                           |

#### Table A2

#### Evaluation Table Qualitative Studies

| Citation                                        | Theory/<br>Conceptual<br>Framework | Design/Method<br>Sampling    | Sample/<br>Setting         | Major<br>Themes/<br>Definitions    | Measurement/<br>Instrumentation | Data<br>Analysis  | Findings/<br>Themes           | Level/Quality<br>of Evidence/<br>Decision for<br>Practice/<br>Application<br>to Practice |
|-------------------------------------------------|------------------------------------|------------------------------|----------------------------|------------------------------------|---------------------------------|-------------------|-------------------------------|------------------------------------------------------------------------------------------|
| Hudson, A.P. et al.                             | Health                             | Design:                      | <b>N:</b> 16 NNs           | Theme 1:                           | Interviews                      | Inductive         | NN                            | LOE: VI                                                                                  |
| (2018)                                          | Promotion                          | Qualitative study            | N: 25 patients             | "Being there                       | audiotaped with                 | inference         | delivered                     |                                                                                          |
|                                                 | Model                              | using semi-                  | G 44° F                    | for us."                           | encryption,                     | methodology       | personalized                  | Strengths:                                                                               |
| <b>Funding:</b> The Office of the Chief Nursing | (Inferred)                         | structured<br>interviews and | Setting: Four hospital and | Theme 2:                           | transcribed<br>verbatim.        | utilized.<br>Data | care, helped patients         | Qualitative study<br>provides rare                                                       |
| and Midwifery                                   |                                    | thematic analysis            | health services            | Nurse navigator                    | Subsequent data                 | analyzed by       | navigate                      | insight into                                                                             |
| Officer, Queensland                             |                                    | thematic analysis            | in Queensland,             | role described                     | anonymized                      | thematic          | complex                       | patient                                                                                  |
| Health                                          |                                    | Sampling: All 29             | Australia                  | as advocate,                       | unonymized                      | analysis          | health                        | experience of                                                                            |
|                                                 |                                    | NNs employed in              |                            | trainer,                           |                                 | framework;        | system,                       | NNs' work.                                                                               |
| Bias: None identified                           |                                    | featured settings            | Demographics:              | informant,                         |                                 | core themes       | provided                      | Sample consisted                                                                         |
|                                                 |                                    | were recruited.              | Gender: 36%                | coordinator,                       |                                 | developed.        | support and                   | of individuals                                                                           |
| Country: Australia                              |                                    | Study was                    | male, 16%                  | trouble-shooter,                   |                                 | Data coded        | trusting                      | across the                                                                               |
|                                                 |                                    | described to all             | female; Age:               | personal                           |                                 | for ongoing       | relationship,                 | lifespan with                                                                            |
|                                                 |                                    | patients enrolled in         | 1% under 18,               | support                            |                                 | analysis and      | decreased                     | various chronic                                                                          |
|                                                 |                                    | NN program, 25               | 12% 18-30,                 |                                    |                                 | theme             | stress while                  | conditions.                                                                              |
|                                                 |                                    | elected to                   | 12% 31-40,                 | Theme 3:                           |                                 | identification    | increasing                    | Concise                                                                                  |
|                                                 |                                    | participate                  | 24% 41-50,<br>16% 51-60,   | "Making it their<br>business." NNs |                                 |                   | self-efficacy<br>in self-care | discussion of<br>emerged themes                                                          |
|                                                 |                                    | Purpose: To                  | 16% 61-70,                 | facilitated                        |                                 |                   | behaviors                     | emerged memes                                                                            |
|                                                 |                                    | explore patient and          | 16%  over  70;             | movement                           |                                 |                   | UCHAVIOIS                     | Weaknesses: No                                                                           |
|                                                 |                                    | caregiver views in           | Participant                | through health                     |                                 |                   |                               | production of                                                                            |
|                                                 |                                    | experiencing                 | group: 48%                 | system                             |                                 |                   |                               | quantitative data                                                                        |
|                                                 |                                    | 1 0                          | patient, 52%               |                                    |                                 |                   |                               | due to qualitative                                                                       |

| services offered by | caregiver;     | Theme 4:        |  | approach.           |
|---------------------|----------------|-----------------|--|---------------------|
|                     | Residence: 19% | Resources:      |  | Unable to           |
| NN program          |                |                 |  |                     |
|                     | metro, 43%     | Ensuring        |  | determine           |
|                     | semi-metro,    | patient access  |  | usefulness of NN    |
|                     | 38% rural      |                 |  | role in those       |
|                     |                | Theme 5:        |  | unable to           |
|                     |                | Being active in |  | communicate.        |
|                     |                | own healthcare  |  | Small sample in     |
|                     |                |                 |  | Australia may       |
|                     |                | Theme 6:        |  | not be              |
|                     |                | "Knowledge is   |  | generalizable to    |
|                     |                | power."         |  | other populations   |
|                     |                | 1               |  | 1 1                 |
|                     |                | Theme 7:        |  | <b>Conclusions:</b> |
|                     |                | Having          |  | Study is            |
|                     |                | information     |  | successful in       |
|                     |                |                 |  | demonstrating       |
|                     |                | Theme 8:        |  | wide range of       |
|                     |                | Having options  |  | benefits of NN      |
|                     |                |                 |  | intervention        |
|                     |                | Theme 9:        |  | from subjective     |
|                     |                | Knowing the     |  | experience.         |
|                     |                | system          |  | Emerged themes      |
|                     |                | system          |  | useful in           |
|                     |                | Theme 10:       |  | supporting          |
|                     |                | "Being our      |  | quantitative data   |
|                     |                |                 |  |                     |
|                     |                | compass."       |  | on topic            |
|                     |                | Thoma 11.       |  |                     |
|                     |                | Theme 11:       |  |                     |
|                     |                | "Getting a      |  |                     |
|                     |                | sense of        |  |                     |
|                     |                | direction."     |  |                     |
|                     |                |                 |  |                     |
|                     |                | Theme 12:       |  |                     |

Key: ACC- American College of Cardiology; ACE-I- Ace Inhibitor; ARB- Angiotensin Receptor Blocker; ANOVA- Analysis of variance; BB- Beta Blocker; BI- Barthel Index;
CI- Confidence Interval; Ctrl- Control Group; DME- Durable Medical Equipment; DV- Dependent Variable; ED- Emergency Department; EF- Ejection Fraction; EGExperimental Group; GEE- Generalized Estimating Equation; Grp- Group; F- Female; HF- Heart Failure; HFmrEF- Heart Failure with mid-range Ejection Fraction; HFpEFHeart Failure with Preserved Ejection Fraction; HFrEF- Heart Failure with Reduced Ejection Fraction; IQR- Interquartile Range; IV- Independent Variable; KC<sup>3</sup>T- Kentucky
Care Coordination for Community Transitions; N- Number of studies (SR) or number of study participants; n- Number of participants (SR) or number of participants in subset;
MA- Meta-Analysis; MC- Matched Comparison; NN- Nurse Navigator; NP- Nurse Practitioner; NS- No Significance; NT-proBNP- N-terminal pro b-type Natriuretic Peptide;
PCCP- Patient Care Connection Program; PCP- Primary Care Provider; PN- Patient Navigator; QoL- Quality of Life; RCT- Randomized Controlled Trial; SD- Standard Deviation; SES- Socioeconomic Status; SR- Systematic Review

|  | tr<br>T<br>B<br>to | legotiating<br>ransitions<br>'heme 13:<br>Brining it<br>ogether/care<br>oordination |  |  |
|--|--------------------|-------------------------------------------------------------------------------------|--|--|
|  | N<br>              | Theme 14:<br>Meeting up:<br>NN is always<br>here."                                  |  |  |
|  | S<br>W<br>C<br>P   | Theme 15:<br>eeing the<br>hole:<br>considering<br>sychosocial<br>spects             |  |  |
|  | K<br>to<br>S       | Theme 16:<br>Leeping in<br>buch:<br>omeone to<br>alk to                             |  |  |

Key: ACC- American College of Cardiology; ACE-I- Ace Inhibitor; ARB- Angiotensin Receptor Blocker; ANOVA- Analysis of variance; BB- Beta Blocker; BI- Barthel Index;
CI- Confidence Interval; Ctrl- Control Group; DME- Durable Medical Equipment; DV- Dependent Variable; ED- Emergency Department; EF- Ejection Fraction; EGExperimental Group; GEE- Generalized Estimating Equation; Grp- Group; F- Female; HF- Heart Failure; HFmrEF- Heart Failure with mid-range Ejection Fraction; HFpEFHeart Failure with Preserved Ejection Fraction; HFrEF- Heart Failure with Reduced Ejection Fraction; IQR- Interquartile Range; IV- Independent Variable; KC<sup>3</sup>T- Kentucky
Care Coordination for Community Transitions; N- Number of studies (SR) or number of study participants; n- Number of participants (SR) or number of participants in subset;
MA- Meta-Analysis; MC- Matched Comparison; NN- Nurse Navigator; NP- Nurse Practitioner; NS- No Significance; NT-proBNP- N-terminal pro b-type Natriuretic Peptide;
PCCP- Patient Care Connection Program; PCP- Primary Care Provider; PN- Patient Navigator; QoL- Quality of Life; RCT- Randomized Controlled Trial; SD- Standard Deviation; SES- Socioeconomic Status; SR- Systematic Review

## Table A3

#### Synthesis Table

| Author             | Ali-Faisal et al. | Balaban et al. (2015)                        | Balaban et al. (2017)                  | Deen et al.                                                       | Di Palo et al.   | Horyna et al. | Hudson et al.                            | Kitzman et al.     | McBrien et al. | Rocque et al. |
|--------------------|-------------------|----------------------------------------------|----------------------------------------|-------------------------------------------------------------------|------------------|---------------|------------------------------------------|--------------------|----------------|---------------|
| Year               | 2016              | 2015                                         | 2017                                   | 2018                                                              | 2017             | 2020          | 2018                                     | 2017               | 2018           | 2017          |
| Design/LOE         | MA/I              | RCT/II                                       | RCT/II                                 | Cohort/IV                                                         | Cohort/IV        | Cohort/IV     | Qualitative/<br>VI                       | Case Series/<br>IV | SR/I           | Cohort/IV     |
| Demographics       |                   |                                              |                                        |                                                                   |                  |               |                                          |                    |                |               |
| EG Age (Mean)      |                   | 63.7                                         | Age 60+:<br>74.5<br>Age<60:<br>45.2    | Phase I: Grp<br>A 69.8, Grp<br>B 71.2<br>Phase II:<br>65.3        | 69.7             | 59            | Not<br>Specified;<br>Range <18<br>to >70 | 65                 |                | 73.8          |
| EG Gender (%<br>F) |                   | 59.2%                                        | Age 60+:<br>57.8%<br>Age<60:<br>49%    | Phase I: Grp<br>A 47%, Grp<br>B 51%<br>Phase II: <<br>half female | 43%              | 62.9          | 16%                                      | 56.6%              |                | 100%          |
| Affluent           |                   |                                              |                                        | X                                                                 |                  |               | Not<br>Specified                         |                    |                |               |
| Underserved        |                   | Х                                            | Х                                      |                                                                   | X                | Х             | Not<br>Specified                         | Х                  |                | Х             |
| Diagnosis          | Varied            | Varied, with<br>significant<br>comorbidities | Varied, with significant comorbidities | Stroke                                                            | Heart<br>Failure | Varied        | Varied                                   | Stroke             | Varied         | Breast Cancer |
| Setting            |                   |                                              |                                        |                                                                   |                  |               |                                          |                    |                |               |

47

| Hospital                                    |          | Х    | Х        |                                                                      | X  | Х   |                       |    |    |      |
|---------------------------------------------|----------|------|----------|----------------------------------------------------------------------|----|-----|-----------------------|----|----|------|
| Community                                   |          |      |          |                                                                      |    |     | X                     |    |    | X    |
| Both Hospital<br>and Community              | X        |      |          | X                                                                    |    |     |                       | X  | X  |      |
| Sample Size (N)<br>or # of Studies          | 25       | 1510 | 1921     | Phase I: Grp<br>A 73, 51, 68;<br>Grp B 69,<br>50, 68<br>Phase II: 61 | 94 | 364 | 16 NNs<br>25 Patients | 30 | 74 | 1552 |
| PN Type                                     | <u> </u> |      | I        | T hube in or                                                         |    |     |                       |    |    |      |
| Nurse                                       | X        |      |          | X                                                                    |    |     | X                     |    | X  |      |
| Layperson                                   | Х        | X    | X        |                                                                      |    |     |                       |    | X  | X    |
| Multidisciplinary team                      | Х        |      |          |                                                                      | Х  | X   |                       | X  | X  |      |
| Key Outcome                                 |          |      | <b>I</b> |                                                                      |    |     |                       |    |    |      |
| Disease-Specific<br>Screening<br>Compliance | 1        |      |          | 1                                                                    | Î  |     |                       |    | 1  |      |
| Medication<br>Adherence                     | <b>↑</b> |      |          | 1                                                                    |    |     |                       | 1  | 1  |      |
| Appropriate DC<br>Meds Ordered              |          |      |          | NS                                                                   | NS |     |                       |    |    |      |
| Pre-Discharge<br>Education                  |          |      |          | <b>↑</b>                                                             | 1  |     |                       | 1  | 1  |      |

| Attendance of<br>follow up<br>appointments | 1 | 1 | 1                                          | NS | 1  |   |          | <b>↑</b> | 1 |                                               |
|--------------------------------------------|---|---|--------------------------------------------|----|----|---|----------|----------|---|-----------------------------------------------|
| ED Visits                                  |   | Ļ | Ļ                                          | NS |    | Ļ |          |          | ↓ | ↓, NS change<br>in rate of<br>hospitalization |
| Hospitalizations<br>or Readmissions        |   | Ļ | ↓, NS<br>Significant<br>only in >60<br>grp |    | NS | Ļ |          | Ļ        | ↓ |                                               |
| Pt Satisfaction<br>with PN                 |   |   |                                            |    |    |   | <b>↑</b> |          | 1 |                                               |
| Cost Savings                               |   |   |                                            |    |    | 1 |          |          |   | <b>↑</b>                                      |

Appendix **B** 

Figure 1

Transitional Care Model



Figure 2

Plan Do Study Act Framework



# Appendix C

# Table 1

Frequency Table for Nominal and Ordinal Variables

| Variable      | п  | %     |
|---------------|----|-------|
| race          |    |       |
| cauc          | 24 | 46.15 |
| amerindian    | 2  | 3.85  |
| afamer        | 1  | 1.92  |
| pacificisland | 1  | 1.92  |
| hispan        | 24 | 46.15 |
| Missing       | 0  | 0.00  |
| stroketype    |    |       |
| сvа           | 28 | 53.85 |
| sah           | 9  | 17.31 |
| iph           | 11 | 21.15 |
| cvaro         | 4  | 7.69  |
| Missing       | 0  | 0.00  |
| sex           |    |       |
| m             | 26 | 50.00 |
| f             | 26 | 50.00 |
| Missing       | 0  | 0.00  |
| launchphase   |    |       |
| 1             | 10 | 19.23 |
| 2             | 19 | 36.54 |
| 3             | 23 | 44.23 |
| Missing       | 0  | 0.00  |

Note. Due to rounding errors, percentages may not equal 100%.

# Appendix D

# Table 1

Stroke Navigator Project Budget

| Phase        | Activities                                                                                                                                                                                                  | Cost     | subtotal  | Total |
|--------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|-----------|-------|
| Preparation  |                                                                                                                                                                                                             |          |           |       |
| Direct Costs | Design and print<br>community resource<br>guides for<br>dissemination to<br>patients with stroke<br>(200 @ .10¢/page at<br>FedEx)                                                                           | \$20     |           |       |
|              | Print copies of PDF<br>format book, "Families<br>in the ICU: A Survival<br>Guide" for<br>dissemination to stroke<br>patients' family<br>members (200 copies<br>of 53 page document @<br>.10¢/page at FedEx) | \$1060   |           |       |
|              | Folders with attached<br>site logo for<br>dissemination to each<br>stroke patients/family<br>(20 12-count packages<br>@ \$17.11/each from<br>Amazon.com)                                                    | \$342.20 |           |       |
|              | Small spiral notebooks<br>for dissemination to<br>stroke patients/family<br>(25 8-count packages<br>@ \$9.16/each from<br>Amazon.com)                                                                       | \$229    |           |       |
|              | BIC pens for<br>dissemination to stroke<br>patients/family (4 60-                                                                                                                                           | \$20     | \$1671.20 |       |

|              | count packages @                                |              |          |           |
|--------------|-------------------------------------------------|--------------|----------|-----------|
|              |                                                 |              |          |           |
| le dine et   | \$5/each from Amazon)<br>Personal cell contract | ¢40          |          |           |
| Indirect     |                                                 | \$10         |          |           |
| Costs        | fees to allow for                               |              |          |           |
|              | consistent contact with                         |              |          |           |
|              | potential stakeholders                          |              |          |           |
|              | and team members                                |              |          |           |
|              | Personal internet                               | \$17.50      | \$27.50  |           |
|              | access to allow for                             |              |          |           |
|              | emailing and                                    |              |          |           |
|              | conducting Zoom                                 |              |          |           |
|              | meetings with potential                         |              |          |           |
|              | stakeholders and team                           |              |          |           |
|              | members                                         |              |          |           |
| Delivery     |                                                 |              |          |           |
| Direct Costs | Nurse navigator salary                          | \$0          | \$0      |           |
|              | (Intervention performed                         |              |          |           |
|              | as volunteer hours. No                          |              |          |           |
|              | salary received)                                |              |          |           |
| Indirect     | Stroke pager usage                              | \$60         |          |           |
| Costs        |                                                 | <b>T T T</b> |          |           |
|              | Company cell usage                              | \$120        | \$180    |           |
|              | with Tiger Connect                              |              |          |           |
|              | access                                          |              |          |           |
| Evaluation   |                                                 |              |          |           |
| Direct Costs | Nurse navigator salary                          | \$144        |          |           |
|              | paid for time to present                        | <b></b>      |          |           |
|              | project findings to                             |              |          |           |
|              | leadership team, stroke                         |              |          |           |
|              | team, and two hospital                          |              |          |           |
|              | units caring for stroke                         |              |          |           |
|              | patients (\$36/hour for 4                       |              |          |           |
|              | presentations, 1                                |              |          |           |
|              | •                                               |              |          |           |
|              | hour/session)<br>Review and statistical         | ¢۵           | <u> </u> | \$2022.70 |
|              |                                                 | \$0          | \$144    | \$2022.70 |
|              | analysis of study                               |              |          |           |
| Detendial    | findings                                        |              |          |           |
| Potential    |                                                 |              |          |           |
| Cost         |                                                 |              |          |           |
| Savings      |                                                 |              |          |           |

| Improvement of patient satisfaction scores | \$72,000 |           |
|--------------------------------------------|----------|-----------|
| Reduction of 30-day<br>readmissions        | \$39,804 | \$111,804 |