Gap in Comprehensive Stroke Education for Emergency Department Nurses

Summer C. Eaton

Edson College of Nursing and Health Innovation, Arizona State University

Author Note

Summer C. Eaton is a registered nurse at Banner Health in the emergency department. She has no known conflict of interest to disclose.

Correspondence should be addressed to Summer Eaton, Edson College of Nursing and Health Innovation, Arizona State University, Downtown Campus, 550 N. 3rd Street, Phoenix, AZ 85004. Email: sceaton1@asu.edu

Abstract

BACKGROUND: Strokes remain the number one cause of long-term disability in the United States. Delays in reperfusion after a stroke increase a patient's risk for unfavorable outcomes. PURPOSE: The purpose of this project is to decrease the time from patient's arrival to the emergency department (ED) to interventional radiology (IR) for mechanical thrombectomy intervention by educating nurses on how to identify IR-qualifying strokes using specific screening tools. Bandura's self-efficacy theory will serve as an essential model to guide this project. METHODS: A PowerPoint presentation and brochure were distributed to all ED nursing staff via email at a large urban teaching hospital in the Southwestern United States. These documents discussed the vision, aphasia, neglect (VAN) and balance, eyes, face, arm, speech, time (BE-FAST) screening tools which have high rates of reliability and validity in detecting large vessel occlusions (LVOs) and posterior circulation strokes. Included was a 5question survey to assess for completion of provided material. Data on the facilities door-tointerventional radiology (IR) times were collected for two months and compared to data from the previous two months prior to the intervention. IRB approval was obtained from the project site. **RESULTS:** Average door-to-IR times at project site decreased by twenty-eight minutes after ED nurses received stroke screening tool education. **DISCUSSION/CONCLUSION:** The ability to recognize stroke symptoms consistent with LVOs and posterior circulation strokes upon arrival to the ED allows for timely IR intervention which supports better patient outcomes.

Keywords: stroke, VAN, BE-FAST, posterior circulation, large vessel occlusion

Gap in Comprehensive Stroke Education for Emergency Department Nurses

According to Virani et al. (2020), approximately 720,000 individuals in the United States suffer from an ischemic stroke every year making it the number one cause of long-term disability. In an ischemic stroke, a vessel that supplies blood to the brain is obstructed resulting in neurological deficits. Treatment options are available to help relieve these obstructions and resolve patients' symptoms. However, these interventions are time-sensitive, and slight delays increase patients' risk for unfavorable outcomes. The significant consequences of delayed treatment support the urgent need to ensure nurses in the emergency department (ED) are appropriately trained to immediately recognize all signs of acute ischemic strokes (AIS), including more discrete symptoms consistent with posterior circulation strokes and large vessel occlusions (LVOs).

Problem Statement

Intravenous (IV) tissue plasminogen activator (tPA) and medical thrombectomy are the gold standard treatment options for acute ischemic strokes (Powers et al., 2019). The choice of treatment is determined by the time of symptom onset, the patient's presenting symptoms, the patient's brain imaging results, and the location of the occlusion. The most recent guidelines developed by the American Heart Association (AHA) and American Stroke Association (ASA) continue to recognize mechanical thrombectomy and IV tPA as the treatment of choice in AIS (Powers et al., 2019). Recent research supports these guidelines as mechanical thrombectomy shows more desirable long-term outcomes such as functional independence, improved cognitive function, and increased discharged to home rates compared to IV tPA alone for treatment (Jahan et al., 2019; McCarthy et al., 2019; Saver et al. 2016). Immediate recognition of posterior circulation and LVO symptoms upon the patient's arrival to the ED is crucial as the window of

eligibility for mechanical thrombectomy and tPA is small, and it has been found that minimal delays in reperfusion has shown a greater degree of long-term disability and decreased chance of excellent recovery (Goyal et al., 2019; Jahan et al., 2019; Powers et al., 2019).

Many screening tools such as FAST (face, arm, speech, time) and the National Institutes of Health Stroke Scale (NIHSS) are widely used by hospitals and emergency medical services to screen for acute strokes. While these tools are convenient and effective in recognizing common stroke presentations, they lack the ability to identify symptoms that are specific to posterior circulation strokes and LVOs. This lack of efficient screening results in unnecessary delay in care, which attributes to unfavorable patient outcomes.

Purpose and Rationale

Almost 50% of all AIS are large vessel and posterior circulation occlusions (Rennert et al., 2019). A study by Malhotra et al. (2017) evaluated the mortality and long-term functional outcomes of acute ischemic stroke patients with LVOs compared to non-LVOs. Patients with LVOs had a dependence and death rate of 64%, and non-LVO acute ischemic strokes had a death and dependence rate of 24% (Malhotra et al., 2017). These results support the need to immediately recognize LVOs as they account for a significant number of acute ischemic strokes and are linked to worsening functional outcomes and increased mortality. Another study by Gurley et al. (2019) found posterior circulation strokes to be misdiagnosis of posterior circulation occlusions leads to delayed intervention. The therapeutic effectiveness of reperfusion decreases with slight delays (Huang et al., 2019). The purpose of this project is to identify the impact ED nurses with stroke screening education can have on the time of arrival to the time of treatment for patients with LVOs and posterior circulation strokes.

Background and Significance

Nurses in the ED are responsible for triaging patients that arrive via privately owned vehicle and ambulance to the ED. They are also responsible for identifying stroke symptoms in patients prior to arrival based on the verbal report given by emergency medical services. Due to the patient's initial interaction being with an ED nurse, they must be properly trained to immediately recognize discrete symptoms of strokes seen with posterior circulation occlusions and LVOs (Ver Hage et al., 2018). Middleton et al. (2016) recognizes appropriate triage in the ED as a crucial element in stroke care. Inappropriate triaging can lead to delays in assessment and diagnosis, which causes delays in the implementation of stroke care (Middleton et al., 2016). Lack of efficiency in early hospital care, such as triaging errors, causes detrimental and unnecessary delays in treatment and puts the patient at increased risk for mortality and hospital re-admission (Man et al., 2020; Teleb et al., 2017).

VAN Assessment Tool

The VAN assessment tool is found to be highly effective in identifying LVOs. Previous research by Teleb et al. (2017) utilized the VAN assessment tool on 76 stroke patients in an emergency department. The results showed a 100% capture of LVOs and 90% specificity (Teleb et al., 2017). Another study by Navalkele et al. (2020) found VAN to have a high sensitivity rate when compared to other LVO screening tools such as Field Assessment Stroke Triage for Emergency Destination (FAST-ED). The VAN assessment tool is favored over other screening tools because of its simplicity in use (Navalkele et al., 2020). Initially patients will be assessed for motor weakness, if there is no weakness noted they are deemed VAN negative and no additional screening is indicated. If motor deficits are noted the patient continues to be screened for visual changes, aphasia, and neglect. If any of these additional symptoms are found, the

5

patient is considered VAN positive and can be at risk for an LVO, with no calculations indicated (Teleb et al., 2017).

BE-FAST (Balance, Eyes, Face, Arm, Speech, Time) Assessment Tool

Aroor et al. (2017), evaluated 736 patients with acute ischemic strokes using the FAST and BE-FAST screening tools. BE-FAST assesses for changes in balance and vision in addition to the basic FAST criteria. The BE-FAST screening tool captured 14% of acute ischemic strokes that would have been missed if the patient was only evaluated using the FAST tool (Aroor et al., 2017). Posterior circulation occlusions are the most commonly missed stroke so it is crucial that ED staff are using stroke screening tools that assess for balance, dizziness, and visual changes as these are common symptoms seen in patients with a posterior circulation occlusion that were initially misdiagnosed (Arch et al., 2016; Jones et al., 2021; Kim et al., 2021; Yamada et al., 2019).

Alternative Screening Tools

Teleb et al. (2017), performed a study that compared the accuracy of NIHSS to VAN in identifying LVOs. While both screening tools were successful in identifying patients with LVOs, VAN had a higher specificity. Ninety percent of VAN positive patients had an LVO, and only 74% of patients with an NIHSS score equal to or greater had an LVO (Teleb et al., 2017). The commonly used FAST tool also fails to assess for cortical symptoms, which is a crucial piece in recognizing LVOs. A study by Beume et al. (2018) found the presence of cortical symptoms, specifically aphasia, neglect, and hemiparesis (all contained in the VAN assessment tool) had a high sensitivity of 0.97 in identifying LVOs. FAST and NIHSS also fail to assess for acute dizziness which is the most common discrete symptom seen in posterior circulation strokes (Arch et al., 2016; Jones et al., 2021; Kim et al., 2021; Yamada et al., 2019).

Benefits of Early Intervention

Early identification of posterior circulation occlusions and LVO symptoms allows for proper activation of the stroke team, decreased time from arrival to medical imaging, prompt evaluation by an ED physician or neurologist, and ultimately swifter ED to treatment time with IV tPA or mechanical thrombectomy. Jahan et al. (2019) and Ver Hage et al. (2018) realized that early recognition of LVO to reperfusion time was associated with reduced neurological morbidity and improved long-term patient outcomes.

Internal Data

The stroke coordinator at a large urban teaching hospital in the Southeast United States reported there were 379 stroke alerts in the ED in 2020 (A. Wikas, personal communication, February 6, 2021). Twenty-nine of the 378 stroke patients went to interventional radiology (IR) for mechanical thrombectomy. The average time from ED arrival to IR arrival was eighty-one minutes. The goal for this facility is sixty minutes. Therefore, in the year 2020, this facility was twenty-one minutes over their goal time (A. Wikas, personal communication, February 6, 2021).

This inquiry has led to the PICOT question: in emergency department nurses, how does implementing stroke screening tool education compared to no education affect the door-to-IR time over a three-month period?

Search Strategy

To answer this PICOT question, an exhaustive literature search was performed. The scholarly databases referenced included: PubMed, Cumulative Index to Nursing and Allied Health (CINALH), and Cochrane Library. The three search engines used offer an advanced search option that allows for multiple keywords to be combined by the Boolean connector 'OR' and the Boolean connector 'AND' to expand results. The advanced search method was

implemented with each search and common keywords and MeSH terms were used including stroke, CVA, cerebrovascular accident, TIA, transient ischemic attack, ischemic stroke, acute ischemic stroke, posterior circulation stroke, posterior stroke, posterior circulation, posterior circulation ischemic stroke, emergent large vessel occlusion, large vessel occlusion, large vessel ischemic stroke, LVO, ELVO, emergency department, ED, emergency room, ER, symptoms, stroke recognition, stroke detection, presentation, screening, detection, recognition, delayed detection, delayed recognition, early intervention, early detection, early recognition, early treatment, misdiagnosis, dizziness, mechanical thrombectomy, alteplase, tPA, treatment, intervention, therapy, door to needle, door to puncture, door to treatment, door to tPA, door to mechanical thrombectomy, and door to alteplase. Additional filters were placed to exclude research that was published prior to 2016, used non-English language, and did not have full text options available.

PubMed

The initial search in PubMed yielded 188 results. This was narrowed down to 34 results after limits were applied. After close review of the titles and abstracts, six articles were chosen for further investigation.

CINAHL

A total of 291 results populated in the initial search within CINAHL. After filtering the results based on inclusion and exclusion criteria, the research was further condensed to 78 articles. Out of these, seven studies were considered for additional reviewing.

Cochrane Library

Cochrane produced 192 results in the initial search which was then narrowed down to 99 articles with the previously discussed limits. Eight of these articles were selected for close examination based on the abstracts and titles.

Critical Appraisal and Synthesis

Ten articles were appraised using a rapid critical appraisal tool to determine the strengths, weaknesses, and levels of evidence (Melnyk & Fineout-Overholt, 2019). All studies that underwent appraising were quantitative and primarily consisted of high levels of evidence such as meta-analyses, systematic reviews, and retrospective cohort studies/reviews as shown in the evaluation and synthesis tables below (Appendix A & B).

Each study had an adequate sample size with participants from various countries, including the United States of America, Germany, China, Korea, and Japan, which adds to the generalizability of the results (Appendix A, Table 1 and Appendix B, Table 2). The studies evaluated men and women with an average age ranging from 64-80 years of age. The age range was limited to older individuals since AISs are more commonly seen in this population. The majority of the articles evaluated outcomes of stroke interventions and the accuracy of stroke screening tools implemented by healthcare workers therefore, all studies took place in the hospital setting with two articles also including the pre-hospital setting (Appendix A, Table 1 and Appendix B, Table 2).

Each of the ten articles focused on door-to-intervention time, stroke screening tools, and initial symptom presentation as the independent variables. The dependent variables included functional outcomes, mortality, hospital re-admission, early stroke identification, and the location of the occlusion in the AIS.

Literature Search Conclusions

This literature review strongly supports the need for comprehensive stroke education to assist ED nurses in recognizing discrete symptoms of strokes seen in LVOs and posterior circulation strokes. Patients that present with less common stroke symptoms are at higher risk for misdiagnosis and unnecessary delays in care. The ability to accurately recognize stroke symptoms upon arrival to the emergency departments allows for early intervention. Further, recognizing the location of the occlusion based on the patient's presenting symptoms supports timely intervention by alerting healthcare providers to notify or activate additional resources such as mechanical thrombectomy. Early intervention with tPA and mechanical thrombectomy is strongly associated with better patient outcomes.

Theory Application

Theories are a crucial element in research as they help to develop and guide evidencebased practice. Bandura (1977) developed the self-efficacy theory to help understand a person's drive to succeed and how an individual's level of self-efficacy affects their coping behaviors, amount of expended effort, and ability to overcome challenges or adverse events. The selfefficacy theory contains four main components: performance accomplishments, vicarious experience, verbal persuasion, and emotional arousal (Appendix C). According to Bandura (1977), performance accomplishment focuses on the idea that repetitive successes increase selfefficacy, while failures decrease self-efficacy. The more victories experienced, the less likely an individual will be impacted by an infrequent failure. The second component of the theory, vicarious experience, suggests that a person is motivated to succeed by watching others master an activity or skill. Verbal persuasion is a skill often used to increase other's levels of selfefficacy because of its simplicity and accessibility. However, it is not as effective independently and has shown to be more successful when combined with performance accomplishment or vicarious experience. Finally, high anxiety, fear-provoking thoughts, and emotional arousal negatively impacts an individual's performance which then affects one's level of self-efficacy (Bandura, 1977).

For emergency department nurses to successfully implement the BE-FAST and VAN assessment tools, they must have high levels of self-efficacy. Bandura's theory will serve as an important model for increasing levels of self-efficacy and success rates. These high rates of successful stroke identification will lead to permanent levels of high self-efficacy, which will encourage continued use of the BE-FAST and VAN screening tools to assist in early identification of LVOs and posterior circulation strokes.

Implementation Framework

Rosswurm and Larabee (1999) developed a model for evidence-based practice that was aimed to guide individuals through change. This model consists of six steps that will be closely followed during the implementation process of this project. The first three steps in the model are to assess the need for change in practice, link problem interventions and outcomes, and synthesize the best evidence (Appendix B). These steps have already been successfully completed by identifying the area of need, determining flaws in current practice based on available data, completing a robust literature search, and performing rapid critical appraisals on ten quality research articles to ensure high levels of evidence. The evidence from these ten articles were then synthesized (Appendix B).

Steps four and five focus on creating, implementing, and evaluating a practice change. Bandura's theory of self-efficacy will complement these steps by encouraging and empowering the individuals executing the change. The final step is to incorporate and maintain the change in regular practice. When change is rushed and not evaluated adequately throughout the process, it is less likely to sustain. Therefore, following the critical steps in Rossswurm and Larabee's model for evidence-based practice is crucial to ensure changes are done properly so they can be maintained.

Ethical Considerations

Four ethical principles will guide this project: respect for person(s), beneficence, justice, and autonomy. Respect for persons is the principle that all individuals should be valued and treated with respect solely because they are humans (American Nurses Association, 2015). The project will adhere to this principle by respecting all participants in the study including nursing staff, stakeholders, and other project team members. Beneficence protects individuals from harm and ensures actions benefit others, often going beyond what is necessary to guarantee this (American Nurses Association, 2015). The project will adhere to this principle by providing education to better nurses practice and allow them to feel more comfortable identifying stroke patients. This principle also applies to the patients that will benefit from early recognition of stroke symptoms which will assist in early intervention and better long-term functional outcomes. The concept of justice supports moral rightness and suggests all individuals should be treated fairly (American Nurses Association, 2015). The project will adhere to this principle by ensuring all participants receive equal training and education. Autonomy is making informed decision for one's self through rational self-determination (American Nurses Association, 2015). The project will adhere to this principle by obtaining consent from nursing staff prior to participating in the study. At the time of consent, participants will be presented with the risks of participating in this study so they can make an informed decision.

Human Subjects Protection

CITI training for biomedical, social, and behavioral research was completed by the project lead and key project participants. This project was reviewed and approved by the project site and Arizona State University's institutional review board. Institutional review board approval ensures all human subject participants are protected and ethical dilemmas are considered and addressed. After receiving approval from Arizona State University, the project will begin.

Setting and Stakeholders

The project site is the ED at a large urban teaching hospital in the Southwest United States. This hospital has 746 beds, is a level 1 trauma center, and a magnet facility. The ED has 60 beds in addition to a six-bed trauma bay and a designated area to care for up to seven behavioral health patients. The ED cares for individuals requiring emergent stabilization and those with acute complaints or an exacerbation of a chronic condition. This ED employs registered nurses, physicians, physician assistants, nurse practitioners, respiratory therapists, physical therapists, patient care technicians, paramedics, patient financial services staff, environmental services technicians, medical imaging technicians, radiologists, case managers, social workers, nurse navigators, phlebotomists, transportation staff, and resident physicians of all specialties. The site has been a comprehensive stroke center since 2008 (Banner Health, n.d.). This certification is awarded by the Joint Commission and the American Heart Association (AHA)/American Stroke Association (ASA) and recognizes the facility's ability to provide care for the most complex stroke cases ("The Joint Commission," 2021). The project site's mission statement is to make health care easier, so life can be better. Key stakeholders involved in this project are the ED Medical Director, the ED Nursing Director, the ED stroke coordinators, the Neurology Acute Care Nurse Practitioner, and the ED nursing managers. The support of each of these individuals plays a crucial role in the development and execution of this project. Other key stakeholders are the ED nurses and patients. Nurses are the targeted participants for this education and if the intervention is successful, nurses will increase their knowledge on LVOs and posterior circulation strokes, and patients will experience better long-term functional outcomes from decreased door-to-IR times.

Participants and Recruitment

The participants are registered nurses working in the ED at the project site. Individuals participating in the study must provide direct patient care, be employed full-time or part-time in the ED, and agree to participate in all aspects of the project. Exclusion criteria include minors (individuals under the age of 18) and adults who cannot consent. Participants will be recruited via email and consent is assumed with completion of the survey. A disclosure will be included in the email sent to the nursing staff stating, "Completion of the survey and participation in this project is voluntary. If you complete the survey you are confirming that you voluntarily consent to participate in this project, and you understand that participation in this project is not a condition of employment at Banner Health. You may complete this survey at work. If you elect to complete the survey on your own time, you will not be paid for your time spent on completing the survey. The completion of the video and survey is anonymous. All information received is confidential and data is de-identified." The project stakeholders provided approval for staff to complete the education and testing while working and receive financial compensation for their time.

Project Description

This project will begin by developing a PowerPoint and brochure that contains information on the VAN screening tool, BE-FAST screening tool, and symptoms that are consistent with LVOs and posterior circulation strokes. It will also review which patients are potential candidates for mechanical thrombectomy with IR, the different timeframes of eligibility for stroke interventions, and the importance of quick stroke recognition and reperfusion. After educational tools are finalized, they will be reviewed with the stroke NP and ED medical director to check for accuracy. After approval is received, the ED RN manager will send the PowerPoint and brochure to all ED nurses at the project site via employee email. Included in this email will be a link to a survey that contains five questions. The survey will be used to track employee completion. Participation is optional and consent is assumed with completion of the survey.

Potential barriers in implementation include pushback from ED nurses because of lack of motivation to perform additional screening tools and lack of time to complete different assessments when triaging. Staff might also be resistant to change. To address these barriers an emphasis will be placed on the importance of decreasing door-to-IR times to support better long-term functional outcomes in patients and decreased hospital re-admission rates which can be a burden to the healthcare system. The education material will also include information on the ease of use of these screening tools. Repetitive successful identification of discrete stroke symptoms will hopefully lead to high levels of self-efficacy like discussed in Bandura's self-efficacy theory. Ideally, this performance accomplishment will lead to increased staff motivation to utilize the screening tools.

Data Collection and Outcomes Measurement

The effectiveness of the intervention will be measured by gathering data on the number of minutes it takes for a patient to arrive at IR for mechanical thrombectomy from the ED. Data on door-to-IR times will be collected every month for two months by the stroke coordinator. This data will be compared to data from the previous two months prior to the nurses receiving the stroke screening tool education. All de-identified, aggregate data collected by the stroke coordinator will be displayed in an excel sheet and stored on the project leads personal laptop secured with a password. At the completion of the project, this data will be analyzed using a twotailed paired samples t-test comparing pre- and post-intervention door-to-IR times.

Budget and Funding

The education material created for this project was entirely electronic and developed by the project lead on their personal computer. Therefore, no funding was needed for content development. The estimated cost of staff time including ED nurses and stakeholders was calculated to be approximately one-thousand dollars (Appendix E). This includes the time stakeholders spent reviewing material, the average time ED nurses spend viewing the educational video and handouts, and the time spent by the stroke coordinator gathering and deidentifying stroke data. Banner Health will be compensating all employees including ED nurses, stroke coordinator, and stakeholders for their time.

Results

During the two-month pre-intervention period, there were seven IR cases. The average door-to-IR time for these seven cases was one-hundred and five minutes. There were also seven IR cases in the two-month post-intervention phase with an average door-to-IR time of seventy-

seven minutes. Therefore, the average door-to-IR time decreased by twenty-eight minutes after providing ED nurses with stroke screening tool education (Appendix F).

This data was analyzed using a two-tailed paired samples *t*-test which examined the mean difference between pre- and post-intervention data to determine statistical significance. The Shapiro-Wilk and Levene's test results were not significant based on an alpha value of .05, t(6), p= .420, indicating the null hypothesis cannot be rejected (Table 1). These findings suggest that the mean of the pre- and post-data was not significantly different from zero.

Table 1

Two-Tailed Paired Samples t-Test for the Difference Between Pre and Post

Pre	Pre		ost			
M	SD	M	SD	t	р	d
105.14	83.53	76.71	27.43	0.86	.420	0.33

Note. N = 7. Degrees of Freedom for the *t*-statistic = 6. *d* represents Cohen's *d*.

This project will positively impact patients' physical and emotional well-being due to the potential for severe neurological deficits after suffering a stroke and the strong evidence recognizing better patient outcomes with early recognition and treatment. Caregivers, friends, and family members of the patients may also benefit from decreased emotional stress caused by severe deficits and a reduced burden from the patient's physical limitations. In addition, with a reduction in hospital readmission and a decline in needs for additional services such as therapy and rehab related to poor functional outcomes, there will be less of a burden on healthcare providers and the overall healthcare system.

The ease of accessibility, simplicity, and cost effectiveness of this intervention will make it easily sustainable. Nurses at this project site are required to complete annual education modules on various topics. The PowerPoint, brochure, and survey utilized in this project can be included in the required education. Education material may require slight modifications in the future to reflect the latest evidence-based practice.

Discussion

Though the results of this project did not reach statistical significance, there was a negative trend in door-to-IR times, which supports the continued use of this intervention. Previous research by Ver Hage et al. (2018) also found a reduction in door-to-IR times using the VAN screening tool. The ability to accurately recognize stroke symptoms upon arrival to the emergency departments allows for early intervention. Further, identifying the occlusion location based on the patient's presenting symptoms supports timely intervention by alerting healthcare providers to notify or activate additional resources such as IR for mechanical thrombectomy.

Limitations of this study include a short-intervention timeframe of two months. This also resulted in a small sample size of seven pre-intervention cases and seven post-intervention cases for a total of fourteen cases. Additional barriers were poor employee engagement. Approximately ten percent of the ED staff completed the optional survey indicating completion of education material. However, this data is not an accurate reflection of employee participation because the survey was optional. Employees also had the ability to complete the survey without viewing the education material. Finally, only aggregate data was collected for the project, which did not allow for screening of additional factors that could have affected door-to-IR times.

Future research should lengthen the intervention timeframe to allow for more data. It should also focus on accurately tracking participation and the percentage of screening tool usage during triaging and assessing to allow for more reliable results. Screening for other factors that may have influenced door-to-IR times for each case would also increase the reliability of data. Finally, measuring the number of strokes that were misdiagnosed or not recognized upon patient arrival would assist in evaluating the effectiveness of stroke screening tool education for ED nurses.

References

American Nurses Association. (2015). Code of ethics for nurses with interpretive statements.

Arch, A. E., Weisman, D. C., Coca, S., Nystrom, K. V., Wira, C. R., & Schindler, J. L. (2016).
Missed ischemic stroke diagnosis in the emergency department by emergency medicine and neurology services. *Stroke*, 47(3), 668–673.

https://doi.org/10.1161/STROKEAHA.115.010613

https://doi.org/10.1161/STROKEAHA.118.021840

- Aroor, S., Singh, R., & Goldstein, L. B. (2017). BE-FAST (balance, eyes, face, arm, speech, time). *Stroke*, *48*(2), 479–481. https://doi.org/10.1161/STROKEAHA.116.015169
- Bandura, A. (1977). Self-efficacy: Toward a unifying theory of behavioral change. *Psychological Review*, 84(2), 191-215.
- Beume L. A., Hieber, M., Kaller, C. P., Nitschke, K., Bardutzky, J., Urbach, H., Weiller, C., & Rijntjes, M. (2018). Large vessel occlusion in acute stroke. *Stroke*, 49(10), 2323–2329. https://doi.org/10.1161/STROKEAHA.118.022253
- Goyal, M., Almekhlafi, M., Dippel, D. W., Campbell, B. C.V., Muir, K., Demchuk. A. M.,
 Bracard, S., Davalos, A., Guillemin, F., Jovin, T. G., Menon, B. K., Mitchell, P. J.,
 Brown, S., White, P., Majoie, C. B. L. M., Saver, J. L., & Hill, M. D. (2019). Rapid
 alteplase administration improves functional outcomes in patients with stroke due to large
 vessel occlusions. *Stroke*, *50*(3), 645–651.
- Gurley, K. L., & Edlow, J. A. (2019). Avoiding misdiagnosis in patients with posterior circulation ischemia: A narrative review. *Academic Emergency Medicine*, 26(11), 1273– 1284. https://doi.org/10.1111/acem.13830

- Huang, Q., Song, H.-Q., Ma, Q.-F., Song, X.-W., & Wu, J. (2019). Effects of time delays on the therapeutic outcomes of intravenous thrombolysis for acute ischemic stroke in the posterior circulation: An observational study. *Brain and Behavior*, 9(2). https://doi.org/10.1002/brb3.1189
- Jahan, R., Saver, J. L., Schwamm, L. H., Fonarow, G. C., Liang, L., Matsouaka, R. A., Xian, Y., Holmes, D. N., Peterson, E. D., Yavagal, D., & Smith, E. E. (2019). Association between time to treatment with endovascular reperfusion therapy and outcomes in patients with acute ischemic stroke treated in clinical practice. *JAMA*, *322*(3), 252–263. https://doi.org/10.1001/jama.2019.8286
- Jones, S. P., Bray, J. E., Gibson, J. M., McClelland, G., Miller, C., Price, C. I., & Watkins, C. L. (2021). Characteristics of patients who had a stroke not initially identified during emergency prehospital assessment: A systematic review. *Emergency Medicine Journal*, 1-7. https://doi.org/10.1136/emermed-2020-209607
- Kim, J., Bae, H. J., Kim, M., Ahn, S., Sohn, C. H., Seo, D. W., & Kim, W. Y. (2021). Stroke prediction in patients presenting with isolated dizziness in the emergency department. *Scientific Reports*, 11(1), 1-7. https://doi.org/10.1038/s41598-021-85725-1
- Malhotra, K., Gornbein, J., & Saver, J. L. (2017). Ischemic strokes due to large-vessel occlusions contribute disproportionately to stroke-related dependence and death: A review. *Frontiers in Neurology*, 8. https://doi.org/10.3389/fneur.2017.00651
- Man, S., Xian, Y., Holmes, D. N., Matsouaka, R. A., Saver, J. L., Smith, E. E., Bhatt, D. L., Schwamm, L. H., & Fonarow, G. C. (2020). Association between thrombolytic door-toneedle time and 1-year mortality and readmission in patients with acute ischemic stroke. *JAMA*, 323(21), 2170. https://doi.org/10.1001/jama.2020.5697

- McCarthy, D. J., Diaz, A., Sheinberg, D. L., Snelling, B., Luther, E. M., Chen, S. H., Yavagal,
 D. R., Peterson, E. C., & Starke, R. M. (2019). Long-term outcomes of mechanical
 thrombectomy for stroke: A meta-analysis. *The Scientific World Journal*, 2019.
 https://doi.org/10.1155/2019/7403104
- Melnyk, B. M., & Fineout-Overholt, E. (2019). *Evidence-based practice in nursing and healthcare: A guide to best practice* (4th ed.). Wolters Kluwer.
- Middleton, S., Levi, C., Dale, S., Cheung, N. W., McInnes, E., Considine, J., D'Este, C.,
 Cadilhac, D. A., Grimshaw, J., Gerraty, R., Craig, L., Schadewaldt, V., McElduff, P.,
 Fitzgerald, M., Quinn, C., Cadigan, G., Denisenko, S., Longworth, M., & Ward, J.
 (2016). Triage, treatment and transfer of patients with stroke in emergency department
 trial (the T3 Trial): A cluster randomised trial protocol. *Implementation Science*, *11*(1),
 139. DOI: 10.1186/s13012-016-0503-6
- Navalkele, D., Vahidy, F., Kendrick, S., Traylor, A., Haydel, M., Drury, S., & Martin-Schild, S. (2020). Vision, aphasia, neglect assessment for large vessel occlusion stroke. *Journal of Stroke and Cerebrovascular Diseases*, 29(1).

https://doi.org/10.1016/j.jstrokecerebrovasdis.2019.104478

Powers, W. J., Rabinstein, A. A., Ackerson, T., Adeoye, O. M., Bambakidis, N. C., Becker, K.,
Biller, J., Brown, M., Demaerschalk, B. M., Hoh, B., Jauch, E. C., Kidwell, C. S., Leslie-Mazwi, T. M., Ovbiagele, B., Scott, P. A., Sheth, K. N., Southerland, A. M., Summers,
D. V., & Tirschwell, D. L. (2019). Guidelines for the early management of patients with acute ischemic stroke: 2019 update to the 2018 guidelines for the early management of acute ischemic stroke: A guideline for healthcare professionals from the American Heart

Association/American Stroke Association. Stroke, 50(12), e344-e418.

https://doi.org/10.1161/STR.00000000000211

- Rennert, R. C., Wali, A. R., Steinberg, J. A., Santiago-Dieppa, D. R., Olson, S. E., Pannell, J. S., & Khalessi, A. A. (2019). Epidemiology, natural history, and clinical presentation of large vessel ischemic stroke. *Neurosurgery*, *85*(Suppl 1), S4–S8. https://doi.org/10.1093/neuros/nyz042
- Rosswurm, M. A., & Larrabee, J. H. (1999). A model for change to evidence-based practice. *Image: Journal of Nursing Scholarship*, *31*(4), 317–322. DOI: 10.1111/j.1547-5069.1999.tb00510x
- Saver, J. L., Goyal, M., Van Der Lugt, A., Menon, B. K., Majoie, C. B. L. M., Dippel, D. W., Campbell, B. C., Nogueira, R. G., Demchuk, A. M., Tomasello, A., Cardona, P., Devlin, T. G., Frei, D. F., du Mesnil de Rochemont, R., Berkhemer, O. A., Jovin, T. G., Siddiqui, A. H., van Zwam, W. H., Davis, S. M., ... Hill, M. D. (2016). Time to treatment with endovascular thrombectomy and outcomes from ischemic stroke: A meta-analysis. *JAMA*, *316*(12), 1279-1289. https://doi.org/10.1001/jama.2016.13647
- Teleb, M. S., Ver Hage, A., Carter, J., Jayaraman, M. V., & McTaggart, R. A. (2017). Stroke vision, aphasia, neglect (VAN) assessment—a novel emergent large vessel occlusion screening tool: Pilot study and comparison with current clinical severity indices. *Journal* of Neurointerventional Surgery, 9(2), 122–126. https://doi.org/10.1136/neurintsurg-2015-012131
- Ver Hage, A., Teleb, M., & Smith, E. (2018). An emergent large vessel occlusion screening protocol for acute stroke. *Journal of Neuroscience Nursing*, 50(2), 68–73. doi: 10.1097/JNN.000000000000346.

- Virani, S. S., Alonso, A., Benjamin, E. J., Bittencourt, A. S., Callaway, C. W., Carson, A. P., Chamberlain, A. M., Chang, A. R., Cheng, S., Delling, F. N., Djousse, L., Elkind, M. S. V., Ferguson, J. F., Fornage, M., Khan, S. S., Kissela, B. M., Knutson, K. L., Kwan, T. W., Lackland, D. T., ... Lewis, T. T. (2020). Heart disease and stroke statistics – 2020 update: A report from the American Heart Association. *Circulation*, 141, e139-e596. https://doi.org/10.1161/CIR.000000000000757
- Yamada, S., Yasui, K., Kawakami, Y., Hasegawa, Y., & Katsuno, M. (2019). DEFENSIVE stroke scale: Novel diagnostic tool for predicting posterior circulation infarction in the emergency department. *Journal of Stroke & Cerebrovascular Diseases*, 28(6), 1561– 1570. https://doi.org/10.1016/j.jstrokecerebrovasdis.2019.03.005

Appendix A

Evaluation and Synthesis Tables

Table 1 Quantitative Evaluation Table

Citation	Theory/ Conceptual Framewor k	Design/ Method	Sample/ Setting	Major Variables & Definitions	Measurement/ Instrumentatio n	Data Analysis (stats used)	Findings/ Results	Level/Quality of Evidence; Decision for practice/ application to practice
Arch et al.	Not	Design:	N= 465	IV:	Strokes that were	IBM SPSS	Out of 465	Level of
(2016).	explicitly	Retrospective	Demographics:	Initial stroke	missed verses	Statistics	patients with	Evidence:
Missed ischemic	stated	chart review	Age (mean): 72.3	symptoms	strokes that were recognized in the	(version 21) software	AIS, 22% were initially	LOE 3
stroke		Purpose:	M/F:	DV:	initial diagnosis	package.	misdiagnosed.	Strengths:
diagnosis in		Examine the	212/253	Accuracy of	-	P<0.05	37% of	Detailed analyses
the emergency		diagnosis of	329 participants	initial		indicated	posterior	performed for all
department by		AIS in the	were White	diagnosis		statistical	strokes were	stroke symptoms
emergency		emergency				significance	initially	and demographic
medicine and		department	Setting:			in all	misdiagnosed	data
neurology			Academic			analyses.	compared	
services			hospital and				with 16% of	Weaknesses:
			community				anterior	Data was
Country:			hospital				strokes. Most	obtained from the
United States							commonly	EMR, used
			Inclusion:				missed	charts from 2
Funding:			>18 years of				symptoms	different
Not mentioned			age, admitted to				were N/V,	hospitals with
			the hospital with				dizziness, and	different

GAP IN COMPREHENSIVE STROKE EDUCATION

	Conceptual Framewor k	Design/ Method	Sample/ Setting	Major Variables & Definitions	Measurement/ Instrumentatio n	Data Analysis (stats used)	Findings/ Results	Level/Quality of Evidence; Decision for practice/ application to practice
Bias: Not mentioned			a primary discharge diagnosis of stroke, had a confirmed AIS seen on CTA or MRI Exclusion: Had a clinical TIA without imaging correlation, primary intracerebral hemorrhage, were transferred from an outside hospital after stroke diagnosis was already suspected, and venous infarct Attrition: Not mentioned				a positive stroke history	databases and methods of recording, patients with incorrect discharge diagnosis were not included which might lead to an under- representation of true missed AIS, and population was predominantly white older males. Conclusions: Atypical symptoms associated with posterior circulation strokes lead to misdiagnoses

Citation	Theory/ Conceptual Framewor k	Design/ Method	Sample/ Setting	Major Variables & Definitions	Measurement/ Instrumentatio n	Data Analysis (stats used)	Findings/ Results	Level/Quality of Evidence; Decision for practice/ application to practice
								Feasibility: Feasible with appropriate education on recognizing atypical symptoms
Beume et al. (2018). BE- FAST (balance, eyes, face, arm, speech, time) Country: Germany	Not explicitly stated	Design: Retrospective Cohort Study Purpose: To determine how effective cortical symptoms are at determining	N= 543 Demographics: Age (median): 74 years M/F: 57.1%/42.9% Setting: Hospital/Pre- Hospital	IV: Stroke symptoms DV: Location of ischemic occlusion	Calculated the number of patients that presented with aphasia, hemiparesis, neglect/gaze deviation, any cortical symptom,	All statistical analyses were performed using SPSS software (version 23.0)	Cortical symptoms alone showed to be a reliable indicator for LVOs and mechanical thrombectom y candidates.	Level of Evidence: LOE 2 Strengths: Thorough data analysis completed with detailed charts of results
Funding: BrainLinks- BrainTools Cluster of		LVO strokes and candidates for mechanical	Inclusion: Arrived at the ED within the		cortical symptom AND hemiparesis, and cortical symptom		Specificity and sensitivity were higher in cortical	Weaknesses: Single-center study, no other

GAP IN COMPREHENSIVE STROKE EDUCATION

Citation	Theory/ Conceptual Framewor k	Design/ Method	Sample/ Setting	Major Variables & Definitions	Measurement/ Instrumentatio n	Data Analysis (stats used)	Findings/ Results	Level/Quality of Evidence; Decision for practice/ application to practice
Excellence funded by the German Research Foundation Bias: None		thrombectom y	4.5-hour timeframe Exclusion: Patients with intracerebral hemorrhage, TIA, and stroke mimics Attrition: Not mentioned		OR hemiparesis. Then calculated which of these patients had LVOs.		symptoms only compared with motor deficits.	screening tools were applied outside of NIHSS, excluded pts outside of the 4.5-hour window Conclusion: In the prehospital setting, the presence of cortical symptoms is a reliable indicator for detecting LVOs Feasibility: Assessing patients for cortical symptoms is simple and feasible for

Citation	Theory/ Conceptual Framewor k	Design/ Method	Sample/ Setting	Major Variables & Definitions	Measurement/ Instrumentatio n	Data Analysis (stats used)	Findings/ Results	Level/Quality of Evidence; Decision for practice/ application to practice
								implementation in practice
Goyal et al. (2019). Rapid alteplase administration improves functional outcomes in patients with stroke due to large vessel occlusion Country: Not mentioned Funding: A grant from Medtronic	Not explicitly stated	Design: Meta- Analysis Purpose: To determine the relation of onset-to- treatment time and door-to- needle time with functional outcomes and mortality among patients with AIS with	N=601 Demographics: Age (mean): 66.0 years M/F: 50%/50% Setting: Endovascular hospitals Inclusion: Pts with AIS with documented LVO who received IV tPA alone	IV: Onset-to- treatment time and door-to- needle time DV: Functional outcomes and mortality	Generalized linear mixed models, including a cumulative logit link function for the multinomial primary outcome of mRS and a logit link function for all other outcomes	SAS, version 9.4 (SAS Institute, Cary, NC) and R, version 3.2 (R foundation for Statistical Computing, Vienna, Austria). <i>P</i> values were 2 sided and P<0.05 indicated statistical significance in all	Each 60- minute onset- to-treatment time delay was associated with greater disability at 90 days. The odds of functional independence at 90 days was 0.82 and dropped to 0.55 with each 60- minute delay.	Level of Evidence: LOE 1 Strengths: All participants provided informed consent according to each trial protocol, and each study was approved by the local ethics board. Weaknesses: The principal risk of bias derived
LLC to the University of Calgary		imaging- proven LVO	Exclusion:			analyses.		from differences among individual study methods

Citation	Theory/ Conceptual Framewor k	Design/ Method	Sample/ Setting	Major Variables & Definitions	Measurement/ Instrumentatio n	Data Analysis (stats used)	Findings/ Results	Level/Quality of Evidence; Decision for practice/ application to practice
Bias: None		treated with IV tPA	Patients who received tPA in a peripheral hospital before transfer to the endovascular center Attrition: Not mentioned					and inclusion criteria Conclusions: Faster IV tPA delivery is associated with less disability at 3 months among patients with LVO.
Huang et al. (2018). Effects of time delays on the therapeutic outcomes of intravenous thrombolysis for AIS in the posterior circulation: An	Not explicitly stated	Design: Observational Study Purpose: To demonstrate the effects of time delays on the therapeutic	N= 95 Demographics: Age (median) 64.0 years M/F- 69.5/30.5% Setting: Hospital Inclusion:	IV: OTT with IVT and angiographic recanalization DV: Rates of favorable outcome and mortality	mRS to measure favorable outcomes and percentage rate of recanalization	SPSS 19.0, Mann- Whitney U Test, Pearson chi-squared test, and Cochran- Armitage trend test	The rates of favorable outcomes in patients with OTTs of 0–90 min, 91–180 min, 181–270 min, and \geq 271 min was 100.0%, 71.1%,	Level of Evidence: LOE 3 Strength: Was approved by an ethics board, extensive objective information on participants

Citation	Theory/ Conceptual Framewor k	Design/ Method	Sample/ Setting	Major Variables & Definitions	Measurement/ Instrumentatio n	Data Analysis (stats used)	Findings/ Results	Level/Quality of Evidence; Decision for practice/ application to practice
observational study Country: China Funding: Not mentioned Bias: None		outcomes of IVT in acute posterior circulation stroke pts.	A definite and persistent neurological deficit, age > or equal to 18 years, and OTT < or equal to 4.5 hours. Exclusion: Intracranial hemorrhage or other contraindication s of IVT therapy Attrition: Not mentioned				67.6%, and 73.3%	Weaknesses: Small sample size, retrospective study design Conclusion: The therapeutic effects of recanalization after IVT decreased significantly with longer time delays in posterior circulation stroke pts. Feasibility: Feasibility based on available resources

Citation	Theory/ Conceptual Framewor k	Design/ Method	Sample/ Setting	Major Variables & Definitions	Measurement/ Instrumentatio n	Data Analysis (stats used)	Findings/ Results	Level/Quality of Evidence; Decision for practice/ application to practice
Jones et al. (2021). Characteristics of patients who had a stroke not initially identified during emergency prehospital assessment: A systematic review Country: Studies included from any country as long as it is written in the English language Funding:	Not explicitly stated	Design: A systematic review Purpose: To identify the characteristics of acute stroke presentations associated with inaccurate EMS identification (false negatives)	N= 6934 Demographics: A limited number of studies in this systematic review included demographic information on the participants Setting: Hospital and pre-hospital Inclusion: Studies including pts who had a stroke and were 18 years of age or older, any stroke type was included, pts in studies had to be	IV: Acute stroke presentations DV: Inaccurate EMS identification or false negatives	The included studies were described narratively because of heterogeneity between study settings, designs, and screening tools used	Results are reported as presented in the original studies, and no additional secondary analyses have been undertaken	Out of 6934 AIS and TIA pts, there were 1774 false negative pts. Commonly documented symptoms in false negative cases were N/V, dizziness, changes in mental status, and visual disturbance/ impairment	Level of Evidence: LOE 1 Strengths: Study quality was assessed using the QADAS-2 tool. Weaknesses: The combined data did not undergo additional data analyses, 14/21 studies included were at high risk for selection bias, only included studies reported in English

GAP IN COMPREHENSIVE STROKE EDUCATION

Citation	Theory/ Conceptual Framewor k	Design/ Method	Sample/ Setting	Major Variables & Definitions	Measurement/ Instrumentatio n	Data Analysis (stats used)	Findings/ Results	Level/Quality of Evidence; Decision for practice/ application to practice
The University of Central Lancashire Research Institute for Global Health and Well- being (LIFE) Bias: One of the authors of this work has other authored papers included in this systematic review			screened by a health professional including paramedics or technicians within the prehospital setting, and data must have been reported on prehospital diagnostic accuracy and/or symptoms present Exclusion: Non-stroke populations, studies including only stroke mimics, studies utilizing prehospital					Conclusion: Speech problems and posterior circulation symptoms were the most commonly documented symptoms among stroke presentations that were not correctly identified by EMS (false negatives) Feasibility: It is feasible to screen patients for speech problems and posterior circulation symptoms

Citation	Theory/ Conceptual Framewor k	Design/ Method	Sample/ Setting	Major Variables & Definitions	Measurement/ Instrumentatio n	Data Analysis (stats used)	Findings/ Results	Level/Quality of Evidence; Decision for practice/ application to practice
			screening tools to identify LVOs Attrition: Not mentioned					
Kim et al. (2021). Stroke prediction in patients presenting	Not explicitly stated	Design: Retrospective Observational Study	N= 1239 Demographics: Age (median): 64 years M/F:	IV: Presence of AIS	Demographics, past illnesses, drug therapy, symptoms, vascular	The Kolmogorov –Smirnov test, Mann–	55 out of 1239 patients (4.5%) who presented with dizziness	Level of Evidence: LOE 2
with isolated dizziness in the emergency department		Purpose: To evaluate the prevalence of acute stroke in	Setting: Emergency Department	DV: Dizziness without neurological deficits	territory, lab values	Whitney U test, chi- squared test and Fisher's exact test were	with dizzlicess without confirmed neurologic deficits, and most cases	Strengths: Detailed data collection on participants
Country: Korea		patients who presented with isolated	Inclusion: All adult pts hat			performed as appropriate. A stepwise	(96.3%) were diagnosed as ischemic	Weaknesses: Single center, retrospective
Funding: Not mentioned		dizziness without neurological	presented with isolated dizziness			multivariate logistic regression	stroke with a high rate of cerebellum	design, and potential selection bias
Bias: None		deficits at the ED.	Exclusion:			analysis was. Variables	involvement	Conclusion:

Citation	Theory/ Conceptual Framewor k	Design/ Method	Sample/ Setting	Major Variables & Definitions	Measurement/ Instrumentatio n	Data Analysis (stats used)	Findings/ Results	Level/Quality of Evidence; Decision for practice/ application to practice
			Pts with confirmed neurologic deficits at presentation, pts with dizziness as a result of external clinical factors, and pts without MI data Attrition: Not mentioned			with <i>p</i> values of less than 0.1 in univariable analyses were selected for the multivariable analysis		Dizziness without neurological deficit accounted for 4.5% of strokes in an ED. Feasibility: It is feasible to screen patients that present with dizziness for stroke. May use additional resources such as CTA and MRI
Man et al. (2020). Association between thrombolytic door-to-needle time and 1- year mortality	Not explicitly stated	Design: Retrospective Cohort Study Purpose: Evaluate the relationship between door	Demographics: Age (median) 80 years M/F- 43.5/56.5% Setting:	IV: Time from symptom onset to tPA administratio n DV:	Number of pts with mortality or re-admission within 1-year of AIS with tPA administration. Rate of mortality and re-admission	Pearson χ^2 Wilcoxon rank-sum test	Shorter door to tPA time was associated with lower mortality and hospital	Level of Evidence: LOE 2 Strengths: Large sample size

Citation	Theory/ Conceptual Framewor k	Design/ Method	Sample/ Setting	Major Variables & Definitions	Measurement/ Instrumentatio n	Data Analysis (stats used)	Findings/ Results	Level/Quality of Evidence; Decision for practice/ application to practice
and readmission in patients with AIS Country: United States Funding: AHA/ASA, Novartis, Boehringer Ingelheim Lilly, Novo Nordisk, Sanofi, AstraZeneca, and Bayer Bias: None		to tPA initiation and long-term mortality and hospital readmission in pts with AIS.	Hospitals (teaching hospitals, primary stroke centers, rural hospitals) Inclusion: Pts 65 years+ who received tPA within 4.5 hours of symptom onset Exclusion: Pts who received intra-arterial perfusion techniques or did not have a documented door to tPA time. Pts who were transferred to another hospital, left	Long-term mortality and hospital- readmission within one year of AIS	were divided into 3 categories based no cause: all-causes, cardiovascular related, or stroke readmission.		readmission rates.	Weaknesses: Data was self- reported by hospitals, they only studied adults age 65+, rural and minority populations were underrepresented , they did not examine functional outcomes, and cause of death was not studied. Conclusion: Longer door to tPA administration times were significantly associated with higher all-cause mortality and

Citation	Theory/ Conceptual Framewor k	Design/ Method	Sample/ Setting	Major Variables & Definitions	Measurement/ Instrumentatio n	Data Analysis (stats used)	Findings/ Results	Level/Quality of Evidence; Decision for practice/ application to practice
			AMA, or did not have a documented site of DC disposition. Attrition: Not mentioned					higher likelihood of readmission at 1-year. Feasibility: Recommended for use in practice because of effectiveness.
Navalkele et al. (2020). Vision, aphasia, neglect assessment for large vessel occlusion stroke Country: United States Funding: None	Not explicitly stated	Design: Retrospective study Purpose: Validate the VAN assessment tools ability to recognize LVOs	N= 244 Demographics: Age (mean): 66 years of age M/F: 119/125 Setting: Hospital Inclusion: 18 years of age or older and NIHSS	IV: VAN Assessment DV: LVO detection	Scores of VAN, NIIHSS, FAST- ED, RACE, and CPSS	C statistics was calculated to measure the accuracy of predicting LVO with each screening tool	When compared to other screening tools such as NIHSS, FAST-ED, RACE, and CPSS, VAN showed comparable sensitivity and specificity	Level of Evidence: LOE 2 Strengths: Conducted at a large volume center, validated the VAN assessment screening tool in a large prospective dataset.

GAP IN COMPREHENSIVE STROKE EDUCATION

Citation	Theory/ Conceptual Framewor k	Design/ Method	Sample/ Setting	Major Variables & Definitions	Measurement/ Instrumentatio n	Data Analysis (stats used)	Findings/ Results	Level/Quality of Evidence; Decision for practice/ application to practice
Bias: None			performed on arrival Exclusion: Arrival greater than 24 hours of LKW, CTA or MRU not obtained within 6 hours of arrival or before IV tPA Attrition: Not mentioned					Weaknesses: Only a single center data and limited generalizability. Conclusion: VAN is able to identify LVOs with adequate accuracy in the hospital setting Feasibility: VAN assessment is feasible because it is simple and effective
Saver et al. (2016). Time to treatment with endovascular	Not explicitly stated	Design: Meta- Analysis	N= 1287 Demographics: Age (mean): 66.5 years M/F:	IV: Time for symptom onset to MT	Measured degree of disability, functional outcome, and mortality at 3	Used mixed- method ordinal logistic regression	Compared with medical therapy alone, MT up to 7.3 hours after	Level of Evidence: LOE 1

Citation	Theory/ Conceptual Framewor k	Design/ Method	Sample/ Setting	Major Variables & Definitions	Measurement/ Instrumentatio n	Data Analysis (stats used)	Findings/ Results	Level/Quality of Evidence; Decision for practice/ application to practice
thrombectomy and outcomes from ischemic stroke: A meta-analysis Country: Not explicitly stated Funding: Grant from Medtronic to the University of Calgary Bias: None		Purpose: To determine the relationship between time- to-treatment and outcome from endovascular MT for AIS	53%/47% Setting: Hospitals with stent retrievers or other second- generation devices Inclusion: All randomized phase 3 trials in which stent retrievers or other second- generation devices were used in the majority of endovascular interventions for treatment of acute ischemic stroke, and for which a peer- reviewed,	DV: Rate of functional independence	months using mRS	and mixed- method binary logistic regression.	symptom onset was associated with improved outcomes. Rates of functional independence after MT were 64% with reperfusion at 3 hours vs 46% with reperfusion at 8 hours	Strengths: All included trials enrolled pts with ethics approval from the local institutional boards Weaknesses: Differences in entry criteria for different trials is a source of potential bias and only measured functional outcome up to 3 months Conclusion: In AIS due to LVO, endovascular MT should be initiated as soon

Citation	Theory/ Conceptual Framewor k	Design/ Method	Sample/ Setting	Major Variables & Definitions	Measurement/ Instrumentatio n	Data Analysis (stats used)	Findings/ Results	Level/Quality of Evidence; Decision for practice/ application to practice
			complete primary results manuscript was published by July 1, 2016 Exclusion: Not included Attrition: Not mentioned					as possible within the first 7 hours as soon as possible Feasibility: Feasible with the necessary resources for
Yamada et al. (2019). DEFEENSIV E stroke scale: Novel diagnostic tool for predicting posterior circulation infarction in the emergency department	Not explicitly stated	Design: Retrospective and Prospective Cohort Study Purpose: To determine the frequency of misdiagnosis of a posterior	Demographics: Prospective N=949 Retrospective N=115 Age (median) 67 years M/F- 33.4/66.6% Setting:	IV: DEFENSIVE stroke screening scale DV: Ability to detect posterior circulation strokes	Measured the proportion of subjects with an AIS who were not properly diagnosed in the ED, the sensitivity, specificity, PPV, and NPV of the AIS diagnosis, the NIHSS score,	SPSS Version 23	6 out of 115 patients who were hospitalized due to AIS were misdiagnosed in the ED. Out of these pts all 6 had infarcts in the	Level of Evidence: LOE 3 Strength: Performed a retrospective and prospective study Weaknesses: Observational study without

Citation	Theory/ Conceptual Framewor k	Design/ Method	Sample/ Setting	Major Variables & Definitions	Measurement/ Instrumentatio n	Data Analysis (stats used)	Findings/ Results	Level/Quality of Evidence; Decision for practice/ application to practice
~		circulation	Single medical		and the		posterior	randomization,
Country:		infarction in	center serving as		proportion of		circulation.	education of staff
Japan		pts who	a regional stroke		subjects with a		The	possibly
		presented	referral center		DWI negative		prospective	influenced
Funding:		with dizziness			infarction.		cohort study	outcome, not all
None		and to	Inclusion:				using the	pts followed up
		develop a new	Pts who visited				DEFENSIVE	for repeat MRI
Bias:		scale that	the ED with				screening tool	so some pts with
None		increases the	acute dizziness,				had a	misdiagnosed
		diagnostic	disequilibrium,				sensitivity of	AIS could have
		accuracy of	floating				100% and	been missed.
		posterior	sensation,				specificity of	
		circulation	imbalance, and				89.4%. AIS	Conclusions:
		strokes.	vertigo				was	The
							diagnosed in	DEFENSIVE
			Exclusion:				10.5%	stroke scale has
			Subjects with				(100/949) of	good diagnostic
			incomplete or				all subjects	accuracy and is
			poorly				with acute	easy to
			documented				dizziness and	administer
			neurological				related	
			examinations				symptoms	
							using the	Feasibility:
			Attrition:				DEFENSIVE	Recommended
			Not mentioned				stroke scale	for use in
								practice because

GAP IN COMPREHENSIVE STROKE EDUCATION

Citation	Theory/ Conceptual Framewor k	Design/ Method	Sample/ Setting	Major Variables & Definitions	Measurement/ Instrumentatio n	Data Analysis (stats used)	Findings/ Results	Level/Quality of Evidence; Decision for practice/ application to practice
								of simplicity and effectiveness

Appendix B

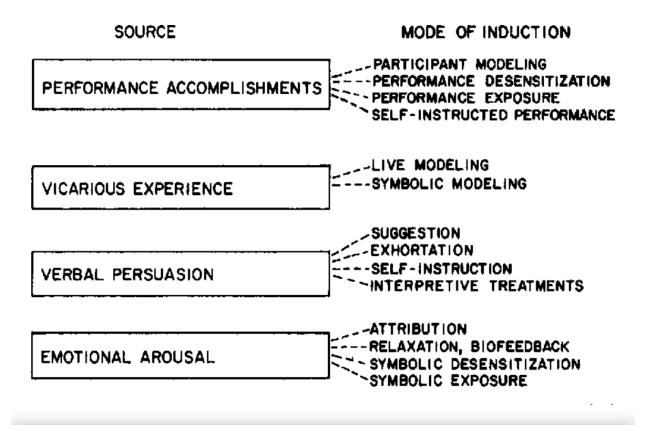
Synthesis Table

Table 2

SI	tudies	Arch et al.	Beume et al.	Goyal et al.	Huang et al.	Jones et al.	Kim et al.	Man et al.	Navalkele et al.	Saver et al.	Yamada et al.
_	Year	2016	2018	2019	2019	2021	2021	2020	2020	2016	2019
ata	LOE	3	2	1	3	1	2	2	2	1	3
Ď	Design	RCR	RCS	MA	OS	SR	ROS	RCS	RCS	MA	R&PCS
ſpr	Mean Age (y)	72.3	74	66	64	N/A	64	80	66	66.5	67
Stu	Bias	None	None	None	None	LR	None	None	None	None	None
Basic Study Data	# of Participants	465	543	601	85	6934	1239		244	1287	115
_	Setting	Н	H/PH	Н	Н	H/PH	Н	Н	Н	Н	Н
ent es	DTI time			•	•			•		•	
Independent Variables	Stroke screening tool								•		•
Ind V ₈	Presenting symptoms	•	•			•	•				
nt	Functional outcomes			•	•					•	
Dependent Variables	Mortality			•	•			•			
De	Hospital re- admission							•			

Key: AIS- acute ischemic stroke; CS- cortical symptom; DTI- door-to-intervention; H- hospital; LR- low risk; LVO- large vessel occlusion; MA- meta-analysis; OS- observational study; PH- pre-hospital; PS- posterior stroke; R&PCS- retrospective and prospective cohort study; RCR- retrospective chart review; RCS- retrospective cohort study; ROS- retrospective observational study

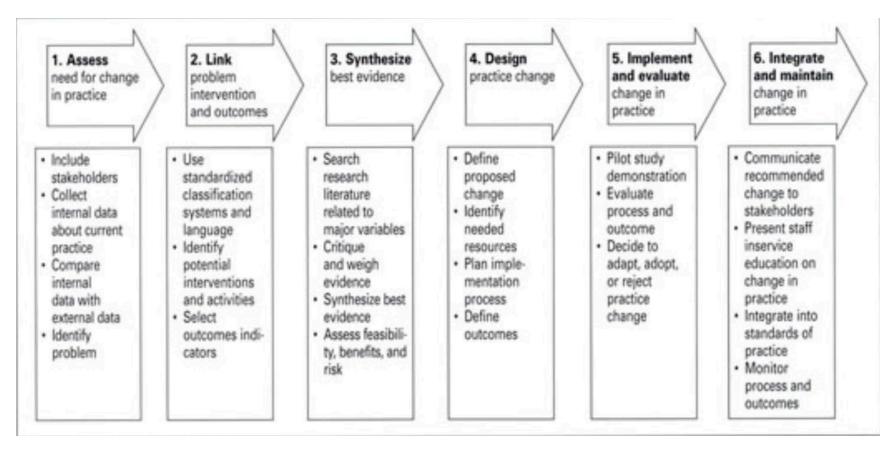
GAP IN COMPREHENSIVE STROKE EDUCATION


	Early stroke identification	•				•			•		•
	Location of occlusion in AIS		•						•		•
	Misdiagnosis of AIS on initial presentation	•				•					
	CSs are consistent with LVO AIS		•						•		
Findings	Decreased DTI time is associated with decreased long-term disability, H re-admission, and mortality			•	•			•		•	
	Dizziness is a reliable symptom in diagnosing PSs						•				•

Key: AIS- acute ischemic stroke; CS- cortical symptom; DTI- door-to-intervention; H- hospital; LR- low risk; LVO- large vessel occlusion; MA- meta-analysis; OS- observational study; PH- pre-hospital; PS- posterior stroke; R&PCS- retrospective and prospective cohort study; RCR- retrospective chart review; RCS- retrospective cohort study; ROS- retrospective observational study

Appendix C

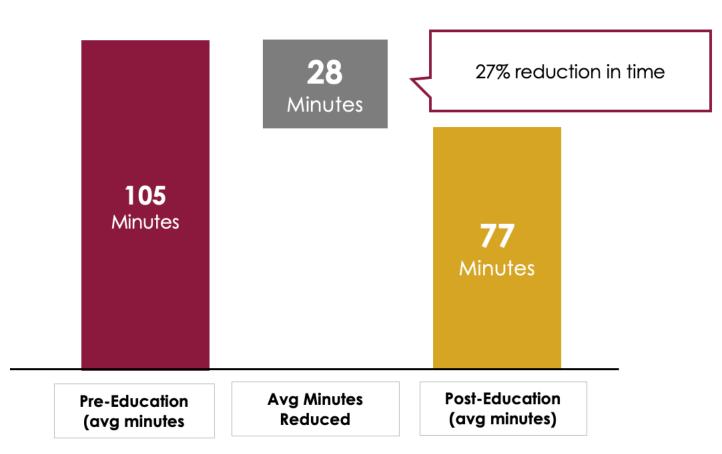
Self-Efficacy Theory


Figure 1

Appendix D

A Model for Evidence-Based Practice

Figure 2



Appendix E

Budget Plan

	Activity/Item	Cost	Subtotal				
	Equipment for creating	-\$1,100	-\$1,100				
	educational video and brochure	(already own)					
Indirect Cost	Staff time at mandatory meeting	-\$400.00	-\$1,500				
	(10 minutes, average pay						
	~\$40/hour, ~60 staff members)						
	Stakeholders time in preparation	-\$500.00	-\$2,000				
	for project implementation						
	Stroke coordinators time	-\$100.00	-\$2,100				
	gathering and de-identifying data						
Funding	Banner Health	+\$1,000	-\$1,100				
	Personal	+\$1,100	\$0.00				
Potential	Decreased door-to-IR times suppor	ts quicker reperfusio	on, which is				
Revenue/Cost	associated with better functional ou	tcomes in patients a	and decreased				
Savings	rates of hospital re-admission. This patient.	results in a financia	al savings for the				
	For the organization, decreased door-to-IR times supports re-						
	certification as a comprehensive stroke center and overall better						
	hospital ratings. This makes them an ideal hospital to seek stroke care						
	and increases patient volume which	n results in increased	l revenue.				

Minutes Pre-Education (average)	Minutes Post-Education (average)	Minutres reduced Pre vs Post (average)	% reduction in minutes (pre vs post)
105	77	28	27%

Appendix F