Policy to Practice Change:

The Development and Implementation of Sedation Policy and Protocols

Brittany A. Bonfield

Edson College of Nursing and Health Innovation, Arizona State University

Author Note

This study was registered with ASU IRB (Identifier STUDY00012493).

No known conflicts of interest to disclose.

I would like to thank Dr. Erin Tharalson for her expertise and assistance in preparing this manuscript.

Correspondence concerning this article should be addressed to Brittany A. Bonfield,

Arizona State University, 411 North Central Avenue, Phoenix, AZ 85004. Email:

brittany.bonfield@asu.edu.

Abstract

Sedation exists along a continuum; and, it is impossible to predict a patient's exact response to a medication administered to induce any level sedation. Under the direction of a licensed independent practitioner (LIP), registered nurses (RN) in the Emergency Department (ED) have been permitted to administer propofol for time-sensitive, moderate sedation procedures (e.g. orthopedic reductions). In 2019, this changed when a Board of Nursing (BON) in the Southwestern United States posted an Advisory Opinion (AO) limiting the circumstances under which acute care RNs could administer propofol. The purpose of this doctoral project was to revise the 2019 AO to remove specific medication names and to generate recommendations for aligning hospital-based adult sedation policies and procedures (P&P) with the revised AO. In May 2020, the BON enacted the revised AO. Enactment endorses RNs practicing at the top of their scope and justifies amending existing hospital-based sedation P&Ps. Not restricting nurses' scope of practice according to medication name supports medication selection based on patient condition and clinical situation and safeguards provision of timely, personalized healthcare to communities statewide.

Keywords: Moderate sedation, procedural sedation, non-anesthesiologist-administered sedation, nurse, emergency department, cardiopulmonary, safety

Policy to Practice Change: The Development and Implementation of Sedation Policy and Protocols

Sedation exists along a continuum; sedatives and opioids can produce any sedation depth, including general anesthesia, depending on the dose administered and patient response (Green et al., 2019). Thus, specific sedation agents cannot be designated as intended or not intended for general anesthesia (Green et al., 2019). Medications used for moderate sedation include opioids, benzodiazepines, barbiturates, ketamine, propofol, dexmedetomidine, etomidate, and nitrous oxide (Green et al., 2019). The American Society of Anesthesiologists (ASA) acknowledges the impossibility of always predicting patient response to sedation. Thus, the ASA advises health care providers (HCP) be proficient in airway management and advanced cardiovascular life support to manage adverse effects of deeper-than-intended sedation, and return the patient to the initially intended level of sedation (Committee on Quality Management and Departmental Administration, 2019). For this paper, non-anesthesiologist-administered sedation is the administration of moderate sedation by licensed registered nurses, doctors of medicine (MD), or doctors of osteopathic medicine (DO). This manuscript appraises the safety, efficacy, and utility of propofol for moderate sedation and details a doctorate of nursing practice project that revises a state BON's sedation protocols and integrates them into a local hospital system's P&P.

Problem Statement

Regulatory bodies, like the Joint Commission and the Centers for Medicare and Medicaid Services (CMS), typically do not mandate policies and guidelines regarding sedation. Instead, sedation guidelines are specialty driven (Green et al., 2019).

The 2019 AO states acute care RNs may not directly inject propofol into the vascular system unless: The patient is intubated, mechanically ventilated, or when assisting with rapid

sequence intubation. This verbiage is a departure from typical AOs that address RN scope of practice regarding medication classes, not specific medications. Limiting nurses' scope of practice according to specific medications restricts them from practicing to the full extent of their licensure. Furthermore, such restrictions are an inefficient use of existing healthcare resources that threaten patients' receipt of effective, affordable, and personalized healthcare. Ultimately, the AO prevents the safe use of effective medication for diagnostic and therapeutic procedures requiring only moderate sedation.

Purpose

The purpose of this manuscript is to appraise the safety, efficacy, and utility of propofol for moderate sedation, and compare the procedural, patient, and organizational implications of anesthesiologist-administered and non-anesthesiologist-administered sedation.

This project had two aims. First, this project aimed to revise existing AO verbiage to support acute care RNs administration of propofol IV push, under the direction of a LIP, for diagnostic and therapeutic procedures requiring moderate sedation. Second, this project aimed to generate recommendations for developing and revising hospital-based adult sedation P&P.

Background and Significance

Population

Patients present to the ED in physiological states that may necessitate they undergo urgent or emergent diagnostic or therapeutic procedures to optimize their health outcomes (Green et al., 2019). Time-sensitive procedures may include imaging, fracture and dislocation reduction, upper endoscopy, cardioversion, foreign body removal, central venous line placement, arthrocentesis, and tube thoracostomy. These procedures are typically brief and may or may not require analgesia to perform.

Intervention

Providers should aim to achieve the lowest level of sedation necessary to induce amnesia and complete the procedure successfully, without compromising cardiorespiratory function (Schick et al., 2019).

When administering moderate sedation, the current standard of care is the presence of at least two licensed HCPs—a sedation provider and a sedation monitor. The sedation provider, usually the treating MD or DO, decides the appropriate sedative medication and dosage to administer based on physical exam findings, indication for sedation, patient comorbidities, anatomical variations, and patient age (Lameijer et al., 2017). The sedation provider also oversees the sedation encounter and performs the therapeutic or diagnostic procedure. The sedation monitor, typically a RN, continuously monitors the patient and documents the encounter (Green et al., 2019). The most frequent adverse event of sedation is respiratory depression (i.e., hypoxia, apnea, hypoventilation). Cardiovascular events, such as bradycardia and hypotension, may also occur but are less common. The occurrence of adverse event clinically significant, it must impact the patient or procedural outcome (Bellolio et al., 2016).

Current State

For decades, HCPs have used propofol to achieve moderate sedation for diagnostic and therapeutic procedures. However, ASA semantics have caused hospital administrators and practice committees to question, and even restrict, non-anesthesiologist-administered propofol (NAAP) sedation, without scientific evidence to support this practice change.

The ASA intends its' sedation guidelines to apply to all providers. The ASA states only HCPs trained in general anesthesia, and not performing the diagnostic or therapeutic procedure, should administer propofol (Committee on Ambulatory Surgical Care, 2019). The Food and Drug Administration's labeling of propofol mirrors this statement by the ASA. However, it is arguable that product labeling should not supersede evidence-based literature and clinical practice (Green et al., 2019).

CMS (2011) acknowledges the ED is a unique and complex environment that necessitates HCPs to perform unscheduled procedures to prevent patient morbidity and mortality. CMS (2011) also recognizes ED providers' skill to manage patient airway and ventilation and asserts they are uniquely qualified to administer all levels of sedation. Like the ASA, CMS (2011) does not define moderate sedation as anesthesia. Hospitals must determine for themselves if sedation administered in the ED is to be considered anesthesia or analgesia, and base their determination on nationally recognized sedation guidelines by a professional organization of their choosing (CMS, 2011). This freedom of choice allows hospitals to select the professional organization whose sedation guidelines best support their unique needs and patient population. However, this freedom also has the potential to create highly-charged interdisciplinary struggles within the organization. CMS (2011) does not define or discuss RN role in sedation but does delineate fundamental criteria for administering anesthesia/analgesia under the direction of a MD or DO. All criteria are within RN scope of practice.

The American College of Emergency Physicians (ACEP) is the authoritative body for establishing sedation guidelines for ED physicians. The ACEP asserts qualified ED nurses with demonstrable competencies can safely administer propofol and other sedatives. The ACEP also recommends that ED physicians and ED nurse leadership collaborate to develop institutional policies regarding nurses' role in sedation (ACEP, 2017). The ACEP urges state boards of nursing to permit trained RNs to administer all medications used for moderate sedation under the direction of a LIP (Green et al., 2019). Endorsement of nurse-administered, LIP-supervised sedation continues to vary according to each state's nurse practice regulations, and some state boards do not have readily identifiable positions on sedation.

Outcome

No single medication, or combination of medications, has outperformed others in all areas of sedation efficacy and safety. Furthermore, no single drug is ideal for all situations and patients (Bellolio et al., 2016).

Propofol's rapid onset, short half-life, and low cost make it preferable to longer-acting benzodiazepines and opioids for diagnostic and therapeutic procedures requiring moderate sedation (Ghojazadeh et al., 2019). Propofol is also safe to use in patients with liver and kidney dysfunction and exhibits antiemetic properties (Hatamabadi et al., 2015). Unlike propofol, benzodiazepines and opioids have been associated with delayed and reemergent cardiopulmonary depression, because of a longer half-life and cumulative dosing effect (Schick et al., 2019). Some individuals insist the availability of reversal agents make benzodiazepines and opiates definitively safer than drug classes without reversal agents. However, the availability of reversal agents does not significantly affect sedation safety; prolonged and persistent respiratory depression may occur and reoccur despite their administration (Schick et al., 2019). While offering no improvement in sedation safety, the availability of reversal agents does exert a positive psychological effect on the sedation provider (Han et al., 2017).

Anesthetics, such as propofol, are more often associated with deep sedation, while benzodiazepines, such as midazolam, are more commonly associated with moderate sedation. When used to achieve the same target depth of moderate sedation, medications associated with either deep or moderate sedation result in similar adverse events (Miner et al., 2017). Propofol

7

does tend to produce deeper levels of sedation than benzodiazepines, even when targeting a moderate depth of sedation. The incidence of cardiorespiratory events correlates with the depth of sedation achieved, not the specific medication administered (Green et al., 2019; Lameijer et al., 2017; Miner et al., 2017). Propofol is more often associated with adverse respiratory events; although, these adverse events are less often clinically significant and more often remedied by simple, non-invasive interventions (Lameijer et al., 2017). Variable respiratory effects have occurred at standard propofol doses, and providers must consider dose adjustments for patients over 65 years of age (Homfray et al., 2018). Propofol is at least as safe and effective as medications specifically designated for moderate sedation, including benzodiazepines and opiates (Han et al., 2017; Hatamabadi et al., 2015; Miner et al., 2017).

Non-anesthesiologist-administered propofol sedation

Non-anesthesiologist-administered propofol (NAAP) sedation is a safe, well-tolerated, and less costly alternative to anesthesiologist-administered propofol (AAP) sedation (Goudra et al., 2015; Han et al., 2017). Compared to NAAP sedation, patients undergoing AAP sedation receive higher doses of propofol, achieve deeper levels of sedation, experience higher incidence of airway interventions (e.g. jaw thrust, chin lift, mask ventilation), and have a greater need for procedure interruption and cancellation (Goudra et al., 2015). State-board regulations prohibiting RNs from administering medications used for moderate sedation have required some hospitals to implement policies mandating the presence of either two ED physicians, or an ED physician and anesthesiologist, to perform moderate sedation procedures (Greene, 2015). Requiring the presence of two physicians to perform moderate sedation procedures may be financially, geographically, or physically prohibitive to hospitals, particularly lower-volume EDs (Reibling et al., 2019). Restricting medications RNs may administer under LIP direction for moderate sedation is an inefficient use of healthcare resources that impedes vulnerable patient populations receipt of safe, effective, and personalized healthcare.

In a state-wide, California-based survey by Reibling et al. (2019), 43% of 211 EDs reported limitations to ED physician procedural sedation practices. The most frequently cited reason for such limitations was the hospital anesthesia director. The most commonly cited outcomes were: use of less effective medications, sending patients to the operating room, having anesthesia on call, and performing procedures appropriate for sedation without sedation (Reibling et al., 2019).

Internal Evidence

Based on stakeholder correspondence, hospitals impacted by this AO equally expressed this change in RN clinical scope of practice to be hindersome to their provision of safe and effective patient care. Healthcare providers in the ED also communicated impediments in workflow efficiency and ED throughput secondary to the resultant practice change. Verbal communication with nurses and doctors revealed the presence of new workarounds, including reporting the physician administered the ordered propofol even though the nurse administered the medication. Additionally, some nurses ignored the AO, citing their familiarity and knowledgeability with prior clinical practices.

PICOT Questions

This inquiry led to the clinically relevant PICOT questions: For adults undergoing moderate sedation for diagnostic or therapeutic procedures in the acute-care setting, how does non-anesthesiologist-administered sedation, compared to anesthesiologist-administered sedation, impact patient and procedural outcomes? For adults undergoing moderate sedation for diagnostic or therapeutic procedures in the acute care setting, how does propofol, compared to

alternative medications, impact patients' cardiorespiratory function during, and immediately after, the procedure?

Search Strategy

An exhaustive literature search of the online databases PubMed, Academic Search Premier, Cochrane Library, and Medline was performed to answer the PICOT question. Concepts that informed keyword combinations were *emergency department, nonanesthesiologist administered procedural sedation, propofol, benzodiazepine, patient safety*, and *outcomes*. Filters applied to all searches included the date of publication (2015 to 2020), English language, and peer-reviewed journals. Boolean phrases and Mesh terms expanded search results while maintaining topic relevancy.

Preliminary database searches provided a general overview of the literature, informed search terms, and helped to refine keyword combinations. The initial search of PubMed included the keywords *adult patients, propofol OR Diprivan, midazolam OR benzodiazepine, opioid OR opiate, safety OR outcomes OR adverse*. Initial searches yielded upwards of 50,000 results. Specifying sedation as the intervention and acute care as the setting limited results to 1981. Additional refinement yielded results between 70 and 219. The initial search of Academic Search Premier included the keywords *emergency department OR emergency room* and *moderate sedation OR conscious sedation OR procedural sedation*. This search yielded 286 results. The addition of *propofol* and *patient safety OR outcomes* limited results to 73. The initial search of Cochrane included the keywords *emergency department, sedation, propofol*, and *outcome;* and yielded only one result. Changing *outcome* to *respiratory depression* increased results to 32. The initial search of Medline included the keywords *conscious sedation* and

propofol; and yielded 1395 results. Using analogous keywords and limiting results to adults aged 19 and older, produced between three and 62 results.

Article abstracts from final yield searches were reviewed according to inclusion and exclusion criteria. Inclusion criteria were patients aged 18 or older and sedation administration in an acute care setting. Articles from multiple countries were included if they met inclusion criteria. Exclusion criteria were patients younger than 18 years, only anesthesiologistadministered sedation, outpatient sedation, and performance of the procedure in an outpatient setting. Refinement yielded 61 relevant articles for review. Grey literature from the FDA, CMS, specialist societies, and nursing state boards were also examined.

The most relevant articles were read first; and, their references were reviewed for referral to additional evidence. Rapid critical appraisals were performed on 19 articles, and 10 studies were selected for inclusion in the final evaluation table. Article inclusion in the final evaluation table was prioritized according to evidentiary hierarchy, with systemic reviews (SR) being first. Studies included in the SRs were compared; and, if more than half of the studies included overlapped, one of the SRs was removed.

Critical Appraisal and Evidence Synthesis

Ten articles were selected for this literature review. Articles included two meta-analyses, one combined meta-analysis and systematic review, four randomized controlled trials, one observational study, one retrospective cohort study, and one survey (see Appendix B, Table 2). Melnyk and Fineout-Overholt's (2019) rapid critical appraisal was used to evaluate each article's quality.

All articles concerned procedural sedation in the acute care setting, with most sedations performed in the ED by non-anesthesiologists. Overall reporting of demographic information

was inconsistent, with age, sex, and ASA physical status reported by half of the articles (see Appendix B, Table 2). Only the observational study by Josephy and Vinson (2018) included patients younger than 18 years old. Even so, in the Josephy and Vinson (2018) study, the mean age of the one- and two-MD samples were 35.1 and 32.1 years, respectively (see Appendix A, Table 1).

Primary outcomes of interest related to respiratory depression, cardiovascular depression, level of sedation achieved, procedural outcomes, and patient or endoscopist satisfaction score. Most dependent variables were physiologic. Authors not reporting primary outcomes as event rates, unanimously used vital sign monitoring to measure cardiovascular and respiratory depression. Three studies also included capnography as an additional monitoring technique for hypoxia, apnea, and subclinical respiratory depression. Criteria for the parameters defining physiological outcomes, most notably hypoxia, varied slightly among multiple studies (see Appendix A, Table 1). The authors did not routinely perform subgroup analyses according to divergent parameters for defining physiological outcomes. Most authors reported confidence intervals, event rates, proportions, mean, standard deviation, and level of significance (see Appendix A, Table 1).

Evidence Conclusion

The literature demonstrates propofol is as safe as other agents used to induce moderate sedation for diagnostic or therapeutic procedures in the acute care setting. Furthermore, no statistically significant differences in cardiopulmonary complications exist between propofol and midazolam for moderate sedation. Patients demonstrate faster recovery time, shorter duration of sedation, and increased procedural success with propofol. Ultimately, scientific evidence does not substantiate barring propofol from moderate procedural sedation for safety concerns.

For patients undergoing moderate sedation for diagnostic or therapeutic procedures in the acute care setting, non-anesthesiologist-administered sedation is as safe as anesthesiologist-administered sedation. Non-anesthesiologist-administered sedation demonstrates superior gastroenterological procedural outcomes in terms of procedure interruption and cancellation secondary to respiratory complications. Both patients and endoscopists report lower satisfaction scores with non-anesthesiologist-administered sedation. Consideration of the negative impact non-anesthesiologist-administered sedation has on patient satisfaction scores is important; but, should not supersede preserving physiological status. Thus, focusing on such scores may be most appropriate during non-emergent, scheduled sedations.

Implications for Practice Change

Propofol for moderate sedation procedures outside the operating room is well established; and, evidence supports HCPs being able to use the safest and most effective medication for the patient and clinical situation. However, sedation is a continuum. Thus, LIPs must be competent in managing not only the level of sedation intended but also potential complications, including returning the patient to the intended level of sedation should a deeper level occur. To be qualified to assist in sedation procedures, and administer associated medications under LIP direction, RNs must receive education and training specific to the intended level of sedation. Additionally, RNs must demonstrate clinical competency administering medications used in sedation and managing patients throughout sedation. Organizations permitting RNs to assist in moderate sedation procedures must create an instructional program that includes, at minimum, standardized education points as outlined in the revised 2019 AO. These organizations must also create written P&Ps for RN role in moderate sedation, including guidelines for patient monitoring, drug administration, management of complications, and documentation.

Theoretical Model

The theory used to explain evidence and underpin this project is the Diffusion of Innovation Theory (DOI) (see Appendix B, Figure 1). E.M. Rogers initially developed the DOI theory in 1962 and modernized it in 2003. Rogers (2003) defines diffusion as "the process by which an innovation is communicated through certain channels over time among the members of a social system" (p. 26). Innovation, communication channels, time, and systems are the four core elements of the diffusion process. This social science theory illuminates decision-making factors and contexts that limit and facilitate the implementation of novel ideas, processes, and evidence. Ultimately the DOI theory helps one understand how people and systems receive, adopt, and adapt new information (Bowen & Zwi, 2005).

In the case of this project, the DOI theory informed how to examine, frame, and communicate evidence to educate BON members about the issue and persuade them to vote to approve proposed changes to the 2019 AO. The DOI theory also informed how changes to the AO and hospital P&Ps were communicated to HCPs and relevant stakeholders.

Implementation Framework

The implementation framework selected to guide this project was the evidence-informed policy and practice pathway, also called the pathway to evidence-informed policy (see Appendix C, Figure 1). Bowen and Zwi (2005) created this pathway as a progressive, three-stage framework for sourcing, using, and implementing evidence-based policy within the context of individuals, organizations, and social systems.

The first stage of this framework is evidence sourcing. Evidence should provide a multidimensional understanding of both the problem and the context in which the problem exists (Bowen & Zwi, 2005). Evidence includes research, expert views, professional opinions, politics,

and economics that, collectively, demonstrate the importance of the clinical problem, and that the proposed 2020 AO is a well-supported, potential solution. The second stage is using sourced evidence. This stage comprises the phases of introduction, interpretation, and application (Bowen & Zwi, 2005). Research evidence was introduced in various articles that inform the background and situation. These articles were interpreted with critical appraisal and evaluated according to their contextual applicability, acceptability, and utility. The third and final stage in the pathway to evidence-informed policy is assessing implementation capacity (Bowen & Zwi, 2005). The evidence used to inform the 2020 AO had to be relevant and usable statewide. All individuals, organizations, and systems, despite their unique knowledge, resources, and economics, must have been able to implement AO objectives.

Methods

This project occurred in partnership with a hospital system in the Southwestern United States serving local, national, and international adult patients. This was a dual-phasic project with each phase having a unique aim. Phase one of this project sought to revise the 2019 AO to support acute care RN administration of propofol IV push, under the direction of a LIP, for diagnostic and therapeutic procedures requiring moderate sedation. Phase two of this project sought to generate recommendations for developing and revising hospital P&Ps incongruent with the guidelines and standards of practice delineated in the 2020 sedation AO.

Ethical Considerations and Human Subject Protection

There were no participants enrolled in this study and no human subject data, patient, or protected health information was collected. Arizona State University's Intuitional Review Board deemed this project exempt (see Appendix D, Figure 1).

Project Description

Phase one of this project revised the 2019 AO and presented these revisions to the BON Scope of Practice (SOP) committee. In collaboration with project site champions, the verbiage and content of the 2019 AO was revised numerous times. Deadlines for revisions were determined based on SOP committee meeting dates. Near document completion, informal feedback was solicited from ED nursing directors from several local hospitals. In February 2020, the completed document was electronically submitted to the SOP committee and presented to committee members at the BON. It was determined the document required minor amendments prior to the committee vote. The amended document was re-submitted to the SOP committee and presented virtually to committee members during the May 2020 SOP meeting.

Phase two of this project compared existing hospital-based adult sedation P&Ps to the 2020 AO and aggregated known organizational information about departmental processes related to sedation. No recruitment materials were needed because this study had no participants. Due to COVID-19, this project was conducted online utilizing Zoom and Arizona State University email to correspond with the site champions.

Data Collection and Analysis

A crosswalk analysis of the organization's existing P&Ps and May 2020 AO was performed to determine areas of alignment and areas where P&Ps were restrictive relative to the AO. Documents were evaluated for inconsistencies in personnel and equipment required for sedation administration, RN and LIP role in sedation, criteria for RN administration of sedation medications, and RN education requirements. A summary of inconsistencies, potentially relevant stakeholders, and clinical areas where changes to current P&Ps would be most impactful was produced and presented to site champions. A stakeholder analysis was performed to clarify who is impacted and impactful to the success or failure of this project, and how stakeholder relationships may be leveraged to achieve project success. Known organizational information generated by site champions about departmental processes related to sedation was aggregated, and final recommendations for developing and revising existing hospital P&Ps were generated.

All organizational data was collected by this graduate student and was stored on this student's computer, which is password protected. After recommendations for the development and revision of hospital P&Ps were completed, all stored organizational data was deleted.

Deliverables

The deliverable for project phase one was the 2020 Advisory Opinion. Phase two deliverables pertained to organizational adaptation of the 2020 AO and were a crosswalk analysis of existing hospital-based adult sedation P&Ps, recommendations to make P&Ps congruent with AO verbiage, guidelines, and standards of practice, and a stakeholder analysis illuminating how best to leverage relevant stakeholders.

Outcomes

In May 2020, the BON approved revisions to the 2019 AO and enacted the revised AO supporting RN administration of any sedation medication, under LIP direction, for diagnostic and therapeutic procedures requiring moderate sedation in the acute care setting. This 2020 AO successfully shifted the focus from which medications nurses can and cannot administer to nurses' knowledge and competency to provide safe patient care at the intended level of sedation.

Crosswalk analysis of the 2020 AO and existing hospital-based adult sedation P&Ps revealed several inconsistencies. The most notable were that P&Ps did not allow the same degree of RN-physician collaboration or RN assessment of patient's response to the medication administered. For instance, P&Ps did not designate the pre-sedation assessment and the development of a sedation plan as collaborative processes between the sedation RN and the

proceduralist. Furthermore, P&Ps did not permit RNs to administer sedation medications to clinical response/therapeutic effect when a qualified LIP was present at the bedside. The stakeholder analysis determined interdisciplinary members of the hospital's sedation subcommittee were most impactful to project acceptance and implementation within the organization.

The 2020 AO facilitates the use of existing healthcare resources and personnel to address community health needs at the point of service and to provide timely and equitable healthcare to individuals throughout the state. Effective use of existing healthcare resources and personnel decreases financial expenditures related to procedural care for the healthcare system, organization, and patient. Removing medication names from the AO increases the document's longevity, thereby reducing the direct and indirect costs associated with updating AOs. Stakeholders plan to use project outcomes to improve hospital sedation procedures and to expand nurses' role in sedation within the organization.

Discussion

Facilitators

Project site champions' competence, experience, and past successes pioneering and implementing initiatives supporting RNs practicing at the top of their scope increased local hospital systems' and the BON's confidence in this endeavor. Unified conviction from most hospitals and emergency department healthcare providers to remove pharmacologic restrictions from the 2019 AO was beneficial to obtain support and ensure facility and staff investment in the desired future state. Within the DNP project site, partnerships among ED healthcare providers and a collaborative and innovative organizational culture encouraged the appraisal of current clinical practices and the implementation of progressive, evidence-based P&Ps.

Challenges

The potential for contextual, organizational, and social discord due to the diversity of healthcare systems affected by the AO was an obstacle to this project. However, guidelines and criteria in the revised AO were made sufficiently flexible to be adapted to the unique needs, culture, and environment of each healthcare system; yet, kept rigid enough to protect patient safety regardless of the differences among these systems.

Impact

Local

The 2020 AO allows hospitals to independently determine which, if any, medications RNs can administer for moderate sedation. Hospitals must develop and maintain sedation P&Ps, inclusive of nurses' role in sedation. RNs administering sedation medications must receive formal education and training specific to the intended level of sedation and must demonstrate clinical competency in administering sedation medications and managing patients throughout sedation.

Ensuring hospital P&Ps align with the BON AO is essential to guarantee organization and state expectations and standards for RN administration of medications for moderate sedation are synonymous. Department leaders and clinical staff must collaborate to identify areas of opportunity to improve sedation practices within their specialty. Leaders and staff must then determine how to align P&Ps with the AO to improve sedation administration within their department.

National

Enactment of the 2020 AO sets a national precedent for RNs safely practicing at the highest level within their scope and for hospitals effectively using existing healthcare resources

to provide patients safe, efficient, and personalized healthcare. Enactment of the 2020 AO validates HCP assessment and expertise as foundational to appropriate clinical decision making and supports medication selection based on suitability for patient condition and clinical situation.

Future Directions

Continual assessment and analysis of clinical practices are necessary to recognize emerging patterns and anticipate future directions in nursing and healthcare. This DNP project provides a foundation for future initiatives advocating for RN scope of practice and demonstrates the power of HCPs at the point-of-service to catalyze change.

Recommendations to revise existing, hospital-based adult sedation P&Ps are ongoing. Evidence and project outcomes continue to be shared with pertinent departmental leaders.

Conclusion

Contextual and literary substantiation is foundational to clinical practice. Current evidence supports non-anesthesiologist use of propofol for moderate sedation and demonstrates propofol is at least as safe and effective as medications specifically designated for moderate sedation, including benzodiazepines and opiates. Prohibiting competent RNs from administering medications used for moderate sedation mandates the presence of two ED physicians, or an anesthesiologist, to perform moderate sedation procedures. This mandate may not be financially or geographically feasible for some EDs, thereby impeding patients' access to high-quality, personalized, and timely healthcare. Nurses are competent to make informed decisions about medication administration and to assess patients' actual and potential responses to medications. Each state BON that supports nurses' functioning at the top of their scope of practice helps to set a precedent for nursing practice nationally. However, organizations must actualize this support by implementing P&Ps permitting RNs to function at the top of their scope and to the full extent of their licensure. Positively impacting the healthcare system, provider, and community ultimately requires political, clinical, and organizational synergism.

References

American College of Emergency Physicians. (2017). Procedural sedation in the emergency department. Annals of Emergency Medicine, 70(6), 946-946. https://doi.org/10.1016/j.annemergmed.2017.08.035

Arizona State Board of Nursing. (2019). Advisory opinion—Deep sedation, moderate sedation/analgesia, palliative sedation. https://www.azbn.gov/sites/default/files/2019-04/AO%20Deep%20Mod%20Palliative%20Sedation%20r%2003.19.pdf

- Arizona State Board of Nursing. (2020). Advisory opinion—Sedation: Deep, moderate, palliative and analgesia. https://www.azbn.gov/sites/default/files/202007/AO%20Sedation%20%20W20Deep%2C%20%20Moderate%2C%20%20Palliative%2
 0and%20Analgesia..pdf
- Bellolio, M. F., Gilani, W. I., Barrionuevo, P., Murad, M. H., Erwin, P. J., Anderson, J. R., Miner, J. R., & Hess, E. P. (2016). Incidence of adverse events in adults undergoing procedural sedation in the emergency department: A systematic review and metaanalysis. *Academic Emergency Medicine*, 23(2), 119–134.

https://doi.org/10.1111/acem.12875

- Bowen, S., & Zwi, B. A. (2005). Pathways to "evidence-informed" policy and practice: A framework for action. *PLoS medicine*, 2(7), e166. https://doi.org/10.1371/journal.pmed.0020166
- Centers for Medicare & Medicaid Services. (2011, January). *Revised appendix A, interpretive guidelines for hospitals*. https://www.cms.gov/Medicare/Provider-Enrollment-and-Certification/SurveyCertificationGenInfo/downloads/SCLetter11_10.pdf

Committee on Ambulatory Surgical Care. (2019). *Statement on safe use of Propofol*. American Society of Anesthesiologists. https://www.asahq.org/standards-and-guidelines/statementon-safe-use-of-propofol

Committee on Quality Management and Departmental Administration. (2019). *Continuum of depth of sedation: Definition of general anesthesia and levels of sedation/analgesia.* American Society of Anesthesiologists. https://www.asahq.org/standards-andguidelines/continuum-of-depth-of-sedation-definition-of-general-anesthesia-and-levelsof-sedationanalgesia

- Ghojazadeh, M., Sanaie, S., Paknezhad, S. P., Faghih, S.-S., & Soleimanpour, H. (2019). Using ketamine and propofol for procedural sedation of adults in the emergency department:
 A systematic review and meta-analysis. *Advanced Pharmaceutical Bulletin*, 9(1), 5–11. https://doi.org/10.15171/apb.2019.002
- Gouda, B., Gouda, G., Borle, A., Singh, A., Sinha, A., & Singh, P. M. (2017). Safety of non-anesthesia provider administered propofol sedation in non-advanced gastrointestinal endoscopic procedures: A meta-analysis. *Saudi Journal of Gastroenterology*, 23(3), 133-143. doi: 10.4103/sjg.SJG 501 16
- Goudra, B. G., Singh, P. M., Gouda, G., Borle, A., Gouda, D., Dravida, A., & Chandrashakhara, V. (2015). Safety of non-anesthesia provider-administered propofol (NAAP) sedation in advanced gastrointestinal endoscopic procedures: Comparative meta-analysis of pooled results. *Digestive Diseases and Sciences, 60*(9), 2612–2627. https://doi.org/10.1007/s10620-015-3608-x
- Green, S. M., Roback, M. G., Krauss, B. S., Miner, J. R., Schneider, S., Kivela, P. D.,...O'Connor, R. E. (2019). Unscheduled procedural sedation: A multidisciplinary

consensus practice guideline. *Annals of Emergency Medicine*, 73(5), e51-e65. https://doi.org/10.1016/j.annemergmed.2019.02.022

- Han, S. J., Lee, T. H., Park, S., Cho, Y. S., Lee, Y. N., Jung, Y., Choi, H. J., Chung, I., Cha, S., Moon, J. H., Cho, Y. D., & Kim, S. (2017). Efficacy of midazolam- versus propofol-based sedations by non-anesthesiologists during therapeutic endoscopic retrograde cholangiopancreatography in patients aged over 80 years. *Digestive Endoscopy*, 29(3), 369–376. https://doi.org/10.1111/den.12841
- Hatamabadi, H. R., Arhami, A. D., Derakhshanfar, H., Younesian, S., & Ghaffari, E. S. (2015).
 Propofol versus midazolam for procedural sedation of anterior shoulder dislocation in emergency department. *Trauma Monthly*, 20(2).
 https://doi.org/10.5812/traumamon.13530
- Homfray, G., Palmer, A., Grimsmo-Powney, H., Appelboam, A., & Lloyd, G. (2018). Procedural sedation of elderly patients by emergency physicians: A safety analysis of 740 patients. *British Journal of Anaesthesia, 121*(6), 1236–1241.

https://doi.org/10.1016/j.bja.2018.07.038

Josephy, C. P., & Vinson, D. R. (2018). Feasibility of single- vs two-physician procedural sedation in a small community emergency department. *The American Journal of Emergency Medicine*, 36(6), 977–982. https://doi.org/10.1016/j.ajem.2017.11.003

Lameijer, H., Sikkema, Y. T., Pol, A., Bosch, M. G. E., Beije, F., Feenstra, R., Bens, B. W. J., & ter Avest, E. (2017). Propofol versus midazolam for procedural sedation in the emergency department: A study on efficacy and safety. *The American Journal of Emergency Medicine*, 35(5), 692–696. https://doi.org/10.1016/j.ajem.2016.12.075

- Melnyk, B. M., & Fineout-Overhold, E. (2019). *Evidence-based practice in nursing and healthcare: A guide to best practice* (4th ed.). Philadelphia: Wolters Kluwer Health
- Miner, J. R., Driver, B. E., Moore, J. C., Faegerstrom, E., Klein, L., Prekker, M., & Cole, J. B. (2017). Randomized clinical trial of propofol versus Alfentanil for moderate procedural sedation in the emergency department. *The American Journal of Emergency Medicine*, 35(10), 1451–1456. https://doi.org/10.1016/j.ajem.2017.04.041
- Reibling, E. T., Green, S. M., Phan, T., Lopez-Gusman, E., Fierro, L., Davis, A., Sugarman, T.,
 & Futernick, M. (2019). Emergency department procedural sedation practice limitations:
 A statewide California American College of Emergency Physicians survey. *Academic Emergency Medicine*, *26*(5), 539–548. https://doi.org/10.1111/acem.13619

Rogers, E. M. (2003). Diffusion of innovations (5th ed.). New York: Free Press.

Schick, A., Driver, B., Moore, J. C., Fagerstrom, E., & Miner, J. R. (2019). Randomized clinical trial comparing procedural amnesia and respiratory depression between moderate and deep sedation with propofol in the emergency department. *Academic Emergency Medicine*, 26(4), 364–374. https://doi.org/10.1111/acem.13548

Appendix A

Evaluation and Synthesis Tables

Table A1

Evaluation Table

Citation	Conceptual Framework	Design	Sample/Setting	Variables & Definitions	Measurement	Analysis	Findings	Decision for Use
Bellolio et al.	Physiologic	Design: SR &	N: 55	IV: Moderate to	Higgin's &	DerSimonian-	DV1	LOE: II
(2016).	inferred	MA of RCTs	25 RCT, 30 OS	deep procedural	Thompson's I ² ;	Laird random-	(event/sedation)	LOE. II
Incidence of adverse events in adults	miened	and OS Purpose:	Databases searched:	sedation. DV1: Agitation	Cohen's unweighted kappa; VS.	effects model; Cochrane Collaboration	137/6631; est. 9.8/1000 (95%) CI 6.1-13.5).	Strengths: Assessed risk of publication bias.
undergoing procedural		Determine incidence of AE	Medline, EMBASE,	DV1: Agriation DV2: Apnea DV3: Aspiration	kappa, v S.	bias appraisal tool for RCTs;	Highest incidence with	Subgroup and sensitivity
sedation in the emergency		from procedural sedation in the	EBSCO, CINAHL,	DV4: Bradycardia		Newcastle- Ottawa Scale to	ketamine & ketamine/propof	analysis performed.
department: A systematic review and		ED.	CENTRAL, Cochrane Database of	DV5: Hypotension		assess bias risk for cohort studies;	ol. DV2	Heterogeneity assessed.
meta-analysis.			Systematic Reviews, Web	DV6: Hypoxia DV7: Intubation		subgroup and sensitivity	(event/sedation) 68/3264; est. 12.4/1000 (95%)	Proportion vs. weighted mean when pooling
Funding: None Bias: None Country: USA			of Science, Scopus.			analyses.	CI 7.9-16.9). Highest incidence with	rates from studies with infrequent
			Demographics: ED patients ≥ 18				midazolam & midazolam/opiat	events.
			y.o. requiring moderate to				е.	Limitations: Lack of

deep procedural		DV3	standardized
sedation for any		(event/sedation)	definitions and
indication.		1/2370; est.	reporting of
		1.2/1000 (95%	outcomes
Inclusion		CI 0.0-2.6).	variables among
criteria:		DV4	studies.
Published after		(event/sedation)	
2005, reporting		11/837; est.	Conclusion:
of MS and DS as		6.5/1000 (95%	Intubation,
defined by		CI 1.1-11.8).	laryngospasm,
American		Highest	aspiration rare.
College of		incidence with	Hypoxia,
Emergency		etomidate and	vomiting,
Physician		midazolam/opiat	hypotension,
Clinical Policy;		e.	apnea most
sedation		DV5	frequent.
performed in the		(event/sedation)	Detectable
ED by ED		122/5801; est.	respiratory
physicians or		15.2 (95% CI	events may be
advance practice		10.7-19.7).	precursor to
providers (i.e.		Highest	more serious
nurse		incidence with	AE.
practitioners or		propofol and	Heterogeneity of
physician		midazolam/opiat	included clinical
assistant).		e.	procedures
Exclusion		DV6	increases
criteria:		(event/sedation)	generalizability
Patients < 18		373/7116; est.	of results to ED
y.o.; sedation		40.2/1000 (95%	settings.
not conducted in		CI 32.5-47.9).	
ED; not original		Highest	
research; mixed		incidence with	
adult and		propofol and	
pediatric			

			populations; not published in past 10 years; AE not reported by medication used; medication not reported; no incidence rates of AE.				midazolam/opiat e. DV7 (event/sedation) 2/3636; est. 1.6/1000 (95% CI 0.3-2.9). Occurred in patient who received propofol.	
Gouda et al. (2017). Safety of non-anesthesia provider administered propofol sedation in non-advanced gastrointestinal endoscopic procedures: A meta-analysis. Funding: None Bias: None Country: USA	Physiologic inferred	Design: pooled MA Purpose: Evaluate safety of NAAPS in non-advanced gastrointestinal endoscopic procedures (i.e. upper endoscopy, colonoscopy).	N: 25 (POS and RCTs) (137,087 patients) Databases searched: PubMed, EMBASE, Cochrane Central Register of Controlled Trials, Scopus, and Web of Science Inclusion criteria: English and non-English language; published until April 2015; sedation administered by	IV: NAAPS DV1: Hypoxia DV2: Airway related interventions during procedure DV3: Airway related complications Airway related complications: Laryngospasm, unexpected hospitalization, unplanned conversion to general anesthesia Airway related interventions	PRISMA flow diagram, Higgin's & Thompson's I ² , event rate (per patient), Sp0 ₂ .	Fixed- and random-effects models; funnel plot; Egger's regression test; sensitivity and subgroup analysis.	DV1: 0.014 (95% CI 0.008- 0.023) Egger's intercept = - 6.48, ($p < 0.01$) DV2: 0.002 (95% CI 0.006- 0.001) Egger's intercept = - 5.096 ($p < 0.01$) DV3: 0.001 (95% CI 0.000- 0.001) Egger's intercept = - 0.762 ($p = 0.23$)	LOE: I Strengths: Large N. Values with I ² > 40% reported from random-effects modeling. Subgroup analysis. Limitations: Similar data for anesthesia providers not available for comparison. Possible publication bias with underreporting of hypoxia rates

			RN under GE direction. Exclusion criteria: NAAPS for advanced endoscopic procedures (i.e. ERCP, endoscopic ultrasound, balloon-assisted deep enteroscopy, peroneal endoscopic myotomy, endoscopic mucosal resection, HALO radiofrequency	during procedure: Jaw thrust, BVMV, oral/nasopharyn geal airway, airway-related procedure interruption and intubation Hypoxia: Sp0 ₂ ≤ 90%				and airway interventions. Conclusion: NAAPS AE rates small. Hypoxemia most common AE.
Coudro et al	Dhysiologia	Dosign: MA of	ablation).	IV1. AADS	Higgin's &	Fixed- and	IV1 (A AD).	LOF
Goudra et al. (2015). Safety of non- anesthesia	Physiologic inferred	Design: MA of pooled AE rates from POS.	N: 26 n: 10 (AAPS) n: 16 (NAAPS)	IV1: AAPS IV2: NAAPS DV1: Hypoxia	Higgin's & Thompson's I ² , 10-point satisfaction	Fixed- and random-effect models; funnel plot; influence	IV1 (AAP): <u>DV1</u> : 0.143 (95% CI 0.128- 0.159)	LOE: I Strengths: Values with I ² >
provider- administered propofol		Purpose: Evaluate and compare safety	Databases searched: PubMed,	DV2: Airway intervention DV3:	scale.	analysis; subgroup sensitivity	<u>DV2:</u> 0.1333 (95% CI 0.118- 0.150), <i>p</i> <	40% reported from random- effects
(NAAP) sedation in advanced		of NAAP & anesthesiologist administered	EMBASE, Cochrane Central Register	Endoscopist satisfaction		analysis.	0.001 <u>DV3</u> (x): 9.06 (95% CI 8.91-	modeling. Publication bias assessed.

			(10)			
gastrointestinal	propofol	of Controlled	score (10-point		9.21), <i>p</i> < 0.001	Subgroup
endoscopic	sedation for	Trials, Scopus,	scale)		<u>DV4</u> (x): 9.82	analysis
procedures:	advanced	Web of Science.	DV4: Patient		(95% CI 9.76-	performed.
Comparative	endoscopic		satisfaction		9.88), <i>p</i> < 0.001	
meta-analysis	procedures.	Demographics:	score (10-point		<u>DV5</u> (x): 340.32	Limitations:
of pooled		Age similar in	scale)		mg (95% CI	High
results.		both groups.	DV5: Total		327.30-353.33)	heterogeneity in
		34.38% (AAPS)	propofol		,	pooled values.
Funding: Not		& 37.1%	administered		IV2 (NAAP):	Reporting and
stated		(NAAPS) ASA			DV1: 0.133	physiologic DV
Bias: None		status 3-4.	Non-		(9%% CI 0.117-	definitions
Country: USA			anesthesiologist		0.152), <i>p</i> <	inconsistent
·		Inclusion	: GE or RN		0.001	among included
		criteria:	under GE		DV2: 0.035	studies. Funding
		Propofol with or	direction.		(95% CI 0.026-	not disclosed.
		without	Hypoxia: Sp0 ₂ <		0.047), p <	
		sedative/analgesi	90%		0.001	Conclusion:
		c adjuvant;			<u>DV3</u> (\bar{x}): 6.03	NAAPS as safe
		prospective data			(95% CI 5.94-	as AAPS.
		collection;			6.11), <i>p</i> < 0.001	Patient &
		performance of			$\underline{DV4}(\bar{x}): 7.22$	endoscopist
		endoscopic			(95% CI 7.17-	satisfaction
		ultrasound,			7.27)	scores lower
		ERCP, or deep			$\underline{\text{DV5}}(\bar{\mathbf{x}}): 251.44$	with NAAPS.
		small intestinal			mg (95% CI	Results may not
		enteroscopy;			244.39-258.49)	be transferrable
		sedation			244.59 250.49)	to different
		administered by				procedures or
		anesthesiologist,				settings.
		certified RN				securitys.
		anesthetist, GE,				
		or RN under GE				
		direction.				
		direction.				

Han et al.	Physiologic	Design:	N: 100	IV1: MF	10-cm VAS;	Chi-squared,	DV1:	LOE: II
(2017). Efficacy	inferred	Prospective,	n: 50 (MF)	IV2: PF	modified	Fisher's exact	MF: 24%, PF:	LOL. II
of midazolam-	miened	comparative	n: 50 (PF)	1, 2, 11	OAA/S;	test, t-test,	22%	Strengths:
versus		RCT		DV1:	modified	Mann-Whitney	p = 0.812	Standardized
propofol-based			Demographics:	Cardiopulmonar	Aldrete score;	test. SPSS	DV2:	protocol for
sedations by		Purpose:	Patients	y complications	VS; ASA	statistical	MF: 4%, PF: 6%	medication
non-		Investigate	scheduled for	DV2: Procedure	Continuum of	software.	p = 0.648	administration.
anesthesiologist		efficacy and	MS, therapeutic	interruption	Depth of		DV3:	
s during		safety of NAAP-	ERCP. \overline{x} age 84	DV3: Recovery	Sedation		minutes (SD)	Limitations:
therapeutic		and midazolam-	(MF) & 83 (PF).	time	criteria; 10-point		MF: 17.91	Small N. Power
endoscopic		based sedation.		DV4: Induction	satisfaction		(6.29)	analysis not
retrograde			Setting:	time	scale.		PF: 14.11 (4.66)	performed.
cholangiopancr			Tertiary care	DV5: Patient			<i>p</i> < 0.001	Variability in
eatography in			center in Asia.	satisfaction (10-			DV4:	patient
patients aged				point scale)			minutes (SD)	positioning
over 80 years.			Inclusion	DV6:			MF: 3.57 (2.33)	during
			criteria: ≥ 80	Endoscopist			PF: 3.60 (2.46)	procedure.
Funding:			y.o.	satisfaction (10-			<i>p</i> = 0.953	Incomplete
Soonchunhyang				point scale)			DV5:	blinding on
University			Exclusion	DV7: RN			$\overline{\mathbf{x}}$ (SD)	repeated
Research Fund			Criteria:	satisfaction (10-			MF: 8.94 (1.51)	injection of
Bias: None			Uncontrolled	point scale)			PF: 8.80 (2.10)	sedation
Country: South			coagulopathy,				p = 0.680	medications.
Korea			ASA physical	Cardiopulmona			DV6:	
			status V, known	ry			$\overline{\mathbf{x}}$ (SD)	Conclusion:
			allergy to drugs	complications:			MF: 8.38 (1.53)	Difference in
			used, history of	Hypotension,			PF: 8.44 (1.31)	cardiopulmonar
			complications	bradycardia,			p = 0.906	y complications
			with prior	tachycardia, or			DV7:	between
			sedation,	hypoxia			$\overline{\mathbf{x}}$ (SD)	sedation groups
			sedative or	Hypoxia: SpO ₂			MF: 8.70 (1.54)	insignificant.
			alcohol abuse,	< 90% on			PF: 8.64 (1.36)	Faster recovery
			inability to	supplemental			p = 0.678	from propofol.
			provide	oxygen				

			informed consent, previous sphincterotomy/ choledochoduod enostomy. Attrition: All subjects retained.	Hypotension: Systolic BP < 90 mmHg Bradycardia: HR < 50 Tachycardia: HR >120 Recovery time: Minutes from ERCP completion to modified Aldrete score of 10.				Patient, endoscopist, RN satisfaction lower with non- anesthesiologist- administered sedation.
Hatambadi et al. (2015). Propofol versus Midazolam for procedural sedation of anterior shoulder dislocation in emergency department. Funding: Shahid Beheshti University of Medical Sciences research grant Bias: None. Country: Iran.	Physiologic inferred	Design: Prospective, double-blind RCT Purpose: Compare efficacy and AE of procedural sedation PF and MF	N: 48 n: 19 (PF) n: 29 (MF) Demographics: 100% male; 31.9 y.o. (\bar{x}) ; 82.4 kg (\bar{x}) . Setting: Emergency department in Tehran. Inclusion criteria: Male & female ED patients \geq 18 y.o. with	IV1: PF IV2: MF DV1: Apnea DV2: Bradycardia DV3: Attempted joint reductions DV4: Total propofol or midazolam administered D5: Time from first injection to sedation induction D6: Time from sedation to awakening	VS	Fisher exact test, Mann-Whitney U test.	IV1 (PF): <u>DV1</u> (event/sedation): 1/19, $p = 0.39$ <u>DV2</u> (event/sedation): 2/19, $p = 0.34$ <u>DV3</u> (\overline{x}): 1.55, p = 0.21 <u>DV4</u> (\overline{x}): 1.7 mg/kg <u>DV5</u> (\overline{x}): 2.1m, p < 0.001 <u>DV6</u> (\overline{x}): 4.7m, p < 0.001; <u>DV7</u> (\overline{x}): 8.6m, p < 0.001. IV2 (MF):	LOE: I Strengths: Adequately powered. Same reduction technique for all patients. Standardized protocol for medication administration. Limitations: Apnea not defined. Subjective definitions of several key

			anterior shoulder dislocation. Exclusion criteria: Hypersensitivity to midazolam, propofol, fentanyl, or eggs; other injury; oral intake in past 4 hours; sensorimotor impairment; alcohol or recreational drug use in past 6 hours; pre- existing airway difficulty; pre- existing vascular problems.	D7: Time from sedation to full awareness of time, location, and individuals Sedation: Spontaneous eyelid closure. Awakening: Participant first opening eyes after tapped between eyebrows. Bradycardia: HR < 60			$\frac{\text{DV1}}{\text{(event/sedation):}}$ $\frac{\text{DV2}}{0/29, p = 0.39}$ $\frac{\text{DV2}}{\text{(event/sedation):}}$ $\frac{1/29, p = 0.34}{1/29, p = 0.34}$ $\frac{\text{DV3}(\bar{\mathbf{x}}): 1.3, p = 0.21}{0.21}$ $\frac{\text{DV4}(\bar{\mathbf{x}}): 1.0}{\text{mg/kg}}$ $\frac{\text{DV5}(\bar{\mathbf{x}}): 4.6\text{m}, p < 0.001}{0.001}$ $\frac{\text{DV6}(\bar{\mathbf{x}}): 11.7\text{m}, p < 0.001}{0.001}$ $\frac{\text{DV7}(\bar{\mathbf{x}}): 32\text{m}, p < 0.001.$	concepts. Lack of MD blinding. Conclusion: Faster induction and recovery with propofol. Shorter sedation and analgesia with propofol. No significant difference in apnea or bradycardia between groups. Homogeneity of participants may restrict utility of results to patients with similar demographics.
Josephy & Vinson (2017). Feasibility of single- vs two- physician procedural sedation in a	Physiologic inferred	Design: Retrospective (before/after) OS of prospectively collected data.	N: 381 n: 246 (1-MD) n: 135 (2-MD) Demographics: Consecutive	IV1: Single-MD sedation IV2: Two-MD sedation DV2: Unanticipated	ASA Continuum of Depth of Sedation criteria; number and proportion of events for categorical data;	Descriptive statistics; bivariate comparison; Fisher's exact test (categorical data); t-test	IV1 (single- MD): <u>DV1</u> (event/sedation) 0/246 (0%). <u>DV2</u>	LOE: II Strengths: Pilot testing of data collection instrument. Blinding of

small	Purpose:	series of ED	escalation of	means with	(continuous	(event/sedation)	personnel to
community	Examine	patients.	care	standard	variables);	8/246 (3.3%)	study
emergency	feasibility and	Single-MD—	DV2: BVMV	deviations for	relative	p = 0.51	hypothesis.
	safety of single-	$\frac{3 \text{ mgle-MD}}{35.1 \text{ y.o.} (\overline{x})};$	with or without	continuous		Difference 0.02	Standardized
department.	and two-MD	66% male; 26%	apnea $> 30s$	variables	frequency	(95% CI -0.03-	protocol for
Fredings Mana	procedural		DV3:	variables			1
Funding: None	1	<13 y.o.;				0.05)	monitoring and
Bias: None	sedation in ED.	93.1%, targeted	Hypoxemia			DV3	documenting
Country: USA		dissociative/DS	DV4: Procedure			(event/sedation)	sedation in
		and 6.9%	termination			1/246 (0.4%)	electronic health
		targeted MS.	secondary to			p = 0.28	record.
		<u>Two-MD</u> —32.1	sedation-related			Difference 0.01	Evaluated inter-
		y.o. (x); 67%	complication			(95% CI -0.03-	rater reliability.
		male; 32% < 13				0.05)	Limitations:
		y.o., 68.2%	Unanticipated			<u>DV4</u>	Small N. n
		targeted	escalation of			(event/sedation)	assignment non-
		dissociative/DS	care: Unplanned			1/246 (0.4%)	randomized.
		and 31.9%	intubation and			p = 1.0	Potential for
		targeted MS.	mechanical			Difference 0.01	missing data.
		Joint/fracture	ventilation,			(95% CI -0.03-	Confounding
		reduction most	cardiac arrest,			0.05)	variables limit
		common	dysrhythmia,				comparison of
		procedure in	unplanned			IV2 (two-MD):	BVMV endpoint
		both groups.	hospitalization			DV1	between groups.
		Setting: Small,	attributable to			(event/sedation)	
		semi-rural,	sedation.			0/135 (0%)	Conclusion:
		geographically	Hypoxemia:			<u>DV2</u>	No significant
		isolated	$Sp0_2 < 90\%$ for			(event/sedation)	difference in
		community	$\geq 1m$			2/135 (1.5%)	sedation
		hospital with				p = 0.51	outcomes
		single-physician				DV3	between groups.
		ED coverage.				(event/sedation)	Single-MD
		Ũ				2/135 (1.5%)	administration
		Inclusion				p = 0.28	of procedural
		criteria: ED				1	sedation in the

			patients of any age who received MS-DS for any procedural indication from 1/2013 to 12/2016. Exclusion criteria: None stated.				$\frac{\text{DV4}}{(\text{event/sedation})}$ $\frac{0/135 (0\%)}{p = 1.0}$	ED as safe and effective as two- MD administration.
Lameijer et al. (2017). Propofol versus Midazolam for procedural sedation in the emergency department: A study on efficacy and safety. Funding: None Bias: Not stated Country: Netherlands	Physiologic inferred	Design: Multicenter retrospective cohort from 2011-2015. Purpose: Compare incidence of procedure success and AE with propofol versus midazolam sedation.	N: 592 n: 284 (P) n: 308 (M) Demographics: ED patients 68 y.o. (\bar{x}) with hip/orthopedic dislocation, requiring fracture reduction, abscess I&D, or other procedure for which procedural sedation indicated. Setting: One of five ED hospitals in	IV1: P IV2: M DV1: Procedure success DV2: Sedation AE DV3: \geq 1 sedation event DV4: Apnea responding to verbal or tactile stimulus DV5: Oxygen desaturation DV6: Interventions during total sedation events DV7: Sedation depth achieved DV8: Sedation duration	VS	Kolmogorov- Smirnov test with Lilliefors' correction, Chi-square test, Independent t- test and Mann Whitney, Loglinear analysis. SPSS statistical software.	DV1: P: 92%, M: 81% p = < 0.001 Missing 8 DV2: P: 0, M: 0 DV3: P: 23%, M: 11% p = < 0.001 Missing 3 DV4: P: 20%, M: 10% p = 0.004 DV5: P: 1%, M: 8% p = 0.001 DV6: (% of total sedation events) P: 61%, M: 66% Missing 26 DV7 Missing 111 Deep-	LOE: III Strengths: Medication and monitoring for all patients per Dutch national guidelines. Limitations: Missing data. Bias not stated. Possible over- /under- representation of results from some facilities due to implementation of national documentation template for

	.1			D 450/ 35 050/	1 1
	northern	~		P: 45%, M: 25%	procedural
	Netherlands.	Sedation depth:		<i>p</i> = < 0.001	sedation, from
		According to		Moderate-	which data
	Inclusion	ASA Continuum		P: 35%, M: 52%	collected, at
	criteria: ≥18	of Depth of		p = < 0.001	different times.
	y.o.; single-	Sedation criteria.		Light-	Conclusion:
	agent sedation	Sedation		P: 12%, M: 20%	Higher rate of
	with only	adverse events:		p = 0.02	procedure
	propofol	Aspiration,		DV8 (minutes):	success with
		laryngospasm,		P: 10 (8-15), M:	propofol.
	Exclusion	airway		17 (12-26)	Comparable
	criteria:	obstruction not		p = < 0.001	sedation events
	< 18 y.o.; receipt	relieved by		Missing 371	between groups.
	of muscle	SAMs, need for		-	Propofol more
	relaxant in	intubation,			effective, and as
	addition to	hospitalization,			safe as
	sedative;	or mortality.			midazolam for
	sedation with	Sedation			procedural
	nitrous oxide,	events:			sedation in the
	etomidate, or	Agitation,			ED.
	ketamine;	vomiting, airway			
	receipt of >1	obstruction			
	sedative or	alleviated by			
	hypnotic.	SAMs, apnea			
	Attrition: Not	responding to			
	discussed.	verbal or tactile			
		stimulus,			
		hypotension,			
		oxygen			
		desaturation.			
		Apnea:			
		Absence of			
		spontaneous			
		breath for ≥ 20 s			
		01 call $101 \ge 208$			

				Oxygen desaturation: Sp0 ₂ < 90% for > 30s				
				Hypotension: Systolic BP < 90				
Miner et al.	Physiologic	Design: RCT	N: 108	mmHg. IV1: Propofol	VS, nasal	Chi square test,	IV1: 11/56	LOE: I
(2017).	inferred	8	n: 56 (propofol)	sedation	ETCO ₂ , OAA/S	STATA 10.0,	(20%)	
Randomized		Purpose:	n: 52	IV2: Alfentanil	sedation depth	descriptive	experienced ≥ 1	Strengths:
clinical trial of propofol versus		Determine frequency of	(Alfentanil)	sedation		statistics for secondary	ARE requiring \geq 1 clinical	Standardized protocol for
Alfentanil for		AREs requiring	Demographics:	DV1:		outcomes,	intervention;	medication
moderate		clinical	Propofol-36	Experience ≥ 1		frequency and	25/56 (45%)	administration.
procedural		intervention	y.o. (x), 86 kg	ARE requiring \geq		percentage of	experienced an	Adequately
sedation in the		with alfentanil	$(\overline{\mathbf{x}})$; 45% male;	1 clinical		occurrence for	ARE and 25/56	powered.
emergency		and propofol	abscess I&D	intervention.		categorical data,	(45%) required a	.
department.		MS.	(73%) and	DV2:		medians and	clinical	Limitations:
Funding: not			fracture/dislocati	Experience ARE		quartile ranges	intervention;	24% more
stated			on reduction	DV3: Require		for continuous	sedation efficacy	participants in
Bias: not stated			(27%); 58%	clinical intervention		data.	75%; sedation	propofol group
Country: USA			with ASA status $= 1$.	DV4: Sedation			depth achieved $(O \land \land (S) = 2 (\overline{x})$	having ASA status > 1 .
			= 1. Alfentanil—32	efficacy			$(OAA/S) = 2(\overline{x})$	Status > 1. Fracture/dislocat
			<u>Anentaini</u> -32 y.o. (\overline{x}), 86 kg	DV 5: Sedation			IV2: 12/52	ion reductions
			$(\bar{x}); 56\%$ male;	depth achieved			(23%)	disproportionate
			abscess I&D	(OAA/S score)			experienced ≥ 1	between groups.
			(54%) and	(01115 50010)			ARE requiring \geq	Lack of MD
			fracture/dislocati	ARE: Hypoxia			1 clinical	blinding.
			on reduction	$(SpO_2 < 92\%),$			intervention;	Funding and
			(46%); 34%	central apnea,			29/52 (56%)	bias not
			with ASA status	sub-clinical			experienced an	disclosed.
			= 1.	respiratory			ARE and 18/52	
				depression,			(35%) required a	

Setting: Urban,	complete airway	clinical	Conclusion:
county medical	obstruction,	intervention;	Propofol as safe
center.	laryngospasm,	sedation efficacy	as alfentanil for
	aspiration	12%; sedation	MS. Deeper
Inclusion	Central apnea:	depth achieved	sedation depth
criteria: ≥ 18	ETCO ₂	$(OAA/S) = 3(\overline{x})$	achieved with
y.o.	waveform		propofol.
	absence > 6s		Frequency of
Exclusion	Sub-clinical		AREs similar
criteria: Unable	respiratory		between groups.
to consent, ASA	depression:		
status > 2 ,	ETCO ₂ decrease		
known	>10 mmHg or		
hypersensitivity	MD report of		
to alfentanil or	partial upper		
propofol,	airway		
pregnant,	obstruction		
prisoner, signs	Complete		
of intoxication.	upper airway		
	obstruction:		
Attrition: 18	Absent ETCO ₂		
did not undergo	waveform and		
sedation (7 in	MD report of		
propofol and 11	ventilatory effort		
in alfentanil	Clinical		
group)	interventions:		
	Supplemental		
	oxygen added or		
	increased during		
	procedure;		
	BVMV;		
	repositioning to		
	improve		
	ventilation;		

				stimulation to				
				induce				
				ventilation; use				
				of airway				
				adjunct.				
Reibling et al.	Physiologic	Design: Survey	N: 211	IV1: Procedural	Questionnaires;	Descriptive;	DV1:	LOE: IV
(2018).	inferred	Design: Survey	n: 91 (restricted)	sedation in ED	hospital	multiple logistic	None:	LOL.IV
Emergency	merred	Purpose:	n. 91 (restricted)	sedución in ED	demographics	regression for	MS: 176 (83%)	Strengths:
department		Estimate	Demographics:	DV1: Extent of	demographies	predictors of	DS: 128 (61%)	Convenience
procedural		frequency and	176 ED medical	restrictions		restrictions	P: 146 (69%)	sample of
sedation		describe nature	directors (i.e.	imposed		resulterions	M: 197 (93%)	sedation experts
practice		of procedural	MD in charge of	DV2: Reasons			<u>Some:</u>	and medical
limitations: A		sedation	ED) and 35	to support			MS: 32 (15%)	directors'
statewide		restrictions,	(17%) staff ED	restrictions as			DS: 41 (19%)	reviewed survey
California		based on	physicians. 42	cited by			P: 49 (23%)	for relevance
American		sedation depth	government	respondents			M: 10 (5%)	and clarity. Pilot
College of		and drug, in	owned, 135	indicating some-			Total:	prior to
Emergency		California EDs	nonprofit, 34	total restriction			MS: 1 (0.5%)	implementation.
Physicians		statewide.	profit. 205	DV3: Creator			DS: 37 (18%)	Process to
survey.			general	and enforcer of			P: 13 (16%)	eliminate
			population and 6	restrictions as			M: 1 (0.5%)	duplicate
Funding: None			pediatric. 25	cited by			DV2: 20/91	responses and
Bias: None			teaching	respondents			(22%)	permit contact
Country: USA			hospitals. 49	indicating some-			anesthesia	of non-
			trauma centers.	total restriction			chief's personal	responders.
			40,041/year	DV4: Most			judgement;	Adequately
			Median patient	common			21/91 (23%)	powered
			volume.	alternative care			Joint	regression
				provided due to			Commission	analysis.
			Setting: General	restrictions as			standards; 18/91	
			and pediatric	cited by			(20%) ASA	Limitations:
			EDs throughout	respondents			guidelines;	Lack of
			California.	indicating some-			26/91 (29%)	respondent
				total restriction				

Inclusion	DV5: Perceived	unknown or	anonymity. 64%
criteria:	clinical result of	other.	response rate.
Licensed ED	alternative care	DV3: 56/91	Conclusion:
hospital in the	options as cited	(62%)	Substantial and
state of	by respondents	Anesthesia	widespread
California.	indicating some-	medical director;	barriers to MD
Exclusion	total restriction	27/91 (30%)	administration
criteria:		hospital medical	of ED
Hospital/facility	Restrictions on	staff or medical	procedural
without licensed	procedural	executive	sedation.
ED.	sedation:	committee;	Limitations to
	Inability to	15/91 (16%) ED	procedural
Attrition: 117	administer	medical director;	sedation
EDs did not	moderate-deep	15/91 (16%)	practices result
respond.	sedation and/or	hospital	in adverse
	propofol,	administration.	clinical
	ketamine,	DV4: Using less	consequences
	midazolam,	effective or less	for patients.
	fentanyl,	safe sedatives	Influence of
	etomidate for	(27/91);	local political
	sedation in	performing	forces suggested
	accordance with	procedures	as etiology for
	ACEP sedation	without sedation	restrictions.
	guidelines	in situations	
		where sedation	
		preferred	
		(15/91).	
		DV5: 29/91	
		(32%)	
		inadequate	
		levels of	
		sedation and	
		pain control;	
		28/91 (31%)	

							extended ED stays; 26/91 (29%) unknown or other.	
Schick et al.	Physiologic	Design:	N: 116	IV1: MS	10-cm VAS,	Descriptive	DV1: MS: 54%,	LOE: I
(2019).	inferred	Prospective	n: 54 (MS)	IV2: DS	OAA/S sedation	statistics,	DS: 78%	с, д
Randomized		RCT	n: 53 (DS)	DV/1	depth, nasal	Wilcoxon Rank-	p = 0.04	Strengths:
clinical trial		D	D 1.	DV1:	ETCO ₂ , VS,	sum test.	RD with 95%	Adequately
comparing		Purpose:	Demographics:	Respiratory	visual memory		CI: 0.24 (0.06-	powered.
procedural		Determine if	No significant	depression by	test.		0.41)	Limitations:
amnesia and		assigning a	differences	sedation level			DV2: MS: 13%,	No standardized
respiratory		target depth of	between groups.	achieved			DS: 57%	protocol for
depression		sedation affects	ASA status 1-2.	DV2:			p = 0.001	medication
between		procedural	Sedation for	Occurrence of			RD with 95%	administration.
moderate and		amnesia and	abscess I&D,	one ARE by			CI: 0.45 (0.26-	a
deep sedation		incidence of	orthopedic	sedation level			0.57)	Conclusion:
with Propofol		AREs	reduction,	achieved			DV3: MS: 3%,	Procedural
in the			cardioversion,	DV3:			DS: 29%	recall
emergency			other. Age (\overline{x})	Occurrence of			p = 0.02	comparable
department.			41.5 y.o. (MS)	>1 ARE by			RD with 95%	between groups.
			& 39 y.o. (DS).	sedation level			CI: 0.27 (0.13-	Sedation depth
Funding: UMF				achieved			0.39)	achieved often
Medical Student			Setting: Urban	DV4: Total			DV4: MS: 6,	different than
Research Grant			county ED.	AREs by			DS: 64	targeted. Greater
Bias: None				sedation level			p = 0.001	number AREs
Country: USA			Exclusion	achieved			RD = 0.79 with	with DS.
			Criteria: Non-	DV5: Achieved			CI of 95% (0.62-	Targeting MS
			English	pre-procedure			0.88)	decreases
			speaking,	targeted level of			DV5: MS: 50%,	occurrence of >1
			pregnant,	sedation			DS: 77%	ARE, but not
			clinically	DV6: Sedation			p = 0.02	overall
			intoxicated,	depth achieved			RD with 95%	incidence.
			incarcerated.	(OAA/S)			CI: 0.25 (0.06-	
							0.41)	

Attrition:	DV7:	DV6: MS: 3.0
7.76%. One	Procedural recall	(2.7-3.3)
participant left	(VAS score in	DS: 2.3 (2.1-2.5)
ED before	cm) by sedation	p = 0.001
procedure	level achieved	DV7: MS: 0.13
	level achieved	
performed, two		(0.0-0.2) DS:
withdrew, four	ARE: ≥ 1	0.08 (0.0-0.1)
did not undergo	feature of	p = 0.08
sedation, one	respiratory	
could not see	depression plus	
visual prompts;	≥1 associated	
one protocol	SAM.	
violation.	SAM: Use of	
	airway adjuncts,	
	such as bag-	
	valve mask,	
	airway	
	repositioning,	
	oral airway or	
	nasal trumpet,	
	and/or	
	stimulation to	
	induce	
	respirations.	
	Respiratory	
	depression:	
	Hypoxia or	
	ETCO ₂	
	waveform	
	absence.	
	Hypoxia: SpO ₂	
	$\leq 91\%$ or change	
	in $ETCO_2 \ge 10$	
	mm Hg	

		MS & DS:		
		According to		
		ASA Continuum		
		of Depth of		
		Sedation criteria.		

Table A2

Synthesis Table

Citation	Bellolio et al.	Gouda et al.	Goudra et al.	Han et al.	Hatambadi et al.	Josephy & Vinson	Lameijer et al.	Miner et al.	Reibling et al.	Schick et al.
Year	2016	2017	2015	2017	2015	2017	2017	2017	2018	2019
SR	SR									
MA	MA		MA							
RCT				RCT	RCT			RCT		RCT
OS						OS				
Cohort							Cohort			
Survey									Survey	
Sample Size	55 articles	25 articles	26 articles	100	48	381	592	108	211	116
Country	•		•		·		•	•		•
United States	Х	Х	Х			Х		Х	Х	Х
Iran					Х					
South Korea				Х						
Netherlands							Х			
Procedure Setting	•		•		•			•		
Gastroenterology		GE	GE	GE						
ED	ED				ED	ED	ED	ED	ED	ED
Demographics		1	•		•			•		•
Age (y.o.)	≥18	NR	NR	83 (x) - MF 84 (x) - PF	31.9 (x)	$35.1(\overline{x}) - $ one MD $32.1(\overline{x}) - $ two MD	68 (x)	$36 (\overline{x}) - P$ $32 (\overline{x}) - A$	NR	39 (x) - DS 41.5 (x) - MS
	Bellolio et al.	Gouda et al.	Goudra et al.	Han et al.	Hatambadi et al.	Josephy & Vinson	Lameijer et al.	Miner et al.	Reibling et al.	Schick et al.

Key: A – alfentanil; AAS – anesthesiologist-administered sedation; AE – adverse event(s); ASA – American Society of Anesthesiologists; DS – deep sedation; DV – dependent variable; ED – emergency department; GE – gastroenterology; IV – independent variable; LOS – level of sedation; M – midazolam; MA – meta analysis; MD – medical doctor; MF – midazolam and fentanyl; MS – moderate sedation; NAAS – non-anesthesiologist-administered sedation; NR – not reported; OS – observational study; P – Propofol; PF – Propofol and fentanyl; POS – prospective observational study; RCT – randomized control trial; SR – systematic review; y.o. – years old; \bar{x} – mean

Table A2

Synthesis Table

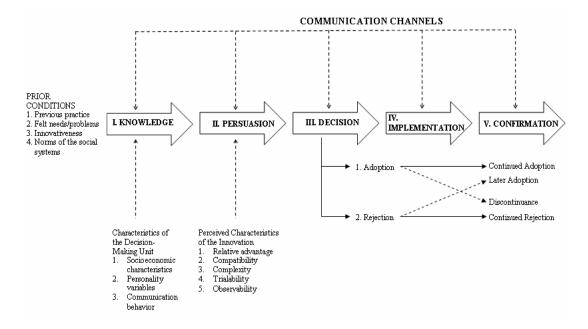
	Bellolio et al.	Gouda et al.	Goudra et al.	Han et al.	Hatambadi et al.	Josephy & Vinson	Lameijer et al.	Miner et al.	Reibling et al.	Schick et al.
Airway intervention	Х	Х	Х			Х	Х	Х		Х
Bradycardia	Х			Х	X					
Hypotension	Х			Х						
Apnea	Х				X		Х	Х		
Нурохіа	Х	Х	Х	Х		Х	Х	Х		Х
DV - Outcomes										
Other Medication								Other	Other	
Midazolam + Fentanyl				MF	MF					
Midazolam							М	М	М	
Propofol + Fentanyl				PF	PF					
Propofol		Р	Р				Р	Р	Р	
LOS	LOS									LOS
Two-MD sedation						Two-MD				
Single-MD sedation						Single-MD				
NAAS		NAAS	NAAS						NAAS	
AAS			AAS							
IV - Intervention										
NAAS	Х	Х	Х	Х	NR	Х	Х	NR	Х	NR
AAS			Х		NR			NR		NR
Provider								· · · · ·		
ASA physical status	NR	NR	3-4	1-4	NR	NR	NR	1-2	NR	1-2
Sex	NR	NR	NR	NR	100% male	66% - 67% male	NR	45% - 56% male	NR	NR

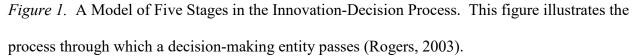
Key: A – alfentanil; AAS – anesthesiologist-administered sedation; AE – adverse event(s); ASA – American Society of Anesthesiologists; DS – deep sedation; DV – dependent variable; ED – emergency department; GE – gastroenterology; IV – independent variable; LOS – level of sedation; M – midazolam; MA – meta analysis; MD – medical doctor; MF – midazolam and fentanyl; MS – moderate sedation; NAAS – non-anesthesiologist-administered sedation; NR – not reported; OS – observational study; P – Propofol; PF – Propofol and fentanyl; POS – prospective observational study; RCT – randomized control trial; SR – systematic review; y.o. – years old; \bar{x} – mean

Table A2

Synthesis Table

Endoscopist		Х	Х						
Satisfaction score									
Patient satisfaction		Х	Х						
score									
Induction time			Х	Х					
Recovery time			Х	Х					
Sedation Duration						Х			
LOS achieved						Х	Х		Х
Total dose		Х		Х					
administered									
Procedural outcomes				Х	Х	Х	Х		
Sedation restrictions								Х	

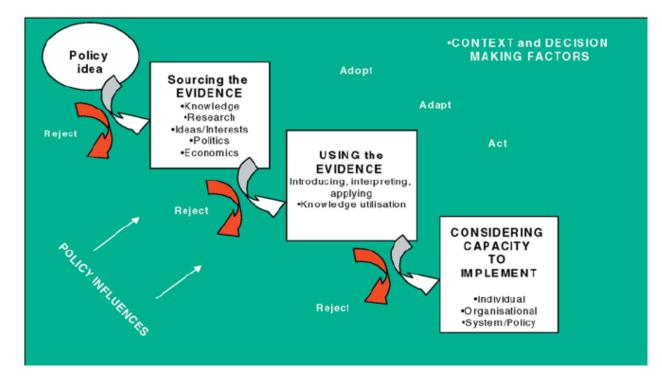

Key: A – alfentanil; AAS – anesthesiologist-administered sedation; AE – adverse event(s); ASA – American Society of Anesthesiologists; DS – deep sedation; DV – dependent variable; ED – emergency department; GE – gastroenterology; IV – independent variable; LOS – level of sedation; M – midazolam; MA – meta analysis; MD – medical doctor; MF – midazolam and fentanyl; MS – moderate sedation; NAAS – non-anesthesiologist-administered sedation; NR – not reported; OS – observational study; P – Propofol; PF – Propofol and fentanyl; POS – prospective observational study; RCT – randomized control trial; SR – systematic review; y.o. – years old; \bar{x} – mean


Appendix B

Theoretical Model

Figure 1

A Model of Five Stages in the Innovation-Decision Process



Appendix C

Implementation Framework

Figure 1

The Evidence-Informed Policy and Practice Pathway

Figure 1. The Evidence-Informed Policy and Practice Pathway. This figure illustrates the evidence-based process of generating and implementing new policies (Bowen, & Zwi, 2005).

Appendix D

Letter of Exemption

Figure 1

IRB Determination of Not Human Subjects Research

NOT HUMAN SUBJECTS RESEARCH DETERMINATION

Erin Tharalson EDSON: DNP

Erin.Tharalson@asu.edu

Dear Erin Tharalson:

On 9/11/2020 the ASU IRB reviewed the following protocol:

Type of Review:	Initial Study
Title:	Policy to Practice Change: The Development and
	Implementation of Sedation Policy and Protocols.
Investigator:	Erin Tharalson
IRB ID:	STUDY00012493
Funding:	None
Grant Title:	None
Grant ID:	None
Documents Reviewed:	• Bonfield_B_CITI Training Certificate.pdf, Category:
	Other;
	Sedation Policy and Procedures_Agency Letter of
	Support_10_09_20.pdf, Category: Other;
	 Sedation Policy and Procedures_IRB
	Protocol_10_09_20.docx, Category: IRB Protocol;
	 Tharalson_E_CITI Training Certificate.pdf,
	Category: Other;

The IRB determined that the proposed activity is not research involving human subjects as defined by DHHS and FDA regulations.

IRB review and approval by Arizona State University is not required. This determination applies only to the activities described in the IRB submission and does not apply should any changes be made. If changes are made and there are questions about whether the activities would change the determination, contact the IRB at research.integrity@asu.edu to determine the next steps.