### **Strategies for Help in Crowded Emergency Rooms**

Ilyssa D. Bain

Edson College of Nursing and Health Innovation, Arizona State University

#### **Author Note**

There are no conflicts of interest to disclose. I thank Aimee Bucci for her mentoring, guidance, and insightful feedback throughout the development and execution of this project.

Correspondence concerning this article should be addressed to Ilyssa D. Bain, Edson College of Nursing and Health Innovation, Arizona State University, Phoenix, AZ 85004, United States. Email: ibain@asu.edu

#### Abstract

#### **Objective**

Pediatric patients with asthma are frequently cared for in the emergency department (ED). Many studies show early administration of corticosteroids (CS) can improve outcomes for children experiencing an asthma exacerbation. Despite the evidence, delays in care remain. The purpose of this study is to streamline the process for nurse-initiated, triage-based CS administration and determine the effect on overall length of stay (LOS).

#### **Methods**

For this quality improvement initiative, ED nurses at a large, freestanding, children's emergency department in the southwestern United States were given education on inclusion and exclusion criteria for nurse-initiated CS in ED triage. Time to CS administration, LOS, and whether the ED nurse or provider ordered the CS were evaluated through chart reviews of patients presenting with a chief complaint of difficulty breathing. These metrics were compared to charts from the previous year during the same timeframe to evaluate for improved timeliness of CS delivery.

#### Results

Time to CS administration decreased from a mean of 98.6 minutes to 57.6 minutes. LOS decreased from an average of 259.3 minutes to 169.6 minutes. The effect of timely CS on LOS was significant for December p = .003, January p = .002, and February p = <.001.

#### **Conclusion**

A streamlined process for CS delivery to pediatric patients experiencing an asthma exacerbation can enable providers to achieve efficient and effective care in the ED and decrease a patient's overall LOS.

Keywords: asthma, steroids, treatment, emergency department, pediatrics

# Pediatric Patients with Asthma and Early Steroid Administration: Strategies for Help in Crowded Emergency Rooms

Asthma is a common chronic disease in children and is one of the top reasons for Emergency Department (ED) visits. Pediatric patients with asthma account for a substantial number of hospitalizations each year. Systemic corticosteroid (CS) delivery is a mainstay of care for children presenting with an asthma exacerbation. Early intervention can decrease time to final disposition in the ED, overall length of stay (LOS), and the need for hospitalizations, yet several factors in the emergency setting can delay timely administration of CS.

#### **Problem Statement**

The Centers for Disease Control and Prevention estimate that one in ten American children are affected by asthma (Ross et al., 2016). Children in Arizona have a disproportionately higher rate of asthma when compared to the rest of the nation, and the prevalence continues to grow over time (American Lung Association in Arizona [ALAA], 2016). The most recent data from the Arizona Department of Health Services (ADHS) reports a cost of greater than \$115 million for asthma-related ED visits and hospitalizations (ALAA, 2016).

Previously published studies demonstrate nurse-initiated, triage-based CS have significant benefits including shorter LOS in the ED and decreased hospitalization rates, yet protocols have not been widely adopted (Ross et al., 2016). One landmark study describes ED wait times, lower acuity scores, and teaching structures within the hospital as factors that can hinder timely steroid administration (Bhogal et al., 2012). The Office of Disease Prevention and Health Promotion (ODPHP, 2018) identified reducing asthma-related ED visits and decreasing hospitalizations for children with asthma as two of their Healthy People 2020 goals and strives to further decrease these numbers to meet 2030 goals. While there are national guidelines that structure the assessment of and interventions for pediatric patients with asthma, the effectiveness of guideline implementation is variable. Still, more than one-half of children presenting to the ED with wheezing, shortness of breath, chest tightness, and coughing continue to be admitted for inpatient care (Rutman et al., 2016). Guidelines developed by the National Heart, Lung, and Blood Institute (NHLBI, 2007) recommend early administration of oral systemic CS but do not recommend a timeframe in which to administer them to optimize the effect.

#### **Purpose and Rationale**

ED healthcare practitioners (HCP) caring for pediatric patients with asthma are challenged to determine when hospitalization is necessary, yet a streamlined process for initiating care is lacking. Prior studies have demonstrated that nurse-initiated CS in triage decrease LOS (Sneller, et al., 2020). Additionally, there is a relationship between admission rate and the time elapsed between the intake of steroids (Bhogal et al., 2012). The implementation of a process to standardize and streamline the initiation of treatment has the potential to increase efficiency while reducing costs related to ED visits and admissions. The purpose of this paper is to identify how the administration of nurse-initiated, triage-based CS to pediatric pateints experiencing an asthma exacerbation affects LOS in the ED.

#### **Background/Significance**

The National Institute of Health (NIH) guidelines for asthma management were developed in 1992 and revised in subsequent years to optimize care; however, asthma remains a significant cause of morbidity and mortality in children.

#### **Pediatric Patients with Asthma**

Asthma accounts for more than 600,000 pediatric ED visits and 155,000 hospitalizations per year in the United States (Rutman et al., 2016). Nationally, 9.2% of children are diagnosed with the disease. By comparison, 10.9% of children in Arizona are impacted which accounts for more than 174,000 of Arizona's youth ages 17 years of age and younger (ALAA, 2016). Less than 50% of pediatric patients with a diagnosis of asthma in Arizona have an action plan established by their primary care provider (PCP) to help caregivers manage their child's disease and improve their quality of life (ALAA, 2016). Without an action plan, many caregivers turn to the ED when their child is having difficulty breathing. Infants and young children may not have a current diagnosis of asthma and still present with asthma-related symptoms. The preschool-age child is at risk for the greatest decline in lung function and has the poorest control over their asthma (Castro-Rodriguez et al., 2016). It is important to recognize symptoms and to provide timely steroids because the age for first asthma hospitalization continues to decrease over time (Castro-Rodriguez et al., 2016).

#### **Steroid Administration in Triage**

The Institute of Medicine (IOM) Committee on the Future of Emergency Care in the United States Health System has referred to ED crowding as "a national epidemic" (Hwang et al., 2016). Standing orders (SO) enable nurses to initiate care in a specific set of circumstances and have been shown to decrease LOS, time to critical interventions, improve throughput, and increase patient comfort and employee satisfaction (Hwang et al., 2016). These orders are approved by the medical director and are derived from common practice. Prior studies have shown nurse-initiated CS in triage, before physician assessment, decrease rate of return to the ED and LOS (Sneller et al., 2020).

Bekmezian et al. (2013) found a higher ED census to be associated with delayed administration of CS for children with moderate to severe asthma exacerbations. The hourly visit pattern identified by Kang &Park (2015) in one day showed a bimodal distribution with census peaks from 10 a.m. to 11 a.m. and 8 p.m. to 9 p.m. Patient visit volumes may change over time, but they are important to be aware of to hone efficiency in care. A nurse-initiated asthma pathway that includes triage-based CS results in decreased time to CS delivery and, in turn, can decrease LOS. LOS is an important measure in the ED because it is a reflection of quality, safe, efficient, timely, and patient-centered care.

#### **Current State**

Administration of CS early in the care of patients with asthma has long been acknowledged as beneficial. While clinical guidelines recommend the administration of CS in children, the effectiveness of clinical pathways to consistently reduce hospitalizations is unclear because recommendations for timing of administration of CS are variable. In a study by Bekmezian et al. (2013), for patients who arrived during a time when the ED census was higher, the likelihood of receiving timely CS was less compared to when the ED census was lower. For every 10 additional patients in the ED, the odds of receiving steroids within 60 minutes of arrival decreased by 21% (Bekmezian et al., 2013).

In a study by Zemek et al. (2012), 19% of children were admitted after provider-initiated CS, versus 11% admitted after nurse initiation in triage. Secondary outcomes of triage-based CS include improved efficiency of children receiving steroids, progression from moderate criteria to mild exacerbation status faster, and earlier time to discharge (Zemek et al., 2012). Prompt administration of CS is also shown to reduce the need for pediatric transfers from community hospitals to pediatric hospitals (Walls et al., 2017). The recurring theme in the literature is for

children to receive CS as soon as possible because early intervention can decrease the overall LOS (Walls et al., 2017).

#### **Internal Evidence**

There are over 100,000 ED visits each year at a freestanding, 433-bed, children's tertiary care center. Wait time are longest during the months of December through February when the census is highest. Because it is a teaching facility, patients are seen individually by a resident, fellow, and then an attending physician before treatment and interventions are initiated. This model of teaching leads to a further delay in care for the patient because physicians in training first need to discuss their plan with the supervising doctor.

Data indicates when ED census and wait times are high, there is a delay in the initiation of critical treatment interventions that have the potential to reduce the number of hospitalizations. To combat this, the ED has a set of standing orders (SO) for nurses to initiate care in a timely fashion for patients who meet spsecific criteria. The projecet site has a SO for nurses to administer dexamethasone to patients experiencing an asthma exacerbation, however it was identified by one ED physician that nurses do not use the SO as often as there is the opportunity to. Numeric data reveals that when the census is high and nurses do not adhere to SO, wait times have delayed CS upwards of five hours. An intervention that encourages the use of the existing dexamathasone SO supports the goals identified on the state and national levels to reduce asthma related costs and hospitalizations.

#### PICO

How does the administration of corticosteroids in triage to pediatric patients with asthma affect length of stay?

#### **Search Strategy**

A thorough review of the literature was conducted to investigate the current best practices. Databases searched include the Cumulative Index of Nursing and Allied Health Literature (CINAHL), PubMed, Proquest, and Cochrane Library. These databases were chosen because they are known to provide a large collection of information relating to the topic. Keywords used to generate results included; *asthma, asthma exacerbation, wheezing, steroids, corticosteroids, dexamethasone, child, kid, pediatric, early administration, initiation, triage, admit, admission, hospitalization.* Exclusion criteria included studies that were not peerreviewed, those involving patients older than 18 years, and works written in a language other than English. The majority of articles published before 2015 were excluded to retain the most recent research; however, some key studies and gray literature, such as the NIH guidelines, were kept as they provide formative information and recommendations. Management of asthma is a widely studied topic, reflected by the number of search results. Titles and abstracts of research articles were reviewed to include the most pertinent information. Twenty-five studies were selected for inclusion and addressed one, if not more, components of the PICO question.

#### CINAHL

An initial search of CINAHL was ran using the keywords *asthma OR wheeze, steroids OR corticosteroids, early intervention,* and *child OR pediatric OR kid.* A large return of 2,054 sources were listed. The above filters were applied to condense results and identify articles most relevant to the topic.

#### PubMed

A broad search of the PubMed database yielded a total of 512 sources when the keywords *corticosteroids, early administration,* and *asthma* were searched. The search was narrowed further by adding the filters *pediatric OR child* as well as *emergency OR triage,* which resulted in 364 articles.

#### Proquest

An initial search repeating the above keywords returned upwards of 40,000 results. Stricter filters were applied only to include articles published within the last three years, which decreased results to 629 articles. The information contained in many of the titles did not meet all of the inclusion criteria. Variations in key terms such as *steroids OR corticosteroids OR dexamethasone,* and *early intervention, protocol OR approach OR management* helped garner more useful titles.

#### **Cochrane Library**

The Cochrane Library is an esteemed database of systematic reviews that summarize and interpret the results of medical research. The above filters were used to search, and there was a return of zero articles published within the last five years. Although not included in this evaluation, search results were reviewed, and older articles supported early initiation of corticosteroids.

#### **Critical Appraisal and Synthesis**

Melnyk and Fineout-Overholt's (2011) rapid critical appraisal checklists were referenced to analyze and assess the quality of the 10 articles included in the literature review. The majority of studies were high-level evidence and retrospective in nature, comparing pre and postintervention cohorts. Three studies included a time series design, and one study was a systematic review (see Appendix A, Table A1). Three studies did not reference funding sources, however of those that did, two reported grants awarded, two reported national funding, two reported departmental funding, and one study stated no external funding was received (see Appendix A, Table A1). No bias was identified during the review process. The variable sample sizes were attributed to the different hospital settings and overall organization size. The largest patient sample was 189,331 and the smallest was 261. One study was conducted in a community hospital, one study was conducted in the prehospital setting, and six studies were noted to take placed in large, tertiary, academic centers (see Appendix A, Table A1). The sample populations were largely homogenous. Inclusion criteria for most studies cited pediatric patients with asthma. Six studies' authors excluded patients younger than two to eliminate confounding wheezing with bronchiolitis (see Appendix A, Table A1). One group of authors limited their sample to include only patients less than six years of age. This study focused on preschool children. Five studies' authors reported inclusion criteria for patients until 18 years of age, two groups included patients until 17 years of age, and one group included patients until 14 years of age (See Appendix A, Table A1).

There was a moderate amount of homogeneity among the independent variables. Independent variables included the implementation of an asthma pathway, assigning a respiratory severity score (RSS), nurse administration of CS in triage, prehospital administration of CS, and administration of bronchodilators (see Appendix A, Table A1). The outcome measures were consistent across all studies and included decreasing time to CS administration, hospitalization rates, and LOS (see Appendix A, Table A2). Findings were similar in all studies, and all highlight the gross importance of timely care for pediatric patients with asthma. The statistically significant results and well structured, methodical designs indicate the findings and conclusions from the research are reliable.

#### **Evidence as Influence for Project**

The literature is overwhelming with evidence that shows timely CS decreases LOS in pediatric patients with asthma. A timeframe in which CS should be administered for optimal outcomes is unclear; however, many studies state within one hour is ideal. Statistics from the literature support that a goal of 60 minutes is achievable. The homogeneity of samples in the literature suggests that triage-based CS would benefit the patients with asthma exacerbations at the project site. Regardless of the setting, taking a proactive approach in recognizing the symptoms of an asthma exacerbation decreases the need for further treatment (see Appendix A, Table A2). This translates into timely CS being effective in different settings such as urgent cares and community hospitals. A structured approach to the care of patients with asthma decreases the amount of time required for a patient to receive care and is a helpful guide for HCP and nurses in the ED (see Appendix A, Table A2). Recommendations suggest teams should create or modify an asthma pathway that incorporates nurse administration of CS in triage.

#### **Conceptual Framework and EBP Model**

The Plan, Do, Study, Act (PDSA) cycle was selected to guide this quality improvement project. During the planning stages of the intervention goals for improvement are set, predictions are made about what will happen, and decisions about what data to gather are made (see Appendix B, Figure B2). A multidisciplinary team including pediatric nurses and HCPs, a pharmacist, respiratory therapist, ED nurse educator, and nursing manager convened to identify currents barriers to nurses using the SO. The project was supported by department administration and the physician group. The key process improvement identified was the need for re-education of nursing staff on the SO when it should be used. During the "do" part of the cycle, the plans are carried out, problems encountered are documented, and data continues to be gathered (see Appendix B, Figure 2). One large barrier noted by nurses is the ED Omnicells only stock dexamethasone tablets, and it is time consuming to crush pills and mix in syrup during high census times. During the "study" phase, data is fully analyzed and compared to predictions. During the "act" phase, careful consideration of changes that should take place during the next cycle are made. If no changes are identified, the intervention can be rolled out (see Appendix B, Figure B2). Metrics can be measured, analyzed, and improved by using this model. Comparing pre and post-intervention data on time to CS administration and LOS will provide valuable information on the impact of a treatment protocol and the quality of care patients receive while in the ED.

The Precede-Proceed Program Planning Model was chosen to guide project implementation (see Appendix B, Figure B1). This framework specifies the steps that precede an intervention and suggests ways to proceed with its implementation and evaluation by thinking logically about the desired end point and working "backwards" to achieve that goal (Crosby, 2011). Key factors preceeding this intervention include predisposing factors such as the project site location in a large metropolitan area, caring for a large volume of patients, a significant amount of whom are considered vulnerable and lack access to primary care. Reinforcing factors include an existing culture where the SO for CS in not routinely implemented. Existing barriers of crushing pills and the urgency to see new patients in a busy emergency setting enable the current culture. Additionally, limited accountability by nursing leadership and HCP expectations reinforce the behavior. The proceed stages of the project are the implementation and evaluation of the project. For the intervention to be implemented, ED nursing staff will administer CS in triage while adhereing to guidelines within the SO and document their assessment. To determine the effect of the intervention, the overall percentage of SO activations and LOS will be evaluated.

#### Methods

#### **Ethical Considerations and Human Subject Protection**

Organizational Institutional Review Board (IRB) approval was granted for the execution of this project. The IRB considered this project to be quality improvement and not human subject research. Education and reinforcement of existing departmental protocols presented minimal risk because the SO were put in place to fulfill the standard of care for pediatric patients experiencing an asthma exacerbation. A waiver of consent was submitted and data obtained from the electronic health record (EHR) remained on locked workstations inside the organization.

#### **Study Setting**

The ED is part of a large, freestanding, children's medical center in the Southwestern United States with an annual volume of over 100,000 patients. Pediatric HCPs staff the department 24 hours per day and have the support of pediatric nurses and dedicated respiratory therapists and pharmacists. The organization is home to a large multitude of specialists including pulmonology, and coupled with its central location, make it a popular center to receive transfers from urgent cares and community hospitals around the state. Athough the organization has several satellite locations, the ED at the main hospital campus will be the only site for the project.

#### **Population and Timeline**

Patients were included in the project if they presented to the ED with a chief complaint of difficulty breathing and met the criteria listed in the ED standing order set during the months of December 2020-February 2021.

- Inclusion Criteria per ED Standing Orders (patients must meet all three)
  - I. History of (at least one):
    - 1. Asthma or reactive airways (by patient or parental report)
    - 2. More than one episode of wheezing
  - II. AND on physical exam have wheezing and any of:
    - 1. Tachypnea
    - 2. Hypoxia
    - 3. Retractions
    - 4. Nasal flaring
    - 5. Accessory muscle use
  - III. AND Age >12 months
- Exclusion Criteria:
  - I. Congenital heart disease or suspected congestive heart failure
  - II. Allergy to dexamethasone
  - III. Steroid use within <24 hours
  - IV. RSS 11-15 (indicating severe respiratory distress)

#### Intervention

Education was delivered to nursing staff beginning August 2020 on the inclusion and exclusion criteria listed within the existing SO for nurse-initiated CS, the importance of early CS, and the benefits of administering CS in triage. Education reinforced that patients meeting criteria would have CS ordered in triage and delivered by nurse responsible for patient care at the time that medication is available. If the patient qualifies, a single dose of 0.6 mg/kg of dexamethasone (maximum dose 16mg) will be administered orally. If the patient is roomed immediately, the bedside nurse will deliver CS and document time of administration. If no room is immediately available, the triage nurse is responsible. Education was delivered in bimonthly staff meetings, through departmental newsletters, shift huddles, and competency review days.

#### **Data Collection**

Baseline data was extracted from a retrospective review of charts for three months, from December 2019 through February 2020 (n=256). Ongoing collection of prospective data took place from December 2020 through February 2021 (n=44). Charts were identified through the organization's Reports tool that allows users to filter charts by searching specific International Classification of Disease (ICD) codes. The codes searched were J45.21 (mild intermittent asthma with [acute] exacerbation), J45.31 (mild persistent asthma with [acute] exacerbation), J45.41 (moderate persistent asthma with [acute] exacerbation), and J45.51 (severe persistent asthma with [acute] exacerbation). Charts tagged with these ICD codes were reviewed for critieria that warrants nurse-initiated CS, if a nursing RSS score was documented, and whether nursing staff of ED physician or NP ordered CS.

Data points collected for evaluation of outcome measures included chief complaint, time of arrival, time to CS administration, and time to discharge. Data points gathered were plotted in a data library using Microsoft Excel. The averages for the individual metrics of time of arrival, time to CS administration, and LOS were tracked. Time to CS administration was defined as the span of time between patient arrival and time to CS delivery. LOS was defined as the span of time between patient arrival and time to discharge order entry.

#### Results

#### **Descriptive Data and Data Analysis Procedures**

The correlation between time to CS administration and the secondary outcome of LOS was calculated using descriptive statistics. A two-tailed Mann-Whitney *U* test was performed to compare LOS between the months of December and January, respectfully, from both sets of data. A two-tailed independent sample *t*-test was used for the February samples due to decreased sample size.

#### Results

This project demonstrated a significant decrease in time to CS administration and overall LOS without an increase in the activation of the SO by nurses. Time to CS decreased from an average of 98.6 minutes to 57.6 minutes. LOS decreased from an average of 259.3 minutes to 169.6 minutes. Times subsequently decreased as a result of a reduced census because of COVID-19.

#### **Statistical Significance**

For the month of December, the result of the two-tailed Mann-Whitney U test was significant at p = .003. The mean rank for the pre-intervention group was 65.91 and the mean rank for the post-intervention group was 42.14. This suggests that the distribution of the two groups were statistically different. The median for the pre-intervention group was significantly larger at 239.5 compared to the post-intervention group at 173.

For the month of January, the result of the two-tailed Mann-Whitney U test was significant at p = .002. The mean rank for the pre-intervention group was 53.89 and the mean rank for the post-internvetion group 31.24, also suggesting that the distribution of the two groups for the month of January were statistically different. The median for the pre-intervention group was significantly larger at 247 than the post-intervention group at 155.

For the month of February, the result of the two-tailed independent samples *t*-test was significant at p < .001. This finding also suggests the mean of of the February groups were statistically different.

#### **Clinical Significance and Impact**

Although largely skewed due to an unexpected pandemic, this project demonstrated that timely CS delivery decreases LOS. Without the limitations of COVID-19, triage-based CS offer the potential for increased safety for patients waiting. When triage nurses identify an opportunity to intervene early, it can spare patients and HCPs the chaos and urgency that ensues when a patient suddenly decompensates. Timely CS administration can decrease the need for hospital transfers, admissions, repeated bronchodilator treatments, and invasive procedures such a peripheral intravenous access or intubation (see Appendix A, Table A2). Additionally, a successful intervention could save families and the organization hundreds to thousands of dollars in treatment that may be required when care is delayed. One study cites the cost of an ED visit for asthma as \$480 and the cost of an asthma-related hospitalization as \$2835 (Ross et al., 2016).

The impact of poorly managed asthma is far-reaching. Stakeholders need to be actively engaged in the quality improvement project. Discharging patients from the ED when it is safe allows nurses and HCPs an opportunity to educate families regarding the importance of primary care visits. PCPs can teach asthma management strategies and establish asthma action plans to help prevent exacerbations that require a trip to the ED. In turn, this can help support the Healthy People 2020 goal of reducing asthma related ED visits (ODPHP, 2018).

#### **Sustainability**

Numeric data demonstrates a positive correlation between time to CS and LOS, however quantitative and qualitative data are both vital in regard to the sustainability of the intervention. The quantitative data obtained from this project can prove to upper administration the potential for cost savings for the organization. While pharmacy was unable to stock an oral solution of dexamethasone due to cost restrictions, cost-savings may, in turn, yield funds to stock liquid CS on formulary. This would facilitate ease of administration and contribute to sustainability.

However, without buy-in from the point-of-service, the intervention will not be longlasting. Although COVID-19 minimized the opportunity for nurses to give CS in triage during the project timeline, when the typical winter census resumes, nurses can be surveyed to assess their feelings of feasibility towards administering CS in triage when the waiting room is busy. The survey should also include open-ended questions for feedback, and suggestions for improvement as recommended by the PDSA cycle.

The expectation for nursing staff to initiate SO and established protocols in other circumstances (e.g., sepsis, neonatal fever) is vocalized by management and physicians, and metrics are tracked and shared with staff to keep on par. Ongoing encouragement for nursing to adhere to triage-based CS can foster accountability contribute to sustainability as well.

#### Discussion

#### Summary, Conclusions, and Recommendations

Timely administration of CS reduces a patient's overall LOS in the ED. Standardization of nurse-initiated, triage-based CS can increase the efficiency of care and has the potential to reduce costly hospitalizations that result from delayed treatment. It is important for other institutions to note that nurse-initiated CS does not preclude patients from other necessary interventions and can benefit patients in a variety of settings. Lastly, sustainability is multifactorial and should also include acountabilty components.

#### **Limitations and Barriers**

The greatest limitation encountered was COVID-19. Pandemic precautions greatly reduced ED census which minimized the opportunity to activate the SO in triage because of no wait time to see a provider. The inability to obtain an oral liquid solution of dexamethasone will be a hinderance when wait times increase.

Other limitations included the restriction of charts to include only those with a chief complant of difficulty breathing. This limited sample size, however difficulty breathing was selected because it is an obvious red flag for nurses to inquire about asthma history and perform subsequent assessments. For a larger sample, other chief complaints (e.g. cough) can be included if patients meet all criteria. Additionally, this project being carried out in a single department limits generalizability, however, results are consistent with the literature.

Finally, the use of the EHR as a data source revealed some documentation as lacking. One drawback to relying on the EHR as a source of data is that, occasionally, data can be incomplete or missing (Saczynski et al., 2013). In some cases the nurse in triage did not document an assessment, therefore the initiation of CS, or lack thereof, could not be validated. The researcher can review the history and physical documented by the ED physician or nurse practitioner but would have to take into account the patient's wait time and the potential for deterioration while waiting. While some limitations exist, EMRs contain an abundance of high-quality clinical data and outcomes that are readily available for interpretation (Saczynski et al., 2013).

#### **Recommendations for Further Research**

With administration of CS in triage, there may be an increased number of patients who leave without being seen (LWBS). This could happen when families feel reassured knowing they have been medicated and decide not to wait any longer. Because of very minimal wait times during the pandemic, LWBS rates for the small, post-intervention sample were insignificant. However, this would be an opportunity for further research when typical census resumes because an increase in patients who LWBS can result in revenue loss for the organization.

A qualitative survey that inquires whether triage-based CS lead to increased feelings of nurse safety in a full waiting room and contribute to provider satisfaction regarding efficiency of care may provide additional insight to how to maintain consistent SO use.

#### References

- Agency for Healthcare Research and Quality. (2013). *Module 4. Approaches to Quality Improvement*. https://www.ahrq.gov/ncepcr/tools/pf-handbook/mod4.html
- American Lung Association in Arizona. (2016). *The 2016 Arizona Asthma Burden Report*. Arizona Department of Health Services.

https://www.azdhs.gov/documents/prevention/tobacco-chronic-disease/az-asthmaburden-report.pdf

- Bekmezian, A., Fee, C., Bekmezian, S., Maselli, J.H., & Weber, E. (2013). Emergency department crowding and younger age are associated with delayed corticosteroid administration to children with acute asthma. *Pediatric Emergency Care, 29*(10), 1075-1081. http://doi.org/10.1097/PEC.0b013e3182a5cbde
- Bekmezian, A., Fee, C., & Weber, E. (2015). Clinical pathway improves pediatrics asthma management in the emergency department and reduces admissions. *The Journal of Asthma: Official Journal of the Association for the Care of Asthma*, 52(8), 806–814. https://doi.org/10.3109/02770903.2015.1019086
- Bhogal, S. K., McGillivray, D., Bourbeau, J., Benedetti, A., Bartlett, S., & Ducharme, F. M.
  (2012). Early administration of systemic corticosteroids reduces hospital admission rates for children with moderate and severe asthma exacerbation. *Annals of Emergency Medicine*, 60(1), 84-91. https://doi.org/10.1016/j.annemergmed.2011.12.027
- Crosby, R. (2011). What is a planning model? An introduction to precede-proceed. *Journal of Public Health Denistry*, *71*(1), 7-15, https://doi-org.ezproxy1.lib.asu.edu/10.1111/j.1752-7325.2011.00235.x

- Glanz, K., Rimer, B. K., Viswanath, K. (n.d.) *Main Constructs*. Health Behavior and Health Education. https://www.med.upenn.edu/hbhe4/part2-ch3-main-constructs.shtml
- Castro-Rodriguez, J. A., Beckhaus, A. A., & Forno, E. (2016). Efficacy of oral corticosteroids in the treatment of acute wheezing episodes in asthmatic preschoolers: Systematic review with meta-analysis. *Pediatric Pulmonology*, *51*(8), 868–876. https://doi.org/10.1002/ppul.23429
- Dondi, A., Calamelli, E., Piccinno, V., Ricci, G., Corsini, I., Biagi, C., & Lanari, M. (2017). Acute asthma in the pediatric emergency department: Infections are the main triggers of exacerbations. *BioMed Research International*, 2017, 1–7. https://doi.org/10.1155/2017/9687061
- Fishe, J. N., Gautam, S., Hendry, P., Blake, K. V., & Hendeles, L. (2019). Emergency medical services administration of systemic corticosteroids for pediatric asthma: A statewide study of emergency department outcomes. *Academic Emergency Medicine*, 26(5), 549-551. https://doi.org/10.1111/acem.13660
- Green, L. W., & Kreuter, M. W. (2005). *Health program planning: An educational and ecological approach* (4th ed.). McGraw-Hill.
- Hwang, C. W., Weeks, E., & Plourde, M. (2016). Implementing triage standing orders in the emergency departments leads to reduced physician-to-disposition times. *Advances in Emergency Medicine*, Article ID 7213625, 1-6. https://doi.org/10.1155/2016/7213625

Kaiser, S. V., Rodean, J., Bekmezian, A., Hall, M., Shah, S. S., Mahant, S., Parikh, K.,
Auerbach, A. D., Morse, R., Puls, H. T., McCulloch, C. E., & Cabana, M. D. (2018).
Effectiveness of pediatric asthma pathways for hospitalized children: A multicenter,
national analysis. *The Journal of Pediatrics*, *197*, 165-171.
https://doi.org/10.1016/j.jpeds.2018.01.084

- Kang, S. W., & Park, H. S. (2015). Emergency department visit volume variability. *Clinical and Experimental Emergency Medicine*, 2(3), 150–154. https://doi.org/10.15441/ceem.14.044
- McIver, M., Stoudemire, W., Smith-Ramsey, C., Panigrahi, M., Walsh-Kelly, C., & Rutman, L.
   E. (2017). Improving timeliness of β-agonist and corticosteroid administration in patients with acute wheezing: *Pediatric Emergency Care*, *33*(9), 635–642.
   https://doi.org/10.1097/PEC.00000000001249
- Melnyk, B. M., & Fineout-Overhold, E. (2011). *Evidence-based practice in nursing and healthcare: A guide to best practice.* Philadelphia, PA: Lippincott Williams & Williams
- Miller, A. G., Breslin, M. E., Pineda, L. C., & Fox, J. W. (2015). An asthma protocol improved adherence to evidence-based guidelines for pediatric subjects with status asthmaticus in the emergency department. *Respiratory Care*, 60(12), 1759–1764. https://doi.org/10.4187/respcare.04011
- National Heart, Lung, and Blood Institute. (2007). *Guidelines for the diagnosis and management of asthma*. U.S. Department of Health and Human Services, National Institutes of Health. https://www.nhlbi.nih.gov/files/docs/guidelines/asthsumm.pdf

Office of Disease Prevention and Health Promotion. (2018). Maternal, infant, and child

health. In *Healthy People 2020*. U.S. Department of Health and Human Services. https://www.healthypeople.gov/2020/topics-objectives/topic/maternal-infant-and-child-health/objectives

- Patel, S. J., Chamberlain, D. B., & Chamberlain, J. M. (2018). A machine learning approach to predicting need for hospitalization for pediatric asthma exacerbation at the time of emergency department triage. *Academic Emergency Medicine*, 25(12), 1463–1470. https://doi.org/10.1111/acem.13655
- Rutman, L., Atkins, R. C. Migita, R., Foti, J., Spencer, S., Lion, K. C., Wright, D. R., Leu, M.G., Zhou, C., & Mangione-Smith, R. (2016). Modification of an established pediatric asthma pathway improves evidence-based, efficient care. *Pediatrics*, *138*(6), 1248. https://doi.org/10.1542/peds.20161248v
- Ross, J. L., Bascom, E., & Babcock, C. I. (2016). 297 Cost savings of early systemic corticosteroid administration in acute pediatric asthma exacerbations. *Annals of Emergency Medicine*, 68(4), s112. https://doi.org/10.1016/j.annemergmed.2016.08.302
- Saczynski, J. S., McManus, D. D., Goldberg, R. J. (2013). Commonly used data-collection approaches in clinical research. *The American Journal of Medicine*, *126*(11), 946-950. https://doi.org/10.1016/j.amjmed.2013.04.016
- Sneller, H., Keenan, K., & Hoppa, E. (2020). A quality improvement initiative to improve the administration of systemic corticosteroids in the pediatric emergency department. *Pediatric Quality & Safety, 3*(5), 1-7. https://doi.org/10.1097/pq9.000000000000308
- Walls, T. A., Hughes, N. T., Mullan, P. C., Chamberlain, J. M. & Brown, K. (2017). Improving pediatric asthma outcomes in a community emergency department. *Pediatrics*, *139*(1), 1-7. https://doi.org/10.1542/peds.2016-0088

#### Appendix A

#### **Evaluation and Synthesis Tables**

#### Table A1

Evaluation Table Quantitative Studies

| Citation                                                                                                                                                                                                                                                              | Conceptual/<br>Theoretical<br>Framework                          | Study Design/<br>Method     | Sample/Setting                                                                                                                                                                                                                                                                                                                                        | Major Variables<br>and Definitions                                 | Measurement<br>of Variables                                                                                                                                                | Data Analysis                                                                                                                                                                                                                                                                                                                                         | Findings/Results                                                                                                                                                                                                                                                                                                                                                                                             | Decision for Use                                                                                                                                                                                                                                                                                                          |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------|-----------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Bekmezian et<br>al., (2015)<br>Clinical<br>Pathway<br>Improves<br>Pediatrics<br>Asthma<br>Management<br>in the<br>Emergency<br>Department<br>and Reduces<br>Admission<br><b>Country:</b><br>United States<br><b>Funding:</b><br>NIH/NCRR<br>UCSF-CTSI<br>Grant Number | Health Belief<br>Model or Social<br>Economical<br>Model inferred | Prospective<br>cohort study | n=1249<br>Setting: Urban,<br>academic tertiary<br>care ED with 33<br>beds and an<br>annual census of<br>approximately<br>34,000 adult and<br>6,000 pediatric<br>patients serving<br>an adult and<br>children's<br>hospital.<br>Inclusion<br>Criteria:<br>patients<br>≤21YOA with a<br>moderate-severe<br>asthma<br>exacerbation<br>defined as a visit | IV: Asthma<br>clinical pathway<br>DV: Time to CS<br>administration | Primary<br>outcome<br>measure:<br>Percentage of<br>visits that<br>received CS in<br>under 60<br>minutes.<br>Secondary<br>outcome<br>measures: ED<br>LOS and<br>disposition | Univariate LR<br>models used<br>for primary and<br>secondary<br>outcomes.<br>Multivariable<br>LR models to<br>control for age,<br>insurance,<br>fever,<br>tachypnea,<br>time of arrival<br>and ED patient<br>volume at the<br>hour of patient<br>arrival.<br>Separate<br>multivariable<br>LR models<br>developed for<br>each outcome<br>measure. A 2- | Administration<br>of corticosteroids<br>within 1 hour of<br>ED arrival (45%<br>vs 18%, OR 3.5;<br>CI 2.50–4.90)<br>and overall<br>corticosteroid<br>administration<br>occurred more<br>frequently (96%<br>vs. 78%, OR<br>6.35; CI 3.17–<br>12.73) post-<br>intervention.<br>The proportion of<br>visits with >1 BD<br>dose received<br>within 1 hour of<br>ED arrival was<br>higher (36% vs<br>24%, OR 1.65; | Level of Evidence:<br>IV<br>Strengths: Success<br>rate significantly<br>higher than<br>national average<br>(98% CS<br>administration rate<br>compared to 69%),<br>AP decreased<br>treatment delays<br>due to young age<br>(<2yrs)<br>Weaknesses:<br>Single center study<br>in general ED,<br>maybe less<br>generalizable. |

AP-Asthma protocol; AUC-Area under the receiver operating characteristic curve; β-agonist- Beta agonist; BD- Bronchodilators; CI-Confidence interval; CS-Corticosteroids; CXR-Chest radiograph; DB-double blind; DV- Dependent variable; Dx- Diagnosis; EBP-Evidence based practice; ED-Emergency Department; EHR-Electronic health record; EMS-Emergency Medical Services; GEE- Generalized estimating equations; IB-Ipratropium bromide; ICD-9-International Classification of Diseases, 9th Revision; ITS-Interrupted time series; ICU-Intensive care unit; IV: Independent variable; LASSO- Least absolute shrinkage and selection operator; LOS- Length of stay; LR-Logistic regression; n- Sample size; MA-Meta analysis; MD- Mean difference; MLA- Machine learning approach; MPI-Modified Pulmonary Index; n-Sample size; NIH-National Institutes of Health; OCS-Oral corticosteroids; OR-odds ratio; PAS- Pediatric Asthma Score; PIV-Peripheral intravenous; Pox-Peripheral oxygen; Pre-k-preschoolers; QI-Quality improvement; RCS-Respiratory Clinical Score; RCT-Randomized clinical trial; RR-Risk ratios; SD-Standard deviation; SS-Statistically significant; YOA-Years of age

| Citation                                                            | Conceptual/<br>Theoretical<br>Framework | Study Design/<br>Method                                                | Sample/Setting                                                                                                                                                                                                                                                                                                        | Major Variables<br>and Definitions                                      | Measurement<br>of Variables    | Data Analysis                                                                                                                                                                                                                                                                                                                                                                                         | Findings/Results                                                                                                                                                                                                                                                                                                                                        | Decision for Use                                                                                                                                                                                                                                                                                                                                   |
|---------------------------------------------------------------------|-----------------------------------------|------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------|--------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| UL1<br>RR024131.<br>Bias: None                                      |                                         |                                                                        | where the<br>primary ED<br>diagnosis was<br>asthma (ICD-9<br>code 493.xx) and<br>the patient<br>required ≥2 (or<br>continuous BD<br>treatments.<br><b>Exclusion</b><br><b>Criteria:</b> Only<br>one BD<br>treatment was<br>required.<br>Patients who<br>received CS<br>within 24 hours<br>prior to their ED<br>visit. |                                                                         |                                | tailed p value<br>of <0.05 was<br>considered<br>significant.<br>Performed<br>interrupted<br>time series<br>analysis by<br>fitting separate<br>linear trends to<br>the data in the<br>post-<br>intervention<br>and control<br>periods to<br>confirm that<br>any change in<br>the primary<br>outcome<br>measure was<br>related to the<br>intervention<br>rather than<br>overall<br>unrelated<br>trends. | CI 1.23–2.12) in<br>the post-<br>intervention<br>group. CXRs<br>were performed<br>less often (27%<br>vs 42%, OR 0.7;<br>CI 0.52–0.94).<br>Hospital<br>admissions<br>decreased in the<br>post-intervention<br>group (13% vs.<br>21%, OR 0.53;<br>CI 0.37–0.76).<br>ICU admission<br>rate and ED LOS<br>(for non-admitted<br>patients) were<br>unchanged. | <b>Conclusions:</b><br>Implementing an<br>evidence-based<br>clinical pathway<br>was associated with<br>a doubling of the<br>receipt of<br>corticosteroids<br>within 1 hour of<br>ED arrival and a<br>subsequent<br>reduction in the<br>hospital admission<br>proportions by half<br>in children with<br>moderate-severe<br>asthma<br>exacerbations |
| Castro-<br>Rodriguez et<br>al., (2016)<br>Efficacy of<br>OCS in the | Health Belief<br>Model - inferred       | Design:<br>Systematic<br>review with MA<br>Purpose: To<br>evaluate the | n=11 RCTs<br>Five electronic<br>databases were<br>searched for all<br>placebo-                                                                                                                                                                                                                                        | IV1: OCS given<br>to pre-k<br>IV2: placebo<br>D1: Hospital<br>admission | Retrospective<br>study reviews | Outcomes were<br>pooled using<br>MD (inverse<br>variance<br>method) or<br>Mantel–                                                                                                                                                                                                                                                                                                                     | <b>Effect on</b><br><b>hospital</b><br><b>admission</b> :<br>RR:1.26; 95%CI:<br>0.45–3.52, I <sup>2</sup> 1/4                                                                                                                                                                                                                                           | Level of Evidence:<br>Level I<br>Strengths: Studies<br>included in MA<br>were randomized,                                                                                                                                                                                                                                                          |

AP-Asthma protocol; AUC-Area under the receiver operating characteristic curve; β-agonist- Beta agonist; BD- Bronchodilators; CI-Confidence interval; CS-Corticosteroids; CXR-Chest radiograph; DB-double blind; DV- Dependent variable; Dx- Diagnosis; EBP-Evidence based practice; ED-Emergency Department; EHR-Electronic health record; EMS-Emergency Medical Services; GEE- Generalized estimating equations; IB-Ipratropium bromide; ICD-9-International Classification of Diseases, 9th Revision; ITS-Interrupted time series; ICU-Intensive care unit; IV: Independent variable; LASSO- Least absolute shrinkage and selection operator; LOS- Length of stay; LR-Logistic regression; n- Sample size; MA-Meta analysis; MD- Mean difference; MLA- Machine learning approach; MPI-Modified Pulmonary Index; n-Sample size; NIH-National Institutes of Health; OCS-Oral corticosteroids; OR-odds ratio; PAS- Pediatric Asthma Score; PIV-Peripheral intravenous; Pox-Peripheral oxygen; Pre-k-preschoolers; QI-Quality improvement; RCS-Respiratory Clinical Score; RCT-Randomized clinical trial; RR-Risk ratios; SD-Standard deviation; SS-Statistically significant; YOA-Years of age

| Citation                                                                                                                                                                                                                                      | Conceptual/<br>Theoretical<br>Framework | Study Design/<br>Method                                                                                                   | Sample/Setting                                                                                                                                    | Major Variables<br>and Definitions                                                 | Measurement<br>of Variables    | Data Analysis                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Findings/Results                                                                                                                                                                                                                                                                                                                                                                                       | Decision for Use                                                                                                                                                                                                                                                                                                     |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------|---------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------|--------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Treatment of<br>Acute<br>Wheezing<br>Episodes in<br>Pre-K<br><b>Country:</b><br>United States<br><b>Funding:</b><br>Grant CI 03-<br>2015 from the<br>Division of<br>Pediatrics and<br>grant<br>HL125666<br>from the NIH.<br><b>Bias:</b> None |                                         | effectiveness of<br>(OCS) compared<br>to placebo in<br>pre-k presenting<br>with acute<br>asthma/wheezing<br>exacerbations | controlled, RCTs<br>of OCS in<br>children <6 years<br>of age presenting<br>with recurrent<br>wheezing/asthma<br>exacerbations of<br>any severity. | D2: Hospital<br>LOS<br>D3: Additional<br>course of CS<br>D4: Unscheduled<br>Visits |                                | Haenszel RR.<br>Estimate<br>precision was<br>quantified by<br>95% CI.<br>Heterogeneity<br>was measured<br>by the I <sup>2</sup> test <sup>15</sup><br>(25% absence<br>of bias; 26–<br>39%<br>unimportant;<br>40–60%<br>moderate; and<br>60–100%<br>substantial<br>bias). A fixed-<br>effects model<br>was used when<br>there was no<br>evidence of<br>significant<br>heterogeneity<br>in the analysis.<br>MA was<br>performed with<br>the Review<br>Manager 5.3.5<br>software. | 67%, P 1/4 0.66<br>(no difference)<br>Additional<br>course of<br>steroids: RR:<br>0.57; 95%CI;<br>0.40-1.34 (either<br>nonsignificant or<br>need additional<br>steroids)<br>Unscheduled<br>visits: No<br>significant<br>statistical<br>difference<br>between OCS<br>and placebo RR:<br>0.73; 95%CI:<br>0.35–1.52; I <sup>2</sup> 1/4<br>54%, P 1/4 0.11<br>Hospital LOS:<br>No reported<br>differences | DB, placebo<br>controlled.<br>Weaknesses: Pre-k<br>age group has<br>highest rate of non-<br>adherence to<br>treatment, doesn't<br>consider setting of<br>OCS<br>administration.<br>Conclusions: Use<br>of OCS in pre-k.<br>Current evidence<br>inadequate to form<br>any broad<br>conclusions about<br>OTC in pre-k. |
| Dondi et al.,<br>(2017)                                                                                                                                                                                                                       | Health Belief<br>Model-inferred         | <b>Design:</b><br>Retrospective<br>analysis                                                                               | n=603                                                                                                                                             | IV1: Patients<br><6yrs<br>IV2: Patients<br>>6yrs                                   | Primary<br>outcome<br>measure: | A descriptive<br>analysis was<br>performed for<br>continuous                                                                                                                                                                                                                                                                                                                                                                                                                   | The median age<br>of the patients<br>was 3.1 YOA<br>(range: 2                                                                                                                                                                                                                                                                                                                                          | <b>Level of Evidence:</b><br>IV                                                                                                                                                                                                                                                                                      |

AP-Asthma protocol; AUC-Area under the receiver operating characteristic curve; β-agonist- Beta agonist; BD- Bronchodilators; CI-Confidence interval; CS-Corticosteroids; CXR-Chest radiograph; DB-double blind; DV- Dependent variable; Dx- Diagnosis; EBP-Evidence based practice; ED-Emergency Department; EHR-Electronic health record; EMS-Emergency Medical Services; GEE- Generalized estimating equations; IB-Ipratropium bromide; ICD-9-International Classification of Diseases, 9th Revision; ITS-Interrupted time series; ICU-Intensive care unit; IV: Independent variable; LASSO- Least absolute shrinkage and selection operator; LOS- Length of stay; LR-Logistic regression; n- Sample size; MA-Meta analysis; MD- Mean difference; MLA- Machine learning approach; MPI-Modified Pulmonary Index; n-Sample size; NIH-National Institutes of Health; OCS-Oral corticosteroids; OR-odds ratio; PAS- Pediatric Asthma Score; PIV-Peripheral intravenous; Pox-Peripheral oxygen; Pre-k-preschoolers; QI-Quality improvement; RCS-Respiratory Clinical Score; RCT-Randomized clinical trial; RR-Risk ratios; SD-Standard deviation; SS-Statistically significant; YOA-Years of age

| Th                                                                                                                                                                               | nceptual/ Study Designeoretical Method<br>amework                                                                                                                                                                                                         | a/ Sample/Setting                                                                                                                                                | Major Variables<br>and Definitions                                                                                                    | Measurement<br>of Variables    | Data Analysis                                                                                                                                                                                                                                                                                                                                                 | Findings/Results                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Decision for Use                                                                                                                                                                                                                                                                                                                                                                                                            |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------|--------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Acute Asthma<br>in the Pediatric<br>ED: Infections<br>are the Main<br>Trigger of<br>Exacerbations<br><b>Country:</b> Italy<br><b>Funding:</b> Not<br>stated<br><b>Bias:</b> None | Purpose: To<br>analyze the<br>differences<br>among age<br>groups in term<br>of triggering<br>factors and<br>seasonality to<br>identify if ther<br>are any patient<br>groups which<br>more at risk of<br>severe<br>exacerbations<br>and<br>hospitalization | Children aged 0–<br>14 YOA who<br>were visited for<br>acute asthma<br>s' from 1/1/16-<br>tre 12/31/16<br>Pediatric ED of<br>S. Orsola-<br>Malpighi<br>University | DV1: Age<br>DV2: Etiology<br>DV3: Previous<br>asthma/wheezing<br>diagnosis<br>DV4: Triage<br>code<br>DV5: Severity of<br>exacerbation | Retrospective<br>chart reviews | variables<br>(median, 25th<br>and 75th<br>percentiles).<br>Data<br>distribution<br>was checked<br>using MedCal<br>Statistical<br>Software.<br>The<br>associations<br>between<br>qualitative<br>variables were<br>evaluated with<br>Chi-square test.<br>Results were<br>deemed as<br>significant for<br>p < .05.<br>STATA 7.0<br>was used for<br>the analysis. | months–14<br>YOA). 459<br>patients < 6 YOA<br>(median 2.1<br>YOA; $n = 206 <$<br>2 YOA; $n = 253$<br>$\geq 2$ YOA and <6<br>YOA), while the<br>rest of them 24%<br>were school-aged<br>children and<br>adolescents<br>(median 8.7<br>YOA).<br>At triage, 15.6%<br>were given white<br>color tag, 46.8%<br>green, 37.3%<br>yellow, 0.3% red.<br>Pox (SpO2) upon<br>arrival was <92%<br>in 5.3% of cases,<br>92–95% in<br>34.4%, and<br>>95% in 60.2%.<br>The severity was<br>classified as mild<br>56%, moderate<br>39%, and severe<br>4%.<br>Most episodes in<br>children <6 years<br>had infectious | Strengths:<br>Highlights<br>differences in<br>asthma<br>exacerbations<br>between pre-k and<br>school age children<br>Weakness:<br>Retrospective,<br>single center study<br>over only 1 year.<br>All ages included,<br>however those<br><12months may<br>have had<br>confounding<br>wheezing<br>(Bronchiolitis)<br>Conclusions:<br>Infections and<br>allergy are the most<br>frequent triggers in<br>asthma<br>exacerbations |

AP-Asthma protocol; AUC-Area under the receiver operating characteristic curve; β-agonist- Beta agonist; BD- Bronchodilators; CI-Confidence interval; CS-Corticosteroids; CXR-Chest radiograph; DB-double blind; DV- Dependent variable; Dx- Diagnosis; EBP-Evidence based practice; ED-Emergency Department; EHR-Electronic health record; EMS-Emergency Medical Services; GEE- Generalized estimating equations; IB-Ipratropium bromide; ICD-9-International Classification of Diseases, 9th Revision; ITS-Interrupted time series; ICU-Intensive care unit; IV: Independent variable; LASSO- Least absolute shrinkage and selection operator; LOS- Length of stay; LR-Logistic regression; n- Sample size; MA-Meta analysis; MD- Mean difference; MLA- Machine learning approach; MPI-Modified Pulmonary Index; n-Sample size; NIH-National Institutes of Health; OCS-Oral corticosteroids; OR-odds ratio; PAS- Pediatric Asthma Score; PIV-Peripheral intravenous; Pox-Peripheral oxygen; Pre-k-preschoolers; QI-Quality improvement; RCS-Respiratory Clinical Score; RCT-Randomized clinical trial; RR-Risk ratios; SD-Standard deviation; SS-Statistically significant; YOA-Years of age

| Citation                                                                                                                 | Conceptual/<br>Theoretical<br>Framework | Study Design/<br>Method                                                                                                                                | Sample/Setting                                                                                                                                                             | Major Variables<br>and Definitions                                                                                                                          | Measurement<br>of Variables                                                                                                                                                          | Data Analysis                                                                                                                               | Findings/Results                                                                                                                                                                                                                                                                                                                                                                    | Decision for Use                                                                                                                 |
|--------------------------------------------------------------------------------------------------------------------------|-----------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                                          |                                         |                                                                                                                                                        |                                                                                                                                                                            |                                                                                                                                                             |                                                                                                                                                                                      |                                                                                                                                             | etiology (95%<br>versus 56% in<br>children $\geq 6$<br>years; $p < .01$ ),<br>children $\geq 6$ years<br>33% triggered by<br>allergies (versus<br>3% in children<br><6 years; $p <$<br>.01) Among the<br>children previous<br>asthma dx, 95<br>(49%) were $\geq 6$<br>years and 63 of<br>them (67%) were<br>not using<br>controller<br>therapy (either<br>for no<br>prescription or |                                                                                                                                  |
|                                                                                                                          |                                         |                                                                                                                                                        |                                                                                                                                                                            |                                                                                                                                                             |                                                                                                                                                                                      |                                                                                                                                             | for no use).                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                  |
| Fishe et al.,<br>(2018)<br>EMS<br>Administration<br>of CS for<br>Pediatric<br>Asthma<br><b>Country:</b><br>United States | Transtheoretical<br>Model inferred      | Design:<br>Retrospective<br>observational<br>cohort study<br>Purpose: To<br>examine a<br>statewide<br>population of<br>pediatric asthma<br>patients to | n= 3,812<br>Patients 2-18<br>YOA, identified<br>from Florida's<br>EMS Tracking<br>and Reporting<br>System database,<br>transported by<br>EMS with initial<br>impression of | IV: EMS<br>administration of<br>CS<br>- Scene and<br>transport time<br>- Systolic and<br>diastolic blood<br>pressure<br>- Sex<br>- EMS<br>administration of | Primary<br>outcome<br>measure: Rate<br>of admission vs<br>discharge: This<br>study does not<br>provide a clear<br>description of<br>how outcomes<br>were measured.<br>A large number | Multivariable<br>logistic<br>regression<br>model<br>Demographic,<br>clinical, and<br>EMS variables<br>were analyzed<br>using<br>descriptive | Of 11,667<br>patients that met<br>the study's<br>criteria for<br>asthma<br>exacerbation,<br>only 3,812 has<br>known ED<br>outcomes. OR =<br>0.7, 95% CI=<br>0.5–0.9.                                                                                                                                                                                                                | Level of<br>Evidence:<br>Level II (2)<br>Strength: Large<br>sample<br>Contributions:<br>This is the largest<br>study linking EMS |
| Funding:<br>National<br>Center for                                                                                       |                                         | determine the<br>effects of EMS<br>administration of                                                                                                   | respiratory<br>distress and<br>administered                                                                                                                                | IB, oxygen,<br>magnesium<br>sulfate, normal                                                                                                                 | of patients were<br>lost to follow up<br>because EMS                                                                                                                                 | statistics.<br>Continuous<br>variables were                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                     | to ED outcomes.                                                                                                                  |

AP-Asthma protocol; AUC-Area under the receiver operating characteristic curve; β-agonist- Beta agonist; BD- Bronchodilators; CI-Confidence interval; CS-Corticosteroids; CXR-Chest radiograph; DB-double blind; DV- Dependent variable; Dx- Diagnosis; EBP-Evidence based practice; ED-Emergency Department; EHR-Electronic health record; EMS-Emergency Medical Services; GEE- Generalized estimating equations; IB-Ipratropium bromide; ICD-9-International Classification of Diseases, 9th Revision; ITS-Interrupted time series; ICU-Intensive care unit; IV: Independent variable; LASSO- Least absolute shrinkage and selection operator; LOS- Length of stay; LR-Logistic regression; n- Sample size; MA-Meta analysis; MD- Mean difference; MLA- Machine learning approach; MPI-Modified Pulmonary Index; n-Sample size; NIH-National Institutes of Health; OCS-Oral corticosteroids; OR-odds ratio; PAS- Pediatric Asthma Score; PIV-Peripheral intravenous; Pox-Peripheral oxygen; Pre-k-preschoolers; QI-Quality improvement; RCS-Respiratory Clinical Score; RCT-Randomized clinical trial; RR-Risk ratios; SD-Standard deviation; SS-Statistically significant; YOA-Years of age

#### Citation Conceptual/ Study Design/ Sample/Setting **Major Variables** Measurement **Data Analysis** Theoretical Method and Definitions of Variables Framework CS on ED albuterol at least saline, and did not know Advancing compared Translational one time. subcutaneous ED outcomes. using Student's outcomes. Sciences of the **Exclusions:** epinephrine There was no t-test and National Patients <2 - PIV access discussion of Kruskal-Institutes of YOA. to avoid -Electroformal follow Wallis tests, as Health confounding cardiogram up process. appropriate. with wheezing **DV1**: Categorical variables were from Admissions Riss. None

CORTICOSTEROIDS IN TRIAGE

| Bias: None             |                |                       | bronchiolitis.<br>Patients not<br>linked to<br>database,<br>classified as a<br>trauma/injury,<br>seizure,<br>pregnancy-<br>related<br>complication, or<br>interfacility<br>transport. | DV2: Discharges              |                                     | compared<br>using the chi-<br>square test or<br>Fisher's exact<br>test. |                               | intravenous<br>methylprednisolone<br>Large number of<br>unknown outcomes<br>due to no<br>structured follow-<br>up process.<br><b>Conclusions:</b> EMS<br>administration of<br>CS is associated<br>with <i>decreased</i><br>odds of ED<br>discharge. |
|------------------------|----------------|-----------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------|-------------------------------------|-------------------------------------------------------------------------|-------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Kaiser et al.,         | Health Belief  | Design:               | n = 189,331                                                                                                                                                                           | IV:                          | Primary                             | GEEs, cluster                                                           | Clinical pathway              | Level of Evidence:                                                                                                                                                                                                                                  |
| (2018)                 | Model-inferred | Retrospective         | (42 hospitals)                                                                                                                                                                        | Implementation               | Outcome                             | = hospital)                                                             | implementation                | II                                                                                                                                                                                                                                                  |
|                        |                | multicenter           |                                                                                                                                                                                       | of AP                        | Measure:                            | with an ITS                                                             | was associated                |                                                                                                                                                                                                                                                     |
| Effectiveness          |                | cohort study          | Inclusion                                                                                                                                                                             | <b>DV1:</b> LOS in           | Retrospective                       | approach to                                                             | with an 8.8%                  | Strengths: Large                                                                                                                                                                                                                                    |
| of Pediatric<br>AP for |                |                       | Criteria:                                                                                                                                                                             | days<br><b>DV2:</b> Admin of | chart analysis of all the Pediatric | determine the influence of                                              | decrease in LOS               | sample size.                                                                                                                                                                                                                                        |
| Hospitalized           |                | Purpose: To           | Children age 2-<br>17 YOA                                                                                                                                                             | BD BD                        | ED visits for                       | pathway                                                                 | (95% CI 6.7%-<br>10.9%), 3.1% | Pathways were                                                                                                                                                                                                                                       |
| Children: A            |                | determine if clinical | admitted for                                                                                                                                                                          | <b>DV3:</b> Admin of         | asthma                              | implementation                                                          | decrease in                   | associated with total reductions of                                                                                                                                                                                                                 |
| Multicenter            |                | pathways affect       | asthma from                                                                                                                                                                           | CS                           |                                     | on our primary                                                          | hospital costs                | 22,000 hospital                                                                                                                                                                                                                                     |
| National               |                | care and              | 2006 to 2015 in                                                                                                                                                                       | D4: CXR                      |                                     | and secondary                                                           | (95% CI 1.9%-                 | days and \$18 000                                                                                                                                                                                                                                   |
| Analysis               |                | outcomes for          | 42 children's                                                                                                                                                                         | utilization                  |                                     | outcomes                                                                | 4.3%), increased              | 000 in hospital                                                                                                                                                                                                                                     |
|                        |                | children              | hospitals.                                                                                                                                                                            |                              |                                     |                                                                         | odds of                       | costs.                                                                                                                                                                                                                                              |

AP-Asthma protocol; AUC-Area under the receiver operating characteristic curve; β-agonist- Beta agonist; BD- Bronchodilators; CI-Confidence interval; CS-Corticosteroids; CXR-Chest radiograph; DB-double blind; DV- Dependent variable; Dx- Diagnosis; EBP-Evidence based practice; ED-Emergency Department; EHR-Electronic health record; EMS-Emergency Medical Services; GEE- Generalized estimating equations; IB-Ipratropium bromide; ICD-9-International Classification of Diseases, 9th Revision; ITS-Interrupted time series; ICU-Intensive care unit; IV: Independent variable; LASSO- Least absolute shrinkage and selection operator; LOS- Length of stay; LR-Logistic regression; n- Sample size; MA-Meta analysis; MD- Mean difference; MLA- Machine learning approach; MPI-Modified Pulmonary Index; n-Sample size; NIH-National Institutes of Health; OCS-Oral corticosteroids; OR-odds ratio; PAS- Pediatric Asthma Score; PIV-Peripheral intravenous; Pox-Peripheral oxygen; Pre-k-preschoolers; QI-Quality improvement; RCS-Respiratory Clinical Score; RCT-Randomized clinical trial; RR-Risk ratios; SD-Standard deviation; SS-Statistically significant; YOA-Years of age

30

**Decision for Use** 

Weaknesses: CS

were administered

to the most severe

emergency medical

services protocols

authorizing only

patients (<10%),

perhaps due to

**Findings/Results** 

| Citation                                                                                                   | Conceptual/<br>Theoretical<br>Framework | Study Design/<br>Method                                                                     | Sample/Setting                                                                                                                                                                                                                                                                                                               | Major Variables<br>and Definitions                                                   | Measurement<br>of Variables                                                                          | Data Analysis                                                                              | Findings/Results                                                                                                                                                                                                                                                                                                                                                       | Decision for Use                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|------------------------------------------------------------------------------------------------------------|-----------------------------------------|---------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Country:<br>United States<br>Funding:<br>Agency for<br>Healthcare<br>Research and<br>Quality<br>Bias: None |                                         | hospitalized with<br>asthma                                                                 | Exclusion<br>Criteria:<br>Children<br>transferred into<br>or out of the<br>hospital were<br>excluded due to<br>inability to<br>accurately<br>determine<br>LOS.27 Children<br>were also<br>excluded if they<br>were discharged<br>against medical<br>advice,<br>transferred to the<br>ICU or died<br>during the<br>admission. | <b>D5:</b> IB<br>administration<br>>24hrs<br><b>D6:</b> Antibiotic<br>administration |                                                                                                      |                                                                                            | bronchodilator<br>administration<br>(OR 1.53[1.21-<br>1.95]) and<br>decreased odds<br>of antibiotic<br>administration<br>(OR 0.93[0.87-<br>0.99]) (n = 189<br>331). No<br>associations<br>between pathway<br>implementation<br>and CS<br>administration,<br>IB administration,<br>IB administration<br>for >24 hours,<br>CXR utilization,<br>or 30-day<br>readmission. | Weaknesses:<br>Analysis only<br>represents<br>approximately 30%<br>of pediatric<br>hospitalizations<br>nationally, not<br>randomized,<br>limited<br>generalizability<br>outside of similar<br>healthcare settings<br>(large tertiary care<br>centers)<br>Conclusions:<br>Clinical pathways<br>can decrease LOS,<br>costs, and<br>unnecessary<br>antibiotic use<br>without increasing<br>rates of<br>readmissions,<br>leading to higher<br>value care. |
| McIver et al.,<br>(2017)<br>Improving<br>Timeliness of                                                     | Health Belief<br>Model-inferred         | <b>Design:</b> Time<br>series design<br>with baseline<br>data obtain from<br>5months prior. | n= 582<br>Inclusion<br>Criteria:<br>Children ages 2<br>to 18 YOA with                                                                                                                                                                                                                                                        | IV: Revision and<br>implementation<br>of new scoring<br>system (PAS)and<br>asthma    | A statistical<br>process control<br>chart was used<br>to monitor<br>improvement<br>for all measures. | A statistical<br>process control<br>chart was used<br>to monitor<br>improvement<br>for all | Time to beta<br>agonist decreased<br>from 76 minutes<br>to 27 minutes.<br>Time to steroid<br>admin decreased                                                                                                                                                                                                                                                           | Level of Evidence:<br>Level II                                                                                                                                                                                                                                                                                                                                                                                                                        |

AP-Asthma protocol; AUC-Area under the receiver operating characteristic curve; β-agonist- Beta agonist; BD- Bronchodilators; CI-Confidence interval; CS-Corticosteroids; CXR-Chest radiograph; DB-double blind; DV- Dependent variable; Dx- Diagnosis; EBP-Evidence based practice; ED-Emergency Department; EHR-Electronic health record; EMS-Emergency Medical Services; GEE- Generalized estimating equations; IB-Ipratropium bromide; ICD-9-International Classification of Diseases, 9th Revision; ITS-Interrupted time series; ICU-Intensive care unit; IV: Independent variable; LASSO- Least absolute shrinkage and selection operator; LOS- Length of stay; LR-Logistic regression; n- Sample size; MA-Meta analysis; MD- Mean difference; MLA- Machine learning approach; MPI-Modified Pulmonary Index; n-Sample size; NIH-National Institutes of Health; OCS-Oral corticosteroids; OR-odds ratio; PAS- Pediatric Asthma Score; PIV-Peripheral intravenous; Pox-Peripheral oxygen; Pre-k-preschoolers; QI-Quality improvement; RCS-Respiratory Clinical Score; RCT-Randomized clinical trial; RR-Risk ratios; SD-Standard deviation; SS-Statistically significant; YOA-Years of age

| Citation                                                                                                                                                                         | Conceptual/<br>Theoretical<br>Framework | Study Design/<br>Method                                                                                                                                                                                                                 | Sample/Setting                                                                                                                                                                       | Major Variables<br>and Definitions                                                                                                                                         | Measurement<br>of Variables                                                                                                                                                                                                                                                                                         | Data Analysis                                                                                                                                                                                                   | Findings/Results                                                                                                                         | Decision for Use                                                                                                                                                                                                                                                                                                                                                                                                        |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| β Agonist and<br>Corticosteroids<br><b>Country:</b><br>United States<br>(North<br>Carolina)<br><b>Funding:</b><br>UNC Chapel<br>Hill Dept. of<br>Pediatrics<br><b>Bias:</b> None |                                         | Purpose:<br>primary<br>initiative aims<br>were to<br>administer the<br>first $\beta$ -agonist<br>treatment to<br>children with<br>wheezing<br>symptoms within<br>20 minutes of<br>arrival and CS<br>within 60<br>minutes of<br>arrival. | a history of<br>asthma or<br>recurrent<br>wheezing who<br>presented with<br>wheeze, cough,<br>upper respiratory<br>infection<br>symptoms,<br>difficulty<br>breathing, or<br>hypoxia. | management<br>pathway.<br><b>DV1:</b> Time to<br>first β agonist<br>treatment<br><b>DV2:</b> Time to<br>steroids<br><b>DV3:</b> Rate of<br>admission<br><b>DV4:</b> ED LOS | Primary<br>outcomes<br>focused on time<br>to first $\beta$ agonist<br>treatment<br>Secondary<br>outcomes<br>focused on ED<br>LOS and<br>admission rate.<br>Key process<br>indicators for<br>adherence to<br>pathway include<br>assignment of<br>PAS,<br>administrations<br>of CS for PAS<br>$\geq$ 3 and ED<br>LOS. | measures (DV)<br>with control<br>limits set at 3<br>SD and a shift<br>of 7 or more<br>points above or<br>below the<br>mean being<br>indicative of<br>special cause<br>variation<br>(equivalent to<br>P < 0.01). | from 108 min to<br>49 min.<br>Mean monthly<br>admission rate<br>remained at 19%.<br>LOS did not<br>increase as a<br>result of initiative | Strengths: Large sample.         Weaknesses:         Inability to modify existing triage process.         Conclusions: By standardizing asthma care and redesigning care delivery processes, care variation decreased and significant improvements in timeliness of β-agonist and steroid administration occurred.         Contributions:         Easily adaptable for healthcare systems that use standing order sets. |
| Miller et al.,<br>(2015)<br>AP Improved<br>Adherence to<br>Evidence<br>Based                                                                                                     | Transtheoretical<br>Model inferred      | Design:<br>Retrospective<br>pre and post<br>protocol cohort<br>design.                                                                                                                                                                  | n=261<br>(193 pre-<br>protocol, 68 post<br>protocol)<br>Inclusion<br>Criteria:                                                                                                       | IV:<br>Implementation<br>of nurse-initiated<br>AP<br>DV1: Time to<br>CS<br>administration                                                                                  | IV measured by<br>how many times<br>nurses<br>implemented<br>protocol when<br>MPI was >6<br>(22%).                                                                                                                                                                                                                  | Data were<br>analyzed with<br>statistics<br>software.<br>Continuous<br>data are<br>presented as                                                                                                                 | The<br>improvement in<br>the meantime to<br>CS<br>administration<br>was not                                                              | Level of Evidence<br>Level II<br>Strengths: Results<br>consistent with                                                                                                                                                                                                                                                                                                                                                  |

AP-Asthma protocol; AUC-Area under the receiver operating characteristic curve; β-agonist- Beta agonist; BD- Bronchodilators; CI-Confidence interval; CS-Corticosteroids; CXR-Chest radiograph; DB-double blind; DV- Dependent variable; Dx- Diagnosis; EBP-Evidence based practice; ED-Emergency Department; EHR-Electronic health record; EMS-Emergency Medical Services; GEE- Generalized estimating equations; IB-Ipratropium bromide; ICD-9-International Classification of Diseases, 9th Revision; ITS-Interrupted time series; ICU-Intensive care unit; IV: Independent variable; LASSO- Least absolute shrinkage and selection operator; LOS- Length of stay; LR-Logistic regression; n- Sample size; MA-Meta analysis; MD- Mean difference; MLA- Machine learning approach; MPI-Modified Pulmonary Index; n-Sample size; NIH-National Institutes of Health; OCS-Oral corticosteroids; OR-odds ratio; PAS- Pediatric Asthma Score; PIV-Peripheral intravenous; Pox-Peripheral oxygen; Pre-k-preschoolers; QI-Quality improvement; RCS-Respiratory Clinical Score; RCT-Randomized clinical trial; RR-Risk ratios; SD-Standard deviation; SS-Statistically significant; YOA-Years of age

| Citation                                                                                                                                                                       | Conceptual/<br>Theoretical<br>Framework | Study Design/<br>Method                                                                                                                                                                                                              | Sample/Setting                                                                                                                                                                                                                                                                                                                                                                                         | Major Variables<br>and Definitions                                       | Measurement<br>of Variables                                                                      | Data Analysis                                                                                                                                                                                                                                                                               | Findings/Results                                                                                                                                                                                                                                                                                 | Decision for Use                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Guidelines for<br>Pediatric<br>Patients with<br>Status<br>Asthmaticus<br><b>Country:</b><br>United States<br><b>Funding:</b><br>"Departmental<br>Funding"<br><b>Bias:</b> None |                                         | <b>Purpose:</b> To<br>examine the<br>effects on time<br>to initial<br>treatment and<br>adherence to<br>EBP for status<br>asthmaticus after<br>the<br>implementation<br>of an evidence-<br>based, nurse-<br>initiated<br>pediatric AP | Asthma subjects<br>age 2-17 YOA<br>requiring<br>continuous<br>albuterol therapy<br>were<br>retrospectively<br>identified<br>through an<br>electronic record<br>search of<br>respiratory care<br>service<br>documentation<br><b>Exclusions:</b> Not<br>clearly stated.<br>Only mention<br>subjects<br>requiring<br>albuterol and that<br>there are no<br>specific criteria<br>for albuterol<br>therapy. | DV2: IB<br>administration<br>DV3: Adherence<br>to NIH<br>recommendations | All DV were<br>evaluated by<br>comparing post<br>protocol results<br>with pre-<br>protocol data. | mean $\pm$ SD.<br>Pre- and post-<br>protocol values<br>were compared<br>with the<br>unpaired <i>t</i> test<br>for continuous<br>variables and<br>the Fisher<br>exact test for<br>categorical<br>data as<br>appropriate. <i>P</i><br>< .05 was<br>considered<br>statistically<br>significant | statistically<br>significant.<br>Number of<br>subjects who<br>received BD<br>within the a<br>priori cutoff of<br>30 min (60% vs<br>77%, $P = .02$ ), at<br>least one inhaled<br>dose of IB (55%<br>vs 87%, $P <$<br>.001)<br>NIH-<br>recommended 3<br>doses of IB (14%<br>vs 54%, $P <$<br>.001) | other similar<br>studies<br>Weaknesses: Only<br>subjects who<br>received<br>continuous<br>albuterol were<br>chosen for<br>inclusion as a<br>marker for status<br>asthmaticus;<br>however, there<br>were no set criteria<br>for continuous<br>albuterol initiation<br>Order set was<br>initiated by triage<br>nursing in 22% of<br>cases.<br>Conclusions: AP<br>resulted in<br>improved<br>adherence to. NIH<br>guidelines in<br>children with status<br>asthmaticus and<br>improved<br>efficiency in the<br>administration of |

AP-Asthma protocol; AUC-Area under the receiver operating characteristic curve; β-agonist- Beta agonist; BD- Bronchodilators; CI-Confidence interval; CS-Corticosteroids; CXR-Chest radiograph; DB-double blind; DV- Dependent variable; Dx- Diagnosis; EBP-Evidence based practice; ED-Emergency Department; EHR-Electronic health record; EMS-Emergency Medical Services; GEE- Generalized estimating equations; IB-Ipratropium bromide; ICD-9-International Classification of Diseases, 9th Revision; ITS-Interrupted time series; ICU-Intensive care unit; IV: Independent variable; LASSO- Least absolute shrinkage and selection operator; LOS- Length of stay; LR-Logistic regression; n- Sample size; MA-Meta analysis; MD- Mean difference; MLA- Machine learning approach; MPI-Modified Pulmonary Index; n-Sample size; NIH-National Institutes of Health; OCS-Oral corticosteroids; OR-odds ratio; PAS- Pediatric Asthma Score; PIV-Peripheral intravenous; Pox-Peripheral oxygen; Pre-k-preschoolers; QI-Quality improvement; RCS-Respiratory Clinical Score; RCT-Randomized clinical trial; RR-Risk ratios; SD-Standard deviation; SS-Statistically significant; YOA-Years of age

| Citation                                                                                                                                                                                                                                                                                                                          | Conceptual/<br>Theoretical<br>Framework | Study Design/<br>Method                                                                                                                                                                                                                                                                                                                                                                        | Sample/Setting                                                                                                                                                                                                                                                                                                                                                                                                                         | Major Variables<br>and Definitions   | Measurement<br>of Variables                                                                                                                                                                                                                                                                                                                                                                                                                                              | Data Analysis                                                                                                                                                                                                                                                                                                                                                                                                                        | Findings/Results                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Decision for Use                                                                                                                                                                                                                                                                     |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                                                                                                                                                                                                                                                   |                                         |                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | rescue BD and CS<br>therapy                                                                                                                                                                                                                                                          |
| Patel et al.,<br>(2018)<br>A Machine<br>Learning<br>Approach to<br>Predicting<br>Need for<br>Hospitalization<br>for Pediatric<br>Asthma<br>Exacerbation<br>at the Time of<br>Emergency<br>Department<br>Triage<br><b>Country:</b><br>United States<br>and United<br>Kingdom<br><b>Funding:</b> Not<br>stated<br><b>Bias:</b> None | Social<br>Ecological<br>Model inferred  | Design:<br>Retrospective<br>analysis<br>Purpose: To<br>compare the<br>performance of<br>four common<br>machine learning<br>approaches to<br>predict need for<br>hospital-level<br>care in pediatric<br>asthma at the<br>time of triage by<br>combining<br>available clinical<br>data with<br>information<br>about weather,<br>neighborhood<br>characteristics,<br>and community<br>viral load. | n= 29,392<br>Setting: A large,<br>academic,<br>tertiary care,<br>children's<br>hospital and<br>serves a<br>predominantly<br>African<br>American<br>population. The<br>ED treats 5,000<br>to 7,000 ED<br>visits for asthma<br>each year, with<br>15% resulting in<br>admission.<br>Inclusion<br>Criteria: all<br>patient visits age<br>2-18 YOA with<br>asthma<br>exacerbation<br>evaluated at two<br>urban pediatric<br>EDs affiliated | IV: MLA<br>DV: Hospital<br>admission | Collected data<br>on demographic<br>information,<br>patient acuity in<br>triage, vital<br>signs, as well as<br>weather<br>information and<br>community viral<br>load as factors<br>that could be<br>used to predict<br>hospitalization.<br>Model<br>performance<br>was measured<br>on the accuracy<br>in predicting<br>hospitalization<br>in the test data<br>set. For each<br>model, an AUC<br>was computed.<br>Calibration was<br>measured by<br>reporting<br>observed | Data randomly<br>splint into an<br>80% training<br>data set and a<br>20% test data<br>set.<br>Once data set<br>was split, each<br>feature was<br>normalized so<br>that it would<br>have a zero<br>mean and unit<br>SD in the<br>training data<br>set.<br>Normalization<br>is required for<br>logistic<br>regressions<br>with L1<br>(LASSO)<br>regularization<br>so that all<br>variables have<br>the same<br>magnitude<br>range. The | The mean (SD)<br>age was 7 (4.2)<br>years, 42%<br>(12,328) were<br>female, 77%<br>(22,630) were<br>non-Hispanic<br>black, and 76%<br>(22,350) had<br>public insurance.<br>A total of 4,957<br>(16.9%) of<br>patient visits<br>resulted in<br>hospitalization<br>The AUCs for<br>each model were<br>1) decision tree,<br>0.72 (95%<br>confidence<br>interval [CI] =<br>0.66-0.77; 2)<br>logistic<br>regression, 0.83<br>(95% CI = $0.82-$<br>0.83; 3) random<br>forests, 0.82<br>(95% CI = $0.81-$ | Level of Evidence:<br>II<br>Strengths: Large<br>data set<br>Weaknesses:<br>Single center study:<br>retrospective study<br>means data limited<br>to EHR.<br>Conclusion: The<br>gradient boosting<br>machines model<br>was the most<br>accurate at<br>predicting need for<br>admission |

AP-Asthma protocol; AUC-Area under the receiver operating characteristic curve; β-agonist- Beta agonist; BD- Bronchodilators; CI-Confidence interval; CS-Corticosteroids; CXR-Chest radiograph; DB-double blind; DV- Dependent variable; Dx- Diagnosis; EBP-Evidence based practice; ED-Emergency Department; EHR-Electronic health record; EMS-Emergency Medical Services; GEE- Generalized estimating equations; IB-Ipratropium bromide; ICD-9-International Classification of Diseases, 9th Revision; ITS-Interrupted time series; ICU-Intensive care unit; IV: Independent variable; LASSO- Least absolute shrinkage and selection operator; LOS- Length of stay; LR-Logistic regression; n- Sample size; MA-Meta analysis; MD- Mean difference; MLA- Machine learning approach; MPI-Modified Pulmonary Index; n-Sample size; NIH-National Institutes of Health; OCS-Oral corticosteroids; OR-odds ratio; PAS- Pediatric Asthma Score; PIV-Peripheral intravenous; Pox-Peripheral oxygen; Pre-k-preschoolers; QI-Quality improvement; RCS-Respiratory Clinical Score; RCT-Randomized clinical trial; RR-Risk ratios; SD-Standard deviation; SS-Statistically significant; YOA-Years of age

| Citation                                                                                                                                                  | Conceptual/<br>Theoretical<br>Framework                         | Study Design/<br>Method                                                                                                                                                                                               | Sample/Setting                                                                                                                                                                                                                                                                                                   | Major Variables<br>and Definitions                                                                         | Measurement<br>of Variables                                                                                                                                              | Data Analysis                                                                                                                          | Findings/Results                                                                                                                                                                                                      | Decision for Use                                                                                                                                                                            |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                                                                           |                                                                 |                                                                                                                                                                                                                       | with a single<br>children's<br>hospital between<br>1/1/12, and<br>12/31/15 that had<br>received one or<br>more doses of a<br>$\beta$ -agonist and<br>CS.<br><b>Exclusion</b><br><b>Criteria:</b><br>Patients who<br>received<br>diphenhydramine<br>to avoid<br>inclusion allergic<br>reaction or<br>anaphylaxis. |                                                                                                            | admissions<br>versus expected<br>admissions for<br>each decile of<br>predicted risk.                                                                                     | normalizing<br>coefficients<br>were then<br>applied to the<br>training data<br>set.                                                    | 0.83); and 4)<br>gradient boosting<br>machines, 0.84<br>(95% CI = 0.83–<br>0.85)                                                                                                                                      |                                                                                                                                                                                             |
| Rutman et al.,<br>(2016)<br>Modification<br>of an<br>Established AP<br>Improves Care<br><b>Country:</b><br>United States<br><b>Funding:</b> Not<br>stated | Health Belief<br>Model or<br>Transtheoretical<br>Model inferred | <b>Design:</b> Time<br>series design, QI<br><b>Purpose:</b> To<br>determine the<br>impact of a<br>modified AP and<br>order sets on the<br>percentage of<br>patients<br>receiving<br>evidence-based<br>care and on the | n=5584<br>Setting:<br>Tertiary,<br>university-<br>affiliated, 323-<br>bed pediatric<br>hospital with<br>a dedicated<br>pediatric ED<br>(43,000 annual<br>visits)                                                                                                                                                 | IV:<br>Implementation<br>of modified AP<br>(using RCS,<br>renaming order<br>sets)<br>DV1: LOS<br>DV2: Cost | Monitored the<br>percentage of<br>eligible asthma<br>patients each<br>month with an<br>asthma order set<br>activated.<br>LOS<br><30minutes<br>Cost data<br>obtained from | For outcome<br>measures (LOS<br>and cost), ITS<br>analysis was<br>conducted by<br>using<br>segmented<br>linear<br>regression<br>models | A statistically<br>significant<br>difference was<br>found in the<br>intercept for<br>costs among<br>those discharged<br>from the ED<br>(\$59; P = .04)<br>In this analysis of<br>costs, the post-<br>period slope had | Level of Evidence:<br>III<br>Strengths:<br>Analysis included<br>4yr of data, and<br>results sustained<br>for 2yr in post<br>modification<br>period.<br>Weaknesses: Used<br>RCS, rather than |
| Bias: None                                                                                                                                                |                                                                 |                                                                                                                                                                                                                       | Inclusion<br>criteria:                                                                                                                                                                                                                                                                                           |                                                                                                            |                                                                                                                                                                          |                                                                                                                                        | a $P$ value of 0.08,<br>which may                                                                                                                                                                                     | more widely used<br>clinical tools which                                                                                                                                                    |

AP-Asthma protocol; AUC-Area under the receiver operating characteristic curve; β-agonist- Beta agonist; BD- Bronchodilators; CI-Confidence interval; CS-Corticosteroids; CXR-Chest radiograph; DB-double blind; DV- Dependent variable; Dx- Diagnosis; EBP-Evidence based practice; ED-Emergency Department; EHR-Electronic health record; EMS-Emergency Medical Services; GEE- Generalized estimating equations; IB-Ipratropium bromide; ICD-9-International Classification of Diseases, 9th Revision; ITS-Interrupted time series; ICU-Intensive care unit; IV: Independent variable; LASSO- Least absolute shrinkage and selection operator; LOS- Length of stay; LR-Logistic regression; n- Sample size; MA-Meta analysis; MD- Mean difference; MLA- Machine learning approach; MPI-Modified Pulmonary Index; n-Sample size; NIH-National Institutes of Health; OCS-Oral corticosteroids; OR-odds ratio; PAS- Pediatric Asthma Score; PIV-Peripheral intravenous; Pox-Peripheral oxygen; Pre-k-preschoolers; QI-Quality improvement; RCS-Respiratory Clinical Score; RCT-Randomized clinical trial; RR-Risk ratios; SD-Standard deviation; SS-Statistically significant; YOA-Years of age

| Citation | Conceptual/<br>Theoretical<br>Framework | Study Design/<br>Method         | Sample/Setting                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Major Variables<br>and Definitions | Measurement<br>of Variables | Data Analysis | Findings/Results                                                    | Decision for Use                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|----------|-----------------------------------------|---------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------|-----------------------------|---------------|---------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|          |                                         | efficiency of<br>care provided. | children who<br>presented to ED<br>with asthma<br>exacerbation<br>from 9/1/09, to<br>10/1/13, aged 1-<br>18 YOA, and<br>eligible for the<br>AP. Eligibility<br>for AP use<br>included having<br>a primary ICD-9<br>dx code.<br><b>Exclusion</b><br><b>criteria:</b> acute<br>illness:<br>pneumonia,<br>bronchiolitis, or<br>croup; chronic<br>conditions such<br>as cystic fibrosis<br>and restrictive<br>lung disease;<br>congenital and<br>acquired heart<br>disease; airway<br>issues such as<br>vocal cord<br>paralysis,<br>tracheomalacia,<br>and<br>tracheostomy<br>dependence;<br>immune |                                    | administrative<br>records.  |               | suggest a<br>marginal increase<br>in costs for ED-<br>only patients | may limit<br>generalizability.<br>Requirement for<br>ICD-9 dx code<br>could have<br>excluded patient is<br>incorrectly coded.<br><b>Conclusions:</b><br>Modification of a<br>well-established<br>AP and electronic<br>order set for ED<br>and inpatient<br>management of<br>asthma led to<br>immediate and<br>sustained<br>improvements in<br>provision of<br>evidence-based<br>care and efficiency<br>without<br>significantly<br>affecting costs. |

AP-Asthma protocol; AUC-Area under the receiver operating characteristic curve; β-agonist- Beta agonist; BD- Bronchodilators; CI-Confidence interval; CS-Corticosteroids; CXR-Chest radiograph; DB-double blind; DV- Dependent variable; Dx- Diagnosis; EBP-Evidence based practice; ED-Emergency Department; EHR-Electronic health record; EMS-Emergency Medical Services; GEE- Generalized estimating equations; IB-Ipratropium bromide; ICD-9-International Classification of Diseases, 9th Revision; ITS-Interrupted time series; ICU-Intensive care unit; IV: Independent variable; LASSO- Least absolute shrinkage and selection operator; LOS- Length of stay; LR-Logistic regression; n- Sample size; MA-Meta analysis; MD- Mean difference; MLA- Machine learning approach; MPI-Modified Pulmonary Index; n-Sample size; NIH-National Institutes of Health; OCS-Oral corticosteroids; OR-odds ratio; PAS- Pediatric Asthma Score; PIV-Peripheral intravenous; Pox-Peripheral oxygen; Pre-k-preschoolers; QI-Quality improvement; RCS-Respiratory Clinical Score; RCT-Randomized clinical trial; RR-Risk ratios; SD-Standard deviation; SS-Statistically significant; YOA-Years of age

| Citation                                                                                                                                                                          | Conceptual/<br>Theoretical<br>Framework | Study Design/<br>Method                                                                                                                                                                                                                                                                                                                                                                                  | Sample/Setting                                                                                                                                                                                                                                                                                                                                                         | Major Variables<br>and Definitions                                       | Measurement<br>of Variables                                                                                                                                                                                                                                                                                                                                                                                        | Data Analysis                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Findings/Results                                                                                                                                                                                                                                                                                                                    | Decision for Use                                                                                                                                                                                                                                                                                                                                                                                                              |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                                                                                                   |                                         |                                                                                                                                                                                                                                                                                                                                                                                                          | disorders; sickle<br>cell anemia; and<br>medically<br>complex children                                                                                                                                                                                                                                                                                                 |                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Walls, et al.,<br>(2017)<br>Improving<br>Pediatric<br>Asthma<br>Outcomes in a<br>Community<br>ED<br>Country:<br>United States<br>Funding: No<br>external<br>funding<br>Bias: None | Health Belief<br>Model                  | Design: Time<br>series design, pre<br>and post<br>intervention, QI<br>Purpose: To<br>improve the care<br>of their pediatric<br>asthma patients<br>by introducing<br>an asthma score,<br>increasing the<br>proportion of<br>patients<br>receiving CS,<br>decreasing time<br>to CS<br>administration,<br>and decreasing<br>the proportion of<br>patients who<br>needed transfer<br>for additional<br>care. | n=724<br>289 Baseline<br>435 post<br>intervention<br>Setting: ED that<br>sees ~55 000<br>patients per year,<br>of whom 20%<br>are <18 years<br>old. The<br>community<br>hospital does not<br>have pediatric<br>inpatient beds or<br>pediatric<br>specialists.<br>Inclusion<br>Criteria: if the<br>provider<br>documented a<br>clinical<br>impression of<br>"wheezing," | IV: Asthma<br>score<br>DV1: Transfers<br>out for higher<br>level of care | Process<br>measures:<br>Proportion of<br>children who<br>has asthma<br>score recorded,<br>the proportion<br>who received<br>steroids, and for<br>those who<br>received<br>steroids, the<br>time from triage<br>arrival to steroid<br>administration.<br>Outcome<br>measures:<br>Proportion of<br>children needing<br>transfer or<br>additional care.<br>Balancing<br>measure:<br>Return ED visits<br>within 7 days | Control limits<br>set at 3 SD<br>from the mean.<br>To analyze<br>return visits;<br>proportions<br>were compared<br>before and<br>after the<br>intervention by<br>using the<br>$\chi^2$ test. Our<br>secondary<br>analyses<br>included<br>calculation of<br>odds ratios<br>(ORs) and<br><i>P</i> values based<br>on the $\chi^2$ test<br>for proportions<br>and <i>P</i> values<br>based on the 2-<br>tailed <i>t</i> test for<br>time analyses.<br>A <i>P</i> value of | Mean time to<br>steroids<br>decreased<br>significantly,<br>from 196 to 105<br>minutes ( $P < .001$ ).<br>Significantly<br>fewer patients<br>needed transfer<br>after guideline<br>implementation<br>(10% compared<br>with 14% during<br>the baseline<br>period) (odds<br>ratio 0.63; 95%<br>confidence<br>interval, 0.40–<br>0.99). | Level of Evidence:<br>IV<br>Strengths: First<br>study to document<br>a QI collaborative<br>between a tertiary<br>care pediatric ED<br>and a community<br>ED in the United<br>States.<br>Weaknesses: Only<br>64% of patients<br>had an asthma<br>score recorded<br>during the<br>implementation<br>period.<br>Majority of patients<br>who were assigned<br>an asthma score<br>had mild to<br>moderate asthma<br>(score of <4). |

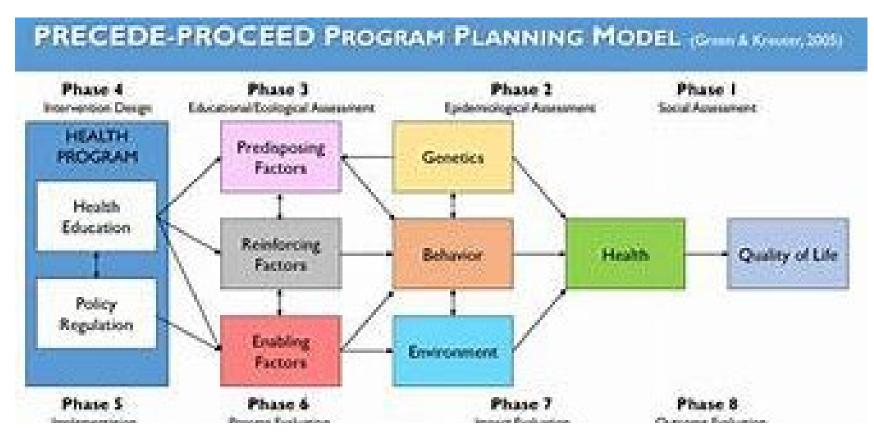
AP-Asthma protocol; AUC-Area under the receiver operating characteristic curve; β-agonist- Beta agonist; BD- Bronchodilators; CI-Confidence interval; CS-Corticosteroids; CXR-Chest radiograph; DB-double blind; DV- Dependent variable; Dx- Diagnosis; EBP-Evidence based practice; ED-Emergency Department; EHR-Electronic health record; EMS-Emergency Medical Services; GEE- Generalized estimating equations; IB-Ipratropium bromide; ICD-9-International Classification of Diseases, 9th Revision; ITS-Interrupted time series; ICU-Intensive care unit; IV: Independent variable; LASSO- Least absolute shrinkage and selection operator; LOS- Length of stay; LR-Logistic regression; n- Sample size; MA-Meta analysis; MD- Mean difference; MLA- Machine learning approach; MPI-Modified Pulmonary Index; n-Sample size; NIH-National Institutes of Health; OCS-Oral corticosteroids; OR-odds ratio; PAS- Pediatric Asthma Score; PIV-Peripheral intravenous; Pox-Peripheral oxygen; Pre-k-preschoolers; QI-Quality improvement; RCS-Respiratory Clinical Score; RCT-Randomized clinical trial; RR-Risk ratios; SD-Standard deviation; SS-Statistically significant; YOA-Years of age

| Citation | Conceptual/<br>Theoretical<br>Framework | Study Design/<br>Method | Sample/Setting                 | Major Variables<br>and Definitions | Measurement<br>of Variables | Data Analysis                          | Findings/Results | Decision for Use                                                                                                                                     |
|----------|-----------------------------------------|-------------------------|--------------------------------|------------------------------------|-----------------------------|----------------------------------------|------------------|------------------------------------------------------------------------------------------------------------------------------------------------------|
|          |                                         |                         | "asthma," or<br>"bronchospasm. |                                    | from initial<br>visit.      | <.05 was<br>considered<br>significant. |                  | Reports on<br>benchmarks for the<br>emergency care of<br>children with<br>asthma emphasize<br>care of children<br>with moderate to<br>severe asthma. |
|          |                                         |                         |                                |                                    |                             |                                        |                  | <b>Conclusions:</b><br>Utilizations of an<br>asthma severity<br>score streamlines<br>care.                                                           |

AP-Asthma protocol; AUC-Area under the receiver operating characteristic curve; β-agonist- Beta agonist; BD- Bronchodilators; CI-Confidence interval; CS-Corticosteroids; CXR-Chest radiograph; DB-double blind; DV- Dependent variable; Dx- Diagnosis; EBP-Evidence based practice; ED-Emergency Department; EHR-Electronic health record; EMS-Emergency Medical Services; GEE- Generalized estimating equations; IB-Ipratropium bromide; ICD-9-International Classification of Diseases, 9th Revision; ITS-Interrupted time series; ICU-Intensive care unit; IV: Independent variable; LASSO- Least absolute shrinkage and selection operator; LOS- Length of stay; LR-Logistic regression; n- Sample size; MA-Meta analysis; MD- Mean difference; MLA- Machine learning approach; MPI-Modified Pulmonary Index; n-Sample size; NIH-National Institutes of Health; OCS-Oral corticosteroids; OR-odds ratio; PAS- Pediatric Asthma Score; PIV-Peripheral intravenous; Pox-Peripheral oxygen; Pre-k-preschoolers; QI-Quality improvement; RCS-Respiratory Clinical Score; RCT-Randomized clinical trial; RR-Risk ratios; SD-Standard deviation; SS-Statistically significant; YOA-Years of age

# Table A2

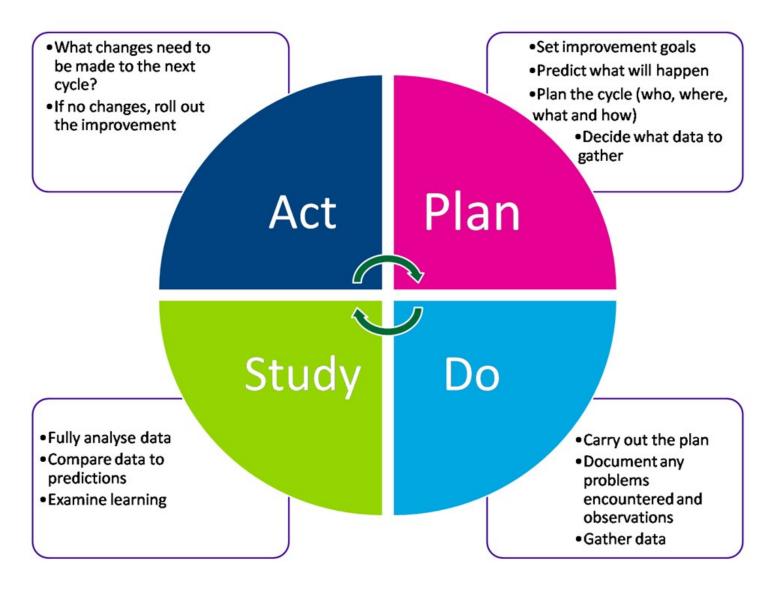
Synthesis Table


| Author                                        | Bekmezian<br>et al.                            | Castro-<br>Rodriguez<br>et al.                                        | Dondi et al.                 | Fishe et al.                                         | Kaiser et al.                                      | McIver et al.                                            | Miller et al.                                                | Patel et al.                 | Rutman et al.                       | Walls et al.                                                 |
|-----------------------------------------------|------------------------------------------------|-----------------------------------------------------------------------|------------------------------|------------------------------------------------------|----------------------------------------------------|----------------------------------------------------------|--------------------------------------------------------------|------------------------------|-------------------------------------|--------------------------------------------------------------|
| Year                                          | 2015                                           | 2016                                                                  | 2017                         | 2018                                                 | 2018                                               | 2017                                                     | 2015                                                         | 2018                         | 2016                                | 2017                                                         |
| Design/LOE                                    | Prospective<br>cohort<br>study/IV              | Systematic<br>review with<br>MA/I                                     | Retrospective<br>analysis/IV | Retrospective<br>observational<br>cohort<br>study/II | Retrospective<br>multicenter<br>cohort<br>study/II | Time series<br>design, QI/II                             | Retrospective<br>pre/post<br>protocol<br>cohort<br>design/II | Retrospective<br>analysis/II | Time<br>series<br>design,<br>QI/III | Time series<br>design,<br>pre/post<br>intervention,<br>QI/IV |
|                                               |                                                |                                                                       |                              | Study                                                | Characteristics                                    |                                                          |                                                              |                              |                                     |                                                              |
| Age range (YOA)                               | <21                                            | <6                                                                    | 0-14                         | 2-18                                                 | 2-17                                               | 2-18                                                     | 2-17                                                         | 2-18                         | 1-18                                | <18                                                          |
| Setting                                       |                                                |                                                                       |                              |                                                      |                                                    |                                                          |                                                              |                              |                                     |                                                              |
| Tertiary<br>Care/University<br>Hospital       | x                                              | (systematic<br>review)                                                | x                            |                                                      | Multi center<br>analysis of 42<br>hospitals        | х                                                        | x – inferred,<br>not clearly<br>stated                       | х                            | х                                   |                                                              |
| Community<br>Hospital                         |                                                |                                                                       |                              |                                                      |                                                    |                                                          |                                                              |                              |                                     | Х                                                            |
| Prehospital                                   |                                                |                                                                       |                              | Х                                                    |                                                    |                                                          |                                                              |                              |                                     |                                                              |
| Sample Size                                   | 1249                                           | 11 studies                                                            | 603                          | 3812                                                 | 189331                                             | 582                                                      | 261                                                          | 29392                        | 5684                                | 724                                                          |
| Measurement<br>Tools                          | Univariate<br>and<br>multivariate<br>LR models | MD<br>(inverse<br>variance<br>method) or<br>Mantel–<br>Haenszel<br>RR | STATA 7.0                    | Multivariate<br>LR models                            | GEEs                                               | Statistical<br>process<br>control chart<br>(unspecified) | Graph pad<br>software                                        |                              | Segmented<br>LR models              | $\chi^2$ test                                                |
|                                               |                                                |                                                                       |                              | IV -                                                 | Interventions                                      |                                                          |                                                              |                              |                                     |                                                              |
| PAS                                           |                                                |                                                                       |                              |                                                      | x                                                  | x                                                        |                                                              |                              |                                     | Х                                                            |
| AP                                            | х                                              |                                                                       |                              |                                                      | Х                                                  |                                                          | х                                                            |                              | х                                   |                                                              |
| Nurse initiated<br>protocol – CS in<br>triage |                                                | x                                                                     |                              |                                                      |                                                    |                                                          | x                                                            |                              |                                     |                                                              |
| Prehospital CS<br>administration              |                                                |                                                                       |                              | х                                                    |                                                    |                                                          |                                                              |                              |                                     |                                                              |
| Age of patient                                |                                                |                                                                       | X                            |                                                      |                                                    |                                                          |                                                              |                              |                                     |                                                              |
| MLA                                           |                                                |                                                                       | I                            |                                                      | itcomes Measur                                     |                                                          |                                                              | Х                            |                                     |                                                              |

| LOS               |   | Х |   | Х | Х | х |   |   | х |   |
|-------------------|---|---|---|---|---|---|---|---|---|---|
| Hospitalization   |   | Х |   | х |   | Х |   | Х |   |   |
| CS administration | х | Х |   |   | Х | Х | Х |   |   |   |
| Asthma triggers   |   |   | х |   |   |   |   |   |   |   |
| Discharges        |   |   |   | Х |   |   |   |   |   |   |
| BD                |   |   |   |   |   | х | х |   |   |   |
| administration    |   |   |   |   |   |   |   |   |   |   |
| Adherence to      |   |   |   |   |   |   | х |   |   |   |
| national          |   |   |   |   |   |   |   |   |   |   |
| guidelines        |   |   |   |   |   |   |   |   |   |   |
| Cost              |   |   |   |   | х |   |   |   | х |   |
| Transfers         |   |   |   |   |   |   |   |   |   | Х |

# CORTICOSTEROIDS IN TRIAGE Appendix B

### Figure B1


Precede- Proceed Framework



Green & Kreuter (2005).

# CORTICOSTEROIDS IN TRIAGE Figure B2

PDSA Cycle



#### Figure 1. Nursing Administration of Dexamethasone in ED Triage to Pediatric Patients with Asthma

**Goals:** Decrease hospitalization rates in pediatric patients with asthma through early administration of corticosteroids (CS) in Emergency Department (ED) triage. **Objectives:** 1) Verify with ED physicians clear set of criteria for CS (dexamethasone) to be administered under standing orders by nurses in triage. 2) Discuss with pharmacy ability to stock CS in triage Omnicell. 3) Provide education to nurses at staff meetings on qualifying criteria, and benefits of CS in triage. 4) Analyze data provided by IT to determine how often standing orders were utilized and respective patient outcomes. 5) Present outcomes to staff; encourage sustainability. 5) Improve patient safety and outcomes while decreasing overall length of stay and hospitalization rates.

| INPUTS                                                                                                                                                              | OUTI                                                                                                                                                                          | PUTS                                                                                              |                                                                                                                               | IMPACTS                                                                                                          |                                                                                                                       |                                                                                                                                                                                                                    |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Key StaffED NursesED Physicians andNurse PractitionersED PharmacyED ManagerIT Dept for EMRdata collection <u>Clinical Partners</u> ED at PhoenixChildren's Hospital | Activities<br>Meet with ED<br>Physician to<br>verify CS<br>administration<br>criteria.<br>Meet with<br>Pharmacy to<br>discuss barrier to<br>implementation<br>and stocking CS | PUTS<br>Target<br>Patients<br>(On receiving<br>end of<br>intervention.)<br>ED RNs<br>(Responsible | Short<br>Patients<br>presenting to ED<br>who meet<br>criteria for<br>administering<br>CS using<br>standing orders.<br>Provide | OUTCOMES<br>Medium<br>Consistently<br>receive CS from<br>triage RN.                                              | Improvement in<br>symptoms while<br>waiting.<br>Perception of<br>increased safety<br>in WR, able to<br>see the impact | Decreased time to<br>CS<br>administration.<br>Increased patient<br>safety in the ED<br>waiting room<br>(decreased risk<br>for deterioration).<br>Decreased time to<br>patient<br>disposition.<br>Decreased overall |
| <u>Funding Resources</u><br>None required at this<br>time – considering IT<br>time to gather data,<br>Pharmacy tech time<br>to stock Omnicell.                      | s in triage for<br>T Omnicell. ED implementing<br>only has pills. Intervention.                                                                                               | for<br>implementing                                                                               | education and<br>increase RN<br>knowledge on<br>benefit/indicatio<br>ns of CS in<br>triage.                                   | order initiation.<br>Administer CS<br>in triage when<br>patients need to<br>wait.                                | of CS<br>administration<br>in triage to<br>sustain<br>intervention.                                                   | Decreased overall<br>length of stay.<br>Decreased<br>hospitalization<br>rates.<br>Improved patient<br>outcomes.<br>Cost savings for                                                                                |
|                                                                                                                                                                     |                                                                                                                                                                               | Stock Triage<br>Omnicell with<br>CS<br>(dexamethasone)                                            | Pharmacy to<br>compound liquid<br>to facilitate easier<br>CS<br>administration<br>(compared to<br>pills).                     | Demonstrate<br>continuous<br>ability to stock<br>CS in triage to<br>ensure<br>sustainability of<br>intervention. | organization.                                                                                                         |                                                                                                                                                                                                                    |

Assumptions: 1) There will be a large number of pediatric patients experiencing asthma exacerbation requiring corticosteroids in triage. 2) Pharmacy will stock the triage Omnicell with dexamethasone. 3) Pharmacy will compound oral liquid to facilitate ease of nurses administering dexamethasone in triage. 4) There are limited absolute contraindications to dexamethasone. 5) ED nurses will take the time to administer dexamethasone when triage is busy and patients must wait. 6) Timely administration of CS will lead to improvement in symptoms and decrease time to disposition after being seen by ED physician or Nurse Practitioner. 7) Utilization of standing orders for CS in triage will improve patient outcomes, decrease hospitalization rates.