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ABSTRACT

Data mining, also known as big data analysis, has been identified as a critical and

challenging process for a variety of applications in real-world problems. Numerous

dataset are collected and generated everyday to store the information. The rise in the

number of data volumes and data modality has resulted in the increased demand for

data mining methods and strategies of finding anomalies, patterns, and correlations

within large data sets to predict outcomes. The effective machine learning methods

are widely adapted to build the data mining pipeline for various purposes like busi-

ness understanding, data understanding, data preparation, modeling, evaluation, and

deployment.

The major challenges for effectively and efficiently mining big data include (1) data

heterogeneity and (2) missing data. Heterogeneity is the natural characteristic of the

big data, as the data is typically collected from different sources with the diverse

format. The missing value is the most common issue faced by the heterogeneous

data analysis, which resulted from variety of factors including the data collecting

processing, user initiatives, erroneous data entries, and so on.

In response to these challenges, in this thesis, three main research directions with

application scenarios have been investigated: (1) Mining and Formulating Heteroge-

neous Data, (2) missing value imputation strategy in various application scenarios in

both offline and online manner, and (3) missing value imputation for multi-modality

data. Multiple strategies with theoretical analysis are presented, and the evaluation of

the effectiveness of the proposed algorithms compared with state-of-the-art methods

is discussed.
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Chapter 1

INTRODUCTION

This is the era that we are seeing the significant advancements in the big data research

and reaping the benefits of numerous industrial applications. Various data sets are

collected for data mining purpose in the real-world problems, including the social

media entertainment, e-commerce, healthcare, IoT, and so on. According to (Watson

2019), today in the United State, 50% of the IT companies are using big data analytic

and over 35% will possibly use the data mining analytic in the future. Global revenues

for big data and business analytics (BDA) solutions will reach $189.1 billion in 2019,

up 12.0% from 2018. Revenues will continue to rise at this rate from 2018 through

2022, with a five-year prediction of 13.2 percent annual growth, totaling nearly $274.3

billion in sales by 2022. Over 2.5 quintillion bytes of data are created every day by

humans and machines, and knowledge extracted from this data is being utilized to

perfrom the better consumer behavior analysis and optimize the prices of the produce

that greatly profit the e-commerce.

A major characteristic of big data is heterogeneity as the data includes the infor-

mation from different sources and presented in various formats. The wide range of

data types, formats, and contents demonstrates this characteristic. In real-world ap-

plications, learning from such a diverse set of data is in high demand. In e-commerce,

for example, the recommender system has played a significant role. Customers and

products are both linked to a wealth of heterogeneous data. Consumers demon-

strate category-specific buying behavior and offer feedback in heterogeneous format,

such as numerical rating scores and textual review content. The customers’ feed-

back reveals their purchasing preference, and then the numerous related products
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will be recommended to the target customers. Besides the recommender systems, the

ailment-specific forums also plays an important role in the social media. These forums

are developed for and utilized by people with the same sort of disease in the field of

healthcare analytics. Their conversation themes are diverse, ranging from discussions

on the condition of sickness to healthy eating plans and mental health management.

The heterogeneous data analysis methods are playing an essential role to dive into

these problems.

For all these applications, missing data is an inherent and common issue. Things

become difficult, or even impossible to solve when missing values cannot be handled.

The missing data imputation forms the first critical step to build the data mining

pipelines. According to Strike (Strike et al. 2001) and Raymond and Roberts (Ray-

mond and Roberts 1987), the missing data can be simply removed without having

an impact on the data mining purpose when the data set only has a small amount of

missing data, such as less than 10% or 15% for the entire data set. When the missing

ratio surpasses 15%, however, (Acuna and Rodriguez 2004) points out that the serious

thought must be given to know how to handle the missing data. It is important to

note that not every data set follows the same missing value pattern. Small quantities

of missing data can sometimes include critical information that cannot be overlooked,

such as records having large sums of money spent in the online purchase activities

but lacking personal information such as age, income, education, and so on.

Missing value imputation (MVI) is the most often utilized solution to deal with

the incomplete data set, as opposed to the case deletion technique. In general, MVI

is a procedure in which missing data is replaced with substituted values estimated by

statistical or machine learning approaches. For several decades, statistical techniques

such as mean/mode and regression have been used for this purpose (Little and Rubin

2019). The machine learning techniques such as k nearest neighbor, artificial neu-
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ral network, and support vector machine techniques are being used in recent years

(Garćıa-Laencina et al. 2010). In this thesis, we have studied how to impute the

missing value with respect to different application domains and exploring a various

state-of-the-art method for the following topics:

T1: Mining and Formulating Heterogeneous Data. The reliable under-

standing and the robust models/algorithms are critical to analyze the heterogeneous

data. The core of the study is to identify the relationship across the heterogeneous

data, to adapt and utilize hidden information in domain adaption situations to en-

hance the data mining performance.

T2: Imputing Missing Value in Multiple Scenario. Missing values arise in

multiple real-world scenarios, including recommender systems and healthcare anal-

ysis. When customers rating only a few items, it results in the poor feedback for

building a recommender system. The MVI methods are reviewed as the potential

solution to offer a reconstruction of each user rating to the recommendation, enabling

the accuracy and creation of a recommender system. Meanwhile, analyzing health-

care social media is essential to understand how to offer better support to patients

with chronic health conditions. The missing clinical biomarker records are imputed

by adopting the auxiliary data and exploring the cross-view knowledge when data

show view heterogeneity.

T3: Imputation with Data Modality. Real-world data is inextricably linked

to one another when it appears in heterogeneous formats (e.g., textual descriptions

of the product, images, numerical rating score, and users’ contextual review). By

incorporating the multi-modality information and leveraging the correlations between

modalities, the missing value can be estimated in the application-driven problems,

and further alleviate several application-driven problems like cold-start problem and

user bias problem.
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The dissertation is organized as follows. Chapter 2 discusses the background and

the impact of the existing related works of data heterogeneity and missing value im-

putation. Chapter 3 discusses the proposed works in the scenario of the recommender

system. Chapter 4 presents the missing value imputation analysis of healthcare so-

cial media. Chapter 5 discusses the work of handling missing value imputation in the

scenario of data multi-modality. Chapter 6 concludes the thesis.
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Chapter 2

LITERATURE SURVEY

The machine learning methods for data imputation with data heterogeneity has been

studied in the last decades for various application background like recommender sys-

tem (Zhang et al. 2017), healthcare social media (Zhu et al. 2011; Aittokallio 2010;

Harel and Zhou 2007), operation management (Tsikriktsis 2005), questionnaires and

surveys (Baraldi and Enders 2010; De Leeuw 2001), and so on. For example, the data

collected in a recommender system is usually organized as a matrix with one row per

user and one column per item, with each item value representing the corresponding

rating score. Most individual users naturally rate only a small set of items after the

purchase, while the number of items might range from thousands to millions. The

majority of the rating scores are either unnoticed or missing. Meanwhile, missing

value issue also troubles the researchers in healthcare analysis, such as a lack of data

collecting and reporting (Wells et al. 2013). As a result of the voluntary nature of the

online user, there is frequently a lack of collection in the data of the disease-focused

social network. The missing value is especially prevalent in the medical records, such

as the Electronic Health Record (EHR) which is designed for the benefit of clinical and

billing companies. The missing value of clinical data may cause fatal consequences

when a clinical measurement shows a positive symptom and comorbidity. Almost all

of the data recording fields are left blank for effectively handling the missing value,

and the desire to deal with incomplete data comes from a variety of places. The stud-

ies and approaches for missing value imputation are necessary for their own benefit.

The existing missing value imputation approaches, as well as related studies of data

heterogeneity, are presented in this chapter.
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2.1 TYPES OF MISSING VALUE

The missing data is evolving as a critical issue in real-world applications and dis-

turbing the data analysis (Pedersen et al. 2017). The missing value imputation forms

the first essential step of many data analysis pipelines to improving the data quality

and enhances the model robustness (Young et al. 2011). In order to decide how to

handle the missing data, it is meaningful to know why they are missing. In general,

moving from the simplest type to the most general type, there are three types of

missing mechanisms, i.e., missing completely at random (MCAR), missing at random

(MAR), and missing not at random (MNAR). Each of the mechanism requires differ-

ent analysis methods due to their own characteristics as:

• MCAR: In this case, the missing entries occur at completely random as the value of

the missing entries has no dependence on the observed knowledge. Data are MCAR

type when the probability of missing data on a variable is unrelated to any other

measured variable and is unrelated to the variable with missing values itself (Os-

man et al. 2018). For example, online customer information, e.g., gender or contact

numbers, is missing from the database, or a tube containing a blood sample is acci-

dentally dropped and breaks, or when questionnaires are unintentionally lost are the

typical cases of MCAR. Any kind of data imputation method can be adopted without

bringing in the bias risk as no previous constraint specification (Janssen et al. 2010).

Statistically, the MCAR mechanism can be expressed as (Fox et al. 2015):

f(M |Y, φ) = f(M |φ) for all Y, φ (2.1)

where Y and M denote the observed values and missing values respectively. φ is an

unknown parameter and the function f denotes the conditional probability distribu-

tion.

• MAR: Compared with the MCAR, in which no specific constraint exists between
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the missing data and observed data, missing at random means the observed variables

can partially explain the missing data. There is a dependent relationship between

the missing value and other variables. For example, when the blood pressure data is

missing at random, the variables of age and gender are considered as the dependent

variables to the blood pressure, compared with the variable of Estrogen Receptor

(ER) or Progesterone Receptor (PR) that indicate the breast cancer statue. The

MAR mechanism can be formally expressed as (Fox et al. 2015):

f(M |Y, φ) = f(M |Yobs, φ) for all Ymiss, φ (2.2)

where Yobs and Ymiss indicate the observed and missing components of variable Y .

The underlying parameter φ can be estimated by relating Yobs with other additional

information and variables.

• MNAR: In this type of missing mechanism, the unobserved variables are assumed

to be related to the values of that variable itself, i.e., the missing value is specifically

related to what is missing. There is a direct dependent relationship between the values

being missing and the nature of the variable, e.g., it occurs in disease-dedicated social

network analysis that those heavy patients may be less likely to disclose their weight.

Mathematically, MNAR can be expressed as:

f(M,Y |θ, φ) = f(Y |θ)f(M |Y, φ) (2.3)

where θ denotes the distribution of Y estimated from observed information, and φ

characterizes the distribution of the missing pattern.

Figure. 2.1 shows the latest categorization of the existing missing value imputation

mechanisms (Pereira et al. 2020). Before this categorization, previous missing value

imputation methods handle the missing value by two strategies: 1) Single Value

Imputation (SVI) and 2) Multiple-Imputation (MI). Both of these two strategies
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Figure 2.1: Various Mechanisms to Handle Missing Value.

are mainly focused on the MCAR and MAR missing mechanism, as the MNAR leads

to the most difficult case when no assumption has been made about what is happening

in the missing data. Single value imputation aims at estimating the unknown entries

by a single value. For example, the most commonly used method is to replace the

missing entries by the overall mean value of the observed entries (Donders et al. 2006)

or using the most commonly observed values to recover the missing entries (Luengo

et al. 2012). Another widely used method is regression imputation (Raghunathan

et al. 2001) (also known as the predicted mean imputation). They are straightforward

to understand, but tend to underestimate the diversity of the original data, and also

ignoring the correlations between the samples. The single value imputation strategy

is leading to the biased imputation result and causes the Type 1 error (i.e., the

none existing relation is identified) (Greenland and Finkle 1995), which may not

be suitable for many real-world applications (Enders 2010). Compared with single

value imputation, the multiple-imputation strategy aims at predicting the missing

entries value based on the distribution of observed knowledge, such as the expectation-

maximization (EM) based method (Musil et al. 2002), matrix factorization (MF)
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based method (Lange and Buhmann 2006). The MF-based method (Koren et al. 2009)

has been proven successful in the Netflix competition. Multivariate imputation by

chained equations (MICE) (Buuren and Groothuis-Oudshoorn 2010) is also a popular

imputation method that can preserve the observed knowledge during the imputation

process.

2.2 HETEROGENEOUS DATA ANALYSIS

Data collected from various sources and domains are exhibiting rich heterogeneity,

such as the correlation among multiple views, the relatedness between multiple tasks,

and the information across multiple labels. The rich heterogeneity allows us to dive

into the data to learn the intrinsic knowledge behind the problem (Yang et al. 2020).

The goal of learning from heterogeneous data is to leverage the information from

multiple domains to improve the performance of machine learning models.

Multi-view learning is one of the most common methods to formulate data het-

erogeneity. The views are complementary to each other. The co-Training is proposed

as one of the earliest methods for multi-view problems (Blum and Mitchell 1998).

Canonical correlation analysis (CCA) (Hotelling 1992) and kernel canonical correla-

tion analysis (KCCA) (Akaho 2006) are the typical works. They both mutually max-

imizing the correlations between the projections of two original views in the shared

latent subspace. Then the SVM-2K (Farquhar et al. 2006) combines the KCCA with

SVM and is solved as an optimization problem. The multi-view clustering (Bickel

and Scheffer 2004; Yang and Wang 2018; Liu et al. 2013) and multi-view regression

(Kakade and Foster 2007) further utilize Fisher’s discriminant analysis to explore the

latent subspace generated from the multi-view data.

In multi-task learning, it aims to improve the model performance in every single

task by utilizing a small amount of labeled data from the related tasks. (Evgeniou
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and Pontil 2007; Zhang et al. 2010) learn a common feature representation from

all the tasks, which denotes the shared knowledge among the tasks. (Zhang et al.

2019c) proposes a clustering-based multi-task framework in heterogeneous data situa-

tions. Recently, various deep learning models are proposed to boost the performance

of multi-task learning. (Liu et al. 2019a) proposes a task-specific attention model.

(Jaderberg et al. 2016) proposes to learn an unsupervised auxiliary task in conjunc-

tion with the main task. (Xu et al. 2018) introduces a method to weigh the loss of

auxiliary tasks relative to the main task loss. The theoretical survey study of deep

learning-based multi-task learning is recommended (Crawshaw 2020).

Besides the above-mentioned methods, which mostly focused on single heterogene-

ity, the dual heterogeneity has been studied by researchers in recent years Yang et al.

(2020). (He and Lawrence 2011) proposes a method to handle the duel heterogeneity

for the combination of task heterogeneity and view heterogeneity. (Zhang and Huan

2012) learns a linear mapping for each view in each task, and (Yang and Gao 2014)

adapts the multi-view for cross-domain classification.

2.3 OFF-LINE METHODS FOR MISSING VALUE IMPUTATION

Matrix Factorization (MF) is a frequently used data mining method for a variety

of situations. It’s been frequently used and customized for dimensionality reduction,

data clustering, missing value imputation, and among other things. The main goal

of the MF is to generate a set of low-rank matrices that can approximate the original

data in terms of observed knowledge, similar to well-known methods like principal

component analysis (PCA) (Jolliffe 2002) and singular value decomposition (SVD)

(Golub and Van Loan 2012). To be more specific, MF assumes that the partially

observed information, i.e., the matrix M, can be estimated by the product of two

low-rank matrices, i.e., the matrix U and V, whose product UV> represents the
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minimum Euclidean distance with respect to the observed information in matrix M.

The matrices U and V are used as factorization factors, while the missing value in

the matrix M is estimated in the UV> produce.

In practice, the non-negative property often exists in many real-world applications,

especially for the medical and healthcare domain like medical imaging analysis(Carr

et al. 1997), gene expression (Gao and Church 2005), healthcare fraud detection

(Zhu et al. 2011), and medical recommender system (Zhang et al. 2017). These

applications naturally require the non-negative property for each entry in the data,

however, such non-negative constraint is not satisfied in the MF. To overcome this

issue, (Lee and Seung 2001) proposes the non-negative matrix factorization (NMF),

which has incorporated the non-negative constraint into the MF framework. NMF

produces two non-negative low-rank matrices (also known as dual-factors), whose

multiplication has the minimum Euclidean distance (defined as the square root of

the sum of the absolute squares of the difference between two matrices) regarding

the input data. Each of the non-negative low-rank matrices is usually considered

as the clustering result for the row-wise and column-wise knowledge of the original

data, which reveals the user’s emotion and preference in personalized doctor system

(Zhang et al. 2017). The work (Wang and Zhang 2013) comprehensively reviews

the existing NMF methods used in various applications. Meanwhile, a collection

of the medical and healthcare data is commonly presented as a patient-by-medical

measurement item’ matrix, in which the missing entries commonly exist. Several NMF

extension methods handle the missing value issue from various perspectives. (Xu

et al. 2012) contributes to recovering the missing data from the partially observed

information by taking advantage of MF. Graph Regularized Non-negative Matrix

Factorization (GNMF) (Cai et al. 2011) incorporates the samples’ pairwise similarity

by introducing the graph regularizer into the traditional NMF to explore insight
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into the intrinsic geometric structure of the data, which reduce the side effects of

the unknown entries. A convex and semi-NMF (Ding et al. 2010) method expanded

the application domain by relaxing the non-negative constraint, and (Wang et al.

2015a) incorporates the guidance constraints to align with existing medical knowledge.

However, when applying the double orthogonality in dual-factor matrix factorization,

it is very restrictive and gives a rather poor matrix low-rank approximation. Thus

(Ding et al. 2006) proposed the tri-factor factorization method subject to the double

orthogonal constraints on both factorization factors, which allows the different cluster

number of row and column clustering. (Gu et al. 2011) proposed to solve the common

scale transfer problem by leveraging normalized cut-like constraints. Recent work

incorporates the deep learning model with matrix factorization for the missing value

imputation task (Liu et al. 2019b).

Besides the MF-based collaborative filtering (CF), content-based filtering (CBF)

algorithms relieve the recommender problem by using auxiliary modalities/information

such as product descriptions, photos, and user reviews and explore the relationships

between different data modalities, which is known as multi-modality. The data in

various domains, such as computer vision, clinical, and recommender systems, is nat-

urally collected with multiple modalities. Because multiple modalities of a subject

give complementary information, many clinical applications, such as tumor detection

(Xu et al. 2016; Zhang and Metaxas 2016) and brain illness diagnosis (An et al. 2016;

Li et al. 2014; Wang et al. 2016), require high-quality multi-modality data in order

to get appropriate diagnostic findings. In addition to anatomical features provided

by other popular modalities like magnetic resonance imaging (MRI), for example,

the positron emission tomography (PET) modality is frequently utilized to show

metabolic information. The missing value imputation for image processing is formu-

lated as a conditional image generation task (Cai et al. 2018), where the deep learning
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models have achieved success (Dong et al. 2017; Mathieu et al. 2015). In terms of

computer vision tasks, generative adversarial networks (GANs) have been suggested

and have shown to be effective for missing value imputation tasks. A generator net-

work and a discriminator network make up the GAN framework. The discriminator

is used to differentiate imputed values in pictures from the data set, while the gen-

erator transfers latent representations to pictures. The GAN model can be readily

adapted to conditional GANs by including conditional information in the latent rep-

resentations under various application scenarios. The encoder-decoder architecture is

used as the generator network in most recent studies on conditional picture creation

challenges, which encodes conditional information to latent representations.

Besides the GAN-based model, graph spectral analysis is also widely used when

data naturally arise in the graph structure in real-world problems including social

media (Dong et al. 2019), recommender system (Ying et al. 2018; Wu et al. 2018b),

drug-target and molecular analysis (Torng and Altman 2019; You et al. 2018), and

more. Compared with the grid structure data, e.g., image, the relationship informa-

tion among entities has been encoded in the graph model and provides us insight into

knowledge underlying the data. The non-Euclidean nature of the graph-structured

data requires an analysis mechanism to first quantify the complex pattern of graph

structure data in order to make any further exploration. Graph spectral perspective

has been proposed in the past decades as an auxiliary method to conduct relationship

analysis for the graph structural data, and thus, graph convolution processing and

graph filtering processing have attracted much attention (Zhang et al. 2019a). The

basic idea of graph spectral is motivated by the traditional signal Fourier transform,

which conducts the signal analysis by transforming the sequential signal from the time

domain to the frequency domain. The analogy to this process, the non-Euclidean

graph structural data is transformed from its original domain to the so-called graph
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spectral domain. The graph convolution operation is further proposed based on graph

spectral processing as the aggregations of node representations from the node neigh-

borhoods. More recently, through revisiting deep learning with graph spectral theory,

graph knowledge is decoded by the deep model as a graph convolution network by

introducing graph filters. In particular, the authors of (Hammond et al. 2011) shows

that the Chebyshev polynomial approximation can well estimate the graph filters, and

the authors of (Defferrard et al. 2016) introduces such graph filters into convolution

neural networks for handling the graph-structured data. Furthermore, the authors

of (Kipf and Welling 2016) simplifies the graph convolution process and it is widely

applied since its inception (Zhang et al. 2018).

2.4 ON-LINE METHODS FOR MISSING VALUE IMPUTATION

E-commerce enterprises frequently use online missing value imputation methods,

in which the consumers’ shopping preferences are considered as missing data. Most

machine learning models in recommender systems use both long-term and short-term

data to determine the users’ preferences. Customers who shop online are sometimes

greeted with thousands of options to examine but impossible to make a final deci-

sion immediately. In recent years, there has been a surge in interest in industrial

applications of recommender systems, since they help to assess the missing value of a

customer’s interest, decrease consumer diversions, and disclose a reasonable amount

of products that are most relevant to the customers’ purchasing goal. In these rank-

ing systems, which take the form of search or recommendation systems, products are

rated in descending order of relevance to the client. (Nigam et al. 2019; Wu et al.

2018a; Zhao et al. 2020b; Li et al. 2018; Hu et al. 2018; Yan et al. 2018). The re-

lated works are summarized from literature and categorized into two aspects: (1)

Session-based methods, and (2) Multi-armed Bandit (MAB) based methods.

14



The session-based method aims at exploring the customers’ online activities and

behavior within a short period of time, also known as a session. The within-session

ranking job uses the temporal nature of the user’s browsing activity from the same

session to estimate what action the user will do next inside the current shopping

session (Li et al. 2018; Yu et al. 2016). Deep learning models have been widely adopted

in numerous companies and applications as a result of significant advancements (e.g.,

solving cold-start, batch normalization, and dropout to avoid overfitting) (Zhang

et al. 2019b). Recurrent neural networks (RNNs) are introduced for this within-

session rating job in (Hidasi et al. 2015) and gained substantial momentum due to

the improved prediction performance for the next-item recommendation. Various

upgrades have been proposed expressly for forecasting short-term user behavior during

the same shopping session, and this has been an active study topic in recent years.

Given that long-term memory, models are insufficient to address drift in user

interests. (Liu et al. 2018) proposes a short-term attention priority model that

uses a short-term memory model based on recent clicks to capture users’ general

(long-term) interest as well as their within-session interest. Simultaneously, (Li et al.

2018) investigates a behavior-intensive neural network for the personalized next-item

recommendation that took into account the both users’ long-term preferences and

within-session purchase intent. As RNNs have demonstrated and emerged as the

most powerful technique for modeling sequential data for this task, (Loyola et al.

2017) proposes an encoder-decoder neural architecture with an attention mechanism

added to capture user session intents and intersession dependencies based on machine

translation. In addition to sequential models, (Qiu et al. 2019) utilizes graph neural

networks to predict user preference in session by generating a session graph and then

modeling a weighted attention layer. Authors in (Guo et al. 2019) proposes a matrix

factorization-based attention model to address large-volume and high-velocity session
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streaming data, and (Liu et al. 2019b) handles the missing value issue for the matrix

factorization to address the uncertainty that arises in a user’s within-session behavior.

The majority of the earlier research cited above do not seek for interpretability of its

findings. The most recent work (Bai et al. 2018, on the other hand, uses item data

from the product catalog to create a simple algorithm that learns interpretable user

profiles to aid in within-session customization, while it also provides an attribute-

aware neural attentive model for the next shopping basket recommendation, but due

to its complexity, it does not appear to be easily adaptable for the real-time scenario.

Requiring a responsive and scalable ranking system that can adapt to the dynamic

nature of shifting user preferences has led to increasingly wider industry adoption

of multi-armed bandit (MAB) in modern-day ranking systems. Even though the

instantly match relevant items for users still remains a challenge, especially in the

cold start setting with constant new users or items (i.e, cold-start), the theoretical

foundation and analysis of MABs have been well-studied with popular approaches

include ε-greedy (Sutton and Barto 2018), Upper Confidence Bounds (Auer et al.

2002), Thompson sampling (Chapelle and Li 2011), EXP3 (Auer et al. 2003), and

others (Sutton and Barto 2018) to fit the real-world scenario. In the(Zhao et al.

2020b) setting, the goal is to maximize user satisfaction (i.e., exploitation), while

quickly learning (i.e., exploration) users’ preferences by exploring unseen content.

(Hu et al. 2018) proposes to use reinforcement learning to learn an optimal ranking

policy to maximize the expected accumulative rewards in a search session. (Yan et al.

2018) builds a scalable deep online ranking system (DORS) by designing the MABs

as the last pass to dynamically re-rank items based on user real-time feedback and

shows significant improvement in both users satisfaction and platform revenue. The

bandit recommender system is the vision of the multi-arm bandit (Sutton and Barto

2018) that using bandit methods to recommend next items to users by considering
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all the candidate arms of the bandit. Furthermore, authors from (Sanz-Cruzado

et al. 2019) proposes a multi-armed nearest-neighbor bandit to achieve collaborative

filtering for the interactive recommendation, by modeling users as arms and exploring

the users’ neighborhood. (Wang et al. 2019) proposeds an interactive collaborative

topic regression model that infers the clusters of arms via topic models (Blei et al.

2003) and then utilizes dependent arms for the recommendation. In this methods, it

is common to address the problem by treating each arm in the bandit to represent a

single item (Zhao et al. 2020b), product category (Yan et al. 2018) or a context (Li

et al. 2016; Hu et al. 2018; Li and Kar 2017).
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Chapter 3

MISSING VALUE IMPUTATION FOR RECOMMENDER SYSTEMS

In this chapter, the works for missing value imputation in the scenario of building a

recommender system are described from two perspectives: (1) offline trained strategy,

and (2) online trained strategy. The foal of offline trained strategy is defined as the

problem of collective matrix completion. The graph spectral analysis is used to incor-

porate the user-neighborhood similarity as well as the intrinsic cross-category infor-

mation. Meanwhile, the goal of the online trained strategy is to estimate customers’

purchase preferences by exploring his/her purchase intent and shopping preference

in the attribute-level, such as color, size, shape, and material, and quickly learn a

buyer’s fine-grained preferences based on their most recent activity (e.g., browsing,

click, add-to-cart, check out) in a short time period.

3.1 NOTATIONS

The boldface uppercase letters denote the matrices (e.g., X, M). The boldface

lowercase letters denote the vectors (e.g., u, v). Let Xij denote the entry in the ith

row and jth column of matrix X, X> denotes its transpose, and ui denotes ith entry

of vector u. The uppercase Greek letters are used to represent scalars. All vectors

are column vectors unless otherwise specified. For the matrix dimension, there are T

incomplete matrices {Xt}Tt=1 ⊂ Rm×nt and two set of sub-matrices {Ut}Tt=1 ⊂ Rm×ct

and {Vt}Tt=1 ⊂ Rnt×ct . The products {UtV
>
t }Tt=1 are treated as the estimation {X̃}Tt=1

of the corresponding matrix respectively.
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3.2 MISSING VALUE IMPUTATION WITH OFFLINE STRATEGY

3.2.1 COLLECTIVE MATRIX COMPLETION

The goal of collective matrix completion (CMC) is to collectively complete mul-

tiple incomplete matrices by leveraging the cross-matrix information. Each matrix,

also known as one view, corresponds to one type of measurement, while multiple

views contain complementary information from various sources. CMC benefits from

the correlation among multi-view data and aims to predict their missing entries with

high accuracy. The CMC mechanism can be expressed as:

{X̃t}Tt=1 = f({Xt}Tt=1,Λ) (3.1)

where {Xt}Tt=1 ⊂ Rm×nt denote T incomplete views and Λ denotes the auxiliary

information including view-specific knowledge and cross-view knowledge. {X̃t}Tt=1 is

treated as the results that contains the original observation data and prediction of

missing value simultaneous. There are two kind of approaches extensively applied in

the CMC studies when formulating the cross-view knowledge Λ:

(1) Matrix Factorization based Low-rank Latent Structure: For the matrices

{Xt}Tt=1, two set of sub-matrices {Ut}Tt=1 and {Vt}Tt=1 are generated to provide a good

approximation to the observed values as:

Xt ≈ UtV
>
t (3.2)

for different views, when I assume the number of data is same, an additional cross-

view factor V ∗ or V ∗t is proposed to emphasize the cross-view knowledge as following

two way:
T∑
t=1

‖Xt −UtV
∗>‖2

F (3.3)
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where the V∗> denotes the shared consensus directly on the view features, or,

T∑
t=1

‖Xt −UtVt
>‖2

F + ‖Vt
> −V∗>‖2

F (3.4)

where V∗> is proposed to be shared among all view indirectly. The single measure-

ment matrix V∗ can be learned from the data when optimizing the above function

(3.3) or (3.4) by minimizing the overall Euclidean distance to each view (Liu et al.

2013).

(ii) Constraint-based Metric: Another way to incorporate the cross-view knowl-

edge is by enforcing the user-user / item-item similarity in the formulation. The

samples’ pairwise similarity can be enforced by minimizing:

T∑
t=1

‖Xt −UtV
>
t ‖2

F + Tr(U>t LUt) (3.5)

where graph regularizer Tr() measures the smoothness of low dimensional represen-

tation as:

Tr(U>t LUt) = Tr(U>t DUt)− Tr(U>t AUt)

=
N∑
j=1

u>j ujDjj −
N∑

j,l=1

u>j ulAjl

=
1

2

N∑
j,l

‖uj − ul‖2Ajl

(3.6)

where L denotes the weighted graph Laplacian matrix, which generated form the

concatenation of each views. In specific, for N user, L = D − A that D denotes

the degree matrix of A as a diagonal matrix as D(i, i) =
∑N

j=1 A(i, j), and A(i, j)

denotes the similarity between user i and user j taking overall information among all

views.
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3.2.2 CROSS-VIEW KNOWLEDGE MODELING VIA GRAPH SPECTRAL

ANALYSIS

To formulate the cross-view knowledge in the graph spectral domain, I first define

the problem and given the preliminary about graph spectral analysis. Then I present

the proposed model mathematically.

PROBLEM DEFINITION: QUANTIFYING CROSS-MATRIX INFOR-

MATION

Input: (1) Incomplete matrices {Xt}Tt=1.

Output: (1) Matrix completion results {X̃t}Tt=1. (2) Cross-view knowledge Wk.

There are two main challenges arise as:

(C1) how to capture the cross-matrix information when data implicate the non-

Euclidean structure, e.g., graph-structured data.

(C2) how to quantify the matrices’ interactive impacts. Either positive or nega-

tive impacts exist between the matrices, e.g., how much knowledge does the view 2

contribute to predicting the missing entries in view, or vice versa.

Preliminary: Given a graph G with m nodes, presented as G = (V , E ,A), with the

adjacency matrix A ∈ Rm×m, vertex set V and edge set E . The normalized graph

Laplaican matrix is defined as :

∆ = I−D−
1
2 AD−

1
2 (3.7)

with the diagonal degree matrix Dii =
∑m

j Aij and identity matrix I ∈ Rm×m. As ∆

is positive semidefinite, it has a complete set of eigenvalues Λ = (λ1, λ2, . . . , λm) and

eigenvectors Φ = (φ1, φ2, . . . , φm) for its eigendecomposition ∆ = ΦΛΦ>. In graph

spectral theory (Hammond et al. 2011), eigenvalues {λi}mi=1 are identified as graph

spectral frequencies and eigenvectors {φi}mi=1 are identified as graph Fourier basis.
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Based on the eigenbasis, for a graph signal x ∈ Rm, the graph Fourier transform is

defined as:

x̃ = Φ>x =
N∑
i=1

xiφi (3.8)

and its inverse transform x = Φx̃. The graph convolutional operation ∗G for the

graph signals x and y is then defined on the graph spectral domain as:

x ∗G y = Φ(Φ>x)� (Φ>y) = Φgθ(Λ)x̃ (3.9)

where � denotes element wise product. gθ(Λ) is recognized as θ-parameterized graph

filter. More recently, the graph filter gθ(Λ) is re-modeled to decrease its complexity

by being expanded by the Chebyshev polynomial as:

gθ(Λ) =
K∑
k=0

θkTk(∆̃) =
K∑
k=0

θkΦTk(Λ̃)Φ> (3.10)

where the modified graph Laplacian ∆̃ = 2∆
λmax

− Im and its eigenvalues Λ̃ fall into

the range [−1, 1]. Tk(·) represents the k-th order Chebyshev polynomial abiding by

the recursive manner Tk(λ) = 2λTk−1(λ)− Tk−2(λ) with T0(λ) = 1 and T1(λ) = λ.

Note that this expression only contains the K-th localized neighborhood knowl-

edge of the central node, i.e. only the nodes within K steps away from the central

node, since the highest order is K for K-th polynomial when taken Laplacian matrix

as input.

3.2.3 PROBLEM FORMULATION

For each view separately, each matrix is expanded by the Chebyshev polynomial

thus each matrix is reconstructed as the weighted combination of its graph structure

knowledge fromK∗ level. The expectation is thatK∗-th order graph filters are capable

enough to preserve the observed knowledge as much as possible. The completion

results {X̃t}Tt=1 are expected to be consistent with the observed entries in {Xt}Tt=1 as
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the reconstruction error between {X̃t}Tt=1 and {Xt}Tt=1 is minimum, which is defined

as solving the problem:

min
Ut,Vt

T∑
t=1

∥∥Xt −UtV
>
t

∥∥2

F,Ωt

s.t. {Ut}Tt=1 ⊂ Rm×ct
+ , {Vt}Tt=1 ⊂ Rnt×ct

+

(3.11)

where Ut ∈ Rm×ct and Vt ∈ Rnt×ct . R+ denotes the non-negative real numbers and

the completion results are {X̃t = UtV
>
t }Tt=1. The index matrix Ωt ∈ Rm×nt contains

Ωt[i,j] = 1 if Xt[i,j] is observed, otherwise 0. To simplify the expression, ‖X‖2
F,Ω is

equivalent to the expression of ‖X�Ω‖2
F , in which � denotes the Hadamard product.

In Eq. (3.11), the factor Ut is polynomial expanded by Eq. (3.10) as:

min
Ut,Vt,θk,t

T∑
t=1

||Xt−(
K∑
k=0

θk,tTk(∆̃r,t)Ut)V
>
t ||2F,Ωt

⇔ min
Ut,Vt,θk,t

T∑
t=1

||Xt−(θ0,tT0(∆̃r,t)Ut + θ1,tT1(∆̃r,t)Ut+

· · ·+ θK,tTK(∆̃r,t)Ut)V
>
t ||2F,Ωt

(3.12)

constrained by {Ut}Tt=1 ⊂ Rm×ct
+ and {Vt}Tt=1 ⊂ Rnt×ct

+ . For the t-th view, param-

eter θk,t weights the k-th order graph filter Tk(∆̃r,t). ∆̃r,t denotes the normalized

row-wise Laplacian matrix. To be more specific, the factor Ut is described as the

weighted combination of K-th order graph structure knowledge, which is purposeful

to reinforced the estimation of the matrix Ut by the localized graph knowledge from

K-th level neighboring information.

The Matrix-Stitch Unit Wk is proposed to formulate the cross-view knowledge.

For illustration purpose, only two views are considered (T = 2), while in practice,

the Matrix-Stitch Unit is feasible to the arbitrary number of views (T ≥ 2), which

has been demonstrated in the experiments. Based on the Eq. (3.12) when (t =

1, 2, k = 1, 2, . . . , K), the factors Ut are expanded by Tk(∆̃r,t) and θk,t, where θk,t
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is the learnable weighted parameter reflecting how does the k-th localized graph

knowledge Tk(∆̃r,t) impact in each view separately. The Matrix-Stitch Unit considers

the impacts from both view itself and all the other views. The unit Wk is designed as

a weight matrix between the parameters {θk,t}T=2
t=1 for each level of the graph localized

knowledge as:

Θ̃k =

θ̃k,1
θ̃k,2

 =

w11 w12

w21 w22


k

θk,1
θk,2

 = WkΘk (3.13)

where Θ̃k,Θk ∈ RT×1 and the matrix-stitch unit Wk ∈ RT×T . There are total K∗

units Wk when adopting the K∗ order graph filter. Incorporating the Eq. (3.13) into

Eq. (3.12), the objective function of C4 is written as:

min
Ut,Vt,Θk,Wk

T∑
t=1

||Xt − (
K∑
k=0

Θ̃k[t,1]Tk(∆̃r,t)Ut)V
>
t ||2F,Ωt

⇔ min
Ut,Vt,Θk,Wk

T∑
t=1

||Xt − (
K∑
k=0

Wk[t,:]ΘkTk(∆̃r,t)Ut)V
>
t ||2F,Ωt

(3.14)

constrained by {Ut}Tt=1 ⊂ Rm×ct
+ and {Vt}Tt=1 ⊂ Rnt×ct

+ . Due to the space limitation,

the C4 updating procedure is summarized in Algorithm 1.

3.2.4 ADAPTED DATA-DRIVEN FILTER ORDER

In this subsection, the proposed techniques for selecting the filter order K∗ are

introduced. The problem definition is as follows:

Problem: Selecting Filter Order K∗

Input: Incomplete matrices {Xt}Tt=1 with missing entries.

Output: Adapted graph filter order K∗.

The output K∗ denotes the adapted graph filter order derived from the cross-matrix

information observed in the input matrices {Xt}Tt=1. The order K∗ plays a decisive

role in adopting the graph structure knowledge, i.e., only the nodes within maximum
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Algorithm 1 - C4 Updating Procedure

1: Input:

{Xt}Tt=1: multiple matrices with missing entries.

{∆̃r,t}Tt=1: normalized row-wise Laplacian matrices.

K∗: graph filter order.

2: Initialization:

Initialize {Ut}Tt=1, {Vt}Tt=1, Θk and Wk randomly.

3: Repeat:

Perform Stochastic Gradient Descent (SGD) algorithm to update {Ut}Tt=1,

{Vt}Tt=1, Θk and Wk one at a time.

4: Until: Eq. (3.14) converges.

5: Output: {X̃t}Tt=1: completion results

K∗ steps away from the central node are taken into consideration. The influence of

filter order comes from two perspectives:

• The low-order graph filters capture the nearest neighborhood knowledge sur-

rounding each node, which shows the similar patterns existing in each view.

• As the order increases, the less similarity has been preserved by the far-away

neighborhoods. Even worse, I found that the model would be impaired when

incorporating the far-away neighborhoods into cross-matrix information.

In the model, the order K∗ is proposed to be settled with respect to the minimum

information loss considering from the graph spectral domain. I settle the order K∗

for each data set which brings in the minimum effect when removing the graph filters

higher than K∗. The superiority of this strategy is shown in the experiments.
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Table 3.1: Multi-View Amazon Review Data Sets.

ID Views |User| |Item1| |Item2| |Item3| |Rating|

1 Electronics & Video Games 6352 12836 8059 - 39574

2 Patio & Tools 3778 4077 7813 - 27712

3 Beauty Product & Clothing 1318 3406 7261 - 12691

4 Art & Musical Instruments 1412 602 988 - 8520

5 Electronics & Kindle Store 1050 3956 1614 - 7431

6 Beauty Product & Jewelry 266 1458 730 - 3870

7 Kindle Store & Software 190 637 627 - 2885

8 Electronics & Video Games & Software 1724 4383 2487 3845 12741

9 Patio & Tools & Pet Supplies 652 812 1564 715 8125

10 Beauty Product & Clothing & Jewelry 571 1845 2377 492 4298

3.2.5 EVALUATION

Data Sets: Table. 3.1 shows ten data sets collected from Amazon datum (McAuley

and Leskovec 2013). Seven of them contain two views (ID 1-7) and three of them con-

tain three views (ID 8-10). Taking data set (ID 1) as an example, view 1 ‘Electronics ’

contains 6352 users and their 39574 ratings for 12836 products, and view 2 ‘Video

Games ’ contains 27712 ratings for 12,836 products from the same users’ group. In

each view, 30% ratings of each item are removed and serves as the ground-truth for

the complete results.

Baselines: The proposed model is compared with 8 state-of-the-art methods, in-

cluding GROUSE (Balzano and Wright 2013), IALM (Lin et al. 2010), LMaFit (Wen

et al. 2012), MC-NMF (Xu et al. 2012), OR1MP (Wang et al. 2015b), RMAMR (Ye
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Figure 3.1: (Left) Red stars (K∗) leads to minimum reconstruction MSE. (Right)

Red stars are the same stars in Left. Blue stars denote ideal filter order identified

through the offline searching.

et al. 2015), ScGrassMC (Ngo and Saad 2012), and multiNMF (Liu et al. 2013).

Parameters are initialized as suggested in (Sobral and Zahzah 2016).

Table 3.2: Matrix Completion MSE W.R.T. Ground-truth and Missing Entries.

Dataset ID C4 GROUSE IALM LMaFit MC-NMF OR1MP RMAMR ScGrassMC multiNMF

1 1.206±0.031 1.181±0.162 1.689±0.004 1.429±0.002 1.986±2.542E-6 1.590±4.590E-31 1.344±0.003 1.347±1.275E-30 3.817±1E-9

2 1.350±0.007 1.368±0.133 1.423±0.012 1.452±0.004 1.946±1.104E-5 1.464±1.653E-30 1.416±0.007 1.943±1.275E-31 2.298±1E-9

3 1.027±0.004 1.282±0.087 1.446±0.005 2.005±0.002 2.045±1.447E-5 1.392±2.040E-31 1.536±0.003 1.733±1.275E-30 4.301±1E-9

4 1.016±0.002 1.320±0.087 1.478±0.008 1.664±0.004 2.059±3.419E-6 1.796±4.590E-31 1.506±0.005 1.814±2.648E-31 2.961±1E-9

5 1.341±0.092 1.268±0.093 1.807±0.003 1.894±0.002 2.008±4.946E-6 1.475±1.275E-30 1.387±0.006 1.641±8.161E-31 2.888±1E-9

6 1.235±0.031 1.328±0.134 1.494±0.007 2.082±0.008 2.057±8.806E-6 1.808±2.684E-31 1.498±0.001 2.047±3.264E-30 4.253±1E-9

7 1.174±0.056 1.217±0.015 1.759±0.003 2.028±0.008 1.984±3.216E-5 1.444±2.040E-31 1.517±0.006 1.903±4.590E-31 2.403±1E-9

8 1.256±0.081 1.335±0.153 1.812±0.015 1.896±0.002 2.009±8.37E-6 1.590±1.154E-9 1.437± 0.005 1.676± 5.478E-32 3.674±1E-9

9 1.207±0.048 1.310±0.089 1.504±0.020 2.080±0.001 2.058±1.27E-5 1.264±1.348E-9 1.9431±0.004 2.044±2.191E-31 2.479±1E-9

10 1.243±0.032 1.279±0.032 1.732±0.003 1.880±0.004 1.981±5.14E-5 1.292±1 .674E-9 1.742±0.002 1.841±4.213E-32 2.738±1E-9

Experimental Results: As shown in Table 3.2, the completion results are evaluated

by the mean squared error (MSE) between the ground-truth and prediction values.

The model C4 achieves the best completion performance compared with state-of-the-

art methods.

Filter Order Discussion: The best filter order can be found by iterating over
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all possible values for various data sets; however, big data sets make this impossible.

Based on the sample proportion of the observed data {Xt}Tt=1, I estimate the order K∗.

The larger the percentage sampled, the more precise order K∗ may be approximated

within the region of feasible calculation cost. Red stars in the (Left) (graph filter

order vs. reconstruction MSE) of Fig. 3.1 denote K∗ filter order estimations. The

optimum filter order determined through offline iterative searching is indicated by

the blue stars in Fig. 3.1 (Right). The estimation filter orders (K∗ in red stars) are

almost always close to the ideal order (blue stars).

I further check the assumption that greater K does not represent true cross-matrix

information, in addition to the order estimation. The completion performance drops

as the MSE value bounces back at a certain point of increasing filter order since

the cross-matrix information is damaged when including nodes far away from the

neighborhood, as seen in Fig. 3.1 (Right).

3.3 MISSING VALUE IMPUTATION WITH ONLINE TRAINED STRATEGY

When shopping online, the customers’ real-time shopping preference is treated

as missing data. It is impossible to visually present the customers’ preferences, not

matter by numerical or contextual measurement. However, being aware of the users’

shopping intent is valuable for building an efficient recommender system for the goods

of e-commerce. Customers often express and refine their purchase preferences by

exploring different items in the product catalog based on varying attributes, such as

color, size, shape, and material. As such, it is increasingly important for e-commerce

ranking systems to quickly learn a buyer’s fine-grained preferences and re-rank items

based on their most recent activity within the session.

Just as a shopper might browse the aisles of a shop, online shoppers also spend

time on a retailer’s website searching and clicking on items before they decide what
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Figure 3.2: The first two components show a typical 2-stage ranker, where the first-

pass narrows down the product catalog to relevant items, while the second-pass

performs fine-grained re-ranking to optimize for a business metric. The proposed

strategy, OPAR, is responsible for within-session, online personalization that can be

effective on its own or as a third-pass ranker on top of a 2-stage ranking system.

they want to buy. This process is an attempt to refine their purchase intent as they

learn more about the product catalog. For example, a buyer might be interested

in purchasing a ring; however, they often must click on a number of different rings

before they understand possible styles, shapes, colors, and materials that are avail-

able. Eventually, the buyer might decide that they have a preference for an emerald

gemstone, with a circular shape, and a gold band. Shifting to looking for a neck-

lace, the buyer must refine their preference again. Often the buyer’s preference for

attributes like colors and materials changes quickly over the course of one visit. An

intelligent ranking system must continually serve content that stays relevant to the

buyer’s changing preference, a capability I refer to as within-session personalization.

The missing value imputation with online trained strategy is focused on multiple

goals to balance the customers’ online shopping experience:

• online retailers surface missing content that is relevant to the shopper’s buying

mission.

• sellers aim show content that is likely to improve a business metric (eg. conver-
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sion rate, or GMV).

To balance these goals, many production ranking systems leverage a 2-stage rank-

ing process (Figure 3.2): the first pass (commonly referred to as candidate set selec-

tion) narrows hundreds of millions of items from the product catalog down to a few

hundred relevant items (Nigam et al. 2019; Zhao et al. 2020a; Huang et al. 2020); the

second pass then re-ranks the top few hundred relevant items in a way that optimizes

for specific user action (such as a click or purchase) (Wu et al. 2018a; Guo et al. 2020;

Pobrotyn et al. 2020; Haldar et al. 2020). In order to maximize prediction accuracy,

these systems often train on billions of historical data points that may span over

the course of months or years and thus cannot react quickly enough to the buyer’s

changing preference within a shopping visit.

3.3.1 DEFINITIONS AND STATEMENTS

Definition 1: A session contains a set of actions taken by a buyer while interacting

with an e-commerce platform to complete a purchasing mission (e.g. search, click,

add-to-cart). They could convey their purchasing intent either explicitly through

searches and query reformulations, or implicitly through product catalog exploration

based on various criteria. The session usually terminates when the buyer makes a

purchase or abandons the site after a long period of inactivity (e.g., 30 minutes). Note

that though I’m focusing on product search here, the principles should apply to any

ranking or recommendation problem.

Let us define a session S = {[Qt, It, At]}Tt=1 that is a sequence of T user actions

within a session, in which T can vary across sessions. The session starts at t = 1

and ends at T with a purchase (or becomes inactive). At each time step, item list

It ∈ RM×1 contains M candidate items to be re-ranked for query Qt, and then how
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1. Crystal

2. Gemstone

3. Ruby

4. Rose Gold

1. Diamond

2. Engagement

3. Oval Cut

4. 14K Gold

(1) (2) (3)

Figure 3.3: Example of attribute and action-aware re-ranking by OPAR. From left to

right: (1) shows search results for the query “Ring”. User 1 clicked on two gemstone rings

(outlined in green), while User 2 adds a diamond ring to their cart (outlined in blue) (2)

The attribute of the clicked items are “Crystal”, “Gemstone”, “Ruby” and “Rose Gold”,

while the add-to-cart item has the attributes “Diamond”, “Engagement”, “Oval-Cut” and

“14k Gold” (3) On a subsequent search page, OPAR re-ranks items based on each user’s

diverging preferences.

the user engages with the list of items is represented by At:

At(xi) =



0, no action on xi

1, xi is purchased

2, xi is added to cart

3, xi is clicked

,∀xi ∈ It. (3.15)

Definition 2: Attribute is a basic unit (e.g. size, color) that describes the product

characteristics of an item. The attributes are determined by taxonomists based on the

product category while the value of the attributes (e.g. large, green) are volunteered

by the seller, or inferred by machine-learned classifiers. Given an item, its applicable

product attributes are often configured by sellers or inferred by ML classifiers to
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(a) Jewelry (b) Clothing (c) Supplies & Tools (d) Home and Living

Figure 3.4: Top Attribute-Value Pairs For Top Categories.

improve coverage rate and reduce human mislabels. These attribute-value pairs help

buyers efficiently navigate through an overwhelmingly large inventory. Thus, each

item xi is represented as the composition of its attributes, with Hxi denoting the

total number of attributes associated with xi : xi = {atr1, atr2, . . . , atrHxi
}.

Figure 3.4 shows four category-specific word clouds of attributes-value pairs exhib-

ited in items from top categories at Etsy 1 , one of the largest e-commerce platform for

handmade, vintage, and craft supplies. Some of the most common attributes are uni-

versal: size, color, and material. Others are category-specific: sleeve length, earring

location, and craft type. Lastly, some attributes (e.g. holiday, occasion, recipient)

describe how or when the item can be used.

Based on the definitions, the goal is constructed by two parts, i.e., (1) impute

users’ within-session shopping preference based on product attributes, and (2) re-

rank a list of candidate items based on the user’s inferred within-session preference

on item attributes.

Goal 1: Impute users’ in-session attribute preferences

Input: For session S, (1) item lists {It}Tt=1 with each item xi = {atrHxi
} as com-

position of product attributes; and (2) session-level record of user actions on shown

1E-commerce platform for Handmade products at https://www.etsy.com
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items, {At}Tt=1.

Output User’s preference Θ on attributes as beta-distributed: Θ = {θatrn}Nn=1 ∼

{Beta(αatrn , βatrn)}Nn=1, where N denotes the total number of attributes encountered

in session S.

For a user, I model their within-session preference on an attribute as a latent

value θatrn ∈ [0, 1] denoting the probability that they would like the attribute exhib-

ited in the item. Motivated by Thompson Sampling (Agrawal and Goyal 2012), let

θatrn be beta-distributed, with αatrn , βatrn be the two parameters of the distribution.

In Section 3.3.7 I show a method on estimating the parameters of attributes from

historical data. From the list of shown items It, the user engages on a subset of items

(denoted in At) to express their preference for item attributes according to Θ. Given

the feedback, I propagate rewards from the user actions to the associated attributes

with increments, δAt(xi), and update the posterior distribution of Θ, with rewards

normalized at xi by its cardinality (number of associated attributes on that item).

Goal 2: Sequentially re-rank It based on user preference Θ to optimize in-session

personalization.

Input: At time t, (1) Candidate list of items It, and (2) user in-session preference Θ.

Output: Sequentially learn ft : It ×Θ→ Ĩt.

To achieve the above target goals, I propose the in-session multi-armed bandit

model OPAR to re-rank the recommended item list based on users’ in-session actions.

OPAR serves as the 3-rd pass as a ranking problem in the attribute-level, which

considers each item attribute as one arm and explores the user in-session behavior

at the attribute-level. Arms are pulled and user actions (i.e., click, add-to-cart) are

observed on items to collect rewards on the associated attributes. Details are as

follows in the next section.
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3.3.2 PROBLEM FORMULATION AND ALGORIGHM

The proposed Online P ersonalized Attribute-based Re-ranker (OPAR) for cus-

tomers’ shopping preferences imputation consists of three major components: (1)

score and re-rank based on the Thompson sampling approach, (2) attribute-level pa-

rameter updates, and (3) overall procedure of OPAR. In general, each attribute is

treated as one arm and formulated by Beta distribution. At any time step, users’

in-session actions trigger the pulling of arms according to its posterior probability

of being chosen as the best arms. The entire updating process is summarized in

Algorithm 2. Details are introduced as follows.

3.3.3 SCORING AND RE-RANKING ITEM LIST

Given attribute-level bandits with each arm as an item attribute, the imputation

process is triggered on how to score and re-rank items, motivated by the Thompson

Sampling approach on (Agrawal and Goyal 2012). Shown in Algorithm 2, each at-

tribute distribution Beta(αatrh , βatrh) is updated at each step t based on the users’

actions At. To the next step t + 1 with the given recommended item list Ik+1, the

proposed OPAR model aims to rerank the list Ik+1 based on the MAB process with

respect to the updated attribute distributions.

Let N denote the number of attributes associated with item list It. For each at-

tribute in {atrh : atrh ∈ xi, ∀xi ∈ It}, I randomly sample θatrh from its corresponding

distribution, denoting the probability that the user is interested in the attribute, atrh,

at time t:

θatrh ∼ Beta(αatrh , βatrh). (3.16)
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Algorithm 2 OPAR Algo: Re-Ranking & Parameter Update

1: Input:

Given a session S = {[Qt, It, At]}Tt=1

{δi}i: actions: action-aware increments on attribute parameters

γ: hyper-parameter to control intensity on negatives

Ut: the associated attributes from engaged items

Vt: the associated attributes from impressed items

| · |0: cardinality operator

2: Repeat for [Qt, It, At] ∈ S:

(1) Rerank on the Item List f : It → Ĩt

sample satrh ∼ Beta(αatrh , βatrh), ∀atrh ∈ NS

for xi ∈ It

Given xi = {atrh}
Hxi
h=1 as associated attributes in xi

score(xi) =
∑

atrh∈xi g(satrh)

end

(2) Update attribute parameters given At

Let Ut = ∪{atrh : ∀atrh ∈ xi if At(xi) 6= 0, ∀xi ∈ It}

Let Vt = ∪{atrh : ∀atrh ∈ xi ∀xi ∈ It}

if At(xi) 6= 0, item xi has positive actions, then

αatrh+ = δAt(xi) × {1− Exp (−|Ut|0)}, ∀atrh ∈ xi

else if At(xi) = 0, no action on item xi, then

βatrh+ = δAt(xi) × {1− Exp (−γ|Vt\Ut|0)}, ∀atrh ∈ xi

3: Output: All re-ranking results [Ĩt]
T
t=1

Then, each item xi ∈ It is scored and ranked by:

score(xi) =
∑

atrh∈xi

g(θatrh), (3.17)
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where g(θatrh) = 1
rank(θatrh )

is a harnomic function of the index that θatrh is ranked

among [θatrh ]
Hxi
h=1, with a tie-breaker uniformly at random. A larger score(xi) indi-

cates higher satisfication with item xi given users’ short in-session preference on the

attributes. Lastly, I present the user Ĩt, which is reranked list of the items based

on [score(xi)]xi∈It . Lists It+1 is then re-ranked based on the [score(xi)]xi∈It+1 and

presented as Ĩt+1.

3.3.4 ATTRIBUTE PARAMETER UPDATES

With the feedback gathered from the user action At, the attribute parameters are

updated as follows. Let Ut denote the set of attributes associated from items with

positive actions (i.e., click, add-to-cart, purchase), and Vt be union of all attributes

exist in xi ∈ It:

Ut = ∪{atrh : ∀atrh ∈ xi ifAt(xi) 6= 0, ∀xi ∈ It}

Vt = ∪{atrh : ∀atrh ∈ xi, ∀xi ∈ It}

For a given atrh, let Ỹt,atrh and Z̃t,atrh denote the set of items associated with positive

user action and no-action, respectively,

Ỹt,atrh = {xi ∈ It : atrh ∈ xi and atrh ∈ Ut}

Z̃t,atrh = {xi ∈ It : atrh ∈ xi and atrh ∈ Vt\Ut}

Then, the Beta distribution of each attribute is updated as follows:

αatrh+ =
∑
Ỹt,atrh

δAt(xi)

(
1− e−|Ut|0

)
,∀atrh ∈ Ut

βatrh+ =
∑
Z̃t,atrh

δAt(xi)

(
1− e−γ|Vt\Ut|0

)
, ∀atrh ∈ Vt\Ut,

(3.18)

where | · |0 denotes the cardinality operator and γ controls intensity on implicit no-

actions.
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3.3.5 OPAR ALGORITHM PROCEDURE

In summary, given a session S = {[Qt, It, At]}Tt=1, OPAR can be summarized with

the following steps, with the pseudo code of OPARw shown in Algorithm 1.

1. Initialize attribute dictionary atrDic ∈ RN×2, which contains N pairs of pa-

rameters for attributes, where each row of atrDic denotes the Beta distribution

parameter set (αatr, βatr) for a given attribute. Different initialization have

been experimented, including uniform, random or estimated based on held-out

historical data sets (shown in Section 3.3.7).

2. At time t, scoring each item xi ∈ It based on Eq. (3.17): it first aggregates over

the associated attribute preferences sampled in Eq. (3.16), and then re-rank

items based on scores in Eq. (3.17) and present as Ĩt. More details in Section

3.3.3.

3. At time t, receiving the observation At on It, and then update the distribution

of all attributes associated with item xi in the atrDic based on the Eq. (3.18)

described in Section 3.3.4.

OPAR: attribute-based bandits with equal action-weighting for actions in

{click, add-to-cart, purchase}. This means that for positive actions, δclick =

δadd-to-cart = δpurchase.

OPARw: extend OPAR to weight action-aware updates as follows, δclick 6=

δadd-to-cart 6= δpurchase, and hypertune them.

4. Iterative updating according to step (2) and (3) until the end of the session.

37



Table 3.3: Etsy Real-world Session-based Dataset Over 3 weeks

ID Category |Session (User)| |Query| |Item| |Attributes| |Actions|

1 Clothing 4642 46091 1100040 2495 58932

2 Home & Living 9073 103959 2282542 2455 134416

3 Paper & Party Supplies 4419 35132 691919 1666 55037

4 Craft Supplies & Tools 10913 123662 2536492 2799 171363

5 Accessories 5813 38215 897533 2419 49342

6 Electronics & Accessories 1638 10505 216860 1302 14354

7 Jewelry 5585 67507 1530285 2266 79874

8 Overall Category 26442 474594 9295453 3363 624882

3.3.6 EXPERIMENTS

Data Collection: The data set is collected and sampled from a month of user search

logs at Etsy, one of the largest e-commerce platforms for handmade, vintage items,

and craft supplies. To avoid bot traffic and ensure sufficient user activities within

sessions, filters are added to only include search sessions with at least 10 search

events (i.e., queries, browses, clicks, add-to-carts) and at least one purchase as I want

to focus on sessions with strong shopping missions. Using an existing query classifier,

each query is classified into a top probable category predicted. The most probable

category (e.g. jewelry, home and living) is predicted associated with the first query

of each session, and then bucket the entire session into one of 7 categories. Based

on the predicted category of the first query of the session, the entire session is split

into one of 7 categories, which helps to understand shopping behaviors within each

category.

Table 3.3 shows statistics of each data set, representing the 7 most popular cat-
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egories on the platform with nearly 500k search queries from 26k sessions and 620k

user actions combined on nearly ten million items, with cardinalities computed within

each data set. The evaluation is not performed on existing public data sets, because

(to the best of the knowledge) there is no existing data set that includes all meta-data

needed for the study (e.g. query, item attribute, user interaction logs).

3.3.7 EXPERIMENTAL SET0UP

Each of the 8 data sets is split into 2 parts (with sessions ordered chronologically).

The first two-thirds of the data is a held-out data set. Focused on online learning,

I only use within-session data, the held-out data set is mainly used for estimating

the parameters of the Beta distributions, {(αatr, βatr)}∀atr, for user preferences on

attributes and initializing OPAR with priors in the testing data set, and to aggregate

attribute counts associated with engaged items to determine attribute popularity,

powering the “Atr-POP” algorithm. The remaining data is used as testing data set,

on which to report re-ranking performance for OPAR and other baseline algorithms

on in Table 3.4.

While OPAR can function as a stand-alone ranking algorithm, OPAR (as well as

other baselines) is evaluated on top of an existing 2-pass ranking system (as described

in Figure 3.2). More formally, each session in the testing data set, S = {[Qt, It, At]}Tt=1

contains a sequential list of query content Qt, a candidate set It of items to be re-

ranked, truncated to the size to 48 (i.e., 48 items are shown per search page on the

platform) after the second-pass re-ranking on hundreds of items from the system,

and logged user actions At on It (e.g. click, purchase). In the experiments, It is a

truncated list of the top 48 items returned by an existing 2-pass ranker, indicating that

this list comprises of the most relevant items to the query. As shown in experimental

results, applying OPAR adds an effective layer of attribute-based personalization in
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real-time that was not feasible with the underlying system. In order to simulate an

online environment, only within-session user interactions leading up to the current

time step are used for ranking predictions.

3.3.8 EVALUATION METRICS AND BASELINES

Evaluation Metrics: Below, I describe the offline metrics I use to evaluate OPAR

on the testing data set, as well as the benchmark baselines. Following the general

ranking metric Normalized Discounted Cumulative Gain (NDCG) (Wang et al. 2013),

I propose a set of session-level ranking metrics to evaluate the model. Given a session,

S = {[Qt, It, At]}Tt=1, it contains a sequential list of query content Qt, a candidate set

of items It with the initial ordering based on the 2nd-pass re-ranking, and user actions

At that provides the groundtruth for relevances (i.e, clicks or purchases as relevances

in evaluating click-NDCG and purchase-NDCG). Let Ĩt be the re-ranked list of It

given a re-ranking algorithm.

1. Click-NDCG : For each query Qt issued in S that has at least one click in At

(i.e, clicks as relevances), click-NDCGt measures the re-ranking performance of

the item list Ĩt (after re-ranking It) shown to the user at t. For all timestamp

with at least a click, I first compute stepwise sequential re-ranking performance

click-NDCGt as:

click-NDCGt = click-DCGt/IDCGt,∀t = 1, ...T, (3.19)

and click-NDCG of a session S is the average of click-NDCGt over events that

have at least one click:

click-NDCG = Average(click-NDCGt). (3.20)

2. Purchase-NDCG : Following the above methodology, I compute the session-level

re-ranking performance limit to search events with attributed purchases. A
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session on a shopping site is defined as a sequence of events ending with a

purchase or a significant duration of inactivity. Given that, Purchase-NDCG

given a session is essentially purchase-NDCGT .

For each re-ranking algorithm reported in Table 3.4, I compute Click-NDCG @k

and Purchase-NDCG@k for each k = {4, 12, 24, 48} by averaging click-NDCGs @k

and purchase-NDCGs@k given session s over all sessions in each data set. Note that

k is a multiple of 4 as that this shopping site displays 4 items per row on desktops.

Baselines OPAR’s ranking performance is compared with 4 state-of-the-art baselines:

1. LambdaMART (Wu et al. 2010) is the boosted tree version of LambdaRank

(Burges et al. 2007), which introduces the use of gradient boosted decision trees

for solving a ranking task and won Track 1 of the 2010 Yahoo! Learning To

Rank Challenge. A personalized search re-ranker is trained based on long-term

user historical data to optimize for the user’s purchasability on an item given

the query issued and the user’s historical preference.

2. Atr-KNN is derived from Item-KNN (Hidasi et al. 2015). Each item is presented

by n-hot-encoding of associated attributes with n being the cardinality of all

attributes. That is, its ith entry equals to 1 if the referred attribute presents

in the item, otherwise 0. Items in the list It+1 are re-ranked based on their

euclidean-distance from the last engaged item(s) in It. Note that the items

xi ∈ It with no-action has no impact on this re-ranking.

3. Atr-POP reranks the candidate set, It, of items based on the attributes’ pop-

ularity estimated with held-out historical records. This baseline is one of the

most common solutions derived from (Hidasi et al. 2015) given its simplicity

and efficacy.
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4. GRU4Rec (Hidasi et al. 2015) applies recurrent neural networks (RNN) on

short session-based data of clicked items to achieve session-based next-item

recommendation. Each session is encoded as a 1-of-N vector, in which the ith

entry is 1 if the corresponding item is clicked else 0, with N denoting the number

of items. While the user’s consecutive clicks on items are used in the next item

prediction, it is attribute-agnostic. The RNN model is trained and used on

for the sequential session data and a session-parallel mini-batches algorithm is

proposed for sampling.

While it is common for each arm in the bandits to represent a single item or

product category, I skip it as a baseline here as this would incur higher exploration

cost with potential latency bottleneck when scaling up to an inventory of hundred

millions of items and also lose interpretability of product attributes.

3.3.9 EFFECTIVENESS OF ACTION-AWARE MABS

Table 3.4 shows experiment results of the proposed model (OPARs) against 4

baselines described in Section 3.3.8. The results can be categorized into two parts:

(1) performance on the aggregated data sets over all categories (top-left); and (2) per-

formance on each of the 7 category-specific data sets, representing different shopping

missions and behaviors across categories (i.e, “Clothing”, ”Home & Living”). Across

all 8 data sets for the re-ranking task, OPARw outperform against all 4 baselines, in-

cluding LambdaMART, Atr-KNN, Atr-POP, and GRU4Rec in both purchase-NDCG

and click-NDCG.

For the overall data set (top-left), OPARw shows over 6% lift in click-NDCG@48

compared to the best baseline, and over 20% increase in purchase-NDCG@48. Similar

results are observed in each category-specific re-ranking. For k, the best improvement

for OPARw is achived at k = 4, ordering by @4 >> @12 >> @24 >> @48. With
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attribute-based bandits, interactive feedbacks from the in-session user actions, even

just fewer clicks, efficiency propagate rewards to associated attributes and quickly

learns preferred attributes that matter the most to the user, thus optimize user pur-

chase intent.

To explore users’ in-session activity with different types of actions (i.e, click, add-

to-cart), I run experiments with the action-aware bandit model, with OPARw hyper-

tuned rewards from clicks vs add-to-carts, to differentiate types of user actions. The

results in Table 3.4 are reported from a tuned model that assigns larger weights to

clicks than add-to-carts, with an intuition that there is a high topical drift observed

in the user’s browsing intent after items are added to carts. As shown in Table 3.4,

collectively OPARw outperforms OPAR by 1.6% and 1.1% in purchase NDCG@4 and

click NDCG@4, respectively. When segmenting by categories, OPARw also outper-

forms OPAR in almost all categories, except Electronics & Accessories and Craft

Supplies & Tools on purchase NDCG.

3.3.10 INTERPRETABILITY OF WITHIN-SESSION SHOPPING MISSION

It is often observed that a user exhibits multiple purchase intents with diverse

preferences within a session. Table 3.5 presents a record of a user’s in-session activ-

ities. Figure 3.5 (top) shows the sequential improvement of OPAR in session-level

click-NDCG over time compared to the baseline, and Figure 3.5 (bottom) shows how

OPAR captures user’s preference, θatrh , on 5 attributes over time. The “Engaged

Attributes” column in Table 3.5 maps out all attributes associated with the clicked

items for the corresponding query.

As shown in Table 3.5, the user is interested in three categories as his/her purchase

intents: first in “paper & party supplies”, then drift to “women clothing” and “ac-

cessories”, and lastly converted in “accessories” with a purchase. After the browsing
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period from timestamp t = 0 with no user actions, βatr for the attributes associated

with the browsing-only items are incremented while no attributes have been updated

with positive rewards for the given user. OPAR launches from a lower click-NDCG at

the beginning, while obtains better re-ranking performance compared with baseline

by learning that the user is interested in white prime color and is looking for the

wedding occasion theme by the end of t = 4. From then OPAR outperforms the

baseline in click NDCG while activated more attributes related to wedding themes in

beach and tropical and expanded to floral crafting type and blue for prime color. The

re-ranking performance continues to improve from t = 5, .., 9 as more items related

to these attribute themes are discovered.

Starting from t = 12, the user starts to explore the 2nd categorical purchase

intent, pivoting from “paper and party supplies” to “clothing” and “accessories”.

However, the latest activated attributes based on the engaged items on the first set

of shopping queries still relevant. The user has a consistent preference in attributes,

such as “Prime Color: Blue”, “Occasion: Wedding”, and “Wedding theme: Fairytale

& princess” as she is searching for a “hat for beach wedding” and/or “bride hair

decoration beach theme”. Thus, for the second purchase intent starting at t = 12, I

observe a high jump start in OPAR’s click NDCG at t = 12 comparing to the first

intent at t = 1 and the metric continues to stepwise improve. As demonstrated in

Figure 3.5 (bottom), “wedding theme” and “primary color: blue” are the top two

performant attributes that OPAR learned and identified over time.
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Figure 3.5: In-session OPAR Re-Ranking Performance.
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Table 3.4: Re-ranking Performance Comparison on 7 Category-specific Data Sets.

Over All Category Clothing

LambdaMART Atr-KNN Atr-POP GRU4Rec OPAR OPARw LambdaMART Atr-KNN Atr-POP GRU4Rec OPAR OPARw

Purchase

NDCG

@4 0.1795 0.0130 0.0749 0.0618 0.2994 0.3042 0.1948 0.0103 0.0516 0.0551 0.2384 0.2494

@12 0.2629 0.0412 0.1323 0.1425 0.3505 0.3607 0.2670 0.0348 0.1269 0.0824 0.2685 0.2744

@24 0.3162 0.1260 0.2112 0.2018 0.3718 0.3900 0.3019 0.0090 0.2193 0.1434 0.3209 0.3263

@48 0.3724 0.2554 0.2861 0.2518 0.4512 0.4578 0.3774 0.2462 0.2784 0.2157 0.3976 0.4030

Click

NDCG

@4 0.1459 0.0816 0.0705 0.0701 0.3120 0.3158 0.1328 0.0067 0.0690 0.0691 0.3058 0.3197

@12 0.2265 0.1456 0.1264 0.1354 0.3213 0.3229 0.2137 0.0228 0.1224 0.1414 0.3126 0.3257

@24 0.2955 0.2157 0.2021 0.1922 0.3318 0.3489 0.2821 0.0658 0.2045 0.1844 0.3274 0.3424

@48 0.3815 0.3245 0.2813 0.2689 0.4047 0.4051 0.3711 0.2309 0.2807 0.2613 0.3988 0.4061

Home & Living Paper & Party Supplies

LambdaMART Atr-KNN Atr-POP GRU4Rec OPAR OPARw LambdaMART Atr-KNN Atr-POP GRU4Rec OPAR OPARw

Purchase

NDCG

@4 0.1755 0.0131 0.0649 0.0571 0.2920 0.2952 0.1822 0.0010 0.1255 0.0684 0.2828 0.2965

@12 0.2670 0.0396 0.1226 0.1281 0.3391 0.3436 0.2667 0.0406 0.1692 0.0941 0.3367 0.3497

@24 0.3218 0.0936 0.2066 0.1752 0.3838 0.3879 0.3276 0.1297 0.2469 0.1542 0.3796 0.3905

@48 0.3874 0.2543 0.2789 0.2164 0.4462 0.4491 0.3876 0.2550 0.3216 0.1943 0.4291 0.4399

Click

NDCG

@4 0.1481 0.0054 0.0601 0.0944 0.3201 0.3219 0.1585 0.0052 0.1084 0.0839 0.2825 0.2874

@12 0.2294 0.0213 0.1175 0.1416 0.3244 0.3256 0.2394 0.0247 0.1586 0.1367 0.2931 0.2973

@24 0.2978 0.0598 0.1973 0.1843 0.3485 0.3491 0.3103 0.0644 0.2300 0.1742 0.3383 0.3189

@48 0.3835 0.2278 0.2746 0.2288 0.4032 0.4086 0.3911 0.2306 0.3104 0.2007 0.4017 0.4072

Craft Supplies & Tools Accessories

LambdaMART Atr-KNN Atr-POP GRU4Rec OPAR OPARw LambdaMART Atr-KNN Atr-POP GRU4Rec OPAR OPARw

Purchase

NDCG

@4 0.1912 0.0135 0.0739 0.0741 0.3101 0.3268 0.1954 0.0251 0.0683 0.0511 0.2166 0.2178

@12 0.2735 0.0407 0.1296 0.1125 0.3673 0.3781 0.2828 0.0741 0.1431 0.0849 0.2835 0.2930

@24 0.3272 0.1208 0.1970 0.1644 0.4084 0.4188 0.3324 0.1406 0.2510 0.1222 0.3304 0.3361

@48 0.3844 0.2577 0.2820 0.2214 0.4366 0.4750 0.3869 0.2693 0.2917 0.1641 0.3962 0.4020

Click

NDCG

@4 0.1458 0.0055 0.0749 0.0994 0.3118 0.3166 0.1502 0.0105 0.0673 0.0712 0.2495 0.2605

@12 0.2262 0.0513 0.1290 0.1279 0.3241 0.3293 0.2324 0.0439 0.1358 0.1331 0.2656 0.2708

@24 0.2955 0.2042 0.1953 0.1935 0.3525 0.3521 0.3006 0.1091 0.2398 0.1800 0.3155 0.3212

@48 0.3811 0.2278 0.2815 0.2277 0.4080 0.4078 0.3848 0.2391 0.2885 0.2312 0.3548 0.4029

Electronics & Accessories Jewelry

LambdaMART Atr-KNN Atr-POP GRU4Rec OPAR OPARw LambdaMART Atr-KNN Atr-POP GRU4Rec OPAR OPARw

Purchase

NDCG

@4 0.2136 0.0501 0.0715 0.0814 0.2847 0.2995 0.1661 0.0060 0.0576 0.0718 0.3051 0.3285

@12 0.3014 0.1109 0.1546 0.1223 0.3386 0.3782 0.2534 0.0766 0.1074 0.1142 0.3484 0.3854

@24 0.3519 0.0176 0.2652 0.1674 0.4257 0.4152 0.3087 0.1470 0.1668 0.1847 0.3866 0.3973

@48 0.4060 0.2965 0.2981 0.2416 0.4516 0.4656 0.3814 0.2460 0.2663 0.2367 0.4425 0.4598

Click

NDCG

@4 0.1530 0.0267 0.0805 0.0641 0.2074 0.2051 0.0701 0.0027 0.0621 0.0614 0.3314 0.3892

@12 0.2324 0.0703 0.1580 0.0939 0.2487 0.2622 0.1314 0.0106 0.1141 0.1021 0.3783 0.3963

@24 0.3029 0.1410 0.2657 0.1345 0.3158 0.3120 0.1989 0.1276 0.1762 0.1647 0.3956 0.4162

@48 0.3880 0.2560 0.3026 0.1667 0.3978 0.4078 0.3119 0.2192 0.2700 0.2144 0.4190 0.4475
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Table 3.5: Multiple Purchase Intents within One Session

Timestamp Query Query Taxonomy Engaged Attributes

1st

Purchase

Intent

0 ’flower girl basket’ paper and party supplies (NO ACTION) Browsing

1-4 ’flower girl basket wedding’ paper and party supplies (CLICK)
’Prime Color: White’, ’Occasion: Wedding’, ’Holiday: Christmas’,

’Wedding theme: Beach & tropical’, ’Craft type: Floral arranging’

5-9 ’flower girl basket beach wedding’ paper and party supplies (CLICK)
’Prime Color: Blue’, ’Occasion: Wedding’, ’Holiday: Christmas’,

’Wedding theme: Beach & tropical’, ’Secondary color: White’, ’Craft type: Floral arranging’

10-11 ’two flower girl and one pillow’ paper and party supplies Browsing

Purchase Intent Change

2nd

Purchase

Intent

12-15 ’hat for beach wedding’ clothing.women clothing (CLICK) ’Prime Color: Blue’, ’Occasion: Wedding’

16-22 ’turquoise petals’ accesories (CLICK) ’Prime Color: Blue’, ’occasion: Bridal shower’, ’Wedding theme: Fairytale & princess’

23 ’bride hair decoration beach theme’ clothing.women clothing (NO ACTION) Browsing

Final Purchase
24 ’turquoise petals’ accesories (PURCHASE) ’Prime Color: Blue’, ’Occasion: Bridal shower’, ’Wedding theme: Fairytale & princess’

47



Chapter 4

MISSING VALUE IMPUTATION FOR HEALTHCARE ANALYSIS

Patients with the same type of ailment, such as diabetes mellitus, can join and use

condition-specific social networks. Their purpose is to facilitate information sharing

and the establishment of support groups, which will assist sufferers maintain a healthy

lifestyle while dealing with the disease.

Although users frequently report their biomarker measurements as their condition

progresses, due to the voluntary nature of disease-specific social networks, such self-

reported measurements contain a large amount of missing information, as very few

users report their measurements every time they take the test. However, having a

reasonable estimate of such missing information is critical for monitoring reasons, so

that reminders or warnings may be sent in time to help users get back on track. In

contrast, people frequently have access to heterogeneous auxiliary data in addition to

the observed information in order to estimate missing information and improve im-

putation performance. For example, in addition to self-reported measurements, I can

use the rich social relations present in a large number of frequent visitors, users, such

as friend-friend relationships and follower-followee relationships, to estimate missing

biomarker measurements from disease-specific social networks. Furthermore, auxil-

iary clinical data with potentially non-overlapping users, in addition to disease-specific

social networks, may provide an essential trend about the advancement of biomarker

measures, and thus can assist enhance the performance of missing value imputation.

In summary, there are two main challenges when imputing the missing value in

disease-dedicated social networks:
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(a) incident matrix. (b) user-user. (c) user-post hypergraph.

Figure 4.1: Illustration of the hypergraph representation. In sub-figure (a), for ex-

ample, the user u1 leaves his/her comment in the post p1, as the corresponding value

equals to 1 in the incident matrix, otherwise 0. In the sub-figure (b), which indicates

the users’ grouping information, user u1 and user u2 are connected as both of them

have participated in the post p1, while this graph cannot tell us how many users are

involved in the same post. The sub-figure (c) is the user-post hypergraph which con-

tains the completed user grouping information of each post on the disease-dedicated

social network.

• How to preserve the patient grouping information without losing the user-post

relationship.

• How to propagate the patient grouping information from social media forum to

clinical data analysis.

4.1 PATIENT GROUPING AND SIMILARITY MEASURES

The follower/followee relationship between two users is often used to quantify

pairwise similarity in an online forum. When the follower/followee link is observed,

two people are usually thought to be similar. When establishing the aim function

49



in modeling processing, the so-called graph regularized is proposed to measure the

associated users’ similarity.

However, in the context of disease-specific social networks, this pairwise similar-

ity might result in a large loss of user grouping information, which discloses useful

healthcare knowledge. On a disease-specific forum, for example, the graph regularizer

is typically used to establish the users’ pairwise similarity, or how comparable these

two users are when it comes to physical/medial measurements such as normal blood

sugar levels or the level of oral glucose tolerance test. However, it is common for more

than two individuals to respond to the same discussion topic, indicating that they

are both suffering from the same ailment. The same post connects multiple users

(nodes) (edge). The pairwise similarity of the patients is insufficient to capture such

categorization information.

I propose using the hypergraph structure to describe disease-specific social net-

works. Each hyperedge in the hypergraph structure corresponds to one thread (post)

and connects several individuals who have engaged in the thread, allowing the afore-

mentioned grouping information to be efficiently preserved. For example, on an online

disease-specific forum, one group of users is connected by a topic where they primarily

discuss glucose levels, while another group is connected by a topic where they discuss

insulin pumps. When creating the analysis on the healthcare forum, these two groups

of members present two different aspects. The hypergraph structure allows for the

retention of such grouping information, i.e., users in the same group (post) are for-

mulated to be close to each other in terms of the hypergraph regularizer, whilst users

from different groups maintain a relatively large gap between them. Users who can

be shown in both groups (overlapped users), i.e., he or she has participated in both

threads at the same time, which can also be reserved in the hypergraph regularizer

but regrettably not in the classic graph regularizer. The hyperedge weight shows the
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popularity of each post (hyperedge), such as how many users replied or how long the

debate lasted.

Fig. 4.1 shows a simple example of the hypergraph representation. User =

{u1, u2, u3, u4} and Post = {p1, p2, p3, p4, p5} denote the user set and post set re-

spectively. The incident matrix in Fig. 4.1a has the entry (pi, uj) = 1 if user uj

participates in the post pi; the traditional graph model in Fig. 4.1b shows how the

pairs of users are connected when they participate in the same post, while user group-

ing information for each thread is lost. The traditional graph structure cannot reveal

whether the same user left comments under multiple posts, while such kind of group-

ing knowledge loss is not expected for data mining purposes because the posts with

the same user are likely to belong to the same topic, or contain the patients’ daily

continuous biomarker measurements. The hypergraph in Fig. 4.1c fully describes

the user-post grouping relationship when I treat each post as one hyperedge. The

connection between each user and the user grouping knowledge for each post is com-

pleted illustrated. Thus the high-order relationships among users can be captured by

hypergraph structures without loss of any information.

4.2 PROBLEM DEFINITION

Shown in Fig. 4.2, our goal is to impute the missing value existing in the patient

biomarker data (i.e., Y0) by exploiting the information from heterogeneous auxiliary

sources (e.g., clinical trial data, disease-dedicated social network) together with strict

constraint on the observation information. Based on the matrix factorization frame-

work, our goal is motivated by two aspects:

Latent Coherence: The latent coherence spreads among the similar users from

heterogeneous auxiliary sources M (e.g., diabetic patients), while the samples in M

do not necessarily overlap with the samples in Y0.
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Figure 4.2: Missing Information Imputation With Auxiliary Data.

Observation Consistency: The incomplete data Y0 is factorized into two low

dimensional matrices U and V, while the fact is {UV>}Ω 6= (Y0)Ω, where (·)Ω index

to the observed data in Y0. The factorization process disturbs the original observed

value in Y0 due to each factor (U,V) is estimated based on the global information

from Y0. Ideally, I expect the missing entries in Y0 to be filled up by incorporating

the auxiliary information, and meanwhile, keeping UV> consistent with the observed

information in Y0 as much as possible.

4.3 PROPOSED FRAMEWORK

Given the clinical biomarker data Y0 ∈ Rm×n with m users and n category of

biomarker, the disease-dedicated forum data M ∈ Rm′×n is collected with the number

of m′ users and the posts corresponding to the n topics. Let V , E denote the use

(vertex) set and forum post (hyperedge) set respectively. The forum is presented as

the hypergraph G(V , E ,W) with the vertex set V , hyperedge set E , and the hyperedge
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weight knowledgeW . The weighted hypergraph contains the hyperedge weight w(e) ∈

W associated with each hyperedge e ∈ E . For each vertex v ∈ V , the vertex degree

d(v) is defined as d(v) =
∑
{e∈E|v∈e}w(e). The incident matrix H in the size |V| × |E|

indicates whether the the user-post connection, that

h(vi, ej) =


1, if vi ∈ ej (user vi appear in the post ej)

0, otherwise

(4.1)

For each hyperedge e, the hyperedge degree δ(e) is defined as δ(e) =
∑

v∈V h(v, e),

which indicates how many users leave their commons under the post e. The diagonal

matrix Dv in the size |V| × |V| has its diagonal elements equal to the degree of each

vertex, and the diagonal matrix De in the size |E| × |E| has its diagonal elements

equal to the degree of each hyperedge.

Analogous to the definition of Laplacian matrix in the normal graph (Cai et al.

2008), the hypergraph Laplacian matrix Lh ∈ Rm×m is defined as:

Lh = Dv −HWD−1
e H> (4.2)

The patients’ grouping similarity is incorporated through the hypergraph constraint

as:

Tr(U>LhU) =Tr(U>DvU)− Tr(U>HWeD
−1
e H>U)

=
∑
e∈E

∑
(vi,vj)∈e

w(e)

δ(e)
‖vi − vj‖2

(4.3)

where the distance between the nodes vi and vj within each hyperedge, weighted by

the w(e)
δ(e)

, is inclined to short. By incorporating the hypergraph structure with the

matrix factorization method, the formulation of our framework, named MI2-HD, is

to design as the following optimization problem:

min
Y,U,Ũ,V

||Y −UV>||2F + α||M− ŨV>||2F + βTr(Ũ>LhŨ)

s.t.U ≥ 0, Ũ ≥ 0,V ≥ 0,YΩ ≡ (Y0)Ω

(4.4)

53



Y ∈ Rm×n
+ , U ∈ Rm×k

+ , V ∈ Rn×k
+ , M ∈ Rm′×n

+ , Ũ ∈ Rm′×k
+ , and Lh ∈ Rm×m, where

m and m′ denote the number of user in original data and auxiliary data respectively,

and n denotes the number of feature. The trade-off parameters α, β ≥ 0, that β

controls the effectiveness of the hypergraph structure. Matrices U and Ũ indicate

the row clustering (sample grouping), and matrix V indicates the column clustering

(measurement grouping). The latent coherence among the heterogeneous data M and

original data Y0 is required by sharing the same measurement matrix V, while users

are constrained by their online activities observed from the disease-dedicated forum.

Thus, when minimizing the Eq. (4.4), the similarity of the vertices associated with

the same hyperedge keeps constant. In other words, considering the practical disease-

dedicated forum, the users who share their experience at the same post are expected

to be relevant to each other, that this kind of grouping relation is encoded in the Eq.

(4.3) as the similarity among these nodes keeping the same within each hyperedge.

Users may discuss different topics in different posts, then the node (user) grouping

information is altered regarding the hyperedge (post). For structural convenience, in

this case, I set hyperedge weight to be equal, and the weight effect will be explored

in our future.

Extension to Tri-Factorization: Closely related to MI2-HD, I propose MI2-HT

by leveraging the tri-factor matrix factorization model, with non-negativity and or-

thogonality constraints on each factorization matrix. Compared with the two-factor

matrix factorization mentioned above, which may provides a relatively weak low-rank

approximation (Wang et al. 2011), (Ding et al. 2006) introduced one more factoriza-

tion factor S into consideration. In this model, the observed data matrix Y0 is

approximated by three factors U, S and V, that factor S is designed to absorb the

different scales of U and V. In the meanwhile, the auxiliary data M is also tri-

factorized by sharing the same measurement matrix V. The objective function of
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MI2-HT is formulated as:

min
U,V,Ũ,S,S̃

||(Y0 −USV>)Ω||2F + α||M− ŨS̃V>||2F + βTr(U>LhU)

s.t.U, Ũ,V,S, S̃ ≥ 0,UU> = I, ŨŨ> = I,VV> = I

(4.5)

where α, β ≥ 0, the matrix M denotes the auxiliary data, collected from the diabetes-

dedicated social networks. To avoid ambiguity, the orthogonal constraint on factor-

ization matrices U, Ũ and V require only one non-zero entry in each row, which

forces each user/biomarker to only belong to a single clustering class.

4.4 OPTIMIZATION ALGORITHM

The proposed optimization problem is solved by the joint matrix factorization. A

set of multiplicative updating rules are proposed to solve the optimization problem.

4.4.1 MI2-HD UPDATING RULES

There are two iterative updating steps in MI2-HD, as shown in Algorithm 3. Since

Eq. (4.4) is convex for the variables Y, U, Ũ, V separately (See section Convergence

Analysis), I propose to update Y and U, Ũ, V separately. In the Algorithm 3, the

convergence criteria is defined as the average changing rate of the imputation result.

When the average changing of the imputation value is less than 1E-2, the updating

process is considered as converged.

Fix Y, update U, Ũ , V: I first introduce how to update U, Ũ, V with fixing

Y by minimizing the Eq. (4.4). The Eq. (4.4) is then extended into the following
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form:

O =Tr[(Y −UV>)(Y −UV>)>] + βTr[U>LhU] + αTr[(M− ŨV>)(M> −VŨ>)]

=Tr[(Y0 −UV>)Ω(Y>0 −VU>)] + βTr(U>LhU) + αTr(MM>)

− 2αTr(MVŨ>) + αTr(ŨV>VŨ>)

by introducing the Lagrangian function L and Lagrange multipliers Ψij, Phiij, and

Γij. Each multiplier Ψij, Φij, and Γij corresponds to the constraints Uij ≥ 0, Vij ≥ 0

and Ũij ≥ 0 respectively. The Lagrange function L can be written as:

L = O(Y,U,V, Ũ) + Tr(ΨU>) + Tr(ΦV>) + Tr(ΓŨ>)

The partial derivatives of L with respect to U , V and Ũ are:

∂L

∂U
=− 2Tr(YV) +

∂Tr(UV>VU>)

∂U

+ βLU + βL>U + Ψ

∂L

∂V
=− 2Tr(YU) +

∂Tr(UV>VU>)

∂V

− αM>Ũ + αVŨ>Ũ + Φ

∂L

∂Ũ
=− 2αMV + 2αŨV>V + Γ

by setting each partial derivative to 0, based on the Karush-Kuhn-Tucker (KKT)

optimality conditions (Boyd and Vandenberghe 2004) ΨijUij = 0, ΦijVij = 0 and

ΓijŨij = 0, I can get:

(−2YV + 2UV>V+βLU + βL>U)ij ·Uij = 0

(−Y>U + VU>U− αM>Ũ + αVŨ>Ũ)ij ·Vij = 0

(−2αMV + 2αŨV>V)ij · Ũij = 0
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Algorithm 3 Updating Rules for MI2-HD

1: Input:

Y0: incomplete biomarker dataset.

M: disease-dedicate forum dataset.

2: Repeat:

3: Repeat:

4: update U t+1
ik , V t+1

jk , Ũ t+1
ij in Eq.(4.6)

5: Until: Eq.(4.4) converge

6: set Yt′
Ω = (Y0)Ω

7: set ξ = (Yt′+1 −Yt′)./Yt′

8: Until: ξ < 1E − 2

9: Output: Y, U, Ũ, V

Eq. (4.6) leads to the following updating rules for MI2-HD:

Uik = Uik
(2YV + βHWeD

−1
e H>U)ik

(2UV>V + βDvU + βD>v U)ik

Vkj =Vkj
(2Y>U + αM>Ũ)kj

2(VU>U + αVŨ>Ũ)kj

Ũij = Ũij
(MV)ij

(ŨV>V)ij

(4.6)

Fix U, Ũ, V, update Y: After the convergence of U, Ũ, V, I set YΩ = (Y0)Ω to

restore the observed information. Then repeating update U, Ũ, V until Y converge.

4.4.2 MI2-HT UPDATING RULES

Derivation of Eq. (4.5) follows the same procedure as the derivation of Eq. (4.4).

Omitted for brevity, the updating rules for MI2-HT are directly given in Algorithm

4.

57



Algorithm 4 Updating Rules for MI2-HT

1: Input:

Y0: incomplete biomarker dataset.

M: disease-dedicate forum dataset.

2: while ε > ConvergenceCriterion do

3: U t+1
ik ← U t

ik
(YVS>)ij

(βLhU+β(Lh)>U)ij

4: V t+1
jk ← V t

jk
(Y>US)ij

(αVS>U>US)ij

5: Ũ t+1
ij ← Ũ t

ij
(MVS̃>)ij

(ŨS̃V>VS̃>)ij

6: St+1
ik ← Stik

(U>YV)ij
(V>VS>U>U)ij

7: ˜St+1
ik ← S̃tik

(Ũ>MV)ij

(V>VS̃>Ũ>Ũ)ij

8: ObjV aluet+1 = O(Ut+1,Vt+1, ˜Ut+1,St+1, ˜St+1)

9: ε = ObjV aluet+1 −ObjV aluet

10: t = t+ 1

11: end while

Output: U, V, Ũ, S, S̃

4.4.3 CONVERGENCE ANALYSIS

The Algorithm 3 is not jointly convex for all the variables Y, U, Ũ, V, but

convex in each of them separately. As shown in Eq. (4.4), when Y is fixed, the proof

regarding the convexity of Eq. (4.4) with respect to variables U, Ũ, V is analogous

to (Cai et al. 2008); when U, Ũ, V are fixed, the optimization problem is equivalent

to min
Y
‖Y −C‖2

F , s.t. YΩ = (Y0)Ω, with respect to Y only. C is given as constant.

To be more specific, the equality constraint can be rewritten as ‖ΛYC −C‖2
F , where

YC denotes the column-wise concatenation of Y, and Λ is a constant diagonal matrix

with the diagonal elements equal to the column-wise concatenation of Ω. Thus, the

local optima are feasible when Algorithm 1 is proved to be convex with respect to
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Figure 4.3: TuDiabetes Forum Screen Shot.

variables Y, U, Ũ, and V individually. The same proof procedure can be easily

adapted to proof that Algorithm 4 also achieves the local optimal solution.

4.5 EVALUATION

4.5.1 EXPERIMENTAL SET-UP

There are two real-world data sets and one synthetic data set in our experiments:

Synthetic Data set: As mentioned in the reference (Hofmann 2003), the Gaussian

distribution is adopted to estimate the users’ rating for the item when studying the

user preferences, in which each community can be identified by a Gaussian distribution

generated from the normalized user ratings. In our case, when I generate the synthetic

data, I assume that each user can also be identified by a Gaussian distribution,

which is generated according to the user’s attendance to each post (topic). The

factorization factors U, V, and Ũ are generated based on the multi-variate Gaussian

distribution. Each of them contains 200, 450 and 150 examples respectively. The

trade-off parameter is selected in grid [0.3, 3, 30, 300] to balance the effectiveness of

each regularization term and avoid single term monopolizing the objective function.
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TuDiabetes Data Set: The TuDiabetes online forum consists of a community of

people touched by diabetes and the disease-specific discussion about their diabetes

condition. The set of discussions usually include Type I diabetes, Type II diabetes,

gestational diabetes, diet, and exercise, etc. As the screenshot of the TuDiabetes

forum shown in Fig. 4.3, the users tend to form the same groups with interest in a

certain topic. In general, the Tudiabetes data set is a collection of 21,286 discussion

posts with 294,272 users. The features for each user consist of the TF-IDF (Salton

and Yang 1973) feature of his/her posts after the pre-processing steps (verb tense

uniform, stop word removal).

OneID: The OneID data set (zhongqi 2015) contains the encrypted user online shop-

ping activities, including the device-cookie pair, searching keywords, auction ID, shop

ID and so on. The users’ feature is extracted by the Geohash method (Geohashes

2008) from the raw encrypted information that each feature is converted into a vector

of the same length. For detailed information, readers are recommended to see the

reference.

I use a range of missing ratios (mRatio) to partition Y0 into the observed portion

and the missing portion. The missing entries are randomly selected based on the value

of mRatio in the grid [0.3, 0.4, 0.5, 0.6, 0.7, 0.8], e.g., mRatio=0.4 means 40% entries

in Y0 are manually removed as missing, and replaced with value 0. The removed

portion is used as ground truth to evaluate the imputation accuracy.

4.5.2 EXPERIMENTAL RESULTS

I consider the scenario when the data sparsity spreads over different sparsity ratio.

The data sparsity ratio alters the imputation accuracy of our methods. In Fig. 4.5,

the imputation value accuracy is compared with three other algorithms on synthetic

data. The x-axis represents the missing ratio, and the y-axis shows the accuracy of the
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Figure 4.4: Convergence analysis with respect to the trade-off parameters. The x and

y axes denote the iteration number and the objective function value respectively.
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Figure 4.5: Comparison analysis of synthetic data. The first two bars of each bar-

group represent the imputation accuracy of MI2-HD and MI2-HT. The x-axis repre-

sents the missing entries ratio which controls the percentage of missing entries, while

the y-axis represents the imputation accuracy with respect to the certain missing

ratio.
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imputation value. It can be observed that the imputation performance is much more

stable when the ratio of missing fraction getting increasing. I take cosine similarity

Nguyen and Bai 2010 to measure the imputation accuracy between the imputation

result and original value. To be more precise, cosine similarity is a measurement

that measures the similarity between two non-zero vectors by calculating their cosine

value of the angle in their inner product space. Each result is the average over 30-run

results. For each running, U, V, and Ũ are randomly initialized from multivariate

Gaussian distribution. Compared with the other three methods, whose accuracies

decline quickly along with the increasing ratio of missing entries, MI2-HD algorithm

decreases relatively slow and shows the highest imputation accuracy.

The 30-run average results on both the TuDiabetes data set and the OneID data

set are shown in Fig. 4.6. The first two bars of each bar-group represent the impu-

tation accuracy for our MI2-HD and MI2-HT. Overall, with the increasing of missing

value fraction, our method shows stable high accuracy with the help of hypergraph

structure and the heterogeneous auxiliary information. To be explicit, the experiment

results verify the two main advantages of our method:

(1) As shown in Fig. 4.7a, by leveraging the hypergraph structure, the proposed

MI2-HD can improve the missing value imputation performance when compared with

the traditional graph-based methods GNMF.Compared with the model MI2-HT, the

model MI2-HD shows higher missing value imputation accuracy on both data sets.

The reason is that in model MI2-HT, the strict orthogonality constraints have been

adopted on the factorization factors, i.e., U, Ũ, and V. The model MI2-HT benefits

from the mathematical property of the orthogonality constraint, which reduces the

computational complexity dramatically. However, such an orthogonality constraint

presents the one-to-one mapping relationship among the users and posts, which ig-

noring the user-grouping knowledge of the disease-dedicated social networks, even
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Figure 4.6: Upper: Experimental results on the OneID dataset; Lower: Experimental

results on the TuDiabetes dataset. Each numerical value is averaged over 30-run

repeated test, then the 30-run variance is shown in the error bar.

though I have addressed the user-grouping knowledge in the Eq. (4.5) by leveraging

the hypergraph structure. The proper constraints give rise to better imputation ac-

curacy, which I will attach great importance in our future works.

(2) As shown in Fig. 4.7b, the superiority of our methods is increasing along with

the data sparsity growing up. The imputation accuracy and robustness are benefited

from utilizing the heterogeneous data by sharing the measurement matrix V between
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Figure 4.7: Experimental Analysis: (a) Imputation improvement by leveraging hy-
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the original and heterogeneous information.
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Chapter 5

MISSING VALUE IMPUTATION WITH DATA MULTI-MODALITY

Multi-modality learning aims to improve model generalization performance by com-

bining information from a variety of data modalities. One frequent strategy is to look

for common information that is shared across different learning modalities, while I

may also integrate supplemental data to use modality-specific data.

Customers’ reviews, as well as the numerical rating score, are supplied for the

recommender system. It’s not uncommon for some consumers to give a liberal rating

to an item, while others are more stringent in their evaluations. The numerical rating

value of 3’, for example, comes from a forgiving consumer who was dissatisfied with

his or her purchasing experience, but the score of 3’ is also offered by individuals who

have unrealistic expectations for the goods. It is improper to create a recommender

in this scenario without removing user bias. Incorporating textual review into the

model might be a method to minimize bias. When contrasted to strict consumers

with a rating of 3’, who may employ fussy terms, tolerant consumers with a rating

of 3’ would have a different choice of words to describe the item. Due to the data

heterogeneity, since each consumer would offer evaluations for items in a different

category, another issue known as ”Semantic Bias” comes to mind when considering

the textual review. For example, the term ’complex’ has very different emotional

connotations for the product categories ’Computer’ and ’Book,’ e.g., ’The operating

system is complicated for me’ vs ’This book has complicated friction,’ implying either

negative or good feeling. People are unable to build an interpretable missing value

imputation technique for the recommender system without taking into account such

semantic bias while adding the review into our model.
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5.1 IMPUTATION STRATEGY

For this problem with the observed users’ contextual review and rating score, the

goal is to impute the missing rating score based on his/her long-term rating record

together with the most recent short-term review information. Users’ rating preference

(leniency or strict) is estimated according to his/her similar users when they use the

same adjective words and adverb words in their review. There are multiple constraints

proposed with respect to three aspects: (1) Maximize the consistency between the

imputation results with the observed information (LF (θ)); (2) each users’ rating score

is prejudged by his/her contextual review information (LR(θ)); (3) users who user

same adjective words and adverb words in their review are close to each other (LU(θ)).

The overall objective function is formulated as follows:

L(θ) = LF (θ) + αLR(θ) + βLU(θ) (5.1)

where LF (θ), LR(θ), and LU(θ) correspond to the imputation consistency, cross

modality consistency, and user similarity, respectively. The trade-off parameters α

and β are non-negative for the purposes of keeping balance of each term, and being

convenient for solving the optimization problem. Each term is explained in detail as

follows.

Imputation Consistency: In Eq.(5.1), the term LF (θ) is designed to require the

consistency between the imputation results and the observed information. For the

user-item rating score matrix X ∈ Rm×n, X is factorized into two low-rank matrices

by using non-negative matrix factorization (NMF) (Lee and Seung 2001). The scoring

data X is factorized into two low-rank matrices U ∈ Rm×k and V ∈ Rn×k, where k is

the latent grouping number. Matrix U indicates the row clustering (sample grouping),

and matrix V indicates the column clustering (measurement grouping). The product

of these two low-rank matrices U(V)> is treated as the imputation results for original
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data X where the rating score is missing. The impact and extension of the inherent

parameter k is studied in (Ding et al. 2006). Various type of matrix norm can be

used, e.g. L1,2/L2,1, L∞ and etc. I use the F norm for the convenience of calculation.

Cross Modality Consistency: Modality consistency is a significant principle that

ensuring the success of missing value imputation in multi-modality learning (Cai et al.

2018). The consistency among multiple modalities requires the prediction results for

any two modalities should keep consistent as high as possible. Different from the

previous methods, where the consistency is usually considered merely among the data

in the same modality, I incorporate the contextual information as the supplementary

knowledge to explore the certain emotion level of each word and further balance the

imputed users’ rating score. The users’ who are using the same words (adjective

and adverb) should be considered similar to each other, and their rating score is also

closing to each others’. For each item v, ravg denotes the average rating score over

all the users. The XR ∈ Rm×n is calculated based on the ELMo pre-trained word

embedding model (Che et al. 2018; Fares et al. 2017). Without ambiguity, each item

is presented as the average sum of all the adjective and adverbs words that have been

observed in its review for each user. XR is factorized into low-rank representation

XR = UR(VR)>, that UR indicates user clustering-based their rating habit, and VR

indicates item clustering affected by users’ rating habit.

The cross-modality consistency is maintained by obtaining a latent subspace

shared by the user rating habit measurement grouping VR and item clustering group-

ing which affected by users’ rating habit) V. Based on such subspace learning assump-

tion, I explore the family of subspace learning methods and leverage the Canonical

Correlation Analysis (CCA), which aims to maximize the correlation between two
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views. The correlation coefficient ρt,L between two views V and V(L) is calculated as:

ρt,R =
ω>VVR>ωR√

(ω>VV>ω)(ωR>VRVR>ωR)
(5.2)

since ρij is invariant to the scaling of projection vector ω and ωR, Eq. (5.3) is

equivalent to the following optimization problem:

max
ω,ωR

ω>VVR>ωR

s.t. ω>VV>ω = 1, ωR
>
VRVR>ωR = 1

(5.3)

In Eq. (5.1), LR(θ) encodes the multi-modality consistency by taking the summation

over log reciprocal of the the CCA correlation coefficient ρtL.

User Similarity: Besides the constraints of cross-modality consistency (which con-

sider the user similarity from the contextual review aspect), the users are also showing

their connection by considering their numerical rating score only. The idea it to en-

code the user grouping information based on graph-structured norm, know as graph

regularizer (Cai et al. 2011). Following the same instruction in 4.3, LU(θ) encodes

the construction of nodes (user) and edges (rating-based similarity), where the nodes

correspond to the user, and the relationship of the user is revealed by the pairwise

similarity according to their rating scores.

5.2 ALGORITHM AND SOLUTION

The efficient multiplicative updating rule for each U and V is proposed by de-

composing the objective function in Eq.4.4 into:

O =
T∑
t

(Tr(XX>)− 2Tr(XVU>) + Tr(UV>VU>))+

T∑
t

αtlog
1

ρt,L
+

T∑
t

βtTr(U
>LU)

(5.4)
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Algorithm 5 Updating Rules for Multi-Modality Missing Value Strategy

Input:

X,L

U and V are initialized as the NMF factors of X.

VR is initialized as the NMF factors of label.

ObjV alue = 10−2

ε = 1, ConvergenceCriterion = 10−2, step= 0

Output:

U, V, ω, ωL

1: while ε > ConvergenceCriterion do

2: ω ← ω update by Eq. (5.3)

3: ωR ← ωR update by Eq. (5.3)

4: Ui,k ← Ui,k update in Eq. (5.8)

5: Vj,k ← Vj,k update in Eq. (5.8)

6: ObjV aluestep+1 = O({U}Tt=1, {V}
T
t=1,ω,ω

R)

7: ε = |ObjV aluestep+1−ObjV aluestep
ObjV aluestep

|

8: end while

where ρi equals to:

ρt,L = ω>V>VRωR (5.5)

Let φi,j and ψk,j be the Lagrange multipliers for the constraints Ui,j ≥ 0 and Vi,j ≥ 0

respectively. Following the similar technique used in (Cai et al. 2011), the Lagrange

function is L formulated as:

L = O +
T∑
t

(Tr(ΨU>) + Tr(ΦV>)) (5.6)
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Table 5.1: Multi-Modality Amazon Customer Rating and Review Data Sets.

ID Views |User| Average Rating Review

1 Electronics & Video Games 842 4.55 3541

2 Patio & Tools 151 4.31 189

3 Beauty Product & Clothing 275 4.25 408

4 Art & Musical Instruments 182 4.11 617

5 Electronics & Kindle Store 756 3.96 1438

6 Beauty Product & Jewelry 453 4.58 598

7 Kindle Store & Software 673 3.47 1525

the partial derivatives of L with respect to U and V are:

∂L

∂U
= −2XV + 2UV>V + 2βLU + Ψ

∂L

∂V
= −2X>U + 2VU>U + 2αtω

>V>VRωLVRωLω> + Φ

(5.7)

by setting each partial derivative equals to 0, based on the KKT conditions Ui,jψi,j =

0 and Vi,jφi,j = 0, I can get the updating rule for U and V respectively as:

Ui,k = Uk,j(
XV

UV>V + βtLU
)i,k

Vj,k=(
X>U

VU>U+αtω>V>VRωLVRωLω>
)j,k

(5.8)

The iterative procedure is described in Algorithm 5 and working as follows. The

input of the procedure is the U0 and V0, which equal to the NMF factorization

factors of user rating score matrix X. The parameter ObjV aluet takes the records

of objective function value during the updates, and it is initialized as 10−2 to ensure
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Table 5.2: Missing Value Imputation Performance Comparison.

Dataset ID Multi-Modality Without Modality GROUSE IALM LMaFit MC-NMF OR1MP RMAMR multiNMF

1 1.891 1.945 1.456 1.201 1.854 1.851 1.590 1.344 3.817

2 1.145 1.764 1.259 1.415 1.725 1.456 1.464 1.678 2.298

3 1.748 2.231 1.549 1.198 2.261 2.041 1.392 1.285 2.301

4 1.456 2.147 1.135 1.152 1.546 1.951 1.764 1.783 2.961

5 1.256 1.598 1.093 1.413 1.874 2.322 1.270 1.648 2.888

6 1.489 2.315 1.315 1.854 2.185 2.485 1.482 1.798 2.253

7 1.294 1.474 1.995 1.185 1.846 1.749 1.628 1.185 2.403

the compilable of the whole procedure. VR is obtained by factorizing the multi-label

information XR through NMF.

The main computation cost is derived by matrix multiplication. Therefore, omit-

ted the space, the time complexity for Mi-L2 is O(mnD), that D equals to the max-

imum clustering number over each view.

5.3 EXPERIMENT

Amazon Multi-Modality Data Set: As shown in Table 5.1, the experiments are

all conducted on the Amazon data set (He and McAuley 2016), which includes the

reviews (ratings, text, helpfulness votes), product metadata (descriptions, category

information, price, brand, and image features), and links (also viewed/also bought

graphs) for each online transaction. Each user’s review and rating score is collected

from two purchase aspects for the purpose of complementing his/her rating habits.

Comparison and Evaluation: As shown in Table 5.2, compared with 6 state-of-

the-art methods, including GROUSE (Balzano and Wright 2013), IALM (Lin et al.

2010), LMaFit (Wen et al. 2012), MC-NMF Xu et al. 2012, OR1MP Wang et al.

2015b, RMAMR (Ye et al. 2015), and (Liu et al. 2013). Parameters are initialized as
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suggested correspondingly.
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Chapter 6

CONCLUSTION

This thesis aims to address the missing value imputation problem when considering

the data heterogeneity. Three main topics have been identified as (1) Mining and

formulating heterogeneous data; (2) Imputing missing value in multiple scenarios

including recommender systems and healthcare-based social media; (3) Imputation

with Data Modality. Through the empirical analysis, I have designed the solutions for

each scenario and demonstrated the effectiveness of the proposed solutions, compared

with state-of-the-art methods. The data heterogeneity has been characterized and

formulated in each scenario while addressing the problem of missing value imputation.

For the recommender system scenario, the missing value imputation strategies are

classified into two cased (i) offline imputation strategy, and (ii) online imputation

strategy. For the offline strategies, the collective matrix completion is adopted under

the consideration of multi-view data. The cross-view is decoded in the graph spectral

domain and quantifies the matrices’ interactive impacts. Experimental comparison

with other state-of-the-art methods on ten real-world data sets shows the improved

performance of missing value prediction; For the online imputation strategy, the real-

time customers’ shopping preference is treated as the target value of imputation, and

the reinforcement learning-based strategies have been explored to understand the

imputation result.

Towards disease-dedicated social networks, I make an effort to formulate patient

grouping information based on the hypergraph representation, and leverage addi-

tional information such as users’ social relationships and clinical data to improve the

accuracy of missing value imputation. The proposed iterative algorithms solve the
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resulting optimization problems. I also analyze their performance from multiple per-

spectives. Experimental results show that the missing value imputation performance

has been improved by leveraging the auxiliary data from diabetes-dedicated social

networks.

The last topic regarding the missing value imputation in the scenario of multi-

modality data is explored. The users’ bias is revealed in the contrast of their contex-

tual text review and their rating score. The effectiveness of contextual information

is addressed to alleviate the data sparsity issue. The missed user rating score is then

estimated based on his/her long-term historical rating habit (either leniency or strict)

together with his/her short-term contextual review information.

The aforementioned research results for recommender systems have been published

and presented in CIKM 2019 and WWW 2021, and the second topic regarding disease-

dedicated social networks has been published at IISE 2020. The last topic of missing

value imputation with multi-modality data is targeting IJCAI 2022.

6.0.1 FUTURE WORK

Learning from data heterogeneity for missing value imputation is an active study

field for multiple applications domains of recommender system, healthcare analysis,

natural language understanding, cyber-security analysis and so on. The majority of

the publications cited in this thesis are concerned with the usage of recommender

systems and social media analysis. Missing value imputation may be used in a vari-

ety of domains, including advertisement bidding, 3D picture reconstruction, and so

on. State-of-the-art techniques for handling the missing value imputation problem

include deep learning models (e.g., generative adversarial network, deep reinforce-

ment learning). Finally, adding more diversified data modalities (e.g., the picture in

a recommender system for rating prediction) is required to better explain consumers’
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buying intent.

Meanwhile, the ethical issues in healthcare analysis has been widely discussed. 63

percent of adults are uneasy with personal data being used to improve healthcare and

are opposed to health care analytics systems taking over functions normally performed

by doctors and nurses (McKee 2013). People are questioning what internet privacy

actually means. They routinely disclose extensive information about all parts of their

life on social media, including embarrassing anecdotes and even incriminating images.

Privacy, accountability, and data justice require a great deal of care for the research

purpose of any works. The interpretable models can be investigated to evaluate the

data fairness and the GAN related models can be further utilized to generate the

simulation data for the purpose of privacy protection.
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