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ABSTRACT

This dissertation comprises two projects: (i) Multiple testing of local maxima for detection

of peaks and change points with non-stationary noise, and (ii) Height distributions of criti-

cal points of smooth isotropic Gaussian fields: computations, simulations and asymptotics.

The first project introduces a topological multiple testing method for one-dimensional

domains to detect signals in the presence of non-stationary Gaussian noise. The approach

involves conducting tests at local maxima based on two observation conditions: (i) the

noise is smooth with unit variance and (ii) the noise is not smooth where kernel smoothing

is applied to increase the signal-to-noise ratio (SNR). The smoothed signals are then stan-

dardized, which ensures that the variance of the new sequence’s noise becomes one, making

it possible to calculate p-values for all local maxima using random field theory. Assum-

ing unimodal true signals with finite support and non-stationary Gaussian noise that can

be repeatedly observed. The algorithm introduced in this work, demonstrates asymptotic

strong control of the False Discovery Rate (FDR) and power consistency as the number

of sequence repetitions and signal strength increase. Simulations indicate that FDR levels

can also be controlled under non-asymptotic conditions with finite repetitions. The appli-

cation of this algorithm to change point detection also guarantees FDR control and power

consistency.

The second project focuses on investigating the explicit and asymptotic height densities

of critical points of smooth isotropic Gaussian random fields on both Euclidean space and

spheres. The formulae are based on characterizing the distribution of the Hessian of the

Gaussian field using the Gaussian orthogonally invariant (GOI) matrices and the Gaussian

orthogonal ensemble (GOE) matrices, which are special cases of GOI matrices. How-

ever, as the dimension increases, calculating explicit formulae becomes computationally

challenging.The project includes two simulation methods for these distributions. Addi-

tionally, asymptotic distributions are obtained by utilizing the asymptotic distribution of
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the eigenvalues (excluding the maximum eigenvalues) of the GOE matrix for large dimen-

sions. However, when it comes to the maximum eigenvalue, the Tracy-Widom distribution

is utilized. Simulation results demonstrate the close approximation between the asymptotic

distribution and the real distribution when N is sufficiently large.
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Chapter 1

INTRODUCTION

This dissertation contains two different research projects: Multiple Testing of Local Max-

ima for Detection of Peaks and Change Points with Non-stationary Noise and Height Distri-

butions of Critical Points of Smooth Isotropic Gaussian Fields: Computations, Simulations

and Asymptotics.

1.1 Multiple Testing of Local Maxima for Detection of Peaks and Change Points with

Non-stationary Noise

Peak detection is a crucial task in various fields, including medical condition monitoring

[20, 21, 7], image analysis [22, 24], and statistics. Accurate and efficient peak detection

provides valuable information for decision-making, such as identifying the presence or

absence of specific components in a chemical mixture or detecting abnormal changes in

physiological signals.

Different methods for peak detection have been developed, including threshold-based

methods, template-based methods, and wavelet-based methods. However, peak detection

can be challenging due to factors such as noise, baseline variation, and artifacts.

Threshold-based methods involve setting a threshold level to identify peaks in a signal.

The method defines a threshold, above which the signal is considered a peak. Peaks are

identified as points in the signal where the value exceeds the threshold. Threshold-based

methods are simple and computationally efficient, making them popular in many appli-

cations. However, they can be sensitive to noise and baseline variations, leading to false

positives or false negatives. Various modifications, such as adaptive or multiscale thresh-

olds, have been developed to enhance the performance of threshold-based methods.
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Template-based methods utilize a pre-defined waveform or template to detect peaks in

a signal. The template is derived from a representative waveform of the signal of interest.

The method aligns the template with the signal at different positions and scales, measuring

similarity using metrics such as cross-correlation or Euclidean distance. Positions where

the similarity exceeds a threshold are identified as peaks. Template-based methods are

effective when peaks have similar shapes to the template but may struggle with different

peak shapes or situations requiring template updates.

Wavelet-based methods use wavelet transforms to analyze and detect peaks in a signal.

Wavelet transforms decompose a signal into frequency components, enabling the identi-

fication of peaks at different scales. Wavelet-based methods apply wavelet transforms to

the signal and detect peaks in the resulting coefficients or subbands. These methods are

suitable for noisy or non-stationary signals but require more computational resources and

depend on the choice of wavelet function and decomposition level. Enhancements, such as

multiscale or adaptive thresholding, have been developed to improve wavelet-based meth-

ods.

In this dissertation, a threshold-based method is applied, where the core idea is finding

an appropriate threshold to determine the significance of observations. Previous papers

assume stationary and ergodic Gaussian noise. However, in this project, the noise is non-

stationary. And the thresholding problem can be treated as a multiple testing problem,

that is, tests at local maxima of the observed signals will be performed. This approach

allows error rates (FDR) and peak detection power to be defined topologically based on the

detected peaks, offering computational efficiency compared to pointwise testing.

Keith Worsley [33, 36, 37] is a pioneer in the use of random field theory, and his work,

particularly the Euler characteristic heuristic, has proven to be a valuable approach for

approximating the null distribution of the global maximum of observed signals. In this

paper, we apply BH procedure for controlling the false discovery rate (FDR) to obtain less

2



conservative results.

Schwartzman, Gavrilov, and Adler [31] structured peak detection by introducing a mul-

tiple testing paradigm that involves testing the significance of local maxima in smoothed

data. However, their work was limited to stationary noise, because closed-form expres-

sions for the distribution and properties of the height of local maxima, which are essential

for calculating the p-values and controlling the FDR, are only known for stationary Gaus-

sian processes.

Recently, Cheng, D. and A. Schwartzman [12, 14] made significant progress by ob-

taining implicit expressions for the height distribution of local maxima of one-dimensional

Gaussian fields with constant variance. And Cheng [9] obtained the explicit expression for

1D. He achieved this by using random matrix theory and the property of Gaussian process.

These developments are so important because they allow us to extend the multiple testing

method proposed in [13, 31] to handle non-stationary noise.

Our algorithm comprises the following steps:

1.Kernel smoothing: If the noise is smooth, go to step 3. If the noise is not smooth, do the

kernel smoothing to increase the signal-to-noise ratio (SNR) [32].

2.Standardizing: Transfer the variance of noise to one.

3.Candidate peaks: Find local maxima of the smoothed and standardized sequence.

4.P-values: Compute the p-values at each local maximum under the null hypothesis of no

signal on the local maximum.

5.Multiple testing: Apply a multiple testing procedure to get a threshold. Then mark the

detected local maxima as signals if their p-values are below the threshold.

In this paper, the p-values in step 4 can be computed by using the Gaussian processes

theory of Cheng [9]. For step 5, we use the Benjamini-Hochberg (BH) procedure to control

the FDR. The algorithm is illustrated by a simulated example in Figure 1.1.
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Figure 1.1: The green line is observed sequence y(t), the red line is the original signal
µ(t), the blue line is smoothed sequence yγ(t), the black line is smoothed and standardized
sequence Xγ(t). Out of 38 local maxima of Xγ(t)(red cross), 6 of them are marked as
significant(yellow triangle), where 5 of 5 peaks are detected.

1.2 Height Distributions of Critical Points of Smooth Isotropic Gaussian Fields:

Computations, Simulations and Asymptotics

1.2.1 Motivations

Computing the expected number of critical points of smooth Gaussian random fields

is a significant problem in probability theory because of its broad applications in various

fields, such as physics [3, 8, 17, 19], statistics [1, 10, 6, 16, 25], neuroimaging [28, 33, 34,

35], oceanography [26, 27], astronomy [5, 23], engineering, environmental science, and

geophysics. Numerous researchers from diverse disciplines have dedicated their efforts

to this problem and have developed many powerful tools, notably the renowned Kac-Rice

formula. While the Kac-Rice formula [2, 30] allows us to derive an implicit formula for the

expected number of critical points, evaluating the explicit formula proves challenging for

most smooth Gaussian random fields defined on Euclidean space RN or the N -dimensional

4



unit sphere SN when N > 1. However, Fyodorov [18] made a breakthrough which enables

the explicit evaluation available for a large class of isotropic Gaussian random fields. The

main novel idea is writing the Hessian of the Gaussian field as a Gaussian random matrix

involving the Gaussian Orthogonal Ensemble (GOE).

The project is divided into three main components: computations, simulations, and

asymptotics.

In the computations part, building upon the work of Cheng [12, 14], the explicit form

of the peak height density of critical points in smooth isotropic Gaussian random fields can

be calculated when the dimension N is small (3 and 4).

However, as the dimension N increases, obtaining the explicit form of the peak height

density becomes increasingly challenging. In such cases, simulation approaches for both

the GOE and the GOI matrices are provided, based on the implicit form of the height

density.

When the dimension N becomes sufficiently large, the asymptotic distributions of the

height density can be determined. By the work of O’Rourke, S.[29] and the Tracy-Widom

distribution. The algorithms for simulating the height density can be provided.

Overall, this project combines computations, simulations, and asymptotic analysis to

explore the height distributions of critical points in smooth isotropic Gaussian fields.

1.2.2 Definitions and Notations

For simplicity, the notations are all from the work of Cheng and Schwartzman [14].

GOE matrix: An N ×N random matrix H = (Hij)1≤i,j≤N is said to have the Gaussian

Orthogonal Ensemble (GOE) distribution if it is symmetric and all entries are centered

Gaussian variables Critical points of isotropic Gaussian fields such that:

E[HijHkl] =
1

2
(δikδjl + δilδjk)

5



where δij is the Kronecker delta function.

GOI matrix: An N × N random matrix M = (Mij)1≤i,j≤N is said to have the Gaussian

Orthogonal Invariant (GOI) distribution with covariance parameter c, denoted by GOI(c) if

it is symmetric and all entries are centered Gaussian variables such that:

E[MijMkl] =
1

2
(δikδjl + δilδjk) + cδijδkl

where δij is the Kronecker delta function. Let X = {X(t), t ∈ T} be a smooth isotropic

Gaussian random field whose mean is 0 and variance is 1, where T is RN or SN . For

i = 0, . . . ,N , let:

µi(X,u) =#{t ∈D ∶X(t) ≤ u,∇X(t) = 0, index(∇2X(t)) = i}, (1.1)

where D is an N -dimensional unit-area disc on T , ∇X(t) and ∇2X(t) are respectively

the gradient and Hessian matrix of X , and index(∇2X(t)) denotes the number of negative

eigenvalues of ∇2X(t). Then, µi(X,u) is the number of critical points of index i of X

exceeding u over D.

We Define the height density of a critical value of index i of X at some point t0, as:

Fi(u) ∶= lim
ε→0

P{X(t0) > u∣∃ a critical point of index i of X(t) in B(t0, ε))} (1.2)

For non-boundary case: 0 < κ2 < (N + 2)/N

Fi(u) =
∫
∞
u ϕ(x)EN

GOI((1−κ2)/2)[∏
N
j=1 ∣λj − κx/

√
2∣1{λi<κx/

√
2<λi+1}dx

EN
GOI(1/2)[∏

N
j=1 ∣λj ∣1{λi<0<λi+1}]

For boundary case: κ2 = (N + 2)/N

Fi(u) =
EN

GOI(1/2)[∏
N
j=1 ∣λj ∣1{λi<0<λi+1}1{∑N

j=1 λj/N≤−
√
(N+2)/(2N)u}]

EN
GOI(1/2)[∏

N
j=1 ∣λj ∣1{λi<0<λi+1}]

From the definition givn before, when 0 < κ2 < (N + 2)/N , the height density of critical

points can be written as:
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fi(x) =
ϕ(x)EN

GOI((1−κ2)/2)[∏
N
j=1 ∣λj − κx/

√
2∣1{λi<κx/

√
2<λi+1}

EN
GOI(1/2)[∏

N
j=1 ∣λj ∣1{λi<0<λi+1}]

(1.3)

Where fi(x) represents the density of critical points of index i, the two implicit forms of

height density are lemmas from Cheng[14, 12]
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Chapter 2

MULTIPLE TESTING OF LOCAL MAXIMA FOR DETECTION OF PEAKS AND

CHANGE POINTS WITH NON-STATIONARY NOISE

2.1 The Model

Consider the signal-plus-noise model:

y(t) = µ(t) + z(t), t ∈ [0, L] ⊂ R (2.1)

Where the signal µ(t) is a train of unimodal positive peaks of the form:

µ(t) =
∞
∑

j=−∞
ajhj(t), aj > 0, (2.2)

And the peak shape, denoted by hj(t) ≤ 0, has a compact connected support

Sj = {t ∶ hj(t) > 0} and unit action ∫sj hj(t)dt = 1 for each j. The noise z(t) is a non-

stationary Gaussian process. In this paper, we discuss two conditions for the noise. The first

condition assumes smooth noise, where z(t) has unit variance and is smooth. Under this

condition, Gaussian process theory from Cheng [9] can be directly applied, eliminating

the need for kernel smoothing or other transformations. p-values can be calculated, and

multiple testing can be conducted directly.

The second condition considers unsmooth noise, which is the main focus of this disser-

tation. We assume z(t) is not smooth, and to increase the signal-to-noise ratio (SNR) [31],

kernel smoothing is essential. Gaussian process theory can still be applied in this case, but

standardization is necessary. Further details will be provided in the following algorithm

section.

Let wγ(t) ≥ 0 be a unimodal kernel with a compact connected support and unit area,

where γ > 0 is the bandwidth. Convolving the process 2.1 with the kernel wγ(t) can

8



generate the smoothed process.

yγ(t) = wγ(t) ∗ y(t) = ∫
∞

−∞
wγ(t − s)y(s)ds = µγ(t) + zγ(t), (2.3)

where the smoothed signal and smoothed noise are defined as

µγ(t) = wγ(t) ∗ µ(t) =
∞
∑

j=−∞
ajhj,γ(t), zγ(t) = wγ(t) ∗ z(t) (2.4)

For each peak j, the smoothed peak shape function is defined as hj,γ(t) = wγ(t) ∗

hj(t) ≥ 0. It is unimodal and possesses a compact connected support, denoted as Sj,γ . The

smoothed peak shape hj,γ(t) is required to be twice differentiable in the Sj,γ and has only

one critical point in its support. For simplicity, this work assumes that the supports Sj,γ do

not overlap each other.

The smoothed noise is defined as zγ(t), which is obtained through convolution as de-

scribed in equations 2.3 and 2.4. We assume that zγ(t)’s mean is zero and is a thrice differ-

entiable non-stationary Gaussian process. However, after the convolution, the variance of

the noise cannot be guaranteed to be 1. To apply the theory of random fields, an additional

step of standardization is performed. This involves dividing the entire observation yγ(t) by

the standard deviation of zγ(t). By doing this, the new model has a noise component with

unit variance, allowing us to apply the theory described subsequently.

Let X be a standard Gaussian process, X ′ be its first derivative, and X ′′ be its second

derivative.

2.2 Difference Between Stationary Process and Non-stationary Process

The previous research of Schwartzman, Gavrilov and Adler[31] primarily focused on

the scenario where the noise z(t) is a stationary ergodic Gaussian process. However, in

this project, we will address the condition when z(t) is non-stationary. The key distinction

between these two conditions is that in the case of stationary noise, the parameter ρ remains

9



Figure 2.1: The green line is observed sequence y(t), the red line is the original signal
µ(t)

constant across the entire support [0, L]. This allows us to establish a global threshold for

observations to determine the significance of each local maximum.

On the other hand, when z(t) is non-stationary, the parameter ρ varies for different

values of t. In other words, ρ(t) differs for each point t, indicating that we cannot obtain

a global threshold for the observations. Consequently, proving results under this condition

becomes challenging, necessitating the introduction of new theories and approaches.

2.3 Unsmooth Noise

We will first discuss the condition where the observed noise is not smooth. Smooth

noise can be considered a special case within the broader category of unsmooth noise. As

we will perform kernel smoothing in the initial step, certain transformations need to be

applied to make our theory applicable. Subsequently, the following sections will outline

the steps of our algorithms.
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Figure 2.2: The green line is observed sequence y(t), the red line is the original signal
µ(t), the blue line is smoothed sequence yγ(t).

2.3.1 Kernel Smoothing

This part is described in the section 2.1, we can construct the smoothed process yγ(t)

by (2.3) and (2.4). And the figure 2.2 displays the process of kernel smoothing.

2.3.2 Standardization

This step constitutes the core idea of the project. Its objective is to transform the vari-

ance of the smoothed noise to one, thereby facilitating the application of Gaussian process

theory for calculating p-values. This is accomplished by standardizing the sequence, which

involves dividing the entire smoothed sequence by the estimated standard deviation of the

smoothed noise. As a result of this process, the variance of the new noise becomes one.

Standardizing the process 2.3 yields the smoothed and standardized process.

fγ(t) =
µγ(t)√

var(zγ(t))
+

zγ(t)√
var(zγ(t))

(2.5)

For this sequence, we define Xγ(t) = zγ(t)√
var(zγ(t))

as the smoothed and standardized noise.
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Figure 2.3: The green line is observed sequence y(t), the red line is the original signal
µ(t), the blue line is smoothed sequence yγ(t), the black line is smoothed and standardized
sequence Xγ(t).

2.3.3 Candidate Peaks

The objective of this step is to identify the peaks for the subsequent calculation of p-

values in the context of multiple testing. While many studies focus on pointwise testing,

which involves calculating p-values for individual points in a sequence, Schwartzman, A.

and Y. Gavrilov and R. J. Adler [31] proposes an alternative approach. In their research,

local maxima are considered representative of underlying signal peak regions. By calcu-

lating p-values and conducting multiple testing on the local maxima, the efficiency can be

significantly improved.

In the process described by equation 2.5, with the sequence fγ(t), we define the set of

local maxima of fγ(t) within the interval [0, L] as

T̃ = {t ∈ [0, L] ∶ f ′γ(t) =
dfγ(t)
dt

= 0, f ′′γ (t) =
d2fγ(t)
dt2

< 0} (2.6)
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Figure 2.4: The green line is observed sequence y(t), the red line is the original signal
µ(t), the blue line is smoothed sequence yγ(t), the black line is smoothed and standardized
sequence fγ(t), the red crosses are the detected local maxima

2.3.4 P-values

This part focuses on calculating the p-values which will be used to do multiple testing

in next step.

Calculation of P-values

For each t ∈ T̃ , compute the p-values pγ(t) for testing the hypothesis

H0(t) ∶ µ(t) = 0 vs HA(t) ∶ µ(t) > 0, t ∈ T̃ (2.7)

Given the observation heights fγ(t) at the local maxima t ∈ T̃ , the p-values are computed

as

Pγ(t) = Fγ[fγ(t)], t ∈ T̃ (2.8)

where

Fγ(u) = P [fγ(t) > u∣t ∈ T̃ ] (2.9)
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represents the right cumulative distribution function (cdf) of Xγ(t) at the local maxima

t ∈ T̃ , which can be calculated under the null hypothesis µ(t) = 0,∀t. From the work of

Cheng, D. and A. Schwartzman[12], the formula to calculate the Fγ(u) is:

Lemma 2.3.1. Let X(t) ∶ t ∈ T be a Gaussian random field with dimension one, then for

each t ∈ T and u ∈ R.

Fγ(u) =
E{∣X ′′(t)∣1{X(t)>u}1{X′′(t)<0)}∣X ′(t) = 0}

E{∣X ′′(t)∣1{X′′(t)<0)}∣X ′(t) = 0}
(2.10)

From the lemma above, we can see that it is an implicit form of distribution, to calculate

the explicit form of Fγ(u), we need the joint distribution of (X(t),X ′(t),X ′′(t)). And

from the pre-print work of Cheng, suppose X is a standard Gaussian. The joint distribution

of (X(t),X ′(t),X ′′(t)) is:

(X(t),X ′(t),X ′′(t)) ∼ N(0,Σ)

where:

Σ =

⎛
⎜⎜⎜⎜⎜⎜
⎝

var(X(t)) E(X(t)X ′(t)) E(X(t)X ′′(t))

E(X ′(t)X(t)) var(X ′(t)) E(X ′(t)X ′′(t))

E(X ′′(t)X(t)) E(X ′′(t)X ′(t)) var(X ′′(t))

⎞
⎟⎟⎟⎟⎟⎟
⎠

With the covariance matrix, we assume that X(t) has unit variance, and with the following

definitions:

var(X(t)) = 1, var(X ′(t)) = λ1(t), var(X ′′(t)) = λ2(t)

After some calculation, we can get the following elements:

E(X(t)X ′(t)) = 0,

E(X(t)X ′′(t)) = −λ1(t),

E(X ′(t)X ′′(t)) = λ′1(t)
2

.
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With all the elements, we can get the covariance matrix:

Σ =

⎛
⎜⎜⎜⎜⎜⎜
⎝

1 0 −λ1(t)

0 λ1(t) λ′1(t)
2

−λ1(t) λ′1(t)
2 λ2(t)

⎞
⎟⎟⎟⎟⎟⎟
⎠

(2.11)

With the joint distribution, we can calculate the explicit form of Fγ(u) in lemma 2.3.1

Theorem 2.3.2. Suppose X is a standard Gaussian process with unit variance, the nota-

tions are defined in 2.11, the explicit form of Fγ(u) in lemma 2.3.1 is:

Fγ(u) = 1 −Φ(
u√

1 − ρ2(t)
) + ρ(t)

√
2πϕ(u)Φ( ρ(t)u√

1 − ρ(t)2
) (2.12)

where ρ(t) = λ1(t)
√
λ1(t)√

λ1(t)λ2(t)−λ′21 (t)/4
.

Proof. Assume λ1, λ2 are defined before, from the property of normal distribution, we can

get the following conditional covariance:

var(X(t)∣X ′(t) = 0) = 1 − [E(X(t)X
′(t))]2

var(X ′(t))
= 1

var(X ′′(t)∣X ′(t) = 0) = var(X ′′(t)) − [E(X
′′(t)X ′(t))]2

var(X ′(t))
= λ2(t) −

λ′1(t)2
4λ1(t)

cov(X(t),X ′′(t)∣X ′(t) = 0)

= E(X(t)X ′′(t)) − E(X(t)X ′(t))E(X ′′(t)X ′(t))
var(X ′(t))

= −λ1(t)

Then, from the implicit form of lemma 2.3.1, we can calculate the distribution of the height

of the local maxima. The denominator is:

E[∣X ′′(t)∣1{X′′(t)<0}∣X ′(t) = 0]

where:

X ′′(t)∣X ′(t) = 0 ∼ N(0, λ2(t) −
λ′1(t)2
4λ1(t)

)

15



Let x = (X ′′(t)∣X ′(t) = 0) and δ =
√

λ2(t) −
λ′1(t)2
4λ1(t) :

E{∣X ′′(t)∣1{X′′(t)<0}∣X ′(t) = 0}

= ∫
0

−∞
− x√

2πδ
e−

x2

2δ2 dx

Then, let t = x
δ :

= −∫
0

−∞

t√
2π

e−
t2

2 δdt

= −δ[−ϕ(t)]∣0−∞

= δ√
2π

From lemma 2.3.1, the numerator is:

E{∣X ′′(t)∣1{X(t)>u}1{X′′(t)<0)}∣X ′(t) = 0}

= −E{X ′′(t)1{X(t)>u}1{X′′(t)<0)}∣X ′(t) = 0}
(2.13)

where:

X(t),X ′′(t)∣X ′(t) = 0 ∼ N(0,
⎛
⎜⎜
⎝

1 −λ1(t)

−λ1(t) λ2(t) − λ′1(t)2
4λ1(t)

⎞
⎟⎟
⎠
)

That is, let x =X(t), y =X ′′(t) and z =X ′(t):

−E{X ′′(t)1{X(t)>u}1{X′′(t)<0)}∣X ′(t) = 0}

= −∫
∞

u
∫

0

−∞
yf(x, y∣z = 0)dydx

where:

f(x, y∣z = 0) ∼ N(0,
⎛
⎜⎜
⎝

δ2x ρδxδy

ρδxδy δ2y

⎞
⎟⎟
⎠
)

where:

δx = 1,

δy =

¿
ÁÁÀλ2(t) −

λ′21 (t)
4λ1(t)

,

ρ = −
λ1(t)

√
λ1(t)√

λ1(t)λ2(t) −
λ′21 (t)

4
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Then, plug in, we can get:

−E{X ′′(t)1{X(t)>u}1{X′′(t)<0)}∣X ′(t) = 0}

= −∫
∞

u
∫

0

−∞
y

1

2πδy
√
1 − ρ2

exp{− 1

2(1 − ρ2)
[x2 − 2ρx y

δy
+ y2

δ2y
]}dydx

let t = y√
1−ρ2δy

and k = x√
1−ρ2

, then, we have:

= −(1 − ρ2)δy ∫
∞

u√
1−ρ2

e−
k2

2 ∫
0

−∞

t

2π
eρkte−

t2

2 dtdk

= −(1 − ρ2)δy ∫
∞

u√
1−ρ2

1√
2π

e−
k2

2 e
ρ2k2

2 [−ϕ(−ρk) + ρkΦ(−ρk)]dk

= (1 − ρ2)δy ∫
∞

u√
1−ρ2

ϕ(−ρk)√
2π

e−
k2

2 e
ρ2k2

2 dk − (1 − ρ2)δy ∫
∞

u√
1−ρ2

ρ√
2π

ke−
k2

2 e
ρ2k2

2 Φ(−ρk)dk

=
(1 − ρ2)δy√

2π
[1 −Φ( u√

1 − ρ2
)] +

ρ2δy√
2π
− ρδyϕ(u)Φ(−

ρu√
1 − ρ2

) −
ρ2δy√
2π

Φ( u√
1 − ρ2

)

=
δy√
2π
{1 −Φ( u√

1 − ρ2
) − ρ
√
2πϕ(u)Φ(− ρu√

1 − ρ2
)}

so, the cdf is:

Fγ(u) = 1 −Φ(
u√

1 − ρ2(t)
) − ρ(t)

√
2πϕ(u)Φ(− ρ(t)u√

1 − ρ2(t)
)

If we take ρ(t) = λ1(t)
√
λ1(t)√

λ1(t)λ2(t)−
λ′2
1
(t)
4

, the cdf is:

Fγ(u) = 1 −Φ(
u√

1 − ρ2(t)
) + ρ(t)

√
2πϕ(u)Φ( ρ(t)u√

1 − ρ2(t)
)

One thing to notice is that because ρ(t) is a function of t which takes different val-

ues for different t. Fγ(u) may also be different for different t, which means there is no

global threshold for the next step multiple testing. As a result, the FDR control and power

consistency are so hard to prove.
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Regional Peak Height Density

We introduce regional peak height density from the preprint work of Cheng, Schwartzman

and Zhao[15].This density function allows us to determine the height distribution of peaks

of X(t) over the entire domain D = [0, L], enabling us to establish the proof.

Let {X(t), t ∈ D} be a smooth random field. We are interested in finding the height

distribution of X over the entire domain D.

We define M(D) and M(u,D) as the number of local maxima and the number of local

maxima above u of the random field X over D. Define the regional peak height distribution

of X over D as:

FD(u) =
E[M(u,D)]
E[M(D)]

(2.14)

Plug in the explicit formula of Fγ(u) and use the Kac-Rice formula, the explicit form of

regional peak height density can be calculated as:

FD(u) =
∫D

√
λ1(t)
ρ(t) {1 −Φ(

u√
1−ρ2(t)) + ρ(t)

√
2πϕ(u)Φ( ρ(t)u√

1−ρ2(t))}dt

∫D
√
λ1(t)
ρ(t) dt

(2.15)

We can see the whole support of the process as a region, that is D = [0, L], by calculation:

Fγ(u) =
∫

L

0

√
λ1(t)
ρ(t) {1 −Φ(

u√
1−ρ2(t)) + ρ(t)

√
2πϕ(u)Φ( ρ(t)u√

1−ρ2(t))}dt

∫
L

0

√
λ1(t)
ρ(t) dt

(2.16)

From 2.16, a global threshold can be calculated for peak detection.

Example

One example is provided to show the calculation of density.

Example 2.3.1. Consider the following non-stationary Gaussian process as our noise z(t):

z(t) = cos(t) ⋅ ξ + sin(t) ⋅ dB(t) (2.17)
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where ξ is a standard Gaussian random variable, dB(t) is white noise which is independent

of ξ. Do the convolution with a Gaussian kernel wγ(t) = (1/γ)ϕ(t/γ) with γ > 0 as in (2.4)

produces a non-stationary Gaussian process that has a zero mean and can be infinitely

differentiated:

zγ(t) = N(0,1)∫
∞

−∞

cos(s)
γ

ϕ(t − s
γ
)ds + ∫

∞

−∞

sin(s)
γ

ϕ(s − t
γ
)dB(s) (2.18)

From some basic calculation, we can get:

var(zγ(t)) = (∫
∞

−∞

cos(s)
γ

ϕ(t − s
γ
)ds)2 + ∫

∞

−∞

sin2(s)
γ2

ϕ2(s − t
γ
)ds (2.19)

Then do more calculation to get λ1(t), λ2(t).

z′γ(t) = N(0,1)∫
∞

−∞

cos(s)(s − t)
γ3

ϕ(t − s
γ
)ds + ∫

∞

−∞

sin(s)(s − t)
γ3

ϕ(t − s
γ
)dB(s)

(2.20)

var(z′γ(t)) = (∫
∞

−∞

cos(s)(s − t)
γ3

ϕ(t − s
γ
)ds)2 + ∫

∞

−∞

sin2(s)(s − t)2
γ6

ϕ2(s − t
γ
)ds

(2.21)

z′′γ (t) = N(0,1)∫
∞

−∞

cos(s)[(s − t)2 − γ2]
γ5

ϕ(t − s
γ
)ds

+ ∫
∞

−∞

sin(s)[(s − t)2 − γ2]
γ5

ϕ(t − s
γ
)dB(s)

(2.22)

var(z′′γ (t)) = (∫
∞

−∞

cos(s)[(s − t)2 − γ2]
γ5

ϕ(t − s
γ
)ds)2

+ ∫
∞

−∞

sin2(s)[(s − t)2 − γ2]2
γ10

ϕ2(s − t
γ
)ds

(2.23)

z′′′γ (t) =N(0,1)∫
∞

−∞

cos(s)(s − t)[(s − t)2 − 3γ2]
γ7

ϕ(t − s
γ
)ds

+ ∫
∞

−∞

sin(s)(s − t)[(s − t)2 − 3γ2]
γ7

ϕ(t − s
γ
)dB(s)

(2.24)

var(z′′′γ (t)) =(∫
∞

−∞

cos(s)(s − t)[(s − t)2 − 3γ2]
γ7

ϕ(t − s
γ
)ds)2

+ ∫
∞

−∞

sin2(s)(s − t)2[(s − t)2 − 3γ2]2
γ14

ϕ2(t − s
γ
)ds

(2.25)
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[var(zγ(t))]′ =2∫
∞

−∞

cos(s)
γ

ϕ(t − s
γ
)ds∫

∞

−∞

cos(s)(s − t)
γ3

ϕ(t − s
γ
)ds

+∫
∞

−∞

2sin2(s)(s − t)
γ4

ϕ2(t − s
γ
)ds

(2.26)

[var(zγ(t))]′′ =2(∫
∞

−∞

cos(s)(s − t)
γ3

ϕ(t − s
γ
)ds)2

+2∫
∞

−∞

cos(s)
γ

ϕ(t − s
γ
)ds∫

∞

−∞

cos(s)[(s − t)2 − γ2]
γ5

ϕ(t − s
γ
)ds

+∫
∞

−∞

2sin2(s)[2(s − t)2 − γ2]
γ6

ϕ2(t − s
γ
)ds

(2.27)

[var(zγ(t))]′′′ =4∫
∞

−∞

cos(s)(s − t)
γ3

ϕ(t − s
γ
)ds∫

∞

−∞

cos(s)[(s − t)2 − γ2]
γ5

ϕ(t − s
γ
)ds

+2∫
∞

−∞

cos(s)(s − t)
γ3

ϕ(t − s
γ
)ds∫

∞

−∞

cos(s)[(s − t)2 − γ2]
γ5

ϕ(t − s
γ
)ds

+2∫
∞

−∞

cos(s)
γ

ϕ(t − s
γ
)ds

×∫
∞

−∞

cos(s)(s − t)[(s − t)2 − 3γ2]
γ7

ϕ(t − s
γ
)ds

+∫
∞

−∞

4sin2(s)(s − t)[2(s − t)2 − 3γ2]
γ8

ϕ2(t − s
γ
)ds

(2.28)

Let:

Xγ(t) =
zγ(t)√

var(zγ(t))

=
N(0,1) ∫

∞
−∞

cos(s)
γ ϕ( t−sγ )ds + ∫

∞
−∞

sin(s)
γ ϕ( s−tγ )dB(s)√

(∫
∞
−∞

cos(s)
γ ϕ( t−sγ )ds)2 + ∫

∞
−∞

sin2(s)
γ2 ϕ2( s−tγ )ds

(2.29)

Then:

X ′γ(t) =
z′γ(t)

√
var(zγ(t)) − (

√
var(zγ(t)))′zγ(t)

var(zγ(t))

=
z′γ(t)√

var(zγ(t))
−
zγ(t)[var(zγ(t))]′

2[var(zγ(t))]
3
2

(2.30)

And:
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X ′′γ (t) =
z′′γ (t)√

var(zγ(t))
−
z′γ(t)[var(zγ(t))]′

2(var(zγ(t)))
3
2

−
2{z′γ(t)[var(zγ(t))]′ + zγ(t)[var(zγ(t))]′′}[var(zγ(t))]

3
2

4[var(zγ(t))]3

+
3zγ(t)var(zγ(t))

1
2{[var(zγ(t))]′}2

4[var(zγ(t))]3

(2.31)

Then calculate the λ1(t), λ2(t), let:

X ′γ(t) = a(t)zγ(t) + b(t)z′γ(t) (2.32)

Where a(t) = − [var(zγ(t))]
′

2[var(zγ(t))]
3
2

and b(t) = 1√
var(zγ(t))

, which are constants when t is fixed,

then var(X ′γ(t)) can be calculated as:

var(X ′γ(t)) = E[(a(t)zγ(t) + b(t)z′γ(t))(a(t)zγ(t) + b(t)z′γ(t))]

= a2(t)var(zγ(t)) + b2(t)var(z′γ(t)) + 2a(t)b(t)E(zγ(t)z′γ(t))
(2.33)

where we can calculate:

var(zγ(t)) =(∫
∞

−∞

cos(s)
γ

ϕ(t − s
γ
)ds)2 + ∫

∞

−∞

sin2(s)
γ2

ϕ2(s − t
γ
)ds

var(z′γ(t)) =(∫
∞

−∞

cos(s)(s − t)
γ3

ϕ(t − s
γ
)ds)2 + ∫

∞

−∞

sin2(s)(s − t)2
γ6

ϕ2(s − t
γ
)ds

E(zγ(t)z′γ(t)) =(∫
∞

−∞

cos(s)
γ

ϕ(t − s
γ
)ds)(∫

∞

−∞

cos(s)(s − t)
γ3

ϕ(t − s
γ
)ds)

+ ∫
∞

−∞

sin2(s)(s − t)
γ4

ϕ2(s − t
γ
)ds

(2.34)

They are all constants when t is fixed. So we can calculate var(X ′γ(t)) when t is fixed.

Let

X ′′γ (t) = c(t)zγ(t) + d(t)z′γ(t) + g(t)z′′γ (t) (2.35)

where c(t) = −2[var(zγ(t))
′′][var(zγ(t))]

3
2 +3var(zγ(t))

1
2 [var(zγ(t))]′2

4[var(zγ(t))]3 ,

d(t) = − [var(zγ(t))]
′

2[var(zγ(t))]
3
2
− [var(zγ(t))]′

2[var(zγ(t))]3 and g(t) = 1√
var(zγ(t))

, which are constants when t is
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fixed, then var(X ′′γ (t)) can be calculated as:

var(X ′′γ (t)) = E[(c(t)zγ(t) + d(t)z′γ(t) + g(t)z′′γ (t))

× (c(t)zγ(t) + d(t)z′γ(t) + g(t)z′′γ (t))]

= c2(t)var(zγ(t)) + d2(t)var(z′γ(t)) + g2(t)var(z′′γ (t))

+ 2c(t)d(t)E(zγ(t)z′γ(t)) + 2c(t)g(t)E(zγ(t)z′′γ (t))

+ 2d(t)g(t)E(z′γ(t)z′′γ (t))

(2.36)

where we can calculate:

var(z′′γ (t)) =(∫
∞

−∞

cos(s)[(s − t)2 − γ2]
γ5

ϕ(t − s
γ
)ds)2

+ ∫
∞

−∞

sin2(s)[(s − t)2 − γ2]2
γ10

ϕ2(s − t
γ
)ds

E(zγ(t)z′′γ (t)) = (∫
∞

−∞

cos(s)
γ

ϕ(t − s
γ
)ds)(∫

∞

−∞

cos(s)[(s − t)2 − γ2]
γ5

ϕ(t − s
γ
)ds)

+ ∫
∞

−∞

sin2(s)[(s − t)2 − γ2]
γ6

ϕ2(s − t
γ
)ds

E(z′γ(t)z′′γ (t)) = (∫
∞

−∞

cos(s)(s − t)
γ3

ϕ(t − s
γ
)ds)(∫

∞

−∞

cos(s)[(s − t)2 − γ2]
γ5

ϕ(t − s
γ
)ds)

+ ∫
∞

−∞

sin2(s)(s − t)[(s − t)2 − γ2]
γ8

ϕ2(s − t
γ
)ds

They are all constants when t is fixed. So we can calculate var(X ′′γ (t)) when t is fixed.

Now we calculate E(X ′γ(t)X ′′γ (t)), from the definitions given before, we can get:

E(X ′γ(t)X ′′γ (t)) = E[(a(t)zγ(t) + b(t)z′γ(t))(c(t)zγ(t) + d(t)z′γ(t) + g(t)z′′γ (t))]

= a(t)c(t)var(zγ(t)) + b(t)d(t)var(z′γ(t))

+ [a(t)d(t) + b(t)c(t)]E(zγ(t)z′γ(t)) + a(t)g(t)E(zγ(t)z′′γ (t))

+ b(t)g(t)E(z′γ(t)z′′γ (t))

(2.37)

All the terms mentioned in this context are expressions that are related to the variable t.

Therefore, λ1(t), λ2(t), and λ′1(t) can be expressed as functions of t. With the regional
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Figure 2.5: The green line is observed sequence y(t), the red line is the original signal
µ(t), the blue line is smoothed sequence yγ(t), the black line is smoothed and standardized
sequence fγ(t). The red crosses are candidate peaks. The yellow triangles are detected
signals, the magenta dotted line is the global threshold for multiple testing

peak height density described by equation 2.16, the p-values can be calculated using the

observations u.

2.3.5 Multiple Testing

In this step, we define m̃ which denotes the number of local maxima in T̃ . Employing a

multiple testing procedure, we evaluate the m̃ p-values and identify the peaks as significant

if their p-values are below the threshold we calculated in this step.

In this project, we utilize the Benjamini-Hochberg (BH) procedure. For a fixed sig-

nificance level α ∈ (0,1), given the m̃ p-values (p1, p2,⋯, pm̃) calculated previously, we

determine the largest index k for which the ith smallest p-value is less than iα/m̃. Thus,

the null hypothesis H0(t) at t ∈ T̃ is rejected if:

pγ(t) <
kα

m̃
⇐⇒ fγ(t) > ũBH = F −1γ (

kα

m̃
) (2.38)
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2.3.6 Error Definitions

Due to the influence of noise, detected peaks may be shifted out of the true signal

region. In order to evaluate the accuracy of peak detection, we categorize a significant

local maximum as true positive if it is in the signal region. If the detected peak is outside

the signal region, it is considered as false positive. The definition of signal region will be

given in the next part.

With the model described in section 2.1, we define the signal region S1 and the null

region S0 as follows:

S1 =
J

⋃
j=1

Sj and S0 = [0, L] / (
J

⋃
j=1

Sj) (2.39)

For a given threshold u, the number of all detected peaks and the number of all falsely

detected peaks are:

R(u) =#{t ∈ T̃ ∶ fγ(t) > u} and V (u) =#{t ∈ T̃ ∩ S0 ∶ fγ(t) > u} (2.40)

Both of R(u) and V (u) are defined as 0 if T̃ has no elements. The FDR is defined as the

expected proportion of falsely detected peaks

FDR(u) = E{ V (u)
R(u) ∨ 1

} (2.41)

If R(u) = 0, FDR is defined as 0.

2.3.7 Control of FDR

In this step, we use the BH procedure to perform the multiple testing: for a fixed

α ∈ (0,1), with the m̃ p-values (p1, p2,⋯, pm̃) calculated before, let k be the largest in-

dex for which the ith smallest p-values is less than iα/m̃. Then the null hypothesis H0(t)

at t ∈ T̃ is rejected if:
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pγ(t) <
kα

m̃
⇐⇒ fγ(t) > ũBH = F −1γ (

kα

m̃
) (2.42)

We get the threshold ũBH.

Define the following conditions:

(C1) The assumptions of Section 2.1 hold.

(C2) The number of trials N →∞ and a = infj aj →∞.

Theorem 2.3.3. Suppose that the algorithm of this work is applied with the BH threshold

ũBH. Then under conditions (C1) and (C2).

lim supFDR(ũBH) ≤ α (2.43)

The proof of theorem 2.3.3 is given in chapter 4.

2.3.8 Power Consistency

A significant local maximum is defined as true positive if it is in the signal region S1.

The power of this algorithm is defined as the expected fraction of true discovered peaks:

Power(ũBH) = E [
1

J

J

∑
j=1

1(T̃ ∩ Sj ≠ ∅ and max
t̃∈T̃∩Sj

fγ(t) > ũBH]

= 1

J

J

∑
j=1

Powerj(ũBH)
(2.44)

where Powerj(ũBH) is the probability of detecting peak j

Powerj(ũBH) = P{T̃ ∩ Sj ≠ ∅ and max
t̃∈T̃∩Sj

fγ(t) > ũBH} (2.45)

The inclusion of the maximum operator ensures that if multiple significant local maxima

fall within the same peak support, only one of them is considered, thereby preventing an

inflation of power.

When only kernel smoothing is applied, the local maxima are not expected to shift

outside the signal region. However, in this project, standardization is also applied to the
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kernel-smoothed sequence. Therefore, it is important to ensure that the local maximum of

fγ(t) asymptotically falls within the support of the signal with probability 1. This is crucial

to maintain the accuracy and reliability of the peak detection method.

Lemma 2.3.4. If the noise satisfies sup
t∈S0∩S1,γ

[ µγ(t)√
var(zγ(t))

] < sup
t∈S1

[ µγ(t)√
var(zγ(t))

], the local max-

ima of fγ(t) will asymptotically locates in the support of signal with probability 1.

If the noise satisfies lemma 2.3.4, then we have the following theorem:

Theorem 2.3.5. Suppose that noise satisfies theorem 2.3.4 Then, under conditions (C1)

and (C2),

Power(ũBH)→ 1

The proof of this theorem is provided in the chapter 4.

2.3.9 SNR

If the smoothed and standardized process is smooth enough and conditions (C1) and

(C2) are met. By the FDR control discussed before. To choose the best smoothing kernel

wγ(t). We can try to maximize the power under the model. This maximization is very

difficult to analyze, we can relax some requirement to a less formal argument here. The

original true signal Sj can be detected within a small interval which contains the peak mode

τj with probability tending to 1. Then the power for peak j may be approximated as:

Powerj(u(τj)) ≈ P{fγ(τj) > u(τj)} = Φ
⎡⎢⎢⎢⎢⎣

ajhγ,j(τj)√
var(zγ(τj))

− u(τj)
⎤⎥⎥⎥⎥⎦

(2.46)

because fγ(τj) ∼ N( ajhγ,j(τj)√
var(zγ(τj))

,1)

The power can be approximated maximized by maximizing the SNRγ .

SNRγ =
ajhγ,j(τj)√
var(zγ(τj))

=
aj ∫

∞
−∞wγ(s)hj(s)ds√
var(zγ(τj))

Where
√
var(zγ(τj)) is the standard deviation of the kernel smoothed process zγ(t) when

t = τj .
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2.4 Smooth Noise

2.4.1 The Algorithm

When the noise is smooth with unit variance and non-stationary, algorithm is as fol-

lows:

1.Candidate peaks: Find the set of local maxima of the observed sequence y(t) in [0, L].

T̃ = {t ∈ [0, L] ∶ y′(t) = dy(t)
dt
= 0, y′′(t) = d2y(t)

dt2
< 0} (2.47)

2.P-values: For each t ∈ T̃ compute the p-value for the test:

H0(t) ∶ µ(t) = 0 vs HA(t) ∶ µ(t) > 0, t ∈ T̃ (2.48)

The distribution of the noise is the same as the formula 2.16.

3.Multiple testing: Let m̃ represents the number of tested hypotheses, which is equal

to the number of local maxima in T̃ . Then apply the BH procedure to the m̃ p-values

(p1,⋯, pm̃) associated with the local maxima at t ∈ T̃ . We declare a peak as significant if

its corresponding p-value is smaller than the chosen significance threshold.

The error definition, FDR, and power consistency aspects remain the same as in the case

of unsmooth noise. The key differences between smooth noise and unsmooth noise lie in

the first two steps of the procedure: kernel smoothing and standardization. These steps are

specific to handling unsmooth noise, allowing for accurate peak detection and subsequent

analysis.
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Chapter 3

NUMERICAL STUDIES

3.1 Simulation Studies

3.1.1 Simulation Settings

Simulations were performed to assess the performance of the algorithm under moderate

signal strength a and finite repetitions. In the simulation, the range of support L = 600,

the simulations involved J = 5 truncated Gaussian peaks with equal heights, denoted as

ajhj(t), where ajhj(t) = a/bϕ[(t− τj)/b]1[−cb, cb] and j = 1, . . . , J . Here, b = 3 and c = 3,

and a varied to represent different signal strengths.

The noise component was constructed as follows:

z(t) = cos(t) ⋅ ξ + sin(t) ⋅ dB(t) (3.1)

where ξ is a standard Gaussian random variable, dB(t) is a sequence of white noise which

is independent of ξ. The simulation process is repeated N = 1000 times to obtain estimates

of the FDR and the corresponding power. It is important to note that the FDR is calculated

by summing the number of falsely detected signals across all N = 1000 trials as the numer-

ator, and summing all the detected signals as the denominator. This approach allows for

obtaining the expectation of the FDR through the law of large numbers.

By conducting a large number of simulations, the estimated FDR and power provide

valuable insights into the performance and characteristics of the algorithm under different

scenarios, including various signal strengths and finite range conditions.

The algorithm was executed using a truncated Gaussian density as the smoothing ker-
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nel.:

wγ(t) = (1/γ)ϕ(t/γ)1[−cγ, cγ]

Which has the same definition as 2.17. With c = 3 and varying γ. We can estimate the

noise parameter of z(t) by calculating its first and second-order differences to approximate

the corresponding first and second derivatives. With the same smoothing kernel, the level

α of BH procedures is 0.05 in this simulation.

3.1.2 Nonasymptotic Performance

Figure 3.1 presents the observed levels of the false discovery rate (FDR) for the BH

procedure. The FDR is evaluated using equation (2.41), with the expectation replaced by

the ensemble average over 1000 replications. It is worth noting that I calculated the FDR

by summing the denominator and numerator separately and then dividing them. By the

law of large numbers, this calculation guarantees an asymptotic estimate of the FDR. The

error rates are controlled under the level α = 0.05 for bandwidths larger than 2 and for

sufficiently large signal strengths a. When γ is small, i.e., γ < 2, the FDR exceeds the

nominal level. This is because a small γ leads to a process which is not smooth enough to

apply our algorithm.

When the bandwidth γ is larger than the bandwidth of signal peak b = 3, the error rates

also do not exceed the nominal level. As γ increases, the value of
√

var(zγ(t)) decreases,

amplifying the difference between the noise and peak heights.

Figure 3.2 illustrates the observed power of the BH procedure, evaluated using the

definition in equation 2.3.5, with the expectations replaced by the ensemble average over

the 1000 replications. When the kernel bandwidth is small, increasing the bandwidth leads

to an increase in power. This is also because a small bandwidth results in unsmooth process,

leading to low power. As the bandwidth increases, the plot becomes smoother, resulting in

a decrease in candidate peaks and, consequently, a decrease in power.
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Figure 3.1: FDR of the BH procedure for a = 9, a = 12 and a = 15

Figure 3.2: Power of the BH procedure for a = 9, a = 12 and a = 15
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3.2 Discussion of Non-stationary Noise’s Variance

The simulations assume that the variance of the non-stationary noise is one. However,

even if the variance of the noise is not one, the standardization step in the algorithm guar-

antees that the standardized and smoothed noise will have unit variance. As a result, the

formula to calculate the p-values can still be applied under this condition.

It is important to note that when the variance of the noise increases, it can have a

substantial impact on the signal, especially if the signal strength is not sufficiently strong.

This means that the noise can overshadow or obscure the signal, making it more challenging

to detect peaks accurately. The influence of the noise variance on peak detection is an

essential consideration in understanding the limitations and performance of the algorithm.

Further analysis and investigations can explore the specific effects of varying noise vari-

ances on peak detection performance, allowing for a better understanding of the algorithm’s

behavior under different noise conditions.

Consider the following non-stationary Gaussian process as our noise z(t):

z(t) = 2 ⋅ sin(t)dB(t) (3.2)

The variance of the noise, z(t), does not remain constant across the entire support.

From the two plots, figure 3.3 shows the FDR of the BH procedure for a = 9, a = 12,

a = 15 and a = 21, which shows little difference from the first FDR plot, however, figure 3.4

shows the power, one thing to notice is that, when the signal strength is small, the power

is low, which may caused by the bigger variance of the noise. When the variance of the

noise is big, the signal will be absolutely effected, signals may be buried within noise that

exhibits higher variance. However, when the signal strength increases, the problem will be

solved.
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Figure 3.3: FDR of the BH procedure for a = 9, a = 12, a = 15 and a = 21

Figure 3.4: Power of the BH procedure for a = 9, a = 12 a = 15 and a = 21
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3.3 Data Example

In this section, we aim to apply our method to real-world applications. Finding re-

peatable processes with non-stationary noise can be challenging in everyday life due to the

fast-changing nature of the world. Even if observations of a certain process are obtained

multiple times, it is likely to undergo significant changes, and the assumption that µ(t) does

not change substantially may not hold. Sunspot data from the World Data Center SILSO,

Royal Observatory of Belgium, Brussels.

However, when it comes to the Sun, observing it over a ten-year period does not result

in substantial alterations. In this project, we will utilize the number of sunspots from 1749

to 2013 as our data set. This data set comprises nearly 3400 data points, representing

the average number of sunspots observed each month. Based on the work of Balogh, A.,

Hudson, H., Petrovay, K. and von Steiger, R. [4], the first solar cycle begins in 1755, and

the duration of a solar cycle is approximately 11 years. Therefore, we have 24 independent

solar cycles since 1755. In our models, we set L = 132 and N = 24.

To begin, let’s plot all the data starting from 1755. Figure 3.5 displays the entire process

of the average number of sunspots for each month from 1755 to 2018.

There are 24 solar cycles included, from the plot, it is easy to find that in some solar

cycles, the number is small, in other cycles, the number is medium and the other cycles, the

number is large. Then I divide the 24 cycles into three groups: inactive, normal and active

solar cycle. I decided to use the method to detect the peaks of active solar cycles.

Figure 3.6 presents the combination of 11 active solar cycles. From the plot, it is evident

that these 11 solar cycles exhibit a similar signal pattern. To further analyze these cycles, I

will calculate the mean of these 11 solar cycles. By calculating the mean, we can obtain an

estimate of the underlying signal, while the variability across the cycles contributes to the

estimation of the noise component. With these parameters determined, we can proceed to
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Figure 3.5: The average number of sun spots from 1755 to 2018

Figure 3.6: The left plot is a combination of 11 active solar cycles, the green line in the
right plot is the mean of the 11 solar cycles, which can be seen as µ(t)
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Figure 3.7: The top left plot shows the first process of 11 active solar cycles y(t). The
red line in the top right plot is the smoothed process yγ(t). The bottom left plot is the
standardized and smoothed process fγ(t), the red triangles are candidate peaks and the
yellow triangles in the bottom right plot are detected signals, the pink dotted line is the
threshold.

apply the algorithm and detect the signal for each individual solar cycle.

By applying the algorithm to the data, we can detect the signal within each process and

analyze the characteristics and patterns of the solar cycles.

The figure 3.7 shows the result of our algorithm on one process. After applying the

11 processes, I can achieve 11 different data sets. The following table shows the results.

From the table 3.1, the sun spots activity can be detected as the same location for the 11

processes, for example, location 61, 81 and so on.
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1 2 3 4 5 6 7 8 9 10 11

3 25 8 5 61 2 53 48 6 25 8

9 56 55 11 70 8 61 52 49 34 14

52 61 61 52 77 53 69 61 54 40 21

61 69 68 62 80 68 73 69 61 43 28

65 81 73 69 88 75 81 73 69 48 39

69 96 76 73 94 82 101 81 73 53 54

73 106 81 81 102 94 101 81 61 61

82 117 95 87 110 106 94 69 68

91 122 101 95 114 111 100 81 77

95 128 106 102 126 109 80

104 122 106

111 128 113

Table 3.1: Each column represents the number of process, the data indicates the location
of the detected signals
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Chapter 4

TECHNICAL DETAILS FOR MULTIPLE TESTING

4.1 Unsmooth Noise

This part is the proof for the unsmooth noise, the smooth part is the same as the un-

smooth part.

4.1.1 FDR Control and Power Consistency

Lemma 4.1.1. Let Lk = (L(k−1)K , LkK ) be a partition of support L, where k = 1,2, . . . ,K,

m̃0,n,γ,k = #{t ∈ T̃n ∩ S0,γ ∩ Lk} be the number of t which is the local maxima of fγ(t)[or

Xγ(t)] in the intersection of S0,γ and Lk on trial n, where S0,γ is the transition region of

the process. Let Vn,γ,k(u) = #{t ∈ T̃n ∩ S0,γ ∩ Lk ∶ fγ(t) > u} be the number of t which is

the local maxima of fγ(t)[or Xγ(t)] in the intersection of S0,γ and Lk, whose heights are

above the level u on trial n. Then

∑N
n=1 Vn,γ,k(u)
∑N

n=1 m̃0,n,γ,k

→
E[Vn,γ,k(u)]
E[m̃0,n,γ,k]

= Fγ,k(u) (4.1)

in probability as N →∞, where Fγ,k(t) = P[Xγ(t) > u∣t ∈ T̃ ∩S0,γ ∩Lk] is the conditional

distribution and N is the number of trials.

Proof. :Notice that fγ(t) = Xγ(t) for all t ∈ S0,γ , so the process fγ(t) has the same prop-

erties as the process Xγ(t) on the set S0,γ . And notice that for each n = 1,2, ...,N , Xγ(t)

has the same distribution. Applying the weak law of large number can give that:

∑N
n=1 Vn,γ,k(u)
∑N

n=1 m̃0,n,γ,k

= ∑
N
n=1 Vn,γ,k(u)/N
∑N

n=1 m̃0,n,γ,k/N
→

E[Vn,γ,k(u)]
E[m̃0,n,γ,k]

(4.2)

By the definition of Fγ,k(t), the right hand of ratio (4.2) equals the conditional probability.
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From the definition of regional peak height density, let K = 1, that is, we see the whole

support L as the region. Then we have that:

∑N
n=1 Vn,γ(u)
∑N

n=1 m̃0,n,γ

→
E[Vn,γ(u)]
E[m̃0,n,γ]

= Fγ(u) (4.3)

Where m̃0,n,γ =#{t ∈ T̃n ∩ S0,γ} be the number of t which is the local maxima of fγ(t)[or

Xγ(t)] in the S0,γon trial n, where S0,γ is the transition region of the process. Vn,γ(u) =

#{t ∈ T̃n ∩ S0,γ ∶ fγ(t) > u} be the number of t which is the local maxima of fγ(t)[or

Xγ(t)] in the S0,γ , whose heights are above the level u on trial n.

For simplicity, we introduce a new notation: ηj,γ(t) = hj,γ(t)√
var(zγ(t))

. The original support

of the whole process is divided into two parts S1 and S0. After the step of kernel smooth-

ing, the signal region is enlarged [32] to S1,γ and the null region is transferred into S0,γ .

However, after the step of standardization, the two regions S1,γ and S0,γ remain the same.

Lemma 4.1.2. Assume the model of section 2.1 hold and there exist a universal δ > 0 such

that Imode
j,γ ∶= {t ∈ L ∶ ∣t − τj,γ ∣ ≤ δ} and Isidej,γ = Sj,γ/Imode

j,γ . Let Sj,γ = Isidej,γ ⋃ Imode
j,γ be

a partition, where τj,γ ∈ Sj,γ be the mode where peak shape ηj,γ(t) reaches its maximum

value. Then we define Isidej,γ = I leftj,γ ⋃ Irightj,γ , where I leftj,γ is the left part of Isidej,γ and Irightj,γ is the

right part of Isidej,γ . Let:

• Mj be the largest value of ∣ηj,γ(t)∣ in Sj;

• Cside
j,γ = inf

t∈Isidej,γ

∣η′j,γ(t)∣

• Cmode
j,γ = inf

t∈Imode
j,γ

∣η′j,γ(t)∣

• C left
j,γ = inf

t∈Ileftj,γ

η′j,γ(t)

• Dmode
j,γ = inf

t∈Imode
j,γ

η′′j,γ(t)

• σ1,left = sup
t∈Ileftj,γ

(sd(X ′γ(t)))
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• σ1,side = sup
t∈Isidej,γ

(sd(X ′γ(t)))

• σ1,mode = sup
t∈Imode

j,γ

(sd(X ′γ(t)))

• σ2,mode = sup
t∈Imode

j,γ

(sd(X ′′γ (t)))

For T̃ and any threshold u,

P (#{t ∈ T̃ ∩ Isidej,γ } = 0)

≥ 1 − exp(−
a2jC

side,2
j,γ

2σ2
1,side

)

P (#{t ∈ T̃ ∩ Imode
j,γ } = 1)

≥ 2Φ(
ajCmode

j,γ

σ1

) − 1 − exp(−
a2jD

mode,2
j,γ

2σ2
2,mode

)

P (#{t ∈ T̃ ∩ Imode
j ∶ fγ(t) > u} = 1)

≥ 1 −Φ(u − ajMj) − exp(−
a2jD

mode,2
j,γ

2σ2
2,mode

)

(4.4)

Proof. (1) For the side region of Isidej , we consider I leftj first. The probability that there are

no local maxima of fγ(t) in I leftj is greater than the probability that f ′γ(t) > 0 for all t in the

interval. This probability is:

P (#{t ∈ T̃ ∩ I leftj,γ } = 0) ≥ P (inf
Ileftj,γ

f ′γ(t) > 0)

≥ P (inf
Ileftj,γ

X ′γ(t) > − inf
Ileftj,γ

⎡⎢⎢⎢⎢⎣

µγ(t)√
var(zγ(t))

⎤⎥⎥⎥⎥⎦

′

)

= 1 − P (sup
Ileftj,γ

[−X ′γ(t)] > sup
Ileftj,γ

ajη
′
j,γ(t))

≥ 1 − exp(−
a2jC

left,2
j,γ

2σ2
1,left

)

(4.5)

Which can be achieved by applying Borell-TIS Inequality because the process −X ′γ(t) is

zero-mean for every t. For Irightj,γ , we can get similar result, combine them all. We can get

the result.
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(2) The probability that fγ(t) has no local maxima in Imode
j,γ is less than the probability

that f ′γ(τj − δ) ≤ 0 or f ′γ(τj + δ) ≥ 0, then the probability is bounded above by:

P (#{t ∈ T̃ ∩ Imode
j,γ } = 0)

≤ P (f ′γ(τj − δ) ≤ 0) + P (f ′γ(τj + δ) ≥ 0)

= Φ(−
f ′γ(τj − δ)
σ1(τj − δ)

) +Φ(
f ′γ(τj + δ)
σ1(τj + δ)

)

= 1 −Φ(
f ′γ(τj − δ)
σ1(τj − δ)

) + 1 −Φ(−
f ′γ(τj + δ)
σ1(τj + δ)

)

≤ 2 − 2Φ(
ajCmode

j,γ

σ1,mode

)

(4.6)

The inequality holds because f ′γ(t) ∼ N(ajη′j,γ(t), σ1(t)) for all t.

On the other hand, the probability that f ′γ(t) has at least two local maxima in Imode
j,γ is

less than the probability that f ′′γ (t) > 0 for some t ∈ Imode
j,γ . That is:

P (#{t ∈ T̃ ∩ Imode
j,γ } ≥ 2)

≤ P ( sup
Imode
j,γ

f ′′γ (t) > 0)

≤ P ( sup
Imode
j,γ

X ′′γ (t) > inf
Imode
j,γ

−ajη′′j,γ(t))

≤ exp(−
a2jD

mode,2
j,γ

2σ2
2,mode

)

(4.7)

The probability that fγ(t) has exact one local maxima in Imode
j,γ can be calculated from the

above two inequalities:

P (#{t ∈ T̃ ∩ Imode
j,γ } = 1)

= 1 − P (#{t ∈ T̃ ∩ Imode
j,γ } ≥ 2) − P (#{t ∈ T̃ ∩ Imode

j,γ } = 0)

≥ 2Φ(
ajCj,γ

σ1

) − 1 − exp(−
a2jD

mode,2
j,γ

2σ2
2,mode

)

(4.8)

(3) The probability that no local maxima of fγ(t) in Imode
j,γ exceed the threshold u is less

than the probability that fγ(t) is below u anywhere in Imode
j,γ , so it is bounded above by
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Φ(u − ajMj) . On the other hand, the probability that more than one local maxima of y(t)

in Imode
j exceed u is less than the probability that there exist more than one local maximum,

which is bounded by 4.8. Combine them all, we can get the result.

Lemma 4.1.3. Assume the model of section 2.1, For T̃ is the set of candidate peaks, let

m̃1,γ = #{T̃ ∩ S1,γ} be the number of local maxima in the set S1,γ , and Wγ(u) = #{t ∈

T̃ ∩ S1,γ ∶ fγ(t) > u} be the number of local maxima in S1,γ above threshold u. Under

conditions (C1) and (C2):

(1) The probability that fγ(t) has any local maxima in the transition region Tγ tends to

0.

P (#{t ∈ T̃ ∩Tγ} ≥ 1)→ 0. (4.9)

(2) The probability to get exact J local maxima in the set S1,γ ,

P (m̃1,γ = J) = P (#{t ∈ T̃ ∩ S1,γ} = J)→ 1. (4.10)

(3) The probability to get exact J local maxima in the set S1,γ that exceed any fixed

threshold u,

P [Wγ(u) = J] = P [#{t ∈ T̃ ∩ S1,γ ∶ fγ(t) > u} = J]→ 1. (4.11)

(4) Wγ(u)/m̃1,γ → 1 in probability.

Proof. (1) First, we can get Tγ = ⋃J
j=1 Tj,γ , where Tj,γ=Sj,γ/Sj is a subset of Isidej,γ . So we

have Tγ is a subset of ⋃J
j=1 I

side
j,γ . Then we have:

P (#{t ∈ T̃ ∩Tγ} ≥ 1) ≤ P (#{t ∈ T̃ ∩
J

⋃
j=1

Isidej,γ } ≥ 1)

= P (
J

⋃
j=1

#{t ∈ T̃ ∩ Isidej,γ } ≥ 1)

≤
J

∑
j=1
[1 − P (#{t ∈ T̃ ∩ Isidej,γ } = 0)]

(4.12)

41



Under condition (C2), aj → ∞, plug in the first result of lemma 4.1.2, the result can be

obtained directly.

(2) The probability is larger than get one local maximum in Imode
j,γ and 0 in Isidej,γ for all

j. That is:

P (#{t ∈ T̃ ∩ S1,γ} = J) ≥ P (∩Jj=1#{t ∈ T̃ ∩ Imode
j,γ } = 1⋂#{t ∈ T̃ ∩ Isidej,γ } = 0)

≥ 1 −
J

∑
j=1
[1 − P (#{t ∈ T̃ ∩ Imode

j,γ } = 1⋂#{t ∈ T̃ ∩ Isidej,γ } = 0)]

≥ 1 −
J

∑
j=1
[2 − P (#{t ∈ T̃ ∩ Imode

j,γ } = 1) − P (#{t ∈ T̃ ∩ Isidej,γ } = 0)]

(4.13)

Plug in the results in lemma 4.1.2, under condition (C2), we can get the result.

(3) The proof is very similar to the second part.

(4) With the proof of (2) and (3), the result can be obtained directly.

Theorem 4.1.4. Suppose that Algorithm is applied with the BH threshold ũBH . Then,

under conditions(C1) and (C2),

lim supFDR(ũBH) ≤ α (4.14)

Proof. : Let G̃k(u) = (∑N
n=1#{t ∈ T̃n ∩Lk ∶ fn,γ(t) > u}) / (∑N

n=1#{t ∈ T̃n ∩Lk}) be the

empirical marginal right cdf of fγ(t) given t ∈ T̃n and t is located in Lk of trial n , where

fn,γ(t) is the standardized process for trial n and T̃n is the candidate peaks for trial n. Now

we assume K = 1, which means the whole support are seen as one region. Then we have

G̃(u) = (∑N
n=1#{t ∈ T̃n ∶ fn,γ(t) > u}) / (∑N

n=1#{t ∈ T̃n}) be the empirical marginal right

cdf of fγ(t) given t ∈ T̃ . Then the BH threshold for trial n, ũBH,n satisfies αG̃(ũBH,n) =

pα/m̃n = Fγ(ũBH,n), where p is the largest index for which ith smallest p-value is less than

iα
m̃n

, where m̃n is the number of p-values for trial n. Therefore, ũBH,n is the largest u that

solves the equation:

αG̃(u) = Fγ(u) (4.15)
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The strategy is to solve equation (4.15) in the limit when a,N →∞, where a = inf aj . We

first find the limit of G̃(u). Define:

Vn,γ(u) =#{t ∈ T̃n ∩ S0,γ ∶ fn,γ(t) > u}

Wn,γ(u) =#{t ∈ T̃n ∩ S1,γ ∶ fn,γ(t) > u}

Rn,γ(u) = Vn,γ(u) +Wn,γ(u)

(4.16)

G̃(u) = ∑
N
n=1Rn,γ(u)
∑N

n=1 m̃n

= ∑
N
n=1 Vn,γ(u)
∑N

n=1 m̃n

+ ∑
N
n=1Wn,γ(u)
∑N

n=1 m̃n

= ∑
N
n=1 Vn,γ(u)
∑N

n=1 m̃0,n,γ

∑N
n=1 m̃0,n,γ

∑N
n=1 m̃0,n,γ +∑N

n=1 m̃1,n,γ

+ ∑
N
n=1Wn,γ(u)
∑N

n=1 m̃1,n,γ

∑N
n=1 m̃1,n,γ

∑N
n=1 m̃0,n,γ +∑N

n=1 m̃1,n,γ

(4.17)

where m̃n = #{t ∈ T̃n}, the total number of local maxima of smoothed and standardized

trial n, m̃0,n,γ =#{t ∈ T̃n ∩ S0,γ} and m̃1,n,γ =#{t ∈ T̃n ∩ S1,γ}.

By the weak law of large numbers:

∑N
n=1 m̃0,n,γ

∑N
n=1 m̃0,n,γ +∑N

n=1 m̃1,n,γ

= ∑N
n=1 m̃0,n,γ/N

∑N
n=1 m̃0,n,γ/N +∑N

n=1 m̃1,n,γ/N
→

E[m̃0,n,γ]
E[m̃0,n,γ] +E[m̃1,n,γ]

(4.18)

As N →∞. Replacing the limits in 4.17, we obtain:

G̃(u)→ Fγ(u)
E[m̃0,n,γ]

E[m̃0,n,γ] +E[m̃1,n,γ]
+

E[m̃1,n,γ]
E[m̃0,n,γ] +E[m̃1,n,γ]

(4.19)

By 4.15, we can get the deterministic solution:

Fγ(u∗BH,n) =
αE[m̃1,n,γ]

E[m̃1,n,γ] +E[m̃0,n,γ](1 − α)
(4.20)

The FDR at the threshold u∗BH,n is bounded by:

FDR(u∗BH,n) ≤ P (Wn(u∗BH,k) ≤ (J − 1)) +
E[Vn(u∗BH,n)]

E[Vn(u∗BH,n)] + J

= P (Wn(u∗BH,k) ≤ (J − 1))

+
E[Vn,γ(u∗BH,n)] +E[#{t ∈ T̃n ∩ Tn,γ ∶ yγ(t) > u∗BH,n}]

E[Vn,γ(u∗BH,n)] +E[#{t ∈ T̃n ∩ Tn,γ ∶ yγ(t) > u∗BH,n}] + J

(4.21)
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Where we have split Vn(u∗BH,n) into the reduced null region S0,γ and the transition region

Tγ = S0/S0,γ From the lemma and outcomes before:

0 ≤ E[#{t ∈ T̃n ∩Tn,γ ∶ yγ(t) > u∗BH,n}] ≤ E[#{t ∈ T̃n ∩Tn,γ}]→ 0 (4.22)

The remaining term can be written as:

E[Vn,γ(u∗BH,n)]
E[Vn,γ(u∗BH,n)] + J

=
Fγ(u∗BH,n)E[m̃0,n,γ]

Fγ(u∗BH,n)E[m̃0,n,γ] + J

= α
E[m̃0,n,γ]E[m̃1,n,γ]

αE[m̃0,n,γ]E[m̃1,n,γ] + J(E[m̃1,n,γ] +E[m̃0,n,γ]) − αJE[m̃0,n,γ]

(4.23)

From the lemma before, we know that P (m̃1,n,γ = J) → 1, and because L is limited, so

m̃1,n,γ <∞, then we can get E[m̃1,n,γ] = J . Plug in, we can get:

E[Vn,γ(u∗BH,n)]
E[Vn,γ(u∗BH,n)] + J

≤ α (4.24)

Combine all, we can get FDR(u∗BH,n) ≤ α for all n. Because Fγ(u) is continuous, we can

say lim supFDR(ũBH) ≤ α.

4.1.2 Power Consistency

First, explain the lemma 2.3.4. If the standardized and smoothed process fγ(t) satis-

fies sup
t∈S0∩S1,γ

[ µγ(t)√
var(zγ(t))

] < sup
t∈S1

[ µγ(t)√
var(zγ(t))

], then the maximum value of standardized and

smoothed signal in the support of signal is larger than the maximum value of standardized

and smoothed signal in the transition region. From the proof before, the local maxima of

fγ(t) will asymptotically locates in the support of signal with probability 1.

Now the proof of theorem 2.44:
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Proof. For the random threshold ũBH and arbitrary δ > 0, we have

P (#{t ∈ T̃ (ũBH) ∩ Sj} ≥ 1)

=P (#{t ∈ T̃ (ũBH) ∩ Sj} ≥ 1, ∣ũBH − u∗BH∣ ≤ δ)

+P (#{t ∈ T̃ (ũBH) ∩ Sj} ≥ 1, ∣ũBH − u∗BH∣ > δ)

(4.25)

From the proof of FDR, we have:

P (#{t ∈ T̃ (ũBH) ∩ Sj} ≥ 1, ∣ũBH − u∗BH∣ > δ) ≤ P (∣ũBH − u∗BH∣ > δ) = 0 (4.26)

Then:

P (#{t ∈ T̃ (ũBH) ∩ Sj} ≥ 1)

=P (#{t ∈ T̃ (ũBH) ∩ Sj} ≥ 1, ∣ũBH − u∗BH∣ ≤ δ)

≥P (#{t ∈ T̃ (u∗BH + δ) ∩ Sj} ≥ 1, ∣ũBH − u∗BH∣ ≤ δ)

=P (#{t ∈ T̃ (u∗BH + δ) ∩ Sj} ≥ 1)

(4.27)

Similarly, we can also get:

P (#{t ∈ T̃ (ũBH) ∩ Sj} ≥ 1)

≤P (#{t ∈ T̃ (u∗BH − δ) ∩ Sj} ≥ 1, ∣ũBH − u∗BH∣ ≤ δ)

=P (#{t ∈ T̃ (u∗BH − δ) ∩ Sj} ≥ 1)

(4.28)

Because δ is arbitrary, we let δ → 0. Then by the lemma before:

P (#{t ∈ T̃ (u∗BH + δ) ∩ Sj} ≥ 1)→ 1

P (#{t ∈ T̃ (u∗BH − δ) ∩ Sj} ≥ 1)→ 1

(4.29)

So Powerj(ũBH)→ 1. So that Power(ũBH)→ 1
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Chapter 5

APPLICATION OF THE ALGORITHM CHANGE POINTS

5.1 Introduction

This part is an application of the theory discussed before. A new algorithm named

’differential Smoothing and TEsting of Maxima/Minima’(dSTEM) in previous work to de-

tect the change points is introduced in the work of Cheng, He and Schwartzman [11]. In

that work, the noise is assumed to be stationary, in this project. We assume the noise is

non-stationary and try to detect the change points using the non-stationary theory.

5.2 The Model

We also use the signal-plus-noise model in this section:

y(t) = µ(t) + z(t), t ∈ R, (5.1)

where the signal µ(t) is a step function can be written as:

µ(t) =
∞
∑
j=0

ajhj(t), aj ∈ R/{0},

where hj = 1(t ≥ vj) for vj ∈ R. Finding the change points vj is our target. We assume

a = inf
j
∣aj ∣ > 0 and d = inf

j
∣vj − vj−1∣ > 0 (5.2)

With the assumptions, the jump of change points is large enough to be detected in and they

will not be close to each other.

Convolving the process 5.1 with the kernel wγ(t) can generate the smoothed process:

yγ(t) = ωγ(t) ∗ y(t) = ∫
∞

−∞
ωγ(t − s)y(s)ds = µγ(t) + zγ(t), (5.3)
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the smoothed signal and smoothed noise are defined as

µγ(t) = ωγ(t) ∗ µ(t) =
∞
∑
j=0

ajhj,γ(t), zγ(t) = ωγ(t) ∗ z(t) (5.4)

and the smoothed indicator function can be written as:

hj,γ(t) = ωγ(t) ∗ hj(t) (5.5)

The smoothed noise zγ(t) by 5.4 is a non-stationary Gaussian process whose mean is 0 and

can be differentiated four times.

Consider the derivative of the smoothed observed process, the work of Cheng, He and

Schwartzman[11]:

y′γ(t) = ω′γ(t) ∗ y(t) = ∫
R
ω′γ(t − s)y(s)ds = µ′γ(t) + z′γ(t) (5.6)

the derivatives of the smoothed signal and smoothed noise can be written as:

µ′γ(t) = ω′γ(t) ∗ µ(t) =
∞
∑
j=1

ajh
′
j,γ(t) and z′γ(t) = ω′γ(t) ∗ z(t) (5.7)

The core idea for the algorithm is the finding:

h′j,γ(t) = ∫
R
ω′γ(t − s)hj(s)ds = ∫

R
ω′γ(s)hj(t − s)ds

= ∫
R
ω′γ(s)1(t − s ≥ vj)ds = ∫

t−vj

−∞
ω′γ(s)ds = ωγ(t − vj)

(5.8)

The derivative of smoothed process:

µ′γ(t) =
∞
∑
j=0

ajh
′
j,γ(t) =

∞
∑
j=0

ajωγ(t − vj) (5.9)

is a sequence of unimodal peaks. Then we can transform the problem of detecting change

points in yγ(t) to finding the local extrema in y′γ(t). The figure 5.2 displays the main idea

of this method, that is, transform the problem of detecting the change points to the problem

of detecting the local extrema in the first derivatives. However, a local extrema can also be

generated from the noise. Then, multiple testing is needed based on the peak height density

of z′γ(t) to detect the true change points.
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Figure 5.1: For the left plot, the green line is observed sequence y(t), the red line is the
original signal µ(t), the blue line is smoothed sequence yγ(t). For the right plot, the red
crosses are local maxima detected, which are the candidate peaks. The yellow triangles are
the detected change points after multiple testing

Figure 5.2: Following the notation, the left plot is the step function hj(t). The middle plot
is w′γ(s). The right plot is h′j,γ(t). By doing this transformation, the change point detection
problems is transformed to the peak detection problems.
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Figure 5.3: This black line is the differential kernel smoothed process. We can see there
are many local extrema in this line, which is caused by both change points or noise. We
will do the standardization in the next step

5.2.1 Algorithm

To detect the change points of step function, we can transform the problem to finding

the peaks of a process. The algorithm has following steps:

1.Differential kernel smoothing: In this step, we achieve the process y′γ(t). The main

idea of this step is illustrated in figure 5.2.

2.Standardization: Divide the kernel smoothed process y′γ(t) with the standard deviation

of the differential kernel smoothed noise z′γ(t) and get the new process fγ(t).

fγ(t) =
µ′γ(t)√

var(z′γ(t))
+

z′γ(t)√
var(z′γ(t))

(5.10)

And we define Xγ(t) =
z′γ(t)√

var(z′γ(t))
as the smoothed and standardized noise.

3.Candidate peaks: Find the set of local extrema of y′γ(t) in [0, L], denoted by T̃γ =

49



Figure 5.4: This green line is the standardized process. We will calculate the p-values for
the local extrema in this process

T̃ +γ ∪ T̃ −γ , where

T̃ +γ = {t ∈ [0, L] ∶ f ′γ(t) =
dfγ(t)
dt

= 0, f ′′γ (t) =
d2fγ(t)
dt2

< 0}

T̃ −γ = {t ∈ [0, L] ∶ f ′γ(t) =
dfγ(t)
dt

= 0, f ′′γ (t) =
d2fγ(t)
dt2

> 0}

4.P-values: For each t ∈ T̃ +γ compute the p-values pγ(t) for testing the (conditional) hy-

pothesis:

H0(t) ∶ {µ′(s) = 0 for all s ∈ (t − b, t + b)} vs

HA(t) ∶ {µ(s+) > µ(s−) for some s ∈ (t − b, t + b)}

where µ(s+) = limx→s+ µ(x) and µ(s−) = limx→s− µ(x) are the right and left limit of µ at

s and for each t ∈ T̃ −γ , compute the p-values pγ(t) for testing the (conditional) hypothesis:

H0(t) ∶ {µ′(s) = 0 for all s ∈ (t − b, t + b)} vs

HA(t) ∶ {µ(s+) < µ(s−) for some s ∈ (t − b, t + b)}
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where b > 0 is a tolerance parameter because detecting the exact position of vj is hard after

two steps of transformations.

5.Multiple testing: Let m̃ be the number of local extrema in T̃γ . Apply BH procedure on

m̃ p-values and define the local extrema as significant if their p-values are smaller than the

threshold. The figure 5.1 shows the output of example.

5.2.2 P-values

Suppose that we observed the heights fγ(t) at the local extrema, the p-values can be

computed as:

pγ(t) =
⎧⎪⎪⎨⎪⎪⎩

Fγ(f ′γ(t)), t ∈ T̃ +γ

Fγ(−f ′γ(t)), t ∈ T̃ −γ
(5.11)

Where Fγ(u) is the right cdf of Xγ(t). As Xγ(t) is a Gaussian process, the calculation of

the distribution of Xγ(t) is provided in chapter 2. One thing to notice is that, the change

point problem uses the first derivative of zγ(t) instead of zγ(t) itself, one example is pro-

vided in the following section.

5.2.3 Error Definitions

Assuming the model is defined as 5.1, then the signal region is defined as Sb
1 = ∪Jj=1(vj−

b, vj +b) and the null region is defined as Sb
0 = [0, L]/Sb

1. For u > 0, let T̃γ = T̃ +γ ∪ T̃ −γ , where

T̃ +γ (u) = {t ∈ [0, L] ∶ fγ(t) > u, f ′γ(t) =
dfγ(t)
dt

= 0, f ′′γ (t) =
d2fγ(t)
dt2

< 0}

T̃ −γ (u) = {t ∈ [0, L] ∶ fγ(t) < −u, f ′γ(t) =
dfγ(t)
dt

= 0, f ′′γ (t) =
d2fγ(t)
dt2

> 0}

T̃ +γ (u) is the set of local maxima of fγ(t) above u and T̃ −γ (u) is the set of local minima of

fγ(t) below −u. Then we can define the following notations:

Rγ(u) =#{t ∈ T̃ +γ (u)} +#{t ∈ T̃ −γ (u)}

Vγ(u; b) =#{t ∈ T̃ +γ (u) ∩ Sb
0} +#{t ∈ T̃ −γ (u) ∩ Sb

0}
(5.12)
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as the number of all detected and falsely detected change points with the threshold u. The

two are defined as zero if T̃γ(u) contains no elements. We can also define the FDR as the

expected proportion of falsely detected change points as follows:

FDRγ(u; b) = E{
Vγ(u; b)
Rγ(u) ∨ 1

} (5.13)

at threshold u and tolerance parameter b.

5.2.4 Control of FDR

BH procedure is applied in the algorithm. For a fixed α ∈ (0,1), let k be the largest

index for which the ith smallest p-value is less than iα/m̃γ . Then the null hypothesisH0(t)

at t ∈ T̃γ is rejected if

Pγ(t) <
kα

m̃γ

⇐⇒
⎧⎪⎪⎨⎪⎪⎩

fγ(t) > ũBH = F −1γ ( kαm̃γ
) t ∈ T̃ +γ

fγ(t) < −ũBH = −F −1γ ( kαm̃γ
) t ∈ T̃ −γ

(5.14)

where kα/m̃γ is defined as 1 if m̃γ = 0. ũBH is random, we define FDR in the BH procedure

as

FDRBH,γ(b) = E{
Vγ(ũBH; b)
Rγ(ũBH) ∨ 1

} (5.15)

Define the following conditions:

(C1) The assumptions of the 5.1 hold.

(C2) The number of trials N →∞ and a→∞.

Theorem 5.2.1. Suppose that algorithm is applied with the random threshold ũBH. Then

under conditions (C1) and (C2).

lim supFDRBH,γ(b) ≤ α (5.16)

The proof of theorem is similar to the proof in chapter 4.
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5.2.5 Power Consistency

The power of Algorithm is defined as the expected fraction of truly detected change

points

Powerγ(u; b) =
1

J

J

∑
j=1

Powerj,γ(u; b)

= E [ 1
J
(∑
j∈I+

1(T̃ +γ ∩ (vj − b, vj + b) ≠ ∅) + ∑
j∈I−

1(T̃ −γ ∩ (vj − b, vj + b) ≠ ∅))]
(5.17)

Powerj,γ(u; b) is the probability of detecting peak j within a tolerance distance b.

Powerj,γ(u; b) =
⎧⎪⎪⎨⎪⎪⎩

P(T̃ +γ ∩ (vj − b, vj + b) ≠ ∅), j ∈ I+

P(T̃ −γ ∩ (vj − b, vj + b) ≠ ∅), j ∈ I−
(5.18)

where I+ is the set of increasing change points and I− is the set of decreasing change

points. The indicator function guarantees there will only be one significant local extrema

is counted in a change points support, which is (vj − b, vj + b), so the power will not be

inflated. If we fix the γ and u, the power will increase by b because the support will be

larger. The definition of PowerBH,γ(b) is defined:

PowerBH,γ(b)

= E [ 1
J
(∑
j∈I+

1(T̃ +γ (ũBH) ∩ (vj − b, vj + b) ≠ ∅) + ∑
j∈I−

1(T̃ −γ (ũBH) ∩ (vj − b, vj + b) ≠ ∅))]

(5.19)

Theorem 5.2.2. Let conditions (C1) and (C1) hold, suppose Algorithm is applied with the

random threshold ũBH, then

PowerBH,γ(b)→ 1 (5.20)

The proof of this theorem is similar to that of chapter 4.

5.3 Example

We also use the noise function created before and the different thing is that we need to

use the derivative of z(t) to construct our new process instead of z(t) itself:
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Example 5.3.1. Consider the following non-stationary Gaussian process as our noise z(t):

z(t) = cos(t) ⋅ ξ + sin(t) ⋅ dB(t) (5.21)

where ξ is a standard Gaussian random variable, dB(t) is white noise which is independent

of ξ. From the assumption and transformation of the algorithm, we can get:

Xγ(t) =
z′γ(t)√

var(z′γ(t))
(5.22)

Then we can calculate the parameters needed to calculate the height density:

X ′γ(t) =
z′′γ (t)

√
var(z′γ(t)) − (

√
var(z′γ(t)))′z′γ(t)

var(z′γ(t))

=
z′′γ (t)√

var(z′γ(t))
−
z′γ(t)[var(z′γ(t))]′

2[var(z′γ(t))]
3
2

(5.23)

And:

X ′′γ (t) =
z′′′γ (t)√

var(z′γ(t))
−
z′′γ (t)[var(z′γ(t))]′

2(var(z′γ(t)))
3
2

−
2{z′′γ (t)[var(z′γ(t))]′ + z′γ(t)[var(z′γ(t))]′′}[var(z′γ(t))]

3
2

4[var(z′γ(t))]3

+
3z′γ(t)var(z′γ(t))

1
2{[var(z′γ(t))]′}2

4[var(z′γ(t))]3

(5.24)

var(z′γ(t)) = (∫
∞

−∞

cos(s)(s − t)
γ3

ϕ(t − s
γ
)ds)2 +∫

∞

−∞

sin2(s)(s − t)2
γ6

ϕ2(s − t
γ
)ds (5.25)

[var(z′γ(t))]′ =2∫
∞

−∞

cos(s)(s − t)
γ3

ϕ(t − s
γ
)ds∫

∞

−∞

cos(s)[(s − t)2 − γ2]
γ5

ϕ(t − s
γ
)ds

+∫
∞

−∞

2sin2(s)(s − t)[(s − t)2 − γ2]
γ8

ϕ2(t − s
γ
)ds

(5.26)
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[var(z′γ(t))]′′ =2(∫
∞

−∞

cos(s)[(s − t)2 − γ2]
γ5

ϕ(t − s
γ
)ds)2

+2∫
∞

−∞

cos(s)(s − t)
γ3

ϕ(t − s
γ
)ds

× ∫
∞

−∞

cos(s)(s − t)[(s − t)2 − 3γ2]
γ7

ϕ(t − s
γ
)ds

+∫
∞

−∞

2sin2(s)[γ2 − 3(s − t)2]
γ8

ϕ2(t − s
γ
)ds

+∫
∞

−∞

4sin2(s)(s − t)2[(s − t)2 − γ2]
γ10

ϕ2(t − s
γ
)ds

(5.27)

Then calculate the λ1, λ2 and λ′1:

X ′γ(t) =
z′′γ (t)√

var(z′γ(t))
−
z′γ(t)[var(z′γ(t))]′

2[var(z′γ(t))]
3
2

= a(t)z′γ(t) + b(t)z′′γ (t)
(5.28)

Where a(t) = − [var(z
′
γ(t))]′

2[var(z′γ(t))]
3
2

and b(t) = 1√
var(z′γ(t))

, which are constants when t is fixed,

then var(X ′γ(t)) can be calculated as:

var(X ′γ(t)) = E[(a(t)z′γ(t) + b(t)z′′γ (t))(a(t)z′γ(t) + b(t)z′′γ (t))]

= a2(t)var(z′γ(t)) + b2(t)var(z′′γ (t)) + 2a(t)b(t)E(z′γ(t)z′′γ (t))
(5.29)

where we can calculate:

var(z′γ(t)) = (∫
∞

−∞

cos(s)(s − t)
γ3

ϕ(t − s
γ
)ds)2 + ∫

∞

−∞

sin2(s)(s − t)2
γ6

ϕ2(s − t
γ
)ds

var(z′′γ (t)) = (∫
∞

−∞

cos(s)(s − t)
γ3

ϕ(t − s
γ
)ds)2 + ∫

∞

−∞

sin2(s)(s − t)2
γ6

ϕ2(s − t
γ
)ds

E(z′γ(t)z′′γ (t)) = (∫
∞

−∞

cos(s)(s − t)
γ3

ϕ(t − s
γ
)ds)(∫

∞

−∞

cos(s)[(s − t)2 − γ2]
γ5

ϕ(t − s
γ
)ds)

+ ∫
∞

−∞

sin2(s)(s − t)[(s − t)2 − γ2]
γ8

ϕ2(s − t
γ
)ds

They are all constants when t is fixed. So we can calculate var(X ′γ(t)) when t is fixed.

Now we calculate var(X ′′γ (t)):

X ′′γ (t) = c(t)z′γ(t) + d(t)z′′γ (t) + g(t)z′′′γ (t) (5.30)
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where c(t) = −2[var(z
′
γ(t))′′][var(z′γ(t))]

3
2 +3var(z′γ(t))

1
2 [var(z′γ(t))]′2

4[var(z′γ(t))]3
,

d(t) = − [var(z
′
γ(t))]′

2[var(z′γ(t))]
3
2
− [var(z′γ(t))]′

2[var(z′γ(t))]3
and g(t) = 1√

var(z′γ(t))
, which are constants when t is

fixed, then var(X ′′γ (t)) can be calculated as:

var(X ′′γ (t)) = E[(c(t)z′γ(t) + d(t)z′′γ (t) + g(t)z′′′γ (t))(c(t)z′γ(t)

+ d(t)z′′γ (t) + g(t)z′′′γ (t))]

= c2(t)var(z′γ(t)) + d2(t)var(z′′γ (t)) + g2(t)var(z′′′γ (t))

+ 2c(t)d(t)E(z′γ(t)z′′γ (t)) + 2c(t)g(t)E(z′γ(t)z′′′γ (t))

+ 2d(t)g(t)E(z′′γ (t)z′′′γ (t))

(5.31)

where we can calculate:

var(z′′′γ (t)) =(∫
∞

−∞

cos(s)(s − t)[(s − t)2 − 3γ2]
γ7

ϕ(t − s
γ
)ds)2

+ ∫
∞

−∞

sin2(s)(s − t)2[(s − t)2 − 3γ2]2
γ14

ϕ2(t − s
γ
)ds

E(z′γ(t)z′′′γ (t)) = (∫
∞

−∞

cos(s)(s − t)
γ3

ϕ(t − s
γ
)ds)

× (∫
∞

−∞

cos(s)(s − t)[(s − t)2 − 3γ2]
γ7

ϕ(t − s
γ
)ds)

+ ∫
∞

−∞

sin2(s)(s − t)2[(s − t)2 − 3γ2]
γ10

ϕ2(s − t
γ
)ds

E(z′′γ (t)z′′′γ (t)) = (∫
∞

−∞

cos(s)[(s − t)2 − γ2]
γ5

ϕ(t − s
γ
)ds)

× (∫
∞

−∞

cos(s)(s − t)[(s − t)2 − 3γ2]
γ7

ϕ(t − s
γ
)ds)

+ ∫
∞

−∞

sin2(s)(s − t)[(s − t)2 − γ2][(s − t)2 − 3γ2]
γ12

ϕ2(s − t
γ
)ds

They are all constants when t is fixed. So we can calculate var(X ′′γ (t)) when t is fixed.
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Now we calculate E(X ′γ(t)X ′′γ (t)), from the definitions given before, we can get:

E(X ′γ(t)X ′′γ (t)) = E[(a(t)z′γ(t) + b(t)z′′γ (t))(c(t)z′γ(t) + d(t)z′′γ (t) + g(t)z′′′γ (t))]

= a(t)c(t)var(z′γ(t)) + b(t)d(t)var(z′′γ (t))

+ [a(t)d(t) + b(t)c(t)]E(z′γ(t)z′′γ (t)) + a(t)g(t)E(z′γ(t)z′′′γ (t))

+ b(t)g(t)E(z′′γ (t)z′′′γ (t))

(5.32)

With all the parameters calculated, the density can be calculated with the formula 2.16.

5.4 Simulation Studies

Simulations were performed to assess the performance of the algorithm with moderate

signal strength a and finite repetitions N , where L = 3000, J = 30, the signal µ(t) is

constructed as the model 5.1, where the signal strength a = 1.5, and the locations of change

points were given as τj = (j −1/2)L/J , j = 1, . . . , J, and sampled at integer values of t, the

noise z(t) was constructed as equation 5.21. The process repeats N = 1000 times to get the

average FDR and corresponding power.

The smoothing kernel in the simulation is a truncated Gaussian density with c = 3:

wγ(t) = (1/γ)ϕ(t/γ)1[−cγ, cγ]

We can estimate the noise parameter of z(t) by calculating its first, second and third-order

differences to approximate the corresponding first second and third derivatives. With the

same smoothing kernel, the level α of BH procedures is 0.05 in this simulation.

Figure 5.5 displays the FDR levels. Error rates are kept below the nominal level of

α = 0.05 for bandwidths larger than 2 and large enough signal strength a = 1.5. The points

above the nominal level occur because when the bandwidth is small, the smoothed process

is not smooth enough to apply the algorithm effectively, similar to the simulation conducted

57



Figure 5.5: FDR of the BH procedure for different bandwidth

previously. When γ is large, that is, when γ > 7, the FDR is beyond the nominal level, that is

because when γ is too large, the ρ(t) used for calculating the p-values varies significantly.

In certain regions, the ρ(t) can be extremely small, approaching 0. As a result, when

calculating the regional peak height density, the threshold for observation becomes too

small, leading to an excessive number of falsely detected change points. Additionally, when

the bandwidth is large, neighboring change points may interact with each other, leading to

an increase in the FDR.

Figure 5.6 shows the realized power of BH procedures, we can see as the bandwidth γ

increase, the power is approaching 1. When the bandwidth increases, just as described in

FDR part, the threshold decreases because the region in which ρ(t) approaches 0 becomes

large. Consequently, the power of the algorithm increases correspondingly.
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Figure 5.6: Power of the BH procedure for different bandwidth
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Chapter 6

HEIGHT DISTRIBUTIONS OF CRITICAL POINTS OF SMOOTH ISOTROPIC

GAUSSIAN FIELDS: COMPUTATIONS, SIMULATIONS AND ASYMPTOTICS

This chapter is another project that focuses on the height distributions of critical points

in smooth isotropic Gaussian fields. The project is divided into three main components:

computations, simulations, and asymptotics.

In the computations part, building upon the work of Cheng and Schwartzman [14], the

explicit form of the peak height density of critical points in smooth isotropic Gaussian

random fields can be calculated when the dimension N is small (3 and 4).

However, as the dimension N increases, obtaining the explicit form of the peak height

density becomes increasingly challenging. In such cases, it becomes necessary to explore

simulation methods to research the height distribution. Simulation approaches for both

the Gaussian Orthogonal Ensemble (GOE) and the Gaussian Isotropic Ensemble (GOI)

matrices are provided, based on the implicit form of the height density.

When the dimension N becomes sufficiently large (specifically, N > 50), the asymp-

totic distributions of the height density can be determined. As N →∞, κ2 = (N+2)/N → 1,

implying that nearly all κ2 values are less than 1. In this scenario, the implicit form of the

height density with respect to the GOE matrix can be utilized. Drawing from the work

of O’Rourke, S.[29], the distribution of all eigenvalues of the GOE matrix, except for the

largest one, can be explicitly calculated, enabling the derivation of the explicit form of

the asymptotic distribution of the height density. The Tracy-Widom distribution can be

employed for the distribution of the largest eigenvalue, allowing for the simulation of the

largest eigenvalue of the GOE matrix. Consequently, an algorithm for simulating the height

density can be provided.
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Overall, this project combines computations, simulations, and asymptotic analysis to

explore the height distributions of critical points in smooth isotropic Gaussian fields.

6.1 Height Distributions of Critical Points of Gaussian Fields with κ ≤ 1

When κ ≤ 1, or equivalently, κ2 ≤ 1, the height density of critical points given by

formula 1.3 can also be expressed in the following form with respect to the GOE matrix.

Theorem 6.1.1. We have that, for κ < 1

hi(x) =
ϕ(x)EN+1

GOE [e
λ2i+1
2
− (λi+1−κx/

√
2)2

1−κ2 ]

√
1 − κ2EN+1

GOE [e−
λ2
i+1
2 ]

. (6.1)

For κ = 1,

hi(x) =
e−

x2

4 fi+1(x/
√
2)

√
2EN+1

GOE [e−
λ2
i+1
2 ]

(6.2)

Where fi+1 is the density of λi+1 of GOE matrix with dimension N + 1.

Theorem 6.1.1 introduces two special cases of the height distribution of the critical

points of a Gaussian field with κ < 1 and κ = 1. In comparison to the density 1.3, the

new densities have a more concise form, which facilitates the calculation of the explicit

expression and simplifies the application of the simulation algorithm.

6.2 Evaluating Peak Height Distributions by Gaussian Densities

The following result is Lemma 2.2 in the Cheng and Schwartzman[14].

Lemma 6.2.1. Let M be an N ×N non-degenerate GOI(c) random matrix (c > −1/N ).

Then the density of the ordered eigenvalues λ1 ≤ . . . ≤ λN of M is given by

fc(λ1, . . . , λN) =
1

KN

√
1 +Nc

exp

⎧⎪⎪⎨⎪⎪⎩
−1
2

N

∑
i=1

λ2
i +

c

2(1 +Nc)
(

N

∑
i=1

λi)
2⎫⎪⎪⎬⎪⎪⎭

× ∏
1≤i<j≤N

∣λi − λj ∣1{λ1≤...≤λN},

(6.3)
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where

KN = 2N/2
N

∏
i=1

Γ( i
2
) . (6.4)

Use the notation EN
GOI(c) to represent the expectation under the GOI density (6.3), i.e.,

for a measurable function g,

EN
GOI(c)[g(λ1, . . . , λN)] = ∫

RN
g(λ1, . . . , λN)fc(λ1, . . . , λN)dλ1⋯dλN . (6.5)

We are interested in computing the following height density of local maxima of Gaus-

sian random fields [See Corollary 3.6 in the [14] with i = N , implying λN+1 = ∞. The

density below is the derivative −F ′N(x).]

Lemma 6.2.2. The peak height density of local max of Gaussian random fields can be

written as:

h(x) =
ϕ(x)EN

GOI((1−κ2)/2) [∏
N
j=1 ∣λj − κx/

√
2∣1{λN<κx/

√
2}]

EN
GOI(1/2) [∏

N
j=1 ∣λj ∣1{λN<0}]

, (6.6)

where 0 < κ2 < (N + 2)/N and ϕ(x) = 1√
2π
e−x

2/2 is the density of standard Normal

distribution.

The computation of the GOI expectation (6.5) remains difficult because the exponential

term of the GOI density in (6.3) has the form of a multivariate Gaussian density with

correlation. Our next result shows that the expectation (6.5) can be expressed in terms of

an expectation with respect to a GOE instead, where the correlation in the exponential term

is no longer present.

Corollary 6.2.2.1. From lemma 6.2.2, when κ2 = 1, the peak height density of local max

of Gaussian random field is:

h(u) = e−
u2

4 f(u/
√
2)

√
2EN+1

GOE [e−
λ2
N+1
2 ]

(6.7)

Where f is the density of the largest eigenvalue of GOE matrix with dimension N + 1.
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Proof. From the equations before, we know that when κ2 = 1, the numerator of the CDF

of local max of Gaussian random fields can be written as:

∫
u

−∞
ϕ(x)EN

GOE[
N

∏
j=1
∣λj − x/

√
2∣1{λN<x/

√
2}dx

=∫
u

−∞

1√
2π

e−
x2

2 E
N
GOE[

N

∏
j=1
∣λj − x/

√
2∣1{λN<x/

√
2}dx

= 1√
2π
∫

u

−∞
∫
RN

e−
x2

2
1

KN

e−
∑N
i=1 λ2i
2 ∏

1≤i<j≤N
∣λi − λj ∣

×
N

∏
k=1
∣λk − x/

√
2∣1{λ1≤...≤λN≤x/

√
2}dλ1 . . . dλNdx

Then we take λN+1 = x/
√
2, that is, x =

√
2λN+1, then we can get:

1√
π
∫

u/
√
2

−∞
∫
RN

e−λ
2
N+1

1

KN

e−
∑N
i=1 λ2i
2 ∏

1≤i<j≤N+1
∣λi − λj ∣1{λ1≤...≤λN≤λN+1}dλ1 . . . dλNdλN+1

= 1√
π
∫

u/
√
2

−∞
∫
RN

e−
λ2N+1

2

√
2Γ(N+12 )
KN+1

e−
∑N+1
i=1 λ2i

2

× ∏
1≤i<j≤N+1

∣λi − λj ∣1{λ1≤...≤λN≤λN+1}dλ1 . . . dλNdλN+1

=
√
2Γ(N+12 )√

π
E

N+1
GOE [e−

λ2N+1
2 1{λN+1≤u/

√
2}]

=
√
2Γ(N+12 )√

π
∫

u/
√
2

−∞
e−

λ2N+1
2 f(λN+1)dλN+1

Where f is the density of the largest eigenvalue of GOE matrix with dimension N + 1.

The denominator can be written as:

E
N
GOI(1/2) [

N

∏
j=1
∣λj ∣1{λN≤0}] =

Γ(N+12 )√
π/2

E
N+1
GOE [e−

λ2N+1
2 ]

Then the CDF can be written as:

P (Y ≤ u) = ∫
u/
√
2

−∞ e−
λ2N+1

2 f(λN+1)dλN+1

EN+1
GOE [e−

λ2
N+1
2 ]

63



Then the PDF is:

h(u) = e−
u2

4 f(u/
√
2)

√
2EN+1

GOE [e−
λ2
N+1
2 ]

Where f is the density of the largest eigenvalue of GOE matrix with dimension N +1.

Recall that the density of the ordered eigenvalues λ1 ≤ . . . ≤ λN of a GOE matrix H is

given by

f0(λ1, . . . , λN) =
1

KN

exp{−1
2

N

∑
i=1

λ2
i} ∏

1≤i<j≤N
∣λi − λj ∣1{λ1≤...≤λN}, (6.8)

which is of the special case of GOI densities fc(λ1, . . . , λN) when c = 0. A nice property

is that the exponential function is the kernel of multiple independent Gaussian densities,

which can simplify the calculations a lot.

To achieve this, we rewrite the GOI density as follows. For σ > 0, let

ϕσ(x) =
1√
2πσ

e−
x2

2σ2 .

For simplicity, denote ϕ(x) = ϕ1(x) and let Φ(x) = ∫
x

−∞ ϕ(y)dy. Let λ̄ = ∑N
i=1 λi/N . By

careful calculations, we may check that (6.3) can be written as the following decomposition

fc(λ1, . . . , λN)

=
√
2π

KN

√
N
ϕσc(λ̄) exp{−

1

2

N

∑
i=1
(λi − λ̄)2} ∏

1≤i<j≤N
∣λi − λj ∣1{λ1≤...≤λN},

(6.9)

where σc =
√
(1 +Nc)/N . Notice that the form of (6.9) is similar to the product of a

Gaussian density and a GOE density. In particular, the covariance parameter c is only

included in the Gaussian density ϕσc .

Lemma 6.2.3. Let c > −1/N . Then for a measurable function g and a constant b,

EN
GOI(c)[g(λ1 − b, . . . , λN − b)]

=
√

2π

N ∫R
ϕσc(z + b)EN

GOE [g(r1 + z, . . . , rN + z)δ (
N

∑
i=1

ri = 0)]dz,
(6.10)
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where σc =
√
(1 +Nc)/N , δ(⋅) is the Dirac delta function and the expectation EN

GOE is

taken with respect to r1,⋯, rN .

Proof. Plugging (6.9) into (6.5) and making change of variables ξi = λi − b, 1 ≤ i ≤ N , we

have that

EN
GOI(c)[g(λ1 − b, . . . , λN − b)]

=
√
2π

KN

√
N
∫
RN

ϕσc(λ̄) exp{−
1

2

N

∑
i=1
(λi − λ̄)2} ∏

1≤i<j≤N
∣λi − λj ∣1{λ1≤...≤λN}

× g(λ1 − b, . . . , λN − b)dλ1⋯dλN

=
√
2π

KN

√
N
∫
RN

ϕσc(ξ̄ + b) exp{−
1

2

N

∑
i=1
(ξi − ξ̄)2} ∏

1≤i<j≤N
∣ξi − ξj ∣1{ξ1≤...≤ξN}

× g(ξ1, . . . , ξN)dξ1⋯dξN ,

where ξ̄ = ∑N
i=1 ξi/N . Adding an additional integral variable ξ̄ and introducing the Dirac

delta function, and making again change of variables

z = ξ̄ and ri = ξi − ξ̄, i = 1, . . . ,N,

we obtain

EN
GOI(c)[g(λ1 − b, . . . , λN − b)]

=
√
2π

KN

√
N
∫
R
dξ̄ ∫

RN
ϕσc(ξ̄ + b) exp{−

1

2

N

∑
i=1
(ξi − ξ̄)2} ∏

1≤i<j≤N
∣ξi − ξj ∣1{ξ1≤...≤ξN}

× δ (
N

∑
i=1

ξi = Nξ̄) g(ξ1, . . . , ξN)dξ1⋯dξN

=
√
2π

KN

√
N
∫
R
dz∫

RN
ϕσc(z + b) exp{−

1

2

N

∑
i=1

r2i } ∏
1≤i<j≤N

∣ri − rj ∣1{r1≤...≤rN}

× δ (
N

∑
i=1

ri = 0) g(r1 + z, . . . , rN + z)dr1⋯drN

=
√

2π

N ∫R
ϕσc(z + b)EN

GOE [g(r1 + z, . . . , rN + z)δ (
N

∑
i=1

ri = 0)]dz.
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A nice feature of expression (6.10) is that the inner GOE integral does not depend on the

GOI parameter c. The effect of the GOI parameter c is only in the univariate outer integral.

Expression (6.10) will be used to simplify the computation of the expected number of

critical points of isotropic Gaussian fields.

Lemma 6.2.4. Let c > −1/N and σc =
√
(1 +Nc)/N . Then for b ∈ R,

EN
GOI(c) [

N

∏
j=1
∣λj − b∣1{λN<b}]

=
√
2π

KN

√
N
∫

0

−∞
ϕσc(z + b)dz∫

−
√

N
N−1 z

0
dsN−1∫

√
N

N−2 sN−1

0
dsN−2⋯∫

√
3s2

0
ds1

× exp{−1
2

N−1
∑
i=1

s2i} ∏
2≤j≤N

⎛
⎝

√
j − 1
j

sj−1 +
1√
2
s1 +

j−1
∑
ℓ=2

1√
ℓ(ℓ + 1)

sℓ
⎞
⎠

× ∏
2≤i<j≤N

⎛
⎝

√
j − 1
j

sj−1 −
√

i − 1
i

si−1 +
j−1
∑
ℓ=i

1√
ℓ(ℓ + 1)

sℓ
⎞
⎠

×
⎛
⎝
−z + 1√

2
s1 +

N−1
∑
ℓ=2

1√
ℓ(ℓ + 1)

sℓ
⎞
⎠

N

∏
j=2

⎛
⎝
−z −

√
j − 1
j

sj−1 +
N−1
∑
ℓ=j

1√
ℓ(ℓ + 1)

sℓ
⎞
⎠

Proof. Applying Lemma 6.2.3 with

g(λ1 − b, . . . , λN − b) =
N

∏
j=1
∣λj − b∣1{λN−b<0},

or equivalently

g(x1, . . . , xN) =
N

∏
j=1
∣xj ∣1{xN<0},

we have

EN
GOI(c) [

N

∏
j=1
∣λj − b∣1{λN<b}] = EN

GOI(c) [g(λ1 − b, . . . , λN − b)]

=
√

2π

N ∫R
ϕσc(z + b)EN

GOE [g(r1 + z, . . . , rN + z)δ (
N

∑
i=1

ri = 0)]dz

=
√

2π

N ∫R
ϕσc(z + b)EN

GOE [
N

∏
j=1
∣rj + z∣1{rN+z<0}δ (

N

∑
i=1

ri = 0)]dz.

(6.11)
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Let

Vj =
j√

j(j + 1)
ej+1 −

1√
j(j + 1)

j

∑
ℓ=1

eℓ, j = 1, . . . ,N − 1,

VN =
1√
N
1N ,

where {ej ∶ 1 ≤ j ≤ N} is the standard basis in RN and 1N is the N × 1 column vector of

ones. Then

VN = (V1, . . . , VN−1, VN)

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

− 1√
2
− 1√

6
⋯ − 1√

(N−1)N
1√
N

1√
2
− 1√

6
⋯ − 1√

(N−1)N
1√
N

0 2√
6
⋯ − 1√

(N−1)N
1√
N

⋮ ⋮ ⋮ ⋮ ⋮

0 0 ⋯ N−1√
(N−1)N

1√
N

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

(6.12)

is an orthonormal basis in RN such that 1T
NVj = 0 for every j = 1, . . . ,N − 1.

Now, we make the following change of variables,

(r1, . . . , rN)T = VN(s1, . . . , sN)T ,

which gives

r1 = −
1√
2
s1 −

N−1
∑
ℓ=2

1√
ℓ(ℓ + 1)

sℓ +
1√
N
sN ,

rj =
j − 1√
(j − 1)j

sj−1 −
N−1
∑
ℓ=j

1√
ℓ(ℓ + 1)

sℓ +
1√
N
sN , 2 ≤ j ≤ N.

Notice that
N

∑
j=1

rj = 0⇔ sN = 0. (6.13)

Since λj , ξj and hence rj are already ordered from low to high, we have

r2 − r1 =
√
2s1 > 0,

rj − rj−1 =
√

j

j − 1
sj−1 −

√
j − 2
j − 1

sj−2 > 0, 3 ≤ j ≤ N,

(6.14)
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implying that

sj <
√

j + 2
j

sj+1, 1 ≤ j ≤ N − 2. (6.15)

For b ∈ R, under sN = 0,

λN < b⇔ ξN < 0⇔ rN + z < 0

⇔ rN =
√

N − 1
N

sN−1 < −z

⇔ sN−1 < −
√

N

N − 1
z.

(6.16)

Plugging (6.13), (6.14), (6.15) and (6.16) into (6.11) yields the desired results.

Lemma 6.2.5. Let c > −1/N and σc =
√
(1 +Nc)/N . Then for b ∈ R,

EN
GOI(c) [

N

∏
j=1
∣λj ∣1{λN<0}1{∑N

j=1 λj/N≤−
√
(N+2)/(2N)u}]

=
√
2π

KN

√
N
∫
−
√
(N+2)/(2N)u

−∞
ϕσc(z)dz∫

−
√

N
N−1 z

0
dsN−1∫

√
N

N−2 sN−1

0
dsN−2⋯∫

√
3s2

0
ds1

× exp{−1
2

N−1
∑
i=1

s2i} ∏
2≤j≤N

⎛
⎝

√
j − 1
j

sj−1 +
1√
2
s1 +

j−1
∑
ℓ=2

1√
ℓ(ℓ + 1)

sℓ
⎞
⎠

× ∏
2≤i<j≤N

⎛
⎝

√
j − 1
j

sj−1 −
√

i − 1
i

si−1 +
j−1
∑
ℓ=i

1√
ℓ(ℓ + 1)

sℓ
⎞
⎠

×
⎛
⎝
−z + 1√

2
s1 +

N−1
∑
ℓ=2

1√
ℓ(ℓ + 1)

sℓ
⎞
⎠

N

∏
j=2

⎛
⎝
−z −

√
j − 1
j

sj−1 +
N−1
∑
ℓ=j

1√
ℓ(ℓ + 1)

sℓ
⎞
⎠

Proof. :The proof is similar as the proof of lemma 6.2.4, the difference is the range of z,

which represents ∑N
j=1 λj/N is (−∞,−

√
(N + 2)(2N)u)

Example 6.2.1. When N = 2, by the lemma 6.2.5, we can calculate the height density by

corollary 3.14 of the paper []:

Fi(u) =
EN

GOI( 1
2
) [∏

N
j=1 ∣λj ∣1{λN<0}1{∑N

j=1 λj/N≤−
√

N+2
2N

u}]

EN
GOI( 1

2
) [∏

N
j=1 ∣λj ∣1{λN<0}]
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where u is a constant.

Applying lemma 3.1, we can let:

g(λ1, . . . , λN) =
N

∏
j=1
∣λj ∣1{λN<0}1{λ̄i≤−

√
N+2
/ 2Nu}

Then:

EN
GOI( 1

2
) [

N

∏
j=1
∣λj ∣1{λN<0}1{λ̄i≤−

√
N+2
2N

u}]

=
√
2π

KN

√
N
∫
−
√

N+2
2N

u

−∞
ϕσc(z)dz∫

−
√

N
N−1 z

0
dsN−1∫

√
N

N−2 sN−1

0
dsN−2⋯∫

√
3s2

0
ds1

× exp{−1
2

N−1
∑
i=1

s2i} ∏
2≤j≤N

⎛
⎝

√
j − 1
j

sj−1 +
1√
2
s1 +

j−1
∑
ℓ=2

1√
ℓ(ℓ + 1)

sℓ
⎞
⎠

× ∏
2≤i<j≤N

⎛
⎝

√
j − 1
j

sj−1 −
√

i − 1
i

si−1 +
j−1
∑
ℓ=i

1√
ℓ(ℓ + 1)

sℓ
⎞
⎠

×
⎛
⎝
−z + 1√

2
s1 +

N−1
∑
ℓ=2

1√
ℓ(ℓ + 1)

sℓ
⎞
⎠

N

∏
j=2

⎛
⎝
−z −

√
j − 1
j

sj−1 +
N−1
∑
ℓ=j

1√
ℓ(ℓ + 1)

sℓ
⎞
⎠

The output is 1 −CDF , if we plug in N = 2, we can get the numerator:

E2
GOI( 1

2
) [

2

∏
j=1
∣λj ∣1{λ2<0}1{λ̄i≤−u}]

=
√
2π

K2

√
2
∫
−u

−∞
ϕ(z)dz∫

−
√
2z

0
e−

1
2
s21
√
2s1(−z −

1√
2
s1)(−z +

1√
2
s1)ds1

=
√
2π

K2

√
2
{∫

−u

−∞
z2ϕ(z)dz∫

−
√
2z

0

√
2s1e

− 1
2
s21ds1 − ∫

−u

−∞
ϕ(z)dz∫

−
√
2z

0

√
2

2
s31e
− 1

2
s21ds1}

The denominator is:

E2
GOI( 1

2
) [

2

∏
j=1
∣λj ∣1{λ2<0}]

=
√
2π

K2

√
2
∫

0

−∞
ϕ(z)dz∫

−
√
2z

0
e−

1
2
s21
√
2s1(−z −

1√
2
s1)(−z +

1√
2
s1)ds1

=
√
2π

K2

√
2
{∫

0

−∞
z2ϕ(z)dz∫

−
√
2z

0

√
2s1e

− 1
2
s21ds1 − ∫

0

−∞
ϕ(z)dz∫

−
√
2z

0

√
2

2
s31e
− 1

2
s21ds1}
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Combine them all, we can get the result:

h2(x) =
2
√
3√

2π
[(x2 − 1)e−x2/2 + e−3x2/2]1{x≥0} (6.17)

Lemma 6.2.6. Let N = 2. Let c > −1/N and σc =
√
(1 +Nc)/N =

√
(1 + 2c)/2. Then for

b ∈ R,

∫
0

−∞
ϕσc(z + b)dz∫

−
√
2z

0
e−

s2

2

√
2s(−z + 1√

2
s)(−z − 1√

2
s)ds

= 2
√
2[σ2

c + b2 − 1]Φ(
b

σc

) + 2σcb√
π
e
− b2

2σ2
c + 2

√
2√

1 + 2σ2
c

e
− b2

1+2σ2
c Φ
⎛
⎝

b

σc

√
1 + 2σ2

c

⎞
⎠
.

Proof.

∫
−
√
2z

0
e−

s2

2

√
2s(−z + 1√

2
s)(−z − 1√

2
s)ds

=
√
2z2∫

−
√
2z

0
se−

s2

2 ds − 1√
2
∫
−
√
2z

0
s3e−

s2

2 ds

=
√
2z2(1 − e−z2) − 1√

2
(−2z2e−z2 − 2e−z2 + 2)

=
√
2(e−z2 + z2 − 1)

On the other hand,

∫
0

−∞
ϕσc(z + b)e−z

2

dz = ∫
b

−∞
ϕσc(y)e−(y−b)

2

dy = 1√
2πσc

∫
b

−∞
e
− y2

2σ2
c
−(y−b)2

dy

= 1√
2πσc

e
− b2

1+2σ2
c ∫

b

−∞
e
−
(1+2σ2

c )
⎡⎢⎢⎢⎢⎣
y− 2bσ2

c
1+2σ2

c

⎤⎥⎥⎥⎥⎦

2

2σ2
c dy

= 1√
2πσc

e
− b2

1+2σ2
c

σc√
1 + 2σ2

c

∫
b

σc

√
1+2σ2

c

−∞
e−

x2

2 dx

= 1√
1 + 2σ2

c

e
− b2

1+2σ2
c Φ
⎛
⎝

b

σc

√
1 + 2σ2

c

⎞
⎠
;

and

∫
0

−∞
ϕσc(z + b)z2dz =

1√
2πσc

∫
0

−∞
e
− (z+b)

2

2σ2
c z2dz

= bσc√
2π

e
− b2

2σ2
c + (b2 + σ2

c)Φ(
b

σc

) ;
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and

∫
0

−∞
ϕσc(z + b)dz = Φ(

b

σc

) .

Combining all the results above, we obtain

∫
0

−∞
ϕσc(z + b)dz∫

−
√
2z

0
e−

s2

2

√
2s(−z + 1√

2
s)(−z − 1√

2
s)ds

=
√
2[σ2

c + b2 − 1]Φ(
b

σc

) + bσc√
π
e
− b2

2σ2
c +

√
2√

1 + 2σ2
c

e
− b2

1+2σ2
c Φ
⎛
⎝

b

σc

√
1 + 2σ2

c

⎞
⎠
.

Now, applying Lemma 6.2.4 with N = 2, b = κx/
√
2, c = (1 − κ2)/2 and hence σc =

√
2−κ2

2 , together with Lemma 6.2.6, we obtain

EN
GOI((1−κ2)/2) [

N

∏
j=1
∣λj − κx/

√
2∣1{λN<κx/

√
2}] = EN

GOI(c) [
N

∏
j=1
∣λj − b∣1{λN<b}]

=
√
2π

KN

√
N
∫

0

−∞
ϕσc(z + b)dz∫

−
√
2z

0
e−

s2

2

√
2s(−z + 1√

2
s)(−z − 1√

2
s)ds

=
√
2π

KN

√
N

⎧⎪⎪⎨⎪⎪⎩

κ2(x2 − 1)√
2

Φ( κx√
2 − κ2

) + κ
√
2 − κ2

2
√
π

xe
− κ2x2

2(2−κ2)

+
√
2√

3 − κ2
e
− κ2x2

2(3−κ2)Φ
⎛
⎝

κx√
(2 − κ2)(3 − κ2)

⎞
⎠

⎫⎪⎪⎬⎪⎪⎭
.

On the other hand, applying Lemma 6.2.4 with N = 2, b = 0, c = 1/2 and hence σc = 1,

together with Lemma 6.2.6, we obtain

EN
GOI(1/2) [

N

∏
j=1
∣λj ∣1{λN<0}] =

√
2π

KN

√
N

1√
6
.
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Therefore, the height density of local maxima for N = 2 is given by

ϕ(x)EN
GOI((1−κ2)/2) [∏

N
j=1 ∣λj − κx/

√
2∣1{λN<κx/

√
2}]

EN
GOI(1/2) [∏

N
j=1 ∣λj ∣1{λN<0}]

=
√
6ϕ(x)

⎧⎪⎪⎨⎪⎪⎩

κ2(x2 − 1)√
2

Φ( κx√
2 − κ2

) + κ
√
2 − κ2

2
√
π

xe
− κ2x2

2(2−κ2)

+
√
2√

3 − κ2
e
− κ2x2

2(3−κ2)Φ
⎛
⎝

κx√
(2 − κ2)(3 − κ2)

⎞
⎠

⎫⎪⎪⎬⎪⎪⎭

=
√
3κ2(x2 − 1)ϕ(x)Φ( κx√

2 − κ2
) +

κ
√
3(2 − κ2)
2π

xe−
x2

2−κ2

+
√
6√

π(3 − κ2)
e
− 3x2

2(3−κ2)Φ
⎛
⎝

κx√
(2 − κ2)(3 − κ2)

⎞
⎠
.

(6.18)

6.3 Explicit Distribution on Euclidean Space

This section will display some explicit height densities of local maxima and some

index=i0 of Gaussian random fields when N = 3,4.

6.3.1 Non Degenerate

When κ2 < N+2
N , the height density is non-degenerate, we have the following results:

72



N = 3, i0 = 1

h(x) = 72ϕ(x)
π(36 + 29

√
6)
{C1,xx

3Φ( κx√
3 − κ2

) +C2,xx
3ΦΣ1(

√
2κx

2
, κx)

+C3,xx
2e

κ2x2

2(κ2−3)Φ( 2κx√
(3 − κ2)(5 − 3κ2)

) +C4,xx
2e

κ2x2

2(κ2−3)

+C5,xx
2e

κ2x2

2(κ2−2)Φ(
√
2κx√

(4 − 2κ2)(5 − 3κ2)
) +C6,xxe

κ2x2

2(κ2−3) e−
2κ2x2

3κ4−14κ2+15

+C7,xxe
κ2x2

2(κ2−2) e−
κ2x2

6κ4−22κ2+20 +C8,xxe
3κ2x2

2(3κ2−5) +C9,xxΦ(
κx√
3 − κ2

)

+C10,xxΦΣ1(
√
2κx

2
, κx) +C11,xe

κ2x2

2(κ2−3)Φ( 2κx√
(3 − κ2)(5 − 3κ2)

)

+C12,xe
κ2x2

2(κ2−3) +C13,xe
κ2x2

2(κ2−2)Φ(
√
2κx√

(4 − 2κ2)(5 − 3κ2)
)}
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where:

C1,x =
π
√
πκ3

2

C2,x = −
π
√
πκ3

2

C3,x =
2
√
2πκ2(κ6 − 9κ4 + 27κ2 − 43)

8(3 − κ2) 52

C4,x = −
2
√
2πκ2(κ6 − 9κ4 + 27κ2 − 43)

8(3 − κ2) 52

C5,x =
2πκ2(κ2 − 2)3

(4 − 2κ2) 52

C6,x =
2
√
πκ(3κ6 − 25κ4 + 101κ2 − 127)
4(κ2 − 3)2(5 − 3κ2)1.5

C7,x =
2
√
πκ(3κ2 − 7)(1 − κ2)

8(5 − 3κ2) 32

C8,x =
3
√
πκp(1 − 2κ2)

(κ2 − 1)(5 − 3κ2) 32

C9,x = −
3π
√
πκ3

2

C10,x =
3π
√
πκ3

2

C11,x = −
√
2π(2κ8 − 15κ6 + 51κ4 − 101κ2 + 87)

4(3 − κ2) 52

C12,x =
√
2π(2κ8 − 15κ6 + 51κ4 − 101κ2 + 87)

4(3 − κ2) 52

C13,x =
√
2π(2κ8 − 15κ6 + 51κ4 − 101κ2 + 87)

4(3 − κ2) 52

Σ1 =∶
⎛
⎜⎜
⎝

3−κ2

2 −
√
2(κ2−1)

2

−
√
2(κ2−1)

2 2 − κ2

⎞
⎟⎟
⎠
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N = 3, i0 = 3

h(x) = 12
√
12ϕ(x)

29 − 6
√
6
{(3κ

3x − κ3x3

2
√
2

)
√
π[Φ(

√
3κx√

5 − 3κ2
)]

−ΦΣ1(
√
3κx,

√
3κx√

5 − 3κ2
) −ΦΣ2(

√
3κx

2
,

√
3κx√

5 − 3κ2
)]

−
√
3(2 − κ2) 12 (−κ2x2 + 2κ2 + 2)

√
6π

12
ϕ( κx√

2 − κ2
)Φ( κx√

(2 − κ2)(5 − 3κ2)
)

+
3
√
π√
2
(−9κ8x2 + 18κ8 + 81κ6x2 − 135κ6 − 243κ4x2 + 459κ4 + 387κ2x2 − 909κ2 + 783)

54(3 − κ2) 52

× ϕ( κx√
3 − κ2

)Φ( 2κx√
(3 − κ2)(5 − 3κ2)

)

+
√
2π(5 − 3κ2)κx

12
ϕ( κx√

2 − κ2
)ϕ( κx√

(2 − κ2)(5 − 3κ2)
)

+
2κx
√
2π(5 − 3κ2)(9κ4

4 −
27κ2

2 +
189
4 )

27(κ2 − 3)2
ϕ( κx√

3 − κ2
)ϕ( 2κx√

(3 − κ2)(5 − 3κ2)
)}

Σ1 =∶
⎛
⎜⎜
⎝

6 − 3κ2
√
5 − 3κ2

√
5 − 3κ2 1

⎞
⎟⎟
⎠

Σ2 =∶
⎛
⎜⎜
⎝

9−3κ2

4

√
5−3κ2

2
√
5−3κ2

2 1

⎞
⎟⎟
⎠
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N = 4, i0 = 4

h(x) = ϕ(x)
Q
{C1,xϕ(

κx√
2 − κ2

)ϕ( κx√
2κ4 − 7κ2 + 6

) +C2,xϕ(
κx√
2 − κ2

)Φ( κx√
2κ4 − 7κ2 + 6

)

+C3,xϕ(
√
3κx√

5 − 3κ2
)ϕ( κx√

6κ4 − 19κ2 + 15
) +C4,xϕ(

√
3κx√

5 − 3κ2
)Φ( κx√

6κ4 − 19κ2 + 15
)

+C5,xϕ(
κx√
3 − κ2

)Φ(
√
3κx√

2κ4 − 9κ2 + 9
)

+C6,x{ϕ(
κx√
3 − κ2

)ΦΣ2(−
2
√
3κx

κ2 − 3
,

√
3κx√

2κ4 − 9κ2 + 9
)

+ ϕ( κx√
3 − κ2

)ΦΣ3(−
√
3κx

κ2 − 3
,

√
3κx√

2κ4 − 9κ2 + 9
)}

+C7,xΦ(
√
2κx√

3 − 2κ2
) +C8,xΦΣ1(

√
2κx,

√
2κx√

3 − 2κ2
)

+C9,xϕ(
κx√
3 − κ2

)ϕ( 2κx√
3κ4 − 14κ2 + 15

)ϕ( κx√
6κ4 − 19κ2 + 15

)

+C10,xϕ(
κx√
3 − κ2

)ϕ( 2κx√
3κ4 − 14κ2 + 15

)Φ( κx√
6κ4 − 19κ2 + 15

)

+C11,xϕ(
κx√
3 − κ2

)ϕ( κx√
κ4 − 5κ2 + 6

)ϕ( κx√
2κ4 − 7κ2 + 6

)

+C12,xϕ(
κx√
3 − κ2

)ϕ( κx√
κ4 − 5κ2 + 6

)Φ( κx√
2κ4 − 7κ2 + 6

)}
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where:

Q = − 19
√
3

24
√
2π
+
√
2π√
3
(−25

24
+ 25

12
[ΦΣ4(0,0) +ΦΣ5(0,0)])

C1,x = −
√
2π(3 − 2κ2)

2592(κ2 − 2)3
(−648κ2x2 + 1944κ8 + 3888κ6x2 − 8424κ6 − 7776κ4x2 + 2648κ4

+ 5312κ2x2 + 28544κ2 − 31392)

C2,x = −
√
2πκx

324(3 − κ2) 72
(−162κ10x2 + 810κ10 + 1296κ8x2 − 6156κ8 − 3888κ6x2 + 16848κ6

+ 5184κ4x2 − 18021κ4 − 2608κ2x2 + 2052κ2 + 5772)

C3,x = −
√
2π(3 − 2κ2)(183κ4 + 4κ2x2 − 602κ2 + 495)

162(3κ2 − 5)3

C4,x =
√
2πκx(207κ4 + 4κ2x2 − 678κ2 + 555)

162(5 − 3κ2) 72

C5,x = −
2π(108κ8 + 288κ6x2 − 1008κ6 + 64κ4x4 − 1344κ4x2 + 3432κ4 + 1440κ2x2)

16(3 − κ2) 92

− 2π(−5040κ2 + 2700)
16(3 − κ2) 92

C6,x =
2π

144(3 − κ2) 92
(972κ8 + 2592κ6x2 − 9072κ6 + 576κ4x4 − 12096κ4x2 + 30888κ4

+ 12960κ2x2 − 45360κ2 + 24300)

C7,x = −
√
2πκ4(4x4 − 24x2 + 12)

16

C8,x =
√
2πκ4(4x4 − 24x2 + 12)

8

C9,x = ({512
√
2π{{(2κ2 − 3)2

× [3
√
2(174κ8 + 217κ6x2 − 1379κ6 − 690κ4x2 + 3975κ4 + 549κ2x2 − 4977κ2 + 2295)

4
√
3(κ2 − 3)3

√
3 − 2κ2(3κ2 − 5)3

+ 18κ2x2(3 − 2κ2) 32√
6(κ2 − 3)3(6κ2 − 10)

+
72
√
3κ2x2(17κ2 − 27)( κ2−3

9κ2−15)
3
2 (κ2

2 −
3
4)√

6(3 − κ2) 92
√
(5 − 3κ2)(3 − 2κ2)

]}/16

− κx(3 − 2κ2) 32 (
36κx(κ2

2 −
3
4)√

3(κ2 − 3)2(6κ2 − 10)
−
9
√
3κx( κ2−3

9κ2−15)
3
2 (17κ2 − 27)

2
√
3(3 − κ2) 72

√
5 − 3κ2

)/2
√
2

+ 9κ2x2(3 − 2κ2) 32
4
√
6(3κ4 − 14κ2 + 15)

}}/81
√
3)
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C10,x = {{512
√
2π{{(2κ2 − 3)2

× {
9κx
√
3 − 2κ2( 4

√
3−2κ2√

3(5−3κ2) −
2
√
3( κ2−3

9κ2−15 )
3
2
√
3−2κ2(−3κ6−32κ4x2+23κ4+48κ2x2−57κ2+45)

√
3(3−κ2)

5
2 (3κ2−5)√

2(κ2 − 3)3

− 3
√
2κ3x3(2κ2 − 3)2

√
3(κ2 − 3)4

√
5 − 3κ2

− 18
√
2κ3x3(2κ2 − 3)2

√
3(κ2 − 3)4(5 − 3κ2) 32

+
√
2κx(2κ2 − 3)(−1620κ6 − 576κ4x2 + 10476κ4 + 864κ2x2 − 21708κ2 + 14580)

6
√
3(κ2 − 3)4(5 − 3κ2) 72

}}

− {κx(3 − 2κ2) 32 ( 9
√
2κ2x2(3 − 2κ2) 32

2
√
6(κ2 − 3)3

√
5 − 3κ3

−
36
√
3−2κ2√

3(5−3κ2) −
18
√
3( κ2−3

9κ2−15 )
3
2
√
3−2κ2(−3κ6−32κ4x2+23κ4+48κ2x2−57κ2+45)
√
3(3−κ2)

5
2 (3κ2−5)

4(κ2 − 3)2

+ 18κ2x2(3 − 2κ2) 32
√
2(κ2 − 3)3(5 − 3κ2) 32

)}/(2
√
2) +

6
√
2κ3x3(κ2

2 −
3
4)√

3(5 − 3κ2)(κ2 − 3)

+
3
√
2κ3x3(2κ2 − 3)(κ2

2 −
3
4)(9κ2 − 21)

√
3(κ2 − 3)2(5 − 3κ2) 32

}}/(8
√
3) + 16πκx(2κ2 − 3)(5κ2 − 9)

9(κ2 − 3)2(5 − 3κ2) 32
}

C11,x = {
4π(3 − 2κ2) 32
9κ4 − 45κ2 + 54

+ {512
√
2π{{(2κ2 − 3)2

{3
√
2(22κ8 + 19κ6x2 − 191κ6 − 69κ4x2 + 609κ4 + 63κ2x2 − 846κ2 + 432)

3
√
3(3 − 2κ2)(κ2 − 2)3(κ2 − 3)3

+

9κ2x2(3 − 2κ2) 32
2
√
6(κ2 − 2)(κ2 − 3)3

+
12κ2x2(κ2−3

κ2−2)
3
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2 −
3
4)(5κ2 − 9)

√
6(2 − κ2)(3 − 2κ2)(3 − κ2) 92
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κx(3 − 2κ2) 32 ( 9κx(κ

2

2
− 3

4
)√

3(κ2−2)(κ2−3)2 −
3κx(κ

2−3
κ2−2 )

3
2 (5κ2−9)

4
√
3(2−κ2)(3−κ2)

7
2
)

2
√
2

+ 9κ2x2(3 − 2κ2) 32
8
√
6(κ4 − 5κ2 + 6)

}}/(81
√
3)}
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C12,x = {{512
√
2π{{(2κ2 − 3)2

× {
9κx
√
3 − 2κ2( 2

√
3−2κ2√

3(2−κ2) −
2(κ

2−3
κ2−2 )

3
2
√
3−2κ2(−κ6−2κ4x2+8κ4+3κ2x2−21κ2+18)

6
√
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5
2

)
√
2(κ2 − 3)3

− 3
√
2κ3x3(2κ2 − 3)2

2
√
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− 9
√
2κ3x3(2κ2 − 3)2

4
√
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√
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√
3(2 − κ2) 72 (κ2 − 3)4

}}/16

− {κx(3 − 2κ2) 32 ( 9
√
2κ2x2(3 − 2κ2) 32

4
√
6(2 − κ2)(κ2 − 3)3

−
18
√
3−2κ2√

3(2−κ2) −
6(κ

2−3
κ2−2 )

3
2
√
3−2κ2(−κ6−2κ4x2+8κ4+3κ2x2−21κ2+18)

2
√
3(κ2−2)(3−κ2)

5
2

4(κ2 − 3)2

+ 18κ2x2(3 − 2κ2) 32
8
√
3(2 − κ2) 32 (κ2 − 3)3

)}/(2
√
2) +

3
√
2κ3x3(κ2

2 −
3
4)√

3(2 − κ2)(κ2 − 3)

+ 9
√
2κ3x3(2κ2 − 3)2(2κ2 − 5)
16
√
3(2 − κ2) 32 (κ2 − 3)2

}}/(81
√
3) + 4πκx(8κ4 − 30κ2 + 27)

9(2 − κ2) 32 (κ2 − 3)2
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Σ1 =∶
⎛
⎜⎜
⎝

4 − 2κ2
√
3 − 2κ2

√
3 − 2κ2 1

⎞
⎟⎟
⎠

Σ2 =∶
⎛
⎜⎜
⎝

9κ2−15
κ2−3

2
√
3−2κ2√
3−κ2
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√
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1

⎞
⎟⎟
⎠

Σ3 =∶
⎛
⎜⎜
⎝

3κ2−6
κ2−3

√
3−2κ2√
3−κ2

√
3−2κ2√
3−κ2

1

⎞
⎟⎟
⎠

Σ4 =∶
⎛
⎜⎜
⎝

5 2

2 1

⎞
⎟⎟
⎠

Σ5 =∶
⎛
⎜⎜
⎝
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1 1

⎞
⎟⎟
⎠
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6.3.2 Degenerate

When κ2 = N+2
N , the height density is degenerate, we have the following results:

N = 3, i0 = 1

h(x) = 72ϕ(x)
π(36 + 29

√
6)
{5π
√
15π

18
x3Φ(

√
5

2
x) − 5π

√
15π

18
x3ΦΣ1(

√
30

6
x,

√
15

3
x)

− 155
√
6π

72
x2e−

5
8
x2

σ(x) + 155
√
6π

72
x2e−

5
8
x2

− 5
√
6π

36
x2e−

5
2
x2

σ(x) − 5π
√
15π

6
xΦ(
√
5

2
x)

+ 5π
√
15π

6
xΦΣ1(

√
30

6
x,

√
15

3
x) + 4

√
6π

9
e−

5
8
x2

σ(x)

− 4
√
6π

9
e−

5
8
x2 − 4

√
6π

9
e−

5
2
x2

σ(x)}

where:

Σ1 =∶
⎛
⎜⎜
⎝

2
3 −2

√
2

6

−2
√
2

6
1
3

⎞
⎟⎟
⎠

σ(x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 x < 0

1
2 x = 0

1 x > 0
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N = 3, i0 = 3

h(x) = 12
√
12ϕ(x)

29 − 6
√
6
{(5
√
30

12
x − 5

√
30

36
x3)
√
π[1 −Φ(

√
5x) −Φ(

√
5

2
x)]

+ (5
√
6π

36
x2 − 4

√
6π

9
)ϕ(
√
5x) + 3

√
3π(2480x2 + 512)

1728
√
2

ϕ(
√
5

2
x)}1{x≥0}

N = 4, i0 = 4

h(x) = ϕ(x)
Q
{c1,xϕ(

√
3x) + c2,xϕ(3x) + c3,xϕ(x)

+ c4,x(ϕ(x)Φ(2
√
2x) + ϕ(x)Φ(

√
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√
3x)}1{x≥0}
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2
√
2πx

2187
(2415

16
− 627x2

16
)

C2,x =
4
√
6πx

81
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4
)

C3,x = −
2
√
2π

81
√
3
(144x4 + 108x2 + 27

4
)

C4,x =
2
√
2π

729
√
3
(1296x4 + 972x2 + 243

4
)

C5,x = −
√
2π(9x4 − 54x2 + 27)

16

C6,x =
√
2π(9x4 − 54x2 + 27)

8

Σ1 =∶
⎛
⎜⎜
⎝

5 2

2 1

⎞
⎟⎟
⎠

Σ2 =∶
⎛
⎜⎜
⎝

2 1

1 1

⎞
⎟⎟
⎠
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6.3.3 Simulation

From the explicit formulae the last two sections given, there are only a small part of

height distribution can be calculated directly without too much calculation when N is not

large. This section will give the algorithm to simulate the height distribution when it can

not be calculated easily.

Non Degenerate

For Non-Degenerate condition, we can simulate the height density for index=i by the fol-

lowing steps:

1. Simulate n GOI matrices with given N and κ for both denominator and numerator.

2. Calculate the eigenvalues of each GOI matrix and order them from small to large,

store the reordered eigenvalues.

3. For a series of x, which represents the range of height density. Plug the n stored

eigenvalues into the formula 6.6 one by one to get the expectation of both denomina-

tor and numerator.

When κ2 ≤ 1, the simulation approach for the GOI matrix can still be employed. How-

ever, utilizing the GOE matrix simplifies the calculation of both the denominator and nu-

merator. The process of simulating the height density is similar to the GOI method, with the

difference being the substitution of the eigenvalues of the GOE matrix into Theorem 6.1.1.

The figure 6.1 shows the exact height densities of critical points of isotropic Gaussian fields
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N = 1 N = 2 N = 3

N = 4 N = 5 N = 6
Figure 6.1: Exact height densities of critical points of isotropic Gaussian fields on RN . For
each figure, the solid, dashed and dotted curves are densities with κ = 0.6, κ = 1 and the
boundary case κ =

√
(N + 2)/N , respectively; and for a fixed κ, the densities from left to

right, indicated by different colors, are h0(x), h1(x), . . . , hN(x), respectively.

on RN .

Degenerate

The steps to simulate the Degenerate height density is similar to the Non-Degenerate one,

just change the plugged in expectations for denominator and numerator.
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6.4 Asymptotic Distribution on Euclidean Space

When N → ∞, (N + 2)/N → 1, which means nearly all κ2 < 1. When κ2 < 1, By

Lemma A.1 in the work of Cheng[14], the density (6.6) can be written as

fi(x) =
ϕ(x)EN+1

GOE [e
λ2i+1
2
− (λi+1−κx/

√
2)2

1−κ2 ]

√
1 − κ2EN+1

GOE [e−
λ2
i+1
2 ]

. (6.19)

So if we know the asymptotic distribution of each eigenvalue of GOE matrix, the corre-

sponding asymptotic distribution of equation 6.19 can also be achieved.

6.4.1 The Distribution of the Eigenvalues Which are Not the Maximum

From the paper of O’Rourke, S.[29], we can get the following results with the defini-

tion:

G(t) = 2

π ∫
t

−1

√
1 − x2dx − 1 ≤ t < 1. (6.20)

Theorem 6.4.1. Let x1 < x2 < ⋅ ⋅ ⋅ < xn be the ordered eigenvalues from matrix drawn from

the GOE, GUE, GSE. Consider {xki}mi=1 such that 0 < ki − ki+1 ∼ nθi , 0 < θi ≤ 1, and ki
n →

ai ∈ (0,1) as n→∞. Define si = si(ki, n) = G−1(ki/n) and set

Xi =
xki − si

√
2n

( logn
2β(1−s2i )n

) 12
, i = 1, . . . ,m

Where β = 1,2,4 corresponds to the GOE, GUE, GSE. Then as n→∞,

P [X1 ≤ ξ1, . . . ,Xm ≤ ξm]Ð→ ΦΛ(ξ1, . . . , ξm)

Where ΦΛ is the cdf for the m-dimensional normal distribution with covariance matrix

Λi,j = 1 −max{θk ∶ i ≤ k ≤ j ≤m} if i ≤ j and Λi,j = 1.

In this project, we only take one eigenvalue, so we can take m = 1, then Theorem 6.4.1

can be stated as follow.
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Corollary 6.4.1.1. Set t = t(k,n) = G−1(k/n)where k = k(n) is such that k/n→ a ∈ (0,1)

as n →∞. If xk denotes eigenvalue number k in the GOE, GUE, or GSE, it holds that, as

n→∞,
xk − t

√
2n

( logn
2β(1−t2)n)

1
2

Ð→ N(0,1)

in distribution where β = 1,2,4 corresponds to the GOE, GUE, or GSE.

By the corollary 6.4.1.1, we can calculate the asymptotic height density by (1.5).

Theorem 6.4.2. When N → ∞ and κ2 ≤ 1, let µ = t
√
2n and σ = logn

2(1−t2)n , where t is

defined before, the asymptotic height density for index(∇2X(t)) = i0 can be written as a

form of normal distribution:

h(x) = 1√
2πα

e−
(x−

√
2κµ

σ2+1
)2

2α

Where α = κ2σ2−κ2+σ2+1
σ2+1 , which is constant.

Proof. From (1.5) and corollary 6.4.1.1, we can write the height density as follow:

h(x) =
ϕ(x)EN+1

GOE(e
λ2i0+1

2
−
(λi0+1−

κx√
2
)2

1−κ2 )
√
1 − κ2EN+1

GOE(e−
λ2
i0+1
2 )

(6.21)

The denominator is:

√
1 − κ2EN+1

GOE(e−
λ2i0+1

2 ) =
√
1 − κ2∫

∞

−∞
e−

λ2i0+1
2

1√
2πσ

e−
(λi0+1−µ)

2

2σ2 dλi0+1

=
√
1 − κ2

√
1 + σ2

e
− µ2

2(σ2+1)

(6.22)

where µ = t
√
2n and σ = ( logn

2(1−t2)n)
1
2 , and t is the solution of G−1(k/n) = ai
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Then the numerator is:

ϕ(x)EN+1
GOE(e

λ2i0+1
2
−
(λi0+1−

κx√
2
)2

1−κ2 )

=ϕ(x)∫
∞

−∞
e
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2
−
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κx√
2
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1−κ2
1√
2πσ

e−
(λi0+1−µ)

2

2σ2 dλi0+1

=ϕ(x)∫
∞

−∞
e
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2
−

λ2i0+1
1−κ2 +

√
2κxλi0+1
1−κ2 − κ2x2

2(1−κ2)
1√
2πσ

e−
λ2i0+1

−2µλi0+1+µ
2

2σ2 dλi0+1

=ϕ(x)∫
∞

−∞

1√
2πσ

e
( 1
2
− 1

1−κ2 −
1

2σ2 )λ2
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√

2κx
1−κ2 +

µ

σ2 )λi0+1−(
κ2x2

2(1−κ2)+
µ2

2σ2 )dλi0+1

(6.23)

Let a = −(12 −
1

1−κ2 − 1
2σ2 ), b =

√
2κx

1−κ2 + µ
σ2 and c = −( κ2x2

2(1−κ2) +
µ2

2σ2 ), then the integral can be

written as:

ϕ(x)EN+1
GOE(e

λ2i0+1
2
−
(λi0+1−

κx√
2
)2

1−κ2 )

=ϕ(x)∫
∞

−∞

1√
2πσ

e
( 1
2
− 1

1−κ2 −
1

2σ2 )λ2
i0+1
+(
√

2κx
1−κ2 +

µ

σ2 )λi0+1−(
κ2x2

2(1−κ2)+
µ2

2σ2 )dλi0+1

=ϕ(x)∫
∞

−∞

1√
2πσ

e−aλ
2
i0+1
+bλi0+1+cdλi0+1

=ϕ(x)∫
∞

−∞

1√
2π 1√

2a

1√
2aσ

e
−
(λi0+1−

b
2a )

2

2( 1√
2a
)2

ec+
b2

4adλi0+1

=ϕ(x) 1√
2aσ

ec+
b2

4a

(6.24)

Then we can get the height distribution:

h(x) =
ϕ(x) 1√

2aσ
ec+

b2

4a

√
1−κ2√
1+σ2

e
− µ2

2(σ2+1)

= 1
√
2π
√

1
2α

e
−
(x−

√
2κµ

σ2+1
)2

2(
√

1
2α )

2 ,

(6.25)

where α = σ2+1
2(κ2σ2−κ2+σ2+1) , which is constant, if we let α = (κ

2σ2−κ2+σ2+1)
σ2+1 , the results in the

theorem can be obtained.
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6.4.2 The Distribution of the Largest Eigenvalue of GOE Matrix

From the previously mentioned theorem, we have obtained the distribution of any eigen-

value of the GOE matrix when ai ∈ (0,1). Now, we will focus on describing the distribution

of the largest eigenvalue of the GOE matrix.

Tracy-Widom Distribution

For GOE matrix, the Tracy-Widom distribution can be defined as:

F (x) = lim
n→∞

Prob ((λmax −
√
2n)(
√
2)n1/6 ≤ x)

Where F (x) is the CDF of x.

Simulation of Tracy-Widom Distribution

With the Tracy-Widom distribution, we can obtain the height density through simulation.

Since the Tracy-Widom distribution does not have an explicit form, we need to simulate it

using numerical methods. The distribution can be simulated using the following steps:

1. For a given N , we can get the numerical CDF(F (x)) of Tracy-Widom distribution.

2. Calculate the numerical PDF(fN(x)) with small enough step size.

3. Calculate the expectation of both denominator and numerator of the GOE formula in

theorem 6.1.1 by calculating the Riemann Integral.

6.4.3 Simulation

This section will show the asymptotic distribution when N is growing large.
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ai = 0.5 ai = 0.75 Maximum
Figure 6.2: The comparison between asymptotic distributions and simulations.

6.5 Explicit Distribution on Sphere

The previous section was based on RN , whereas this section demonstrates the analo-

gous output of the height density on sphere.

6.5.1 Non Degenerate

When 0 < κ2 − η2 < (N + 2)/N , the height density is non-degenerate, we have the

following implicit results:

Fi(u) =
∫
∞
u ϕ(x)EGOI((1+η2−κ2)/2)[∏N

j=1 ∣λj − κx/
√
2∣1{λi<κx/

√
2<λi+1}]dx

EGOI((1+η2)/2)[∏N
j=1 ∣λj ∣1{λi<0<λi+1}]

(6.26)

Then, we can get the height distribution:

hi(u) =
ϕ(u)EGOI((1+η2−κ2)/2)[∏N

j=1 ∣λj − κu/
√
2∣1{λi<κu/

√
2<λi+1}]

EGOI((1+η2)/2)[∏N
j=1 ∣λj ∣1{λi<0<λi+1}]

(6.27)
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N = 3, i0 = 0

h(x) =
⎧⎪⎪⎨⎪⎪⎩

1

2
√
2(3 + η2)

[3
2
+ (1 + η

2)(2η4 + 7η2 + 11)
4(3 + η2)

] + (η
2 − 1)(η2 + 2)
4
√
2(2 + η2)

⎫⎪⎪⎬⎪⎪⎭

−1

ϕ(x)

× {[κ
2[(1 + η2 − κ2)3 + 6(1 + η2 − κ2)2 + 12(1 + η2 − κ2) + 24]

4(3 + η2 − κ2)2
x2

+ 2(1 + η2 − κ2)3 + 3(1 + η2 − κ2)2 + 6(1 + η2 − κ2)
4(3 + η2 − κ2)

+ 3

2
] 1√

2(3 + η2 − κ2)

× e−
κ2x2

2(3+η2−κ2)Φ
⎛
⎝

2κx√
(3 + η2 − κ2)(5 + 3η2 − 3κ2)

⎞
⎠

+ [κ
2(2 + η2 − κ2)

4
x2 + (η

2 − κ2)(1 + η2 − κ2)
2

− 1] 1√
2(2 + η2 − κ2)

× e−
κ2x2

2(2+η2−κ2)Φ
⎛
⎝

κx√
(2 + η2 − κ2)(5 + 3η2 − 3κ2)

⎞
⎠

+ [7 + η2 − κ2 + 3(1 + η2 − κ2)3 + 12(1 + η2 − κ2)2 + 28(1 + η2 − κ2)
2(3 + η2 − κ2)

]

× κ

4
√
π(3 + η2 − κ2)

√
5 + 3η2 − 3κ2

xe
− 3κ2x2

2(5+3η2−3κ2)

+[κ2x2 + 3(η2 − κ2)]
√
πκ

4
x [ΦΣ1 (0,

κx√
2
) +ΦΣ2 (0,

κx√
2
)]}

(6.28)

Where:

Σ1 =
⎛
⎜⎜
⎝

3
2 −1

−1 3+η2−κ2

2

⎞
⎟⎟
⎠

, Σ2 =
⎛
⎜⎜
⎝

3
2 −1

2

−1
2

2+η2−κ2

2

⎞
⎟⎟
⎠
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Simulation

6.5.2 Degenerate

When κ2−η2 = N+2
N , it represents a degenerate condition, and we can derive the follow-

ing implicit formula:

Fi(u) =
EGOI((1+η2)/2)[∏N

j=1 ∣λj ∣1{λi<0<λi+1}1{∑N
j=1 λj/N≤−

√
(N+2+Nη2)/(2N)u}]

EGOI((1+η2)/2)[∏N
j=1 ∣λj ∣1{λi<0<λi+1}]

(6.29)

With the implicit form of CDF of the height distribution, we can get the corresponding

PDF.

N = 1 N = 2 N = 3

N = 4 N = 5 N = 6
Figure 6.3: Exact height densities of critical points of isotropic Gaussian fields on SN . In
each figure, the solid, dashed and dotted curves are densities with (κ2, η2) = (0.64,0.16),
(κ2, η2) = (1.5,0.5) and the boundary case (κ2, η2) = (2,1 − 2/N), respectively; and for a
fixed pair (κ2, η2), the densities from left to right, indicated by different colors, are h0(x),
h1(x), . . . , hN(x), respectively.
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6.6 Asymptotic Distribution on Sphere

From the work of Cheng and Schwartzman [14], we know the implicit height distribu-

tion can be written as:

Fi(u) =
E[µi(X,u)]
E[µi(X)]

=

√
1 + η2 ∫

∞
u ϕ(x)EN+1

GOE {exp [
λ2
i+1
2 −

(λi+1−κx/
√
2)2

1+η2−κ2 ]}dx
√
1 + η2 − κ2EN+1

GOE {exp [
λ2
i+1
2 −

λ2
i+1

1+η2 ]}

(6.30)

Then the density can be expressed as:

hi(x) =

√
1 + η2ϕ(x)EN+1

GOE {exp [
λ2
i+1
2 −

(λi+1−κx/
√
2)2

1+η2−κ2 ]}dx
√
1 + η2 − κ2EN+1

GOE {exp [
λ2
i+1
2 −

λ2
i+1

1+η2 ]}
(6.31)

Theorem 6.6.1. The asymptotic peak height distribution on sphere is:

h(x) = 1√
2πβ

e−
(x−

√
2κµ

1+η2+σ2−η2σ2 )
2

2β (6.32)

Where β = 1+σ2−κ2+η2+κ2σ2−η2σ2

1+η2+σ2−η2σ2

Proof. From (6.2) and corollary 6.4.1.1 The denominator is:

√
1 + η2 − κ2EN+1

GOE(e
λ2i+1
2
− λ2i+1

1+η2 )

=
√
1 + η2 − κ2∫

∞

−∞
e

λ2i+1
2
− λ2i+1

1+η2
1√
2πσ

e−
(λi+1−µ)

2

2σ2 dλi+1

=
√
1 + η2 − κ2∫

∞

−∞

1√
2πσ

e
(σ2+η2σ2−2σ2−1−η2)λ2i+1+(2µ+2µη2)λi+1−(µ

2+µ2η2)
2(1+η2)σ2 dλi+1

=
√
(η2 + 1)(1 + η2 − κ2)
σ2 + η2 − σ2η2 + 1

e
µ2(η2−1)

2(−η2σ2+η2+σ2+1)

(6.33)

Then the numerator is:

ϕ(x)EN+1
GOE(e

λ2i+1
2
− (λi+1−κx/

√
2)2

1+η2−κ2 )

=∫
∞

−∞

1√
2π

e−
x2

2 e
λ2i+1
2
− (λi+1−κx/

√
2)2

1+η2−κ2
1√
2πσ

e−
(λi+1−µ)

2

2σ2 dλi+1

(6.34)
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Do some calculation, we can get:

√
1 + η2ϕ(x)EN+1

GOE(e
λ2i+1
2
− (λi+1−κx/

√
2)2

1+η2−κ2 )

= 1√
2π

√
(1 + η2)(η2 − κ2 + 1)

σ2 + η2 − κ2 − σ2η2 + σ2κ2 + 1
e
−−η

2µ2+κ2µ2−κ2σ2x2+κ2x2−2
√

2κµx+µ2+σ2x2+x2
−2η2σ2+2η2+2κ2σ2−2κ2+2σ2+2

= 1√
2π

√
(1 + η2)(η2 − κ2 + 1)

α
e−
−η2σ2+η2+σ2+1

2α
x2+

√
2κµ
α

x−−η
2µ2+κ2µ2+µ2

2α

(6.35)

Where α = −η2σ2 + η2 + κ2σ2 − κ2 + σ2 + 1, then we can get the height distribution as the

form:

h(x) = 1√
2πβ

e−
(x−

√
2κµ

1+η2+σ2−η2σ2 )
2

2β (6.36)

Where β = 1+σ2−κ2+η2+κ2σ2−η2σ2

1+η2+σ2−η2σ2

6.6.1 Simulation

This section demonstrates the performance of the asymptotic distribution in terms of its

similarity to the simulated height density.
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Figure 6.4: The comparison between asymptotic distributions and simulations when N =
20,60,200, ai = 0.5,0.75 and maximum eigenvalue with κ2 = 0.64, η2 = 0.16
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