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ABSTRACT

There is intense interest in adopting computer-aided diagnosis (CAD) systems,

particularly those developed based on deep learning algorithms, for applications in a

number of medical specialties. However, success of these CAD systems relies heavily

on large annotated datasets; otherwise, deep learning often results in algorithms that

perform poorly and lack generalizability. Therefore, this dissertation seeks to address

this critical problem: How to develop efficient and effective deep learning algorithms

for medical applications where large annotated datasets are unavailable. In doing so,

we have outlined three specific aims: (1) acquiring necessary annotations efficiently

from human experts; (2) utilizing existing annotations effectively from advanced archi-

tecture; and (3) extracting generic knowledge directly from unannotated images. Our

extensive experiments indicate that, with a small part of the dataset annotated, the

developed deep learning methods can match, or even outperform those that require

annotating the entire dataset. The last part of this dissertation presents the impor-

tance and application of imaging in healthcare, elaborating on how the developed

techniques can impact several key facets of the CAD system for detecting pulmonary

embolism. Further research is necessary to determine the feasibility of applying these

advanced deep learning technologies in clinical practice, particularly when annotation

is limited. Progress in this area has the potential to enable deep learning algorithms

to generalize to real clinical data and eventually allow CAD systems to be employed

in clinical medicine at the point of care.
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Chapter 1

INTRODUCTION

Behind the great success of medical imaging, a crisis is looming: the number

of imaging studies, the workload of radiologists, and the health care cost related

to imaging are rising rapidly. We are facing an unprecedented challenge: image

data explosion—modern imaging systems generate enormous volumes of data, far

exceeding human abilities for interpretation. What is critical, however, is not the

images themselves, but rather the clinically relevant information contained within

them. To automatically glean this information from medical images, deep learning

holds great promise (Goodfellow et al., 2016) in improving diagnosis accuracy and

efficiency.

Modern computer-aided diagnosis has greatly benefited from deep learning ad-

vances in disease/organ detection, classification, and segmentation. There is no doubt

that the impact of deep learning will be phenomenal—most medical images will be

interpreted by computers even before they reach a radiologist in the future. Many

studies have demonstrated promising results in complex diagnostics spanning derma-

tology (Esteva et al., 2017; Haenssle et al., 2018), radiology (Cheng et al., 2016; Cicero

et al., 2017; Kooi et al., 2017; Ardila et al., 2019), ophthalmology (Gulshan et al.,

2016; Poplin et al., 2018; De Fauw et al., 2018), and pathology (Beck et al., 2011;

Cireşan et al., 2013; Charoentong et al., 2017; Yamamoto et al., 2019), to name a few.

However, developing such systems is impeded by a significant barrier: deep learning

is data hungry by nature, demanding large-scale, high-quality annotated datasets;

otherwise, deep learning often results in algorithms that perform poorly and lack

1



Model

Applications

Annotate

Data Data & Annotation

Transfer learning

Feature learning

Aim 1

Aim 3

Aim 2

Figure 1.1: The overall pipeline of deep learning algorithms engaged in healthcare
process: (1) obtaining annotation from human expert; (2) training and validating
a deep model using these annotation; and (3) deploying the deep model in clinical
practice. Our objective is to minimize manual annotation efforts for rapid, precise
computer-aided diagnosis systems. In doing so, we have outlined three specific aims:
(1) acquiring necessary annotation efficiently from human experts; (2) utilizing ex-
isting annotation effectively from advanced architecture; and (3) extracting generic
knowledge directly from unannotated images. As a result, given the same amount of
annotation, our deep learning models can yield higher performance; maintaining the
similar performance, we ask for less annotation.

generalizability on new data.

Annotating medical images is not only tedious and time consuming, but it also

requires costly, specialty-oriented knowledge and skills, which are not easily accessible.

To overcome this barrier, our objective is to develop innovative, annotation-efficient

methodologies by exploiting the intrinsic characteristics of medical images. In this

dissertation, we seek to address the critical problem: How to develop efficient and

effective deep learning methods for medical applications where large annotated datasets

are unavailable. The dream of “big data” induces the misconception that more data

can promise higher performance, so we keep asking human experts to annotate as

many data as possible. However, the performance of deep models is not linearly

correlated to the number of annotated data; instead, there comes the plateau where

even annotating more data cannot further improve the accuracy. This is due to

2



the inevitable human error in annotation. Every task and model will encounter

this bottleneck plateau. In essence, the amount of annotated data that can lead to

the performance plateau is dependent on the complexity of the task, but it is also

exceedingly influenced by the efficacy of the learning strategy and the capacity of

the model architecture. This dissertation mainly focuses on optimizing the learning

strategy and maximizing the model capacity, leading to our hypothesis that:

With a small part of the dataset annotated, we can deliver deep models that

match, or even outperform those that require annotating the entire dataset.

We base this hypothesis on three pillars as outlined in Figure 1.1. First, wisely se-

lecting important samples can reduce the annotation cost in comparison with random

selection. A common procedure of determining which sample needs to be annotated

first by human experts is called “human-in-the-loop” active learning. Second, multi-

scale feature aggregation in deep models can address tasks with higher complexity.

Image segmentation, as an example, is one of the most complicated tasks in medical

image analysis, demanding rich image features that span levels from low to high, and

scales from small to large. Finally, deep models with general-purpose image represen-

tation can be built upon the consistent, recurrent anatomical structure embedded in

medical images. We envision that these generic models can serve as a primary source

of transfer learning for many medical imaging tasks, even with limited annotated

data.

1.1 What is Annotation?

Annotation is the process of assigning labels to raw data in preparation for train-

ing the computer on the pairs of data and labels; then, the computer can predict

labels for many new data. For the development of deep learning methods, supervised
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Figure 1.2: When harnessing large-scaled annotated datasets to advance medical
imaging, the key question is what annotation should be collected. There are several
types of annotation as per the task requirements in clinical practice. Different types
of annotation come with different associated costs. For example, to annotate lung
nodules for the tasks of classification, detection, and segmentation, human experts
must consider different types of annotation—labeling the existence of the nodule,
indicating its location, and drawing a contour of its boundary, respectively. These
three types of annotation are anticipated to span manual annotation efforts from easy
to hard, annotation qualities from coarse to fine, and annotation time from short to
long.

learning is the most prominent learning paradigm, in which the annotation is used

to guide model learning and error propagating. Therefore, annotating datasets is

an indispensable stage of data processing in the AI era. For natural imaging, data

is collected from numerous photos from social media and annotation is often given

by non-experts through crowdsourcing (Kovashka et al., 2016). Annotating medical

images, however, demands costly, specialty-oriented knowledge and skills, which are

not easily accessible. Thereby, medical image annotation is done mainly by human

experts, who manually and precisely annotate the existence, appearance, and severity

of diseases in each medical image with the help of appropriate software tools, such as

Lionbridge AI, ITK-SNAP, Cogito, Labelbox, 3D Slicer, etc. For some abnormalities

that experts cannot immediately recognize from images, biopsy outcomes can also

be used as annotation. Figure 1.2 illustrates different types of annotation in medical
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imaging. This dissertation utilizes the annotation tagged with existing benchmark

datasets as the gold standard to train and validate deep learning methods.

1.2 The Barrier: Not Enough Annotation

Deep learning methods are data hungry by nature, requiring sufficiently large-

scale, high-quality, well-integrated annotated datasets—more so than other algo-

rithms. Recent studies suggest that, to match human diagnostic precision, deep learn-

ing methods require 42,290 radiologist-annotated CT images for lung cancer diagno-

sis (Ardila et al., 2019), 137,291 radiologist-annotated mammograms images for breast

cancer identification (McKinney et al., 2020), 129,450 dermatologist-annotated im-

ages for skin cancer classification (Esteva et al., 2017), and 128,175 ophthalmologist-

annotated retinal images for diabetic retinopathy detection (Gulshan et al., 2016).

Without such large annotated datasets, deep learning often results in algorithms that

perform poorly and lack generalizability on new data. Nonetheless, rarely do we have

a perfectly-sized and carefully-annotated dataset to train, validate, and test a deep

learning model, particularly for applications in medical imaging, where both data

and annotation are expensive to acquire. This requirement becomes more challeng-

ing in situations when quickly responding to global pandemics or when scaling up to

several rare diseases where it is impractical to collect large quantities of annotated

data. Manual annotation of medical images is still the key bottleneck in translating

deep learning advancements into clinically useful computer-aided diagnosis (CAD)

systems. Consequently, there is a pressing need for innovative methodologies that

enable annotation-efficient deep learning for medical image analysis.
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1.3 Overview of Contributions

This dissertation starts with a brief introduction of the concept of “annota-

tion”, followed by the motivation of developing annotation-efficient deep learning

for computer-aided diagnosis. Specifically, we describe some of the greatest achieve-

ments of deep learning in medical imaging, associated with the number of annotation

efforts behind these successes, underlining the desire to improve the efficiency of their

development procedure.

Chapter 2 compiles the role of annotation in developing computer vision algo-

rithms from a historical perspective, shedding light on a discussion of current limita-

tions and future premises. We then outline three unique advantages that have been

stimulating the development of annotation-efficient deep learning for computer-aided

diagnosis, including continual learning capabilities, representation learning capabili-

ties, and recurrent anatomical structures. This chapter closes with an extensive review

of how technical advancements address the barrier of annotation sparsity by harness-

ing the three unique advantages. Along the way, we highlight the novelty of the

methodologies that we have developed by contrasting them with existing approaches.

Chapter 3 discusses how to actively select patients/samples for annotation. We

have devised a novel annotation query procedure to naturally integrate active learning

and transfer learning into a single framework, reducing the manual annotation cost

by at least half. Specifically, we combine newly annotated data with misclassified

data by the current model, supplemented with continuous fine-tuning to accelerate

model training, thereby encouraging the reuse of data. This procedure begins with

a completely empty annotated dataset, improving the deep model’s performance by

actively selecting the most informative and representative samples. Studying differ-

ent active learning strategies is important because an efficient “human-in-the-loop”
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procedure encourages label and model reuse, while additionally assisting radiologists

in quickly dismissing patients with negative results. This work was one of only five

papers in biomedical imaging accepted by CVPR-2017 (Zhou et al., 2017c). Conse-

quently, this technique has been presented in several journal publications (Zhou et al.,

2019b, 2021b) and filed as a US patent application.

Chapter 4 discusses how to design advanced architectures that achieve annotation

efficiency. We have designed an advanced neural architecture, named UNet++, for

disease and organ segmentation, leveraging the power of existing annotation for im-

proved performance. In doing so, we employed an efficient ensemble of U-Nets (Falk

et al., 2019) of varying depths, which partially share an encoder and co-learn simul-

taneously using deep supervision, to alleviate the unknown network depth. We also

redesigned skip connections to accommodate feature aggregation of varying semantic

scales in decoder sub-networks. Finally, we devised a pruning scheme to accelerate

model inference speed, allowing CAD systems to accomplish automatic disease detec-

tion using the ordinary desktop/laptop PCs commonly employed in clinical practice.

This algorithmic innovation is significant because the learning capability of a deep

model relies heavily on the use of multiple feature aggregation that can automati-

cally learn representations from the data. UNet++ has been quickly adopted by the

research community, listed among the most popular articles in IEEE TMI since pub-

lished (Zhou et al., 2018b, 2019c); more recently, UNet++ has been widely applied

to segment lung infections caused by COVID-19 (Dong et al., 2020; Shi et al., 2020).

Chapter 5 discusses how to learn generic knowledge from unannotated data. We

have developed a framework that trains generic source models for medical imaging,

enabling rapid progress and improved performance for various medical applications

across numerous diseases, datasets, organs, and modalities. This framework exploits

an advantage stemming from the consistent and recurrent anatomy intrinsic to medi-
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cal images that has the unique potential to act as strong, yet free, supervision signals

for deep models to learn robust image representation. The self-supervised represen-

tation learning is beneficial to the research community because generic pre-trained

models can serve as a primary source of transfer learning for numerous medical imag-

ing applications, leading to accelerated training and improved performance. This

work received the MICCAI Young Scientist Award 1 (Zhou et al., 2019d) and was

chosen as one of the selected contributions, receiving the MedIA Best Paper Award

in Medical Image Analysis 2 (Zhou et al., 2021c).

Chapter 6 discusses how our developed techniques impact the key facets of CAD

systems. We first describe some of the most distinguished characteristics of medical

images, which are the vital foundations and inspirations of the techniques presented

in this dissertation. We then express the clinical needs and introduce imaging ap-

plications in healthcare. Moreover, we dive into the details of how our techniques

improve performance and annotation efficiency in an exemplar CAD system for de-

tecting pulmonary embolism from CTPA images. Our system achieves a sensitivity

of 46% at 2 false positives per scan, ranked third among the participating teams in

the CAD-PE competition.

Chapter 7 concludes the dissertation with a discussion of the overall impact.

Many people criticize that deep learning requires too much annotated data, while

humans can learn from one or a few examples—this argument is biased. It is true

that training computers to detect lung nodules, for example, from CTs requires tens

of thousands of annotated images (Ardila et al., 2019), while a college student can

accomplish the same task after being exposed to a few examples from textbooks.

Nevertheless, we would not expect an infant to detect lung nodules by only seeing

1http://www.miccai.org/about-miccai/awards/young-scientist-award/

2http://www.miccai.org/about-miccai/awards/medical-image-analysis-best-paper-award/
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this small number of examples. The capability of annotation-efficient human vision

(the holy grail for the next generation of deep learning) is based on numerous everyday

learning activities. It takes a village to develop such annotation-efficient deep learning,

and the resulting algorithm may not be prepared for any of the specific visual tasks.

Once done, however, the algorithm can be quickly adapted to numerous tasks by

only asking for a small amount of annotation, like human vision. As the popular

Chinese saying goes, sharpening the axe will not slow down the work of cutting wood.

Progress in this line of research can leverage the power of small annotated data to

establish more effective deep learning methods, therefore, alleviating the time and

cost for manually annotating a large amount of data and exerting computer-aided

diagnosis for a wider range of disorders.
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Chapter 2

A HISTORICAL REVIEW

2.1 The Role of Annotation

As one of the most important subjects in artificial intelligence, computer vision

enables computers to identify, perceive, and recognize people, places, and things, and

ultimately imitate natural vision. The current state of computer vision is vulnerable

to attack, unadaptable to new surroundings, and incapable of life-long learning. To

match natural vision, our journey’s just begun.

Do we need annotation to develop human-like computer vision? The necessity,

formation, and quantity of annotation is fundamentally dependent on the learning

objective—what do we wish the computer to learn? An established learning objec-

tive can determine whether we should collect manual annotation and, if yes, what

the type of the annotation is. For example, the learning objective of classifying 14

diseases requires the annotator to identify the types of diseases in the image; the

learning objective of segmenting lung nodule requires the annotator to outline the

boundary of each nodule. Defining the learning objective for specific imaging tasks is

straightforward, but the learning objective for the task of matching natural vision is

still inconclusive. This has led to spiraling debates on the necessity of acquiring man-

ual annotation for developing human-like computer vision. In essence, the debates

are about the learning objective of computer vision.
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2.1.1 Attribute Learning

The earliest attempts to develop computer vision involved the idea that a visual

concept (e.g., cat) can be described and predicted by several attributes (e.g., round

face, chubby body, two pointy ears, and a long tail). If any object carries these preset

attributes, the computer can identify cats from many images. While more advanced

and sophisticated attributes arise, the underlying learning objective behind these

approaches remains similar—identifying these descriptive attributes from the image.

However, using these approaches, computers can make many simple mistakes, such as

when (1) the objects are overlapping, (2) the object’s position and shape are distorted,

or (3) the object is conceptually difficult to define. The attribute-based approaches

lack reliability, as countless concepts demand too much manual intervention for their

definition and numerous variations that can eliminate the rule of conceptual modeling.

To move away from extensive attribute engineering, researchers sought to automate

feature learning for object recognition.

2.1.2 Categorical Learning

Inspired by cognitive science and neuroscience, Drs. Geoffrey Hinton, Yann Le-

Cun, and Yoshua Bengio developed an algorithm called deep neural networks (LeCun

et al., 1989; Bengio, 2009) that makes automated feature learning possible, but its

strengths were not appreciated until the availability of big image datasets. At the

beginning of 2007, Dr. Fei-Fei Li started creating a large-scale image dataset (Deng

et al., 2009). She held the belief that developing reliable computer vision systems

requires a lot of human annotated examples. Imagine a child’s eyes as a pair of

biological cameras, and they take one image about every 200 milliseconds. By age

three, the child would have seen a tremendous number of real-world images. This
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observation promoted multiple large-scale, systematic-labeled datasets in the last

few years. Deep neural networks trained on these datasets have enabled enormous

advances in computer vision, leading to amazing results on some real-world tasks,

such as object recognition, detection, segmentation, and image captioning. Addition-

ally, in academic settings, deep neural networks almost always outperform alternative

attribute-based approaches on benchmark tasks.

Combining large datasets, deep neural networks, and powerful computers, cate-

gorical supervised learning emerged as a new learning paradigm, where the learn-

ing objective for computers is to minimize the error between computer predictions

and human labels. Here, humans play an essential role in training computers in this

learning paradigm because humans must provide all categorical labels for the dataset.

Although training deep neural networks using categorical supervised learning is quite

effective, there are three inherent restrictions: (1) computers can only differentiate

the specific categories given by humans, but not beyond; (2) computers can perform

poorly on real-world images outside the dataset; and, most importantly, (3) the result-

ing computer vision is much less general, flexible, and adaptive than natural vision.

Categories and concepts in the real world can be far more comprehensive than those

given in the benchmark datasets. It is because the categories in the real world are

non-orthogonal (cat and tiger vs. cat and plane), imbalanced (long-tail distribution

for most classes), and exponential (classes with hierarchical sub-classes). Since a

computer is unable to learn categories beyond what has been given, the annotating

work can keep going on indefinitely, and the resultant computer vision would always

be tied with specific categories. The categorical supervised learning paradigm is es-

sentially the same as attribute-based learning, where categories serve as attributes to

help computers understand the world.

The major concern is not the challenge to annotate an adequate number of images
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but rather the fact that learning paradigms are fundamentally asymmetrical between

computer vision and natural vision, in which the former is currently built upon cat-

egorical labels while the latter is developed from images without any label. Human

babies and animals establish vision naturally without direct supervision—in nature,

there is no dictionary of concepts available—they learn these through real-world expe-

riences and interactions. Although the top-down categorization, based on a linguistic

definition, can help develop task-specific computer vision systems, it might be unnec-

essary for a general-purpose visual system. To deal with the enormous complexity

of natural images and obtain the rich understanding of visual scenes that the human

achieves, today, we still yearn to know the underlying objective of natural vision.

2.1.3 Representation Learning

The dissimilarity between natural vision and current computer vision suggests

alternative learning paradigms. Self-supervised learning is an interesting reflection

on the general thought on learning representation in a way similar to natural vision.

This learning paradigm has existed for some time, but its power historically has lagged

behind the state-of-the-art categorical supervised learning. However, the recent pace

of progress in self-supervised learning has increased dramatically and led to visual

representation that approaches and even surpasses the representation learned from

supervised categorization. It has raised hopes that self-supervised learning could

indeed replace the ubiquitous categorical supervised learning in advanced computer

vision going forward. Unlike categorical supervised learning, a computer does not have

to learn orthogonal, balanced, and finite categories from human annotation; instead,

it learns by studying the properties of real-world images. Self-supervision promises to

get away from top-down categorization and enable continuous life-long learning. As

highly advocated by Drs. Yann LeCun and Yoshua Bengio, “self-supervised learning
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is the key to human-level intelligence.” (Wiggers, 2020)

The line of research on self-supervision is more closely investigating the objec-

tive of natural vision development. As a learner interacts with the environment,

one of the most common objectives is to survive—to avoid either being attacked

or starving—which has led to two major research avenues in self-supervision: (1)

learning a predictive model to fill in the blank and (2) learning a contrastive model

to distinguish multiple views. First, to prevent being attacked or killed, a learner

should develop meaningful expectations about the world, coming up with a hypothe-

sis of the world and then verifying it. As a result, the predictive model predicts some

hidden information (e.g., color, future events, or contexts of an image) to perceive

prior knowledge and physical properties in nature, such as the sky being blue or a

running beast approaching you. Second, to ensure survival, a learner is expected to

distinguish objects (e.g., determining food edibility based on color, shape, texture,

etc.). It should be noted that distinguishing is different from categorizing because

the distinction can separate things even if they belong to the same category. Conse-

quently, instead of categorization, the contrastive model compares images that have

undergone strong data augmentation to learn image representation, which is resilient

to various view changes.

2.1.4 Current Limitations and Future Considerations

In the discussion above, we have been following a similar principle to develop

general-purpose computer vision: do not define anything. While learning algorithms

are continually changing as better methods are developed, one trend that is not go-

ing away is the move towards increased levels of automation. We seek for a way to

let computers autonomously interact with images and capture visual representation,

keeping away from manually defining attributes, categories, etc. Automated feature
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learning will save time, build generic models, create meaningful features, and encour-

age learning from diverse data sources. As of now, compared with natural vision, the

current state of self-supervision is incomplete in at least three ways.

• First, the choice of augmented views is supervised by humans. Data augmenta-

tion is widely used for training both predictive and contrastive models due to its

simplicity and efficiency. A predictive model restores the original images from

the transformed ones through data augmentation; a contrastive model distin-

guishes the same image from different views generated from data augmentation.

However, humans must pre-define a set of data augmentations specific to each

task because some augmentations can make a task ambiguous, unsolvable, or

trivial, leading to degenerate learning. Here comes several examples: cropping

patches from images can occlude the target object; permutating color is mostly

not applicable to grayscale images; predicting rotation angles in medical images

can be trivial due to the consistent anatomical structure. Many recent works

appear to automate data augmentation in self-supervised learning, one of which

is to use videos rather than images. Humans learn from a sequence of meaning-

ful images instead of a large number of non-related still images because videos

naturally associate with different continuous views. Another way is to use gen-

erated images so that bottleneck features can manipulate the image context to

ensure target objects’ existence.

• Second, the choice of model architectures is supervised by humans. In the exist-

ing literature, methods are generally developed to learn the weights (parame-

ters) of a fixed architecture without using labels, and these weights are evaluated

by transferring to a target supervised task. In a recent study, Liu et al. (2020)

explored the possibility of using such methods to learn architecture without us-
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ing labels. The neural architecture search seems to relax the manual design, but

the search space heavily relies on humans. There are three challenges associated

with the existing approaches. (1) The neural connection can never be found if it

is not included in the original search space—the search space limits what neural

architecture can be discovered. (2) The searching will terminate into a fixed

architecture if it meets a local minimum. In contrast, the neural connection in

human brains is dynamically evolving throughout the lifespan. (3) Vast com-

putational resources are required for the neural architecture search, while the

resultant architecture cannot guarantee superior outcomes to human-engineered

architectures (Isensee et al., 2021). In addition, although convolutional neural

networks are currently dominant in most imaging tasks, another architecture

called transformer was proven more powerful to encode long-term dependencies

among data (Vaswani et al., 2017; Dosovitskiy et al., 2020), therefore exceeding

in analyzing sequences of data such as language and video.

• Third, the choice of pretext tasks is supervised by humans. That being said, a

wide range of learning schemes with varying learning objectives are currently

designed by humans, such as predicting rotation, augmentation, color, etc (Jing

and Tian, 2020). But the fact is, we are unsure how exactly natural vision is

developed, as we are the users, not the designers. It is possible that pre-defined

learning schemes, either filling in blanks or contrasting views, could dilute the

true power of self-supervised learning. Given an image, human vision is devel-

oped by multi-tasking, such as depth estimation, motion prediction, orientation

perception, object detection, etc. The types of these tasks are not pre-defined

but driven by an underlying objective. We have given special prominence to

the objective that drives a learner to develop vision because it is the learning
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objective that mostly makes such diverse types of tasks for us to learn, even

though sometimes our supervisors (parents, teachers, primers) suggest some

specific tasks for us. Instead of devising many pretext tasks, the real mission is

to figure out the true objective beyond vision, which comes up with a research

field called learning to learn or meta learning (Lake et al., 2015). According to

the concept of meta learning, a learner itself must be exposed to a large number

of tasks and tested on their ability to learn new tasks. Thus, humans do not

have to design which tasks to solve, and instead, computers make up their own

games to develop computer vision.

As revealed in a historical review, it remains an open problem to construct a

complete, unified learning objective of computer vision using one concise equation.

In the past decades, we have made exciting progress by discovering partial learn-

ing objectives that make computers accomplish specific tasks and developing critical

components that collectively simulate natural vision. We are heading towards the

direction where the advancements in computer vision rely less and less on manual

annotation to secure comprehensive visual knowledge from images.

2.2 The Opportunity: Annotation-Efficient Deep Learning

This section overviews three advantages that have stimulated annotation-efficient

deep learning and resulted in numerous emerging subjects, including our contributions

in this dissertation.

1. The continual learning capabilities of deep learning incrementally improve the

algorithm through fine-tuning. Millions of new medical images are generated

in hospitals every day. With such a colossal stream of data, it is impractica-

ble to store the data in memory and repeatedly train computers from scratch
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once new data becomes available. We hope computers to leverage the prior

knowledge obtained from old data over time and continuously accommodate

new data, like human beings. Continual learning is built on the idea that learn-

ers adaptively use new data so their knowledge sets can develop autonomously

and incrementally. The continual learning ability is one of the critical benefits

that deep learning could offer. Unlike conventional machine learning methods,

deep learning models can be fine-tuned on top of previously learned weights

that often store the memories and knowledge of old data. Specifically, we can

take a set of trained weights and use it as model initialization for new data. The

ability of continual learning would be much more appreciated in the scenario of

the “human-in-the-loop” procedure, wherein human experts interact with com-

puters to promote the development of algorithms using a continuous stream of

data. An efficient “human-in-the-loop” procedure helps human experts quickly

dismiss patients with negative results, therefore, dramatically reducing the bur-

den of annotation. Moreover, an instant online feedback process encourages

data, annotation, and model reuse, making it possible for CAD systems to

self-improve via continual fine-tuning.

2. The representation learning capabilities of deep learning relieve exhaustive fea-

ture engineering for specific medical conditions. Feature engineering manually

designs features based on the texture and shape present in images, which are

easier to describe and troubleshoot so humans can manipulate features on their

own. However, crafting such features demands a great deal of patience, dili-

gence, and expertise. Most hand-crafted features focus on specific medical

conditions, hence greatly limiting the expressive powers and depreciating the

generalization capacity. For instance, radiomics features can be beneficial in
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radiological imaging, but they are not adaptable to other imaging modalities,

such as dermatology, histopathology, and ophthalmology. Recent deep learning

methods swept away previous hand-crafted features, showing that neural net-

works can solve diverse tasks by automatically learning hierarchical features at

multiple levels of abstraction. In networks, each layer projects the image into

a particular feature space—the deeper layer generates a higher level of abstrac-

tion by extracting more complex features built on top of simpler ones. The

merit of deep learning is that the varying levels of features are not manually

designed by humans. For this, we call it “representation learning”, a procedure

that automatically learns visual features to represent an image. Representation

learning is more efficient and repeatable than exhaustive feature engineering,

saving tremendous amounts of manual work. Compared with hand-crafted fea-

tures, deep features offer four advantages: (1) deep features can be dynamically

computed by models during training and test stages; (2) deep features present

a semantic hierarchy, varying from layer to layer; (3) deep features can be used

for not only classification but also registration, localization, and segmentation;

(4) deep features can be fine-tuned and adapted to different tasks and domains.

Many studies have reaffirmed that automated feature learning can produce more

generalizable image representation than hand-crafted features.

3. The consistent and recurrent anatomy embedded in medical images empowers

deep learning with a generic visual representation. Human anatomies are intrin-

sically structured, exhibiting consistency in appearance, position, and layout.

Medical imaging protocols focus on particular parts of the body, often gen-

erating images of great similarity and yielding an abundance of sophisticated

anatomical patterns across patients. These patterns are naturally associated
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with comprehensive knowledge about human anatomy. Therefore, consistent

and recurrent anatomy can ease the analysis of numerous critical problems and

should be considered a significant advantage of medical imaging. Due to the re-

curring anatomy, the same body parts in different images express similar visual

patterns and, therefore, can be retrieved by what is known as “nearest neighbor

search”. As a result, given a single annotated medical image, similar anatomi-

cal patterns can be found in many other images so that radiologists can track

disease progress with landmark detection and lesion matching. In addition to

correspondence matching, the recurrent anatomical structures in medical im-

ages are associated with rich knowledge about the human body and intrinsic

structural coherence, offering great benefit and potential to foster image rep-

resentation and produce more powerful source models. Consequently, one-shot

or few-shot learning in various medical applications would be eventually actu-

alized.

2.3 Related Work & Our Innovations

We extensively review the related work that tackles the significant barrier of an-

notation sparsity by harnessing the three unique advantages, while underlining the

novelty of the methodologies that we have developed.

2.3.1 Acquiring Necessary Annotation

One-time learning and continual learning

Pre-training a model on large-scale image datasets and then fine-tuning it on var-

ious target tasks has become a de facto paradigm across many medical specialties.

As summarized by Irvin et al. (2019), to classify the common thoracic diseases on

chest radiography, nearly all the leading approaches (Guan and Huang, 2018; Guen-
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del et al., 2018; Tang et al., 2018; Ma et al., 2019) follow this paradigm by adopting

different architectures along with their weights pre-trained from ImageNet. Other

representative medical applications include identifying skin cancer from dermatolo-

gist level photographs (Esteva et al., 2017), diagnosing Alzheimer’s Disease (Ding

et al., 2018) from 18F-FDG PET of the brain, and performing effective detection of

pulmonary embolism (Tajbakhsh et al., 2019b) from CTPA. Recent breakthrough

in self-supervised pre-training (Grill et al., 2020; Caron et al., 2020; Chen and He,

2020), on the other hand, has led to visual representation that approaches and pos-

sibly surpasses what was learned from ImageNet. Self-supervised pre-training has

also been adopted for the medical domain, wherein Zhou et al. (2019d); Zhu et al.

(2020a); Feng et al. (2020); Haghighi et al. (2020); Azizi et al. (2021) develop generic

CNNs that are directly pre-trained from medical images, mitigating the mandatory

requirement of expert annotation and reducing the large domain gap between natural

and medical images. Despite the immense popularity of transfer learning in medical

imaging, these works exclusively employed one-time fine-tuning—simply fine-tuning

a pre-trained CNN, for only one time, with available training samples. In real-world

applications, instead of training on a still dataset, experts record new samples con-

stantly and expect the samples to be used upon their availability. Therefore, by

empowering the CNN with the ability to deal with new data, continual learning is

the bridge to active and open world learning (Mundt et al., 2020). Compared with

the existing continual learning approaches (Käding et al., 2016; Zhou et al., 2017c),

our newly devised learning strategy is more amenable to active fine-tuning because it

focuses more on the newly annotated samples and also recognizes those misclassified

ones, eliminating repeated training on easier samples in the annotated pool.
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Integrating active learning with deep learning

The uncertainty and diversity are the most compelling active selection criteria, which

appraise the worthiness of annotating a sample from two different aspects. Uncertainty-

based criteria argue that the more uncertain a prediction is, the more value added

when including the label of that sample into the training set. Sampling with least

confidence (Culotta and McCallum, 2005), large entropy (Dagan and Engelson, 1995;

Mahapatra et al., 2018; Shao et al., 2018; Kuo et al., 2018), or margins (Scheffer et al.,

2001; Balcan et al., 2007) of the prediction has been successful in training models with

fewer labels than random sampling. The limitation of uncertainty-based criteria is

that some of the selected samples are prone to redundancy and outliers (Sourati

et al., 2019) and may not be representative enough for the data distribution as a

whole. Alternatively, diversity-based criteria have the advantage of selecting a set of

most representative samples, related to the annotated ones, from those in the rest of

the unannotated set. The intuition is it is unnecessary to repeatedly annotate similar

samples. Mutual information (Li and Guo, 2013; Gal et al., 2017), Kullback-Leibler

divergence (Kulick et al., 2014; McCallumzy and Nigamy, 1998), Fisher informa-

tion (Sourati et al., 2018, 2019), K-centers and core sets (Sener and Savarese, 2017),

calculated among either model predictions or image features, are often used to en-

sure the diversity. Although alleviating redundancy and outliers, a serious hurdle of

diversity-based criteria is the computational complexity for a large pool of unanno-

tated samples. We address this issue by measuring diversity over patches augmented

from the same sample, making the calculation much more manageable. To exploit

the benefits and potentials of the two selecting aspects, the studies of Wang et al.

(2018b); Ozdemir et al. (2018); Mahapatra et al. (2018); Shui et al. (2020) consider the

mixture strategy of combing uncertainty and diversity explicitly. Yang et al. (2017);
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Beluch et al. (2018); Kuo et al. (2018) further compute the selection criteria from

an ensemble of CNNs—these approaches are, however, very costly in computation,

as they must train a set of models to compute their uncertainty measure based on

models’ disagreements. For additional active learning methods, we refer the reader to

comprehensive literature reviews (Tajbakhsh et al., 2020a; Munjal et al., 2020; Hino,

2020; Ren et al., 2020); but these existing methods are fundamentally different from

our active continual fine-tuning (ACFT) in that they all repeatedly re-trained CNNs

from scratch at each step, whereas we continually fine-tune the (fine-tuned) CNN

incrementally. As a result, our ACFT offers several advantages as listed in Sec. 3.2.4,

and leads to dramatic annotation cost reduction and computation efficiency. Besides,

we have found that there are only seven fundamental patterns in CNN predictions, as

summarized in Table 3.2. Multiple methods may be developed to select a particular

pattern: entropy, Gaussian distance, and standard deviation would seek Pattern A,

while diversity, variance, and divergence look for Pattern C. We were among the first

to analyze the prediction patterns in active learning and investigate the effectiveness

of typical patterns rather than comparing the many methods.

2.3.2 Designing Advanced Architectures

Skip connections

Skip connections were first introduced in the seminal work of Long et al. (2015)

where they proposed fully convolutional networks (FCN) for semantic segmentation.

Shortly after, building on skip connections, Ronneberger et al. (2015) proposed U-

Net architecture for semantic segmentation in medical images. The FCN and U-Net

architectures, however, differ in how the decoder features are fused with the same-scale

encoder features. While FCN (Long et al., 2015) uses the summation operation for
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feature fusion, U-Net (Ronneberger et al., 2015) concatenates the features followed by

the application of convolutions and non-linearities. The skip connections have shown

to help recover the full spatial resolution, making fully convolutional methods suitable

for semantic segmentation (Chaurasia and Culurciello, 2017; Lin et al., 2017a; Zhao

et al., 2018; Tajbakhsh et al., 2020b). Skip connections have further been used in

modern neural architectures such as residual networks (He et al., 2016a,b) and dense

networks (Huang et al., 2017), facilitating the gradient flow and improving the overall

performance of classification networks.

Aggregating multi-scale features

The exploration of aggregating hierarchical features continues to be a popular subject

of research. Fourure et al. (2017) propose GridNet, which is an encoder-decoder archi-

tecture wherein the feature maps are wired in a grid fashion, generalizing several clas-

sical segmentation architectures. Despite GridNet containing multiple streams with

different resolutions, it lacks up-sampling layers between skip connections; and thus,

it does not represent UNet++. Full-resolution residual networks (FRRN) (Pohlen

et al., 2017) employs a two-stream system, where full-resolution information is car-

ried in one stream and context information in the other pooling stream. In Jiang et al.

(2019), two improved versions of FRRN are proposed, i.e., incremental MRRN with

28.6M parameters and dense MRRN with 25.5M parameters. These 2D architectures,

however, have similar number of parameters to our 3D VNet++ and three times more

parameters than 2D UNet++; and thus, simply extending these architectures to a 3D

manner may not be amenable to the common 3D medical applications. We would like

to note that our redesigned dense skip connections are completely different from those

used in MRRN, which consists of a common residual stream. Also, it is not flexible

to apply the design of MRRN to other backbone encoders and meta framework such
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as Mask R-CNN (He et al., 2017). Deep layer aggregation (DLA) (Yu et al., 2018),

topologically equivalent to our intermediate architecture UNet+ (Figure 4.1(f)), ad-

jacently connects the same resolution features without U-Net’s long skip connections.

Our experimental results demonstrate that by densely connecting the layers, UNet++

achieves higher segmentation performance than UNet+/DLA (see Table 4.3).

Introducing deep supervision

He et al. (He et al., 2016a) suggested that the depth of network can act as a reg-

ularizer. Lee et al. (Lee et al., 2015) demonstrated that deeply supervised layers

can improve the learning ability of hidden layers, enforcing the intermediate lay-

ers to learn discriminative features, enabling fast convergence and regularization of

the network (Dou et al., 2017). DenseNet (Huang et al., 2017) performs a similar

deep supervision in an implicit fashion. Deep supervision can also be used in U-

Net like architectures. Dou et al. (2016) introduce deep supervision by combining

predictions from varying resolutions of feature maps, suggesting that it can combat

potential optimization difficulties, and thus, reach a faster convergence rate and more

powerful discrimination capability. Zhu et al. (2017) used eight additional deeply

supervised layers in their proposed architecture. Our nested networks, however, are

more amenable to training under deep supervision: 1) multiple decoders automati-

cally generate full resolution segmentation maps; 2) the networks are embedded at

various different depths of U-Net so that it grasps multi-resolution features; 3) densely

connected feature maps help smooth the gradient flow and give a relatively consis-

tent predicting mask; 4) the high dimension features have effects on all of the outputs

through back-propagation, allowing us to prune the network in the inference phase.
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2.3.3 Extracting Generic Image Features

With the splendid success of deep neural networks, transfer learning (Pan and

Yang, 2010; Weiss et al., 2016; Yosinski et al., 2014) has become integral to many ap-

plications, especially medical imaging (Greenspan et al., 2016; Litjens et al., 2017; Lu

et al., 2017; Shen et al., 2017; Wang et al., 2017a; Zhou et al., 2017c, 2019d, 2021c).

This immense popularity of transfer learning is attributed to the learned image repre-

sentation, which offers convergence speedups and performance gains for most target

tasks, in particular, with limited annotated data. In the following sections, we review

the works related to supervised and self-supervised representation learning.

Supervised representation learning

ImageNet contains more than fourteen million annotated images that indicate which

objects are present; and more than one million of the images have actually been an-

notated with the bounding boxes of the objects. Pre-training a model on ImageNet

and then fine-tuning it on other imaging tasks has seen the most practical adop-

tion in medical image analysis (Bar et al., 2015; Shin et al., 2016a; Tajbakhsh et al.,

2016). Despite its remarkable transferability, the 2D ImageNet model offers little

benefit towards 3D medical imaging tasks in the most prominent medical modalities

(e.g., CT and MRI). To fit this paradigm, 3D imaging tasks have to be reformulated

and solved in 2D (Roth et al., 2015, 2014; Tajbakhsh et al., 2015), thus losing rich

spatial information and inevitably compromising the performance. Annotating 3D

medical images at a similar scale with ImageNet requires a significant research effort

and budget. It is currently infeasible to create annotated datasets comparable to

this size for every 3D medical application. Consequently, for lung cancer malignancy

estimation, Ardila et al. (2019) resorted to incorporate spatial information by using
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Inflated 3D (Carreira and Zisserman, 2017), trained from the Kinetics dataset, as the

feature extractor. Evidenced by Table 5.3, it is a suboptimal choice due to the large

domain gap between the temporal video and medical volume. This limitation has led

to the development of the NiftyNet model zoo (Gibson et al., 2018b). However, they

were trained with small datasets for specific applications (e.g., brain parcellation and

organ segmentation), and were never intended as source models for transfer learning.

Our experimental results, in Table 5.3, indicate that NiftyNet models offer limited

benefits to the five target medical applications via transfer learning. More recently,

Chen et al. (2019b) have pre-trained 3D residual networks by jointly segmenting the

objects annotated in a collection of eight medical datasets, resulting in MedicalNet for

3D transfer learning. In Table 5.3, we have examined the pre-trained MedicalNet on

five target tasks in comparison with our Models Genesis. As reviewed, each and every

aforementioned pre-trained model requires massive, high-quality annotated datasets.

However, seldom do we have a perfectly-sized and systematically-annotated dataset

to pre-train a deep model in medical imaging, where both data and annotation are

expensive to acquire. We overcome the above limitation by using self-supervised learn-

ing, which allows models to learn image representation from abundant unannotated

medical images with zero human annotation effort.

Self-supervised representation learning

Aiming at learning image representation from unannotated data, self-supervised learn-

ing research has recently experienced a surge in computer vision (Caron et al., 2018;

Chen et al., 2019c; Doersch et al., 2015; Goyal et al., 2019; Jing and Tian, 2020; Ma-

hendran et al., 2018; Mundhenk et al., 2018; Noroozi et al., 2018; Noroozi and Favaro,

2016; Pathak et al., 2016; Sayed et al., 2018; Zhang et al., 2016, 2017), but it is a

relatively new trend in modern medical imaging. The key challenge for self-supervised
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learning is identifying a suitable task that generates input and output instance pairs

from the data. Two of the preliminary studies include (1) predicting the distance

and 3D coordinates of two patches randomly sampled from the same brain (Spitzer

et al., 2018) and (2) identifying whether two scans belong to the same person and

further predicting the level of vertebral bodies (Jamaludin et al., 2017). Neverthe-

less, these two works are incapable of learning representation from “self-supervision”

because they demand auxiliary information and specialized data collection such as

paired and registered images. By utilizing only the original pixel/voxel information

shipped with data, several self-supervised learning schemes have been developed for

different medical applications: Ross et al. (2018) adopted colorization as the proxy

task, wherein color colonoscopy images are converted to gray-scale and then recovered

using a conditional Generative Adversarial Network (GAN); Alex et al. (2017) pre-

trained a stack of denoising auto-encoders, wherein the self-supervision was created

by mapping the patches with the injected noise to the original patches; Chen et al.

(2019a) designed image restoration as the proxy task by first shuffling small regions

of the image and then training the model to restore the original image; Zhuang et al.

(2019) and Zhu et al. (2020a) introduced a 3D representation learning proxy task

by recovering the rearranged and rotated Rubik’s cube; and finally Tajbakhsh et al.

(2019a) individualized self-supervised schemes for a set of target tasks. As seen, the

previously discussed self-supervised learning schemes, both in computer vision and

medical imaging, are developed individually for specific target tasks; therefore, the

generalizability and robustness of the learned image representation have yet to be ex-

amined across multiple target tasks. To our knowledge, we are the first to investigate

cross-domain self-supervised learning in medical imaging.
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Chapter 3

ACQUIRING ANNOTATION FROM HUMAN EXPERTS

This chapter is based on the following publications:

• Zhou, Z., Shin, J., Zhang, L., Gurudu, S., Gotway, M., & Liang, J. (2017). Fine-

tuning convolutional neural networks for biomedical image analysis: actively

and incrementally. In Proceedings of the IEEE conference on computer vision

and pattern recognition (pp. 7340-7351).

• Zhou, Z., Shin, J., Feng, R., Hurst, R. T., Kendall, C. B., & Liang, J. (2019).

Integrating active learning and transfer learning for carotid intima-media thick-

ness video interpretation. Journal of digital imaging, 32(2), 290-299.

• Zhou, Z., Shin, J. Y., Gurudu, S. R., Gotway, M. B., & Liang, J. (2021).

Active, Continual Fine Tuning of Convolutional Neural Networks for Reducing

Annotation Efforts. Medical Image Analysis, 101997.
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3.1 Background & Motivation

Convolutional neural networks (CNNs) (LeCun et al., 2015) have ushered in a

revolution in computer vision owing to the use of large annotated datasets, such as

ImageNet (Deng et al., 2009) and Places (Zhou et al., 2017a). As evidenced by

two recent books (Shen et al., 2019; Zhou et al., 2019a) and numerous compelling

techniques for different imaging tasks (Moen et al., 2019; Yamamoto et al., 2019;

Ravizza et al., 2019; Esteva et al., 2019; Huang et al., 2020; Isensee et al., 2021),

there is widespread and intense interest in applying CNNs to medical image analy-

sis, but the adoption of CNNs in medical imaging is hampered by the lack of such

large annotated datasets. Annotating medical images is not only tedious and time

consuming, but it also requires costly, specialty-oriented knowledge and skills, which

are not readily accessible. Therefore, we seek to answer this critical question: How

to dramatically reduce the cost of annotation when applying CNNs to medical imag-

ing? In doing so, we have developed a novel method called ACFT (active, continual

fine-tuning) to naturally integrate active learning and transfer learning into a sin-

gle framework. Our ACFT method starts directly with a pre-trained CNN to seek

“salient” samples from the unannotated pool for annotation, and the (fine-tuned)

CNN is continually fine-tuned using newly annotated samples combined with all mis-

classified samples. We have evaluated our method in three different applications,

including colonoscopy frame classification, polyp detection, and pulmonary embolism

(PE) detection, demonstrating that the cost of annotation can be reduced by at least

half.

This performance is attributable to a simple yet powerful observation: to boost

the performance of CNNs in medical imaging, multiple patches are usually generated

automatically for each sample through data augmentation; these patches generated
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from the same sample share the same label, and are naturally expected to have similar

predictions by the current CNN before they are expanded into the training dataset.

As a result, their entropy (Shannon, 1948) and diversity (Kukar, 2003) provide a

useful indicator of the “power” of a sample for elevating the performance of the

current CNN. However, automatic data augmentation inevitably generates “hard”

samples, injecting noisy labels. Therefore, to significantly enhance the robustness

of active selection, we compute entropy and diversity from only a portion of the

patches according to the majority predictions detailed in Sec. 3.2.2) by the current

CNN. Furthermore, to strike a balance between exploration and exploitation, we

incorporate randomness in our active selection as detailed in Sec. 3.2.3; and to prevent

catastrophic forgetting, we combine newly selected samples with misclassified samples

as described in Sec. 3.3.3.

To our knowledge, our proposed method is among the first to integrate active

learning into fine-tuning CNNs in a continual fashion to make CNNs more amenable

to medical image analysis, particularly with the intention of decreasing the efforts

of annotation dramatically. Compared with conventional active learning, our work

makes the following contributions:

1. We devise novel active learning criteria, which select the most informative sam-

ples by considering both prediction certainty and consistency.

2. We develop various continual fine-tuning strategies, which efficiently utilize the

newly annotated and misclassified samples.
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(a) Scene classification (b) Colonoscopy frame classification (c) Polyp detection (d) Pulmonary embolism detection

AUC = 0.890

Active continual fine-tuning (ACFT)

Random fine-tuning (RFT)

100% Fine-tuning

100% Full-training

Figure 3.1: ACFT aims to minimize the number of samples for experts to label by iteratively recommending the most
informative and representative samples. For scene classification (a), by actively selecting 2,906 images (6.92% of the entire
dataset), ACFT can offer equivalent performance to the use of 4,452 images through random selection, thus saving 34.7%
annotation cost relative to random fine-tuning. Furthermore, with 1,176 actively-selected images (2.80% of the whole
dataset), ACFT can achieve performance equivalent to full training using 42,000 images, thereby saving 97.2% annotation
cost (relative to full training). In (b)—(d), we highlight the major results that compared with RFT, our ACFT can reduce
the cost of annotation by 81.5% for colonoscopy frame classification, 86.3% for polyp detection, and 80.3% for pulmonary
embolism detection.
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3.2 Approach & Property

Active, continual fine-tuning (ACFT) was conceived in the context of computer-

aided diagnosis (CAD) applied to medical imaging. A CAD system typically employs

a candidate generator, which can quickly produce a set of candidates, among which

some are true positives and others are false positives. To train a classifier, each of

the candidates must be labeled. In this work, an object to be labeled is considered

as a “candidate” in general. We assume that each candidate takes one of |Y| possible

labels. To boost CNN performance for CAD systems, multiple patches are usually

generated automatically for each candidate through data augmentation; those patches

that are generated from the same candidate inherit the candidate’s label. In other

words, all labels are acquired at the candidate level. Mathematically, given a set

of candidates, U = {C1, C2, ..., Cn}, where n is the number of candidates, and each

candidate Ci = {x1
i , x

2
i , ..., x

m
i } is associated with m patches, our ACFT algorithm

iteratively selects a set of candidates for labeling as illustrated in Alg. 1.

3.2.1 Selecting Based on Certainty and Consistency

In active learning, the key is to develop criteria for determining “worthiness” of la-

beling a candidate. Our criteria for candidate “worthiness” are based on a simple, yet

powerful, observation: all patches augmented from the same candidate share the same

label; therefore, they are expected to have similar predictions by the current CNN.

As a result, their entropy and diversity provide a useful indicator of the “power” of a

candidate for elevating the performance of the current CNN. Intuitively, entropy cap-

tures classification certainty—a higher uncertainty value denotes a greater degree of

information, whereas diversity indicates prediction consistency among the candidate

patches—a higher diversity value denotes a greater degree of prediction inconsistency.
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Algorithm 1: ACFT – Active, Continual Fine-Tuning
Input:

U = {Ci}, i ∈ [1, n] {unlabeled pool U contains n candidates}

Ci = {xji}, j ∈ [1,m] {each Ci contains m patches}

M0: pre-trained CNN; α: majority ratio; b: batch size; Y: category set

Output:

L: labeled candidates; Mt: fine-tuned CNN model at Step t

1 L ← ∅; t← 1

2 repeat

3 for each Ci ∈ U do

4 Pi ←Mt−1(Ci) {outputs of Mt−1 given ∀x ∈ Ci}

5 C′i ← Ci descending sort on the predicted dominant class ŷi by Eq. 3.3

6 Cαi ← top α× 100% of the patches of the sorted list C′i

7 Compute ai for Cαi by Eq. 3.2, i.e., ai = λ1ei + λ2di

8 end

9 Sort U according to a in descending order

10 Compute sampling probability as using sorted list a′ by Eq. 3.4

11 Associate labels for b candidates with sampling probabilities: Q ← Q(as, b)

12 P ←Mt−1(L) {outputs of Mt−1 given ∀x ∈ L}

13 Select misclassified candidates from L based on their annotation: H ← J(P,L)

14 Fine-tune Mt−1 with H
⋃
Q: Mt ← F (H

⋃
Q,Mt−1)

15 L ← L
⋃
Q; U ← U \ Q; t← t+ 1

16 until classification performance in a validation set plateaus;

Formally, assuming that each candidate takes one of |Y| possible labels, we define the

entropy and diversity of Ci as
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ei = − 1

m

|Y|∑
k=1

m∑
j=1

P j,k
i logP j,k

i ,

di =

|Y|∑
k=1

m∑
j=1

m∑
l=j

(P j,k
i − P

l,k
i ) log

P j,k
i

P l,k
i

(3.1)

Combining entropy and diversity yields

ai = λ1ei + λ2di (3.2)

where λ1 and λ2 are trade-offs between entropy and diversity. We use two parameters

for convenience, to easily turn on/off entropy or diversity during experiments.

3.2.2 Handling Noisy Labels via Majority Selection

Automatic data augmentation is essential for boosting CNN performance, but it

inevitably generates “hard” samples for some candidates, as shown in Figure A.1(c),

injecting noisy labels. Therefore, to significantly enhance the robustness of our

method, we compute entropy and diversity by selecting only a portion of the patches

of each candidate according to the predictions by the current CNN.

Specifically, for each candidate Ci we first determine its dominant category, which

is defined by the category with the highest confidence in the mean prediction. That

is,

ŷi = argmax
y∈Y

1

m

m∑
j=1

P j,y
i (3.3)

where P j,y
i is the output of each patch j from the current CNN given ∀x ∈ Ci on

label y. After sorting Pi according to dominant category ŷi, we apply Eq. 3.2 to top

α×100% of the patches to construct the score matrix ai of size αm × αm for each

candidate Ci in U . Our proposed majority selection method automatically excludes

those patches with noisy labels owning to their high consistency in the majority of

predictions.
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k: 55.62%
l: 21.76%
o: 22.62%

k: 27.73%
l: 19.98%
o: 52.29%

k: 36.78%
l: 26.28%
o: 36.94%

k: 36.60%
l: 4.83%
o: 58.57%

Figure 3.2: To demonstrate the necessity of majority selection, we illustrate two images (A and B) and their augmented
patches, arranged according to the dominant category predicted by the CNN. Based on Places-3, Image A is labeled
as living room, and its augmented patches are mostly incorrectly classified by the current CNN; therefore, including it in
the training set is of great value. On the contrary, Image B is labeled as office, and the current CNN classifies most of
its augmented patches as office with high confidence; labeling it would be of limited utility. Without majority selection,
the criteria would mislead the selection, as it indicates that Image B is more diverse than Image A (297.52 vs. 262.39)
while sharing similar entropy (17.33 vs. 18.50). With majority selection, the criteria show that Image A is considerably
more uncertain and diverse than Image B, measured by either entropy (4.59 vs. 2.17) or diversity (9.32 vs. 0.35), and as
expected, more worthy of labeling. From this active selection analysis, we remark that the majority selection is a critical
component in our ACFT.
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3.2.3 Injecting Randomization into Active Selection

As discussed in Borisov et al. (2010) and Zhou et al. (2017c), simple random se-

lection may outperform active selection at the beginning, because the active selection

method depends on the current model selecting examples for labeling. As a result, a

poor selection made at an early stage may adversely affect the quality of subsequent

selections, whereas the random selection approach is less frequently locked into a poor

hypothesis. In other words, the active selection method concentrates on exploiting

the knowledge gained from the labels already acquired to further explore the decision

boundary, whereas the random selection approach concentrates solely on exploration,

and is thereby able to locate areas of the feature space where the classifier performs

poorly. Therefore, an effective active learning strategy must strike a balance between

exploration and exploitation. Towards this end, we inject randomization into our

method by selecting actively according to the sampling probability as
i .

a′i = (a′i − a′ωb)/(a
′
1 − a′ωb),

as
i = a′i/

∑
i

a′i, ∀i ∈ [1, ωb]
(3.4)

where a′i is sorted ai according to its value in descending order, and ω is named

random extension. Suppose b number of candidates are required for annotation.

Instead of selecting top b candidates, we extend the candidate selection pool to ωb.

Then we select candidates from this pool with their sampling probabilities as
i to inject

randomization.

3.2.4 Five Unique Properties

1. ACFT integrates entropy and diversity. Our algorithm actively selects the most

uncertain and informative candidates by naturally exploiting expected consis-
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tency among the patches within each candidate, reducing the number of redun-

dancy and outliers.

2. ACFT overcomes noisy labels associated with augmentation. Our algorithm

computes selection criteria locally on a small number of patches within each

candidate, saving considerable computation cost for diversity metric.

3. ACFT tackles cold start problem by injecting randomness. Our algorithm bal-

ances exploration and exploitation by incorporating randomness into active se-

lection, demonstrating the superior performance even at the beginning of active

learning procedure.

4. ACFT balances training samples among classes. Our algorithm seeks the most

critical candidates to be annotated for the current model, ensuring a comparable

number of candidates selected from minority classes and preventing the model

from being skewed towards majority classes.

5. ACFT is generic and applicable to many imaging tasks. Our algorithm was

initially developed for the purpose of medical imaging, but it also demon-

strates over 30% annotation reduction for the scene classification task in natu-

ral imaging as well. We illustrate the ideas behind ACFT with the Places-3

dataset (Zhou et al., 2017a), where no candidate generator is needed, as each

image may be directly regarded as a candidate.

3.3 Experiment & Result

In this section, Figure 3.1 begins with an overall performance between our active

continual fine-tuning (ACFT) and random fine-tuning (RFT), revealing the amount

of annotation effort that has been reduced in each application. Figure 3.3 and Fig-

ure 3.4 compare eight different active selecting criteria, demonstrating that majority

selection and randomness are critical in finding the most representative samples to
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Table 3.1: Active learning strategy definition. We have codified different learning
strategies covering the makeup of training samples and the initial model weights of
fine-tuning.

Code Description of learning strategy

RFT(LQ) Fine-tuning from M0 using L and randomly selected Q

AFT(LQ) Fine-tuning from M0 using L and actively selected Q

ACFT(Q) Continual fine-tuning from Mt−1 using actively selected Q only

ACFT(LQ) Continual fine-tuning from Mt−1 using L and actively selected Q

ACFT(HQ) Continual fine-tuning from Mt−1 using H and actively selected Q

1 L: Labeled candidates.

2 Q: Newly annotated candidates.

3 H: Misclassified candidates.

4 M0: Pre-trained CNNs from large scale dataset (like ImageNet).

5 Mt−1: Pre-trained CNNs from last active selecting iteration.

elevate the current CNN’s performance. Figure 3.5 further presents the observed

distribution of each active selecting criteria, qualitatively confirming the rationale

of our devised candidate selecting approaches. Table 3.3 finally compares four dif-

ferent active learning strategies, suggesting that continual fine-tuning using newly

annotated candidates enlarged by those misclassified candidates significantly saves

computational resources while maintaining the compelling performance in all three

medical applications.

3.3.1 Benchmarking Active, Continual Fine-Tuning

Tajbakhsh et al. (2016) reported the state-of-the-art performance of fine-tuning

and learning from scratch using entire datasets, which are used to establish base-

line performance for comparison. These authors also investigated the performance of
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Table 3.2: Active selection patterns analysis. We illustrate the relationships among
seven prediction patterns and four active selection criteria, assuming that a candidate
Ci has 11 augmented patches, and their probabilities Pi are predicted by the current
CNN, presented in the second column. With majority selection, the entropy and
diversity are calculated based on the top 25% (3 patches in this illustration) highest
confidences on the dominant predicted category. The first choice of each method
(column) is bolded and the second choice is underlined.

Pattern Example

0.4 0.4 0.4 0.5 0.5 0.5
0.5 0.5 0.6 0.6 0.6

0.0 0.1 0.2 0.3 0.4 0.4
0.6 0.7 0.8 1.0 1.0

+ Entropy
− Majority

7.52

4.57

1.30

1.30

1.30

3.24

3.24

+ Entropy
+ Majority

2.02

0.83

0.00

0.00

0.00

0.33

0.33

+ Diversity
− Majority

4.38

1237.21

2816.66

189.54

189.54

1076.87

1076.87

+ Diversity
+ Majority

0.00

20.79

0.00

0.00

0.00

13.54

13.54

0.0 0.0 0.0 0.1 0.1 0.9
0.9 1.0 1.0 1.0 1.0

0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.1 0.1 0.1 0.1

0.9 0.9 0.9 0.9 1.0 1.0
1.0 1.0 1.0 1.0 1.0

0.0 0.1 0.7 0.8 0.8 0.9
0.9 0.9 1.0 1.0 1.0

0.0 0.0 0.0 0.1 0.1 0.1
0.2 0.2 0.3 0.9 1.0

(partial) fine-tuning using a sequence of partial training datasets, but our dataset par-

titions are different from theirs. Therefore, for a fair comparison with their approach,

we introduce RFT, which fine-tunes the original model M0 from the beginning, using

all available labeled samples L
⋃
Q, where Q is randomly selected at each step.

We summarized several active learning strategies in Table 3.1. Studying different

active learning strategies is important because active learning procedure can be very

computationally inefficient in practice, in terms of label reuse and model reuse. We
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present two strategies that aim at overcoming the above limitations. First, we pro-

pose to combine newly annotated data with the labeled data that is misclassified by

the current CNN. Second, we propose continual fine-tuning to speed up model train-

ing and, in turn, encourage data reuse. ACFT(HQ) denotes the optimized learning

strategy, which continually fine-tunes the current model Mt−1 using newly annotated

candidates enlarged by those misclassified candidates; that is, Q
⋃
H. Compared

with other learning strategy baselines (Tajbakhsh et al., 2016; Zhou et al., 2017c,

2019b) as codified in Table 3.1, ACFT(HQ) saves training time through faster conver-

gence compared with repeatedly fine-tuning the original pre-trained CNN, and boosts

performance by eliminating easy samples, focusing on hard samples, and preventing

catastrophic forgetting. In all three applications, our ACFT begins with an empty

training dataset and directly uses pre-trained models (AlexNet and GoogLeNet) on

ImageNet.

3.3.2 Assessing Eight Active Selecting Criteria

We meticulously monitored the active selection process and examined the selected

candidates. For example, we include the top ten candidates selected by the four ACFT

methods at Step 3 in colonoscopy frame classification in Figure 3.5. From this process,

we have observed the following:

• Patterns A and B are dominant in the earlier stages of ACFT as the CNN has

not been fine-tuned properly to the target domain;

• Patterns C, D and E are dominant in the later stages of ACFT as the CNN has

been largely fine-tuned on the target dataset;

• Majority selection is effective for excluding Patterns C, D, and E, whereas en-

tropy only (without the majority selection) can handle Patterns C, D, and E
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reasonably well;

• Patterns B, F, and G generally make good contributions to elevating the current

CNN’s performance;

• Entropy and entropy+majority favor Pattern A due to its higher degree of

uncertainty, and;

• Diversity+majority prefers Pattern B whereas diversity prefers Pattern C. This

is why diversity may cause sudden disturbances in the CNN’s performance and

why diversity+majority is generally preferred.
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(a) Colonoscopy frame classification (b) Polyp detection (c) Pulmonary embolism detection

Figure 3.3: Comparing eight active selection approaches with random selection on AlexNet (Krizhevsky et al., 2012)
for our three distinct medical applications, including (a) colonoscopy frame classification, (b) polyp detection, and (c)
pulmonary embolism detection, demonstrates consistent patterns with AlexNet. The solid black line denotes the current
state-of-the-art performance of fine-tuning using full training data and the dashed black line denotes the performance of
training from scratch using full training data.
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Figure 3.4: Comparing eight active selection approaches with random selection on GoogLeNet (Szegedy et al., 2015)
for our three distinct medical applications, including (a) colonoscopy frame classification, (b) polyp detection, and (c)
pulmonary embolism detection, demonstrates consistent patterns with AlexNet. The solid black line denotes the current
state-of-the-art performance of fine-tuning using full training data and the dashed black line denotes the performance of
training from scratch using full training data.
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Table 3.3: Comparison of proposed active learning strategies and selection criteria. As measured by the Area under
the Learning Curve (ALC), bolded values in the table indicate the outstanding learning strategies (see Table 3.1)
using certain active selection criteria, and starred values represent the best performance taking both learning strategies
and active selection criteria into consideration. For all three applications, we report baseline performance of random
fine-tuning (RFT) using AlexNet in the table footnote. Considering the variance of random sampling for each active
learning step, we conduct five independent trials for RFT and report the mean and standard deviation (mean±s.d.).

Application Learning strategy + Diversity

− Majority

− Random

+ Diversity

+ Majority

− Random

+ Diversity

− Majority

+ Random

+ Diversity

+ Majority

+ Random

+ Entropy

− Majority

− Random

+ Entropy

+ Majority

− Random

+ Entropy

− Majority

+ Random

+ Entropy

+ Majority

+ Random

Colonoscopy

frame

classification

ACFT(Q) 0.8375 0.8773 0.8995 0.9160 0.8444 0.8227 0.9136 0.9061

ACFT(LQ) 0.8501 0.8956 0.9083 0.9262 0.9149 0.9051 0.9033 0.9223

AFT(LQ) 0.9183 0.9253 0.9299 0.9344? 0.9219 0.9180 0.9268 0.9291

ACFT(HQ) 0.9048 0.9236 0.9241 0.9179 0.9198 0.9266 0.9257 0.9293

Polyp

detection

ACFT(Q) 0.8669 0.9023 0.8984 0.9168 0.8834 0.8656 0.9034 0.9271

ACFT(LQ) 0.9195 0.9142 0.9497 0.9488 0.9204 0.9255 0.9475 0.9444

AFT(LQ) 0.9242 0.9285 0.9353 0.9355 0.9292 0.9238 0.9367 0.9522?

ACFT(HQ) 0.9013 0.9370 0.9116 0.9363 0.9321 0.9436 0.9196 0.9443

Pulmonary

embolism

detection

ACFT(Q) 0.7828 0.7911 0.7690 0.7977 0.7855 0.7736 0.7296 0.7833

ACFT(LQ) 0.8083 0.8176 0.7975 0.8263 0.8032 0.8086 0.8022 0.8245

AFT(LQ) 0.7650 0.7973 0.7978 0.8040 0.7917 0.7878 0.7964 0.8222

ACFT(HQ) 0.8272? 0.7876 0.8047 0.8245 0.8218 0.7995 0.8155 0.8205

1 RFT in colonoscopy frame classification: ALC = 0.8958±0.0176

2 RFT in polyp detection: ALC = 0.9358±0.0130

3 RFT in pulmonary embolism detection: ALC = 0.7849±0.0261
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3.3.3 Comparing Four Active Learning Strategies

As summarized in Table 3.1, several active learning strategies can be derived.

The prediction performance was evaluated according to the Area under the Learning

Curve (ALC), in which the learning curve plots AUC as a function of the number of

labels queried (Guyon et al., 2011), computed on the testing dataset. Table 3.3 shows

the ALC of ACFT(Q), ACFT(LQ), AFT(LQ) and ACFT(HQ) compared with RFT. Our

comprehensive experiments have demonstrated that:

• ACFT(Q) considers only newly selected candidates for fine-tuning, resulting in

an unstable CNN performance due to the catastrophic forgetting of the previous

samples;

• ACFT(LQ) requires a careful parameter adjustment. Although its performance

is acceptable, it requires the same computing time as AFT(LQ), indicating that

there is no advantage to continually fine-tuning the current model;

• AFT(LQ) shows the most reliable performance compared with ACFT(Q) and

ACFT(LQ);

• The optimized version, ACFT(HQ), shows comparable performance to AFT(LQ)

and occasionally outperforms AFT(LQ) by eliminating easy samples, focusing

on hard samples, and preventing catastrophic forgetting.

In summary, our results suggest that (1) it is unnecessary to re-train models

repeatedly from scratch for each active learning step and (2) learning newly annotated

candidates plus a small portion of the misclassified candidates leads to equivalent

performance to using the entire labeled set.
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3.3.4 Cutting >80% Annotation Cost for Medical Applications

ACFT reduces 82% annotation cost in quality assessment. Figure 3.1(b) shows

that ACFT, with approximately 120 candidate queries (6%), achieves performance

equivalent to a 100% trained dataset fine-tuned from AlexNet (solid black line, AUC

= 0.9366), and, with only 80 candidate queries (4%), can achieve performance equiv-

alent to a 100% training dataset learned from scratch (dashed black line, AUC =

0.9204). Using only 48 candidate queries, ACFT equals the performance of RFT

at 260 candidate queries. Therefore, about 81.5% of the labeling cost associated

with with RFT in colonoscopy frame classification is recovered using ACFT. Detailed

analysis in Figure 3.3 and Figure 3.4 reveals that during the early stages, RFT yields

performance superior to some of the active selecting processes because: 1) random

selection gives samples with the positive-negative ratio compatible with the testing

and validation dataset; 2) the pre-trained model gives poor predictions in the domain

of medical imaging, as it was trained by natural images. Its output probabilities are

mostly inconclusive or even opposite, yielding poor selection scores. However, with

randomness injected, as described in Sec. 3.2.3, ACFT (+majority and +random-

ness) shows superior performance, even at early stages, with continued performance

improvement during subsequent steps (see the red and blue curves in Figure 3.3 and

Figure 3.4). Besides, evidenced by Table 3.3, ACFT performs comparably with AFT,

but, unlike the latter, does not require use of the entire labeled dataset or fine-tuning

from the beginning.

ACFT reduces 86% annotation cost in polyp detection. Figure 3.1(c) shows that

ACFT, with approximately 320 candidate queries (2.04%), can achieve performance

equivalent to a 100% training dataset fine-tuned from AlexNet (solid black line, AUC

= 0.9615), and, with only 10 candidate queries (0.06%), can achieve performance
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equivalent to a 100% training dataset learned from scratch (dashed black line, AUC

= 0.9358). Furthermore, ACFT, using only 20 candidate queries, achieves perfor-

mance equivalent to RFT using 146 candidate queries. Therefore, nearly 86.3% of

the labeling cost associated with the use of RFT for polyp detection could be recov-

ered with our method. The fast convergence and outstanding performance of ACFT

is attributable to the majority selection and randomization method, which can both

efficiently select the informative and representative candidates while excluding those

with noisy labels, yet still boost the performance during the early stages. For example,

the diversity criteria, if without using majority selection, would strongly favor candi-

dates whose prediction pattern resembles Pattern C (see Table 3.2), thus performing

poorer than RFT due to noisy labels generated through data augmentation.

ACFT reduces 80% annotation cost in PE detection 1 . Figure 3.1(d) shows that

ACFT, with 2,560 candidate queries (66.68%) nearly achieves performance equiva-

lent to both the 100% training dataset fine-tuned from AlexNet and learning from

scratch (solid black line and dashed black line, where AUC = 0.8763 and AUC =

0.8706, respectively). With 320 candidate queries, ACFT can achieve the perfor-

mance equivalent to RFT using 1,627 candidate queries. Based on this analysis, the

cost of annotation in pulmonary embolism detection can be reduced by 80.3% using

ACFT compared with RFT.

ACFT reduces 35% annotation cost in scene classification. Figure 3.1(a) compares

ACFT with RFT in scene classification using the Places-3 dataset. For RFT, six

different sequences are generated via systematic random sampling. The final curve

is plotted showing the average performance of six runs. As shown in Figure 3.1(a),

ACFT, with only 2,906 candidate queries, can achieve a performance equivalent to

1I thank Jae Y. Shin, with whom I co-authored Zhou et al. (2017c, 2021b), for conducting the
experiments and providing the results for PE detection.
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RFT with 4,452 candidate queries, as measured by the Area Under the Curve (AUC);

moreover, using only 1,176 candidate queries, ACFT can achieve performance equiva-

lent to full training using all 42,000 candidates. Therefore, 34.7% of the RFT labeling

costs and 97.2% of full training costs could be saved using ACFT. When nearly 100%

training data are used, the performance continues to improve, suggesting that the

dataset size is still insufficient, given 22 layers GoogLeNet architecture. ACFT is a

general algorithm that is not only useful for medical datasets but other datasets as

well, and is also effective for multi-class problems.
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Figure 3.5: Distribution of predictions for the top ten candidates actively selected by the four ACFT methods at Step 3
in colonoscopy frame classification. Positive candidates are shown in red and negative candidates are shown in blue. This
visualization confirms the assumption in Table 3.2 that diversity+majority selection criteria prefers Pattern B whereas
diversity suggests Pattern C; both entropy and entropy+majority favor Pattern A due to its higher degree of uncertainty.
However, in this case at Step 3, with entropy+majority selection criteria, there are no more candidates with Pattern A;
therefore, candidates with Pattern B are selected.
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3.4 Discussion & Conclusion

3.4.1 What Are the Favored Prediction Patterns?

Figure 3.2 shows the active candidate selection process for multi-class classifica-

tion. To facilitate comprehension, Table 3.2 illustrates the process in the context of

binary classification. Assuming the prediction of patch xji by the current CNN is

P j
i , we call the histogram of P j

i , j ∈ [1,m] the prediction pattern of candidate Ci. As

shown in Row 1 of Table 3.2, in binary classification, there are seven typical prediction

patterns:

• Pattern A is mostly concentrated at 0.5, with a higher degree of uncertainty.

Most active learning algorithms (Settles, 2009; Guyon et al., 2011) favor these

types of candidates as they are effective for reducing uncertainty.

• Pattern B is flatter than Pattern A, as the patches’ predictions are spread widely

from 0 to 1 with a higher degree of inconsistency among the patches’ predic-

tions. Since all the patches belonging to a candidate are generated via data

augmentation, they (at least the majority) are expected to make similar pre-

dictions. These types of candidates have the potential to significantly enhance

the current CNN’s performance.

• Pattern C is clustered at the both ends, with a higher degree of diversity. These

types of candidates are most likely associated with noisy labels at the patch level

as illustrated in Figure A.1(c), and they are the least favorable for use in active

selection because they may cause confusion when fine-tuning the CNN.

• Patterns D and E are clustered at either end (i.e., 0 or 1), with a higher degree

of certainty. These types of candidates should not undergo annotation at this
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stage because it is likely the current CNN has correctly predicted them, and

therefore these candidates would contribute very little towards fine-tuning the

current CNN.

• Patterns F and G have a higher degree of certainty for some of the patches’

predictions but are associated with some outliers. These types of candidates

are valuable because they are capable of smoothly improving the CNN’s per-

formance. While such candidates might not make dramatic contributions, they

do not significantly degrade the CNN’s performance either.

3.4.2 How Does Intra-diversity Differ from Inter-diversity?

Since measuring diversity between selected samples and unlabeled samples is com-

putationally intractable, especially for a large pool of data (Sourati et al., 2016), the

existing diversity sampling cannot be applied directly to our real-world medical appli-

cations. To name a few, selection criteria R in Chakraborty et al. (2015) involves all

unlabeled samples (patches). There are 391,200 training patches for polyp detection,

and computing their R would demand 1.1 TB memory (391,002×8). In addition,

their algorithms for batch selection are based on the truncated power method (Yuan

and Zhang, 2013), which is unable to find a solution even for our smallest application

(colonoscopy frame classification with 42,000 training patches). Holub et al. (2008)

cannot be directly used for our real-world applications either, as it has a complexity

of O(L3×N3) and requires to train L×N classifiers in each step, where N indicates

the number of unlabeled patches and L indicates the number of classes. In addressing

the computational complexity problem, we exploit the inherent consistency among

the patches that are augmented from the same sample, making it feasible for our real-

world applications. To contrast these two measures of diversity, the variance among
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Figure 3.6: The positive/negative ratio in the candidates selected by ACFT, AFT
and RFT. Please note that the ratio in RFT serves as an approximation for the ratio
of the entire dataset.

samples refers to inter-diversity, while the variance among patches augmented from

the same sample refers to intra-diversity. We recognize that intra-diversity would in-

evitably suffer from redundancy in selection, as it treats each sample separately and

dismisses inter-diversity among samples. An obvious solution is to inject randomness

into active selection criteria, as described in Sec. 3.2.3. Nonetheless, a better solution

is to combine inter- and intra-diversity together by computing inter-diversity locally

on the smaller set of samples selected by intra-diversity. These solutions all aim at

selecting sufficiently diverse samples with manageable computational complexity.

3.4.3 Can Actively Selected Samples Be Automatically Balanced?

Data is often imbalanced in real-world applications. The images of target classes of

interest, e.g., certain types of diseases, only appear in a small portion of the dataset.

We encounter severe imbalances in our three applications. The ratio between positives

and negatives is around 1:9 in the polyp and pulmonary embolism detection. Mean-

while, the ratio is approximately 3:7 in the colonoscopy frame classification. Learn-
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ing from such imbalanced datasets leads to a common issue: majority bias (Aggarwal

et al., 2020), which is a prediction bias towards majority classes over minority classes.

Training data should be balanced in terms of classes (Japkowicz and Stephen, 2002;

He and Garcia, 2009; Buda et al., 2018). Similar to most studies in active learning

literature, our proposed selection criteria are not directly designed to tackle the issue

of imbalance, but they have an implicit impact on balancing the data. For instance,

when the current CNN has already learned more from positive samples, the next

active learning selection would be more likely to prefer those negative samples, and

vice-versa. On the contrary, random selection would consistently select new samples

that follow roughly the same positive/negative ratio as the entire dataset. As shown

in Figure 3.6, our ACFT(HQ) and AFT(LQ) are capable of automatically balancing the

selected training data. After monitoring the active selection process, ACFT(HQ) and

AFT(LQ) select twice as many positives compared to random selection. This does not

suggest that the number of positives and negatives must be approximately identical

in the selected samples. Negative samples naturally present more contextual variance

than positive ones, as negatives can contain a vast array of possibilities not including

the disease of interest. It is expected that the CNN should learn more from nega-

tives to shape the decision boundary of positives. An ideal selection should cover a

sufficient variety of negatives while striking an emphasis on the positives. We believe

that this accounts for the quick achievement of superior performance in imbalanced

data for our ACFT(HQ) and AFT(LQ).

3.4.4 How to Prevent Model Forgetting in Continual Learning?

When a CNN learns from a stream of tasks continually, the learning of the new

task can degrade the CNN’s performance for earlier tasks (Kirkpatrick et al., 2017;

Chen and Liu, 2018; Parisi et al., 2019). This phenomenon is called catastrophic
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Figure 3.7: Labels are reused differently in four active learning strategies, as sum-
marized in Table 3.1. Specifically, the labels can be non-reused, partially reused, or
100% reused. We plot the number of candidates along with each active learning step,
including labeled candidates (L), newly annotated candidates (Q), and misclassified
candidates (H). As seen, by only continual fine-tuning on the hybrid data of H

⋃
Q,

our ACFT significantly reduces training time through faster convergence than repeat-
edly fine-tuning on the entire labeled data of L

⋃
Q. Most importantly, as evidence

by Table 3.3, partially reusing labels can achieve compelling performance because it
boosts performance by eliminating labeled easy candidates, focusing on hard ones,
and preventing catastrophic forgetting.

forgetting, which was first recognized by McCloskey and Cohen (1989). In our exper-

iments, we have also observed similar behavior in active continual fine-tuning when

the CNN encounters newly selected samples. This problem might not arise if the

CNN is repeatedly trained on the entire labeled set at every active learning step.

But fully reusing the labeled samples takes a lot of resources; further especially when

the labeled set gets larger and larger, the impact of the newly selected samples on

the model training becomes smaller and smaller (relative to the whole labeled set).
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To make the training more efficient and maximize the contribution of new data, we

attempted to fine-tune the CNN only on the newly selected samples, developing the

learning strategy called ACFT(Q). However, as seen in Table 3.3, ACFT(Q) results

in a substantially unstable performance because of the catastrophic forgetting. To

track the forgotten samples, we have plotted a histogram of the misclassified can-

didates (H) by the current CNN against labeled candidates (L) and newly selected

candidates (Q) in Figure 3.7. We found that if the CNN is only fine-tuned on the

newly selected samples at each step, it tends to forget the samples that have been

learned from previous steps. This is because new data will likely override the weights

that have been learned in the past, and thus overfitting the CNN on this data and

degrading the model’s generalizability. Therefore, we propose to combine the newly

selected (Q) and misclassified (H) candidates together to continual fine-tune the cur-

rent CNN, which not only spotlights the power of new data to achieve the comparable

performance (see Table 3.3: ACFT(HQ) vs. AFT(LQ)), but also eases the computa-

tional cost by eliminating re-training on easy samples, focusing on hard ones, and

preventing catastrophic forgetting.

3.4.5 Is ACFT Generalizable to Other Models?

We based our experiments on AlexNet and GoogLeNet. Alternatively, deeper ar-

chitectures, such as VGG (Simonyan and Zisserman, 2014), ResNet (He et al., 2016a),

DenseNet (Huang et al., 2017), and FixEfficientNet (Touvron et al., 2020), could have

been used and they are known to show relatively higher performance for challenging

computer vision tasks. However, the purpose of this work is not to achieve the highest

performance for different medical image tasks but to answer a critical question: How

can annotation costs be significantly reduced when applying CNNs to medical imaging?

For this purpose, we have experimented with our three applications, demonstrating
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consistent patterns between AlexNet and GoogLeNet as shown in Figure 3.3 and

Figure 3.4. As a result, given this generalizability, we can focus on comparing the

prediction patterns and learning strategies rather than running experiments on dif-

ferent CNN architectures. Moreover, our active selection criteria only rely on data

augmentation and model prediction, without being tied to specific types of predic-

tors. This suggests that not only various CNN architectures, but also other predictive

methods—spanning old fashions (e.g., SVM, Random Forests, and AdaBoost) to re-

cent trends such as CapsuleNet (Sabour et al., 2017) and Transformer (Dosovitskiy

et al., 2020)—can benefit from the progress in active learning.

3.4.6 Can We Do Better on the Cold Start Problem?

It is crucial to intelligently select initial samples for an active learning procedure,

especially for algorithms like our ACFT, which starts from a completely empty labeled

dataset. Our results in Figure 3.3 and Figure 3.4 and several other studies (Borisov

et al., 2010; Zhou et al., 2017c; Yuan et al., 2020) reveal that uniformly, randomly

selecting initial samples from the unlabeled set could outperform active selection at

the beginning. This is one of the most challenging problems in active learning, known

as the cold start problem, which is ascribed to (1) data scarcity and (2) model in-

stability at early stages. First, the data distribution in randomly selected samples

better reflects the original distribution of the entire dataset than in actively selected

samples. Maintaining a similar distribution between training and test data is bene-

ficial when using scarce data. The most common practice is to admit the power of

randomness at the beginning and randomly select initial samples from the unlabeled

set (Ren et al., 2020). Our ACFT addresses the cold start problem by incorporating a

random sampling probability with respect to the active selection criteria (as detailed

in Sec. 3.2.3). The devised ACFT (+randomness vs. -randomness in Figure 3.3 and
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Figure 3.4) shows superior performance, even in early stages, with continued perfor-

mance improving during the subsequent steps. Second, in the beginning, the CNN

understandably fails to amply predict new samples, as it is trained with an inade-

quate number of samples. With horrible predictions, no matter how marvelous the

selection criterion is, the selected samples would be unsatisfactory—as said “garbage

in garbage out”. To express meaningful CNN predictions, our ACFT suggests the use

of pre-trained CNNs (as illustrated in Alg. 1), not only initializing the CNN at the

first step, but also providing fairly reasonable predictions for initial active selection.

Figure 3.1 presents encouraging results of active selection using pre-trained CNNs

compared with random sampling from the unlabeled set (ACFT vs. RFT). However,

a CNN pre-trained on ImageNet may give poor predictions in the medical imaging

domain, as it was trained from only natural images; it is associated with a large do-

main gap for medical images. As a result, the CNN predictions may be inconclusive

or even opposite, yielding poor selection scores. Naturally, one may consider utiliz-

ing pre-trained models in the same domains to reduce this domain gap (Zhou et al.,

2021c; Haghighi et al., 2020; Feng et al., 2020). Yuan et al. (2020) has demonstrated

this idea in natural language processing by applying self-supervised language model-

ing to select initial samples. In the case of medical imaging, we naturally expect that

self-supervised methods can also mitigate the pronounced domain gap between nat-

ural and medical imaging, offering a great starting point for selecting samples using

domain-relevant image representation. More importantly, the learning objectives in

self-supervised methods are applicable for discovering the most representative initial

samples. For instance, our diversity criterion shares a similar spirit with the learning

objective of BYOL (Grill et al., 2020) and of Parts2Whole (Feng et al., 2020), as they

all aim to pull together the patches augmented from the same sample. Therefore,

their objective functions could serve as an off-the-shelf measure for the power of a
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sample in elevating the pre-trained CNN’s performance. The underlying hypothesis is

that the worthiness of labeling a sample correlates with the learning objective of self-

supervised pre-training. Specifically, a sample is potentially more worthy to train the

CNN if it requires considerably more effort to perform the task of in-painting (Pathak

et al., 2016), restoration (Zhou et al., 2021c), contrastive learning (Chen et al., 2020),

or colorization (Zhang et al., 2016). We anticipate that self-supervised methods have

great potential to accommodate the selection of initial samples by leveraging unla-

beled data in the same domain, therefore, more effectively addressing the cold start

problem in active learning.

3.4.7 Is Our Consistency Observation Useful for Other Purposes?

Our key observation is that all patches augmented from the same sample share

the same label, and thus are expected to have similar predictions by the CNN. This

inherent invariance allows us to devise the diversity metric for estimating the worthi-

ness of labeling the sample. From a broader view, the use of data consistency before

and after a mixture of augmentation has played an important role in many other

circumstances. In semi-supervised learning, the consistency loss serves as a bridge

between labeled and unlabeled data. While the CNN is trained on labeled data, the

consistency loss constrains predictions to be invariant to unlabeled data augmented

in varying ways (Yu et al., 2019; Cui et al., 2019b; Bortsova et al., 2019; Fotedar

et al., 2020). In self-supervised learning, the concept of consistency allows CNNs to

learn transformation invariance features by either always restoring the original image

from the transformed one (Zhu et al., 2020a; Zhou et al., 2021c) or explicitly pulling

all patches augmented from the same image together in the feature space (Feng et al.,

2020; Chen et al., 2020; He et al., 2020). Albeit the great promises of consistency

loss, automatic data augmentation inevitably generates “noisy” samples, jeopardizing
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the data consistency presumption.As an example, when an image contains objects A

and B, random cropping may miss either one of the objects fully or partially, caus-

ing label inconsistency or representation inconsistency (Purushwalkam and Gupta,

2020; Hinton, 2021). Therefore, the choice of data augmentation is critical in employ-

ing the data consistency presumption. Other than data consistency, the prediction

consistency of model ensembles can also calculate the diversity. For instance, Gal

and Ghahramani (2016); Gal et al. (2017); Tsymbalov et al. (2018) have proposed

to estimate the prediction diversity presented in the CNN via Monte-Carlo dropout

in the inference; Beluch et al. (2018); Yang et al. (2017); Kuo et al. (2018); Li et al.

(2020); Venturini et al. (2020) measure the prediction consistency by feeding images

to multiple independent CNNs that have been trained for the same data and purpose.

Unlike the data consistency in our work, their presumption is the model consistency,

wherein the CNN predictions ought to be consistent if the same sample goes through

the model ensembles; otherwise, this sample is considered worthy of labeling.

3.4.8 Conclusion and Broader Impacts

We have developed a novel method for dramatically reducing annotation cost by

integrating active learning and transfer learning. Compared with the state-of-the-

art random selection method (Tajbakhsh et al., 2016), our method can reduce the

annotation cost by at least half for three medical applications and by more than

33% for natural image dataset Places-3. The superior performance of our method

is attributable to eight distinct advantages, detailed in Sec. 3.2.4. We believe that

labeling at the candidate level offers a sensible balance for our three applications,

whereas labeling at the patient level would certainly enhance annotation cost reduc-

tion, but introduces more severe label noise. Labeling at the patch level compensates

for additional label noise but would impose significant burdens on experts for anno-
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tation creation. More importantly, our method has the potential to positively impact

computer-aided diagnosis (CAD) in medical imaging. The current regulations require

that CAD systems be deployed in a “closed” environment, in which all CAD results

are reviewed and errors, if any, must be corrected by radiologists. As a result, all false

positives are dismissed and all false negatives are supplied, an instant on-line feedback

process that makes it possible for CAD systems to be self-learning and self-improving

after deployment given the continual fine-tuning capability of our method.

We presented this work in our CVPR paper (Zhou et al., 2017c) to integrate active

learning and deep learning via continual fine-tuning. It has since been quickly adopted

by the research community: reviewed by some of the most prestigious journals and

conferences in the field (Wang et al., 2018a; Zhang et al., 2019b; Sourati et al., 2019;

Liu et al., 2019b; Bi et al., 2019; Zhang et al., 2019a; Budd et al., 2019), served as com-

petitive baseline (Shi et al., 2019; Duan et al., 2019), and enlightened to develop more

advanced active learning approaches (Zhou et al., 2019b; Li et al., 2019b; Zhang et al.,

2019d). Moreover, although the technique was derived from the medical context, it

is a general active learning approach, which has been adopted in multiple alterna-

tive fields such as text classification (Oftedal, 2019), vehicle type recognition (Huang

et al., 2019), streaming recommendation system (Guo et al., 2019), etc.
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Chapter 4

UTILIZING ANNOTATION FROM ADVANCED MODELS

This chapter is based on the following publications:

• Zhou, Z., Rahman Siddiquee M. M., Tajbakhsh, N., & Liang, J. (2018). Unet++:

A nested u-net architecture for medical image segmentation. In Deep learning

in medical image analysis and multimodal learning for clinical decision support

(pp. 3-11). Springer, Cham.

• Zhou, Z., Rahman Siddiquee M. M., Tajbakhsh, N., & Liang, J. (2019). Unet++:

Redesigning skip connections to exploit multiscale features in image segmenta-

tion. IEEE transactions on medical imaging, 39(6), 1856-1867.
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4.1 Background & Motivation

The encoder-decoder networks are widely used in modern semantic and instance

segmentation models (Zhou et al., 2017b; Shen et al., 2017; Litjens et al., 2017; Char-

trand et al., 2017; Falk et al., 2018; Tajbakhsh et al., 2020a). Their success is largely

attributed to their skip connections, which combine deep, semantic, coarse-grained

feature maps from the decoder sub-network with shallow, low-level, fine-grained fea-

ture maps from the encoder sub-network, and have proven to be effective in recovering

fine-grained details of the target objects (Drozdzal et al., 2016; He et al., 2016a; Huang

et al., 2017) even on complex background (Hariharan et al., 2015; Lin et al., 2017b).

Skip connections have also played a key role in the success of instance-level segmen-

tation models such as He et al. (2017); Hu et al. (2018) where the idea is to segment

and distinguish each instance of desired objects.

However, these encoder-decoder architectures for image segmentation come with

two limitations. First, the optimal depth of an encoder-decoder network can vary

from one application to another, depending on the task difficulty and the amount of

labeled data available for training. A simple approach would be to train models of

varying depths separately and then ensemble the resulting models during the inference

time (Dietterich, 2000; Hoo-Chang et al., 2016; Ciompi et al., 2015). However, this

simple approach is inefficient from a deployment perspective, because these networks

do not share a common encoder. Furthermore, being trained independently, these

networks do not enjoy the benefits of multi-task learning (Bengio, 2009; Zhang and

Yang, 2017). Second, the design of skip connections used in an encoder-decoder

network is unnecessarily restrictive, demanding the fusion of the same-scale encoder

and decoder feature maps. While striking as a natural design, the same-scale feature

maps from the decoder and encoder networks are semantically dissimilar and no solid
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theory guarantees that they are the best match for feature fusion.

In this chapter, we present UNet++, a new general purpose image segmentation

architecture that aims at overcoming the above limitations. As presented in Fig-

ure 4.1(g), UNet++ consists of U-Nets of varying depths whose decoders are densely

connected at the same resolution via the redesigned skip connections. The architec-

tural changes introduced in UNet++ enable the following advantages. First, UNet++

is not prone to the choice of network depth because it embeds U-Nets of varying depths

in its architecture. All these U-Nets partially share an encoder, while their decoders

are intertwined. By training UNet++ with deep supervision, all the constituent U-

Nets are trained simultaneously while benefiting from a shared image representation.

This design not only improves the overall segmentation performance, but also enables

model pruning during the inference time. Second, UNet++ is not handicapped by un-

necessarily restrictive skip connections where only the same-scale feature maps from

the encoder and decoder can be fused. The redesigned skip connections introduced in

UNet++ present feature maps of varying scales at a decoder node, allowing the ag-

gregation layer to decide how various feature maps carried along the skip connections

should be fused with the decoder feature maps. The redesigned skip connections are

realized in UNet++ by densely connecting the decoders of the constituents U-Nets at

the same resolution. We have extensively evaluated UNet++ across six segmentation

datasets and multiple backbones of different depths. Our results demonstrate that

UNet++ powered by redesigned skip connections and deep supervision enables a sig-

nificantly higher level of performance for both semantic and instance segmentation.

This significant improvement of UNet++ over the classical U-Net architecture is as-

cribed to the advantages offered by the redesigned skip connections and the extended

decoders, which together enable gradual aggregation of the image features across the

network, both horizontally and vertically.
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In summary, we make the following five contributions:

1. We introduce a built-in ensemble of U-Nets of varying depths in UNet++,

enabling improved segmentation performance for varying size objects—an im-

provement over the fixed-depth U-Net.

2. We redesign skip connections in UNet++, enabling flexible feature fusion in

decoders—an improvement over the restrictive skip connections in U-Net that

require fusion of only same-scale feature maps.

3. We devise a scheme to prune a trained UNet++, accelerating its inference speed

while maintaining its performance.

4. We discover that simultaneously training multi-depth U-Nets embedded within

the UNet++ architecture stimulates collaborative learning among the con-

stituent U-Nets, leading to much better performance than individually training

isolated U-Nets of the same architecture.

5. We demonstrate the extensibility of UNet++ to multiple backbone encoders

and further its applicability to various medical imaging modalities including

CT, MRI, and electron microscopy.
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Figure 4.1: Evolution from U-Net to UNet++. Each node in the graph represents a convolution block, downward
arrows indicate down-sampling, upward arrows indicate up-sampling, and dot arrows indicate skip connections. (a–d)
U-Nets of varying depths. (e) Ensemble architecture, U-Nete, which combines U-Nets of varying depths into one unified
architecture. All U-Nets (partially) share the same encoder, but have their own decoders. (f) UNet+ is constructed from
U-Nete by dropping the original skip connections and connecting every two adjacent nodes with a short skip connection,
enabling the deeper decoders to send supervision signals to the shallower decoders. (g) UNet++ is constructed from
U-Nete by connecting the decoders, resulting in densely connected skip connections, enabling dense feature propagation
along skip connections and thus more flexible feature fusion at the decoder nodes. As a result, each node in the UNet++
decoders, from a horizontal perspective, combines multiscale features from its all preceding nodes at the same resolution,
and from a vertical perspective, integrates multiscale features across different resolutions from its preceding node, as
formulated at Eq. 4.1. This multiscale feature aggregation of UNet++ gradually synthesizes the segmentation, leading to
increased accuracy and faster convergence, as evidenced by our empirical results in Section 4.3. Note that, explicit deep
supervision is required (bold links) to train U-Nete but optional (pale links) for UNet+ and UNet++.
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Table 4.1: Ablation study on U-Nets of varying depths alongside with the new
variants of U-Nets proposed in this work. U-Net Ld refers to a U-Net with a depth
of d (Figure 4.1(a-d)). U-Nete, UNet+, and UNet++ are the new variants of U-
Net, which are depicted in Figure 4.1(e-g). “DS” denotes deeply supervised training
followed by average voting. Intersection over union (IoU) is used as the metric for
comparison (mean±s.d. %).

Architecture DS Params EM Cell Brain Tumor

U-Net L1 7 0.1M 86.83±0.43 88.58±1.68 86.90±2.25

U-Net L2 7 0.5M 87.59±0.34 89.39±1.64 88.71±1.45

U-Net L3 7 1.9M 88.16±0.29 90.14±1.57 89.62±1.41

U-Net (L4) 7 7.8M 88.30±0.24 88.73±1.64 89.21±1.55

U-Nete 3 8.7M 88.33±0.23 90.72±1.51 90.19±0.83

UNet+ 7 8.7M 88.39±0.15 90.71±1.25 90.70±0.91

UNet+ 3 8.7M 88.89±0.12 91.18±1.13 91.15±0.65

UNet++ 7 9.0M 88.92±0.14 91.03±1.34 90.86±0.81

UNet++ 3 9.0M 89.33±0.10 91.21±0.98 91.21±0.68

4.2 Approach & Property

Figure 4.1 shows how UNet++ evolves from the original U-Net. In the following,

we first trace this evolution, motivating the need for UNet++, and then explain its

technical and implementation details.

4.2.1 Evolving Architectural Designs

We have done a comprehensive ablation study to investigate the performance of

U-Nets of varying depths (Figure 4.1(a-d)). For this purpose, we have used three rela-

tively small datasets, namely Cell 1 , EM, and Brain Tumor (detailed in Appendix A).

Table 4.1 summarizes the results. For the cell and brain tumor segmentation, a shal-

1I thank Michael G. Meyer for allowing us to test our ideas on the Cell-CT dataset.
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lower network (U-Net L3) 2 outperforms the deep U-Net. For the EM dataset, on

the other hand, the deeper U-Nets consistently outperform the shallower counter-

parts, but the performance gain is only marginal. Our experimental results suggest

two key findings: 1) deeper U-Nets are not necessarily always better, 2) the opti-

mal depth of architecture depends on the difficulty and size of the dataset at hand.

While these findings may encourage an automated neural architecture search, such

an approach is hindered by the limited computational resources (Liu et al., 2018;

Zoph et al., 2018; Liu et al., 2019a; Zhang et al., 2019e; Li et al., 2019a). Alterna-

tively, we propose an ensemble architecture, which combines U-Nets of varying depths

into one unified structure. We refer to this architecture as U-Nete (Figure 4.1(e)).

We train U-Nete by defining a separate loss function for each U-Net in the ensem-

ble, i.e., X0,j, j ∈ {1, 2, 3, 4}. Our deep supervision scheme differs from the com-

monly used deep supervision in deep image classification and image segmentation

networks; in (Xie and Tu, 2015; Chen et al., 2016; Dou et al., 2017; Lee et al.,

2015) the auxiliary loss functions are added to the nodes along the decoder network,

i.e., X4−j,j, j ∈ {0, 1, 2, 3, 4}, whereas we apply them on X0,j, j ∈ {1, 2, 3, 4}. At the

inference time, the output from each U-Net in the ensemble is averaged.

The ensemble architecture (U-Nete) outlined above benefits from knowledge shar-

ing, because all U-Nets within the ensemble partially share the same encoder even

though they have their own decoders. However, this architecture still suffers from

two drawbacks. First, the decoders are disconnected—deeper U-Nets do not offer a

supervision signal to the decoders of the shallower U-Nets in the ensemble. Second,

the common design of skip connections used in the U-Nete is unnecessarily restrictive,

requiring the network to combine the decoder feature maps with only the same-scale

2In this dissertation, the original notation U-Net/UNet+/UNet++ Ld in Zhou et al. (2018b,
2019c) has been replaced with U-Net/UNet+/UNet++ Ld to avoid the confusion with footnote
symbols.
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feature maps from the encoder. While striking as a natural design, there is no guar-

antee that the same-scale feature maps are the best match for the feature fusion.

To overcome the above limitations, we remove original skip connections from the

U-Nete and connect every two adjacent nodes in the ensemble, resulting in a new ar-

chitecture, which we refer to as UNet+ (Figure 4.1(f)). Owing to the new connectivity

scheme, UNet+ connects the disjoint decoders, enabling gradient back-propagation

from the deeper decoders to the shallower counterparts. UNet+ further relaxes the

unnecessarily restrictive behaviour of skip connections by presenting each node in the

decoders with the aggregation of all feature maps computed in the shallower stream.

While using aggregated feature maps at a decoder node is far less restrictive than

having only the same-scale feature map from the encoder, there is still room for im-

provement. We further propose to use dense connectivity in UNet+, resulting in our

final architecture proposal, which we refer to as UNet++ (Figure 4.1(g)). With dense

connectivity, each node in a decoder is presented with not only the final aggregated

feature maps but also with the intermediate aggregated feature maps and the origi-

nal same-scale feature maps from the encoder. As such, the aggregation layer in the

decoder node may learn to use only the same-scale encoder feature maps or use all

collected feature maps available at the gate. Unlike U-Nete, deep supervision is not

required for UNet+ and UNet++, however, as we will describe later, deep supervi-

sion enables model pruning during the inference time, leading to a significant speedup

with only modest drop in performance.

4.2.2 Redesigning Skip Connections

Let xi,j denote the output of node Xi,j where i indexes the down-sampling layer

along the encoder and j indexes the convolution layer of the dense block along the
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(a) UNet++ (L4)

Figure 4.2: Training UNet++ with deep supervision makes segmentation results
available at multiple nodes X0,j, enabling architecture pruning at inference time.
Taking the segmentation result from X0,4 leads to no pruning, UNet++ (L4), whereas
taking the segmentation result from X0,1 results in a maximally pruned architecture,
UNet++ L1. Note that nodes removed during pruning are colored in gray.

skip connection. The stack of feature maps represented by xi,j is computed as

xi,j =


H (D(xi−1,j)) , j = 0

H
([[

xi,k
]j−1

k=0
,U(xi+1,j−1)

])
, j > 0

(4.1)

where function H(·) is a convolution operation followed by an activation function,

D(·) and U(·) denote a down-sampling layer and an up-sampling layer respectively,

and [ ] denotes the concatenation layer. Basically, as shown in Figure 4.1(g), nodes

at level j = 0 receive only one input from the previous layer of the encoder; nodes

at level j = 1 receive two inputs, both from the encoder sub-network but at two

consecutive levels; and nodes at level j > 1 receive j+ 1 inputs, of which j inputs are

the outputs of the previous j nodes in the same skip connection and the j+ 1th input

is the up-sampled output from the lower skip connection. The reason that all prior

feature maps accumulate and arrive at the current node is because we make use of a

dense convolution block along each skip connection.

4.2.3 Introducing Deep Supervision

We introduce deep supervision in UNet++. For this purpose, we append a 1×1

convolution with C kernels followed by a Sigmoid activation function to the outputs

from nodes X0,1, X0,2, X0,3, and X0,4 where C is the number of classes observed in
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the given dataset. We then define a hybrid segmentation loss consisting of pixel-

wise cross-entropy loss and soft dice-coefficient loss for each semantic scale. The

hybrid loss may take advantages of what both loss functions have to offer: smooth

gradient and handling of class imbalance (Milletari et al., 2016; Sudre et al., 2017).

Mathematically, the hybrid loss is defined as:

L(Y, P ) = − 1

N

C∑
c=1

N∑
n=1

(
yn,c log pn,c +

2yn,cpn,c
y2
n,c + p2

n,c

)
(4.2)

where yn,c ∈ Y and pn,c ∈ P denote the target labels and predicted probabilities for

class c and nth pixel in the batch, N indicates the number of pixels within one batch.

The overall loss function for UNet++ is then defined as the weighted summation

of the hybrid loss from each individual decoders: L =
∑d

i=1 ηi · L(Y, P i), where d

indexes the decoder. In the experiments, we give same balanced weights ηi to each

loss, i.e., ηi ≡ 1, and do not process the ground truth for different outputs supervision

like Gaussian blur.

Deep supervision enables model pruning. Owing to deep supervision, UNet++

can be deployed in two operation modes: 1) ensemble mode where the segmentation

results from all segmentation branches are collected and then averaged, and 2) pruned

mode where the segmentation output is selected from only one of the segmentation

branches, the choice of which determines the extent of model pruning and speed

gain. Figure 4.2 shows how the choice of the segmentation branch results in pruned

architectures of varying complexity. Specifically, taking the segmentation result from

X0,4 leads to no pruning whereas taking the segmentation result from X0,1 leads to

maximal pruning of the network.
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Table 4.2: Details of the architectures used in our study. Wider version of U-Net
and V-Net are designed to have comparable number of parameters to UNet++ and
VNet++.

Architecture Params
X0,0 X1,0 X2,0 X3,0 X4,0

X0,4 X1,3 X2,2 X3,1 X4,0

U-Net 7.8M 32 64 128 256 512

wide U-Net 9.1M 35 70 140 280 560

V-Net 22.6M 32 64 128 256 512

wide V-Net 27.0M 35 70 140 280 560

Architecture Params X0,0−4 X1,0−3 X2,0−2 X3,0−1 X4,0

UNet+ 8.7M 32 64 128 256 512

UNet++ 9.0M 32 64 128 256 512

VNet+ 25.3M 32 64 128 256 512

VNet++ 26.2M 32 64 128 256 512

4.2.4 Two Unique Properties

1. UNet++ enables multi-scale feature aggregation. The original U-Net carried

residual connections between the encoder and decoder, while our UNet++ sug-

gests dense connections in between, reducing semantic gaps and encouraging

feature reuse. This idea can be adapted to the original U-Net, the U-Nets with

various backbones as feature extractors, and other segmentation frameworks

such as Mask RCNN.

2. UNet++ introduces deep supervision. Multiple branches in the UNet++ are

collaboratively trained with deep supervision at the full resolution. Deep su-

pervision can stabilize the model training and explore the most effective features

for varying sizes of lesions. Moreover, deep supervision makes segmentation out-

puts available at multiple branches, enabling architecture pruning at inference

time.
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4.3 Experiment & Result

4.3.1 Benchmarking UNet++

For comparison, we use the original U-Net (Ronneberger et al., 2015) and a cus-

tomized wide U-Net architecture for 2D segmentation tasks, and V-Net (Milletari

et al., 2016) and a customized wide V-Net architecture for 3D segmentation tasks.

We choose U-Net (or V-Net for 3D) because it is a common performance baseline for

image segmentation. We have also designed a wide U-Net (or wide V-Net for 3D) with

a similar number of parameters to our suggested architecture. This is to ensure that

the performance gain yielded by our architecture is not simply due to the increased

number of parameters. Table 4.2 details the U-Net and wide U-Net architectures.

We have further compared the performance of UNet++ against UNet+, which is our

intermediate architecture proposal. The numbers of kernels in the intermediate nodes

have been given in Table 4.2.
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Table 4.3: Semantic segmentation results measured by IoU (mean±s.d.) for U-Net, wide U-Net, UNet+ (our inter-
mediate proposal), and UNet++ (our final proposal). Both UNet+ and UNet++ are evaluated with and without deep
supervision (DS). We have performed independent two sample t-test between U-Net Falk et al. (2018) vs. others for 20
independent trials and highlighted boxes in red when the differences are statistically significant (p < 0.05).

Architecture DS Params
2D Application

Architecture DS Params
3D Application

EM Cell Nuclei BraTS Liver Lung Nodule

U-Net 7 7.8M 88.30±0.24 88.73±1.64 90.57±1.26 89.21±1.55 79.90±1.38 V-Net 7 22.6M 71.17±4.53

wide U-Net 7 9.1M 88.37±0.13 88.91±1.43 90.47±1.15 89.35±1.49 80.25±1.31 wide V-Net 7 27.0M 73.12±3.99

UNet+ 7 8.7M 88.39±0.15 90.71±1.25 91.73±1.09 90.70±0.91 79.62±1.20 VNet+ 7 25.3M 75.93±2.93

UNet+ 3 8.7M 88.89±0.12 91.18±1.13 92.04±0.89 91.15±0.65 82.83±0.92 VNet+ 3 25.3M 76.72±2.48

UNet++ 7 9.0M 88.92±0.14 91.03±1.34 92.44±1.20 90.86±0.81 82.51±1.29 VNet++ 7 26.2M 76.24±3.11

UNet++ 3 9.0M 89.33±0.10 91.21±0.98 92.37±0.98 91.21±0.68 82.60±1.11 VNet++ 3 26.2M 77.05±2.42

1 The winner in BraTS-2013 holds a “complete” Dice of 92% vs. 90.83%±2.46% (our UNet++ with deep supervision).
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Brain tumor segmentation

Nuclei segmentationCell segmentationNeuronal structure segmentation

Liver segmentation

U-Net UNet+ UNet++

Figure 4.3: Comparison between U-Net, UNet+, and UNet++ when applied to the state-of-the-art backbones for the
tasks of neuronal structure, cell, nuclei, brain tumor, and liver segmentation. UNet++, trained with deep supervision,
consistently outperforms U-Net across all backbone architectures and applications under study. By densely connecting
the intermediate layers, UNet++ also yields higher segmentation performance than UNet+ in most experimental config-
urations. The error bars represent the 95% confidence interval and the number of ∗ on the bridge indicates the level of
significance measured by p-value (“n.s.” stands for “not statistically significant”).
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4.3.2 UNet++ Outperforms U-Net in Semantic Segmentation

Table 4.3 compares U-Net, wide U-Net, UNet+, and UNet++ in terms of the

number parameters and segmentation results measured by IoU (mean±s.d) for the six

segmentation tasks under study. As seen, wide U-Net consistently outperforms U-Net.

This improvement is attributed to the larger number of parameters in wide U-Net.

UNet++ without deep supervision achieves a significant IoU gain over both U-Net and

wide U-Net for all the six tasks of neuronal structure (↑0.62±0.10, ↑0.55±0.01), cell

(↑2.30±0.30, ↑2.12±0.09), nuclei (↑1.87±0.06, ↑1.71±0.06), brain tumor (↑2.00±0.87,

↑1.86±0.81), liver 3 (↑2.62±0.09, ↑2.26±0.02), and lung nodule (↑5.06±1.42, ↑3.12±0.88)

segmentation. Using deep supervision and average voting further improves UNet++,

increasing the IoU by up to 0.8 points. Specifically, neuronal structure and lung

nodule segmentation benefit the most from deep supervision because they appear at

varying scales in EM and CT slices. Deep supervision, however, is only marginally ef-

fective for other datasets at best. Figure 4.4 depicts a qualitative comparison between

the results of U-Net, wide U-Net, and UNet++.

We have further investigated the extensibility of UNet++ for semantic segmen-

tation by applying redesigned skip connections to an array of modern CNN archi-

tectures: vgg-19 (Simonyan and Zisserman, 2014), resnet-152 (He et al., 2016a), and

densenet-201 (Huang et al., 2017). Specifically, we have turned each architecture

above into a U-Net model by adding a decoder sub-network, and then replaced the

plain skip connections of U-Net with the redesigned connections of UNet++. For

comparison, we have also trained U-Net and UNet+ with the aforementioned back-

bone architectures. For a comprehensive comparison, we have used EM, Cell, Nuclei,

Brain Tumor and Liver segmentation datasets. As seen in Figure 4.3, UNet++

3I acknowledge Md Mahfuzur Rahman Siddiquee, with whom I co-authored Zhou et al. (2018b,
2019c), for conducting the experiments and providing the results for liver segmentation.
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Figure 4.4: Qualitative comparison among U-Net, wide U-Net, and UNet++; show-
ing segmentation results for our six distinct biomedical image segmentation applica-
tions. They include various 2D and 3D modalities. The corresponding quantitative
scores are provided at the bottom of each prediction (IoU | Dice).

consistently outperforms U-Net and UNet+ across all backbone architectures and

applications under study. Through 20 trials, we further present a statistical analy-

sis based on the independent two-sample t-test on each pair among U-Net, UNet+,

and UNet++. Our results suggest that UNet++ is an effective, backbone-agnostic

extension to U-Net.
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Table 4.4: Redesigned skip connections improve both semantic and instance seg-
mentation for the task of nuclei segmentation. We use Mask R-CNN for instance
segmentation and U-Net for semantic segmentation in this comparison.

Architecture Backbone IoU Dice Score

U-Net resnet101 91.03 75.73 0.244

UNet++ resnet101 92.55 89.74 0.327

Mask-RCNN resnet101 93.28 87.91 0.401

MaskRCNN++ resnet101 95.10 91.36 0.414

1 Mask R-CNN with UNet++ design in its feature pyramid.

4.3.3 MaskRCNN++ Tops Mask-RCNN in Instance Segmentation

Instance segmentation consists in segmenting and distinguishing all object in-

stances; hence, more challenging than semantic segmentation. We use Mask R-

CNN (He et al., 2017) as the baseline model for instance segmentation. Mask R-CNN

utilizes feature pyramid network (FPN) as backbone to generate object proposal at

multiple scales, and then outputs the segmentation masks for the collected propos-

als via a dedicated segmentation branch. We modify Mask R-CNN by replacing the

plain skip connections of FPN with the redesigned skip connections of UNet++. We

refer to this model as Mask RCNN++. We use resnet101 as the backbone for Mask

R-CNN in our experiments.

Table 4.4 compares the performance of Mask R-CNN and Mask RCNN++ for

nuclei segmentation. We have chosen the Nuclei dataset because multiple nucleolus

instances can be present in an image, in which case each instance is annotated in

a different color, and thus marked as a distinct object. Therefore, this dataset is

amenable to both semantic segmentation where all nuclei instances are treated as

foreground class, and also instance segmentation where each individual nucleus is

to be segmented separately. As seen in Table 4.4, Mask RCNN++ outperforms
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Figure 4.5: Complexity (size ∝ parameters), inference time, and IoU of UNet++
under different levels of pruning. The inference time is calculated by the time taken
to process 10K test images on a single NVIDIA TITAN X (Pascal) GPU with 12 GB
memory.

its original counterpart, achieving 1.82 points increase in IoU (93.28% to 95.10%),

3.45 points increase in Dice (87.91% to 91.36%), and 0.013 points increase in the

leaderboard score (0.401 to 0.414). To put this performance in perspective, we have

also trained a U-Net and UNet++ model for semantic segmentation with a resnet101

backbone. As seen in Table 4.4, Mask R-CNN models achieve higher segmentation

performance than semantic segmentation models. Furthermore, as expected, UNet++

outperforms U-Net for semantic segmentation.

4.3.4 UNet++ Accelerates Inference Speed by Model Pruning

Once UNet++ is trained, the decoder path for depth d at inference time is com-

pletely independent from the decoder path for depth d + 1. As a result, we can

completely remove the decoder for depth d + 1, obtaining a shallower version of the

trained UNet++ at depth d, owing to the introduced deep supervision. This pruning

can significantly reduce the inference time, but segmentation performance may de-
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Figure 4.6: We demonstrate that our architectural design improves the performance
of each shallower network embedded in UNet++. The embedded shallower networks
show improved segmentation when pruned from UNet++ in comparison to the same
network trained isolated. Due to no pruning, UNet++ L4 naturally achieves the same
level of performance in isolated and embedded training modes.

grade. As such, the level of pruning should be determined by evaluating the model’s

performance on the validation set. We have studied the inference speed-IoU trade-

off for UNet++ in Figure 4.5. We use UNet++ Ld to denote UNet++ pruned at

depth d (see Figure 4.2 for further details). As seen, UNet++ L3 achieves on average

32.2% reduction in inference time and 75.6% reduction in memory footprint while

degrading IoU by only 0.6 points. More aggressive pruning further reduces the in-

ference time but at the cost of significant IoU degradation. More importantly, this

observation has the potential to exert important impact on computer-aided diagnosis

(CAD) on mobile devices, as the existing deep convolutional neural network models

are computationally expensive and memory intensive.
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4.3.5 Embedded UNet++ Surpasses Isolated U-Nets

In theory, UNet++ Ld can be trained in two fashions: 1) embedded training where

the full UNet++ model is trained and then pruned at depth d to obtain UNet++ Ld,

2) isolated training where UNet++ Ld is trained in isolation without any interactions

with the deeper encoder and decoder nodes. Referring to Figure 4.2, embedded

training of a sub-network consists of training all graph nodes (both yellow and grey

components) with deep supervision, but we then use only the yellow sub-network

during the inference time. In contrast, isolated training consists of removing the grey

nodes from the graph, basing the training and test solely on the yellow sub-network.

We have compared the isolated and embedded training schemes for various levels

of UNet++ pruning across two datasets in Figure 4.6 4 . We have discovered that the

embedded training of UNet++ Ld results in a higher performing model than training

the same architecture in isolation. The observed superiority is more pronounced under

aggressive pruning when the full UNet++ is pruned to UNet++ L1. In particular,

the embedded training of UNet++ L1 for liver segmentation achieves 5-point increase

in IoU over the isolated training scheme. This finding suggests that supervision

signal coming from the deep downstream enables training higher performing shallower

models. This finding is also related to knowledge distillation where the knowledge

learned by a deep teacher network is learned by a shallower student network.

4I thank Mohammad Reza Hosseinzadeh Taher and Fatemeh Haghighi for their verification of
liver segmentation performance and the ablation study of embedded and isolated UNet++.
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Figure 4.7: UNet++ can better segment tumors of various sizes than does U-Net.
We measure the size of tumors based on the ground truth masks and then divide
them into seven groups. The histogram shows the distribution of different tumor
sizes. The box-plot compares the segmentation performances of U-Net (black) and
UNet++ (red) in each group. The t-test for two independent samples has been further
performed on each group. As seen, UNet++ improves segmentation for all sizes of
tumors and the improvement is significant (p < 0.05) for the majority of the tumor
sizes (highlighted in red).

4.4 Discussion & Conclusion

4.4.1 Can UNet++ Segment Lesions with Varying Sizes?

Figure 4.7 compares U-Net and UNet++ for segmenting different sizes of brain

tumors. To avoid clutter in the figure, we group the tumors by size into seven buck-

ets. As seen, UNet++ consistently outperforms U-Net across all the buckets. We also

adopt t-test on each bucket based on 20 different trials to measure the significance of

the improvement, concluding that 5 out of the 7 comparisons are statistically signif-

icant (p < 0.05). The capability of UNet++ in segmenting tumors of varying sizes

is attributed to its built-in ensemble of U-Nets, which enables image segmentation

based on multi-receptive field networks.
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Figure 4.8: Visualization and comparison of feature maps from early, intermediate, and late layers along the top most
skip connection for brain tumor images. Here, the dot arrows denote the plain skip connection in U-Net and UNet+,
while the dash arrows denote dense connections introduced in UNet++.
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(a) Neuronal structure segmentation (b) Cell segmentation (c) Nuclei segmentation

(d) Brain tumor segmentation (e) Liver segmentation (f) Lung nodule segmentation

Figure 4.9: UNet++ enables a better optimization than U-Net evidenced by the
learning curves for the tasks of neuronal structure, cell, nuclei, brain tumor, liver,
and lung nodule segmentation. We have plotted the validation losses averaged by 20
trials for each application. As seen, UNet++ with deep supervision accelerates the
convergence speed and yields the lower validation loss due to the new design of the
intermediate layers and dense skip connections.

4.4.2 How Do Multi-scale Feature Maps Aggregate in UNet++?

In Section 4.2.1, we explained that the redesigned skip connections enable the fu-

sion of semantically rich decoder feature maps with feature maps of varying semantic

scales from the intermediate layers of the architecture. In this section, we illustrate

this privilege of our re-designed skip connections by visualizing the intermediate fea-

ture maps.

Figure 4.8 shows representative feature maps from early, intermediate, and late

layers along the top most skip connection (i.e., X0,i) for a brain tumor image. The

representative feature map for a layer is obtained by averaging all its feature maps.

Also note that architectures in the left side of Figure 4.8 are trained using only loss
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function appended to the deepest decoder layer (X0,4) whereas the architectures in

the right side of Figure 4.8 are trained with deep supervision. Note that these feature

maps are not the final outputs. We have appended an additional 1×1 convolutional

layer on top of each decoder branch to form the final segmentation. We observe

that the outputs of U-Net’s intermediate layers are semantically dissimilar whereas

for UNet+ and UNet++ the outputs are formed gradually. The output of node X0,0

in U-Net undergoes slight transformation (few convolution operations only) whereas

the output of X1,3, the input of X0,4, goes through nearly every transformation (four

down-sampling and three up-sampling stages) learned by the network. Hence, there

is a large gap between the representation capability of X0,0 and X1,3. So, simply

concatenating the outputs of X0,4 and X1,3 is not an optimal solution. In contrast,

redesigned skip connections in UNet+ and UNet++ help refine the segmentation

result gradually. We further present the learning curves of all six medical applications

in Figure 4.9, revealing that the addition of dense connections in UNet++ encourages

a better optimization and reaches lower validation loss.

4.4.3 Isolated Learning or Collaborative Learning?

Collaborative learning is known as training multiple classifier heads of the same

network simultaneously on the same training data. It is found to improve the gener-

alization power of deep neural networks (Song and Chai, 2018). UNet++ naturally

embodies collaborative learning through aggregating multi-depth networks and su-

pervising segmentation heads from each of the constituent networks. Besides, the

segmentation heads, for example X0,2 in Figure 4.2, receive gradients from both

strong (loss from ground truth) and soft (losses propagated from adjacent deeper

nodes) supervision. As a result, the shallower networks improve their segmentation

(Figure 4.6) and provide more informative representation to deeper counterparts. Ba-
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sically, deeper and shallower networks regularize each other via collaborative learning

in UNet++. Training multi-depth embedded networks together results in improved

segmentation than training them individually as isolated network which is evident

in Section 4.3.5. The embedded design of UNet++ makes it amenable to auxiliary

training, multi-task learning, and knowledge distillation (Bengio, 2009; Hinton et al.,

2015; Song and Chai, 2018).

4.4.4 Conclusion and Broader Impacts

We have presented a novel architecture, named UNet++, for more accurate image

segmentation. The improved performance by our UNet++ is attributed to its nested

structure and re-designed skip connections, which aim to address two key challenges

of the U-Net: 1) unknown depth of the optimal architecture and 2) the unneces-

sarily restrictive design of skip connections. We have evaluated UNet++ using six

distinct biomedical imaging applications and demonstrated consistent performance

improvement over various state-of-the-art backbones for semantic segmentation and

meta framework for instance segmentation.

We first presented UNet++ in our DLMIA 2018 paper (Zhou et al., 2018b).

UNet++ has since been widely adopted by the research community, either as a strong

baseline for comparison (Sun et al., 2019; Fang et al., 2019b,a; Meng et al., 2020),

or as a source of inspiration for developing newer semantic segmentation architec-

tures (Zhang et al., 2018; Chen et al., 2018; Zhou et al., 2018a; Wu et al., 2019; Song

et al., 2019; Yang and Gao, 2019); it has also been utilized for multiple applications,

not only for diseases/organs/tissues segmentation in biomedical images (Zyuzin and

Chumarnaya, 2019; Cui et al., 2019a), but also for image coloring (Di et al., 2021),

moon impact crater detection (Jia et al., 2021), microseismic monitoring (Guo, 2021).

Recently, Shenoy (2019) has independently and systematically investigated UNet++
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for the task of “contact prediction model PconsC4”, demonstrating significant im-

provement over widely-used U-Net.
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Chapter 5

EXTRACTING FEATURES FROM UNANNOTATED IMAGES

This chapter is based on the following publications:

• Zhou, Z., Sodha, V., Rahman Siddiquee M. M., Feng, R., Tajbakhsh, N., Got-

way, M. B., & Liang, J. (2019, October). Models genesis: Generic autodidactic

models for 3d medical image analysis. In International Conference on Medical

Image Computing and Computer-Assisted Intervention (pp. 384-393). Springer,

Cham.

• Zhou, Z., Sodha, V., Pang, J., Gotway, M. B., & Liang, J. (2021). Models

genesis. Medical image analysis, 67, 101840.
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5.1 Background & Motivation

Recent years have featured a trend towards pre-trained image representations in

computer vision, applied in increasingly flexible and task-agnostic ways for down-

stream transfer. Transfer learning from natural images to medical images has become

the de facto standard in deep learning for medical image analysis (Tajbakhsh et al.,

2016; Shin et al., 2016a), but given the marked differences between natural images

and medical images, we hypothesize that transfer learning can yield more powerful

(application-specific) target models from the source models built directly using med-

ical images. To test this hypothesis, we have chosen chest imaging because the chest

contains several critical organs, which are prone to a number of diseases that result

in substantial morbidity and mortality, hence associated with significant health-care

costs. In this research, we focus on Chest CT, because of its prominent role in diag-

nosing lung diseases, and our research community has accumulated several Chest CT

image databases, for instance, LIDC-IDRI (Armato III et al., 2011) and NLST (NLST,

2011), containing a large number of Chest CT images. However, systematically anno-

tating Chest CT scans is not only tedious, laborious, and time-consuming, but it also

demands costly, specialty-oriented skills, which are not easily accessible. Therefore,

we seek to answer the following question: Can we utilize the large number of available

Chest CT images without systematic annotation to train source models that can yield

high-performance target models via transfer learning?

To answer this question, we have developed a framework that trains generic source

models for 3D medical imaging. Our framework is autodidactic—eliminating the need

for labeled data by self-supervision; robust—learning comprehensive image represen-

tation from a mixture of self-supervised tasks; scalable—consolidating a variety of

self-supervised tasks into a single image restoration task with the same encoder-
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decoder architecture; and generic—benefiting a range of 3D medical imaging tasks

through transfer learning. We call the models trained with our framework Generic

Autodidactic Models, nicknamed Models Genesis, and refer to the model trained us-

ing Chest CT images as Genesis Chest CT. As ablation studies, we have also trained

a downgraded 2D version using 2D Chest CT slices, called Genesis Chest CT 2D. For

thorough performance comparisons, we have trained a 2D model using Chest X-ray

images, named as Genesis Chest X-ray (detailed in Table 5.1).

Naturally, 3D imaging tasks in the most prominent medical imaging modalities

(e.g., CT and MRI) should be solved directly in 3D, but 3D models generally have

significantly more parameters than their 2D counterparts, thus demanding more la-

beled data for training. As a result, learning from scratch simply in 3D may not

necessarily yield performance better than fine-tuning Models ImageNet (i.e., pre-

trained models on ImageNet), as revealed in Figure 5.7. However, as demonstrated

by our extensive experiments in Sec. 5.3, our Genesis Chest CT not only significantly

outperforms learning 3D models from scratch (see Figure 5.4), but also consistently

tops any 2D/2.5D approaches including fine-tuning Models ImageNet as well as fine-

tuning our Genesis Chest X-ray and Genesis Chest CT 2D (see Figure 5.7 and Ta-

ble 5.4). Furthermore, Genesis Chest CT surpasses publicly-available, pre-trained,

(fully) supervised 3D models (see Table 5.3). Our results confirm the importance of

3D anatomical information and demonstrate the significance of Models Genesis for

3D medical imaging.

This performance is attributable to the following key observation: medical imaging

protocols typically focus on particular parts of the body for specific clinical purposes,

resulting in images of similar anatomy. The sophisticated yet recurrent anatomy offers

consistent patterns for self-supervised learning to discover common representation

of a particular body part (the lungs in our case). As illustrated in Figure 5.1, the
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fundamental idea behind our self-supervised learning method is to recover anatomical

patterns from images transformed via various ways in a unified framework.

In summary, we make the following three contributions:

1. A collection of generic pre-trained 3D models, performing effectively across

diseases, organs, and modalities.

2. A scalable self-supervised learning framework, offering encoder for classification

and encoder-decoder for segmentation.

3. A set of self-supervised training schemes, learning robust representation from

multiple perspectives.
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Table 5.1: We use transfer learning in a broader sense, where a source model is first trained to learn image presentation
via full supervision or self supervision by solving a problem, called proxy task (general or application-specific), on a
source dataset with expert-provided or automatically-generated labels, and then this pre-trained source model is fine
tuned (transferred) through full supervision to yield a target model to solve application-specific problems (target tasks)
in the same or different datasets (target datasets).

Pre-trained model Modality Source dataset Superv. / Annot. Proxy task

Genesis Chest CT 2D CT LUNA 2016 Self / 0 Image restoration on 2D Chest CT slices

Genesis Chest CT (3D) CT LUNA 2016 Self / 0 Image restoration on 3D Chest CT volumes

Genesis Chest X-ray (2D) X-ray ChestX-ray8 Self / 0 Image restoration on 2D Chest Radiographs

Models ImageNet Natural ImageNet Full / 14M images Image classification on 2D ImageNet

Inflated 3D (I3D) Natural Kinetics Full / 240K videos Action recognition on human action videos

NiftyNet CT Pancreas-CT & BTCV Full / 90 cases Organ segmentation on abdominal CT

MedicalNet CT, MRI 3DSeg-8 Full / 1,638 cases Disease/organ segmentation on 8 datasets

Code† Object Modality Target dataset Target task

NCC Lung Nodule CT LUNA 2016 (Setio et al., 2017) Lung nodule false positive reduction

NCS Lung Nodule CT LIDC-IDRI (Armato III et al., 2011) Lung nodule segmentation

ECC Pulmonary Emboli CT PE-CAD (Tajbakhsh et al., 2015) Pulmonary embolism false positive reduction

LCS Liver CT LiTS 2017 (Bilic et al., 2019) Liver segmentation

BMS Brain Tumor MRI BraTS 2018 (Bakas et al., 2018) Brain tumor segmentation

† The first letter denotes the object of interest (“N” for lung nodule, “E” for pulmonary embolism, “L” for liver, etc); the second letter denotes the modality

(“C” for CT, “M” for MRI, etc); the last letter denotes the task (“C” for classification, “S” for segmentation).
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3. Train a model to restore the original sub-volume 

Axial Sagittal

Coronal

Figure 5.1: Our self-supervised learning framework aims to learn general-purpose image representation by recovering
the original sub-volumes of images from their transformed ones. We first crop arbitrarily-size sub-volume xi at a random
location from an unlabeled CT image. Each sub-volume xi can undergo at most three out of four transformations: non-
linear, local-shuffling, outer-cutout, and inner-cutout, resulting in a transformed sub-volume x̃i. It should be noted that
outer-cutout and inner-cutout are considered mutually exclusive. Therefore, in addition to the four original individual
transformations, this process yields eight more transformations, including one identity mapping (φ meaning none of the
four individual transformations is selected) and seven combined transformations. A Model Genesis, an encoder-decoder
architecture with skip connections in between, is trained to learn a common image representation by restoring the original
sub-volume xi (as ground truth) from the transformed one x̃i (as input), in which the reconstruction loss (MSE) is
computed between the model prediction x′i and ground truth xi. Once trained, the encoder alone can be fine-tuned for
target classification tasks; while the encoder and decoder together can be fine-tuned for target segmentation tasks.
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Figure 5.2: Illustration of the proposed image transformations and their learning perspectives. For simplicity and
clarity, we illustrate the transformation on a 2D CT slice, but our Genesis Chest CT is trained directly using 3D sub-
volumes, which are transformed in a 3D manner. For ease of understanding, in (a) non-linear transformation, we have
displayed an image undergoing different translating functions in Columns 2—7; in (b) local-shuffling, (c) outer-cutout, and
(d) inner-cutout transformation, we have illustrated each of the processes step by step in Columns 2—6, where the first
and last columns denote the original images and the final transformed images, respectively. In local-shuffling, a different
window W is automatically generated and used in each step. We provide the implementation details in Sec. 5.2.2.
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5.2 Approach & Property

The objective of Models Genesis is to learn a common image representation that

is transferable and generalizable across diseases, organs, and modalities. Figure 5.1

depicts our self-supervised learning framework, which enables training 3D models

from scratch using unlabeled images, consisting of three steps: (1) cropping sub-

volumes from patient CT images, (2) deforming the sub-volumes, and (3) training a

model to restore the original sub-volume. In the following sections, we first introduce

the denotations of our self-supervised learning framework and then detail each of the

training schemes with its learning objectives and perspectives, followed by a summary

of the four unique properties of our Models Genesis.

5.2.1 Learning by Image Restoration

Given a raw dataset consisting of N patient volumes, theoretically we can crop

infinite number of sub-volumes from the dataset. In practice, we randomly generate a

subset X = {x1,x2, ...,xn}, which includes n number of sub-volumes and then apply

image transformation function to these sub-volumes, yielding

X̃ = f(X ), (5.1)

where X̃ = {x̃1, x̃2, ..., x̃n} and f(·) denotes a transformation function. Subsequently,

a Model Genesis, being an encoder-decoder network with skip connections in between,

will learn to approximate the function g(·) which aims to map the transformed sub-

volumes X̃ back to their original ones X , that is,

g(X̃ ) = X = f−1(X̃ ). (5.2)

To avoid heavy weight dedicated towers for each proxy task and to maximize

parameter sharing in Models Genesis, we consolidate four self-supervised schemes into
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a single image restoration task, enabling models to learn robust image representation

by restoring from various sets of image transformations. Our proposed framework

includes four transformations: (1) non-linear, (2) local-shuffling, (3) outer-cutout,

and (4) inner-cutout. Each transformation is independently applied to a sub-volume

with a predefined probability, while outer-cutout and inner-cutout are considered

mutually exclusive. Consequently, each sub-volume can undergo at most three of

the above transformations, resulting in twelve possible transformed sub-volume (see

step 2 in Figure 5.1). For clarity, we further define a training scheme as the process

that (1) transforms sub-volumes using any of the aforementioned transformations,

and (2) trains a model to restore the original sub-volumes from the transformed ones.

For convenience, we refer to an individual training scheme as the scheme using one

particular individual transformation. We should emphasize that our ultimate goal

is not the task of image restoration per se. While restoring images is advocated

and investigated as a training scheme for models to learn image representation, the

usefulness of the learned representation must be assessed objectively based on its

generalizability and transferability to various target tasks.

5.2.2 Learning from Multiple Perspectives

1) Learning appearance via non-linear transformation. We propose a novel self-

supervised training scheme based on non-linear translation, with which the model

learns to restore the intensity values of an input image transformed with a set of non-

linear functions. The rationale is that the absolute intensity values (i.e., Hounsfield

units) in CT scans or relative intensity values in other imaging modalities convey im-

portant information about the underlying structures and organs (Prince and Links,

2006; Buzug, 2011; Forbes, 2012). Hence, this training scheme enables the model to

learn the appearance of the anatomic structures present in the images. In order to
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keep the appearance of the anatomic structures perceivable, we intentionally retain

the non-linear intensity transformation function as monotonic, allowing pixels of dif-

ferent values to be assigned with new distinct values. To realize this idea, we use

Bézier Curve (Mortenson, 1999), a smooth and monotonic transformation function,

which is generated from two end points (P0 and P3) and two control points (P1 and

P2), defined as:

B(t) = (1− t)3P0 + 3(1− t)2tP1 + 3(1− t)t2P2 + t3P3, t ∈ [0, 1], (5.3)

where t is a fractional value along the length of the line. In Figure 5.2(a), we illustrate

the original CT sub-volume (the left-most column) and its transformed ones based

on different transformation functions. The corresponding transformation functions

are shown in the top row. Notice that, when P0 = P1 and P2 = P3 the Bézier

Curve is a linear function (shown in Columns 2, 5). Besides, we set P0 = (0, 0) and

P3 = (1, 1) to get an increasing function (shown in Columns 2—4) and the opposite to

get a decreasing function (shown in Columns 5—7). The control points are randomly

generated for more variances (shown in Columns 3, 4, 6, 7). Before applying the

transformation functions, in Genesis CT, we first clip the Hounsfield units values

within the range of [−1000, 1000] and then normalize each CT scan to [0, 1].

2) Learning texture via local pixel shuffling. We propose local pixel shuffling to

enrich local variations of a sub-volume without dramatically compromising its global

structures, which encourages the model to learn the local boundaries and textures of

objects. To be specific, for each input sub-volume, we randomly select 1,000 windows

and then shuffle the pixels inside each window sequentially. Mathematically, let us

consider a small window W with a size of m × n. The local-shuffling acts on each

window and can be formulated as

W̃ = P×W ×P′, (5.4)
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where W̃ is the transformed window, P and P′ denote permutation metrics with the

size of m×m and n× n, respectively. Pre-multiplying W with P permutes the rows

of the window W, whereas post-multiplying W with P′ results in the permutation

of the columns of the window W. The size of the local window determines the

difficulty of proxy task. In practice, to preserve the global content of the image, we

keep the window sizes smaller than the receptive field of the network, so that the

network can learn much more robust image representation by “resetting” the original

pixels positions. Note that our method is quite different from PatchShuffling (Kang

et al., 2017), which is a regularization technique to avoid over-fitting. Unlike de-

noising (Vincent et al., 2010) and in-painting (Pathak et al., 2016; Iizuka et al., 2017),

our local-shuffling transformation does not intend to replace the pixel values with

noise, which therefore preserves the identical global distributions to the original sub-

volume. In addition, local-shuffling within an extent keeps the objects perceivable, as

shown in Figure 5.2(b), benefiting the deep neural network in learning local invariant

image representations, which serves as a complementary perspective with global patch

shuffling (Chen et al., 2019a).

3) Learning context via outer and inner cutouts. We devise outer-cutout as a new

training scheme for self-supervised learning 1 . To realize it, we generate an arbitrary

number (≤ 10) of windows, with various sizes and aspect ratios, and superimpose

them on top of each other, resulting in a single window of a complex shape. When

applying this merged window to a sub-volume, we leave the sub-volume region inside

the window exposed and mask its surrounding (i.e., outer-cutout) with a random

number. Moreover, to prevent the task from being too difficult or even unsolvable,

we extensively search for the optimal size of cutout regions spanning from 0% to 90%,

1I acknowledge Vatsal Sodha, with whom I co-authored Zhou et al. (2019d, 2021c), for imple-
menting the outer cutout learning scheme (Sodha, 2020).
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incremented by 10%. In the end, we limit the outer-cutout region to be less than

1/4 of the whole sub-volume. By restoring the outer-cutouts, the model will learn

the global geometry and spatial layout of organs in medical images via extrapolating

within each sub-volume. We have illustrated this process step by step in Figure 5.2(c).

The first and last columns denote the original sub-volumes and the final transformed

sub-volumes, respectively.

Our self-supervised learning framework also utilizes inner-cutout as a training

scheme, where we mask the inner window regions (i.e., inner-cutouts) and leave their

surroundings exposed. By restoring the inner-cutouts, the model will learn local

continuities of organs in medical images via interpolating within each sub-volume.

Unlike Pathak et al. (2016), where in-painting is proposed as a proxy task by restoring

only the central region of the image, we restore the entire sub-volume as the model

output. Examples of inner-cutout are illustrated in Figure 5.2(d). Following the

suggestion from Pathak et al. (2016), the inner-cutout areas are limited to be less

than 1/4 of the whole sub-volume, in order to keep the task reasonably difficult.

5.2.3 Four Unique Properties

1. Autodidactic—requiring no manual labeling. Models Genesis are trained in a

self-supervised manner with abundant unlabeled image datasets, demanding

zero expert annotation effort. Consequently, Models Genesis are fundamen-

tally different from traditional (fully) supervised transfer learning from Ima-

geNet (Bar et al., 2015; Shin et al., 2016a; Tajbakhsh et al., 2016), which offers

modest benefits to 3D medical imaging applications as well as that from the

existing pre-trained, full-supervised models including I3D (Carreira and Zis-

serman, 2017), NiftyNet (Gibson et al., 2018b), and MedicalNet (Chen et al.,

2019b), which demand a volume of annotation effort to obtain the source models
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(statistics given in Table 5.1). To our best knowledge, this work represents the

first effort to establish publicly-available, autodidactic models for 3D medical

image analysis.

2. Robust—learning from multiple perspectives. Our combined approach trains

Models Genesis from multiple perspectives (appearance, texture, context, etc.),

leading to more robust models across all target tasks, as evidenced in Figure 5.3,

where our combined approach is compared with our individual schemes. This

eclectic approach, incorporating multiple tasks into a single image restoration

task, empowers Models Genesis to learn more comprehensive representation.

While most self-supervised methods devise isolated training schemes to learn

from specific perspectives—learning intensity value via colorization, context in-

formation via Jigsaw, orientation via rotation, etc—these methods are reported

with mixed results on different tasks, in review papers such as Goyal et al.

(2019), Kolesnikov et al. (2019), Taleb et al. (2020), and Jing and Tian (2020).

It is critical as a multitude of state-of-the-art results in the literature show the

importance of using compositions of more than one transformations per im-

age (Graham, 2014; Dosovitskiy et al., 2015; Wu et al., 2020), which has also

been experimentally confirmed in our image restoration task.

3. Scalable—accommodating many training schemes. Consolidated into a single

image restoration task, our novel self-supervised schemes share the same en-

coder and decoder during training. Had each task required its own decoder, due

to limited memory on GPUs, our framework would have failed to accommodate

a large number of self-supervised tasks. By unifying all tasks as a single image

restoration task, any favorable transformation can be easily amended into our

framework, overcoming the scalability issue associated with multi-task learn-
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Table 5.2: Genesis CT is pre-trained on only LUNA 2016 dataset (i.e., the source)
and then fine-tuned for five distinct medical image applications (i.e., the targets).
These target tasks are selected such that they show varying levels of semantic distance
from the source, in terms of organs, diseases, and modalities, allowing us to investigate
the transferability of the pre-trained weights of Genesis CT with respect to the domain
distance. The cells checked by 7 denote the properties that are different between the
source and target datasets.

Task Disease Organ Dataset Modality

NCC

NCS

ECC 7 7

LCS 7 7 7

BMS 7 7 7 7

ing (Doersch and Zisserman, 2017; Noroozi et al., 2018; Standley et al., 2020;

Chen et al., 2019b), where the network heads are subject to the specific proxy

tasks.

4. Generic—yielding diverse applications. Models Genesis, trained via a diverse

set of self-supervised schemes, learn a general-purpose image representation that

can be leveraged for a wide range of target tasks. Specifically, Models Genesis

can be utilized to initialize the encoder for the target classification tasks and to

initialize the encoder-decoder for the target segmentation tasks, while the exist-

ing self-supervised approaches are largely focused on providing encoder models

only (Jing and Tian, 2020). As shown in Table 5.3, Models Genesis can be

generalized across diseases (e.g., nodule, embolism, tumor), organs (e.g., lung,

liver, brain), and modalities (e.g., CT and MRI), a generic behavior that sets

us apart from all previous works in the literature where the representation is

learned via a specific self-supervised task, and thus lack generality.
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5.3 Experiment & Result

In this section, we begin with an ablation study to compare the combined approach

with each individual scheme, concluding that the combined approach tends to achieve

more robust results and consistently exceeds any other training schemes. We then

take our pre-trained model from the combined approach and present results on five 3D

medical applications, comparing them against the state-of-the-art approaches found

in recent supervised and self-supervised learning literature.
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Non-linear

Combined

Local-shuffling

Inner-cutout

Outer-cutout

Identical-mapping

n.s.  No Significance * p < 0.05 ** p < 0.01 *** p < 0.001 >*** p < 0.0001

Figure 5.3: Comparing the combined training scheme with each of the proposed individual training schemes, we
conduct statistical analyses between the top two training schemes as well as between the bottom two. Although some of
the individual training schemes could be favorable for certain target tasks, there is no such clear clue to guarantee that
any one of the individual training schemes would consistently offer the best performance on every target task. On the
contrary, our combined training scheme consistently achieves the best results across all five target tasks.
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5.3.1 The Combined Learning Scheme Exceeds Each Individual

We have devised four individual training schemes by applying each of the transfor-

mations (i.e., non-linear, local-shuffling, outer-cutout, and inner-cutout) individually

to a sub-volume and training the model to restore the original one. We compare each

of these training schemes with identical-mapping, which does not involve any image

transformation 2 . In three out of the five target tasks, as shown in Figs. 5.3—5.4, the

model pre-trained by identical-mapping scheme does not perform as well as random

initialization. This undesired representation obtained via identical-mapping suggests

that without any image transformation, the model would not benefit much from the

proxy image restoration task. On the contrary, nearly all of the individual schemes

offer higher target task performances than identical-mapping, demonstrating the sig-

nificance of the four devised image transformations in learning image representation.

Although each of the individual schemes has established the capability in learn-

ing image representation, its empirical performance varies from task to task. That

being said, given a target task, there is no clear winner among the four individual

schemes that can always guarantee the highest performance. As a result, we have

further devised a combined scheme, which applies transformations to a sub-volume

with a predefined probability for each transformation and trains a model to restore

the original one. To demonstrate the importance of combining these image trans-

formations together, we examine the combined training scheme against each of the

individual ones. Figure 5.3 shows that the combined scheme consistently exceeds any

other individual schemes in all five target tasks. We have found that the combination

of different transformations is advantageous because, as discussed, we cannot rely on

one single training scheme to achieve the most robust and compelling results across

2I acknowledge Vatsal Sodha, with whom I co-authored Zhou et al. (2019d, 2021c), for comparing
the combined learning scheme with each individual.
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multiple target tasks. It is our novel representation learning framework based on

image restoration that allows integrating various training schemes into a single train-

ing scheme. Our qualitative assessment of image restoration quality further indicates

that the combined scheme is superior over all four individual schemes in restoring the

images that have been undergone multiple transformations. In summary, our com-

bined scheme pre-trains a model from multiple perspectives (appearance, texture,

context, etc.), empowering models to learn a more comprehensive representation,

thereby leading to more robust target models. Based on the above ablation studies,

in the following sections, we refer the models pre-trained by the combined scheme to

Models Genesis and, in particular, refer the model pre-trained on LUNA 2016 dataset

to Genesis Chest CT.
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Xavier
MSRA

Uniform

n.s.  No Significance * p < 0.05 ** p < 0.01 *** p < 0.001 >*** p < 0.0001

Figure 5.4: Models Genesis, as presented with the red vertical lines, achieve higher and more stable performance
compared with three popular types of random initialization methods, including MSRA, Xavier, and Uniform. Among
three out of the five applications, three different types of random distribution reveal no significant difference with respect
to each other.
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13% faster21% faster
41% faster

21% faster
43% faster

Figure 5.5: Models Genesis enable better optimization than learning from scratch, evident by the learning curves
for the target tasks of reducing false positives in detecting lung nodules (NCC) and pulmonary embolism (ECC) as well as
segmenting lung nodule (NCS), liver (LCS), and brain tumor (BMS). We have plotted the validation performance averaged by
ten trials for each application, in which accuracy and dice-coefficient scores are reported for classification and segmentation
tasks, respectively. As seen, initializing with our pre-trained Models Genesis demonstrates benefits in the convergence
speed.
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5.3.2 Models Genesis Outperform Learning from Scratch

Transfer learning accelerates training and boosts performance, only if the image

representation learned from the original (proxy) task is general and transferable to

target tasks. Fine-tuning models trained on ImageNet has been a great success story

in 2D (Bar et al., 2015; Tajbakhsh et al., 2016; Shin et al., 2016a), but for 3D rep-

resentation learning, there is no such a massive labeled dataset like ImageNet. As

a result, it is still common practice to train 3D model from scratch in 3D medical

imaging. Therefore, to establish the 3D baselines, we have trained 3D models with

three representative random initialization methods 3 , including naive uniform initial-

ization, Xavier/Glorot initialization proposed by Glorot and Bengio (2010), and He

normal (MSRA) initialization proposed by He et al. (2015). When comparing deep

model initialization by transfer learning and by controlling mathematical distribu-

tion, the former learns more sophisticated image representation but suffers from a

domain gap, whereas the latter is task independent yet provides relatively less benefit

than the former. The hypothesis underneath transfer learning is that transferring

deep features across visual tasks can obtain a semantically more powerful represen-

tation, compared with simply initializing weights using different distributions. From

our comprehensive experiments in Figure 5.4, we have observed the following:

• Within each method, random initialization of weights has shown large variance

in results of ten trials; it is in large part due to the difficulty of adequately

initializing these networks from scratch. A small miscalibration of the initial

weights can lead to vanishing or exploding gradients, as well as poor convergence

properties.

3I thank Pengfei Zhang for comparing Xavier/Glorot and He normal (MSRA) initialization meth-
ods with our Models Genesis.
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• In three out of the five 3D medical applications, the results reveal no signifi-

cant difference among these random initialization methods. Although randomly

initializing weights can vary by the behaviors on different applications, He nor-

mal (MSRA), in which the weights are initialized with a specific ReLU-aware

initialization, generally works the most reliably among all five target tasks.

• On the other hand, initialization with our pre-trained Genesis Chest CT stabi-

lizes the overall performance and, more importantly, elevates the average per-

formance over all three random initialization methods by a large margin. Our

statistical analysis shows that the performance gain is significant for all the

target tasks under study. This suggests that, owing to the representation learn-

ing scheme, our initial weights provide a better starting point than the ones

generated under particular statistical distributions, while being over 13% faster

(see Figure 5.5). This observation has also been widely obtained in 2D model

initialization (Tajbakhsh et al., 2016; Shin et al., 2016a; Rawat and Wang, 2017;

Zhou et al., 2017c; Voulodimos et al., 2018).

Altogether, in contrast to 3D scratch models, we believe Models Genesis can

potentially serve as a primary source of transfer learning for 3D medical imaging

applications. Besides contrasting with the three random initialization methods, we

further examine our Models Genesis against the existing pre-trained 3D models in

the coming section.
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Table 5.3: Models Genesis surpass existing pre-trained 3D models. We evaluate AUC score for classification tasks and
IoU score for segmentation tasks. All of the results, including the mean and standard deviation (mean±s.d.) across
ten trials. For every target task, we have further performed independent two sample t-test between the best (bolded)
vs. others and highlighted boxes in blue when they are not statistically significantly different at p = 0.05 level.

Pre-training Approach
Target tasks

NCC (%) NCS (%) ECC (%) LCS (%) BMS (%)

No

Random with Uniform Init 94.74±1.97 75.48±0.43 80.36±3.58 78.68±4.23 60.79±1.60

Random with Xavier Init 94.25±5.07 74.05±1.97 79.99±8.06 77.82±3.87 58.52±2.61

Random with MSRA Init 96.03±1.82 76.44±0.45 78.24±3.60 79.76±5.43 63.00±1.73

(Fully) supervised

I3D 98.26±0.27 71.58±0.55 80.55±1.11 70.65±4.26 67.83±0.75

NiftyNet 94.14±4.57 52.98±2.05 77.33±8.05 83.23±1.05 60.78±1.60

MedicalNet 95.80±0.49 75.68±0.32 86.43±1.44 85.52±0.58 66.09±1.35

Self-supervised

De-noising 95.92±1.83 73.99±0.62 85.14±3.02 84.36±0.96 57.83±1.57

In-painting 91.46±2.97 76.02±0.55 79.79±3.55 81.36±4.83 61.38±3.84

Jigsaw 95.47±1.24 70.90±1.55 81.79±1.04 82.04±1.26 63.33±1.11

DeepCluster 97.22±0.55 74.95±0.46 84.82±0.62 82.66±1.00 65.96±0.85

Patch shuffling 91.93±2.32 75.74±0.51 82.15±3.30 82.82±2.35 52.95±6.92

Rubik’s Cube 96.24±1.27 72.87±0.16 80.49±4.64 75.59±0.20 62.75±1.93

Genesis Chest CT (ours) 98.34±0.44 77.62±0.64 87.20±2.87 85.10±2.15 67.96±1.29
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5.3.3 Models Genesis Surpass Existing Pre-trained 3D Models

We have evaluated our Models Genesis with existing publicly available pre-trained

3D models on five distinct medical target tasks 4 . As shown in Table 5.3, Genesis

Chest CT noticeably contrasts with any other existing 3D models, which have been

pre-trained by full supervision. Note that, in the liver segmentation task (LCS),

Genesis Chest CT is slightly outperformed by MedicalNet because of the benefit

that MedicalNet gained from its (fully) supervised pre-training on the LiTS dataset

directly. Further statistical tests reveal that Genesis Chest CT still yields comparable

performance with MedicalNet at p = 0.05 level. For the rest four target tasks, Genesis

Chest CT achieves superior performance against all its counterparts by a large margin,

demonstrating the effectiveness and transferability of the learned features of Models

Genesis, which are beneficial for both classification and segmentation tasks.

More importantly, although Genesis Chest CT is pre-trained on Chest CT only,

it can generalize to different organs, diseases, datasets, and even modalities. For

instance, the target task of pulmonary embolism false positive reduction is performed

in Contrast-Enhanced CT scans that can appear differently from the proxy tasks in

normal CT scans; yet, Genesis Chest CT achieves a remarkable improvement over

training from scratch, increasing the AUC by 7 points. Moreover, Genesis Chest CT

continues to yield a significant IoU gain in liver segmentation even though the proxy

task and target task are significantly different in both, diseases affecting the organs

(lung vs. liver) and the dataset itself (LUNA 2016 vs. LiTS 2017). We have further

examined Genesis Chest CT and other existing pre-trained models using MRI Flair

4I thank Zuwei Guo for implementing Rubik’s Cube (Zhuang et al., 2019) and the 3D version of
Jigsaw (Noroozi and Favaro, 2016) and DeepCluster (Caron et al., 2018); Jiaxuan Pang for comparing
I3D (Carreira and Zisserman, 2017) with our Models Genesis; Fatemeh Haghighi and Mohammad
Reza Hosseinzadeh Taher for implementing the 3D version of in-painting (Pathak et al., 2016),
patch-shuffling (Chen et al., 2019a), and working with Zuwei Guo in evaluating the performance of
MedicalNet (Chen et al., 2019b); Md Mahfuzur Rahman Siddiquee for examining NiftyNet (Gibson
et al., 2018b) with our Models Genesis.
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images, which represent the widest domain distance between the proxy and target

tasks. As reported in Table 5.3 (BMS), Genesis Chest CT yields nearly a 5-point

improvement in comparison with random initialization. The increased performance on

the MRI imaging task is a particularly strong demonstration of the transfer learning

capabilities of our Genesis Chest CT.

Considering the model footprint, our Models Genesis take the basic 3D U-Net

as the backbone, carrying much fewer parameters than the existing open-source pre-

trained 3D models. For example, we have adopted MedicalNet with resnet-101 as

the backbone, which offers the highest performance based on Chen et al. (2019b) but

comprises of 85.75M parameters; the pre-trained I3D (Carreira and Zisserman, 2017)

contains 25.35M parameters in the encoder; the pre-trained NiftyNet uses Dense V-

Networks (Gibson et al., 2018a) as backbone, comprising of only 2.60M parameters,

but it does not perform as well as its counterparts in all five target tasks. Taken to-

gether, these results indicate that our Models Genesis, with only 16.32M parameters,

surpass all existing pre-trained 3D models in terms of generalizability, transferability,

and parameter efficiency.
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30% fewer
labels

50% fewer
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Figure 5.6: Initializing with our Models Genesis, the annotation cost can be reduced by 30%, 50%, 57%, 84%, and 44%
for target tasks NCC, NCS, ECC, LCS, and BMS, respectively. With decreasing amounts of labeled data, Models Genesis (red)
retain a much higher performance on all five target tasks, whereas learning from scratch (grey) fails to generalize. Note
that the horizontal red and gray lines refer to the performances that can eventually be achieved by Models Genesis and
learning from scratch, respectively, when using the entire dataset.
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5.3.4 Models Genesis Reduce Annotation Efforts by at Least 30%

While critics often stress the need for sufficiently large amounts of labeled data to

train a deep model, transfer learning leverages the knowledge about medical images

already learned by pre-trained models and therefore requires considerably fewer an-

notated data and training iterations than learning from scratch. We have simulated

the scenarios of using a handful of labeled data, which allows investigating the power

of our Models Genesis in transfer learning. Figure 5.6 displays the results of train-

ing with a partial dataset, demonstrating that fine-tuning Models Genesis saturates

quickly on the target tasks since it can achieve similar performance compared with

the full dataset training. Specifically, the performance of learning 3D models from

scratch with entire datasets can be approximated using Models Genesis with only

50%, 5%, 30%, 5%, and 30% of datasets for NCC, NCS, ECC, LCS, and BMS, respectively.

This shows that our Models Genesis can mitigate the lack of labeled images, resulting

in a more annotation efficient deep learning in the end.

Furthermore, the performance gap between fine-tuning and learning from scratch

is significant and steady over training models with each partial data point. For the

lung nodule false positive reduction target task (NCC in Figure 5.6), using only 49%

training data, Models Genesis equal the performance of 70% training data learning

from scratch. Therefore, about 30% of the annotation cost associated with learning

from scratch in NCC is recovered by initializing with Models Genesis. For the lung

nodule segmentation target task (NCS in Figure 5.6), with 5% training data, Models

Genesis can achieve the performance equivalent to learning from scratch using 10%

training data. Based on this analysis, the cost of annotation in NCS can be reduced by

half using Models Genesis compared with learning from scratch. For the pulmonary

embolism false positive reduction target task (ECC), Figure 5.6 suggests that with only
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30% training samples, Models Genesis achieve performance equivalent to learning

from scratch using 70% training samples. Therefore, nearly 57% of the labeling cost

associated with the use of learning from scratch for ECC could be recovered with our

Models Genesis. For the liver segmentation target task (LCS) in Figure 5.6, using

8% training data, Models Genesis equal the performance of learning from scratch

using 50% training samples. Therefore, about 84% of the annotation cost associated

with learning from scratch in LCS is recovered by initializing with Models Genesis.

For the brain tumor segmentation target task (BMS) in Figure 5.6, with less than

28% training data, Models Genesis achieve the performance equivalent to learning

from scratch using 50% training data. Therefore, nearly 44% annotation efforts can

be reduced using Models Genesis compared with learning from scratch. Overall, at

least 30% annotation efforts have been reduced by Models Genesis, in comparison

with learning a 3D model from scratch in five target tasks. With such annotation-

efficient 3D transfer learning paradigm, computer-aided diagnosis of rare diseases or

rapid response to global pandemics, which are severely underrepresented owing to the

difficulty of collecting a sizeable amount labeled data, could be eventually actualized.
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Figure 5.7: When solving problems in volumetric medical modalities, such as CT and MRI images, 3D volume-based
approaches consistently offer superior performance than 2D slice-based approaches empowered by transfer learning. We
conduct statistical analyses (circled in blue) between the highest performance achieved by 3D and 2D solutions. Training
3D models from scratch does not necessarily outperform their 2D counterparts (see NCC). However, training the same
3D models from Genesis Chest CT outperforms all their 2D counterparts, including fine-tuning Models ImageNet as well
as fine-tuning our Genesis Chest X-ray and Genesis Chest CT 2D. It confirms the effectiveness of Genesis Chest CT in
unlocking the power of 3D models. In addition, we have also provided statistical analyses between the highest and the
second highest performances achieved by 2D models, finding that Models Genesis (2D) offer equivalent performances (n.s.)
to Models ImageNet in four out of the five applications.
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Table 5.4: Our 3D approach, initialized by Models Genesis, significantly elevates
the classification performance compared with 2.5D and 2D approaches in reducing
lung nodule and pulmonary embolism false positives. The entries in bold highlight
the best results achieved by different approaches. For the 2D slice-based approach, we
extract input consisting of three adjacent axial views of the lung nodule or pulmonary
embolism and some of their surroundings. For the 2.5D orthogonal approach, each
input is composed of an axial, coronal, and sagittal slice and centered at a lung nodule
or pulmonary embolism candidate.

Task: NCC Random ImageNet Genesis

2D slice-based input 96.03±0.86 97.79±0.71 97.45±0.61

2.5D orthogonal input 95.76±1.05 97.24±1.01 97.07±0.92

3D volume-based input 96.03±1.82 n/a 98.34±0.44

Task: ECC Random ImageNet Genesis

2D slice-based input 60.33±8.61 62.57±8.04 62.84±8.78

2.5D orthogonal input 71.27±4.64 78.61±3.73 78.58±3.67

3D volume-based input 80.36±3.58 n/a 88.04±1.40

5.3.5 Models Genesis Top Any 2D/2.5D Approaches

We have thus far presented the power of 3D models in processing volumetric

data, in particular, with limited annotation. Besides adopting 3D models, another

common strategy to handle limited data in volumetric medical imaging is to reformat

3D data into a 2D image representation followed by fine-tuning pre-trained Models

ImageNet (Shin et al., 2016a; Tajbakhsh et al., 2016). This approach increases the

training examples by order of magnitude, but it sacrifices the 3D context. It is

interesting to note how Genesis Chest CT compares with this de facto standard in 2D.

We have thus implemented two different methods to reformat 3D data into 2D input 5 :

the regular 2D representation obtained by extracting adjacent axial slices (Ben-Cohen

et al., 2016; Sun et al., 2017a), and the 2.5D representation (Prasoon et al., 2013; Roth

et al., 2014, 2015) composed of axial, coronal, and sagittal slices from volumetric data.

5I thank Jae Y. Shin for organizing and pre-processing the PE dataset.
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Both of these 2D approaches seek to use 2D representation to emulate something

three dimensional, in order to fit the paradigm of fine-tuning Models ImageNet. In

the inference, classification and segmentation tasks are evaluated differently in 2D: for

classification, the model predicts labels of slices extracted from the center locations

because other slices are not guaranteed to include objects; for segmentation, the model

predicts segmentation mask slice by slice and form the 3D segmentation volume by

simply stacking the 2D segmentation maps.

Figure 5.7 exposes the comparison between 3D and 2D models on five 3D tar-

get tasks. Additionally, Table 5.4 compares 2D slice-based, 2.5D orthogonal, and

3D volume-based approaches on lung nodule and pulmonary embolism false positive

reduction tasks. As evidenced by our statistical analyses, the 3D models trained

from Genesis Chest CT achieve significantly higher average performance and lower

standard deviation than 2D models fine-tuned from ImageNet using either 2D or

2.5D image representation. Nonetheless, the same conclusion does not apply to the

models trained from scratch—3D scratch models are outperformed by 2D models in

one out of the five target tasks (i.e., NCC in Figure 5.7 and Table 5.4) and also ex-

hibit an undesirably larger standard deviation. We attribute the mixed results of 3D

scratch models to the larger number of model parameters and limited sample size in

the target tasks, which together impede the full utilization of 3D context. In fact,

the undesirable performance of the 3D scratch models highlights the effectiveness of

Genesis Chest CT, which unlocks the power of 3D models for medical imaging. To

summarize, we believe that 3D problems in medical imaging should be solved in 3D

directly.
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5.4 Discussion & Conclusion

5.4.1 Do We Still Need a Medical ImageNet?

In computer vision, at the time this chapter is written, no self-supervised learn-

ing method outperforms fine-tuning models pre-trained on ImageNet (Jing and Tian,

2020; Chen et al., 2019a; Kolesnikov et al., 2019; Zhou et al., 2019d; Hendrycks et al.,

2019; Zhang et al., 2019c; Caron et al., 2019). Therefore, it may seem surprising to

observe from our results in Table 5.3 that (fully) supervised representation learning

methods do not necessarily offer higher performances in some 3D target tasks than

self-supervised representation learning methods. We ascribe this phenomenon to the

limited amount of supervision used in their pre-training (90 cases for NiftyNet (Gib-

son et al., 2018b) and 1,638 cases for MedicalNet (Chen et al., 2019b)) or the domain

distance (from videos to CT/MRI for I3D (Carreira and Zisserman, 2017)). Evi-

denced by a prior study (Sun et al., 2017b) on ImageNet pre-training, large amount

of supervision is required to foster a generic, comprehensive image representation.

Back in 2009, when ImageNet had not been established, it was challenging to em-

power a deep model with generic image representation using a small or even medium

size of labeled data, the same situation, we believe, that presents in 3D medical image

analysis today. Therefore, despite the outstanding performance of Models Genesis,

there is no doubt that a large, strongly annotated dataset for medical image analysis,

like ImageNet (Deng et al., 2009) for computer vision, is still highly demanded. One

of our goals for developing Models Genesis is to help create such a medical ImageNet.

Based on a small set of expert annotations, models fine-tuned from Models Genesis

will be able to help quickly generate initial rough annotations of unlabeled images

for expert review, thus reducing the annotation efforts and accelerating the creation

of a large, strongly annotated, medical ImageNet. In summary, Models Genesis are
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not designed to replace such a large, strongly annotated dataset for medical image

analysis, as ImageNet for computer vision, but rather to help create one.

5.4.2 Same-domain or Cross-domain Transfer Learning?

Same-domain transfer learning is always preferred whenever possible because a

relatively smaller domain gap makes the learned image representation more beneficial

for target tasks. Even the most recent self-supervised learning approaches in medical

imaging were solely evaluated within the same dataset, such as Chen et al. (2019a);

Tajbakhsh et al. (2019a); Zhu et al. (2020a). Same-domain transfer learning strikes

as a preferred choice in terms of performance; however, most of the existing medical

datasets, with less than hundred cases, are usually too small for deep models to learn

reliable image representation. Therefore, for our future work, we plan to combine the

publicly available datasets from similar domains together to train modality-oriented

models, including Genesis CT, Genesis MRI, Genesis X-ray, and Genesis Ultrasound,

as well as organ-oriented models, including Genesis Brain, Genesis Lung, Genesis

Heart, and Genesis Liver.

Cross-domain transfer learning in medical imaging is the Holy Grail. Retrieving a

large number of unlabeled images from a PACS system requires an IRB approval, often

a long process; the retrieved images must be de-identified; organizing the de-identified

images in a way suitable for deep learning is tedious and laborious. Therefore, large

quantities of unlabeled datasets may not be readily available to many target domains.

Evidenced by our results in Table 5.3 (BMS), Models Genesis have a great potential for

cross-domain transfer learning; particularly, our distortion-based approaches (such

as non-linear and local-shuffling) take advantage of relative intensity values (in all

modalities) to learn shapes and appearances of various organs. Therefore, as our

future work, we will be focusing on methods that generalize well across domains.
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5.4.3 Is Any Data Augmentation Suitable as a Transformation?

We propose a self-supervised learning framework to learn image representation

by discriminating and restoring images undergoing different transformations. One

might argue that our image transformations can be interchangeable with existing

data augmentation techniques (Gan et al., 2015; Wong et al., 2016; Perez and Wang,

2017; Shorten and Khoshgoftaar, 2019), while we would like to make the distinction

between these two concepts clearer. It is critical to assess whether a specific augmen-

tation is practical and feasible for the image restoration task when designing image

transformations. Simply introducing data augmentation can make a task ambiguous

and lead to degenerate learning. To this end, we choose image transformations based

on two principles:

• First, the transformed sub-volume should not be found in the original CT scan.

But it is possible to find a transformed sub-volume that has undergone such

augmentations as rotation, flip, zoom in/out, or translation, as an alternative

sub-volume in the original CT scan. In this scenario, without additional spatial

information, the model would not be able to “recover” the original sub-volume

by seeing the transformed one. As a result, we only elect the augmentations

that can be applied to sub-volumes at the pixel level rather than the spatial

level.

• Second, a transformation should be applicable for specific image properties. The

augmentations that manipulate RGB channels, such as color shift and channel

dropping, have little effect on CT/MRI images without the availability of color

information. Instead, we promote brightness and contrast into monotonic color

curves, resulting in a novel non-linear transformation, explicitly enabling the

model to learn intensity distribution from medical images.
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After filtering out using the above two principles, the remaining data augmentation

techniques are not as many as expected. We have endeavored to produce learning

perspective driven transformations rather than inviting any types of data augmenta-

tion into our framework. A recent study from Chen et al. (2020) has also discovered a

similar phenomenon: carefully designed augmentations are superior to autonomously

discovered augmentations. This suggests a criterion of transformations driven by

learning perspectives, in capturing a compelling, robust representation for 3D trans-

fer learning in medical imaging.

5.4.4 Can Algorithms Autonomously Search for Transformations?

We follow two principles when designing suitable image transformations for our

self-supervised learning framework (see Sec. 5.4.3). Potentially, “automated data aug-

mentation” can be considered as an efficient alternative because this line of research

seeks to strip researchers from the burden of finding good parameterizations and com-

positions of transformations manually. Specifically, existing automated augmentation

strategies reinforce models to learn an optimal set of augmentation policies by calcu-

lating the reward between predictions and image labels. To name a few, Ratner et al.

(2017) proposed a method for learning how to parameterize and composite the trans-

formations for automated data augmentation, while preserving class labels or null

class for all data points. Dao et al. (2019) introduced a fast kernel alignment metric

for augmentation selection. It requires image labels for computing the kernel target

alignment (as the reward) between the feature kernel and the label kernel. Cubuk

et al. (2019) used reinforcement learning to form an algorithm that autonomously

searches for preferred augmentation policies, magnitude, and probability for specific

classification tasks, wherein the resultant accuracy of predictions and labels is treated

as the reward signal to train the recurrent network controller. Wu et al. (2020) pro-
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posed uncertainty-based sampling to select the most effective augmentation, but it

is based on the highest loss that is computed between predictions and labels. While

the reward is well-defined in the aforementioned works, unfortunately, there is no

available metric to determine the power of image representation directly; hence, no

reward is readily established for representation learning. Rather than constrain the

representation directly, our work aims to design an image restoration task to let the

model learn generic image representation from 3D medical images. To achieve this,

inspired by Vincent et al. (2010), we modify the definition of a good representation

into the following: “a good representation is one that can be obtained robustly from

a transformed input, and that will be useful for restoring the corresponding original

input.” Consequently, mean square error (MSE) between the model’s input and out-

put is defined as the objective function in our framework. However, if we adopt MSE

as the reward function, the existing automated augmentation strategies will end up

selecting identical-mapping. This is because restoring images without any transfor-

mation is expected to give a lower error than restoring those with transformations.

Evidenced by Figure 5.3, identical-mapping results in a poor image representation.

To summarize, the key challenge when employing automated augmentation strate-

gies into our framework is how to define a proper reward for restoring images, and

fundamentally, for learning image representation.

123



MSE

SSIM

n.s.  No Significance * p < 0.05 ** p < 0.01 *** p < 0.001 >*** p < 0.0001

MAE

Figure 5.8: We compare three different losses for the task of image restoration. There is no evidence that the three
losses have a decisive impact on the transfer learning results of five target tasks. Note that for this ablation study, all the
proxy and target tasks are implemented in PyTorch.
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5.4.5 Does Better Restoration Transfer Better?

Our transfer learning results in Sec. 5.3 suggest that image restoration is a promis-

ing task to learn generic 3D image representation. This also means that image restora-

tion quality has an implicit correlation with model transferability to some extent. To

assess restoration quality, we compare the Mean Square Error (MSE) loss with other

commonly used loss functions for image restoration 6 , such as Mean Absolute Error

(MAE) and Structural Similarity Index (SSIM) (Wang et al., 2004). All of them

compute the distance between input and output images, while SSIM concentrates

more on the restoration quality in terms of structural similarity than MSE and MAE.

Since the publicly available 3D SSIM loss was implemented in PyTorch 7 , to make

the comparisons fair, we have adapted our five target tasks into PyTorch as well. Fig-

ure 5.8 shows mixed performances of the five target tasks among the three alternative

loss functions. As discussed in Sec. 5.4.4, the ideal loss function for representation

learning is one that can explicitly determine the power of image representation. How-

ever, the three losses explored in this section are implicit, based on the premise that

the image restoration quality can indicate a good representation. Further studies

with restoration quality assessment and its relationship to model transferability are

therefore suggested.

5.4.6 Can Models Genesis Detect Infected Regions from Images?

Genesis Chest CT has been pre-trained using 623 CT images in the LUNA 2016

dataset. To assess the image restoration quality, we utilize the rest of the 265 CT

images from the dataset and present examples in Figure 5.9. Specifically, we pass

6I acknowledge Jiaxuan Pang, with whom I co-authored Zhou et al. (2019d, 2021c), for imple-
menting Models Genesis in PyTorch version with Vatsal Sodha; Shivam Bajpai and Jiaxuan Pang
for comparing three loss functions of the proxy task.

7SSIM loss in 3D: https://github.com/jinh0park/pytorch-ssim-3D
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Original CT scan Restored CT scan Subtraction

Figure 5.9: Examples of image restoration using Genesis Chest CT. We pass
unseen CT images (Column 1) to the pre-trained model, obtaining the restored images
(Column 2). The difference between input and output has been shown in Column
3. In most of the normal cases, such as those in Rows 1—2, Genesis Chest CT
can perform a fairly reasonable identical-mapping. Meanwhile, for some cases that
contain opacity in the lung, as illustrated in Row 3, Genesis Chest CT tends to
restore a clearer lung. As a result, the diffuse region is revealed in the difference
map automatically. We have zoomed in the region for a better visualization and
comparison.

the original CT images to the pre-trained Genesis Chest CT. To visualize the mod-

ifications, we have further plotted the difference maps by subtracting the input and

output. Since the input images involve no image transformation, most of the restored

CT scans (see Rows 1—2) can preserve the texture and structures of the input im-

ages, only encountering few changes thanks to the identical-mapping training scheme

and the skip connections between encoder and decoder. Nonetheless, we observe

some failed cases (see Row 3), especially when the input CT image contains diffuse

disease, which appears as an opacity in the lung. Genesis Chest CT happens to “re-
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move” those opaque regions and restore a much clearer lung. This may be due to

the fact that the majority of cropped sub-volumes are normal and are being used as

ground truth, which empowers the pre-trained model with capabilities of detecting

and restoring “novelties” in the CT scans. More specifically, in our work, these nov-

elties include abnormal intensity distribution injected by non-linear transformation,

atypical texture and boundary injected by local-shuffling, and discontinuity injected

by both inner and outer cutout. Based on the surrounding anatomical structure, the

model predicts the opaque area to be air, therefore restoring darker intensity values.

This behavior is certainly a “mistake” in terms of image restoration, but it can also

be thought of as an attempt to detect diffuse diseases in the lung, which is challenging

to annotate due to their unclear boundary. By training an image restoration task, the

diseased area will be revealed by simple subtraction of the input and output. More

importantly, this suggested detection approach requires zero human annotation, nei-

ther image-level label nor pixel-level contour, contrasting from the existing weakly

supervised disease detection approaches (Zhou et al., 2016; Baumgartner et al., 2018;

Cai et al., 2018; Siddiquee et al., 2019).

5.4.7 Conclusion and Broader Impacts

A key contribution of ours is a collection of generic source models, nicknamed

Models Genesis, built directly from unlabeled 3D imaging data with our novel uni-

fied self-supervised method, for generating powerful application-specific target models

through transfer learning. While the empirical results are strong, surpassing state-

of-the-art performances in most of the applications, our goal is to extend our Models

Genesis to modality-oriented models, such as Genesis MRI and Genesis Ultrasound,

as well as organ-oriented models, such as Genesis Brain and Genesis Heart. We en-

vision that Models Genesis may serve as a primary source of transfer learning for 3D
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medical imaging applications, in particular, with limited annotated data. To benefit

the research community, we make the development of Models Genesis open science,

releasing our codes and models to the public. Creating all Models Genesis, an am-

bitious undertaking, takes a village; therefore, we would like to invite researchers

around the world to contribute to this effort, and hope that our collective efforts will

lead to the holy grail of Models Genesis, all powerful across diseases, organs, datasets,

specialties, and modalities.

We first presented Models Genesis in our MICCAI 2019 paper (Zhou et al., 2019d).

This paper received the MICCAI Young Scientist Award and was the Finalist for the

Best Presentation Award. Models Genesis have also been chosen as one of the select

contributions and received the MedIA Best Paper Award in Medical Image Analy-

sis. This technique has been adopted for various medical imaging applications, such

as lymph node classification in histopathology images (Xu et al., 2020), COVID-19

classification in CT images (Sun et al., 2020), brain hemorrhage classification in CT

images (Zhu et al., 2020b), Alzheimer’s disease classification in MR images (Zhang

et al., 2020), blood cavity segmentation in MR images (Zhang et al., 2020), and so on.

In addition, we believe that Models Genesis would be of potential for remote sensing,

given the capability of our self-supervised method learning recurrent anatomical pat-

terns and the availability of wealthy geographical information naturally associated

with satellite images.
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Chapter 6

INTERPRETING MEDICAL IMAGES

In modern medical practice, medical image interpretation has largely been con-

ducted by human experts such as radiologists and other physicians. However, owing

to the wide variety of medical pathology that may affect human beings, the limitations

of human perception, and human fatiguability, an increasing role for computer-aided

diagnosis (CAD) in medicine has been recognized. In the past few years, the interest

in artificial intelligence has mushroomed within medical image interpretation, driven

primarily by remarkable advances in deep learning. As discussed in the previous

chapters, advancements in the fields of active learning, model designing, and self-

supervised learning have found a myriad of applications in medical image analysis,

propelling it forward at a rapid pace. Computers naturally excel at discovering and

recognizing intricate patterns from images while also providing quantitative assess-

ments for medical imaging. As a result, CAD systems can overcome human limitations

affecting medical image interpretation, allowing physicians to focus more on analyti-

cal interpretation tasks. This chapter introduces several distinctive characteristics of

medical images, pressing clinical needs for imaging technologies, and existing medical

applications.

6.1 Characteristics of Medical Images

Medical images possess particular characteristics compared with natural images,

providing unique opportunities for the application of computer-aided techniques to

assist in medical diagnosis. Such particular characteristics provide the basis for imag-

ing research advances that have subsequently been translated into clinically usable
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products. Below we summarize some of the most distinguished imaging characteristics

and discuss how they are exploited to advance computer-aided diagnosis in medical

imaging.

1. Medical images are created by modalities. Natural images typically consist of

3-channel (Red, Green, and Blue) images that exist in the visible light spec-

trum, whereas various modalities are used to create medical images, includ-

ing computed tomography (CT), magnetic resonance imaging (MRI), positron

emission tomography (PET), mammography, ultrasound, radiography, and so

on. Each modality uses a portion of the non-visible electromagnetic spectrum

(with the exception of ultrasound, which employs sound waves for image cre-

ation) to create images for visualizing and identifying certain medical disorders

and procedural complications. Certain medical imaging modalities are more

conducive for the evaluation of particular disorders than others. For example,

abnormalities such as acute active hemorrhage are more readily diagnoseable by

intravenous contrast-enhanced CT than MRI, whereas small or subtle lesions

such as prostate cancer, uterine cancer, and metastases to the bone and brain

may be better shown by MRI. Also, although they may often require the use of

ionizing radiation or intravenous contrast administration, cross-sectional tech-

niques, such as CT and MRI, are capable of producing images with substantially

richer details than radiography (often colloquially referred to as “X-rays”).

2. Medical images possess high dimensionality. Cross-sectional imaging techniques,

such as CT, MRI, and ultrasound, produce three-dimensional images, and when

dynamic imaging is performed, a fourth dimension—time—is added. While

the world around us is three dimensional, human eyesight is essentially a two-

dimensional process. Although various reconstruction algorithms essentially

130



“simulate” the 3D world from multiple 2D views, human eyesight nevertheless

relies on two-dimensional spatial information processing. When reading a vol-

umetric cross-sectional imaging examination, radiologists must scroll through a

stack of images back to mentally “reconstruct” the underlying anatomy in three

dimensions. This is extremely difficult, especially when searching for small le-

sions, which are only seen on a few images within a large volumetric stack of

images, and particularly when an abnormality is similar in appearance to nor-

mal anatomies, such as a small lung nodule (which can closely resemble normal

pulmonary vessels). To avoid overlooking potentially significant abnormalities,

radiologists must scrutinize all aspects of each image contained within a large

volumetric stack; nevertheless, it has been well-established through eye-tracking

perceptual research that even trained observers fail to visually scan all parts of a

medical image (Rubin et al., 2015). In contrast, computer algorithms can inter-

pret high-dimensional images the same way as 2D images by directly harnessing

spatial and temporal information.

3. Medical images vary in quality. Owing to substantial differences among medical

imaging equipment manufacturers as well as variable proprietary hardware and

software platforms, medical images may vary in quality and content among var-

ious institutions as well as within a given institution. Furthermore, acquisition

protocol parameters (of which there are numerous considerations that must be

addressed for a given application), frequently vary considerably among institu-

tions, even for a given manufacturer and application. Such variability results in

“domain gaps”, both in terms of quality and technical display. These domain

gaps are regarded as a major obstacle to the development of robust deep learn-

ing methods, often referred to as “domain shift” or “distribution drift”. For
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example, CT scans performed using 5 mm slice thickness can handicap a model

trained using CT scans performed using a 0.75 mm thickness, resulting in deep

learning methods with a limited clinical value. While the domain shift problem

can be addressed by a universally applied configuration for acquiring medical

images across hospitals, such a requisite is unlikely to be adopted. Approaches

such as semi-supervised learning, domain adaptation, and federal learning have

been explored to address the “domain shift” problem.

4. Medical images convey physical meaning. The color information in natural im-

ages does not usually carry categorical meaning. For instance, a shirt is a shirt

no matter what color it is. In contrast, the exact or relative pixel intensity

value in a given medical image corresponds to a specific constituent within the

human body, particularly for cross-sectional imaging modalities such as CT and

MRI. CT images are created by directing ionizing radiation through a body part

and counting the relative number of photons absorbed by the tissue traversed

by the x-ray beam—a greater number of photons absorbed occurs with denser

tissue, such as bone, whereas a greater number of photons transmitted (not

absorbed and thus reaching the detector) occurs with less dense tissue, such as

lung parenchyma. The commonly used scale to represent the relative amount of

X-ray photon absorption at CT is the Hounsfield Units (HU) and reflects tissue

density. By convention, an attenuation coefficient of 0 HU is equivalent to the

density of water (1 gm/cm3). Air or gas, as may be encountered within the

large airways and bowel, has an attenuation coefficient of -1,000 HU, whereas

bone, a very dense structure, has an attenuation coefficient of approximately

1000 HU. Other tissues within the human body have attenuation coefficients

within this range. For example, fat has a value between -80 and -30 HU, whereas
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unenhanced muscle has an attenuation coefficient ranging between 35 and 55

HU. This ability to directly measure the density of human tissue enables human

experts and computer algorithms to identify both normal human anatomy as

well as potential abnormalities. More importantly, the semantics embedded in

the pixel intensity is a weak annotation that can be harnessed to facilitate the

model to learn the appearance of anatomic structures without extensive manual

annotation.

5. Medical images encode relative location and orientation. When identifying ob-

jects from natural images, their locations are generally not important: a cat is

a cat no matter if it appears in the top left or bottom right of the image. In

contrast, in medical imaging, the relative location and orientation of a structure

and the intrinsic consistency of anatomical relationships are important charac-

teristics that allow recognition of normal anatomy and pathological conditions.

The regular and predictable location of various structures in the human body is

a valuable characteristic for training deep learning models. Since medical imag-

ing protocols snap patients in fairly consistent and reproducible positions, these

methods generate images with great similarity across various equipment manu-

facturers and facility locations. Therefore, recognizing the stereotypical position

and orientation information of human anatomy provides an opportunity to re-

duce false positive results and improve the accuracy of disease detection and

segmentation. Several works have demonstrated the value of this approach by

adding location features, modifying objective functions, and constraining coor-

dinates relative to landmarks in images. For instance, employing ultrasound for

measurement of carotid arterial intimal-medial thickness for cardiovascular risk

stratification, the measurement could be performed at any point along the lon-
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gitudinal aspect of the vessel, and such variability could adversely affect results

and reproducibility. However, it is standard practice to perform this measure-

ment 1 cm beyond a recognizable anatomic landmark—the carotid bulb (Stein

et al., 2008). As a result, the anatomically recognizable carotid bulb provides

a contextual constraint for training deep learning methods.

6. Medical images encode both scale and distance. The uncertain distance between

camera and object limits precise size measurements in natural images; in con-

trast, the physical size of a structure is preserved in medical images. Scale is

one of the quantitative attributes of standard imaging formats. The size of a

pixel in CT, as an example, is often specified in the DICOM header. By ob-

taining the number of pixels belonging to an object and the pixel scale from the

header, the physical scale and distance between normal structures and lesions

in the image can easily be computed. This information is a critical feature in

the assessment of disease, both by human interpretation and computer-aided

diagnosis because the physical size of a lesion influences disease stage, treat-

ment options, and prognosis. Moreover, the lesion size distribution can serve

as a statistic to estimate the domain gaps among datasets collected from dif-

ferent equipment manufacturers, facilities, and regions, allowing the creation of

more robust models and enhancing the ability to extrapolate computer-aided

diagnoses across various medical practices.

7. Medical images have sparse and noisy labels. Unlike natural imaging datasets,

it is impractical to annotate millions of medical images with a systematic label

hierarchy. Most publicly available medical imaging datasets focus on particular

anatomic regions and only provide annotation for the object of interest. For

example, the KiTS dataset provides annotation only for the kidney, the LiTS
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dataset for the liver, and the NIH Pancreas-CT dataset for the pancreas. There

is no dataset that provides systematic annotation for all visible structures in a

medical imaging dataset; existing annotated datasets are either only partially

annotated or only annotated on a small scale. Organizing a hierarchical la-

beling dictionary to address various organs, tissues, and diseases, as well as

reflect their spatial relationships in the human body, remains a large limitation

for deep learning methods. Moreover, the available annotated images are of-

ten associated with noise due to inter-observer and intra-observer variability.

That is, different human experts can provide conflicting opinions regarding a

given lesion, reflecting inter-observer variability; furthermore, the same expert

is likely to produce very different lesion contours over multiple attempts sepa-

rated in time, reflecting intra-observer variability. Additionally, more severely

noisy labels occur if the abnormality has indistinct boundaries, such as diffuse

lung diseases. The partial and imperfect annotation compromises model train-

ing and results in ambiguous and unreliable results when deep learning methods

undergo testing.

In summary, medical images contain quantitative imaging characteristics—the

intensity value and physical size of pixels—that can be used as additional informa-

tion to enhance deep learning performance. Medical images also present qualita-

tive imaging characteristics—consistent and predictable anatomical structures with

great dimensional details—that can provide an opportunity for comprehensive model

training. Nevertheless, several characteristics unique to medical images create unmet

challenges, such as isolated, discrepant data and partial, noisy labels, that must be

addressed through additional investigation.
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6.2 Clinical Needs

Computer-aided diagnosis holds a long history, which has been focusing on a key

promise: CAD systems are not developed to replace physicians but rather to enhance

their capabilities through computer-physician synergy. With deep learning methods

elevating numerous CAD systems to human-level precision, the number of clinical

needs has been rapidly increasing in recent decades.

• Medical image classification refers to classifying what type of lesion is contained

in an image. Such classification may be binary (e.g., benign or malignant) or

multi-class (various types of lesions). The annotation for classification tasks is

to assign one or a few labels to an image or a study.

• Disease localization and detection refer to identifying the location of specific le-

sions. Their difference is subtle: localization aims to locate a single lesion, while

detection aims to find all lesions in the image. The annotation for detection

and localization provides both the specific location and the scale of the disease

with a bounding box.

• Medical image segmentation refers to creating a pixel-wise mask of the or-

gan/lesion in the image. Segmentation can ease the analysis by measuring more

accurate and desirable imaging biomarkers. The annotation for segmentation

tasks is to assign every pixel in an image to at least one class.

• Medical image registration refers to aligning the spatial coordinates of one or

more images into a standard coordinate system. Image registration plays an im-

portant role in disease prognosis by establishing correspondence among multiple

scans taken from different time points.
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• Medical image reconstruction refers to producing images suitable for human in-

terpretation from raw data obtained by imaging devices, such as CT or MRI

scanners. A fast and high-quality radiological image reconstruction will sub-

stantially reduce radiation exposure and doses of intravenous contrast material.

• Medical image enhancement refers to adjusting the intensity of an image for

better visualization or further analysis. Such enhancement includes denoising,

super-resolution, artifact removal, MR bias field correction, and image harmo-

nization.

• Other tasks include: landmark detection, image or view recognition, automatic

report generation, etc.

In this dissertation, we mainly focus on the tasks of image classification and seg-

mentation, with some other clinical needs such as disease detection and CIMT thick-

ness measurement. Our goal is to minimize the annotation cost associated with these

tasks while maintaining comparable or even higher performance. We have further

elaborated on the specific imaging datasets in Appendix A.

6.3 Medical Application: A Case Study of PE CAD

Interest in implementing deep learning methods in computer-aided diagnosis sys-

tems has increased tremendously in the past decade due to the promising, or even

super-human, performance for various medical applications. This section provides

a case study for conducting a medical application that involves deep learning, from

curating the structure of data and annotation, to developing the system and vali-

dating the performance. Specifically, the objective is to demonstrate the annotation-

efficiency of our devised techniques in several key facets of the CAD system in practice.

We illustrate the step-by-step workflow using the application of detecting pulmonary
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Figure 6.1: (a) The typical appearance of pulmonary embolism in the CTPA scan,
presented from an axial, coronal, and sagittal views. (b) Five different pulmonary
embolism candidates in the vessel-oriented image representation (Tajbakhsh et al.,
2015). It was adopted in this work because it achieves great classification accuracy
and accelerates CNN training convergence.

embolism from CTPA scans. The idea of implementing deep learning methods into

computer-aided diagnosis systems can be adapted to many other medical applications

that require automated medical image analysis.

6.3.1 Pulmonary Embolism

Pulmonary Embolism (PE) is a major national health problem, which is respon-

sible for 100,000∼200,000 deaths annually in the United States (Pauley et al., 2019),

representing the third most common cause of cardiovascular death after myocardial

infarction and stroke (Martin et al., 2020). A PE is a condition in which a throm-

bus (often colloquially referred to as a “blood clot”) travels to the lungs, often from

a lower extremity venous source, producing a blockage of the pulmonary arteries

within the lungs. The mortality rate of untreated PE may approach 30% (Calder

et al., 2005), but it decreases to as low as 2% with early diagnosis and appropriate

treatment (Sadigh et al., 2011). CT pulmonary angiography (CTPA) is the primary
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means for PE diagnosis, wherein a radiologist carefully traces each branch of the

pulmonary artery for any suspected PEs. PEs appear as “filling defects” within en-

hanced pulmonary arteries following the administration of intravenous contrast, as

shown in Figure 6.1(a). However, CTPA interpretation is a time-consuming task, of

which accuracy depends on human factors, such as attention span and sensitivity to

the visual characteristics of PEs. Computer-aided PE detection can have a major

role in improving the diagnostic capability of radiologists and decreasing the reading

time of CTPA scans.

We developed our computer-aided PE detection system by using an in-house

dataset from ASU-Mayo (Tajbakhsh et al., 2019b), which consists of 121 CTPA scans

with a total of 326 emboli 1 . The dataset provides the spatial coordinates of each

emboli in the scan. The dataset is divided at the patient-level into a training set

(71 patients) and a test set (50 patients). To study the robustness and generaliz-

ability of the algorithm, we have also evaluated our system using 20 CTPA scans

from the CAD-PE competition 2 . Our computer-aided PE detection system con-

sists of two stages to detect PEs from images: (1) candidate generation and (2) false

positive reduction. These two stages have also been widely used in most existing

disease detection systems. In the following sections, we describe the methodology

and performance for each stage in detail.

6.3.2 Generating Pulmonary Embolism Candidates

We use an unsupervised approach for candidate generation, consisting of heuristic

lung segmentation and the tobogganing algorithm (Fairfield, 1990). In a chest CTPA

scan, lungs appear darker than their surrounding. To segment lungs from the scan,

1I thank Jae Y. Shin for organizing and pre-processing the PE dataset.

2http://www.cad-pe.org/
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we first clip voxel intensity values using a threshold of -400, resulting in a binary

volume wherein the lungs and other dark regions appear white. Then, we perform

a closing operation to fill all dark holes in the white area. To exclude non-lung

areas, we perform a 3D connected component analysis and remove the components

with small volumes or a large length ratio between the major and minor axes. The

purpose of segmenting the lungs is to reduce the computational time and the number

of false positives for the toboggan algorithm. Since peripheral PEs only appear in

pulmonary arteries, there is no need to search for PE candidates outside the lungs.

The tobogganing algorithm is then applied only to the lung area, generating the PE

candidate coordinates that we will then use to crop sub-volumes from the CTPA

scan. This procedure of candidate generation was firstly designed by Tajbakhsh et al.

(2015).

We directly applied their PE candidate generator to the dataset, resulting in a

total of 8,585 PE candidates, wherein 863 were true positives and 7,722 were false

positives. There are 326 unique emboli annotated in our dataset. Since multiple

detections can be generated from a large PE, the number of true positives is greater

than the number of unique emboli. Tajbakhsh et al. (2015) reported a sensitivity

of 93% with, on average, 65.8 false positives per patient for the entire candidate

generation stage.

6.3.3 Reducing Pulmonary Embolism False Positives

The previous stage generates coordinates that indicate where the PE candidate

is located. We crop sub-volumes based on the location, so that the PE candidate

will appear in the center of each sub-volume. The sub-volume has a physical size of

20×20×20 mm and then resized into 64×64×64 pixel. To conduct a fair comparison

with the prior studies (Zhou et al., 2017c; Tajbakhsh et al., 2016, 2019b), we compute
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Table 6.1: We evaluate vessel-oriented image representation (VOIR) (Tajbakhsh
et al., 2019b) in comparison with 2D, 2.5D, and 3D solutions for the task of reducing
PE false positives. Our comprehensive experiments have demonstrated that: (1)
the vessel-oriented image representation exceeds the regular image representation;
(2) 3D volume-based inputs offer higher performance than 2.5D orthogonal inputs,
which in turn work better than 2D slice-based inputs; (3) Models Genesis consistently
outperform models learning from scratch. Overall, the best performance is obtained
by Models Genesis trained with 3D volume-based VOIR inputs. The entries in bold
highlight the best results achieved by different model input formations. All of the
results in the table are candidate-level AUC (Area Under the ROC Curve), including
the mean and standard deviation (mean±s.d.) across ten trials.

Task: ECC (w/o VOIR) Random Models ImageNet Models Genesis

2D slice-based input 60.33±8.61 62.57±8.04 62.84±8.78

2.5D orthogonal input 71.27±4.64 78.61±3.73 78.58±3.67

3D volume-based input 80.36±3.58 n/a 88.04±1.40

Task: ECC (w/t VOIR) Random ImageNet Genesis

2D slice-based input 86.16±1.94 86.83±0.97 87.43±1.34

2.5D orthogonal input 87.29±3.25 88.04±0.78 88.32±1.70

3D volume-based input 92.01±0.98 n/a 92.81±0.47

candidate-level AUC (Area Under the ROC Curve) for classifying true positives and

false positives.

Compared with Tajbakhsh et al. (2019b), we have advanced the methodology and

yielded significant performance gains in three aspects (see Table 6.1).

1. Extending VOIR into the 3D version. In general, emboli can affect pulmonary

arteries in any orientation, exhibiting a significant variation in PE appearance

(see Figure 6.1(a)). This complicates the classification task and hinders the

effective utilization of deep learning methods. To implement vessel alignment,

we first apply principal component analysis (PCA) to voxel intensities for es-

timating the vessel’s orientation. Then, we rotate scan planes in alignment

with the vessel longitudinal axis, resulting in images with standardized ap-

pearance, wherein emboli consistently appear as elongated structures in the
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longitudinal vessel view and as circular structures in the cross-sectional view

(see Figure 6.1(b)). This interpolation scheme guided by the vessel axis has

the effect of maximally revealing the filling defects, thereby facilitating PE di-

agnosis for both radiologists and computers. We have implemented VOIR in

both 2D (following Tajbakhsh et al. (2019b)) and 3D 3 , demonstrating that the

vessel-oriented image representation exceeds the regular image representation.

2. Utilizing three-dimensional models and data. While adopting 3D models to

process 3D volumetric data may appear to be a natural choice, it occurs at a

substantial computational cost, lack of sufficient data, and risk of overfitting.

As a result, several alternative strategies were proposed to reformat 3D appli-

cations into 2D problems. For instance, Ben-Cohen et al. (2016); Sun et al.

(2017a) formulated regular 2D inputs by extracting adjacent axial slices (refer

to as 2D slice-based input). A more advanced strategy, presented in Prasoon

et al. (2013); Roth et al. (2014, 2015), is to extract axial, coronal, and sagittal

slices from volumetric data (refer to as 2.5D orthogonal input). These refor-

matted 2D solutions can generate a large number of data and benefit from 2D

pre-trained ImageNet. However, 2D solutions inevitably sacrifice the rich spa-

tial information in 3D volumetric data and large capacity of 3D models. As

the computer power increased and pre-trained 3D models developed in recent

years, the interest is shifting back to 3D techniques, with several emerging evi-

dences (Zhou et al., 2021c; Isensee et al., 2021) indicating that 3D applications

are better to be addressed in 3D. Our experimental results also suggest that,

with the same initialization and vessel orientation, 3D volume-based inputs of-

fer higher performance than 2.5D orthogonal inputs, which in turn work better

3I thank Douglas Amoo-Sargon for implementing 3D VOIR in the PE dataset.
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than 2D slice-based inputs.

3. Initializing models with Models Genesis. Training a deep model from scratch is

difficult because it requires a large amount of labeled training data and a great

deal of expertise to ensure proper convergence. Fine-tuning Models ImageNet

has become the most practical adoption for deep learning applications in medi-

cal imaging to ease the training procedure (Shin et al., 2016a; Tajbakhsh et al.,

2016). On the other hand, Models ImageNet may give suboptimal initialization

in the medical imaging domain (Raghu et al., 2019), as they were pre-trained

from only natural images; it is associated with a large domain gap for medical

images. We pre-train Models Genesis in the same domain to reduce this domain

gap. Our Models Genesis 2D offer similar performance to Models ImageNet.

This result is encouraging because our Models Genesis 2D were developed with-

out using any manual annotation, while Models ImageNet demand more than

fourteen million annotated images. More importantly, Models ImageNet only

provide 2D models, which cannot handle 3D data directly, while Models Genesis

can be pre-trained in both a 2D and 3D manner. Our results show that Models

Genesis secure great performance gain (10% improvement without VOIR and

4% with VOIR) in comparison with Models ImageNet. Overall, we conclude

that Models Genesis consistently outperform models learning from scratch and

achieve the best performance when using 3D VOIR sub-volumes as input.
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Figure 6.2: We have compared the top participating teams of the CAD-PE competition (González et al., 2020). For each
method, the Free-Response Operating Characteristic (FROC) curves are plotted. Our PE CAD was directly evaluated on
the 20 CTPA test scans, without using any training scans provided by the competition. ε denotes the localization error.
That is, a detection is considered a true positive as long as the detection falls within ε distance from the ground truth for
PE. The performance at ε = 0 mm provides greater benefits for clinical applications than at 2mm and 5 mm. As reported,
our PE CAD (Genesis) is ranked third among the participating teams, achieving a sensitivity of 46% at 2 false positives
per scan (ε = 0 mm). This sensitivity is substantially higher than our previous method, which holds a sensitivity of 33%
(ASU-Mayo) (Tajbakhsh et al., 2019b), highlighting the importance of 3D VOIR and Models Genesis for PE detection.
We should note that the leading solutions (UA-2.5D and UA-3D) have not only been trained on the 20 training scans, but
also had access to an extended training dataset with 51 additional CTPA scans. Therefore, our PE CAD is reasonably
competitive compared to the state of the art.
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6.3.4 Comparing with the State of the Art

To further examine the robustness of our computer-aided PE detection system,

we have participated in the CAD-PE competition 4 . All participating teams can use

20 training scans provided by the competition to develop their systems, and the final

performance is evaluated on the additional 20 unseen scans. As shown in Figure 6.2,

our system (Genesis) is ranked third among the participating teams. The top two

winners of the competition, UA-3D and UA-2.5D, have utilized an extended training

set released by the competition organizers; therefore, their systems are significantly

better than others. On the other hand, we directly took the unseen test scans to eval-

uate our system, which was developed even without using the 20 training scans from

the competition. As seen, our system’s performance is fairly robust to the different

datasets. Considering the potential domain gap between the CAD-PE competition

and our in-house dataset, we also anticipate a better performance once adapting our

system to the CAD-PE training set in the future. The ASU-Mayo was our previous

submission, which used the 2D VOIR approach (Tajbakhsh et al., 2019b), a consis-

tent, compact, and discriminative image representation to improve the perception of

PE. Our current system, compared with Tajbakhsh et al. (2019b), has made three

advancements: (1) extending VOIR to the 3D version, (2) utilizing three-dimensional

models and data, and (3) initializing models with Models Genesis. Consequently, the

enhanced system achieves a significantly higher sensitivity of 46% at 2 false positives

per scan (ε = 0 mm), increasing the sensitivity by over 10% than the previous system.

4I thank Nima Tajbakhsh and Jae Y. Shin for generating PE candidates from the competition
dataset; German Gonzalez Serrano for organizing the CAD-PE competition and evaluating our
system with other participating teams.
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6.4 Discussion & Conclusion

6.4.1 What Is the Current State of Clinical PE CAD?

The computer-aided pulmonary embolism detection is an illustrative example of

how deep learning methods have been integrated into clinical image interpretation.

With an estimated 180,000 deaths per year in the United States, the rapidly in-

creasing CTPA examinations far exceed the availability of subspecialty trained car-

diopulmonary radiologists (Horlander et al., 2003). To address the unmet need for

interpretation, general radiologists are also assigned to look through some of the ex-

aminations. Accurately interpreting CTPA examinations requires significant training

and experience, so the discordance between cardiopulmonary and general radiologists

may exceed 25% if they interpret the same examination (Hutchinson et al., 2015).

Due to inaccurate interpretations, including false-negative studies (failure to detect

emboli) and false-positive studies (diagnosing emboli that are not present, or “over-

diagnosis”), there is a significant risk of morbidity and mortality for patients.

Deep learning methods have been developed to assist radiologists with the task

of PE detection and exclusion. Several studies suggest that radiologists who use

current CAD systems can improve the sensitivity from 77∼94% to 92∼98% (Das

et al., 2008; Wittenberg et al., 2011; Blackmon et al., 2011; Wittenberg et al., 2013).

One particular system, developed by AIDOC medical (Tel Aviv, Israel), has recently

been adopted by Mayo Clinic 5 . Once a CTPA examination is transferred from

the CT scanner to radiologists for interpretation, the system will perform the task

of PE detection and exclusion in the backend. This system runs “silently” in the

background and determines results as either negative or positive for PE. If positive,

a pop-up window will localize the embolus for radiologist confirmation. In a study

5I thank Michael B. Gotway for sharing the clinical experience of PE CAD in Mayo Clinic.
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by Weikert et al. (2020), the AIDOC algorithm showed a sensitivity of 92.7% on a per-

patient basis with a false positive rate of 3.8%, or 0.12 false-positive detection. Most

notably, the average processing time for the algorithm was 152 seconds, but typically

this processing occurs while the data is being transferred from the CT scanner to

the picture archiving communication system. Thus, the images are not completely

available for radiologists to review immediately. An additional 25 seconds is required

for case uploading (Weikert et al., 2020). In practice, the AIDOC system analysis is

either complete and ready for review when the study is opened by the radiologist,

or the case is being actively processed. The examination is open for interpretation

and the results are commonly available before the radiologist completes the review of

the study. Such a PE CAD system cannot, and was not designed to, substitute the

doctor, but it definitely makes radiologists better and faster decision makers, playing

a supporting and final interpretative role in medical diagnosis.

6.4.2 Conclusion and Broader Impacts

The introduction of deep learning methods in clinical medicine, particularly diag-

nostic imaging, has rapidly stimulated many medical applications in recent years. In

this chapter, several important characteristics of medical images and pressing clini-

cal needs are reviewed to highlight their strengths and limitations. Accordingly, the

techniques we devised were mainly inspired by these imaging characteristics, while

the medical applications we chose were deeply motivated by the clinical needs. Fur-

thermore, we have presented our end-to-end CAD system for pulmonary embolism

detection as an example of how deep learning methods address clinical problems.

We have illustrated the annotation efficiency in several key facets of the system and

demonstrated our system’s robustness in the CAD-PE competition. Numerous other

deep learning applications are already available to assist radiologists with interpret-

147



ing a wide variety of disorders from images, functioning as a “second reader”. These

applications hold promise both for providing increased accuracy through enhanced

detection and specificity, and for mitigating the workloads experienced by radiologists

due to the rise of advanced imaging techniques.
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Chapter 7

CONCLUSION

Deep learning methods will empower many aspects of computer-aided diagnosis

over the next decade, from medical image acquisition and interpretation to clinical

decision making (Esteva et al., 2019; Zhou et al., 2021a). Despite the expert human

performance of deep learning methods in a few medical applications (Gulshan et al.,

2016; Esteva et al., 2017; Ardila et al., 2019; McKinney et al., 2020), its prohibitively

high annotation costs raise doubts about their feasibility of applying to those medi-

cal specialties that lack such magnitude of annotation. In this dissertation, we have

systematically introduced our work in developing annotation-efficient deep learning

that enables to (1) smartly identify the most significant subjects to be annotated, (2)

effectively aggregate multi-scale image features to maximize the potential of existing

annotations, and (3) directly extract medical knowledge from images without man-

ual annotation. We have remarked our contributions in computer-aided diagnosis by

supporting several aspects of medical image interpretation, including disease detec-

tion, classification, and segmentation. The experimental results on twelve distinct

medical applications demonstrate that with a small part of the dataset annotated,

we can deliver deep learning methods that match, or even outperform those that re-

quire annotating the entire dataset. This observation is encouraging and significant

because it addresses the daunting challenge of limited annotated data—the main ob-

stacle standing between deep learning methods and their clinical impact. Our devised

methodologies are advantageous on over-represented diseases with abundant existing

annotations and also shed new light on many more underrepresented diseases with

the deep learning marvel, dramatically reducing annotation costs while maintaining
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high performance.

More importantly, we have been advocating open access, open data, and open

source to benefit the research community. In our dissertation, eight out of the twelve

medical applications were taken from publicly available medical imaging benchmarks

(elaborated in Appendix A), ensuring the reproducibility of the results. Furthermore,

we have released the codes and models to the public (detailed in Appendix B), mak-

ing three developed techniques (ACFT, UNet++, and Models Genesis) open science

to stimulate collaboration among the research community and to help translate these

technologies to clinical practice. We first presented our ACFT, UNet++, and Models

Genesis in CVPR 2017, DLMIA 2018, and MICCAI 2019, respectively. They have

since been quickly adopted by the research community: reviewed by some of the

most prestigious journals and conferences in the field, served as competitive base-

lines, and enlightened the development of more advanced approaches. Moreover, al-

though our techniques were initially derived from the medical imaging context, their

annotation-efficiency and generalizability have been demonstrated by independent

research groups from alternative fields, such as text classification (Oftedal, 2019), ve-

hicle type recognition (Huang et al., 2019), streaming recommendation system (Guo

et al., 2019), image coloring (Di et al., 2021), moon impact crater detection (Jia et al.,

2021), microseismic monitoring (Guo, 2021), etc.

Human annotation is one of the most significant cornerstones for algorithm de-

velopment and evaluation. For the purpose of development, annotation-efficient deep

learning facilitates quick, iterative improvements of the algorithm, whereas for per-

formance evaluating, we still have to curate large, representative annotated datasets.

In addition to the sufficient population of patients, we must also evaluate how the

algorithms generalize to other medical images acquired from different devices, con-

ditions, and sites—all of which must be annotated—before eventually adopting the
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techniques into clinical practice. Therefore, the increasing annotation demands are

anticipated to continue troubling us with the lack of budget, time, and expertise.

Big data is an inevitable trend in the future—with the increasing imaging studies,

rising workloads of radiologists, and growing needs for technologies—we embrace the

age of big data. The purpose of annotation-efficient deep learning is not to strangle

the throat of annotating per se but rather to speed up creating such datasets to en-

able high-performance deep learning methods with a minimal set of human expert

annotation efforts.
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Lung nodule false positive reduction

Colonoscopy frame classification

Cell segmentation

Liver segmentation

Pulmonary embolism false positive reduction

Polyp detection

Nuclei segmentation

Brain tumor segmentation

Chest disease classification

Electron microscopic segmentation

Lung nodule segmentation

Carotid intima-media thickness measurement

False positive False positive Atelectasis PneumothoraxInfiltration
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Figure A.1: Datasets and annotations used in this dissertation.
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We summarizes the twelve medical imaging applications used in this dissertation,

covering lesions/organs from most commonly used medical imaging modalities in-

cluding microscopy, X-ray, computed tomography (CT), magnetic resonance imaging

(MRI), and Ultrasound.

Lung Nodule False Positive Reduction

The dataset is provided by LUNA 2016 1 (Setio et al., 2017) and consists of

888 low-dose lung CTs with slice thickness less than 2.5mm. Patients are randomly

assigned into a training set (445 cases), a validation set (178 cases), and a test set (265

cases). The dataset offers the annotations for a set of 5,510,166 candidate locations

for the false positive reduction task, wherein true positives are labeled as “1” and

false positives are labeled as “0”. Following the prior works (Setio et al., 2016; Sun

et al., 2017c), we evaluate performance via Area Under the Curve (AUC) score on

classifying true positives and false positives.

Pulmonary Embolism False Positive Reduction

We utilize a database consisting of 121 computed tomography pulmonary angiog-

raphy (CTPA) scans with a total of 326 emboli. Following the prior works (Liang

and Bi, 2007), we utilize their PE candidate generator based on the toboggan algo-

rithm, resulting in total of 687 true positives and 5,568 false positives. The dataset

is then divided at the patient-level into a training set with 434 true positive PE can-

didates and 3,406 false positive PE candidates, and a test set with 253 true positive

PE candidates and 2,162 false positive PE candidates. To conduct a fair comparison

with the prior study (Zhou et al., 2017c; Tajbakhsh et al., 2016, 2019b), we compute

candidate-level AUC on classifying true positives and false positives.

1https://luna16.grand-challenge.org/
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Chest Disease Classification

This is a Chest X-ray dataset that we used to further validate the robustness of

pre-trained weights on cross-disease, dataset, and modality situation.National Insti-

tutes of Health (NIH) provided Chest X-ray dataset 2 (Wang et al., 2017b) consisting

of frontal view chest X-ray PNG images with 8 thorax diseases: Atelectasis, Car-

diomegaly, Effusion, Infiltration, Mass, Nodule, Pneumonia, and Pneumothorax. As

the dataset contains images with multi-labels, we used 8-dimensional label vector for

each image. Furthermore, we normalize and shrink the image to 224×224 resolution

to match the input size of pre-trained models trained on ImageNet. The dataset is

divided at the patient-level into a training set with 43,976 images of 21,563 patients,

validation set with 9,125 images of 4,621 patients, and test set with 9,171 images of

4,621 patients.

Colonoscopy Frame Classification

Image quality assessment in colonoscopy can be viewed as an image classification

task whereby an input image is labeled as either clear or blur. One way to measure

the quality of a colonoscopy procedure is to monitor the quality of the captured

images. Such quality assessment can be used during live procedures to limit low-

quality examinations or, in a post-processing setting, for quality monitoring purposes.

In this application, colonoscopy frames are regarded as candidates, since the labels

(clear or blur) are associated with frames as illustrated in Figure A.1. In total, there

are 4,000 colonoscopy candidates from 6 complete colonoscopy videos. A trained

expert then manually labeled the collected images as clear or blur (line 11 in Alg. 1).

A gastroenterologist further reviewed the labeled images for corrections. The labeled

2https://www.kaggle.com/nih-chest-xrays/data
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frames are separated at the video level into training and test sets, each containing

approximately 2,000 colonoscopy frames. For data augmentation, we extracted 21

patches from each frame as shown in Figure A.1(d).

Polyp Detection

Polyps, as shown in Figure A.1, can present themselves in the colonoscopy with

substantial variations in color, shape, and size. The variable appearance of polyps can

often lead to misdetection, particularly during long and back-to-back colonoscopy pro-

cedures where fatigue negatively affects the performance of colonoscopists. Computer-

aided polyp detection may enhance optical colonoscopy screening accuracy by re-

ducing polyp misdetection. In this application, each polyp detection is regarded as

a candidate. The dataset contains 38 patients with one video each. The training

dataset is composed of 21 videos (11 with polyps and 10 without polyps), while the

testing dataset is composed of 17 videos (8 videos with polyps and 9 videos with-

out polyps). At the video level, the candidates are divided into the training dataset

(16,300 candidates) and test dataset (11,950 candidates). At each polyp candidate

location with the given bounding box, we performed data augmentation by a fac-

tor f ∈ {1.0, 1.2, 1.5}. At each scale, we extracted patches after the candidate is

translated by 10 percent of the resized bounding box in vertical and horizontal di-

rections. We further rotated each resulting patch 8 times by mirroring and flipping.

The patches generated by data augmentation belong to the same candidate. Each

candidate contains 24 patches.
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Electron Microscopic Segmentation

The dataset is provided by the EM segmentation challenge 3 (Cardona et al., 2010)

as a part of ISBI 2012. The dataset consists of 30 images (512×512 pixels) from serial

section transmission electron microscopy of the Drosophila firt instar larva ventral

nerve cord (VNC). Referring to the example in Figure A.1, each image comes with a

corresponding fully annotated ground truth segmentation map for cells (white) and

membranes (black). The labeled images are split into training (24 images), validation

(3 images), and test (3 images) datasets. Both training and inference are done based

on 96×96 patches, which are chosen to overlap by half of the patch size via sliding

windows. Specifically, during the inference, we aggregate predictions across patches

by voting in the overlapping areas.

Cell Segmentation

The dataset is acquired with a Cell-CT imaging system (Meyer et al., 2015). Two

trained experts manually segment the collected images, so each image in the dataset

comes with two binary cell masks. For our experiments, we select a subset of 354

images that have the highest level of agreement between the two expert annotators.

The selected images are then split into training (212 images), validation (70 images),

and test (72 images) subsets.

Nuclei Segmentation

The dataset is provided by the Data Science Bowl 2018 segmentation challenge 4

and consists of 670 segmented nuclei images from different modalities (brightfield vs.

fluorescence). This is the only dataset used in this work with instance-level annotation

3http://brainiac2.mit.edu/isbi challenge/home

4https://www.kaggle.com/c/data-science-bowl-2018
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where each nucleolus is marked in a different color. Images are randomly assigned

into a training set (50%), a validation set (20%), and a test set (30%). We then use a

sliding window mechanism to extract 96×96 patches from the images, with 32-pixel

stride for training and validating model, and with 1-pixel stride for testing.

Lung Nodule Segmentation

The dataset is provided by the Lung Image Database Consortium image collection

(LIDC-IDRI) 5 (Armato III et al., 2011) and consists of 1,018 cases collected by seven

academic centers and eight medical imaging companies. The cases were split into

training (510), validation (100), and test (408) sets. Each case is a 3D CT scan and

the nodules have been marked as volumetric binary masks. We have re-sampled the

volumes to 1-1-1 spacing and then extracted a 64× 64× 32 crop around each nodule.

These 3D crops are used for model training and evaluation. As in prior works (Aresta

et al., 2019; Tang et al., 2019; Zhou et al., 2018b), we adopt Intersection over Union

(IoU) and Dice coefficient scores to evaluate performance. Note that for this particular

application, we calculate mean of the IoUs at thresholds ranging from 0.5 to 0.95 with

a step size of 0.05.

Liver Segmentation

The dataset is provided by MICCAI 2017 LiTS Challenge 6 and consists of 130

labeled CT scans, which we split into training (100 patients), validation (15 patients),

and test (15 patients) subsets. The ground truth segmentation provides two different

labels: liver and lesion. For our experiments, we only consider liver as positive class

and others as negative class and evaluate segmentation performance using Intersection

5https://wiki.cancerimagingarchive.net/display/Public/LIDC-IDRI

6https://competitions.codalab.org/competitions/17094
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over Union (IoU) and Dice coefficient scores.

Brain Tumor Segmentation

The dataset is provided by BraTS 2013 (Kistler et al., 2013) and BraTS 2018 (Menze

et al., 2015; Bakas et al., 2018) challenges 7 . For experiments in Chapter 3, the mod-

els are trained using 20 High-grade (HG) and 10 Low-grade (LG) with Flair, T1, T1c,

and T2 scans of MR images from all patients in BraTS 2013, resulting in a total of

66,348 slices. We further pre-process the dataset by re-scaling the slices to 256×256.

Finally, the 30 patients available in the dataset are randomly assigned into five folds,

each having images from six patients. We then randomly assign these five folds into

a training set (3-fold), a validation set (1-fold), and a test set (1-fold). The ground

truth segmentation have four different labels: necrosis, edema, non-enhancing tumor,

and enhancing tumor. Following the BraTS-2013, the “complete” evaluation is done

by considering all four labels as positive class and others as negative class. For exper-

iments in Chapter 4, we utilize BraTS 2018, which consists of 285 patients (210 HGG

and 75 LGG), each with four 3D MRI modalities (T1, T1c, T2, and Flair) rigidly

aligned. We adopt 3-fold cross validation, in which two folds (190 patients) are for

training and one fold (95 patients) for test. Annotations include background (label 0)

and three tumor subregions: GD-enhancing tumor (label 4), the peritumoral edema

(label 2), and the necrotic and non-enhancing tumor core (label 1). We consider

those with label 0 as negatives and others as positives and evaluate segmentation

performance using Intersection over Union (IoU) and Dice coefficient scores.

7http://braintumorsegmentation.org/
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Carotid Intima-media Thickness Measurement

Cardiovascular disease (CVD) is the leading cause of death in the United States:

every 40 seconds one American dies of CVD; nearly one-half of these deaths occur

suddenly and one-third of them occur in patients younger than 65 years, but CVD

is preventable. To prevent CVD, the key is to identify at-risk individuals, so that

scientifically proven and efficacious preventive care can be prescribed appropriately.

Carotid intima-media thickness (CIMT) measurement, a noninvasive ultrasonography

method, has proven to be clinically valuable for predicting individual CVD risk (Stein

et al., 2008; Gepner et al., 2015). It quantifies subclinical atherosclerosis, adds pre-

dictive value to traditional risk factors (e.g., the Framingham risk score), and has

several advantages over computed tomography (CT) coronary artery calcium score:

safer (no radiation exposure), more sensitive in a young population, and more accessi-

ble to the primary care setting. However, as illustrated by Shin et al. (2016b) in their

Figure 1, interpretation of CIMT videos involves three manual operations, which are

not only tedious and laborious but also subjective to large interoperator variability

if guidelines are not properly followed, hindering the widespread utilization of CIMT

in clinical practice.

We focus on the two most important tasks: ROI localization and thickness mea-

surement. We utilize 23 patients from UFL MCAEL CIMT research database (Hurst

et al., 2010). Each patient has four videos (two on each side) (Stein et al., 2008),

resulting in a total of 92 CIMT videos with 8,021 frames. Each video covers at least 3

cardiac cycles and thus a minimum of 3 EUFs. We randomly divide the CIMT videos

at patient level into training, validation, and test sets (no overlaps). The training set

contains 44 CIMT videos of 11 patients with a total of 4,070 frames, the validation

set contains 4 videos of 1 patient with 386 frames, and the test set contains 44 CIMT
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videos of 11 patients with 3,565 frames. From the perspective of active learning, the

training set is initially the “unlabeled pool” for active selection; when an AU is se-

lected, its label will be provided. The fined-tuned CNN from each iteration is always

evaluated with the test set, so that we can monitor the performance enhancement

across AUs. Please note that we do not need many patients as we have many CIMT

frames for each patient and we can generate a large number of patches for training

deep models in each experiment. For example, in our ROI localization experiments,

one AU practically provides 1,715 labeled patches (297 as background, 709 as bulb and

709 as ROI). Random translation and flipping data augmentation were applied when

training the models.
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Active Continual Fine-tuning

We have investigated the effectiveness of ACFT in four applications: scene classi-

fication, colonoscopy frame classification, polyp detection, and pulmonary embolism

(PE) detection. Ablation studies have been conducted to confirm the significant

design of our majority selection and randomization, built upon conventional en-

tropy and diversity based active selection criteria. For all four applications, we

set α to 1/4 and ω to 5. The deep learning library Matlab and Caffe are uti-

lized to implement active learning and transfer learning (more details can be found

at https://github.com/MrGiovanni/Active-Learning). We based our experiments on

AlexNet and GoogLeNet because their architectures offer an optimal depth balance,

deep enough to investigate the impact of ACFT and AFT on pre-trained CNN perfor-

mance, but shallow enough to conduct experiments quickly. The learning parameters

used for training and fine-tuning of AlexNet in our experiments are summarized in Ta-

ble B.1. The Adam optimizer is utilized to optimize the objective functions described

in our paper. The batch size is 512 in the learning procedure.

Table B.1: Learning parameters used for training and fine-tuning of AlexNet for
AFT in our experiments. µ is the momentum, lrfc8 is the learning rate of the weights
in the last layer, α is the learning rate of the weights in the rest layers, and γ
determines how lr decreases over epochs. “Epochs” indicates the number of epochs
used in each step. For ACFT, all the parameters are set to the same as AFT except
the learning rate lr, which is set to 1/10 of that for AFT.

Applications µ lr lrfc8 γ epoch

Colonoscopy frame classification 0.9 1e-4 1e-3 0.95 8

Polyp detection 0.9 1e-4 1e-3 0.95 10

Pulmonary embolism detection 0.9 1e-3 1e-2 0.95 5
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UNet++

Our experiments are implemented in Keras with Tensorflow backend. We use

early-stop mechanism on the validation set to avoid over-fitting and evaluate the

results using Dice-coefficient and Intersection over Union (IoU). Adam is used as

the optimizer with a learning rate of 3e-4. Both UNet+ and UNet++ are con-

structed from the original U-Net architecture. All the experiments are performed

using three NVIDIA TITAN X (Pascal) GPUs with 12 GB memory each. To facili-

tate reproducibility and model reuse, we have released the implementation of U-Net,

UNet+, and UNet++ for various traditional and modern backbone architectures at

https://github.com/MrGiovanni/UNetPlusPlus.

Models Genesis

Pre-training Models Genesis: Our Models Genesis are pre-trained from 623 Chest

CT scans in LUNA 2016 (Setio et al., 2017) in a self-supervised manner. The reason

that we decided not to use all 888 scans provided by this dataset was to avoid test-

image leaks between proxy and target tasks, so that we can confidently use the rest

of the images solely for testing Models Genesis as well as the target models, although

Models Genesis are trained from only unlabeled images, involving no annotation

shipped with the dataset. We first randomly crop sub-volumes, sized 64 × 64 × 32

pixels, from different locations. To extract more informative sub-volumes for training,

we then intentionally exclude those which are empty (air) or contain full tissues. Our

Models Genesis 2D are self-supervised pre-trained from LUNA 2016 (Setio et al.,

2017) and ChestX-ray14 (Wang et al., 2017b) using 2D CT slices in an axial view

and X-ray images, respectively. For all proxy tasks and target tasks, the raw image

intensities were normalized to the [0, 1] range before training. We use the mean square
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error (MSE) between input and output images as objective function for the proxy task

of image restoration. As suggested by Pathak et al. (2016) and Chen et al. (2019a),

the MSE loss is sufficient for representation learning, although the restored images

may be blurry.

When pre-training Models Genesis, we apply each of the transformations on sub-

volumes with a pre-defined probability. That being said, the model will encounter

not only the transformed sub-volumes as input, but also the original sub-volumes.

This design offers two advantages:

• First, the model must distinguish original versus transformed images, discrim-

inate transformation type(s), and restore images if transformed. Our self-

supervised learning framework, therefore, results in pre-trained models that

are capable of handling versatile tasks.

• Second, since original images are presented in the proxy task, the semantic

difference of input images between the proxy and target task becomes smaller.

As a result, the pre-trained model can be transferable to process regular/normal

images in a broad variety of target tasks.

Fine-tuning Models Genesis: The pre-trained Models Genesis can be adapted to

new imaging tasks through transfer learning or fine-tuning. There are three major

transfer learning scenarios: (1) employing the encoder as a fixed feature extractor for

a new dataset and following up with a linear classifier (e.g., Linear SVM or Softmax

classifier), (2) taking the pre-trained encoder and appending a sequence of fully-

connected (fc) layers for target classification tasks, and (3) taking the pre-trained

encoder and decoder and replacing the last layer with a 1× 1× 1 convolutional layer

for target segmentation tasks. For scenarios (2) and (3), it is possible to fine-tune

all the layers of the model or to keep some of the earlier layers fixed, only fine-
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tuning some higher-level portion of the model. We have evaluated the performance

of our self-supervised representation for transfer learning by fine-tuning all layers in

the network. In the following, we examine Models Genesis on five distinct medical

applications, covering classification and segmentation tasks in CT and MRI images

with varying levels of semantic distance from the source (Chest CT) to the targets

in terms of organs, diseases, and modalities (see Table 5.2) for investigating the

transferability of Models Genesis.

Benchmarking Models Genesis: For a thorough comparison, we used three dif-

ferent techniques to randomly initialize the weights of models: (1) a basic random

initialization method based on Gaussian distributions, (2) a method commonly known

as Xavier, which was suggested in Glorot and Bengio (2010), and (3) a revised ver-

sion of Xavier called MSRA, which was suggested in He et al. (2015). They are

implemented as uniform, glorot uniform, and he uniform, respectively, following

the Initializers 1 in Keras. We compare Models Genesis with Rubik’s cube (Zhuang

et al., 2019), the most recent multi-task and self-supervised learning method for 3D

medical imaging. Considering that most of the self-supervised learning methods are

initially proposed and implemented in 2D, we have extended five most representative

ones (Vincent et al., 2010; Pathak et al., 2016; Noroozi and Favaro, 2016; Chen et al.,

2019a; Caron et al., 2018) into their 3D versions for a fair comparison (see detailed

implementation in B). To promote the 3D self-supervised learning research, we make

our own implementation of the 3D extended methods and their corresponding pre-

trained weights publicly available as an open-source tool that can effectively be used

out-of-the-box. In addition, we have examined publicly available pre-trained models

for 3D transfer learning in medical imaging, including NiftyNet 2 (Gibson et al.,

1Initializers: faroit.com/keras-docs/1.2.2/initializations

2NiftyNet Model Zoo: github.com/NifTK/NiftyNetModelZoo
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2018b), MedicalNet 3 (Chen et al., 2019b), and, the most influential 2D weights

initialization, Models ImageNet. We also fine-tune I3D 4 (Carreira and Zisserman,

2017) in our five target tasks because it has been shown to successfully initialize 3D

models for lung nodule detection in Ardila et al. (2019). The detailed configurations

of these models can be found in B.

3D U-Net architecture 5 is used in 3D applications; U-Net architecture 6 is used

in 2D applications. Batch normalization (Ioffe and Szegedy, 2015) is utilized in all

3D/2D deep models. For proxy tasks, SGD method (Zhang, 2004) with an initial

learning rate of 1e0 is used for optimization. We use ReduceLROnPlateau to schedule

learning rate, in which if no improvement is seen in the validation set for a certain

number of epochs, the learning rate is reduced. For target tasks, Adam method (Kinga

and Adam, 2015) with a learning rate of 1e−3 is used for optimization, where β1 = 0.9,

β2 = 0.999, ε = 1e − 8. We use early-stop mechanism on the validation set to avoid

over-fitting. Simple yet heavy 3D data augmentation techniques are employed in

all five target tasks, including random flipping, transposing, rotating, and adding

Gaussian noise. We run each method ten times on all of the target tasks and report

the average, standard deviation, and further present statistical analysis based on an

independent two-sample t-test.

In the proxy task, we pre-train the model using 3D sub-volumes sized 64×64×32,

whereas in target tasks, the input is not limited to sub-volumes with certain size.

That being said, our pre-trained models can be fine-tuned in the tasks with CT sub-

volumes, entire CT volumes, or even MRI volumes as input upon user’s need. The

flexibility of input size is attributed to two reasons: (1) our pre-trained models learn

3MedicalNet: github.com/Tencent/MedicalNet

4I3D: github.com/deepmind/kinetics-i3d

53D U-Net: github.com/ellisdg/3DUnetCNN

6Segmentation Models: github.com/qubvel/segmentation models
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generic image representation such as appearance, texture, and context feature, and

(2) the encoder-decoder architecture is able to process images with arbitrary sizes.

Implementation Details of Revised Baselines

This work is among the first effort to create a comprehensive benchmark for exist-

ing self-supervised learning methods for 3D medical image analysis. We have extended

the six most representative self-supervised learning methods into their 3D versions,

including De-noising (Vincent et al., 2010), In-painting (Pathak et al., 2016), Jig-

saw (Noroozi and Favaro, 2016), and Patch-shuffling (Chen et al., 2019a). These

methods were originally introduced for the purpose of 2D imaging. On the other

hand, the most recent 3D self-supervised method (Zhuang et al., 2019) learns repre-

sentation by playing a Rubik’s cube. We have reimplemented it because their official

implementation is not publicly available at the time this dissertation is written. All

of the models are pre-trained using the LUNA 2016 dataset (Setio et al., 2017) with

the same sub-volumes extracted from CT scans as our models (see Table 5.1). The

detailed implementations of the baselines are elaborated in the following sections.

Extended 3D De-noising: In our 3D De-noising, which is inspired by its 2D

counterpart (Vincent et al., 2010), the model is trained to restore the original sub-

volume from its transformed one with additive Gaussian noise (randomly sampling

σ ∈ [0, 0.1]). To correctly restore the original sub-volume, models are required to

learn Gabor-like edge detectors when denoising transformed sub-volumes. Following

the proposed image restoration training scheme, the auto-encoder network is replaced

with a 3D U-Net, wherein the input is a 64× 64× 32 sub-volume that has undergone

Gaussian noise and the output is the restored sub-volume. The L2 distance between

input and output is used as the loss function.

Extended 3D In-painting: In our 3D In-painting, which is inspired by its 2D
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Inner-cutout

In-painting

n.s.  No Significance * p < 0.05 ** p < 0.01 *** p < 0.001 >*** p < 0.0001

(a)

(b)

In-painting

L2 loss

Inner-cutout

L2 loss

Figure B.1: A direct comparison between image in-painting (Pathak et al., 2016)
and our inner-cutout. (a) contrasts our inner-cutout with in-painting, wherein the
model in the former scheme computes loss on the entire image and the model in the
latter scheme computes loss only for the cutout area. (b) presents the performance
on five target tasks, showing that inner-cutout is better suited for target classification
tasks (e.g., NCC and ECC), while in-painting is more helpful for target segmentation
tasks (e.g., NCS, LCS, and BMS).

counterpart (Pathak et al., 2016), the model is trained to in-paint arbitrary cutout

regions based on the rest of the sub-volume. A qualitative illustration of the image

in-painting task is shown in the right panel of Figure B.1(a). To correctly predict

missing regions, networks are required to learn local continuities of organs in medical

images via interpolation. Unlike the original in-painting, the adversarial loss and

discriminator are excluded from our implementation of the 3D version because our

primary goal is to empower models with generic representation, rather than generating

sharper and realistic sub-volumes. The generator is a 3D U-Net, consisting of an

encoder and a decoder. The input of the encoder is a 64× 64× 32 sub-volume that

needs to be in-painted. Their decoder works differently than our inner-cutout because

it predicts the missing region only, and therefore, the loss is just computed on the

cutout region—an ablation study on the loss has been further presented in Figure B.1.

Extended 3D Jigsaw: In our 3D Jigsaw, which is inspired by its 2D counter-

part (Noroozi and Favaro, 2016), we utilize the implementation by Taleb et al. (2020)
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Local-shuffling

Patch-shuffling

n.s.  No Significance * p < 0.05 ** p < 0.01 *** p < 0.001 >*** p < 0.0001

Local-shuffling

Patch-shuffling

Original image

(a)

(b)

Figure B.2: A direct comparison between global patch shuffling (Chen et al.,
2019a) and our local pixel shuffling. (a) illustrates ten example images undergone
local-shuffling and patch-shuffling independently. As seen, the overall anatomical
structure such as individual organs, blood vessels, lymph nodes, and other soft tissue
structures are preserved in the transformed image through local-shuffling. (b) presents
the performance on five target tasks, showing that models pre-trained by our local-
shuffling noticeably outperform those pre-trained by patch-shuffling for cross-domain
transfer learning (BMS).

7 , wherein the puzzles are created by sampling a 3× 3× 3 grid of 3D patches. Then,

these patches are shuffled according to an arbitrary permutation, selected from a set

of predefined permutations. This set with size P = 100 is chosen out of the (3×3×3)!

possible permutations, by following the Hamming distance based algorithm, and each

permutation is assigned an index. As a result, the problem is cast as a P -way clas-

sification task, i.e., the model is trained to recognize the applied permutation index,

allowing us to solve the 3D puzzles efficiently. We build the classification model

by taking the encoder of 3D U-Net and appending a sequence of fc layers. In the

implementation, we minimize the cross-entropy loss of the list of extracted puzzles.

Extended 3D Patch-shuffling: In our 3D Patch-shuffling, which is inspired by

its 2D counterpart (Chen et al., 2019a), the model learns image representation by

7Self-Supervised 3D Tasks: github.com/HealthML/self-supervised-3d-tasks
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restoring the image context. Given a sub-volume, we randomly select two isolated

small 3D patches and swap their context. We set the length, width, and height of

the 3D patch to be proportional to those in the entire sub-volume by 25% to 50%.

Repeating this process for T = 10 times can generate the transformed sub-volume (see

examples in Figure B.2(a)). The model is trained to restore the original sub-volume,

where L2 distance between input and output is used as the loss function. To process

volumetric input and ensure a fair comparison with other baselines, we replace their

U-Net with 3D U-Net architecture, where the encoder and decoder serve as analysis

and restoration parts, respectively.

Extended 3D DeepCluster: In our 3D DeepCluster, which is inspired by its 2D

counterpart (Caron et al., 2018), we iteratively cluster deep features extracted from

sub-volumes by k-means and use the subsequent assignments as supervision to update

the weights of the model. Through clustering, the model can obtain useful general-

purpose visual features, requiring little domain knowledge and no specific signal from

the inputs. We replaced original AlexNet/VGG architecture with the encoder of 3D

U-Net to process 3D input sub-volumes. The number of clusters that works best

for 2D tasks may not be a good choice for 3D tasks. To ensure a fair comparison,

we extensively tune this hyper-parameter in {10, 20, 40, 80, 160, 320} and finally set

to 260 from the narrowed down search space of {240, 260, 280}. Unlike ImageNet

models for 2D imaging tasks, there is no available pre-trained 3D feature extractor

for medical imaging tasks; therefore, we randomly initialize the model weights at

the beginning. Our Models Genesis, the first generic 3D pre-trained models, could

potentially be used as the 3D feature extractor and co-trained with 3D DeepCluster.

Rubik’s Cube: We implement Rubik’s Cube with respect to Zhuang et al. (2019),

which consists of cube rearrangement and cube rotation. Like playing a Rubik’s cube,

this proxy task enforces models to learn translational and rotational invariant features

197



from raw 3D data. Given a sub-volume, we partition it into a 2× 2× 2 grid of cubes.

In addition to predicting orders (3D Jigsaw), this proxy task permutes the cubes with

random rotations, forcing models to predict the orientation. Following the original

paper, we limit the directions for cube rotation, i.e., only allowing 180◦ horizontal

and vertical rotations, to reduce the complexity of the task. The eight cubes are then

fed into a Siamese network with eight branches sharing the same weight to extract

features. The feature maps from the last fully-connected or convolution layer of all

branches are concatenated and given as input to the fully-connected layer of separate

tasks, i.e., cube ordering and orienting, which are supervised by permutation loss and

rotation loss, respectively, with equal weights.

Configurations of Publicly Available Models

For publicly available models, we do not re-train their proxy tasks and instead

simply endeavor to find the best hyper-parameters for each of them in target tasks.

We compare them with our Models Genesis in a user perspective, which might seem to

be unfair in a research perspective because many variables are asymmetric among the

competitors, such as programming platform, model architecture, number of parame-

ters, etc. However, the goal of this section is to experiment with existing ready-to-use

pre-trained models under different medical tasks; therefore, we presume that all of

the publicly available models and their configurations have been carefully composed

to the optimal setting.

NiftyNet: We examine the effectiveness of fine-tuning from NiftyNet in five target

tasks. We should note that NiftyNet is not initially designed for transfer learning

but is one of the few publicly available supervised pre-trained 3D models. The model

from Gibson et al. (2018a) has been considered as the baseline in our experiments

because it has also been pre-trained on the chest region in CT modality and applied
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an encoder-decoder architecture that is similar to our work. We directly adopt the

pre-trained weights of the dense V-Net architecture provided by NiftyNet, so it carries

a smaller number of parameters than our 3D U-Net (2.60M vs. 16.32M). For target

classification tasks, we use the dense V-Net encoder by appending a sequence of fc

layers; for target segmentation tasks, we use the entire dense V-Net. Since NiftyNet is

developed in Tensorflow, all five target tasks are re-implemented using their build-in

configuration. For each target task, we have tuned hyper-parameters (e.g., learning

rate and optimizer) and applied extensive data augmentations (e.g., rotation and

scaling).

Inflated 3D: We download the Inflated 3D (I3D) model pre-trained from Flow

streams in the Kinetics dataset (Hara et al., 2018) and fine-tune it on our five target

tasks. The input sub-volume is copied into two channels to align with the required

input shape. For target classification tasks, we take the pre-trained I3D and append

a sequence of randomly initialized fully-connected layers. For target segmentation

tasks, we take the pre-trained I3D as the encoder and expand a decoder to predict

the segmentation map, resulting in a U-Net like architecture. The decoder is the

same as that implemented in our 3D U-Net, consisting of up-sampling layers followed

by a sequence of convolutional layers, batch normalization, and ReLU activation.

Besides, four skip connections are built between the encoder and decoder, wherein

feature maps before each pooling layer in the encoder are concatenated with same-

scale feature maps in the decoder. All of the layers in the model are trainable during

transfer learning. Adam method (Kinga and Adam, 2015) with a learning rate of

1e− 4 is used for optimization.

MedicalNet: We download MedicalNet models (Chen et al., 2019b) that have been

pre-trained on eight publicly available 3D segmentation datasets. ResNet-50 and

ResNet-101 backbones are chosen because they are reported by Chen et al. (2019b)
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as the most compelling backbones for target segmentation and classification tasks,

respectively. Like I3D, we append a decoder at the end of the pre-trained encoder,

randomly initialize its weights, and link the encoder with the decoder using skip con-

nections. Owing to the 3D ResNet backbones, the resultant segmentation network

for MedicalNet is much heavier than our 3D U-Net. To be consistent with the orig-

inal programming platform of MedicalNet, we re-implement all five target tasks in

PyTorch, using the same data separation and augmentation. We report the highest

results achieved by any of the two backbones in Table 5.3.
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