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ABSTRACT

Increased demand on bandwidth has resulted in wireless communications and radar
systems sharing spectrum. As signal transmissions from both modalities coexist, method-
ologies must be designed to reduce the induced interference from each system. This work
considers the problem of tracking an object using radar measurements embedded in noise
and corrupted from transmissions of multiple communications users. Radar received sig-
nals in low noise can be successively processed to estimate object parameters maximum
likelihood estimation. For linear frequency-modulated (LFM) signals, such estimates can
be efficiently computed by integrating the Wigner distribution along lines in the time-
frequency (TF) plane. However, the presence of communications interference highly re-
duces estimation performance.

This thesis proposes a new approach to increase radar estimation performance by in-
tegrating a highly-localized TF method with data clustering. The received signal is first
decomposed into highly localized Gaussians using the iterative matching pursuit decompo-
sition (MPD). As the MPD is iterative, high noise levels can be reduced by appropriately
selecting the algorithm’s stopping criteria. The decomposition also provides feature vectors
of reduced dimensionality that can be used for clustering using a Gaussian mixture model
(GMM). The proposed estimation method integrates along lines of a modified Wigner dis-
tribution of the Gaussian clusters in the TF plane. Using simulations, the object parameter
estimation performance of the MPD is shown to highly improve when the MPD is inte-

grated with GMM clustering.
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Chapter 1

INTRODUCTION

1.1 Motivation and Introduction

1.1.1 Radar and Communications Coexistence

Spectrum sharing between multiple sensing modalities is becoming a necessity as ad-
vances in technology require increasingly more resources for operation [2, 3, 4, 5, 6]. In
wireless communications, higher bandwidths are needed to allow for higher rates of data
transfer. In radar, there is an increased need of reliable capabilities, especially for monitor-
ing and security. Under normal operation, radar and communications systems are allocated
unique spectral bands and must follow established spectrum allocation regulations by the
International Telecommunication Union (ITU) [7, 8]. Due to the increased demand on
the finite amount of spectrum as well as the physical constraints required to stay within a
specific spectrum band, systems are now faced with the problem of spectrum congestion.
Currently, spectrum congestion has affected weather radars [9], airport surveillance radars
[10] and remote sensing systems [11]. In radar and communications systems, it has be-
come necessary to develop methods for processing both systems while sharing the same
frequency band [12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23]. For example, both tar-

get position and user communication messages must be estimated in a system with both



radar and wireless communication modalities. One approach to sharing spectrum is the
design of transmit waveforms for both systems [24, 25, 26, 27, 28, 22, 29, 30, 31, 32].
Another approach to sharing spectrum is for one system to design methods to reduce the
interference caused by the other system [11, 33, 34, 35, 36, 37]. From the radar receiver
perspective, signals from multiple communication users are perceived as interference in the
shared spectrum. Radar processing thus requires advanced processing methods to improve

radar performance as both noise and interference need to be reduced.

1.1.2  Advanced Signal Processing Methodologies

Time-frequency representations (TFRs) are two-dimensional (2-D) signal transforma-
tions for analyzing time-varying signals, that is, signals whose frequency content changes
with time [38, 39, 40]. Such signals can be found in many applications, including radar
and wireless communications. The Wigner distribution (WD) is a well-known TFR as it
satisfies many desirable signal properties, including preservation of the signal’s time shifts,
frequency shifts and scale changes [38, 39]. For successful analysis, it is important to
match a TFR to the signal’s time-frequency (TF) structure. For example, the WD is ide-
ally matched to linear frequency-modulated (LFM) signals as it provides a highly localized
TF representation along the LFM’s linear instantaneous frequency. Note, however, that
the WD is a quadratic TFR, and as such, it suffers from cross term when used to analyze
multicomponent signals [39].

The matching pursuit decomposition (MPD) based TFR also provides highly local-

ized representation in the TF domain and in addition, it does not suffer from cross terms



[41, 42, 43]. The MPD is an iterative algorithm that decomposes an analysis signal into a
weighted linear combination of Gaussian signals [41]. The Gaussian signals are selected
from a predefined dictionary of time-shifted, frequency-shifted and scaled versions of a
basic Gaussian atom. When a signal is decomposed using the MPD, each extracted atom is
characterized by a vector of unique parameters, consisting of the TF shift, scale parameter
and also weight coefficient. These vectors provide reduced dimensionality unique features
for the analysis signal. The features can then be directly used with machine learning meth-

ods to provide unknown signal information.

1.2 Proposed Thesis Work

We consider the problem of tracking an object using measurements from a radar sensor
that coexists with a multiple user communications system. At the detection stage, if prior
information on the noise and communication interference is assumed known, the general-
ized Neyman-Pearson likelihood ratio test can be used to detect the radar echo return. As
the method requires the maximum likelihood estimate (MLE) of the object parameters, it is
not optimal in the sense of maximizing the probability of detection for a given probability
of false alarm. Howeyver, it has been shown to work well in low noise environments. If an
LFM signal is used, the MLE of its parameters can be found by integrating the WD TFR of
the received signal over varying lines in the TF plane, corresponding to the signal’s instan-
taneous frequency. However, in realistic scenarios, both noise and interference parameters

must also be estimated, resulting in reduced detection performance.



This work proposes a method for increasing radar tracking performance by integrating
a TF advanced signal processing method with a data clustering approach. We assume
an LFM transmit signal for the radar and a frequency-modulation signaling scheme for
the communications system. At the radar receiver, the overall noisy received signal is
first represented as a weighted linear combination of Gaussian elementary atoms using the
MPD. As the MPD is iterative, we select its stopping criterion to depend on the signal’s
residual energy in order to help reduce the overall noise in the received signal. The MPD
extracted features can be used as input to a Gaussian mixture model (GMM) for clustering.
With the limited information provided to the GMM algorithm, we do not expect the various
mixture components to be clustered separately. Instead, we exploit the MPD TFR of the
Gaussian atoms in each cluster. The TFR is formed as a weighted linear combination of
the WD of the Gaussian atoms and the estimated parameters are found by integrating along

TF lines.

1.3 Thesis Organization

The rest of this thesis is organized as follows. In Chapter 2, we provide background in-
formation on maximum likelihood estimation, matching pursuit decomposition, and Gaus-
sian mixture modeling. In Chapter 3, we propose our method for estimating the position
of an object in the presence of strong communications interference by integrating time-
frequency signal processing and machine learning methods. In Chapter 4, we provide
simulations to compare and demonstrate the improved estimation performance of our ap-

proach.



Chapter 2

BACKGROUND

2.1 Maximum Likelihood Estimation

In radar tracking applications, the aim is to estimate the parameters of an object. If the
object is stationary, and the unknown parameters do not change with time, a commonly
used estimation method is maximum likelihood estimation [44]. The maximum likeli-
hood estimator (MLE) is unbiased and its variance can be shown to approach the Cramer-
Rao lower bound (CRLB) for high signal-to-noise ratio (SNR) conditions or for large data
records. Thus, the MLE provides an asymptotically efficient estimator [44]. By design,
the MLE maximizes the likelihood function probability density function (PDF) p(x; 6) of a
given measurement vector x with unknown parameter #. Although in some cases the max-
imization results in closed form estimations, in most cases, the MLE estimate is obtained

as
OmLE = 0= arginaXgeg, p(x;0)

where Sy is the set of all possible values of §. The MLE method is demonstrated by the

following examples.



2.1.1 MLE of Signal Aplitude

We first consider the example of finding the MLE of the deterministic and unknown

amplitude parameter A [44]. The received signal samples are given by

z[n]=A+w[n], n=0,...,N -1,

where w[n] ~ N(0, 0?) is zero-mean white Gaussian noise with variance o%. The MLE of

A is found by maximizing the likelihood function,

A

Avig = A = arg max g p(X; A)

The maximum value is obtained by solving

0%1 In (p(x;A)) =0.
Computing the derivative,
0 0 1 & )
S A) = - <_T12 nzo(ﬂf["] —A) >
1 Nl 1 Nt N A
== nzo(m[n] —A) = = 2 x[n] — — = 0
o N
= AMLE:A: anox[n] =X

Thus, the MLE corresponds to the sample mean. It can be shown that this estimate is

unbiased and efficient as it attains the CRLB.



2.1.2 MLE of Signal Time Delay

We consider the problem of estimating the time-delay x of the transmit signal samples

s[n]. The received signal samples are given by
z[n] = s[n — x] + w[n] = cos 278 (n — x)*) +w[n], n=0,...,N —1 2.1

where s[n| = cos (2r3n?) is a real linear frequency-modulated (LFM) signal with fre-
quency modulation (FM) rate 3, and w[n] ~ N(0, c?) is zero-mean white Gaussian noise
with assumed known variance 2. The estimation process requires the PDF p(x) of the
N x 1 received radar signal vector x =[x[0] z[1] ... z[N — 1]]*. From Equation (3.4), the
PDF of x depends on the PDF of the Gaussian noise vector w = [w[0] w[1] ... w[N—1]]7,

which is given by

W) = (- %ﬂ]gw?[n])

As the signal s[n] is assumed deterministic, the PDF of x is also Gaussian. Thus, the

samples z[n] are distributed according to
z[n] ~N(0,0%), n=0,...,x — 1
z[n] ~ N(u[n; x],0%), n=x,...,x + M —1
z[n] ~N(0,0%), n=x+M,...,N—1

where p[n; x] =cos (273 (n — x)?). Note that we consider three independent sample seg-

ments of x[n] as the transmitted signal s[n] is only present over M < N samples. The



overall PDF is given by

p(x; x) = pr(x;x) P2 (x5 X) p3(X; X)

where
P %) = g e - Q—;iiz)ﬂnl)
p2(x;X) = W exp( - 2%2 X:Aj: (w[n] —s[n — X])2> (2.2)
ps(x;x) = (%TI)MQ/Q eXP( - % niZ:M fv2[n]) :

p(x; x) Gro?) e P <— 2%72 ]:__: xQ[n]>
- exp (— %Hﬁ[}_l (a:z[n] —2z[n] s[n — x] + s*[n — X])) . (23)

The MLE of x corresponds to the value of x that maximizes the likelihood function

p(x; x) over all possible values of x in the set S, = {1, N — M + 1}. Specifically,

fig = arg max p(x; x)
XESx

The likelihood function p(x; x) is given by the PDF in Equation (2.3). As the noise variance
is assumed known, and using the PDF in Equation (2.2), then the MLE can be found by

maximizing

Ny = arg max 292(5(2 X)
XSy

8



where

1 1 x+M-1 9
pa(x; x) = W eXp( T 952 Z (93[”] —s[n— X]) )
n=x
1 1 x+M—-1 ) 1 x+M—-1 )
= @ro?)i (-5 % Pll)en(-5z 2 i)
n=x n=x
1 x+M—1
e p(w 233[71]3[71—)(])
n=x

As the first two terms remain the same for any x value, and also the energy of s[n] is

constant, irrespective of the time shift, then the MLE of y can be as

| XM=
ng = arg max exp(—2 Z ]>

XESx n—y
or, as the exponential function is monotonic,
X+M—1
_ T
Ny = arg max z[n] s[n — x] = arg max 2x; s
XESy X€ESx
n=x

where x,, = [z[x] z[x + 1] ... z[x + M — 1]]" and s = [s][0] s[1] ... s[M — 1]] are
M x 1 vectors, and xgs = <XX, s) can be computed as an inner product; here, xg denotes

the transpose of x,.. We can also write the MLE as

o = arg max ((X,, s))’
X€E€Sx

= arg max = Zﬁ Zﬁ x[n]x[m] s[n — x] s|m — x] (2.4)

XESx
n=x m=x

(2.5)



2.1.3 Computation of Time Delay MLE Using Time-frequency Methods

The Wigner distribution (WD) of a signal s(t), defined as [45]

0

wie.) - |

—00

s (t + %) s* (t — %) e 12" dr

is a time-frequency representation (TFR) that is well matched to LFM signals. In particular,

the WD of an LFM signal, assuming infinite duration, can be shown to be
s(t) = &2 X8 Wit f) = 6(f —2at). (2.6)

Thus, the WD of the LFM signal is highly localized along the line f = 2at in the time-
frequency (TF) plane. This is a line with whose slope 2 « depends on the FM rate «. The

WD also preserves time shifts on the analysis signal,
s(t — 1) = 2" X8 Wt f) = Wit — 7, f).
Applying this property to the LFM signal in Equation (2.6) results in
Ws(t—r1,f) = 5<f — 204(75—7')) = (5((f+ 2a1) — 2at> :

Note that time shifting the LFEM by 7 is equivalent to frequency shifting the LFM by —2 a7.
The WD also preserves inner products as it satisfies Moyal’s formula (or unitarity prop-

erty). In particular, considering two continuous-time domain signals z(¢) and z(¢), then
(x, 232 = J fx(t) (1) 2() () dt' dt

~«wawy= [ [ wenwepaa. e

10



If we replace z(t) with the time-shifted LFM signal s(t — 7), and we use relation

| " S8 = fo) df = S(fo)

—00

then we can simplify Equation (2.7) to

(x, 2))? = JZ fo; Wt 1) 5(f — 20t — 7)) drdf = fi Wt 20 (t— 7))dt (2.8)

The relation in Equation (2.8) shows that computing the magnitude-squared fo the inner
product of the time domain signals can simplify to integrating the WD along the line f =
2« (t — 7). This is a useful result that we can use to obtain the MLE of the time shift of
the LFM signal in Equation (2.5). For implementation, we need to compute Equation (2.8)

using the discrete WD (DWD). For real part of the signals, the DWD is given by

N-1
Weln, k] = Z z[n +m]z*[n —m]e 7N k=0,...,N—1.
m=—0

provided that n —m € {0,1,...,N —1}andn +me {0,1,..., N — 1}.

For the DWD, it can be shown that the unitarity property is given by

1

(]Vz_]lx[n] 3[n]>2 = % NZ_:

N-1
> Waln, k] Wi[n, k] (2.9)
k=0

The proof of Equation (2.9) is given in Appendix A. Using the DWD unitarity property and

Equations (2.8), the MLE of the discrete time delay is given by

x+M—-1
g = arg max D Waln,[28(n—x)1] (2.10)

n=x
where the range of x values is S, = {1, N — M + 1}. Thus, if Equation (3.7) is used

instead of Equation (2.5), then the MLE computational cost is reduced. Instead of two

11



summations in Equation (2.5), Equation (3.7) only requires one summation. Specifically,
the MLE of  can be obtained simply by maximizing the sum of the WD values at discrete

time-frequency points [, [2 5 (n — x)|] forn=0,..., N — 1.

2.2 Matching Pursuit Decomposition

The matching pursuit decomposition (MPD) is an iterative algorithm that decomposes
an analysis signal x(¢) into a weighted linear combination of atoms [41]. The atoms are
selected from a complete and redundant dictionary using successive approximations of
the signal with orthogonal projections on dictionary elements. In [41], a dictionary of
Gaussian atoms with all possible TF shifts and scale changes, and a quadratic TFR was
obtained by summing the Wigner distribution (WD) of each selected atom in the expansion.
This modified WD is free of cross terms, and preserves signal energy, TF shifts, and scale
changes [41, 42]. The MPD-based TFR, the modified WD (MWD) is defined that is highly
localized for Gaussian signals in the TF domain [41, 42, 46]. Note that different MPD
algorithms were also proposed to match signals with varying nonlinear TF characteristics

[47, 48, 43].
The MPD dictionary is formed using a basic Gaussian signal g(t) = e~ /2 as it is the
most concentrated signal in TF, according to the uncertainty principle [38]. The dictionary

D consists of time-shifted, frequency-shifted and scaled versions of the basic Gaussian

12



TS=10s,
FS=20Hz,
SP=0.25

TS=25s,
FS=15Hz,
SP=4.00

TS=15s
FS=10Hz,
SP=1.00

Frequency in Hz

TS=5s,
FS=5Hz,
SP=0.25

0 5 10 15 20 25 30
Time in sec

Figure 2.1: Example of Four Gaussian Atoms from the MPD Dictionary Using Different

Time Shifts (TS), Frequency Shifts (FS) and Scales (SP). (Taken From [1])

signal

G (1) = vag glag(t — %) IRt — | Jag exp(—a% (t — Tk)2/2) el?mvit

The parameter set of the kth dictionary atom is v, = {7, vk, ax}, 7% € ' where 7, € Ris
time-shift, v, € R is frequency-shift and a;,, € R" is scale parameter. Some example atoms
in the MPD dictionary are shown in Figure 2.1.

We use the MPD to iteratively decompose a finite energy signal z(t) as

#(t) = 36 93,1

where g~,(t) and f3; is the ith selected dictionary atom and expansion coefficient, respec-
tively. At the ith iteration, and starting with r4(¢) = z(t), we form the inner product of the

residual signal r;(t) and each dictionary element. We then select the ith element g~ (t) that

13



results in the maximum inner product. Specifically, we select g, (t) such that

gr,;(t) = arg max
’7() g,€D

o0
| n0g0 ) - g max 10|
—0 gv€D

The residual signal is given by

rip1(t) = ri(t) — Bi g,

where the :th expansion coefficient is given by

5= | T n(t) g8, (1) o

—00

The signal representation up to the sth iteration is

2(t) = rica(t) + . Be gy (1)
=0

The maximum number of iterations L is normally selected to ensure that E% of the
signal energy has been extracted, where £ is a pre-defined threshold. After L iterations,

the signal can be represented as

z(t) =ro(t) + Z_] Bi g; (1)

A block diagram summarizing the MPD is given in Figure 2.2.

Note that the ith extracted Gaussian atom is characterized by the four-dimensional (4-
D) feature vector [3; 7; v; a;], i =0,...L — 1. Using these feature vectors, a highly
localized TFR can be constructed as the weighted linear combination of the WD of each

Gaussian atom. Specifically, the MWD TFR is defined as

L—-1
MWD, (t) = > |B:* Wy, (£, f)
=0

14



MPD

4

/ Read signal x(t), relabel it ro(t), set i=0 /

R e L L R o B P LB ..l

Choose atom gi(f) that yields maximum projection of ri{t} onto all dictionary atoms. Compute
corresponding correlation coefficient a; using Eq. (3.2)

Compute ri.q(f) = ri(f) - agi(t)

v

cwseecssssssssassasscssass { Ifi£N, seti=j+1 ]

/ Stere extracted atoms and coefficients /

Figure 2.2: Block Diagram of the MPD Algorithm (Taken From [1])

where the WD of ¢(t) is given by

W,(t, ) = fg (t + %) g <t _ %) e=927f g @2.11)

The WD preserves time shifts, frequency shifts and scale changes on the analysis signal

x(t). Specifically,

ri(t) =x(t—7)= W, (t, f) =W.(t -1, f) (2.12)
Ta(t) = z(1)e*™ = W, (t, f) = Wo(t, f —v) (2.13)
x3(t) = +/|a|lx(at) = W, (t, f) = Wy(at, f/a) (2.14)

7 is the time shift, v is the frequency shift, a is the scale parameter. As a result, the MPD

15
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Figure 2.3: Example of the MPD of an LFM Signal.

can be simplified to

L—1 f —
MWD.(1) = 3, 15 1, (e~ ). L)
=0

a;

An example of the MWD of an MPD decomposed LFM signal is is shown in Figure
2.3. The same LFM signal, but with additive white Gaussian noise, is also decomposed
and shown in Figure 2.4. The residual signal energy after each iteration, together with
the resulting MWD, are shown in Figures 2.4(a) and 2.4(b) for L = 30 and L = 60 MPD
iterations. As it can be seen, after a certain number of iterations, most of the signal energy

has been extracted. Thus, as the number of iterations increases, the residual signal energy

decreases very slowly and more noise terms are included in the decomposition.

16
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Figure 2.4: MMPD TFR of a Noisy LFM Signal, Using (a) 30 and (b) 60 MPD Iterations.



2.3 Gaussian Mixture Modeling

A Gaussian mixture model (GMM) is a probabilistic model that assumes that all mea-
surements originated from a mixture of M Gaussian components. It is given by a weighted
sum of M Gaussian probability density functions (PDFs) parameterized by their corre-
sponding mean and covariances. Specifically, the PDF of an /N-dimensional observation

T

vector z = [z1 zo ... zy|" can be expressed as a set of Gaussian mixtures

M=

p(z| @)= ), bn N (2;pm,Cn) (2.15)

1

3
I

Here, p,, is the mean vector, (), is the covariance matrix, and b, is the weight of the mth

GMM mixture, m=1, ..., M. Each component PDF is given by [49, 50, 51] where

p(z| @) =N (2 pm, Cp) = W exp(—%(z—um)Tle(z—um)

and the weights are such that
M
Db =1
m=1
The GMM parameters can be optimally estimated to best match the characteristics of the
observation z. The most common of estimating the parameters is using maximum like-
lihood estimation, as discussed in Section 2.1. In particular, the mean and covariance
of each Gaussian model is estimated using the expectation-maximization (EM) algorithm
[44, 50, 52].
The GMM parameter vector in Equation (2.15) is ¢ = [®; ... ®,/], where ®,, =

{bm, tm, Cm}. This vector can also be learned by putting prior PDFs on the parameters.
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These PDFs include the Dirichlet distribution conjugate prior to model the weight b,,, and

the normal inverse Wishart distribution conjugate prior to model p,,,, C,,,.
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Chapter 3

NEW METHOD FOR TIME DELAY ESTIMATION

3.1 Problem Formulation

We consider the problem of tracking the position of an object using radar noisy mea-
surements. The tracking scenario is complicated by the complex environment, where the
radar shares its available spectrum with a wireless multiuser communications system. As
the radar and communications system coexist, the radar receiver considers the communi-
cations signal as interference that is corrupting the estimation performance. As a result,
the radar receiver must process the overall received signal taking into account not only the
presence of noise but also the presence of interference

We assume that the radar transmits a linear frequency-modulated (LFM) signal
s(t:a) = /2t

with frequency modulation (FM) rate o Hz2. The FM rate is assumed known at the radar
receiver. After transmission, the LFM signal is reflected off the object and the received echo
is observed at the receiver. The overall signal also includes multiple transmitted signals
from a multiuser communications system. The users are assumed to employ a frequency

modulation signaling scheme. Specifically, the signal of the /th communication user is
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given by the sinusoid
y(t; fi) = 2>t 1 =1,... L.

where each user is assumed to have a unique transmit frequency f; Hz. After detection,
the overall noisy baseband received signal is processed at the receiver to estimate the time
delay of the transmitted LFM signal.

For processing, the real part of the received signal is given by
a(t) = s(t —7ma) +yit; f1) + .+ ye(t fi) +w(t)

= cos (2ma (t — 7)%) + cos (2w fit) + ... + cos (27w frt) + w(t)

M=

=z(tia,7)+ ) it fi) +w(d) (3.1)

=1

where w(t) is assumed to be additive white Gaussian noise. The delayed LFM signal is
given by z(t;a, 7) = s(t — 7; ) = cos (2ma (t — 7)?), where 7 seconds is the time delay.
Note that the receiver does not have knowledge of the frequencies of the communications
users. Also, the number of users L that are transmitting at any given time is unknown and
varying with time.

The radar tracking goal is to estimate the range of the object by estimating the time
delay using the received signal z(¢). Once we obtain the estimated time delay 7, the range

r, in meters (m), is computed as

cT

=5

where c¢=3x 108 m/s is the speed of electromagnetic waves in air. Note that, when an LFM
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signal is shifted in time by 7, the transformation is equivalent to shifting the same LFM
signal in frequency —2a7 Hz and adding a constant phase change. The transformation is

shown for the baseband signal as
j2ra (t—7)% _ €j27ra (2 —2tT+72)

s(t—T1;a) =e

. 5 . . 9
_ 6]27roct €j27r(27'a)t€j27roc7'

_ S(t, a) €j27r(27'oz)tej27rom'2 ] (32)

The frequency shift is also demonstrated using the Fourier transform (FT) of the time-
delayed LFM signal. Specifically, denoting the FT of s(¢) by S(f) and using FT signal

properties, it can be shown that

s(t—1) = s(t) e i2m(2ra)t gj2mar? FL S(f + 2ra) ef2mat? (3.3)
For processing, we obtain discrete signal samples z[n| = z(nT;), n=0,...,N — 1,

where 7T is the sampling period. The transmitter uses the sample sampling period, so the
sampled transmitted signal is s[n] = s(n7s), n=0,...,M — 1, where M < N. Note that
a larger number of samples is needed at the receiver to account for the time delay. The

received signal samples are given by
z[n] = s[n — x; B] + c[n; k1] + ... + c[n; 5] + wln]
= cos (213 (n — x)?) + cos (27nky) + ... + cos (2mnkg) + wn]

L
= cos (276 (n — x)?) + Z cos (2mnk;) + wln] (3.4)
=1

22



Here, x =[7/T%] is the discrete time delay of the LFM signal, x; = f11 T} is the Ith discrete
modulation frequency of the /th communications user, and 3 = a T2 is the (unitless) FM
rate. The Gaussian noise samples w[n] in Equation (3.4) are assumed independent and
identically distributed with zero mean and variance 0. Note that the noise samples and

communications signal samples are assumed to be present over all NV received samples.

3.2 Proposed Time Delay Estimation Approach

At the radar receiver, we need to estimate the time shift y of the LFM signal. This
is similar to the maximum likelihood estimation problem we considered in Section 2.1.2
in Chapter 2, except that the signal samples now include an added interference term in
addition to the noise term. As a result, the receiver would have to also estimate the variance
of the noise as well as the intensity of the interference, which cannot be assumed known
in a real tracking scenario. Note that the noise variance and the interference intensity are
considered nuisance parameters [44]. This is because their estimated values have no other
use other than in estimating the time delay. Also, finding the maximum likelihood estimates
(MLESs) of the nuisance parameters will decrease the time delay estimation performance.
As shown in [44], the overall estimation performance decreases as the number of unknown
parameters increases [44].

We propose a new approach to increase the estimation performance of the LFM time
delay parameter without the need to estimate nuisance parameters. The approach is based

on two advanced signal processing methods, time frequency signal processing and ma-
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chine learning. We first use the matching pursuit decomposition (MPD) time-frequency
(TF) method to decompose the overall received signal. The extracted low-dimensionality
feature vectors from the MPD are then used with a Gaussian mixture model (GMM) for
clustering. The proposed approach provides two estimation methods, one based directly on
the MPD and the other based on integrating the MPD with GMM clustering. We respec-
tively refer to the two proposed estimation methods as modified matching pursuit decom-
position based estimation method (MMPD-EM) and the modified Gaussian mixture model

based estimation method MGMM-EM).

3.2.1 Matching Pursuit Based Estimation Method

As discussed in Chapter 2, the Wigner distribution (WD) TF representation (TFR) pro-
vides the MLE of the unknown time shift of an LFM signals under known noise and in-
terference conditions. The resulting MLE is given in Equation (3.7). We also showed in
Chapter 2 that the TFR of an MPD decomposed signal provides a high localized represen-
tation in terms of TF shifted and scaled Gaussian signals g;(¢). The TFR is the modified

WD given by

L—1
MWD, (t) = > |b|* Wy, (¢, f)
i=0

where z(t) is the analysis signals and £ is the number of MPD iterations.

The new MMPD-EM method combines these two results from Chapter 2. In particular,
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we first decompose the radar received signal using the MPD iterative algorithm to obtain

-1
z[n] =rgn] + Z bi g, [n]

Each of the L Gaussian atoms g., [n] in the expansion has a unique four-dimensional vector

given by
Y= [bixi kiai]", 1=0,...,L-1 (3.5)

where b; is the MPD weight coefficient, y; = 7;/7 is the time shift, x; = v; T is the
frequency shift and a; is the scale change.

We form the discrete MWD of the decomposed signal as

L—1
MPD, [n, k] = > 8> WDy, [n, k]
i=0

Using WD properties, as in Chapter 2, we use the MWD to estimate the unknown time

delay y as
x+M—-1
X = arg ;Ié%i{ ” ngx MWD, [n,[26 (n — x)]] (3.6)

Here, £ is the number of MPD iterations, and [ and M are the FM rate the number of
samples of the transmitted LFM signal. Also, the range of  values is S, = {1, N — M +1}.

The proposed MMPD-EM methods thus estimates the time delay by maximizing the
MWD of the MPD extracted Gaussians along lines in the TF plane; the slope of the line
depends on the FM rate 5. A simple example is shown in Figure 3.1. The parameters
include 5 communication users and high SNR. The MPD iterates until its extracted energy
is I/ is 70%. The actual time delay is 7 = —0.25 s and the range of user frequencies is
(500, 800) Hz. The red line is the estimation line of the LFM signal shown in the TF plane
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Figure 3.1: MMPD-EM Example

3.2.2 Gaussian Mixture Model Based Estimation Method

Using the result of the MPD from the previous section, we propose the MGMM-EM
estimation method as follows. The MPD feature vectors in Equation (3.5) are used as input
to a GMM algorithm for a fixed number of mixtures G. The resulting G clusters consist
of a number of MPD Gaussian atoms, R, £ = 1,..., . Note that the number R, varies,
depending on the clustering outcome. The MGMM-EM estimator for the time delay is the

minimum of all x, values, where the time delay estimate of the ¢th cluster is given by

x+M—-1

)A(g = arg Ixﬂe%i( M ngx MWDQ@ [na [2/3 (n - X)]]

Here, g, are all the Gaussian atoms in the /th cluster. This method is demonstrated in Figure

3.2 for the same parameters used in the MMPD-EM example.

26



frequency, Hz frequency, Hz frequency, Hz

frequency, Hz

Cluster 1 MPD-TFR with 24 atoms

-
[=3
(=]
o

-0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4
time, s
Cluster 2 MPD-TFR with 24 atoms

1000
500
0
-0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4
time, s
Cluster 3 MPD-TFR with 34 atoms
1000
500
0
0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4
time, s

Cluster 4 MPD-TFR with 18 atoms

Figure 3.2: MGMM-EM Example

27



Chapter 4

SIMULATIONS AND DISCUSSION

4.1 Simulation Parameters

In this chapter, we simulate various scenarios of estimating the position of an object
using radar sensor measurements. The simulations provide comparison of three estimation
methods: the Wigner distribution based estimation method (WD-EM), the proposed mod-
ified matching pursuit decomposition(MPD) based estimation method (MMPD-EM) and
the proposed modified matching pursuit decomposition with Gaussian mixture modeling
based estimation method (MGMM-EM).

For all simulations, the goal is to estimate the time delay 7 of the radar transmit signal
that is observed at the radar receiver. The radar transmits a linear frequency-modulated
(LFM) chirp s(t) = cos (2rmat?), t € (0,T}). At the radar receiver, the overall mea-
surement is given by z(t) = s(t — 7) + z.(t) + w(t), t € (0,T). Unless otherwise
stated, all simulations assume that the radar shares its available spectrum with a multi-
user wireless communications system. The communications received signal is given by
2 (t) = 25:1 2¢(t), where zy(t) =cos (27 fyt), f¢ is the unique modulation frequency of the
(thuser, / =1,..., L, and L is the total number of communication users. The user fre-
quencies {f1, ..., fr} uniformly selected within a given frequency band Bj. At the radar

receiver, z7(t) is considered added interference that affects the time delay estimation per-
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formance of the radar. The received signal is also corrupted with zero-mean white Gaussian
noise w(t) with known variance o2. We vary the noise variance using a desired signal-to-
noise ratio (SNR), which we compute as SNR = 10log,,(E,/o?) in dB, where E; is the
transmit signal energy. Both the MMPD-EM and MGMM-EM methods use the iterative
MPD algorithm with the stopping criteria: a fixed percentage of the decomposed signal
energy /. Unless otherwise stated, the same parameters will be used for both methods in
each scenario. The MGMM-EM is assumed to use G GMM clusters.

The fixed signal and algorithm parameters used in our varying simulation examples are
listed in Table 4.1. The table includes the sampling frequency f; in Hz, signal durations
T;; in seconds (s), number of GMM clusters G, MPD stopping criteria (energy percentage
in MPD) E, frequency modulation (FM) rate o in Hz?, maximum LFM frequency fi.c =
20T} in Hz (should be less than f,/4 ), and the actual (true) time delay 7 in s, number of
communication users L, user frequency range B; in Hz and signal to noise ratio SNR in
dB. Unless otherwise stated, the scenario in the table all have 2k Monte Carlo(MC) runs.
Note that Monte Carlo simulations are used to account for the randomness of both the noise
and the uniform selection of communication user frequencies.

Note that the time delay estimation performance is compared using the estimation root
mean-squared error (RMSE) in seconds. It is computed as

| MC N 1/2
RMSE = (W m;(r —7) ) (4.1)
where 7 is the estimated time delay. For the MGMM-EM, 7 is the minimum of GG estimated

values at each of MC iteration.
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Signal Parameters

fssHz Ti,s G E o,Hz T,8 L By Hz SNR,dB
Scenario 1: Varying Energy Stopping Criteria
25 04 5 varies 600 -0.25 10 (100,400) 15,25
Scenario 2: Varying Clusters Number
25 04 varies 70% 600 -0.25 10 (100,400) 15,25
Scenario 3: Low SNR with No Spectrum Sharing
1.2 0.18 6 90% 700 -0.18 5 (500, 800)  varies
Scenario 4: Low SNR with Spectrum Sharing
1.2 0.18 6 70% 700 -0.18 5 (100,200)  varies
Scenario 5: Varying SNR with Small Spectrum Sharing
1.2  0.18 6 90% 700 -0.18 5 (200,400) varies
Scenario 6: Varying SNR with Spectrum Sharing
1.2 0.18 6 30%,70%,90% 700 -0.18 5 (100,200) varies
Scenario 7: Varying SNR with Different Parameters
25 04 5 30%, 70% 600 -0.25 10 (100,400) varies

Table 4.1: Signal Parameters in Different Scenarios
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4.2 Simulation Scenarios

4.2.1 Varying MPD Stopping Criteria in Scenario 1

The simulations in this scenario compare the time delay estimation RMSE results for
different MPD stopping criteria with both 15 and 25 dB SNR, and with 2 k MC runs.
The signal parameters are provided in Table 4.1. In Figure 4.1, note that there are 10
communication users, 5 GMM clusters, the maximum LFM frequency is 560 Hz and the

range of user frequencies is (100, 400) Hz.

0.12

-------------- SNR 15 WD-EM
----------------- SNR 15 MMPD-EM
------------------- SNR 15 MGMM-EM

SNR 25 WD-EM
...... SNR 25 MMPD-EM
------ SNR 25 MGMM-EM

0.1F

.t
s
....
.. . N ave b . i,

.
.,

Figure 4.1: RMSE vs Varying MPD Energy Stopping Criteria in Scenario 1

From the Figure, the MGMM-EM outperforms both of the other methods for the chosen

SNR values if the MPD stopping criteria is larger than 30%. Note that the performance
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of WD-EM decreases (RMSE is larger) with more noise (SNR is smaller). In order to
compare the detailed performance of MGMM-EM and MMPD-EM, we plot both methods

separately.

0.12 -

........ SNR 15 MMPD-EM
SNR 25 MMPD-EM

0.11

0.1+

0.09 -

RMSE, s

0.05 I I I I I I I |
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Figure 4.2: MMPD-EM RMSE vs Varying MPD Energy Stopping Criteria

In Figure 4.2, the performance of MMPD-EM increases when the MPD stopping energy
criteria increase from 10% to 75%, after that the performance decreases even if we keep
increasing the energy threshold. The reason for this phenomenon is that when the MPD has
too many energy in the TFR, the noise will takes a large place of the decomposed signal,
so the time-delay finding process will be more difficult. That is why we should choose
the MPD Energy Stopping Criteria around 75% in order to have the best performance for

MMPD-EM.
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Figure 4.3: MGMM-EM RMSE vs Varying MPD Energy Stopping Criteria

In Figure 4.3, if we consider the signal with very little noise, the performance of
MGMM-EM will increase when the MPD stopping energy criteria keep increasing. How-
ever, we should consider the computational expenses of the MPD, since the more energy
we want, the more iteration times are needed. Besides, if we take noise into considera-
tion (SNR 15), the performance of MGMM-EM stayed almost the same after 25% energy
threshold. Therefore, in MGMM-EM, we can keep the energy threshold considerably small
to avoid huge computational expenses.

In addition, in Table 4.2, we compare under different SNR, the iteration times related
to different energy threshold. It shows the more energy threshold we choose, the more

iteration times we need. Besides, the more noise we have, the more iteration times we
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need. This results further demonstrate the huge computational expenses when we want
more energy in the MPD-TFR. That is why the MGMM-EM is a better way, sicne it does

not need large energy threshold than MMPD-EM.

Different Mean Iteration Times: Varying F
Noise Level | 0.1 02 03 04 05 06 0.7 08 09

SNR25 |3 6 11 17 26 39 58 106 221

SNR15 |8 20 39 63 93 132 181 250 364

Table 4.2: Mean Iteration Times in Scenario 1

4.2.2  Varying Number of GMM Clusters in Scenario 2

The simulations in this scenario compare the time delay estimation RMSE results for
different number of GMM clusters with both 15 and 25 dB SNR, and with 2 k MC runs.
The signal parameters are provided in Table 4.1. In Figure 4.4, note that there are 10 com-
munication users, the MPD energy stopping criteria is 70%, the maximum LFM frequency
is 560 Hz and the range of user frequencies is (100, 400) Hz.

From the Figure, the MGMM-EM also outperforms both of the other methods for the
chosen SNR values. Note that in this simulation the performance of WD-EM is better
than MMPD-EM because we do not give the MMPD-EM enough iteration times (energy
threshold). In order to compare the detailed performance of MGMM-EM with the cluster
numbers, we plot this method separately.
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Figure 4.4: RMSE vs Varying Number of Clusters in Scenario 2

In Figure 4.5, no matter in what noise level , the performance of MGMM-EM will
increase when the number of GMM clusters keep increasing. For example, the error is
only 8% related to the time delay 0.25 with 25dB SNR and 5 clusters for GMM, which
is relatively small compared with other methods. Therefore, we should also consider the

computational expenses here if we want to achieve a cost-effective performance.
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Figure 4.5: MGMM-EM RMSE vs Number of Clusters

4.2.3 Low SNR Conditions Without Spectrum Sharing in Scenario 3

The simulations in this scenario compare the time delay estimation RMSE results for
low SNR values. The signal parameters are provided in Table 4.1 and the results are sum-
marized in Table 4.3.

Note that the radar and communication systems do not share spectrum; the maximum
LFM frequency is 252 Hz and the range of user frequencies is (500, 800) Hz, the number
of communication users is 5, MPD stopping criteria is 90%, GMM cluster number is 6, and
5 k MC runs. From the table, the MGMM-EM outperforms both of the other methods for
all low SNR values. It shows that WD-EM and MMPD-EM perform about the same when

the communication signaling and the LFM radar do not overlap in frequency.
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Estimation | RMSE: Varying SNR, B, = (500, 800) Hz
Method -20dB -16dB -11dB -7dB -2dB

WD-EM 0.1072  0.1090 0.1096 0.1115 0.1086

MMPD-EM | 0.1128 0.1169 0.1188 0.1193 0.1155

MGMM-EM | 0.0234 0.0245 0.0237 0.0241 0.0227

Table 4.3: RMSE Comparison in Scenario 4 with Low SNR and No Spectrum Sharing

4.2.4 Low SNR Conditions with Spectrum Sharing in Scenario 4

This simulation is similar to the one in Section 4.2.3 in that most of its parameters are
the same as those in Scenario 3. However, it uses two higher SNR values and also the two
systems now share spectrum. In particular, the range of user frequencies (100, 200) Hz is
now decreased while the maximum LFM frequency remains at 252 Hz. The time delay
estimation RMSE results are summarized in Table 4.4 and shown to be similar to those in
Section 4.2.3. Note that since there are only E = 70% energy threshold (instead of 90%),

the MMPD-EM performs better than the WD-EM for higher SNR values.
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Estimation | RMSE: Varying SNR, B, =(100,200) Hz
Method -30dB -20dB -10dB 0dB 10 dB

WD-EM 0.1098 0.1069 0.1094 0.1082 0.0983

MMPD-EM | 0.1200 0.1171 0.1153 0.1130 0.0963

MGMM-EM | 0.0245 0.0225 0.0238 0.0228 0.0183

Table 4.4: RMSE Comparison in Scenario 4 with Low SNR and Spectrum Sharing

4.2.5 Varying SNR with Small Spectrum Sharing in Scenario 5

This simulation is similar to the one in Section 4.2.4 in that most of its parameters are
the same as those in Scenario 4. However, the range of user frequencies is changed to
(200,400) Hz, which means the overlap is not as many as the situation in Scenario 4.

The time delay estimation RMSE results are shown in Figure 4.6. It shows that all 3
methods work well for high SNR, but the MGMM-EM outperform the other two methods

when SNR is smaller than 25dB.
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Figure 4.6: RMSE vs Varying SNR in Scenario 5

4.2.6  Varying SNR with Spectrum Sharing in Scenario 6

This simulation uses the signal parameters from Scenario 4 in Table 4.1. The number
of communication users is L =5 with frequency range B, = (100, 200). As the LFM max-
imum frequency is 252 Hz, all 5 communication users share spectrum with the radar. The
algorithm parameters are G =6 GMM clusters, and 2k MC runs. There are 3 different MPD
energy stopping criteria (£ =0.3, £ =0.7,and £/ =0.9), so we can verify the discussion in
scenario 1 about the performance of MMPD-EM and MGMM-EM with energy threshold.
The RMSE performance comparison is demonstrated in Figure 4.7.

From the Figure, the MGMM-EM outperforms both of the other methods for all SNR
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Figure 4.7: RMSE vs Varying SNR in Scenario 6

values. However we noticed that there are points between SNR 10dB and 30dB where

before them the performances for both MGMM-EM and MMPD-EM increase when the

noise is smaller, after them the performances decrease when the noise keeps getting smaller.

Besides, the performance of MMPD-EM with 30% energy threshold will not decrease after

the point when the noise keeps getting smaller. In order to see if that is a special case for

the signal we choose, we change the parameters and do Monte Carlo simulations again in

scenario 6.

4.2.7 Varying SNR with Different Parameters in Scenario 7

This simulation uses the signal parameters from Scenario 1 and 2 in Table 4.1. Note

that, when compared to the parameters in Scenario 6, both the transmitted and received
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signals are now longer. The number of communication users is L = 10 with frequency range
By, =(100,400). As the LFM maximum frequency is 560 Hz, all 10 communication users
share spectrum with the radar. The algorithm parameters are G =5 GMM clusters, and 2k
MC runs. There are only 2 different MPD energy stopping criteria (£ =0.3, £/ =0.7), since
in scenario 5 we find out that £ = 0.7 and £ = 0.9 have the same changing pattern. The

RMSE performance comparison is demonstrated in Figure 4.8.
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——— thr 0.7 WD-EM

0.08 thr 0.7 MMPD-EM

thr 0.7 MGMM-EM

Figure 4.8: RMSE vs Varying SNR in Scenario 7

From the Figure, the MGMM-EM outperforms both of the other methods for all SNR
values. Besides, we can see that the performances of WD-EM, MGMM-EM, and MMPD-
EM in scenario 7 have the same changing patterns as in scenario 5, which disproves the
randomness of the performance decreases after the points when the noise keeps getting
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smaller. In order to analyse the detail, we plot the RMSE of MGMM-EM and MMPD-EM
separately in Figure 4.9.

Note that with energy threshold equal to 30%, the RMSE of MMPD-EM will not in-
crease after SNR 21dB. However, the RMSE of MMPD-EM will increase after 21 dB
when the energy threshold is equal to 70%. The same situation appears in the MGMM-EM
only with different SNR values. When SNR is around 30dB, there is almost no noise in
the signal, which means basically only 70% of the LFM signal is in the MPD-TFR. The

insufficient of the decomposed signal may cause the performance to decrease.
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Figure 4.9: MMPD-EM and MGMM-EM RMSE vs Varying SNR in Scenario 7
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Chapter 5

CONCLUSIONS AND FUTURE RESEARCH DIRECTIONS

5.1 Conclusion

This thesis addressed the radar problem of estimating the position of an object under
noisy conditions and with the radar sharing its spectrum with a multiuser communications
system. In order to address to spectrum coexistence problem, we proposed a new approach
to increase the object parameter estimation performance by integrating two advanced signal
processing research areas, time-frequency signal processing and machine learning. The
proposed approach provides two different methods for estimating the time delay of the
linear frequency modulation (LFM) signal that is transmitted by the radar. The time delay
estimate is then transformed to estimate the object position.

The first estimation method uses the matching pursuit decomposition (MPD) time-
frequency (TF) algorithm to decompose the overall radar received signal. Using the MPD,
a time-frequency representation (TFR) is obtained as a weighted linear combination of the
Wigner distribution (WD) of each of the MPD extracted signal components. The WD is a
well-known TFR that is highly localized for some signals, such as LFM and Gaussian sig-
nals. In particular, the WD of an LFM signal is a line in the TF plane whose slope depends
on the frequency-modulation (FM) rate of the LFM signal. As we showed in Chapter 2,

the maximum likelihood estimate (MLE) of the time shift of a noisy LFM signal, assum-
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ing known conditions, is the time shift value that maximizes the sum of the WD of the
received signal along lines in the TF plain. As the MPD decomposes the signal into TF
shifted and scaled Gaussian signals, we use the WD of the MPD extracted signal compo-
nents to estimate the time delay. The proposed modified MPD estimation method is based
on maximizing the sum of the MPD-based TFR along lines in the TF plane.

The second estimation method is based on the MPD of the received signal. In particular,
we use the MPD low-dimensional feature vectors, that consist of TF shift, scale change and
coefficient parameters, as input to a Gaussian mixture model (GMM) for clustering. We
then apply the TF maximization along lines method directly to the MPD-based TFR of the
clustered Gaussian signal components.

Our simulations demonstrated the performance of the two proposed estimators and
compared it to that of the WD-based estimator. We investigated multiple scenarios by
varying critical parameters that can affect estimation performance. These parameters in-
clude the signal-to-noise ratio (SNR), the number of communications users interfering with
the radar signal, the spectrum shared overlap between the two systems, stopping criteria of
the iterative MPD algorithm and number of GMM clusters. As indicated by our simula-
tions, GMM-based estimation method resulted in the highest performance, even under low
SNR conditions and high interference. As expected, the three methods approach the same

performance at very high SNR and low spectrum overlap.
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5.2 Future Research Work

The proposed estimation methods can be modified to further improve their estimation
performance. For example, the selection of the various parameters, such as the number
of GMM clusters and the number of MPD iterations, can be optimized to achieve higher
performance under specific optimization constraints. We also plan to investigate the com-
putational complexity of the three methods and possible trade offs between computational
cost and performance accuracy. Overall, the integration of signal processing with machine
learning methods is very promising for use in other applications. One such application,
following the demand of continued technological advances, is the coexistence of multiple

different wireless modalities operating at much higher bandwidths.
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APPENDIX A

UNITARITY PROPERTY OF THE DISCRETE WIGNER DISTRIBUTION
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The unitarity property or Moyal’s formula shows that the Wigner distribution (WD) pre-

serves the inner product between two signals z(¢) and y(t). Specifically,

2

JOO x(t) y*(t) dt (A.1)

—00

[lfimgmf”%ﬂtﬁm¢f:

where the WD of z(t) is defined as
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For implementation, the signal samples z[n| = x(nT}) are obtained using sampling period
T,. Note, however, that a discrete WD that satisfies all the signal properties of the con-
tinuous WD is not possible [53, 54, 55, 56, 57]. In order to preserve inner products as
in Equation (A.1), we use the discrete WD (DWD) for complex or analytic signals z[n]

provided in [55]. The DWD is defined as
-1

Weln, k] = Z x[n + m]z*[n —m| exp(—j2rkm/N),

=0

n=0,....N—1, k=0,...,N—1, (A.2)

where 0 <n—m < N —1and 0 < n+m < N — 1. The corresponding unitarity property

for the DWD is given by
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The proof of unitarity in Equation (A.3) is as follows.

We first substitute the DWD from Equation (A.2) on the left-hand side of Equation (A.3).
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Specifically,
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Using the following two equations
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then Equation (A.4) can be simplified to
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which is the equation on the right-hand side of Equation (A.3).
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