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ABSTRACT

Scientific research encompasses a variety of objectives, including measurement,

making predictions, identifying laws, and more. The advent of advanced measurement

technologies and computational methods has largely automated the processes of big

data collection and prediction. However, the discovery of laws, particularly universal

ones, still heavily relies on human intellect. Even with human intelligence, complex

systems present a unique challenge in discerning the laws that govern them. Even

the preliminary step, system description, poses a substantial challenge. Numerous

metrics have been developed, but universally applicable laws remain elusive. Due

to the cognitive limitations of human comprehension, a direct understanding of

big data derived from complex systems is impractical. Therefore, simplification

becomes essential for identifying hidden regularities, enabling scientists to abstract

observations or draw connections with existing knowledge. As a result, the concept

of macrostates – simplified, lower-dimensional representations of high-dimensional

systems – proves to be indispensable. Macrostates serve a role beyond simplification.

They are integral in deciphering reusable laws for complex systems. In physics,

macrostates form the foundation for constructing laws and provide building blocks

for studying relationships between quantities, rather than pursuing case-by-case

analysis. Therefore, the concept of macrostates facilitates the discovery of regularities

across various systems. Recognizing the importance of macrostates, I propose the

relational macrostate theory and a machine learning framework, MacroNet, to identify

macrostates and design microstates. The relational macrostate theory defines a

macrostate based on the relationships between observations, enabling the abstraction

from microscopic details. In MacroNet, I propose an architecture to encode microstates

into macrostates, allowing for the sampling of microstates associated with a specific
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macrostate. My experiments on simulated systems demonstrate the effectiveness of

this theory and method in identifying macrostates such as energy. Furthermore, I

apply this theory and method to a complex chemical system, analyzing oil droplets

with intricate movement patterns in a Petri dish, to answer the question, “which

combinations of parameters control which behavior?” The macrostate theory allows me

to identify a two-dimensional macrostate, establish a mapping between the chemical

compound and the macrostate, and decipher the relationship between oil droplet

patterns and the macrostate.

ii



ACKNOWLEDGMENTS

I would like to express my deepest gratitude to my parents for their unwavering

support throughout my Ph.D. journey.

My sincere thanks also goes to my Ph.D. advisor, Prof. Sara Walker. Her

encouragement during my diverse explorations, as well as her tolerance of my initial

“random walk” phase, was pivotal in bringing this dissertation to fruition.

I must extend my appreciation to my collaborators, Prof. Lee Cronin and Prof.

Jnaneshwar Das. Their invaluable discussions and inspirations significantly enriched

this work.

iii



TABLE OF CONTENTS

Page

LIST OF TABLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii

LIST OF FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . viii

CHAPTER

1 INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1 Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Universal Laws and Macrostates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.3 Macrostate in Physics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.4 Theoretical Perspective on Macrostate Theory . . . . . . . . . . . . . . . . . . . 7

1.4.1 Causal State Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.4.2 Causal Emergence Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

1.5 Incidental Identification of Macrostates Through Alternative Meth-

ods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

1.5.1 Word Embedding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

1.5.2 Contrastive Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

1.6 Integrative Perspective of Macrostate Theories . . . . . . . . . . . . . . . . . . 15

2 ARTIFICIAL NEURAL NETWORKS AND GENERATIVE MODELS 20

2.1 Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.3 Artificial Neural Networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.4 The Necessity of Generative Models for Macrostate Identification . 23

2.5 Generative Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.5.1 Auto-encoder . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

2.5.2 Normalizing Flows . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

iv



CHAPTER Page

3 RELATIONAL MACROSTATE THEORY GUIDES ARTIFICIAL IN-

TELLIGENCE TO LEARN MACRO AND DESIGN MICRO . . . . . . . . . 32

3.1 Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3.3 The Relational Macrostate Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

3.4 MacroNet: A Machine Learning Framework for Identifying

Macrostates and Design Microstates . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

3.5 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

3.5.1 Linear Dynamical Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

3.5.2 Simple Harmonic Oscillators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

3.5.3 Turing Patterns . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

3.6 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

3.7 Acknowledgement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

4 UNCOVERING GENOTYPE-PHENOTYPE MAPPING IN COM-

PLEX CHEMICAL SYSTEM BY IDENTIFYING MACROSTATES . . . 52

4.1 Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

4.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

4.3 Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

4.3.1 Oil Droplet and Data Pre-processing . . . . . . . . . . . . . . . . . . . . . . 56

4.3.2 Identify Macrostate by Normalization Flow . . . . . . . . . . . . . . . . 58

4.3.3 Mutual Information Estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

4.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

4.4.1 Mutual Information and Dimensions of Macrostates . . . . . . . . 62

4.4.2 Understanding Dimensions of Macrostates . . . . . . . . . . . . . . . . . 66

v



CHAPTER Page

4.4.2.1 Macrostate and Chemical Compounds . . . . . . . . . . . . . . . 66

4.4.2.2 Macrostate and Trajectories . . . . . . . . . . . . . . . . . . . . . . . . 69

4.4.3 Macrostate Embedding and Parameter Design . . . . . . . . . . . . . 71

4.4.4 Experimental Validations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

4.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

4.6 Acknowledgement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

5 SUMMARY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

5.1 Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

5.2 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

APPENDIX

A RELATIONAL MACROSTATE THEORY . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

B UNCOVERING GENOTYPE-PHENOTYPE MAPPING IN COM-

PLEX CHEMICAL SYSTEM BY IDENTIFYING MACROSTATES . . . 110

vi



LIST OF TABLES

Table Page

1. One-hot Encoding Example. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2. Trajectory Features Used in the Linear Regression. . . . . . . . . . . . . . . . . . . . . . . . . 69

3. Illustrations for Multiple Versions of Invertible Neural Networks (INNs). . . . . 96

4. Details of Coarse-graining and Sampling Process. . . . . . . . . . . . . . . . . . . . . . . . . . . 97

5. The Noisy Kernel Can Improve the Performance When the Input Dimension

Is Too Low. However, Noisy Kernels May Make the Sampling Noisy. . . . . . . . 98

6. Here We Adopted the Noisy Kernels, Represented by Trapezoids. For φu, the

4-Dimensional Microstates Input Are Increased to 8 Dimensions by the Noisy

Kernels. After That, There Are 20 One-Dimensional INN Blocks (Indicated

by the ↓↑ Icon). At the End, We Simply Abandon 6 Dimensions to Get a

2-Dimensional Output. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

7. The Neural Network Structure for Finding Macrostates of Simple Harmonic

Oscillators. To Find Invariant Quantity, the φu and φv Have the Same

Structure and Share the Same Weights. We Replaced the RealNVP Layer

with the ResFlow Layer to Get Better Performance. . . . . . . . . . . . . . . . . . . . . . . 107

8. The Neural Network Structure for Finding Macrostates of Turing Patterns.

For the Parameter Side (φu) We Use a 5-Layer INN to Get a 2-Dimensional

Output. For the Pattern Side (φv), Since Generation Is Not Needed, We Use

a Free-Form Neural Network to Get a 2-Dimensional Output. . . . . . . . . . . . . . . 109

vii



LIST OF FIGURES

Figure Page

1. Comparison Between Causal State Theory, Causal Emergence Theory,

and the Relational Macrostate Theory Presented in This Work. (A) in

Causal State Theory, Two Microstates Are Equivalent (Belong to the Same

Macrostate) If Their Future Microstate Distributions Are the Same. (B)

Causal Emergence Theory Identifies Macrostates Where the Past-future

Mappings Are Deterministic and Non-degenerate at the Macro Scale, Such

That the Macrostates Can Be Distinguished from One Another in the past

(Non-degeneracy) and the Future (Determinacy). Both Causal State Theory

and Causal Emergence Theory Define Macrostates in Terms of Temporal

Relations Within a System of Interest, as Denoted by the Square Shape

Underlying the Mapping. (C) in the Relational Macrostate Theory We

Propose Here, Two Microstates Are Equivalent If They Relate to the Same

Macrostate Distributions, Which Can Be Generalized to Any Type of Rela-

tion, Including Past-future, Rule-pattern, Genotype-phenotype, Etc. – the

Square and Disk Shapes Denote Generality by Visualizing How Macrostates

Can Be Constructed as Maps That Exist Across Different Spaces. . . . . . . . . . 16

2. The Venn Diagram Illustrates the Relationship of Macrostates with Various

Domains, Encompassing Physics, Machine Learning, Information Theory,

and Complex Systems. The Review and Comparison of These Domains

Highlight the Unique Role of Macrostates in Bridging These Diverse Topics. 18

viii



Figure Page

3. Typical Visual Representation for Neural Networks. (A) a Single-layer

Neural Network Is Often Visualized in a Network-oriented Manner. The

Bias and Nonlinear Terms Are Frequently Not Indicated. The Arrows Denote

the Input and Output. (B) When Visualizing Deep Neural Networks, an

Fcn Layer Is Typically Simplified into a Single Block. . . . . . . . . . . . . . . . . . . . . . 22

4. Generative Models Typically Employ Functions Applied to Simple Distri-

butions, Such as Normal Distributions, and Train These Functions Such

That the Transformed Distribution Aligns with the Data Distribution. . . . . . 25

5. Real NVP Partitions the Input into Two Components, x1 and x2. By Pre-

serving the Information of x1, It Guarantees Its Invertibility and Simplifies

the Computation of the Log Determinant of the Jacobian. . . . . . . . . . . . . . . . . 28

6. Macrostates Are Determined by Symmetries That Define Relations Between

Ensembles of Microstates. The Rectangle and Disks Represent the Space

of Microstates. And the Points and Links Represent the Observed Mi-

crostate Pairs (ui, vi). The Background Color of the Points Illustrates Their

Macrostates. (A) An Optimal Solution. (B) An Inconsistent Solution. (C)

A Trivial but Legal Solution, Which Coarse Grains All Microstates to the

Same Macrostate. This Kind of Coarse Graining Is Not Informative Since

the Mutual Information of Macrostates Is Zero, We Add an Information

Theoretic Criterion to Identify Good Macrostates and Exclude Such Cases. 37

ix



Figure Page

7. Neural Network Architecture of MacroNet. (A) During the Training Process,

the Two Invertible Neural Networks Are Optimized to Map Two Types

of Microstates to the Same Macrostates. These Microstate Pairs Can

Correspond to Past and Future States, Dynamical Rules or Parameters

and Observed Behavior, or Any Other Pair of (Sets of) Variables. (B)

The Conditional Sampling and Designing Process. First, We Manually

Make an Example Microstate of Type V and Compute Its Macrostate.

We Then Sample the Microstates in U or V That Have This Macrostate.

(C) When Doing Coarse-Graining, Parts of the Output Are Abandoned to

Reduce the Dimensionality. The Abandoned Variables Are Still Trained to

Follow an Independent Standard Normal Distribution. This Independence

Makes It Possible to Do Conditional Sampling. (D) A Typical Invertible

Neural Network Is RealNVP, Which Has a Specially Designed Structure

That Guarantees Invertibility. The Log-Determinate of the Jacobian Is

Also Easy to Compute for This Type of Neural Network for Controlling the

Distribution of Their Outputs. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

x



Figure Page

8. Training Neural Networks to Find Macrostates of Linear Dynamical Systems.

(A) the Related Macrostate Pairs Are Distributions of Microstate Parameters

and Trajectories. (B) by Choosing an Example Trajectory, We Can Sample

Microstates of Parameters or Trajectories with the Same Macrostate. (C)

given the Example Trajectory (Red Dots), We Can Compute Its Macrostate.

Then, We Can Sample Other Sets of Parameters That Have the Same

Macrostate. Using the Sampled Parameters, We Can Plot the Trajectories

Generated by the Sampled Parameters (Blue Lines). (D) Using the Same

Macrostate, We Can Sample an Ensemble of Trajectories That Have the

Same Macrostate. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

xi



Figure Page

9. With a Simple Harmonic Oscillator, I Train a Neural Network to Find

Invariant Quantities as a Special Case of Macrostates. (A) The (u, v) Pairs

Are Sampled from Simulations, Where u = (x0, p0) (the Black Dots) and

v = (xτ , pτ ). The τ Is Sampled from a Uniform Distribution U(0, 2π). The

White Dots in the Yellow Region Show a Sampling Example of v. Due

to the Randomness of τ , It Is Impossible for Accurate Prediction at the

Micro Level. (B) The Neural Network Learns a Function of Energy as the

Invariant Quantity. The x-Axis Is the Energy of Microstates Computed by

the Physical Theory of SHOs Discovered by Humans, and the y-Axis Is the

Macrostate Discovered by the Neural Network. They Show a Monotonical

Relation, Which Implies the Successful Identification of Energy by the Neural

Network. (C) Conditional Sampling Microstates from P ((x, p)|φ(x, p) = αi),

Where the αi Are the Given Macrostates. The Results Approximate Equal

Energy Surfaces, Denoted by the Dashed Circles. Note That the Noise in

the Sampling Is a Side Effect of the Noisy Kernel Trick I Use Here. The

Background Color Also Shows the Learned Macrostate Mapping as a Field. 46

xii



Figure Page

10. Experiments on Turing Patterns. (A) By Giving an Example Pattern,

We Can Compute Its Macrostate by φv. The Patterns Are Colorized

for Distinguishing Different Experiments. (B) Then, We Can Sample an

Ensemble of Corresponding Parameters from the Macrostate by φ−1
u . The

Points with the Sample Color Are Sampled from the Same Macrostate

Computed from the Corresponding Example. (C) Using the Sampled

Parameters, We Can Generate Turing Patterns with Sampled Initial States.

The Generated Patterns Show Similar Macroscopic Shape as the Example

Patterns. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

11. The Movement Trajectories of Oil Droplets in a Petri Dish Are Indicated by

Lines of Various Colors. Distinct Configurations of Chemical Compounds

Will Result in an Array of Unique Movement Patterns. . . . . . . . . . . . . . . . . . . . 54

12. Illustration of Identifying Macrostates and Design Parameters. Both Pa-

rameter and Trajectory Are Been Mapped to Macrostates That Are Been

Trained to Be Mutually Predictive. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

13. The Estimated Mutual Information of the Macro-variables Increases

Through the Training Process. The Background Shadow Indicates the

Standard Deviation of Mutual Information Estimated from Different Train-

ings of Cross-validation. The Covariance Matrices Are Computed Using 256

Samples at Each Point, and the Cross-validation Employs a k-fold Method,

with k Set at 5. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

xiii



Figure Page

14. The Maximal Mutual Information Conveyed by Macrostates at Different

Dimensions. Left: Training the Macronet with Weight-fixed InfoVAE.

Right: By Continually Training the InfoVAE Encoder, We Can Capture

More Mutual Information with Macrostates. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

15. The First Strategy (Left) Provides a Clear Meaning at Different Macrostate

Dimensions. Conversely, the Second Strategy (Right), Despite Presents a

Less Intuitive Trend Across Each Dimension, Identifying Macrostates with

Higher Mutual Information. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

16. The Linear Regression Result Fitted Alongside a Rotation Matrix. The

Coefficient Indicates the Degree to Which the Concentration of Different

Chemical Compounds Contributes to the Two Dimensions of the Rotated

Macrostates. Higher Absolute Values of the Coefficient Imply Greater

Contributions. The Two Sub-figures on the Right Demonstrate a High

Correlation Between the Fitted Macrostates, Denoted as α̂′, and the Original

Macrostate, α′. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

17. Left: The Trajectory Macrostate Embedding Without Rotation; Right: The

Trajectory Macrostate Embedding after Apply Rotation. . . . . . . . . . . . . . . . . . . 68

18. Linear Fitting Coefficient for Trajectory Features and Macro-variables. See

Definitions of X-axis in Table 2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

xiv



Figure Page

19. This Figure Depicts the Distribution of Sampled Chemical Parameters

Sampled from Different Macrostates. The Scatter Plots in the Triangular

Region at the Bottom Left Display Various Chemical Compounds Sampled

from These Macrostates, with Each Macrostate Represented by a Different

Color. The Highlighted Points Correspond to the Sampled Microstates Used

for Experimental Validation. Along the Diagonal Are Figures Illustrating

the Marginal Distribution of Each Chemical Compound. In the Top-right

Corner, Trajectories Are Embedded in the Rotated Macrostate Space,

with Colored Dots Indicating the Macrostates from Which Microstates Are

Sampled. The Distribution of Sampled Temperature Is Presented in the

Top Middle, and the Sampled Humidity Is Displayed in the Middle Right.

Notably, Neither Temperature nor Humidity Shows Significant Variation

Across Different Macrostates. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

20. The Figure Displays the Features of Oil Droplet Moving Trajectories under

Varying Experimental Parameters, Which Have Been Sampled from Distinct

Macrostates (X-axis). The Left-hand Figure Demonstrates a Decrease in

Speed with Higher Macro-variable α′
1, Contradicting the Model’s Prediction

of a Positive Relationship. Conversely, the Right-hand Figure Presents

a Reduction in Log Size Change with an Increase in Macro-variable α′
2,

Aligning with the Model’s Predictions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

21. The Relations Can Be Represented by Joint Distributions and Conditional

Distributions. (A) Joint Distributions Are Used to Represent the Entire

Relationship. (B) For a Certain Microstate ui or Macrostate αi, Conditional

Distributions Can Be Used to Represent Its Relations. . . . . . . . . . . . . . . . . . . . 92

xv



Figure Page

22. The Behavior of the Linear Dynamical System Is Changing with the Matrix

M . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

23. The Training Process of Finding Macrostates from Linear Dynamical Sys-

tems. Both the Parameters and Trajectories Are Coarse-grained to Two-

dimensional Macrostates. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

24. The Trained Neural Network on Linear Dynamic Systems Is Capable of

Predicting the Macrostate. Here, Each Point Represents a (αi, βi) Pair.

Here, αi = φu(ui) and βi = φv(vi). By Jointly Compare αi and βj , We Can

Quantify the Performance of the Predictions on Macrostates. In the View of

Mutual Information, When All Points Are on the Curve β = α, the Mutual

Information I(α; β) Is Maximized. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

25. Red Lines Show the Example Trajectories. And Gray Dotted Lines Show

the Sampled Microstates of Trajectories. The Blue Vector Lines Represent

the Dynamics of Sampled Parameters. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

26. By Feeding the Sampled Matrices From Figure 25 Into φu, We Can Compute

Their Macrostates. Samples 1 and 2 Differ in Their Rotation Directions,

While Samples 3 and 4 Differ in Their Radial Directions. They Exhibit

Distinct Embeddings in the Macrostate Space. . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

27. The Training Process of Finding Invariants as Macrostates from Simple

Harmonic Oscillators. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

xvi



Figure Page

28. With a Simple Harmonic Oscillator, We Train a Neural Network to Find

Invariant Quantities as a Special Case of Macrostates. (A) The (u, v) Pairs

Are Sampled from Simulations, Where u = (x0, p0) (the Black Dots) and

v = (xτ , pτ ). The τ Is Sampled from a Uniform Distribution U(0, 2π). The

White Dots in the Yellow Region Show a Sampling Example of v. Due to

the Randomness of τ , It Is Impossible for Accurate Prediction at Microstate.

(B) The Neural Network Learns Energy as the Invariant Quantity. The x-

Axis Is the Energy of Microstates Computed by the Physical Theory of SHOs

Discovered by Humans, and the y-Axis Is the Macrostate Discovered by the

Neural Network. They Show a Monotonical Relation, Which Implies the

Successful Identification of Energy by the Neural Network. (C) Conditional

Sampling Microstates from P ((x, p)|φ(x, p) = αi), Where the αi Are the

Given Macrostates. The Results Approximate Equal Energy Surfaces,

Denoted by the Dashed Circles. Note That the Noise in the Sampling Is a

Side Effect of the Noisy Kernel Trick We Use Here. The Background Color

Also Shows the Learned Macrostate Mapping as a Field. . . . . . . . . . . . . . . . . . 106

29. The Training Process of Finding Macrostates from Turing Patterns. The

Neural Networks Maps the Parameter (Da, Db, F, k) and Patterns v(3×64×64)

to Macrostates in a Two-Dimensional Space. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

30. The Trained Neural Network on Turing Patterns Is Capable of Predicting the

Macrostate. Here, Each Point Represents a (αi, βi) Pair. Here, αi = φu(ui)

and βi = φv(vi). Here We Map the Microstates to a Two-Dimensional

Space, so We Compare the Macrostates on Each Dimension, Represented

as αi and βi. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

xvii



Chapter 1

INTRODUCTION

1.1 Abstract

The identification of laws in science is often connected with the discovery of

invariants and symmetries. A prime example of this relationship is the concept of

energy conservation. By recognizing and utilizing the concept of energy, scientists

can move beyond isolated, case-by-case studies to develop general laws governing

physical systems. In this context, we argue that macrostates, defined as specific subsets

within a system’s subspace, provide a more versatile framework for understanding

complex systems in a unified manner, rather than studying different systems in

isolation. This chapter offers an overview of macrostates as studied within the domain

of physics. Additionally, we review the theoretical examination of macrostates from a

computational standpoint. A review of practical methods for identifying macrostates

or related concepts, particularly within the machine learning domain, will be presented.

Finally, we propose an integrative perspective that connects various macrostate theories

and methodologies, offering a cohesive approach to this multifaceted subject.

1.2 Universal Laws and Macrostates

Among the most important concepts in science is that of scientific laws, identified

as regularities or rules that hold universally when a given set of conditions is met.

Identifying new laws allows predictions, and the ability to design new example systems
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consistent with those laws. New laws can be found by identifying invariant quantities

that remain unchanged under some transformation. An archetypal example is energy

and Hamiltonian (Goldstein, Poole, and Safko 2002): the regularity that energy is

always conserved leads to the law of conservation of energy. Identifying such quantities

will then allows us to predict and build systems consistent with this law (Greydanus,

Dzamba, and Yosinski 2019).

There is a fundamental connection between invariants, like energy, and symmetry.

This relationship was first made clear in physics by Noether (Noether 1971). Noether

showed how for systems with conservative forces, every differentiable symmetry comes

with a corresponding conservation law. An example is how time translation symmetry

gives rise to the conservation of energy: simple harmonic oscillators conserve energy in

the absence of friction, and you will observe the same oscillations if starting a clock at

the first cycle as at the thousandth because the behavior is time-invariant. However,

finding laws (or symmetries) for complex systems, such as biological and technological

ones, has proved more challenging that requires complex methods (Jumper et al. 2021;

Pathak et al. 2018; Seif, Hafezi, and Jarzynski 2021). This is because of their high

dimensionality, non-linear behavior, and emergent properties. Breaking the barrier to

systematically find law-like behaviors in complex systems would allow insights into

the physics underlying them and like in more simple physical systems it could provide

universal tools for the prediction and design of their behaviors.

Beyond invariants, macroscopic descriptions, or macrostates, are frequently en-

countered and serve a wider range of applications. Despite many different definitions

of macrostates, to form a term basis for the subsequent study, I adopt a definition

that can cover most different theories (Gömöri, Gyenis, and Hofer-Szabó 2017):

Definition 1 (Macrostate of microstates) A macrostate of microstates repre-
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sents a subset of microstates. Continuous macrostates can be parameterized by multi-

dimensional variables, which are referred to as macro-variables or macroscopic

quantities.

Macrostates can be either discontinuous, such as in classifications, or continuous,

exemplified by variables like temperature. In the context of continuous macrostates,

they can be parameterized in high-dimensional spaces. For instance, the macrostates

of an ideal gas are continuous and can be parameterized by a combination of pressure,

volume, and temperature (P, V, T ), each dimension of which is referred to as a macro-

variable or a macroscopic quantity. Each macrostate is associated with an ensemble

of microstates, resulting in a many-to-one mapping from microstates to macrostates.

This mapping will henceforth be referred to as the “microstate-macrostate mapping”,

or simply the “micro-to-macro mapping”. It is important to note that macrostates and

microstates cannot be defined independently; their definitions are relative, thereby

inherently allowing for multiple levels of representation. Higher level representations

(i.e., lower-dimensional) are macrostates of lower level representations. In the following

sections, I will use macrostate instead of “macrostate of microstates” for simplicity

when there is no ambiguity.

In statistical physics, three quantities—pressure, volume, and temperature—are

fundamental in characterizing a gas system (Landau and Lifshitz 2013). And the

concept of Boltzmann’s entropy also relies on the number of microstates under

certain macrostates that are represented by these three macro-variables. Another

example, which can be less intuitive, can be found in Newton’s Laws, which rely on

quantities such as mass, speed, and acceleration. These quantities, in essence, can be

averages derived from objects composed of countless molecules. Consequently, these
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fundamental quantities often require interpretation as macroscopic descriptions in

most use cases.

Viewed from a different perspective, these macroscopic quantities facilitate the

practical application of laws unearthed in laboratory settings. This is significant, as

microscopic details can exhibit significant variation across different objects, locations,

and timeframes. In contrast, macroscopic quantities and their governing laws have

the potential to remain consistent. Comparing macrostates and invariants, it becomes

evident that they share a mutual definition and overlapping relationship. Invariants

such as energy or momentum are undoubtedly macroscopic descriptions as they are

often a summation of micro-details. However, macrostates such as speed and mass

can also formulate energy and momentum, thereby imposing constraints on these

macrostates through invariant laws.

To understand the complex behaviors of intricate systems, such as biological or

social systems, we need both types of quantities to formulate laws. And since invariants

are a special type of macrostates, my focus rests on the theory of macrostates and on

identifying macrostates from observations.

Despite the fact that only a few countable studies explicitly discussed the concept

of macrostates (Hoel, Albantakis, and Tononi 2013; Shalizi and Moore 2003; Gömöri,

Gyenis, and Hofer-Szabó 2017), many studies have touched on this topic in various

ways. These studies often use the name of latent spaces (Hinton and Salakhutdinov

2006; Kingma and Welling 2013; Higgins et al. 2017; Zhao, Song, and Ermon 2017),

representation learning (Mikolov, Sutskever, et al. 2013; Mikolov, Chen, et al. 2013;

He et al. 2020), dimension reduction (Jolliffe and Cadima 2016; Van der Maaten

and Hinton 2008), or emergence (Hoel, Albantakis, and Tononi 2013; Hoel 2017). In

the ensuing sections of this introduction, I will initially revisit theories associated

4



with macrostates within the physics domain. Following this, I will explore recently

formulated theories that expressly focus on macrostates. My survey will then turn

to an examination of methods from the machine learning field that inadvertently

identify certain types of macrostates or correlate with theories advanced in recent

years. Finally, I will provide an integrative perspective of macrostate theories and

succinctly introduce the underlying principles of my relational macrostate theory. For

a more detailed discussion, please refer to chapter 3.

1.3 Macrostate in Physics

There are many important macrostates in the physics domain, including energy,

temperature, pressure, averaged speed, etc. Some of them can be directly measured,

hence forming the foundation of physical theories.

One of the significant functions of macrostates lies in their ability to encapsulate the

complexities of physical reality, thereby offering a simplified and condensed version of

it. This is largely predicated on the inherent cognitive and computational constraints

of the human mind and existing technological resources, necessitating the simplification

of observations for more effective comprehension and application (Hemmo and Shenker

2012). Macrostates, thus, operate as a form of compact reality where minute details

are disregarded as being indistinguishable to observers.

However, the utility of the macrostate is beyond simplification. Their reusabil-

ity (Shalizi and Moore 2003) form the basis for the formulation of general laws –

going beyond case-by-case study, and studying general laws. Physical macrostates like

temperature, volume, and pressure, can be universally applied across any ideal gas,
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and multiple domains beyond gas, thereby promoting the generalizability of knowledge

obtained from a singular observation to multiple, diverse observations.

Indeed, it is worth noting that all of our physical laws are formulated with a

certain level of disregard for detail. A common feature of these laws is their separation

from initial states and boundary conditions (Pattee, Rączaszek-Leonardi, and Pattee

2012): Newton’s laws don’t provide any information about entities’ initial speed, or

the environment information. This necessitates a degree of data compression when

uncovering laws from observations, further highlighting the vital role of macrostates.

Notable examples emerge from the fields of biology, geology, and climate science.

Systems within these domains frequently encompass a vast amount of unobservable

information and exhibit intrinsic randomness, which complicates microstate-level

predictions. Subsequent studies will elucidate how macrostates can be employed to

understand such systems, bypassing the need to ascertain these boundary conditions.

Intrinsically, macrostates encapsulate symmetry information. As established earlier,

macrostates correspond to subsets of microstates. Any transformations maintaining

the microstates within the same subset do not alter the associated macrostates.

These transformations represent the symmetries inherent in the macrostates. For

instance, the macrostate (P, V, T ) of an isolated ideal gas remains invariant under

rotations, spatial translations, and temporal translations. As such, we can infer that

the mapping from the gas’s microstates (i.e., the position and velocity of each particle)

to the macrostate contains rotational, spatial translational, and temporal translational

symmetry. Therefore, the identification of macrostates aids in uncovering symmetries

within mappings. A significant application of this notion relates to the concept of

“more is different” (Anderson 1972). Anderson proposed that large-scale patterns

may not always keep the symmetry of their underlying rules, a phenomenon widely
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observed and recognized as emergence. However, when we consider the rule and

pattern as a mapping, identifying macrostates allows us to discover symmetries that

are preserved, or not broken. Indeed, several studies, such as Lenia (Chan 2018) and

the experiments on Turing patterns in Chapter 3, have demonstrated the existence of

preserved symmetry within such rule-pattern mapping systems. Although the specific

outcomes of patterns cannot be precisely controlled by rules, they do have some

features associated with a set of rules, implying the existence of certain symmetries.

Hence, this perspective fosters a new understanding of the “more is different”: while

many symmetries may break as a system scales up, there often remain some unbroken

symmetries.

However, identifying the macrostates is no simple task, particularly in systems

exhibiting emergent phenomena such as those found in biological, social, or chaotic sys-

tems. These systems often possess high-dimensional microstates, and their macrostates

cannot be reduced to a mere average of their microstates. Our everyday intuitions

fail in these instances, leaving us in need of innovative theories and methodologies to

identify their macrostates.

1.4 Theoretical Perspective on Macrostate Theory

As outlined in the first section, macrostates can be conceptualized as subsets of a

system’s microstate phase space. However, this somewhat general non-informative

definition does not lead to any precise methodology for determining the elements of

these subsets. Two important studies aimed at addressing this issue are the causal state

theory (Shalizi and Moore 2003) and the causal emergence theory (Hoel, Albantakis,

7



and Tononi 2013). Despite their respective limitations, they provide inspiration for

my own approach – the relational macrostate theory.

1.4.1 Causal State Theory

In 2003, Shalizi and Moore introduced the causal state theory (Shalizi and Moore

2003), establishing a definition of macrostates based on the relations among microstates.

It is important to clarify that the term “causal” in this context denotes another layer

of system representation. This term should not be understood as a reference to the

recent focus on causal science (Pearl and Mackenzie 2018) or to any conventional

causal inference methodologies such as Granger causality (Granger 1969). In their

theory, Shalizi and Moore propose that two microstates can be considered “causally”

equivalent – that is, belonging to the same macrostate – if their subsequent distributions

of microstates are the same (Figure 1A). Mathematically, two microstates histories,

denoted as ←−s and ←−s ′, are considered to belong to the same macrostate (represented

by ∼) if and only if they have identical conditional distributions for their future states,

symbolized as −→s :

←−s ∼ ←−s ′ ⇐⇒ P (−→s |←−s ) = P (−→s |←−s ′). (1.1)

Consequently, the conserved symmetry is related to the prediction of future states.

This, however, is not generalizable and can exclude some well-defined macrostates in

physics. For example, given a simple harmonic oscillator, two distinct microstates

u1 = (p1, x1) and u2 = (p2, x2), where p1 and p2 are two observations of momentum

and x1 and x2 are the corresponding position, can have the same energy macrostate

but their future microstate distributions will be different if u1 and u2 are not close
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to each other (say if, u1 = −u2). The macrostate of energy is related to the time

translation symmetry (as identified by Noether), not the symmetry associated with the

predictability of future states (as in causal state theory). Indeed, Shalizi and Moore

were not looking for a general theory of macrostates but instead focused on the specific

property of predictability of complex systems. Indeed, their approach does not provide

a similarity metric for future state distributions. This may result in measurements

that are either excessively sensitive or insufficiently responsive to certain information.

Thus, their approach identifies predictive states for specific systems but not general

laws.

1.4.2 Causal Emergence Theory

Another approach was more recently proposed in causal emergence theory (Hoel,

Albantakis, and Tononi 2013), with the goal to describe causal relations at the macro

level. Here, instead of using the properties of microstates, macrostates are defined

by identifying relations between macrostates. Contrary to explicitly defining the

equivalence of microstates, causal emergence is developed in a more implicit manner.

By defining the “effective information” (EI) of a discontinuous dynamical system

evolving over time, some coarse-grained, lower-dimensional models can exhibit higher

effective information than models framed at the microstate level. This increase in

effective information is referred to as “causal emergence.” The effective information is

defined as:

EI(S) =
1

n

∑
s0∈UC

DKL((SF |s0), UE), (1.2)

where s0 is the initial state, sampled uniformly from all possible initial states UC .
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Meanwhile, UE represents the next-state (or effects) distribution of the system when

the initial state is uniformly sampled. (SF |s0) indicates the next-state distribution

given an initial state s0, and n denotes the number of states. In simpler terms,

EI quantifies the average difference in subsequent states given the constrained and

unconstrained initial states of a system.

For a system with its microstates and dynamics, different microstate-macrostate

mappings lead to different coarse-grained systems. Therefore, within the causal emer-

gence theory, the identification of macrostates transforms into another task: finding

an optimal microstate-macrostate mapping that maximizes the effective information.

According to their definition, macrostates are identified when the past and future of

different macrostates are distinguishable (as depicted in Figure 1B). Here, symmetry is

about exchangeable in the mapping between past and future, leading to a conservation

of distinguishable macrostates. However, it is essential to note that causal emergence

is defined based on discontinuous dynamical systems evolving over time, and not all

regularities we may wish to associate with laws will involve time. For example, text-

image mapping (Rombach et al. 2022), genotype-phenotype mapping (Ahnert 2017),

or parameter-pattern mappings (Gray and Scott 1984) are all complex systems with

regularities yet to be uncovered. Consequently, causal emergence is not sufficiently

general to allow for identifying laws in complex systems. A more general theory is

needed.

1.5 Incidental Identification of Macrostates Through Alternative Methods

Considering the fundamental significance of macrostates, they are often implicitly

identified – even in contexts where the term is not explicitly employed, or where
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the primary focus lies elsewhere. This incidental recognition is particularly notable

within the domain of machine learning. Due to the high dimensionality of the data

processed in machine learning tasks, dimensionality reduction techniques are routinely

employed. Given the fact that many dimensionality reduction methods entail some

degree of information loss, dimension reduction mapping often becomes a many-to-one

mapping. This implies that distinct points in the phase space (i.e., different images,

words, etc.) may be mapped to the same lower-dimensional representation. As per the

general definition of macrostates stated earlier, these methods are intrinsically linked

to macrostates. Noteworthy dimensionality reduction techniques include principal

component analysis (PCA) (Jolliffe and Cadima 2016), t-SNE (Van der Maaten and

Hinton 2008), auto-encoders (AEs) (Hinton and Salakhutdinov 2006), and variational

auto-encoders (VAEs) (Kingma and Welling 2013; Higgins et al. 2017). Notably, the

word embedding methods (Mikolov, Sutskever, et al. 2013; Mikolov, Chen, et al. 2013)

and contrastive learning methods (He et al. 2020; T. Chen et al. 2020; Chen and He

2021) can be directly connected to the study of causal emergence. I will detail the

word embedding and contrastive learning methods in the following sections.

1.5.1 Word Embedding

Word One-Hot Encoding Index
cat [1, 0, 0, 0, ...] 1
dog [0, 1, 0, 0, ...] 2
frog [0, 0, 1, 0, ...] 3
... [0, 0, ..., 1, ...] ...

Table 1. One-hot Encoding Example.

A particularly notable implementation is found in word embedding (Mikolov, Chen,
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et al. 2013; Mikolov, Sutskever, et al. 2013). English words, despite typically consisting

of a countable number of characters, lack inherent similarity. As such, people often

represent words using high-dimensional one-hot encoding vectors, where only the n-th

item is set to one, while all others remain zero (see Table 1). Here, n is merely the

index of the word, bearing no inherent meaning as it can be interchanged without any

loss of information. In one-hot encoding, any two words are orthogonal, indicating an

absence of embedded similarity information.

Humans can effortlessly discern that “cat” and “dog” are similar as they are both

animals. But how can a computer make such a connection using only indices? A simple

non-trivial approach is to assign each word i a vector wi. The cosine similarity between

two word vectors then represents the similarity between the two corresponding words.

The optimization of these word vectors typically employs a context-based approach:

words appearing in similar contexts tend to exhibit similarity. Here, “context” means

the words j surrounding the target word i. From a macrostate viewpoint, it is vital

to note that context similarity is also defined by words: similar contexts will contain

similar target words (the word surrounded by the context words). In training word

vectors under the skip-gram framework, the loss function is defined as:

L = E(i,j)∼Pdata

log σ(wi · vj) +
k∑

n∼Pnegative

[1− σ(wi · vn)]

 , (1.3)

where σ denotes the sigmoid function, with σ(x) = 1/(1− e−x). Pdata signifies the dis-

tribution of word-context word pairs, while w and v are two distinct matrices of shape

(N, d), where N represents the total number of words, and d is the dimensionality of

word vectors. It is important to note that w and v are not identical matrices (Nalisnick

et al. 2016), which broadens the applicability of this framework to assign different
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representations to words and their context. The Pnegative is employed for sampling

negative pairs to avoid mode collapse.

Upon comparing this method to causal emergence theory, a key commonality

emerges: both methods define the similarity of words (or microstates) based on the

macrostate (wi and vj) of their related states, not the microstate (one-hot encoding of

i and j) of these related states. This circular definition may lead to some seemingly

arbitrary results. For instance, the distance function exhibits rotational symmetry, that

is, L(w, v) = L(Rw,Rv), where R represents any rotation matrix. Another aspect that

might not be entirely constrained is the dimensionality. The embedded points could

potentially lie on a lower-dimensional manifold within the high-dimensional space.

However, this flexibility also enables the recognition of more generalized macrostates,

which is beyond the scope of causal state theory.

1.5.2 Contrastive Learning

Contrastive learning originated in the computer vision domain and was originally

formulated in a manner distinct from macrostate theory (He et al. 2020; T. Chen et

al. 2020; Chen and He 2021). Conventional computer vision tasks typically function as

classifiers, such as AlexNet (Krizhevsky, Sutskever, and Hinton 2012) and ResNet (He

et al. 2016): given an image, a label is predicted. In contrast, contrastive learning

acts as a representation learner. When presented with one image, and another, it

determines if the two images are identical under some transformation. For instance, if

we present a colorful image of a cat and its gray-scale equivalent, a contrastive classifier

will return “true” (these are known as positive pairs). However, if the second image

were a dog or a gray-scale image of a different cat, we would expect it to return “false”
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(known as negative pairs). To achieve this objective, contrastive learning commonly

utilizes an encoder f to map xi to its corresponding representation zi, subsequently

leveraging the similarity of these representations to perform classification. A typical

contrastive learning approach formulates the training loss for a positive pair (i, j) as

follows (T. Chen et al. 2020):

Li,j = − log
exp(sim(zi, zj)/τ)∑

k=[1,2N ]\{i} exp(sim(zi, zk)/τ)
, (1.4)

where sim(zi, zj) refers to a similarity function for two representations zi and zj , often

utilizing the cosine similarity. And τ is a temperature parameter that determines the

contrastiveness of different similarity. Samll τ will enlarge small similarity differences.

The k in the denominator denotes the negative pairs. In summary, this loss function

aims to increase the similarity between i and j, while reducing the similarity between

i and all other samples (negative samples).

This process enables contrastive learning to be trained to learn certain symmetries

such as rotation, translation, and flipping, thus obtaining a lower dimensional rep-

resentation without labeling. However, as these symmetries are all human-imposed,

there is an unavoidable tendency to overlook some less evident symmetries that may

not be immediately recognized by human observers.

Contrastive predictive learning (Oord, Li, and Vinyals 2018) mitigates this flaw

and has demonstrated superior performance in numerous tasks, even when compared

to supervised learning. Contrastive predictive learning utilizes the encoding of past

states to predict the encoding of future states. Given the non-directional nature of

this prediction, it could also be stated that it uses the encoding of future states to

predict the encoding of past states. As the training pair is not generated by applying

transformations, it is not constrained by human-imposed symmetry, thus permitting
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the learning of more complex symmetries. When compared to causal emergence theory

and the word embedding method, contrastive predictive learning also shares a key

commonality. All three utilize encoding, or as I would prefer to say, macrostates, to

predict another macrostate rather than focusing on microscopic details. The advantage

of contrastive predictive learning is its use of neural networks to represent the transition

from microstates to macrostates. However, contrastive predictive learning requires a

large number of negative samples to avoid trivial solutions, which results in substantial

computational costs. Simultaneously, this method is incapable of sampling microstates

given a particular macrostate, thereby restricting its applicability.

1.6 Integrative Perspective of Macrostate Theories

Upon critically reviewing the preceding theories and methods, recognizing their

limitations, and identifying their commonalities, the concept of macrostates gradually

becomes clear. We can adopt an integrative perspective to enhance our understanding

of macrostates.

In essence, macrostates of systems can be regarded as invariant measures under

specific mappings. A similar definition has also been proposed by (Gömöri, Gyenis,

and Hofer-Szabó 2017) using set theory language. In this context, the term “mapping”

broadly encompasses any quantity related to these systems. For example, in causal

state theory, the mapping corresponds to a past-future state mapping; in word

embedding, it is word-context mapping; and in contrastive learning, the mapping is

the transformations.

The previously discussed theories and methods regarding macrostates can be

broken down into two key components. And, by generalizing these elements, we can
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Figure 1. Comparison Between Causal State Theory, Causal Emergence Theory, and
the Relational Macrostate Theory Presented in This Work. (A) in Causal State
Theory, Two Microstates Are Equivalent (Belong to the Same Macrostate) If Their
Future Microstate Distributions Are the Same. (B) Causal Emergence Theory
Identifies Macrostates Where the Past-future Mappings Are Deterministic and
Non-degenerate at the Macro Scale, Such That the Macrostates Can Be
Distinguished from One Another in the past (Non-degeneracy) and the Future
(Determinacy). Both Causal State Theory and Causal Emergence Theory Define
Macrostates in Terms of Temporal Relations Within a System of Interest, as Denoted
by the Square Shape Underlying the Mapping. (C) in the Relational Macrostate
Theory We Propose Here, Two Microstates Are Equivalent If They Relate to the
Same Macrostate Distributions, Which Can Be Generalized to Any Type of Relation,
Including Past-future, Rule-pattern, Genotype-phenotype, Etc. – the Square and
Disk Shapes Denote Generality by Visualizing How Macrostates Can Be Constructed
as Maps That Exist Across Different Spaces.

develop a more comprehensive theory of macrostates. First, to define a macrostate,

we must define the similarity (or, in extreme cases, the equivalence) of microstates,

which reveals the similarity of their respective macrostates. The microstate-macrostate

mapping can be then derived from this similarity. The second component involves

choosing an appropriate mapping. For instance, theories such as causal state theory

and contrastive predictive learning select past-future mapping.

From this viewpoint, a general macrostate theory naturally emerges: Firstly, I

define the similarity of microstates in terms of their associated macrostates. Secondly,

the mapping, or the relation, can be more general. Unbounded by temporal or human-

imposed transformations, it could even be a mapping between two entirely different
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concepts, such as rule and pattern, or genotype and phenotype. Temporal relations

are naturally encompassed as a special case that can yield invariant quantities.

In the following chapters, I will first introduce the relational macrostate theory,

encompassing both the mathematical framework and a machine learning architecture,

namely MacroNet, purposed for the identification of macrostates and the sampling of

microstates possessing certain macrostates. I will apply the theory to several simulated

systems, demonstrating its effectiveness and its capacity for learning meaningful

macrostates. In the subsequent chapter, I will then apply the macrostate theory to a

complex chemical system, namely oil-droplet systems, wherein oil droplets composed

of different chemical compounds move within Petri dishes. Utilizing the macrostate

theory and MacroNet, I will be able to identify macrostates within this system and

subsequently answer the question: “Which combinations of parameters control which

aspects of the oil droplet movement patterns?”

When comparing various domains such as physics, machine learning, information

theory, and the domain of complex systems, it becomes evident that the concept of

macrostate serves as a central unifying thread, succinctly linking these fields. As

depicted in Figure 2, each domain has its own terminology or proxy concept that closely

relates to the idea of macrostates. In physics, as previously discussed, macrostates

are pivotal for formulating laws. Concepts like invariants can be viewed as specific

types of macrostates. Furthermore, there’s an intrinsic link between symmetries and

macrostates based on their fundamental definitions. In the machine learning sphere,

what we term macrostates often go by names such as latent space or embeddings.

These are typically identified through methods like contrastive learning. In the realm of

information theory, mutual information is important in describing interactions between

random variables. In the context of complex systems, macrostates find application
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Complex Systems. The Review and Comparison of These Domains Highlight the
Unique Role of Macrostates in Bridging These Diverse Topics.

in describing genotype-phenotype mappings, especially given their inherent many-to-

many mapping characteristics. A contemporary and rising domain is AI for science,

which leverages machine learning as a bridge to physics and complex systems. A

primary goal in both AI for science and physics is the quest for discerning laws and

regularities. Consequently, this domain, too, requires the identification of macrostates.

One of the key insights the macrostate theory offers to the field of machine learning,

particularly in the context of AI for science, is the imperative role of generative models

in identifying regularities and laws. As discussed in section 1.3, our observations are
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combinations of laws and boundary conditions. Consequently, if our objective is to

distill laws from these observations, we must be prepared to discard the information

associated with boundary conditions. Delving deeper technically, our optimization

goals shouldn’t be focused on predicting these observations since we’re intentionally

omitting certain information. Instead, our approach needs to center on training

generative models that predict distributions of observations, as they present a more

fitting framework for uncovering these underlying laws. A noteworthy overlap between

physics and information theory lies in the concept of entropy. While Shannon entropy

and Boltzmann entropy appear distinct on the surface, deep interconnections have

been identified (Jaynes 1957). In the context of physics, entropy requires a predefined

macrostate for its determination. Although this is straightforward for systems like

gases, the macrostates for more complicated systems remain ambiguous. Therefore,

the entropy of these systems remains undefined in the absence of a clear macrostate.

The theory of causal emergence, which melds information theory with complex systems,

utilizes the concept of effective information, further underscoring the significance of

macrostates. Drawing all these interconnections together, it becomes increasingly

apparent that the macrostate stands as the pivotal concept, illuminating and bridging

the gaps among these diverse fields, with the potential to significantly influence each

of them.
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Chapter 2

ARTIFICIAL NEURAL NETWORKS AND GENERATIVE MODELS

2.1 Abstract

When trying to identify macrostates, researchers often rely on observed data. This

process typically involves mapping microstates to their corresponding macrostates,

which necessitates the discovery of functions that meet certain criteria. Given the

complexity of the systems under investigation, artificial neural networks are required.

These networks, composed of simple linear and non-linear transformations, can be

trained to adapt and improve. In this chapter, we will begin with an introduction

to the foundational concepts of neural networks. Subsequently, we will delve into

generative neural networks, including auto-encoders and normalization flows.

2.2 Introduction

While the fundamental definition of a macrostate is the subsets of microstates,

in practice, the identification of a macrostate involves the discovery of a microstate-

macrostate mapping. However, neither the causal state theory nor the causal emergence

theory defines the macrostate via a microstate-macrostate mapping. The causal state

theory frames a macrostate through the lens of equivalence, while word embedding and

contrastive learning identify macrostates by establishing similarity. This necessitates a

method to find a mapping function that fits the definitions. Artificial neural networks

learn functions through the use of loss functions, without the need for manual design
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of the mapping function. As a result, it becomes the optimal choice for identifying

macrostates.

Over the past few decades, particularly in the most recent one, artificial neural

networks have yielded significant breakthroughs. They have addressed a plethora of

crucial tasks by learning data distributions without necessitating manual detailing.

These networks can extract generalizable knowledge from large data sets, even those

with complex patterns. This trait positions neural networks as powerful tools for

understanding complex systems. Indeed, the topic of “AI for Science” is getting

increased attention, as neural networks can facilitate scientific research across numerous

domains, such as Alpha Fold 2 (Jumper et al. 2021), AI Feynman (Udrescu and

Tegmark 2020), the rediscovery of Schrödinger’s equation (Wang, Zhai, and You 2019),

among others. My subsequent works and studies, which involve empirical data and

complex systems, also rely on artificial neural networks and generative models. Given

their extensive technical details, and considering that my primary contribution does

not lie within the realm of neural networks, I will introduce them in this separate

chapter.

2.3 Artificial Neural Networks

Artificial neural networks can often be considered as a trainable function, y =

f(x), where x is the input, and y is the output. In most cases, neural networks

are been trained to minimize loss functions, which is particularly important for

finding macrostates via the definition of similarities. The key task is to parameterize

the function f . Artificial neural networks often parameterize the function in a

compositional way – combining simple units into a complex layered network. Each unit
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Figure 3. Typical Visual Representation for Neural Networks. (A) a Single-layer
Neural Network Is Often Visualized in a Network-oriented Manner. The Bias and
Nonlinear Terms Are Frequently Not Indicated. The Arrows Denote the Input and
Output. (B) When Visualizing Deep Neural Networks, an Fcn Layer Is Typically
Simplified into a Single Block.

often has trainable parameters that have been trained by gradient descent (Goodfellow,

Bengio, and Courville 2016) (or other variations) algorithm. The most frequently used

basic unit in neural networks is linear layers and activation functions (Goodfellow,

Bengio, and Courville 2016).

A linear layer, mathematically is a n×m weight matrix W and a bias vector b

with dimension n, where m will be the input dimension, and n will be the output

dimension. In machine learning, the dimension has often called the number of features.

Mathematically, a linear layer is defined as:

f(x) = Wx+ b (2.1)

Combining multiple matrices by repeating doing matrix product will still give us

a matrix. Hence, it will have no difference from linear regression with linear layers
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only. So, in order to represent or fit more complex functions, a nonlinear layer is

required. Some typical nonlinear layers include sigmoid, ReLU, Tanh, and more. As

an example, the sigmoid function is:

sigmoid(x) =
1

1 + e−x
. (2.2)

Use g to represent the nonlinear layer, a typical fully-connected-network (FCN)

can be formulated as:

fFCN(x) = g(Wx+ b). (2.3)

A single FCN layer often lacks the ability to perform complex computations. In

fact, a single FCN layer, also referred to as a perceptron (Rosenblatt 1958), is incapable

of fitting the XOR function. However, by stacking multiple linear and non-linear layers,

we create deep neural networks—also known as deep learning models—that can solve

complex problems by learning from data. Theoretically, a sufficiently large two-layer

FCN can universally fit any continuous function (Cybenko 1989). Figure 3 showcases

typical visualizations of neural networks, a style that I will utilize in subsequent

chapters.

2.4 The Necessity of Generative Models for Macrostate Identification

As discussed in section 1.3, the quest to uncover physical laws necessitates the dis-

tinction of boundary condition information from observations. Similarly, macrostates,

as critical components of physical laws, require such differentiation. Invariant quan-

tities, as specific instances of macrostates, inherently comprise physical laws. For

example, the energy conservation law in a simple harmonic oscillator, represented
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by E = 1
2
mv2 + 1

2
kx2, provides a motion regulation for v and x. Reflecting on the

need for physical laws to be distinct from boundary condition information – i.e., initial

states, environments, or noise – exact prediction becomes untenable. To illustrate,

predicting a car’s trajectory without knowledge of its starting point, date, or weather

conditions is impractical. Indeed, an attempt to minimize the mean square error (MSE)

for a prediction task will only yield an average trajectory, which might nonsensically

place the vehicle at the Earth’s core. Evidence for this is evident in image-to-image

translation tasks – while simple predictions for translating labels into images yield only

blurred images, generative models have the capability to sample clear images (Isola

et al. 2017). However, recognizing it as a car retains some constraining information

regarding its possible locations: it cannot be underwater, and it is most likely to be

on a road. Essentially, the information retained after excluding boundary conditions

encompasses the core behavior of a car, which differentiates it from a person or an

airplane.

Since minimizing mean square error in prediction cannot extract and utilize this

information, the need for generative models arises. In a conditional generative scenario,

the possible trajectories can still be sampled without knowing the car’s starting location.

The car could follow trajectories on any road, but not any river or sea. Despite the

randomness in sampling, the model captures the key differences between a car and

other objects, such as a person. For instance, when sampling the position of a person,

it will assign higher probabilities to buildings. As the previous example illustrates, a

simple average prediction can lose all this information, making it harder to distinguish

between a car and a person. In essence, attempting to predict the unpredictable may

cause us to lose predictable information, an issue that conditional generative models

can avoid. I will illustrate this effect in chapters 3 and 4.
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Figure 4. Generative Models Typically Employ Functions Applied to Simple
Distributions, Such as Normal Distributions, and Train These Functions Such That
the Transformed Distribution Aligns with the Data Distribution.

2.5 Generative Models

From a mathematical perspective, generative models are trained to learn a dis-

tribution P that minimizes its Kullback-Leibler (K-L) divergence with respect to

the data distribution Px. In practice, as most neural networks are deterministic, the

source of randomness often originates from the input. For example, Generative Adver-

sarial Networks (GANs) commonly employ inputs sampled from a high-dimensional

standard normal distribution (Goodfellow et al. 2014). This approach is so prevalent

that the main focus of current generative model research is to ascertain how a simple

distribution can be transformed into a more complex one. Mathematically, given

a random variable z that follows a simple distribution—such as a standard normal

distribution—we seek to find a function f that transforms this simple distribution to

fit the data, i.e., f(z) ∼ Px, see Figure 4. In the following sections, I will introduce

autoencoder and normalizing flow models. Although GANs are a significant area of

research, I will not be discussing them as they are not used in my current work.
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2.5.1 Auto-encoder

A straightforward method for learning such distribution transformation functions

is by learning an inverse function. This general concept leads to both variational auto-

encoders (VAEs) and normalizing flow (refer to section 2.5.2). For auto-encoders (Hin-

ton and Salakhutdinov 2006), two neural networks are typically trained as an encoder,

denoted as fE, and a decoder, represented as fD. The computation flow can be

represented as:

x
fE(x)−−−→ z

fD(z)−−−→ x̂ (2.4)

The objective of auto-encoder training is to reconstruct the input:

min
θ
∥x− fD[fE(x)]∥. (2.5)

However, this transformation does not guarantee that the latent representation,

z = fE(x), adheres to a simple distribution. As a result, the generative capacity of

an auto-encoder is limited. To overcome this, the VAE has been proposed (Kingma

and Welling 2013; Higgins et al. 2017). Unlike the traditional auto-encoder, a

VAE learns the latent representation as a distribution. The distribution P (z|x) is

parameterized as µ and log σ by approximating it with a normal distribution. In

addition to the reconstruction objective, the VAE also trains P (z|x) to follow a

standard normal distribution by minimizing the Kullback-Leibler (K-L) divergence

between P (z|x) and the normal distribution. In practice, the encoder computes µ

and log σ, then z = µ + σw,w ∼ N (0, 1) is sampled as the input of the decoder.

This process is termed reparameterization. Since z is trained to follow the standard

normal distribution, the decoder fD can learn the transformation from the normal
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distribution to the data distribution Px. The computation flow of VAE is represented

as the following diagram:

x
fE(x)−−−→ µ, σ

µ+σw,w∼N (0,1)−−−−−−−−−→ z
fD(z)−−−→ x̂ (2.6)

However, even though P (z|x) is trained to follow a normal distribution, P (µ|x)

does not necessarily follow the same distribution. Following the proposal of VAE,

InfoVAE (Zhao, Song, and Ermon 2017) was developed to enhance VAE, ensuring

that the latent space is deterministic and follows a normal distribution without

reparameterization. InfoVAE introduces a new loss term referred to as the Maximum

Mean Discrepancy (MMD) loss. For a given latent distribution P , and a target

distribution Q, MMD is calculated as:

MMD(P |Q) = EP (z),P (z′)k(z, z
′) + EQ(z),Q(z′)k(z, z

′)− 2EP (z),Q(z′)k(z, z
′), (2.7)

where k(z, z′) = exp(−∥z − z′∥2/(2σ2)), and /mathbbE represents the mathematical

expectation. In comparison to VAE, InfoVAE deterministically encodes a latent

representation z that follows a normal distribution. This makes InfoVAE an effective

tool for data compression. In reality, most high-dimensional data, such as images,

often represent lower-dimensional structures. A well-suited encoder can reduce its

dimensionality while preserving essential information.

2.5.2 Normalizing Flows

Pursuing the same objective of learning transformations from simple to complex

distributions, normalizing flow has been proposed as an alternative approach. normal-

izing flow introduces specially designed neural networks capable of straightforward
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Figure 5. Real NVP Partitions the Input into Two Components, x1 and x2. By
Preserving the Information of x1, It Guarantees Its Invertibility and Simplifies the
Computation of the Log Determinant of the Jacobian.

inverse computations, specifically Invertible Neural Networks (INNs). Given an input

x, an invertible neural network f can readily perform the inverse operation such that

f−1(f(x)) = x. Several models have been proposed to ensure this invertibility, includ-

ing NICE (Dinh, Krueger, and Bengio 2014), Real NVP (Dinh, Sohl-Dickstein, and

Bengio 2016), ResFlow (R. T. Chen et al. 2019), Glow (Kingma and Dhariwal 2018),

among others. For instance, and also for the purpose of our subsequent discussion,

Real NVP has been specifically designed to guarantee invertibility. For an input x1:n

with n features, the output y1:n is a concatenation of two parts, as shown in Figure 5:

y1 = x1 (2.8)

y2 = x2 exp(s(x1)) + t(x1), (2.9)

where x1 = x1:m, x2 = xm+1:n. The inverse function is easily obtained:

x1 = y1 (2.10)

x2 = [y2 − t(y1)]/ exp(s(y1)). (2.11)
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As y1 is equal to x1, a swapping layer that swaps x1 and x2 is often used in

practice to ensure all features are computed. Other works like NICE, or ResFlow,

have specifically designed networks with constraints to maintain this invertibility, see

Appendix A.2.2.

Once the inverse problem is addressed, the focus shifts to training the output to

follow a normal distribution. Given an INN f , for which f(x) ∼ N n(0, 1), sampling

is made easy by performing an inverse pass f−1(z), z ∼ N n(0, 1). To generate

samples that follow the data distribution, normalizing flow directly maximizes the

log probability density PX(x = f−1(z)) of generated samples. Utilizing the change of

variable formula, the probability is given as:

PX(x) = PZ(z)

∣∣∣∣det ∂f−1(z)

∂z⊤

∣∣∣∣−1

, (2.12)

where PZ is the prior distribution of z, and det ∂f−1(z)/∂z⊤ is the determinant of the

Jacobian. By maximizing the expectation of logPX(x), the generated samples will

follow the data distribution. Since f is invertible, the encoding of x ∼ PX will also

follow the prior distribution. In practice, the log probability is computed as:

logPX(x) = logPZ(f(x)) + log

(∣∣∣∣det ∂f(x)∂x⊤

∣∣∣∣) . (2.13)

Since the log determinant of the Jacobian is needed, normalizing flow models must

also be able to compute this quantity easily. For a general neural network, computing

such a quantity requires substantial computational power given the Jacobian matrix is

n× n shaped. However, normalizing flow models utilize their special design again to

make such computations more feasible. For example, the Jacobian matrix of Real NVP

is:
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∂f(x)

∂x⊤ =


∂y1:m

∂x⊤
1:m

∂y1:m

∂x⊤
m+1:n

∂ym+1:n

∂x⊤
1:m

∂ym+1:n

∂x⊤
m+1:n

 =


I 0

∂ym+1:n

∂x⊤
1:m

diag
(
es(x1:m)

)
 (2.14)

Because this Jacobian matrix includes a zero term on the top-right corner, its

log determinant is simply the sum of the elements of s(x1:m), and we don’t need to

compute the complex term of ∂ym+1:n/∂x
⊤
1:m. While other normalizing flow models

may use different methods, the primary goal is always to compute or estimate the log

determinant of the Jacobian in a cost-effective manner.

Due to the requisite of invertibility, all normalizing flow models’ output dimensions

match the input dimensions. This characteristic can make using normalizing flow as

an encoder challenging, as encoders often necessitate an output with a significantly

lower dimension than the input. However, in the study of macrostates, dimension

reduction becomes critical because we want to find lower dimensional macrostates. An

approach is to simply disregard certain dimensions inspired by (Hu et al. 2022). Given a

normalizing flow f , with an output A = f(x), the dimension-reduced vector is α = A1:k,

where k is the desired dimension. Subsequently, only α is used for downstream tasks.

When inverting the function, given the encoding α, the output is f−1([α, z]), where z

is sampled from the prior distribution, and [α, z] means concatenate two vectors. For

this reason, despite some dimensions being disregarded, they are still trained to follow

the prior distribution. This process automatically allows us to perform conditional

sampling P (x|f(x)1:k = α). This method will be used in the following chapters for

conditional sampling and parameter design.

Normalizing flow models, being capable of acting as encoders, controlling the latent

space distribution, and performing conditional sampling based on the latent space,
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serve as unique tools for identifying macrostates and designing microstates. First,

macrostates need to be encoded from microstates; second, the macrostate distribution

needs to be controlled to avoid trivial solutions, such as constant values and lower-

dimensional manifolds; and third, to sample microstates, conditional sampling based

on the latent space should be implemented.

It’s important to note that Variational Autoencoders (VAEs) cannot meet all

three of these requirements simultaneously. Although VAE or InfoVAE can control

their output distribution, they cannot perform conditional sampling based on their

latent spaces, as the inherent randomness originates from these latent spaces. More

importantly, the primary training objective of an autoencoder is to reconstruct the

input, meaning similar encoding will result in similar output. From the perspective

of symmetry, this only captures the symmetry of local small changes, while ignoring

translation, rotation, and other more complex symmetries. This topic will be discussed

in greater detail in Chapter 3.
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Chapter 3

RELATIONAL MACROSTATE THEORY GUIDES ARTIFICIAL INTELLIGENCE

TO LEARN MACRO AND DESIGN MICRO

3.1 Abstract

The burgeoning field of AI for Science has emerged as a pivotal domain. Creating

systems that display specific behaviors, often referred to as “parameter design,” is

now a key focus in this area. A key challenge in parameter design is the classification

problem, which involves properly categorizing objectives for the purpose of designing

appropriate parameters, particularly when the parameter-pattern mapping is stochas-

tic. This challenge is closely linked to the concepts of symmetry and macrostates,

where macrostates provide a unifying framework for understanding symmetry and

classification. In this paper, we propose a novel relational macrostate theory that

defines macrostates based on the relationship between microstates of patterns and

parameters, offering a fresh perspective on macrostate identification. Furthermore, we

introduce MacroNet, a neural network capable of identifying macrostates and designing

parameters in a contrastive generative manner. Our method demonstrates remarkable

success when applied to Turing patterns, a complex dynamical model for studying

pattern formation in biology, showcasing its potential to contribute significantly to

the AI for Science domain.
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3.2 Introduction

The burgeoning field of artificial intelligence (AI) has increasingly contributed

to scientific inquiry in recent years, with rapid advancements in AI algorithms and

technologies. Notable examples in this domain include AI Feynman (Udrescu and

Tegmark 2020), which discovers physical laws from observation; the application of

machine learning to uncover hidden state variables (B. Chen et al. 2021); and AlphaFold

2, which employs machine learning to predict protein folding (Jumper et al. 2021).

One central aspect of the “AI for Science” domain is parameter design, particularly for

complex systems. This involves creating rules or parameters for generating patterns,

such as designing genes for producing specific proteins or finding parameters for

generating desired patterns. The genotype-phenotype mapping problem is crucial in

various scientific disciplines and has garnered significant attention.

A fundamental challenge in parameter design is the classification problem, which

entails proper categorizing objectives for the sake of designing appropriate parameters,

especially when the parameter-pattern mapping is stochastic due to thermal noise

or initial states. For instance, given an example pattern, researchers aim to identify

parameters that can generate similar patterns, necessitating a definition of similarity.

Ultimately, this task requires defining symmetry, as it pertains to the equivalence of

various patterns. Imposing symmetry is a vital aspect of the AI for Science domain,

with notable examples including AlphaFold 2, which employs an equivariant neural

network to impose rotational symmetry (Jumper et al. 2021), and classical neural

networks such as convolutional neural networks, which impose translational symmetry.

From a physical perspective, the classification problem and the concept of symmetry

are closely related to the physics concept of macrostates. Macrostates can be regarded
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as a continuous version of classification labels, with each macrostate associated with

an ensemble of microstates. In terms of classification, microstates are grouped into

the same class. Regarding symmetry, a macrostate possesses its intrinsic symmetry,

such as the macrostate “apple,” which includes rotational, reflective, and various

complex symmetries, allowing it to contain many apples with different microstates. An

essential aspect of this connection between symmetry and classification is the role of

macrostates in the broader scientific context. The abstraction of macrostates enables

the study of general laws and principles, moving away from a case-by-case analysis,

which is critical for advancing scientific understanding. This further highlights the

significance of macrostates as a fundamental element of AI for Science, particularly

in parameter design. However, many symmetries may be more complex and difficult

to identify. Consequently, macrostate identification poses a challenge, especially for

complex systems, warranting the use of machine learning to address this issue.

Traditional classification and parameter design objectives often evoke the idea of

encoder-decoder architectures, such as variational autoencoders (VAEs) (Kingma and

Welling 2013; Higgins et al. 2017) or models built upon VAEs. However, these models

are trained with the objective of reconstructing microstates. In other words, encoder-

decoder-based models define similarity based on the similarity of microstates, which

can ignore many important symmetries, such as rotational symmetry, translational

symmetry, and various complex symmetries. This ignorance overlooks the most

crucial aspects of science, extracting only lower-dimensional representations for low-

dimensional manifolds embedded in high-dimensional spaces (such as images). If the

task focuses solely on classification and finding symmetries, we can adopt contrastive

learning, which essentially trains neural networks to encode equivalent inputs into

the same representation. However, contrastive learning methods often require a
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vast amount of negative samplings and do not natively support generative sampling

ability, while parameter design, a critical objective, inherently involves generative or

sampling processes. So, in this paper, we propose a novel relational macrostate theory

that defines symmetry based on the relationship between patterns and parameters,

adopting a relationalism perspective. We also introduce a neural network capable of

identifying macrostates and designing parameters in a contrastive generative manner.

We apply our method to Turing patterns (Pearson 1993; Gray and Scott 1984), a

complex dynamical model for studying pattern formation in biology, demonstrating

its effectiveness in classifying these patterns and sampling ensembles of parameters

capable of generating patterns within the same macrostate.

3.3 The Relational Macrostate Theory

Macrostates and microstates are fundamental concepts in the study of complex

systems, providing a framework for understanding the behavior and properties of these

systems. Macrostates can be regarded as classification labels for microstates, which can

be either discontinuous, as with conventional labels, or continuous, such as dimension

reduction. In essence, macrostates emerge through a process of coarse-graining or

information reduction, where a state is considered a microstate before coarse-graining

and a macrostate after this process.

The need for a relational macrostate theory arises from the limitations of defining

equivalence and similarity based solely on microstates, as discussed in the introduction.

For example, consider a simple harmonic oscillator with microstates u1 = (p, x) and

u2 = −u1. These microstates are distinctly different, but they possess the same energy,

which is a vital macrostate property. Imposing rotational symmetry could address this
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issue; however, this requires domain knowledge, which is not suitable for a data-driven

paradigm. To avoid overlooking important macrostates by focusing on microstate

details, it is essential to consider the relationships between states, particularly for

paired microstate data such as parameter-pattern or genotype-phenotype relationships.

There have been several efforts focused on identifying macrostates associated with the

emergent regularities found in complex systems (Udrescu and Tegmark 2020; Liu and

Tegmark 2021). Despite the advancement in these theories or methods, they continue

to rely upon microstates (B. Chen et al. 2021) or the distribution of microstates

(Shalizi and Moore 2003) to delineate macrostates. Certain theories can encapsulate

symmetries transcending micro-similarities, yet their applicability remains confined

to time-series data (Hoel 2017). In prior research, a set-theory-based definition of

macrostate has been proposed (Gömöri, Gyenis, and Hofer-Szabó 2017). However, the

absence of elements from probability and information theory inhibits its comprehensive

application to empirical data and restricts the use of recently developed methods. In

the relational macrostate theory, we begin by implicitly defining equivalence between

microstates. Consider two microstates u ∈ U and v ∈ V as two random variables.

Their micro-to-micro relation can be mathematically represented as a joint distribution

P(u,v). The u and v can be mapped to macrostates α and β respectively by φu and

φv. So, we can also define a micro-to-macro relation by the joint distribution P (α, v)

and P (u, β). For a given microstate ui (or vi), its micro-to-macro relation can be

represented as a conditional distribution P (β|ui) (or P (α|vi)). Then, we can define

macrostates in the most (relational) general case as:

Definition 1. Two pairs of microstates ui and uj (and vi and vj) belong to the

same macrostate if and only if they have the same micro-to-macro relation:
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Figure 6. Macrostates Are Determined by Symmetries That Define Relations
Between Ensembles of Microstates. The Rectangle and Disks Represent the Space of
Microstates. And the Points and Links Represent the Observed Microstate Pairs
(ui, vi). The Background Color of the Points Illustrates Their Macrostates. (A) An
Optimal Solution. (B) An Inconsistent Solution. (C) A Trivial but Legal Solution,
Which Coarse Grains All Microstates to the Same Macrostate. This Kind of Coarse
Graining Is Not Informative Since the Mutual Information of Macrostates Is Zero, We
Add an Information Theoretic Criterion to Identify Good Macrostates and Exclude
Such Cases.

ui ∼ uj ⇐⇒ P (β|ui) = P (β|uj) and (3.1)

vi ∼ vj ⇐⇒ P (α|vi) = P (α|vj) (3.2)

Note, this defines an equivalence class of symmetries where ui ∼ uj and vi ∼ vj

(where ∼ indicates “is equivalent to” under the symmetry operation).

To facilitate the implementation of machine learning techniques, we introduce

an explicit definition of macrostates. The relational macrostate theory defines a

macrostate as a vector that contains information discernible from both sides of the

paired microstate data. This involves seeking two coarse-graining functions, φu(u) and
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φv(v), such that φu(u) = φv(v) (see Figure 6A and Figure 6B). This definition aims

to capture the shared information between the two sides of paired microstate data,

providing a more meaningful representation of macrostates. Furthermore, the explicit

definition serves as a practical solution to the implicit definition, making it a suitable

choice for implementation in practice. While the relational macrostate theory provides

a valuable framework for understanding macrostates, it is important to recognize that

some solutions may be trivial or uninformative, such as the case where all microstates

are coarse-grained to the same macrostate (Figure 6C). To address this issue, an

information theoretic criterion can be employed to identify good macrostates and

exclude uninformative cases. Specifically, we aim to maximize the mutual information

between α = φu(u) and β = φv(v). When a trivial solution is found, the mutual

information I(α, β) will be very low, or even zero. Employing this information criterion

helps avoid such cases, ensuring a more meaningful representation of macrostates.

3.4 MacroNet: A Machine Learning Framework for Identifying Macrostates and

Design Microstates

In the above formalization, a macrostate in U is defined by macrostates in V (i.e.,

macrostates are defined only in terms of their relations to other macrostates). This

relational definition necessitates that we optimize the macrostate mapping iteratively

to find an optimal solution. Thus, to implement the relational macrostates theory, we

propose a self-supervised generative model for finding macrostates from observations

(Figure 7A).

Our definition of macrostates can be satisfied by optimizing a microstate-macrostate

mapping to predict other macrostates. Here we use φu and φv to represent the mapping
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performed by the neural networks on U and V respectively. We have the prediction

loss:

LP = E(u,v)∼P (u,v)|φu(u)− φv(v)|2, (3.3)

where (u,v) are pairs of microstates sampled from the training data. The ideal

solution for φ is φu(u) ≈σ φv(v), meaning the macrostate of u can be predicted by

the macrostate of v with error of σ, and vice versa. However, we need an additional

term to avoid trivial solutions such as a low dimensional manifold or constant. To

do this, we add a distribution loss adopted from normalization flow models (Dinh,

Sohl-Dickstein, and Bengio 2016), LD = LDu + LDv , where:

LDu = logPnormal(φu(u))− log

∣∣∣∣det ∂φu(u)

∂u

∣∣∣∣ (3.4)

LDv = logPnormal(φv(v))− log

∣∣∣∣det ∂φv(v)

∂v

∣∣∣∣ (3.5)

The distribution loss is minimized when the outputs follow independent standard

normal distributions. We train the neural networks by combining the two loss functions

with the hyperparameter γ, which is selected by experiments, often set to 1:

L = LP + γLD (3.6)

Combining these two terms, we can approach the mutual information criterion. Di-

rectly computing LD can be very expensive since it requires computing the Jacobian.

However, since we want to do sampling, invertible neural networks (INNs, also known

as normalizing flows) can help (Figure 7D). The INNs are not only designed to be

invertible, but also designed to easily compute the log-determinant of the Jacobian.

The INNs will have the same output dimension as the input, so we abandon part of
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the dimensions (Figure 7C). For example, if we want to map an 8-dimensional vector

to two-dimensional macrostate, the INNs will still give an 8-dimensional vector as a

result, but we only take the first two variables as the macrostate for training. The

abandoned six variables, however, still have been trained to follow independent normal

distributions so we can do conditional inverse sampling.

Given an example microstate v′, suppose we want to find other microstates in V

space with the same macrostate as v′. We can use φv(v
′) to compute the macrostate

β of the example v′. Then, we can invert the neural network to sample microstates

vs that have the same macrostates. This conditional sampling allows identifying the

symmetry of macrostates and enables the design of microstates by sampling from a

given target macrostate once the network is trained on other examples with the same

macro behavior (Figure 7B). This kind of sampling can enable the design of complex

systems: the identified macrostates are not given by humans, but instead, computed

from examples by neural networks. This process makes it possible to design complex

systems without needing to first classify their behavior.

3.5 Results

In what follows we consider three applications of MacroNet. We first demonstrate

the key features of our workflow on linear dynamical systems, which allows easily

demonstrating key concepts, via the identification of a rotational symmetry and design

of microstates consistent with this behavior. The second example is a simple harmonic

oscillator (SHO), where we demonstrate MacroNet can identify a familiar symmetry

and its corresponding macrostate in physics – time translation invariance and energy.

For this example, we show how our workflow can identify equal energy surfaces for the
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SHO. The final example is Turing patterns, where we show the utility of MacroNet in

solving the inverse problem of mapping macro-to-micro in a complex system.
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3.5.1 Linear Dynamical Systems

We start with an experiment analyzing linear dynamical systems. Their parameter-

pattern mapping is a many-to-many relationship, which highlights the need for our

methods. This experiment demonstrates the workflow of identifying macrostates based

on symmetries and then designing microstates from the identified macrostates. Here

we choose a two-dimensional linear dynamical system whose dynamics are given by

dx⃗
dt

= Mx⃗ (3.7)

where x is the independent variable, and M is a 2 × 2 matrix that includes

the parameters that specify the dynamics of the system. Given a matrix M and

an initial state x0, we can generate a sequence of observed states by computing

xt+1 = xt +Mxtδt. The trajectory will be T = [x1, x2, ..., xn] in the two-dimensional

space, where n = 8 and δt = 1/n. Here we choose n=8 because it is large enough

to show the pattern of trajectories, but not so large as to slow the training. In this

example, the micro-to-micro relations are represented by parameter-trajectory pairs,

i.e., (u, v) = (M,T ).

The mapping between parameter and trajectories is a many-to-many mapping,

which means: 1) given one parameter, different initial states will lead to different

trajectories. 2) sampling different parameters may lead to the same or similar trajecto-

ries. We use two neural networks to learn the macro relation between parameters and

trajectories: one uses φu to map the 4-d parameter matrix to a 2-d macrostate, and

the other uses φv to map the 16-d trajectory to a 2-d macrostate (Figure 8A), where

we optimize to maximize the mutual information between the identified macrostates

in both cases.
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After training, we can use the learned macrostates, which represent the conserved

symmetries in parameter trajectory pairs, to design microstates. In Figure 8B, Given an

example trajectory Te, we can compute its macrostate β = φv(Te). The neural network

φ−1
u samples parameters that can generate trajectories for the example microstate

(Figure 8C). The sampled parameters follow a conditional distribution P (M |β), where

M is the parameter matrix. In Figure 8C, we show how, given an anti-clockwise

rotating trajectory, the parameters sampled all lead to anti-clockwise trajectories.

Their macrostate embeddings are shown in SI, see Figure 26. By this process, we can

design parameters of a system to mimic the behavior of any example, even without

needing to translate the language describing the behavior to be human-interpretable.

This ability has broad applicability for the design and control of complex systems,

where simple mathematical descriptions have defied human scientists. Even when we

do not know or have access to how we could describe a behavior, the neural network

can still sample parameters to allow design of new examples through self-supervised

learning.

So far, we have demonstrated sampling parameters for the matrix M , based on a

specified macrostate (rotating anti-clockwise). We showed how the sampled parameters

allow constructing new example trajectories using the sampled matrix M in Eq 3.2

with the desired macro behavior. We can also sample trajectories directly, via a

sampling process where we specify the target macrostate and then use the inverse

sampling to recover trajectories. These sampled trajectories follow the distribution

of P (T |β), where T is the trajectory microstate. Figure 8D show that the sampled

trajectories all follow the same behavior, exhibiting anti-clockwise rotation, just as

with the example trajectory. It is worth noting that we did not give the neural network

any concept of “rotate” or “clockwise”: the neural network discovered this symmetry
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on its own, as one that is relevant to how the parameters of the matrix M map

to observed trajectories. This experiment gives a simple example of how a neural

network architecture like MacroNet could potentially be developed that might aid in

identifying more complex genotype-phenotype maps, where genotypes play the role of

parameters and phenotypes the role of trajectories.

3.5.2 Simple Harmonic Oscillators

Although we define macrostates by identifying symmetries underlying general

relations, time relations are still of particular interest as a use case because of their

long history in physics and their relationship to energy. Here, we demonstrate how

MacroNet can automatically identify the symmetry of time translation invariance

associated to energy, using a simple harmonic oscillator (SHO) as a case study. The

Hamiltonian of the SHO is:

H =
p2

2m
+

1

2
kx2 (3.8)

In this experiment, I let m = 1 and k = 1 for all cases. The micro-to-micro relation

is a temporal relation, represented by pairs of (x0, p0) and (xτ , pτ ), where x0 and p0

are the initial position and momentum and τ is uniformly sampled time interval (0, 2π)

(see Figure 9A). Since I am trying to find a time invariant quantity, I force the two

neural networks φu and φv to share the same weights.

Figure 9 shows our training results. When require the neural network to learn a 1D

invariant as a macrostate, the macrostate is exactly a function of energy (Figure 9B).

Figure 9C shows samplings from macrostates to microstates. The same color represents

microstates sampled from the same macrostate. The sampling shows how the neural
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Figure 9. With a Simple Harmonic Oscillator, I Train a Neural Network to Find
Invariant Quantities as a Special Case of Macrostates. (A) The (u, v) Pairs Are
Sampled from Simulations, Where u = (x0, p0) (the Black Dots) and v = (xτ , pτ ).
The τ Is Sampled from a Uniform Distribution U(0, 2π). The White Dots in the
Yellow Region Show a Sampling Example of v. Due to the Randomness of τ , It Is
Impossible for Accurate Prediction at the Micro Level. (B) The Neural Network
Learns a Function of Energy as the Invariant Quantity. The x-Axis Is the Energy of
Microstates Computed by the Physical Theory of SHOs Discovered by Humans, and
the y-Axis Is the Macrostate Discovered by the Neural Network. They Show a
Monotonical Relation, Which Implies the Successful Identification of Energy by the
Neural Network. (C) Conditional Sampling Microstates from P ((x, p)|φ(x, p) = αi),
Where the αi Are the Given Macrostates. The Results Approximate Equal Energy
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the Learned Macrostate Mapping as a Field.

network has identified three concentric circles, which correspond to the equal energy

surfaces of the SHOs (Figure 9C), where the equation p2 + x2 = H represents a circle

with a radius of
√
H. Note that the uncertainty of τ makes it impossible to accurately

predict the future microstates. In fact, the optimal prediction at any microstate will

be zero when optimizing the MSE loss. However, using MacroNet, it can still predict

the future macrostates and sample microstates from them. This is an example of

how predictions at the micro level can fail, and how macrostates can help solving

many-to-many mapping problems, such that predictions are still possible.
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3.5.3 Turing Patterns

Finally, I applied the same method on a complex system: Turing patterns. Here, I

use the Gray-Scott Model (Gray and Scott 1984), a 2D space that has two kinds of

components, a and b, which might, for example, correspond to two different kinds of

chemical species. The a and b are two scalar fields corresponding to concentration of

the two species. Their dynamics can be described by the differential equations:

∂a

∂t
= Da∇2a− ab2 + F (1− a) (3.9)

∂b

∂t
= Db∇2b+ ab2 − (F + k)b (3.10)

where Da, Db, F and k are four positive constants - these four parameters determine

the behavior of the system. This model can generate a set of complex patterns, see

Figure 10A. By finding macrostates shared by patterns and parameters, we can then

in turn design related systems by sampling parameters that will yield user-specified

patterns. Here, u is the parameter vector, u = (Da, Db, F, k). And v is the generated

pattern, represented by 64× 64 images, v = (a(64×64), b(64×64)).

We trained the neural network to map parameters and patterns to each other at

the macro level (such that these will share the same macrostate). Figure 10 shows

the sampling based on the specified patterns. By giving an example pattern ve

(Figure 10A), we can sample parameters u′ ∼ P (u|φu(u) = φv(ve)) with the same

macrostate as ve (Figure 10B). As Figure 10C shows, the sampled rules (set of four

parameters) will generate patterns similar to the example patterns. This experiment

shows that our method can design complex systems by sampling parameters that will
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generate patterns exhibiting the same macrostate as the example behavior. That is,

MacroNet can solve the inverse problem of going from pattern to parameters.

The microstate ensembles associated with macrostates can also be directly dis-

covered by this approach. Figure 10B shows the distribution of parameters sampled

from different macrostates. The sample points with the same color are considered

as equivalent to each other under the mapping φu, which takes the microstate to a

macrostate. Parameters in the same equivalence class (sharing the same symmetry)

will therefore lead to patterns that have the same macrostates, so we can sample any

parameters along these equivalence curves and generate Turing patterns with the

user-specified behavior.

An additional feature is that observing the sampled parameters can also tell us

the importance of different parameters for specifying a target macro behavior. For

example, as shown in Figure 10B, different macrostates have similar sampling on Da.
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However, on (F, k), different macrostates sample different parameters. This indicates

that F, k will have stronger effect on differences in macro behavior than Da. This has

implications for specifying control parameters in controlling and designing complex

systems. An example of interest is in pattern formation in regeneration (Levin 2014),

where a framework like MacroNet could identify the patterns controlling specific

features of shape.

3.6 Discussion

Since Anderson published the seminal paper, More is Different, it has been in-

creasingly recognized that complex systems displaying emergent behaviors do not

necessarily share the same symmetries as their micro-rules (Anderson 1972; Strogatz

et al. 2022). That is, we know the mapping from a underlying rule to a large-scale

system does not preserve all the symmetries of the underlying rule, due to symmetry

breaking and perturbations from the environment. In some sense, this is the very

definition of “emergence”. However, we might expect some symmetries to be retained

such that micro-rules share at least a subset of their symmetries with any macroscopic

emergent behavior. Indeed, this is what we see in the experiments presented in this

work. Each macrovariable can represent a type of symmetry: for instance, the energy

of a simple harmonic oscillator represents how all states with the same energy are

symmetric in time to others with that energy. In a more complex case, the macrostates

of Turing patterns contain the information that is invariant under the mapping from

parameter to pattern, even under external perturbations. The parameters that have

the same macrostate are symmetric to each other because they all generate the patterns

with the same macrostate. By finding the macrostates via the mutual information
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shared between ensembles of microstates, we can find the symmetries shared by the

two sets of microvariables. This is a general framework for identifying macrostates as

maps conserving the symmetries of systems: hence, while given “more is different” is

true in most cases, we can still find examples of macrovariables that behave as “more

is same” because they will retain underlying symmetries present at the microscale.

The process of finding macrostates can be considered as a prediction problem:

that is, it is one of finding predictable variables of two related observations. There

are no such variables if two observations have zero mutual information. Thus, if two

observations have non-zero mutual information, we can use macrovariables (ensembles

of microstates) to connect the two observations. In this way, one can consider

macrostates as the instantiated mutual information mapping observations of one

system to another (or a system to itself at a different point in time).

Across our experiments, we showed how macrostates can emerge from identifying

predictive relations between two sets of observations. The parameter-trajectory relation

leads to the macrostate of rotation and direction. The temporal relation between

past and future leads to the macrostate energy in the simple harmonic oscillator. In

the more complex case of Turing patterns, macrostates arise from parameter-pattern

relationships. Thus, by adopting this relationalism idea, we can establish an approach

targeting an ambitious question in the complex systems field: is it possible find general

laws of complex systems? To address this question, one key task is to find a set of

universal macrostates that can be found in most complex systems. If such universal

macro level behavior could be identified, the laws of the universal macrostates would

be considered as the general laws of complex systems. The method proposed in this

work makes an initial step for this ambitious target – by finding macrostates from

relations, the macrostates can be used on both sides of the relations (although they
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may be interpreted differently on either side of the relation). For instance, in the

Turing pattern case, the macrostates are not only the macrostates of patterns, but

also the macrostates of parameters, and indeed these are both one in the same because

of the conserved symmetry. For future work, to find more universal macrostates,

the framework may be extended from a second-order relationship to higher-order

relationships. Applying this method more generally to complex systems may reveal

there are indeed universal general laws, or it may reveal that no map can apply to

all systems – that is, that the laws of complex systems are unique to specific classes

of systems. In either case, the framework we have presented here, which offers an

automated means for identifying general laws via symmetries in complex systems,

offers new opportunities for asking and answering such questions.
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Chapter 4

UNCOVERING GENOTYPE-PHENOTYPE MAPPING IN COMPLEX

CHEMICAL SYSTEM BY IDENTIFYING MACROSTATES

4.1 Abstract

In biological systems, specific genes are associated with certain features. This

mapping from gene to feature is often referred to as genotype-phenotype mapping. No-

tably, this concept extends beyond the realm of biology, with analogous relationships

observed in domains such as rule-pattern mapping and chemical compound-behavior

mapping. However, understanding genotype-phenotype mappings poses significant

challenges. The assumption of a direct one-to-one correspondence between genotypes

and phenotypes is often overly simplistic. In reality, multiple genes can collectively

influence a single phenotype, while a single gene can also affect multiple phenotypes.

Additionally, given the reality that many phenotypes cannot be controlled and numer-

ous genotypes do not regulate any characteristic, the quest for regularities within these

higher-order relations frequently leads to an exponential surge in potential combina-

tions. This factor considerably exacerbates the complexity of the task. Nevertheless,

by identifying concealed macrostates within both genotypes and phenotypes, these

intricate high-order regularities can be simplified through macro-variables. In this

study, we have elected to focus on the oil droplet movement system as an example of

a chemical genotype-phenotype mapping system. This system involves oil droplets

of varying chemical compositions exhibiting different movement patterns within a

Petri dish. By observing these patterns and identifying macrostates, we discovered
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two independent dimensions. Each dimension reveals how a combination of chemical

compounds governs a specific aspect of the oil droplet movement patterns. Employing

a novel regression method proposed in this study, we were able to extract concise

interpretable regularities from observations of this complex chemical system. Fur-

thermore, an experimental chemical validation was conducted to validate the model

prediction. One of the macrostates was successfully controlled.

4.2 Introduction

In biological systems, DNA or RNA predominantly controls the characteristics

of an organism. Different genotypes often result in different phenotypes, similar to

how different book titles typically correspond to different contents. This type of

relationship is widely observed. For example, consider the rule-pattern mapping

in elementary cellular automata: certain rules may produce blank patterns, while

others lead to more complex ones (Wolfram et al. 2002). Intriguingly, some rules with

divergent initial states can elicit completely dissimilar behaviors (Riedel and Zenil

2015). Another instance is the parameter-behavior mapping in Turing patterns (Gray

and Scott 1984). In reaction-diffusion systems, a set of parameters can lead to similar

or differing behaviors (Pearson 1993). Broadly speaking, these mappings are all

analogous to genotype-phenotype mapping, exhibiting comparable characteristics and

posing similar challenges.

Mathematically, genotype-phenotype mapping can be conceptualized as associa-

tions between strings or vectors (representing genotypes) and structures (representing

phenotypes). The definition of phenotype is typically quite broad, including patterns

at all levels of resolution as well as behaviors (Ahnert 2017). A critical aspect of such
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Figure 11. The Movement Trajectories of Oil Droplets in a Petri Dish Are Indicated
by Lines of Various Colors. Distinct Configurations of Chemical Compounds Will
Result in an Array of Unique Movement Patterns.

mapping is its many-to-many nature. In other words, the same genotype, subject to

different boundary conditions and external noise, can often lead to multiple different

phenotypes. Conversely, differing genotypes can also yield the same phenotype due

to neutral mutations or external noise. This factor poses a challenge to answering a

fundamental question: which genotype(s) control which phenotype(s)?

Considering the complexity of biological systems and their lengthy experimental

timespans, alongside the oversimplified models that can often be too ideal, we focus our

study on the intriguing behavior exhibited by oil droplets in Petri dishes (see Figure 11)

when combined with four distinct chemical compounds (Gutierrez et al. 2014). These

droplets display compelling movement patterns, ranging from static positioning and

motion to more complex activities like splitting or merging. And these movement

patterns can be controlled by chemical compounds via evolutionary selections. Hence,

this serves as an advantageous platform to study genotype-phenotype mapping, with
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to Be Mutually Predictive.

our primary focus being the relationships between the chemical compounds and the

resultant behaviors.

One of the major challenges within this scope is determining which aspects of the

chemical compounds can predict specific behavioral elements, as previously mentioned.

For instance, consider a compound that influences the oscillation magnitude of the

oil droplets. Traditional predictive models might struggle in this scenario as they

generally aim to predict average trajectories. However, averaging trajectories with

different oscillation phases would produce a smooth trajectory devoid of oscillation.

Difficulties can also arise when moving in the inverse direction, from the desired

movement patterns to chemical compounds, where different compounds can result in

similar movement patterns. These issues fundamentally arise from the many-to-many

mapping nature inherent in genotype-phenotype relationships.

These complexities render both parameter design and trajectory control difficult

due to the uncertainty of predictive relationships. To mitigate this, we introduce
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a framework for identifying macrostates as mutually predictive information (Zhang

and Walker 2022). This methodology allows us to extract macrostates as mutually

predictive information from both chemical compounds and trajectories (see Figure 12).

In turn, when configuring parameters for specific trajectory types, we can sample

compounds from a given macrostate.

From an information perspective, we abandon attempts to predict unpredictable

details. Rather, we focus on predicting the macrostate (the predictive information)

and sample unpredictable details. This approach avoids the averaging issue discussed

previously.

It is essential to select an appropriate dimensionality of macrostates such that the

macrostates have sufficient mutual information between genotypes and phenotypes.

Enough mutual information is crucial for explicating each dimension of the macrostates.

To do this, based on the MacroNet architecture (Zhang and Walker 2022), we propose

a method for estimating mutual information between the chemical compounds (param-

eters or genotypes) and oil droplet trajectories (patterns or phenotypes). This method

helps us determine the quantity of mutual information that can be conveyed by a

certain number of macro-variables, enabling us to select an appropriate dimension of

the macrostate for the oil droplets.

4.3 Method

4.3.1 Oil Droplet and Data Pre-processing

Our experiment involves the use of oil droplets created from four chemical com-

pounds: octanoic, DEP, pentanol, and octanol. For each experiment, we placed four
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droplets into a Petri dish and captured videos of their behaviors. To accumulate ample

training data, we employed an autonomous system capable of repetitively conducting

this experiment, each time testing different ratios of the chemical compounds. 900

unique experiments were conducted, each involving six parameters: the ratio of the

four chemical compounds along with humidity and temperature data.

We preprocessed the video data by tracking the trajectories of the oil droplets

and recording their size and shape details. Given that the oil droplets can split,

merge, or even dissolve in the Petri dish, despite beginning each experiment with four

droplets, we refrained from pairing the genotype-phenotype by chemical compounds

and behavior of all droplets—owing to the fact that the total droplet number can

escalate to approximately 50. Instead, we constructed the genotype-phenotype pairs

by associating chemical compounds with single droplet trajectories. To maintain

simplicity, we prioritized droplets demonstrating prolonged stability, thereby filtering

out those of notably small size.

Initially, the raw video data were captured at a rate of 150 frames per second.

To manage data volume while minimizing significant information loss, we resampled

the oil droplet trajectories to 10 frames per second. Subsequently, around 1700

droplet trajectories were selected for training. Our primary filtering process focused

on several attributes such as the trajectories’ initial frame, length, number of outliers,

and shape. Secondary filtering solely considered trajectory length to accommodate

different training strategies more effectively.

Given the smooth trajectories exhibited by these oil droplets, we employed an auto-

encoder for dimensionality reduction as a pre-training process, thus accelerating the

subsequent training phase. We trained InfoVAE (Zhao, Song, and Ermon 2017) models

to encode the trajectories (time series of positions and sizes) into a 32-dimensional

57



format. Following this, these 32-dimensional trajectory representations, along with

the 6-dimensional parameters, were mapped into macrostates of lower dimensions

using another neural network.

4.3.2 Identify Macrostate by Normalization Flow

Given our need for both encoding and generating, we employ MacroNet to identify

macrostates from parameter-trajectory pairs. MacroNet utilizes two encoders based on

normalization flow (or flow-based models), which map parameters and the compressed

trajectories into a lower-dimensional vector. Subsequently, we train these two vectors

to be identical to each other. This training objective allows the encoders to identify

the mutually predictive information that can be mirrored in both chemical parameters

and trajectories. Since we’re using normalization flow to construct our encoder, we

can reverse the encoding process and sample the chemical compound configurations

from a given encoding or, as we prefer to term it in this paper, macrostate. This

encode-generate architecture refrains from directly predicting parameters or trajecto-

ries. Instead, it predicts only the predictable information, which is the macrostate

encompassing information on microstate distribution.

Contrastive training objectives often lead to the mode collapse problem, where the

encoders simply output a constant value or a lower-dimensional manifold. This issue

is commonly addressed by incorporating a large number of negative samples. However,

the normalization flow models offer a streamlined solution. With normalization flows,

we can directly estimate the probability density by computing the log-determinant of

the Jacobian for the encoder. Thus, we can directly optimize the outputs to follow

a certain distribution. In this case, we train the output to follow an independent
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normal distribution. Enforcing this particular distribution helps to prevent trivial

solutions, such as constant numbers or lower-dimensional manifolds, as outlined in

Chapter 3. Moreover, the normal distribution simplifies the estimation of mutual

information, thereby laying the groundwork for the subsequent mutual information

estimation methodology. As a result, the training objective becomes:

θ = argmin
θ

Eu,v∼P (u,v)

(
∥φu(u)− φv(v)∥2 − LD(u)− LD(v)

)
(4.1)

where φu and φv are encoders for chemical parameters and trajectories, respectively.

The LD, or distribution loss, can be computed at a low cost when using normalization

flows:

LD(u) = −
∥α′∥2

2
+ log det

∂α′

∂u
. (4.2)

Here, α′ is the original output of the normalization flow. Due to the invertibility

requirement of the normalization flow, α′ will have the same dimension as the input

vector. To reduce the dimension, some dimensions must be omitted. Hence, the

encoder output is φu(u) = α = α′
1:n, where n is the macrostate dimension. When

performing inverse sampling, the first n elements are given, while others are sampled

from an independent normal distribution. This approach allows us to achieve our

encode-generate objective.

4.3.3 Mutual Information Estimation

In the process of identifying mutually predictive variables as macro-variables,

we are inherently required to answer two principal questions: What is the efficacy

of the training? And subsequently, how many macro-variables should be selected?
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Though we utilize two loss functions as training objectives, namely prediction loss

and distribution loss, they do not provide an impeccable gauge of effectiveness. The

prediction loss merely demonstrates the proximity between the predicted macrostate

and the actual macrostate without indicating the distribution. Similarly, the absolute

value of the distribution loss fails to yield substantial insights about the distribution.

Thus, the outcomes of these training objectives offer no clarity on the quality of the

results. Consequently, it necessitates a direct estimation of the mutual information

between the macrostates on either side. This estimation will enable us to tell how

much information is shared between chemical parameters and the trajectories.

Estimating the mutual information between two random variables, particularly

in the context of high-dimensional variables, is typically a complex task that has

been the focus of numerous research efforts (Kraskov, Stögbauer, and Grassberger

2004; Belghazi et al. 2018). However, in our specific case, the task is considerably

simplified because we train the macro-variables to adhere to independent normal

distribution. As a result, the estimation of mutual information becomes relatively

more straightforward.

If we view the macro-variables on either side of the paired data as two random

variables, α, and β, their mutual information can be computed as the difference

between the summation of their entropy and the entropy of their joint distribution,

which is represented as follows (Cover and Thomas 1991):

I(α, β) = H(α) +H(β)−H(α, β) (4.3)

Since the trained macro-variables will follow normal distributions with covariance

matrices, Nn(µ,Σ), their differential entropy is relatively simple to compute (Lazo

and Rathie 1978):
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Figure 13. The Estimated Mutual Information of the Macro-variables Increases
Through the Training Process. The Background Shadow Indicates the Standard
Deviation of Mutual Information Estimated from Different Trainings of
Cross-validation. The Covariance Matrices Are Computed Using 256 Samples at
Each Point, and the Cross-validation Employs a k-fold Method, with k Set at 5.

H[Nn(µ,Σ)] =
1

2
n+

n

2
ln(2π) +

1

2
ln detΣ, (4.4)

where n is the dimension of the random variable, and Σ is the covariance matrix.

Hence, the mutual information can be computed as:

I(α, β) = H[Nn(µα,Σα)] +H[Nn(µβ,Σβ)] +H[Nn(µα+β,Σα+β)] (4.5)

= 2
(n
2
+

n

2
ln 2π

)
+

1

2
ln detΣα +

1

2
ln detΣβ −

1

2
ln detΣα+β − (n+ n ln 2π)

(4.6)

=
1

2
ln

(
detΣα detΣβ

detΣα+β

)
(4.7)

The covariance matrices can be empirically computed with ease. By leveraging

this metric, we can quantify the quality of the training result. Our experiments
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reveal that mutual information bears a significant correlation with the quality of the

macrostate. Training results for macrostates with higher mutual information manifest

a superior correlation with human data comprehension. Throughout the training

process, an increase in mutual information is observed, suggesting that MacroNet

effectively extracts the mutually predictive variables from paired data (see example in

Figure 13). It’s worth noting that this method hinges on the assumption of normal

distribution. Early values may not be entirely reliable because the outputs need time

to approximate a normal distribution. Consequently, in practical applications, a minor

degree of manual selection for an early stopping point (Prechelt 2002) is often required

when choosing a model for subsequent experiments.

4.4 Results

4.4.1 Mutual Information and Dimensions of Macrostates

A crucial question in our study pertains to the optimal dimensionality of

macrostates. Ideally, this should not exceed the minimal dimension of the parameters

and trajectories. In this context, the maximum dimension would be six, corresponding

to the parameter size. However, not all parameters can independently control the

trajectory behaviors, and not all trajectory details can be influenced by parameters.

Therefore, we anticipate the existence of an optimal dimension for macrostates wherein

most of the mutual information between parameters and trajectories is encapsulated.

The method of mutual information estimation we introduced can address this

dimensionality question. For a given dimension of a macrostate, the model will achieve

a specific value of mutual information. Through optimization of the neural network
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Figure 14. The Maximal Mutual Information Conveyed by Macrostates at Different
Dimensions. Left: Training the Macronet with Weight-fixed InfoVAE. Right: By
Continually Training the InfoVAE Encoder, We Can Capture More Mutual
Information with Macrostates.

for peak performance, this mutual information can approximate the maximum mutual

information that can be conveyed by this dimensionality.

As the number of macrostate dimensions increases, so does the mutual information.

The extent of this increase corresponds to the additional mutual information that the

added dimension can carry. By setting a threshold, we can objectively ascertain the

number of macrostates present in a system. Given the inherent randomness in both

training and mutual information estimation, we employ k-fold (k = 5) cross-validation

five times for each dimension, extending across 3000 epochs. Notably, when the

dimension is set to one, we extend the training to 10,000 epochs as this configuration

demonstrates a slower pace in achieving peak performance.

We carried out experiments on mutual information at different dimensions using two

training strategies. In the first strategy, we initially trained an InfoVAE (Zhao, et al,

2017) to disentangle various features of trajectories into 32 dimensions. Subsequently,

we froze the encoder and incorporated a linear invertible layer (Kingma, et al, 2018) to

further decrease it to the dimension of the macrostate. As depicted in Figure 14(left),

63



increasing dimensionality does encapsulate more mutual information since the first

dimension captures a significant portion, specifically 61.4% of mutual information.

Our second strategy diverges from the first in that we do not freeze the encoder;

rather, we concurrently train it with the linear invertible layer. This method allows

the identified macrostates to encapsulate more mutual information, which continues to

rise as we increase the macrostate dimension (as depicted in Figure 14 (right)). Under

this framework, the most mutual information is conveyed by the first two dimensions,

while additional dimensions contribute less. We implemented a threshold of 0.25 bits

to ascertain the optimal dimension. Although increasing the dimension augments the

total mutual information conveyed by the macrostate, the additional dimension also

injects more randomness into the macrostate space due to its low mutual information

contribution, thus increasing entropy. To maintain macrostate interpretability with

minimal entropy, while preserving most mutual information, a threshold is essential.

Based on this framework and threshold, we set the macrostate dimension at two.

Upon examining the trajectory embedded in the macrostate space, we observed

that while the first strategy yields a clearer intuitive trend, it encapsulates less mutual

information. The second strategy, though rendering it more challenging to discern the

significance of different macrostate dimensions, does not adversely affect our goal of

designing chemical parameters. As depicted in Figure 15, the first strategy, despite

providing a more intuitive trajectory embedding, captures less mutual information

with macrostates. This could potentially make parameter design less informative.

Therefore, we have elected to proceed with the second strategy for further study.

Importantly, as referenced in the mutual information section, mutual information

estimation may exhibit a bias in the early stages. To mitigate this, we manually select
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Figure 15. The First Strategy (Left) Provides a Clear Meaning at Different
Macrostate Dimensions. Conversely, the Second Strategy (Right), Despite Presents a
Less Intuitive Trend Across Each Dimension, Identifying Macrostates with Higher
Mutual Information.

a checkpoint from our five training runs at various epochs, which helps to secure a

better trend and feature disentanglement.

The distinction between these two strategies underscores the fundamental difference

between our approach and other feature disentanglement methods such as VAE or

InfoVAE. While certain features, such as high-frequency patterns or minor details,

might be overlooked by models primarily aimed at reconstructing micro-details, these

very features could serve as important dimensions of macrostates that carry mutual

information in our method. This contrast indicates the unique advantage of our

approach in the realm of feature extraction.
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4.4.2 Understanding Dimensions of Macrostates

As we have two coarse-graining functions for both the chemical and trajectory

data, and despite their close training proximity, these functions possess distinct forms.

Consequently, it’s necessary to understand the dimensions of macrostates for both

aspects separately.

In regard to the chemical compound parameter side, given their low dimensions,

symbolic regression can be employed to gain a concise understanding. On the trajectory

side, due to the high dimensionality, we may need to employ a hypothetico-deductive

method to decipher the meaning.

4.4.2.1 Macrostate and Chemical Compounds

Heuristically, by doing experiments, a linear fit can reveal substantial information

about how parameters are mapped to macrostates. However, as the MacroNet does

not have any sparse coding requirements, a direct regression might not show a

correlation between chemical compounds and macrostates with a sufficiently sparse

result. More specifically, due to the rotational symmetry of the macrostate embedding,

a rotation might exist that allows macrostates to have a sparser relation to the

chemical parameters. To accomplish this, we propose a simple modification to linear

regression: instead of fitting a linear function f such that y = f(x), we also fit a

rotation matrix Rθ, to achieve Rθ(y) = f(x). We apply L1 regularization (alpha=0.1)

only to the coefficients of the function f . To implement this concept, we use EUNN,

a parameterized unitary matrix, to represent Rθ (Jing et al., 2017), and a linear layer

to represent f , subsequently training it via the SGD method. By using this method,
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Figure 16. The Linear Regression Result Fitted Alongside a Rotation Matrix. The
Coefficient Indicates the Degree to Which the Concentration of Different Chemical
Compounds Contributes to the Two Dimensions of the Rotated Macrostates. Higher
Absolute Values of the Coefficient Imply Greater Contributions. The Two Sub-figures
on the Right Demonstrate a High Correlation Between the Fitted Macrostates,
Denoted as α̂′, and the Original Macrostate, α′.

we discerned two almost orthogonal dimensions from the chemical space (refer to

Figure 16): the first dimension is determined by the ratio difference between DEP and

pentanol, while the second dimension is determined solely by the ratio of octanoic.

Consequently, the rotation matrix is:

Rθ=0.93 =

 0.598 0.802

−0.802 0.598

 (4.8)

The trajectory embedding post-rotation is displayed in Figure 17. In this rotated

embedding, each dimension attains enhanced interpretability. According to this figure,

a higher DEP and lower pentanol lead to a more “complex” movement pattern, which

traverses the entire Petri dish. Additionally, higher octanoic appears to make the

trajectory more rugged and localized. Nonetheless, this interpretation is derived
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Figure 17. Left: The Trajectory Macrostate Embedding Without Rotation; Right:
The Trajectory Macrostate Embedding after Apply Rotation.

from human observation with intuitive explanations. Despite the linear model fitting

the macrostate quite effectively, it doesn’t imply that we can use the linear model

as the first step and bypass the MacroNet training. This stance is supported by

two main reasons: Firstly, the model should possess adequate power to carry the

mutual information if the data pairs share high mutual information, which is critical

in determining the dimension of the macrostate. Secondly, in order to estimate the

mutual information accurately, we need the macro-variables to follow a multi-normal

distribution. The transformation into such a distribution demands a substantial

representational capacity that linear models are unable to provide. As we need to

compare the mutual information across different macrostate dimensions, achieving

optimal performance is crucial.

68



4.4.2.2 Macrostate and Trajectories

Name Description Definition

entropy Entropy of the droplet’s posi-
tion distribution.

∑
i,j pij log pij , where ij is the

index of the bins for counting
pij.

avg_speed Average speed. ¯|v| = 1
T

∑
∥xt+1 − xt∥

log avg speed Logarithm of the average
speed.

log v̄

avg_acc Average acceleration. ¯|a| = 1
T

∑
∥vt+1 − vt∥

avg log size Average of the logarithm of
the droplet size over time.

1
T

∑
t log st, where st is the

droplet size at time t.

position_std Standard deviation of the
droplet’s positions over time.

√∑
t ∥xt − x̄∥2/T

size_std Standard deviation of the
droplet’s sizes over time.

σs =
√∑

t |st − s̄|2/T

log_size_std Logarithm of the standard de-
viation of the droplet’s sizes
over time.

log σs

size_change Average change in size over
time.

δs = 1
T

∑
t |st+1 − st|

log_size_change Logarithm of the average size
change over time.

log δs

size_diff Difference in size between t =
0 and t = T .

|s1 − sT |

curvature Average curvature of the tra-
jectories.

1
T

∑
min(kt, 100), where kt =

|x′y′′ − y′x′′|/(x′2 + y′2)3/2

Table 2. Trajectory Features Used in the Linear Regression.

Considering the high dimensionality of trajectories, we initially perform heuristic

feature engineering to extract 13 features potentially related to the macrostates (see
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Figure 18. Linear Fitting Coefficient for Trajectory Features and Macro-variables.
See Definitions of X-axis in Table 2.

Table 2). By using LASSO (least absolute shrinkage and selection operator) linear

regression with a regularization factor of 0.1, we determine that the first dimension of

the rotated macrostate correlates with the logarithm of the average speed of the oil

droplets. The second dimension, on the other hand, associates with the logarithm

of oil droplet size change, specifically the log standard deviation of oil droplet speed

(refer to Figure 18).

Upon combining the analysis of both chemical compound concentrations and oil

droplet trajectories, we can deduce the presence of two independent macro-variables in

this chemical system. The first variable suggests that a higher concentration of DEP

in conjunction with a lower concentration of pentanol will enhance the movement

speed of oil droplets. The second variable indicates that a higher concentration of
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octanoic acid will limit the size variation (see log_size_std defined in Table 2) when

oil droplets are in motion within the Petri dish.

4.4.3 Macrostate Embedding and Parameter Design

Through the identification of macrostates within parameter-trajectory pairs, we

can glean insights into the spatial pattern of trajectory macrostates. We present the

results of two-dimensional macro-variable embeddings here (refer to the top-right

section of Figure 9). By applying the inverse function of the neural network, we

can sample chemical parameters capable of generating trajectories corresponding to

a specific macrostate. In this case, we sampled 256 parameters for macrostates at

coordinates (1,1), (1,-1), (-1,1), and (-1,-1). These particular macrostates were chosen

to highlight the effects of varying macro-variables.

The comparison of these distributions confirms our previously stated conclusions.

The concentration differential between DEP and pentanol exerts the most significant

influence on the first macro-variable, while octanoic concentration correlates with the

second macro-variable (refer to the scatter plots and histograms in Figure 19).

4.4.4 Experimental Validations

Following the sampling of microstates corresponding to the four selected

macrostates, we executed chemical experiments to validate these macrostates. Rather

than sampling from the distribution, we sampled the top five most probable microstates

associated with each given macrostate, highlighted in Figure 19. See Appendix B.1
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Figure 19. This Figure Depicts the Distribution of Sampled Chemical Parameters
Sampled from Different Macrostates. The Scatter Plots in the Triangular Region at
the Bottom Left Display Various Chemical Compounds Sampled from These
Macrostates, with Each Macrostate Represented by a Different Color. The
Highlighted Points Correspond to the Sampled Microstates Used for Experimental
Validation. Along the Diagonal Are Figures Illustrating the Marginal Distribution of
Each Chemical Compound. In the Top-right Corner, Trajectories Are Embedded in
the Rotated Macrostate Space, with Colored Dots Indicating the Macrostates from
Which Microstates Are Sampled. The Distribution of Sampled Temperature Is
Presented in the Top Middle, and the Sampled Humidity Is Displayed in the Middle
Right. Notably, Neither Temperature nor Humidity Shows Significant Variation
Across Different Macrostates.
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for the sampling details. Each sampled microstate was subjected to five replicated

experiments. The same video analysis was subsequently applied to extract the moving

trajectories of the oil droplets. While we were unable to control temperature and

humidity, our preceding study demonstrated that these factors did not significantly

impact our results. However, the humidity range was out of the training distribution.

Due to seasonal variations, the validation humidity was 49 ± 1%, compared to the

38±4% humidity of the training data. The temperature also shifted from 23.6±0.6◦C

to 24.2± 0.2◦C. Despite these changes not affecting the macrostate, such deviations

that are beyond the training distribution could potentially yield unexpected results.

Given their negligible impact on the macrostate, we set all temperature and humidity

values to the average values from the training set when computing the macrostate of

the validation set.

Figure 20 presents the validation results. We compared the trajectories associated

with different microstates sampled from corresponding macrostates. The standard
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deviation of the droplet size over time was successfully controlled. However, the

average speed of the oil droplets was not controlled. The validation results reveal a

negative correlation between average speed and the first dimension of the macrostate,

while the training data indicate a positive correlation.

4.5 Discussion

Science is multifaceted, encompassing aspects such as data collection and observa-

tion. However, a common ultimate goal is the discovery of the laws of nature from

observations. An observation is a fusion of these laws and the boundary or initial

states. Only with such separation, physical laws can be universal. In other words, the

law represents the residual information once the information pertaining to boundary

states has been removed (Pattee, Rączaszek-Leonardi, and Pattee 2012).

When we intentionally overlook boundary information, a degree of uncertainty

arises. Hence directly predicting microstates in this context might not be the most

optimal choice, as the distribution’s average may not correspond to the highest

probability density. For instance, in a spherical shell distribution, the average lies at

the center – a location with zero probability density.

To overcome this challenge, a generative model is required to decouple the law

from the boundary condition. Therefore, generative models, although often currently

used to generate images or language, could play a pivotal role in scientific discovery.

These models predict associated distributions (such as using trajectories to forecast

the distribution of chemical parameters) and generate that information (like initial

states and boundary conditions) which is otherwise unpredictable.

Our research findings affirm this point: our second training strategy uncovers
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more macrostates than the first strategy that freezes the pre-trained InfoVAE encoder.

Although it does not use the trajectory to predict the chemical parameters, it does

aim to find a latent encoder capable of accurately reconstructing the micro details of

trajectories. However, as we noted earlier, some details may not be related to laws,

but instead associated with boundary conditions. Moreover, some overlooked patterns,

though potentially related to the law, may still be small and detailed, leading to their

exclusion by the VAE. This oversight could disregard important macrostates and

misguide our study. Nonetheless, when we unfreeze the pre-trained model and train

it in tandem with MacroNet, we enable the encoder to predict only the distribution,

thereby relinquishing the futile attempt to predict microstate details.

In the experimental validation discussed in Section 4.4.4, we identified macrostates

with two dimensions; however, only one was successfully controlled. Several factors

could contribute to this deviation from prediction. One potential reason could be

the differences in experimental conditions. The humidity during validation was

significantly higher than that of the training data, which could potentially influence

the observed behavior. Another potential reason might be the chosen features, as

demonstrated in Table 2. Other features might exhibit stronger correlations with

the macrostates and thus may be more effectively controlled. This calls for a more

systematic exploration of potential features. The final potential reason could be the

limitations of the normalization flow neural networks employed in this study. The

requirement for invertibility restricts the representational power of the normalization

flow models, which could potentially impact their generalizability. One possible

solution might be the concurrent use of contrastive learning and conditional generative

models, such as diffusion models (Ho, Jain, and Abbeel 2020). This approach could
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mitigate the constraints on the representational power of the neural networks and

potentially enhance performance.
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Chapter 5

SUMMARY

5.1 Abstract

In this dissertation, the significance of macrostates in uncovering general laws

governing complex systems is introduced. I have provided a review of various definitions

and perspectives about macrostates, leading to the proposal of a unified perspective

on different macrostate theories and methods, and hence proposed the relational

macrostate theory. With the support of this theory, I developed MacroNet and

demonstrated its application to several complex systems. In this chapter, I will explore

further the broader potential of this theory and methodology in various applications.

In addition, I will reveal the subtle link between macrostate and computational

theories, particularly in relation to the concept of computational irreducibility. In

other words, macrostates can also be interpreted as the computationally reducible

aspects of a system. Moving beyond this connection, I will engage in a discussion

on how to enhance the interpretability of macrostates through the integration of

innovative machine learning techniques.

5.2 Summary

Throughout this dissertation, I have introduced the Relational Macrostate Theory

and developed a machine learning architecture for the identification of macrostates and

the design of microstates. By applying this theory and method to complex chemical
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systems, specifically the oil droplet system, I have further enhanced the theory through

the utilization of mutual information estimation methods. These methods enable us

to determine the number of macrostates present in a given system. The analysis of

the macrostate of oil droplets has revealed several intriguing observations. Despite the

system having six parameters, its macrostate is only two-dimensional, as evidenced by

both the parameter and trajectory perspectives. Furthermore, even with hundreds

of dimensions in the trajectory, only 1.8 bits of information can be controlled by the

parameters. This low mutual information aligns with the discussion presented in the

introduction, wherein observation is regarded as a combination of laws and boundary

conditions. A system, governed by laws or rules and influenced by its initial state and

environment, exhibits a blend of these two aspects. By identifying quantities that

are mutually predictive, we can distinguish between laws and boundary conditions.

From this viewpoint, the formulation of the Relational Macrostate Theory can be

interpreted differently: the discovery of macrostates entails identifying quantities that

are resilient to uncertainty, including external noise and boundary conditions.

The unsupervised architecture of MacroNet offers the advantage of designing

microstates without explicitly classifying them, as the identified macrostates serve

as continuous labels for the classes. For instance, in Section 3.5.3 of Chapter 3,

MacroNet can be utilized for the parameter design of Turing patterns. Additionally,

in Chapter 4, it can aid in the chemical compound design of oil droplets. Given the

generative capability of MacroNet, it is highly suitable for tasks involving a multitude

of unknown information. The relational macrostate theory, coupled with MacroNet,

holds substantial promise for applications in both geological and climatic systems.

Geological studies often encompass vast amounts of information, much of which can

be interpreted as initial or boundary conditions when viewed through the lens of
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macrostate theory. Such conditions might encapsulate the precise microstates of

the early Earth or the thermal fluctuations and stochastic events characteristic of

the contemporary Earth and its biosphere. These complexities render predictions at

the microstate level a formidable challenge. Nonetheless, the macrostates of these

geological systems retain the potential to predict. A notable application emerges

in the domain of time series, extending to climatic time series as well. A case in

point is the early warning of dynamical change point of dynamical systems, i.e., the

tipping points (Drake and Griffen 2010). Over time, the underlying parameters of

the dynamical system can also evolve, and crossing some threshold can lead the

system to undergo a qualitative transformation, giving rise to another attractor. This

significant shift underscores its importance in both the geological and climatic fields.

Viewed through the macrostate theory lens, these predictably variable parameters

can be defined as macrostates. As introduced earlier, by circumventing the prediction

of microstate details, we can distill more predictable insights. Considering the low

probability but high consequence nature of tipping points, estimating their probability

becomes crucial. Here, the sampling capabilities of MacroNet can be particularly

useful. Therefore, both the relational macrostate theory and MacroNet present

valuable applications in geology and climate domains, especially given their inherent

uncertainties.

From the lens of machine learning and the AI for science domain, the relational

macrostate theory furnishes a crucial insight for harnessing machine learning in

scientific discoveries, as elaborated in section 1.6 of Chapter 1. Specifically, when the

aim is to extract laws and regularities from observational data, the models employed

should be inherently generative. The recent surge in the advancement of generative

models, most notably the diffusion models (Rombach et al. 2022), signals that the
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identification of general laws is within our grasp. It’s worth noting that while our

proposed MacroNet uses normalization flow models, we don’t wish to rigidly tether

the macrostate theory to any specific architecture. As discussed in this section,

many generative and contrastive models seem to be candidates in line with the

relational macrostate theory. Thus, we anticipate the broad applicability of the

relational macrostate theory across various machine learning domains, particularly

those handling uncertainty and the pursuit of discerning regularities.

In considering macrostates from a computational perspective, we are reminded

of the concepts introduced in Stephen Wolfram’s seminal work, A New Kind of

Science (Wolfram et al. 2002). Herein, he distinguishes between computationally

reducible and irreducible systems. A computationally reducible system permits

the circumvention of intermediate states to directly deduce the state at a specified

time step. For example, with an ideal simple harmonic oscillator, one can directly

compute its state at time T from an initial state (x0, p0), bypassing the necessity to

iterate through time steps from 1 to T . Such reducibility is critical for extrapolating

our understanding of a system across extended temporal durations or larger scales.

Conversely, many complex systems, such as certain cellular automata – specifically the

rule 110 elementary cellular automata (Cook et al. 2004) and the Game of Life (Gardner

1970) – exhibit computational irreducibility. This characteristic renders the analysis of

these systems challenging, as one cannot trivially abstract away microstate details and

scale them over expansive space-time dimensions. Yet, the concept of irreducibility may

not be absolute, evidenced by the existence of biology and sociology fields. These fields,

despite their focus on complex systems and interactions, have formulated theories

that sidestep microstate details and eliminate the need for sequential simulation.

Seen in this light, macrostates could be defined as the computationally reducible
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aspects of a system. This means, the computational cost of predicting a macrostate

shouldn’t rise at the same rate or more rapidly as the size or time scale increases.

For example, while the chaotic three-body system lacks an analytic solution and is

thereby computationally irreducible, its energy remains constant, shows it is reducible

in that context. The relational macrostate theory defines macrostates by the mutual

predictability of information within data pairs. This computational viewpoint can be

reconciled with this predictive paradigm: macrostates encapsulate those quantities that

can be predicted over any (or sufficiently long) temporal intervals with a consistent,

minimal computational cost. Nonetheless, this interpretation is most congruent with

time-evolving dynamical systems. It requires further studies on the relation between

general data pairs (such as rule-pattern pairs) and this computational viewpoint.

For the machine learning aspect, the current MacroNet architecture relies on

normalization flow models to regulate the output distribution and perform conditional

sampling. However, the limited representational capacity of normalization flow models

poses strict constraints. Often, achieving satisfactory performance requires both em-

ploying a very deep structure and enduring slow training, resulting in time-consuming

applications. Future research in this area could explore alternative neural network

approaches, such as combining contrastive learning and diffusion models (Rombach

et al. 2022).

Interpretability remains a crucial aspect of scientific investigations. A result that

is comprehensible to humans offers two distinct advantages beyond prediction or

sampling. Firstly, it allows humans to validate the results and develop theories and

methodologies based on them. Secondly, a human-understandable outcome involves

human intelligence in the process of discovering underlying laws, leveraging our ability

to abstract and make analogies. Attaining these two benefits is challenging, yet there
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exist several approaches that can contribute to achieving this ambitious objective.

For instance, the attention method (Vaswani et al. 2017) can be employed, whereby

attention mechanisms highlight the important elements for computing macrostates.

Additionally, traditional machine learning techniques such as logistic regression or

linear models, as utilized in Chapter 4, can prove valuable due to their simplicity.

Many of these methods require flexibility in model selection, not solely limited to

normalization flows but encompassing any type of neural network.

Beyond the topics above, the concept of macrostates includes additional pro-

found questions. For example, how do the fundamental units of physics relate to

macrostates? Can similar units be identified in complex systems? What criteria dictate

the reusability of a macrostate? How are different macrostate variables interconnected?

Such questions could form the foundation of a novel subdomain within complexity

research, necessitating interdisciplinary collaboration to amalgamate diverse insights

and expertise. Physics has a unique, coherent structure, striving for a physical-level

comprehension of complex systems may verge on the overly ambitious. Nevertheless,

considering certain concepts from physics can promote the study of complex systems

to be more systematic, fostering a more integrated understanding.
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A.1 Definitions and Theory

A.1.1 Definitions

A.1.1.1 Equivalence

Two microstates are equivalent if and only if they belong to the same macrostate.
Using ∼ to represent equivalence, we have u ∼ u′ ⇐⇒ φ(u) = φ(u′). Here φ maps
microstates to macrostates.

A.1.1.2 Relations

I use the inclusive term relation to include most types of paired variables – for
instance, co-occurrence pairs, data-label pairs, or past-future pairs, etc. A set of
microstate pairs (ui, vi) can be mathematically represented by joint distribution
P (u, v). This joint distribution represents the entire micro-to-micro relations. Given
a microstate ui, micro-to-micro relation can be defined as a conditional distribution
P (v|u = ui) or P (v|ui).

Since there are two types of data in the paired datasets, I use α = φu(ui) and
β = φv(vi) to represent the macrostates of ui and vi respectively. For simplicity, I also
use φ to represent either of the mappings from microstates to macrostates when there
is no ambiguity.

Given the microstates and their macrostates, I can define the entire micro-to-
macro relation as P (u, β) and P (α, v). And the micro-to-macro relation for a certain
microstate, say ui (or vj), is represented as conditional distributions:

P (β|ui) =

∫
P (β|v)P (v|ui)dv (A.1)

P (α|vi) =
∫

P (α|u)P (u|vi)du (A.2)

Here, the P (β|v) is a probabilistic representation of φv, which is a many-to-one
mapping since φv is a deterministic mapping.

The macro-to-macro relation can also be represented as the distribution P (α, β).

P (α, β) =

∫∫
P (α|u)P (β|v)P (u, v)dvdu (A.3)

So, macro-to-macro for certain macrostates can be defined as conditional distribu-
tions P (β|αi) and P (α|βi). These definitions of relations are illustrated in Figure 21.
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Figure 21. The Relations Can Be Represented by Joint Distributions and Conditional
Distributions. (A) Joint Distributions Are Used to Represent the Entire Relationship.
(B) For a Certain Microstate ui or Macrostate αi, Conditional Distributions Can Be
Used to Represent Its Relations.

A.1.1.3 Definition of Macrostates

Based on the definitions of relations, macrostates can be defined based on micro-
to-macro relations:

Definition S1: macrostate. Two pairs of microstates ui and uj (and vi and
vj) belong to the same macrostate if and only if they have the same micro-to-macro
relation:

ui ∼ uj ⇐⇒ P (β|ui) = P (β|uj) and (A.4)
vi ∼ vj ⇐⇒ P (α|vi) = P (α|vj) (A.5)

The macrostate solutions should be self-consistent. Figure 6A shows a consistent
solution, as an example, u1 ∼ u2 because P (β|u1) = P (β|u2), and v1 ∼ v2 because
P (α|v1) = P (α|v2). However, Figure 6B shows an inconsistent solution: The mi-
crostates in red circles are all mapped to the orange macrostate in V and therefore
should not be mapped to different macrostates in U because each microstate should
belong to only one macrostate. They have the same micro-to-macro relation.

Another solution is that all the microstates are mapped to the same macrostate
(see Figure 6C). This kind of solution will not provide any meaningful information
about the systems under study.

Therefore, in addition to the definition S1, I propose an information criterion
to specify “good macrostates”. That is, given a certain number (or dimension) of
macrostates, the information criterion imposes the constraint of maximizing the mutual
information I(α; β) at the macrostate.
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A.1.1.4 From Definition to Optimization Objective

In relational macrostate theory, macrostates are defined in terms of relations.
As such they are defined in a circular manner: the macrostate of a microstate is
determined by the macrostates of its related microstates. Since the macrostates in
U are defined by the macrostates in V , and macrostates in V are defined by U , we
need to optimize the mapping from micro-to-macro to find informative and consistent
solutions that allow identifying macrostates associated to symmetries. Based on the
definition of macrostates, continuation can be applied to the definition by introducing
distance functions D1 and D2. The continuous version of the definition becomes:

D1[φu(ui), φu(uj)] = D2[P (β|ui), P (β|uj)], (A.6)
D1[φv(vi), φv(vj)] = D2[P (α|vi), P (α|vj)]. (A.7)

When these two equations are perfectly satisfied, this reduced to the original
macrostate definition. When choosing D1 be square Euclidean distance and D2 be
2-Wasserstein distance (Dowson and Landau 1982), we can verify the following formula
is a solution for our macrostate definition:

φu(ui) ≈ φv(vi). (A.8)

More specifically, the solution is:

φu(ui)− φv(vi) ∼ N (0,Σ), (A.9)

where (ui, vi) is sampled from P (u, v), and tr(Σ)≪ 1. Using P (α|ui) and P (β|vi)
to represent φu(ui) and φv(vi) as distributions, we have:

P (β|ui) =

∫
v

P (β|v)P (v|ui)dv (A.10)

=

∫
v

P (α + δ|ui)P (v|ui)dv (A.11)

= P (α + δ|ui) (A.12)

where δ ∼ N (0,Σ) and tr(Σ) ≪ 1. Here we replaced P (β|u) by P (α + δ|ui)
because φu(ui) ≈ φv(vi), or αi ≈ βi. So, we can find that P (β|ui) and P (α|vi) are
both normal distributions with low standard deviations. For normal distributions X
and Y , the 2-Wasserstein distance has a simple form:

W2(X, Y )2 = |µx − µy|2 + tr
(
Σx + Σy − 2(ΣxΣy)

1/2
)
, (A.13)

So, the definition becomes:
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|φu(ui)− φu(uj)|2 = |E(φv(vi)− φv(vj))|2 + tr(Σi + Σj − 2(ΣiΣj)
1/2), (A.14)

|φv(vi)− φv(vj)|2 = |E(φu(ui)− φu(uj))|2 + tr(Σ′
i + Σ′

j − 2(Σi
′Σ

′
j)

1/2), (A.15)

Since Σ≪ 1, we can abandon the trace term and remove the expectations:

|φu(ui)− φu(uj)|2 ≈ |φv(vi)− φv(vj)|2 , (A.16)

|φv(vi)− φv(vj)|2 ≈ |φu(ui)− φu(uj)|2 , (A.17)

The formulas still hold when substitute φu(ui) ≈ φv(vj) into it. So, we can
verify that φu(ui) ≈ φv(vj) is a solution for our definition. This solution can be
approximated by minimizing the distance between φu(ui) and φv(vi). There may exist
other more general but more complex solutions. However, this simple approach shows
good performance in experiments.

A.2 Methods

A.2.1 Invertibility and Distribution Control

Technically, our framework requires two key features in the neural network for
learning φ: the ability to perform conditional sampling and ability to control the
distribution of its outputs. Fortunately, the invertible neural networks (INNs) cover
both features. The invertibility makes conditional sampling possible. And the
distribution control feature makes it possible to avoid trivial solutions without a large
number of negative samples (in (Xinlei Chen et al. 2020), 65536 negative samples are
used).

In a broad definition, the INNs can be classified into two types: flow-based
models (Dinh, Krueger, and Bengio 2014; Dinh, Sohl-Dickstein, and Bengio 2016; R. T.
Chen et al. 2019), and models that are trained to be invertible such as InfoGAN (Xi
Chen et al. 2016). The flow-based model, including the coupling models such as
RealNVP (Dinh, Sohl-Dickstein, and Bengio 2016), NICE (Dinh, Krueger, and Bengio
2014), and ResNet-based models such as invertible residual networks (Behrmann
et al. 2019) and ResFlow (R. T. Chen et al. 2019). The flow-based models have two
common designs: first, they are guaranteed to be invertible, no matter how well they
have been trained. Second, they are easy to compute determinants of Jacobians.

With the information of determinants of Jacobians, the probability density of the
output can be computed by the “change of variable” theorem (Dinh, Sohl-Dickstein,
and Bengio 2016), hence we can control the distribution of output. Here, for simplicity,
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let’s just consider an extreme case: if a linear matrix that maps a three-dimensional
manifold to a zero, one, or two-dimensional manifold that is embedded in three-
dimensional space. Then, the rank of the matrix must be two or lower. Hence, the
determinant of Jacobian will be zero. So, by avoiding having zero determinants of
Jacobians, we can avoid the dimension collapse, hence avoiding trivial solutions.

Another type of INNs is the models that are trained to be invertible. Such models
should also have the two features as flow-based models: invertibility, and distribution
control. InfoGAN (Xi Chen et al. 2016) architecture is an example that follows the
requirements. Compared to vanilla GANs, the InfoGAN is simply doing two different
things: 1) splitting the input noise into two parts c and z. 2) add a Q network that
can reconstruct the c information, i.e., Q[G(c, z)]→ c, where G is the generator. The
inverse of InfoGAN is trained, it can partially inverse the process of G : (c, z) → x
by using Q : x → c, while the z information is lost. This loss will not affect our
macrostate framework, because we can map microstates to macrostates by Q : u→ α,
and sample microstates from macrostates by G : (α, z)→ u. The ability of distribution
control is achieved by the reconstruction process and discriminator together. Given
that discriminator exists, if c is sampled from a distribution P and z ∼ N (0, 1),
then G(c, z) will follow the data distribution. Since Q is trained to predict c by the
generated samples, as an inverse process, Q(x ∼ Pdata) will follow the distribution of
P . By controlling the distribution, InfoGAN can also avoid trivial solutions.

Our experiments have all been trained on flow-based models. We are making this
choice for three reasons: 1) flow-based models are guaranteed to be invertible. and 2)
flow-based models are not likely to have mode collapse problems, while GAN based
models often have such problems. This is critical if we want to design microstates.
3) flow-based models make the experiments more concise. However, the InfoGAN
structure can still be useful when we need a high expressivity because it can use more
different neural network structures.

A.2.2 Invertible Neural Networks

Table 3 compares different types of INNs. The forward and inverse column shows
the mapping from input x to output y, and y to x.
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name structure forward inverse

RealNVP
y1 = x1

y2 = x2s(x1) + t(x1)

x1 = y1

x2 = (y2 − t(y1))/s(y1)

NICE
y1 = x1

y2 = x2 + t(x1)

x1 = y1

x2 = y2 − t(y1)

ResFlow y = x+ g(x)

x = lim
n→∞

xn

xn = y − g(xn−1)

if Lip(g) < 1

InfoGAN y = Q(x̂) x̂ ∼ G(y, z)

Table 3. Illustrations for Multiple Versions of Invertible Neural Networks (INNs).

A.2.2.1 Coarse-graining and Sampling

The flow-based models require the output and input to have the same dimensions
for invertibility. So, to do coarse-grain and up sampling, we need to adopt a special
way to change dimensions.

(Hu et al. 2022) provided a multi-scale architecture, which let the network abandon
dimensions: f : x→ (y, z), where z is the abandoned dimensions, and y can be used
to do supervised or self-supervised training. In this way, we can reduce the dimension
and do coarse graining. In the forward process, given a N -dimensional input, the
output will be splitted into two variables α(D) and z(N−D), where the superscripts
show their dimensions. Only α will be trained to satisfy φu(ui) = φv(vi). To make
it clear, we use φ to represent the mapping from u to α, and use Φ to represent the
mapping from u to (α, z).

However, z is not totally ignored. Since we also want to do conditional sampling,
the distribution of z should also be trained to be an independent normal distribution.
So, the Jacobian of φ is computed by Φ so we can include z. When doing conditional

96



sampling, given the macrostate α(D) or β(D), we sample a z(N−D) to compute Φ−1(α, z).
The coarse-graining and sampling process are summarized in Table 4.

forward training
coarse-
graining

Φ(u(N)) = (α(D), z(N−D)),
where z(N−D) is the abandoned dimen-
sions. And φ(u) = α.

both α and z will be trained
to follow independent nor-
mal distribution. z will not
be stored since we know its
distribution after training.
And α will be trained as a
macrostate.

sampling φ−1(α) = Φ
−1
(α(D), z(N−D)) = u(N),

where z(N−D) is sampled from an inde-
pendent normal distribution.

no sampling used in training

Table 4. Details of Coarse-graining and Sampling Process.

Since (α, z) is trained to be independent normal distributions, the P (z|α) should
also follow normal distribution. With this feature, we are able to do conditional
sampling of u from P (u|φ(u) = α).

A.2.3 Training Tricks

The flow-based models have limitations of expressivity (Bond-Taylor et al. 2021)
since their Jacobian and dimensions are restricted. A common way to overcome this
problem is to have more layers of INNs, for example, the Glow model (Kingma and
Dhariwal 2018) uses nearly one hundred layers to do generative tasks on the CIFAR10
dataset (Krizhevsky 2009). However, for some tasks which have very low dimensions,
more layers cannot provide results that are good enough. To solve this problem, we
propose two useful tricks for different situations.

Noisy Kernel Trick
The expressivity problem can often be overcome by adding more layers of

INNs (Bond-Taylor et al. 2021). However, our experiments show that when the
input dimension is too low, adding layers will not help. While extending neural
networks wider can significantly improve the performance. To extend the neural
network of INN, we need to extend the input dimension by concatenating the original
input with additional random variables:

u′ = [u, x], x ∼ Nd(0, 10−3) (A.18)
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With this method, we can add d dimensions to the inputs. Here, the u is the
original input, and x is the appended input, which is sampled from a standard normal
distribution. Note that x has to be sampled from a d-dimensional distribution instead
of zeros. This is because the flow-based model will be trained to map inputs to an
independent normal distribution. However, if we append inputs by zeros, the input
itself will be a lower dimensional manifold, which makes it impossible to be mapped
to an independent normal distribution and leads to unstable training. We found that
10−3 is a good standard deviation that is small enough to reduce the interference from
noise, and large enough to avoid the explosion of log-Jacobian. Since this method is
increasing the input dimensions with gaussian noise, we call it “noisy kernel”. The
additional dimensions will increase the expressivity of flow-based models, which will
lead to better performance. Table 5 shows noisy kernels can significantly improve the
performance on the simple harmonic oscillator task.

without noisy kernel with noisy kernel
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Table 5. The Noisy Kernel Can Improve the Performance When the Input Dimension
Is Too Low. However, Noisy Kernels May Make the Sampling Noisy.

However, the added noise will also have side effects on sampling. The additional
dimensions in z will add noise to the output when doing sampling (see Table 5). So,
we only suggest using noisy kernels when necessary, for example, when the dimension
is too low.

One-side INN structures
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In many cases, only one side of microstates needs to be sampled. In such a case, we
only need to let one of two networks (i.e., φu or φv) be invertible. The other network
is not necessary to be an INN. This makes the optimization much easier since the
free-form neural networks will have higher expressivity. We adopted this method in
finding macrostates of Turing patterns.

Putting batch normalization at the last layer
The common practice in neural networks often puts the linear layer as the last layer.

In MacroNet, although we have the distribution term to avoid trivial solutions, we
still find that putting the invertible batch normalization layer (Dinh, Sohl-Dickstein,
and Bengio 2016) as the last layer (or before the last resize layer) will improve the
performance. This may be caused by the potential tradeoff between the prediction
loss and the distribution loss, which could skew the distribution of macrostates away
from gaussian distribution. This trick cannot omit the importance of the distribution
loss. Even when the macrostates have a standard deviation of one, the macrostates
can still be low-dimensional manifolds that lack information.

Neural network choosing
While MacroNet is designed to uncover hidden symmetries from observations, the

specific choice of neural networks or certain details can influence the outcome. For
example, Table 5 illustrates how a noisy kernel can impact the identification of a
macrostate. However, in real-world applications, only changes in symmetry typically
result in significantly different outcomes. We employed convolutional neural networks
(CNNs) in our Turing pattern experiments, but not in linear dynamical systems. This
decision was driven by the need to process images derived from Turing patterns. Since
many of these images inherently possess translational symmetry, CNNs are a more
suitable choice. Though there’s a need to make manual selections regarding network
specifics, knowledge from the machine learning community offers practical guidance
on network design.

A.3 Experiments

A.3.1 Linear Dynamical Systems

A linear dynamical system can be represented as a differential equation:

dx⃗
dt

= Mx⃗ (A.19)

where M is a n× n matrix. n is the dimension of vector x⃗. So, when the system
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Figure 22. The Behavior of the Linear Dynamical System Is Changing with the
Matrix M .

has different x⃗, the dx⃗/dt will be different. Different matrices will lead to different
behaviors, such as attractor, limit cycles, rotations or saddles (see Figure 22).

So, there exist many-to-many mappings between the matrix and trajectory:

1. one-to-many: For the same matrix M , depending on initial states, the trajectories
can be different. For instance, given M = I, the trajectories can move to the
right or left if the initial state x0 = (1, 0) or (−1, 0).

2. many-to-one: Also, even with different matrices, the trajectories can be the
same when the initial state is properly chosen. For instance, when M1 = I, and
M2 be a permutation matrix that permutes between dimension 1 and 2, their
trajectories can be the same when the initial state x0 = (ξ, ξ), where ξ > 0.

For such many-to-many mapping situations, our macrostate theory and machine
learning method can help us design the matrices for given trajectories. Here we define
the macrostates on the parameter-trajectory pairs. The parameter is a 2×2 matrix M
and the trajectory is a n×2 tensor x0:n−1 = [x0, x1, ..., xn−1] to represent the evolution
with the initial state x0, where n = 8. We coarse-grained both sides to a 2-dimensional
space as the macrostate (see Figure 23).

The training data is generated by an algorithm. For each (u = M, v = x0:n−1) pair,
the M is firstly sampled from an independent normal distribution N (µ = 0, σ = 1).
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Figure 23. The Training Process of Finding Macrostates from Linear Dynamical
Systems. Both the Parameters and Trajectories Are Coarse-grained to
Two-dimensional Macrostates.
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Figure 24. The Trained Neural Network on Linear Dynamic Systems Is Capable of
Predicting the Macrostate. Here, Each Point Represents a (αi, βi) Pair. Here,
αi = φu(ui) and βi = φv(vi). By Jointly Compare αi and βj, We Can Quantify the
Performance of the Predictions on Macrostates. In the View of Mutual Information,
When All Points Are on the Curve β = α, the Mutual Information I(α; β) Is
Maximized.

Then the trajectory is generated by the dynamic dx/dt = Mx, where the initial state
x0 are sampled uniformly and independently in a 2-dimensional space U2(−1, 1).

The training takes 2000 epochs, and each epoch has 512 samples with a batch
size of 256. We use Adam optimizer (Kingma and Ba 2014) to train the model. The
learning rate is 10−3 and the weight decay is 10−5. We let γ = 0.1 to balance the
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prediction loss and distribution loss. Figure 24 shows the scatter plot of macrostates
(α, β), which indicates the accuracy of prediction at macrostates.

After training, we can do two things: given a trajectory se as “example behavior”,
use φ−1

v to sample other trajectories that have the same macrostate as se. Or, given
a trajectory, use φ−1

u to sample parameters that can generate this trajectory with
certain initial states. Here we show the sampling with different example behaviors
(represented by x0:n−1, illustrated by red trajectories) in Figure 25.

Neural network architecture
The neural network maps the parameters and trajectories to a two-dimensional

space as the macrostates. To improve the performance, we use noisy kernels to
improve the performance. For the parameter side, we use a noisy kernel to increase the
dimension from 4 to 8. For the trajectory side, we use a noisy kernel to increase the
dimension from 16 to 32. The noises for each additional dimension are independently
sampled from N (0, 10−3). The details of the structure of the neural networks are in
Table 6. The one-dimensional INN block is composed of a linear INN (Kingma and
Dhariwal 2018), a RealNVP 1-dimensional layer, and an invertible batch normalization
layer (Dinh, Sohl-Dickstein, and Bengio 2016).

φu φv
1d block n

resize 8→2

1d block 8

1d block 8

4 4

resize 32→2

1d block 32

1d block 32

16 16

1d Real NVP n

batch norm n

1d linear n

Table 6. Here We Adopted the Noisy Kernels, Represented by Trapezoids. For φu, the
4-Dimensional Microstates Input Are Increased to 8 Dimensions by the Noisy Kernels.
After That, There Are 20 One-Dimensional INN Blocks (Indicated by the ↓↑ Icon).
At the End, We Simply Abandon 6 Dimensions to Get a 2-Dimensional Output.
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Figure 25. Red Lines Show the Example Trajectories. And Gray Dotted Lines Show
the Sampled Microstates of Trajectories. The Blue Vector Lines Represent the
Dynamics of Sampled Parameters.
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Figure 26. By Feeding the Sampled Matrices From Figure 25 Into φu, We Can
Compute Their Macrostates. Samples 1 and 2 Differ in Their Rotation Directions,
While Samples 3 and 4 Differ in Their Radial Directions. They Exhibit Distinct
Embeddings in the Macrostate Space.

A.3.2 Simple Harmonic Oscillator

There is an important special case of the macrostates. When the relation is built on
temporally connected microstates, the neural network is predicting future macrostates,
which is similar to the contrastive predictive learning (Oord, Li, and Vinyals 2018),
but adding the conditional sampling ability. Furthermore, if we force the two neural
networks to share the same parameter, then it is learning time invariant quantities.
Here we use simple harmonic oscillators (SHOs) as an example. The Hamiltonian of
SHOs is:

H(x, p) =
p2

2m
+

1

2
kx2, (A.20)

where p = mv is the momentum, x is the position, m is the mass, and k represents
the elasticity of the spring. In this experiment, we let m = 1 and k = 1 in all cases
for simplicity. So, the solution is:

xt = A cos(t+ ϕ), pt = −A sin(t+ ϕ), (A.21)

where A depends on the initial energy, A =
√

x2
0 + p20. And ϕ is the initial phase,

ϕ = arctan(p0/x0). The microstate of simple harmonic oscillator is (xt, pt). To find
an invariant quantity, we require the macrostate of u = (x0, p0) should as close as the
macrostate of v = (xτ , pτ ), where τ follows the uniform distribution U(0, 2π) (shown

104



microstate microstate

gradients gradients

coarse-grain coarse-grain

minimize difference

time evolve

Figure 27. The Training Process of Finding Invariants as Macrostates from Simple
Harmonic Oscillators.

in Figure 28A). Since τ is a random variable, predicting microstate (xτ , pτ ) is not
possible. However, the macrostate can be predictable. The training architecture is
shown in Figure 27.

We use 2048 samples of (u, v) pairs to train the neural network. The training
takes 200 epochs with a batch size of 256. We use NAdam optimizer (Dozat 2016)
to optimize the neural network. The learning rate is 5 × 10−3. The learning rate
decreases by 0.1 in each 60 epochs. To balance the prediction loss and distribution
loss, we choose γ = 0.5.

Figure 28B shows the invariant quantity found by our neural network has a clear
and monotonous relation to the energy. We can also sample the microstates (x, p) from
given invariant by implement φ−1(α). The results show that the neural network can
sample a ring in (x, p) space (Figure 28C), which is exactly the solution of p2+x2 = H.

Neural network architecture

Since the dimension of the microstate is two, we use a noisy kernel to increase it
to eight dimensions. The noise follows the distribution of N 6(0, 10−3). We also use
residual flow (R. T. Chen et al. 2019) as the basic block to increase the expressivity.
The details of the neural network are shown in Table 7. Note that here we let φv

shares the same weight as φu.
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Figure 28. With a Simple Harmonic Oscillator, We Train a Neural Network to Find
Invariant Quantities as a Special Case of Macrostates. (A) The (u, v) Pairs Are
Sampled from Simulations, Where u = (x0, p0) (the Black Dots) and v = (xτ , pτ ).
The τ Is Sampled from a Uniform Distribution U(0, 2π). The White Dots in the
Yellow Region Show a Sampling Example of v. Due to the Randomness of τ , It Is
Impossible for Accurate Prediction at Microstate. (B) The Neural Network Learns
Energy as the Invariant Quantity. The x-Axis Is the Energy of Microstates Computed
by the Physical Theory of SHOs Discovered by Humans, and the y-Axis Is the
Macrostate Discovered by the Neural Network. They Show a Monotonical Relation,
Which Implies the Successful Identification of Energy by the Neural Network. (C)
Conditional Sampling Microstates from P ((x, p)|φ(x, p) = αi), Where the αi Are the
Given Macrostates. The Results Approximate Equal Energy Surfaces, Denoted by
the Dashed Circles. Note That the Noise in the Sampling Is a Side Effect of the Noisy
Kernel Trick We Use Here. The Background Color Also Shows the Learned
Macrostate Mapping as a Field.

A.3.3 Turing Patterns

The Turing patterns are two-dimensional patterns generated by reaction-diffusion
models (Turing 1990). By changing the parameter of the model, the reaction-diffusion
model can generate many different types of patterns (Pearson 1993). In this experiment,
we use macrostate theory to find the macrostate of the patterns and parameters. Then,
we sample parameters that can generate certain types of patterns.

Here we use the Gray-Scott model (Gray and Scott 1984) as the reaction-diffusion
model. In this model, there are two types of chemical components, their densities
are represented as the density fields a and b. The dynamics is represented by the
following differential equations:
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φu φv = φu
1d block n

resize 8→1

1d block 8

1d block 8

2 6

resize 8→1

1d block 8

1d block 8

2 6

1d ResFlow n

batch norm n

1d linear n

Table 7. The Neural Network Structure for Finding Macrostates of Simple Harmonic
Oscillators. To Find Invariant Quantity, the φu and φv Have the Same Structure and
Share the Same Weights. We Replaced the RealNVP Layer with the ResFlow Layer
to Get Better Performance.

∂a

∂t
= Da∇2a− ab2 + F (1− a), (A.22)

∂b

∂t
= Db∇2b+ ab2 − (F + k)b, (A.23)

where Da, Db, F and k are four positive parameters that determine the behavior
of the system. So, a microstate u here is a vector of the four parameters, i.e.,
u = (Da, Db, F, k). And the microstate v is the pattern generated based on the
parameters. When initializing the a, b as 64×64 grids, each elements are independently
sampled from the uniform distribution U(0, 1). We approximate the differential
equation on a 2× 64× 64 tensor by using Euler method (Greenbaum and Chartier
2012) with step size dt = 0.1.

We only sample (u, v) pairs that have meaningful structure in the v matrix and
omit the cases where v is a blank image (all elements in v have the same value) with
no structure. Using this method, we sample 1024 pairs of microstates. The training
architecture is shown in Figure 29.

We trained the neural network 1000 epochs with NAdam optimizer. The learning
rate is 10−3. To help the training converge, we reduce the learning rate by 0.5 every
128 epochs. To balance the prediction loss and distribution loss, we let γ = 0.1.

Since we do not want to sample the pattern v, we only let φu be invertible, and
let φv be a free form neural network. This will make φv has higher expressivity and
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Figure 29. The Training Process of Finding Macrostates from Turing Patterns. The
Neural Networks Maps the Parameter (Da, Db, F, k) and Patterns v(3×64×64) to
Macrostates in a Two-Dimensional Space.
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Figure 30. The Trained Neural Network on Turing Patterns Is Capable of Predicting
the Macrostate. Here, Each Point Represents a (αi, βi) Pair. Here, αi = φu(ui) and
βi = φv(vi). Here We Map the Microstates to a Two-Dimensional Space, so We
Compare the Macrostates on Each Dimension, Represented as αi and βi.

easier to be optimized. The φu uses 5 invertible blocks and one resize block to reduce
the dimension from 4 to 2. Each invertible block contains an invertible linear layer, a
Real-NVP layer, and a batch normalization layer. The φv is a convolutional neural
network that maps 3 × 64 × 64 tensor to a two dimensional vector. Note that the
channel is changed from 2 to 3 by the mapping (a, b)→ (a, b, (a+ b)/2) to make it
have better visualization and easier to do data augmentations, while not losing or
alter any information. The detailed neural network structure is shown in Table 8.

Figure 30 compares the macrostates mapped from parameters (α) and macrostates
mapped from patterns (β). Most points are laying on the α = β line, which indicates
that this trained neural network made good predictions at macrostate and having
high mutual information I(α; β).
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φu φv
1d block n 2d block

resize 4→2

1d block 4

1d block 4

2d block 3,8,3

AvgPool2d /2

2d block 8,32,3

AvgPool2d /2

2d block 32,64,3

2d block 64,128,3

AvgPool2d /2

AdaptivePool 1

Linear 128→256

Linear 256→2

Instance Norm

1d Real NVP n

batch norm n

1d linear n
Conv2d

Conv2d

Instance Norm

Leaky ReLU

Instance Norm

Leaky ReLU

1x1 Conv2d

Table 8. The Neural Network Structure for Finding Macrostates of Turing Patterns.
For the Parameter Side (φu) We Use a 5-Layer INN to Get a 2-Dimensional Output.
For the Pattern Side (φv), Since Generation Is Not Needed, We Use a Free-Form
Neural Network to Get a 2-Dimensional Output.
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APPENDIX B

UNCOVERING GENOTYPE-PHENOTYPE MAPPING IN COMPLEX
CHEMICAL SYSTEM BY IDENTIFYING MACROSTATES
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B.1 Sampling the Most Likely Microstate

For empirical validation, we choose chemical parameters from four macrostates.
Rather than sampling the distribution, our approach was to sample the most likely
microstate given certain macrostates, thereby identifying the most effective parameters.
The MacroNet used in this study is built on normalization flow models, which include
variants such as NICE, Real-NVP, ResFlow, Glow, and more. A key advantage of
these models is their ability to compute the probability density of the input with
relatively low computational cost. Normalization flow models estimate the probability
density by utilizing the following change of variable formula:

log(pU(u)) = log(pA(f(u))) + log

(∣∣∣∣det ∂f(u)∂u

∣∣∣∣) (B.1)

In this equation, u represents the input microstate, f(u) the output, and pA
the prior distribution. The second term is the log determinant Jacobian. Due to
the existence of the second term, computing the most likely microstate (microstates
with highest probability density at normalized microstate space) becomes non-trivial.
To compute the most likely microstate with a given macrostate, we sample 2048
microstates. Then, since normalization flow model can estimate probability density
of input with low cost, we choose the top-n microstates with highest log probability.
It is important to mention the normalization of microstates in our process. To
enhance the training outcomes, we preprocessed the microstates to approximate
normal distributions closely. For the chemical compound parameters, given their initial
uniform distribution, we applied the inverse error function (erf−1) to transform them
into a normal distribution. A variable x, following a standard uniform distribution,
can be converted into a standard normal distribution via the following equation:

y =
√
2erf−1(2x− 1). (B.2)

Ideally, the log determinant Jacobian term should encompass this preprocessing
function to pinpoint the most likely microstate in the original parameter space.
Nevertheless, we chose to identify the most likely microstate in the preprocessed
parameter space, rather than the original parameter space, for two main reasons.
Firstly, the inverse error function has singular points at −1 and 1. Owing to the
unavoidable imperfections of neural networks, these points could lead to inaccurate
density estimations. Secondly, as the inverse error function is a monotonous function,
the results in the two spaces will not differ qualitatively. For these reasons, we are
sampling microstates based on their probability density in the normalized chemical
parameter space.
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