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ABSTRACT

Antenna arrays are widely used in wireless communication, radar, remote sensing,

and other fields. Compared to traditional linear antenna arrays, novel nonlinear

antenna arrays have fascinating advantages in terms of structural simplicity, lower cost,

wider bandwidth, faster scanning speed, and lower side-lobe levels. This dissertation

explores a novel design of a phased array antenna with an augmented scanning range,

aiming to establish a clear connection between mathematical principles and practical

circuitry. To achieve this goal, the Van der Pol (VDP) model is applied to a single-

transistor oscillator to obtain the isolated limit cycle. The coupled oscillators are

then integrated into a 1 × 7 coupled phased array, using the Keysight PathWave

Advanced Design System (ADS) for tuning and optimization. The VDP model is used

for analytic study of bifurcation, quasi-sinusoidal oscillation, quasi-periodic chaos,

and oscillator death, while ADS schematics guide engineering implementation and

physical fabrication. The coupled oscillators drive cavity-backed antennas, forming

a 1D scanning antenna array of 1 × 7. The approaches for increasing the scanning

range performance are discussed.
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Chapter 1

INTRODUCTION

Antenna technology has come a long way since its inception in the early 20th

century. From simple wire loops to complex multi-element arrays, antennas have

become an essential part of modern communication systems. Antenna arrays have

been widely used in wireless communication, radar, remote sensing, among others [1].

Nonlinear antenna technology is a relatively new field that aims to improve the

performance of antennas in the presence of nonlinear loads and complex modulation

schemes. When comparing traditional linear antenna arrays with novel nonlinear

antenna arrays, the latter exhibit fascinating advantages in terms of structural sim-

plicity, lower cost, wider bandwidth, faster scanning speed, and lower side-lobe levels

[2]. Nonlinear antenna technology combines advances in nonlinear dynamics, active

antenna design, and analog microelectronics to achieve beam steering and beam

forming using an array of nonlinear oscillators [3–5]. This technology utilizes two

phenomena that are typically avoided in traditional designs: nonlinear unit cells and

inter-element coupling.

Nonlinear antennas can be implemented with space-time varying metasurfaces,

synchronized radiating systems, fast switch-controlled modulations, and nonlinear

materials. However, the coupled oscillator phased array (COPA) approach overwhelm-

ingly dominates [6], with 120 references provided. Following Adler’s pioneering paper

[7], significant contributions have been made in COPA by [8–11]. Mathematically,

COPA, as a nonlinear device, is a branch of nonlinear dynamics [12]. Stable limit cycles

(SLCs) appearing in nonlinear systems have minimum energy or have no external

1



periodic force. For antenna circuitry, assuming the non-linearity is the same as the

Van der Pol oscillator, the Poincare-Bendixson theorem [13] guarantees the occurrence

of the required SLCs on the unstable central manifolds through the Hopf bifurcation.

Integer-valued Lyapunov can be applied. Applied mathematicians have developed

novel formulations to obtain the required periodic signals for the SLCs and work on

the linear evolution equation initial value problem, assuming the coefficient matrix

has a compact resolvent, and generates the exponentially-stable solution semi-group.

The existence and stability conditions and an optimized estimate can be obtained for

the linear case [12, 14].

In this paper, we will delve into the concerns, design, and optimization of the

oscillator and antenna components. In Chapter 2, the designs of Radio Frequency

(RF) oscillators are discussed [15–19]. A push-pull oscillator operating at 10 GHz

is presented and ready to be utilized as the source of the phased array antennas.

In Chapter 3, different types of antenna elements are analyzed and considered as

candidate components for the phased array system. The horn antenna is designed,

optimized, and built with 3-D printing technology [20]. A cavity-backed slotted

antenna [21] is modeled and optimized by scaling electrical size [22]. The formulation

of equivalent waveguide size is studied. A more sophisticated design of cavity-backed

slot array is studied, simulated, and modified. After rebuilding layers of the antenna,

several modification approaches are conducted. The phased oscillator array is then

combined with the antenna array. The scanning range is investigated, and then the

methods of increasing the scanning range are discussed.

2



1.1 The Van der Pol Equation and Method

The Van der Pol equation,

x′′ − ε(1− x2)x′ + x = 0 (1.1)

is a nonlinear differential equation that has been used to model a wide range of

physical phenomena. It is an important mathematical technique used to describe

and analyze the behavior of nonlinear oscillating systems. The Van der Pol equation

can be used to model the behavior of a wide range of oscillating systems, including

oscillators in electrical circuits.

The Van der Pol method is particularly useful for analyzing and predicting the

behavior of oscillating systems that exhibit nonlinear behavior, such as hysteresis or

bi-stability. It can also be used to analyze the stability and bifurcation behavior of

oscillating systems, which is important for understanding how these systems respond

to external perturbations [23, 24]. In this section, the relationship between the Van

der Pol equation and a resonance circuit will be derived firstly.

1.1.1 Van der Pol Equation from a Resonant Circuit

The Van der Pol equation is well-known for its ability to exhibit limit cycle behavior,

making it a valuable tool for studying nonlinear dynamics. By understanding the

relationship between this equation and a resonance circuit, a deeper insight into

the behavior of oscillators will be helpful for developing more efficient and accurate

synchronization methods.

3



Figure 1. An Equivalent Model of Resonance Circuit, Which Contains Negative
Resistance Component.

Apply Kirchhoff’s current law to Figure 1:

In + V (jωC +
1

jωL
) +GV = 0. (1.2)

It’s differential equation form is:

in + C
dv

dt
+

1

L

∫
vdt+Gv = 0

⇒ d2v

dt2
+

1

C
(
din
dv

+G)
dv

dt
+

v

LC
= 0. (1.3)

For many active devices, a cubic non-linearity is common, therefore the electric current

can be written as:

in = −av + bv3 (1.4)

where a and b are positive constants. Take (1.4) into (1.3) and rewrite dv
dt

in a simple

form v̇:

v̈ +
1

C
(−a+ 3bv2 +G)v̇ +

v

LC
= 0. (1.5)

Note that 1
LC

= ω2
0, and let τ = ω0t, thus d

dτ
= d

ω0dt
. The derivatives are:

v̈ = ω2
0

d2v

dτ 2

v̇ = ω0
dv

dτ
. (1.6)

Substitute (1.6) to (1.5):

ω2
0

d2v

dτ 2
− 1

ω0C

[
(a−G)− 3bv2

]
ω0

dv

dτ
+ ω2

0v = 0. (1.7)

4



Equation (1.7) resembles to the Van der Pol equation, (1.1), but needs some coefficient

variations. Let x = kv, ω0
dv
dτ

= v′, thus x′ = kv′, x′′ = kv′′. The Van der Pol equation

can be rewritten as:

kv′′ − ε(1− k2v2)kv′ + kv = 0

⇒ v′′ − ε(1− k2v2)v′ + v = 0. (1.8)

Replace the coefficients with parameters from the practical circuit:

v′′ − a−G

ω0C
(1− 3b

a−G
v2)v′ + v = 0 (1.9)

where ε = a−G
ω0C

, k =
√

3b
a−G

. The derivation above presents the discovery of the

relationship between the Van der Pol equation and the circuit.

1.1.2 Solution of No Resonance

The conditions of resonance and no resonance are discussed.

ẍ (t)− ε
(
1− x2 (t)

)
ẋ (t) + x (t) = 0. (1.10)

The perturbation with first order approximation will be applied in this subsection.

If the initial condition is regulated to be x2(0) + ẋ2 = 4, the resonance will be

eliminated. For designs of oscillator, the stable solution aforementioned should be

avoid carefully.c

The initial conditions are x(0) = φ and ẋ(0) = ξ. If ε≪ 1, the equation becomes

ẍ0 + x0 = 0, which has an exact solution,

x(t) = x0(t) + εx1(t) + ε2x2(t) + · · · . (1.11)

Thus, the first-order approximation results in,

x(t) = x0(t) + εx1(t). (1.12)

5



To determine x0(t) and x1(t), substitute Equation 1.12 into Equation 1.10,

(ẍ0 + x0) + ε(ẍ1 − ẋ0 + x20ẋ0 + x1) + ε2(x20ẋ1 + 2x1x0ẋ0 − ẋ1)

+ ε3(x21ẋ0 + 2x1x0ẋ1) + ε4x21ẋ1 = 0. (1.13)

Again, make the first-order approximation and two terms left,

(ẍ0 + x0) + ε(ẍ1 − ẋ0 + x20ẋ0 + x1) = 0. (1.14)

It implies that the two term are equal to zero respectively:

ẍ0 + x0 = 0 (1.15)

and

ẍ1 − ẋ0 + x20ẋ0 + x1 = 0. (1.16)

The solution of Equation 1.15 is:

x0(t) = A0 cos t+B0 sin t. (1.17)

By assuming the initial conditions of x1(t) are zero, the parameters can be solved by

take to the x(t).

x0(t) = φ cos t+ ξ sin t (1.18)

Substituting the solution above into Equation 1.16, the equation is expanded to,

ẍ1 + x1 =− φ sin t+ ξ cos t− ξ3 cos t sin2 t− 2ξ2φ cos2 t sin t+ ξ2φ sin3 t

− ξφ2 cos3 t+ 2ξφ2 cos t sin2 t+ φ3 cos2 t sin t. (1.19)

Using sin t cos2 t = 1
4
(sin t+ sin 3t) and cos t sin2 t = 1

4
(cos t− cos 3t), the equation

can be simplified to:

ẍ1 + x1 =

(
−φ− ξ2φ

2
+
φ3

4

)
sin t+

(
ξ − ξ3

4
+
ξφ2

2

)
cos t+

(
ξ3

4
− ξφ2

2

)
cos 3t

+

(
−ξ

2φ

2
+
φ3

4

)
sin 3t+ ξφ

(
ξ sin3 t− φ cos3 t

)
. (1.20)

6



According to trigonometric identities, the cubic terms can be further simplified.

ξ sin3 t− φ cos3 t =
1

4
(−3φ cos t− φ cos 3t+ 3ξ sin t− ξ sin 3t) (1.21)

ẍ1 + x1 =

(
−φ− ξ2φ

2
+
φ3

4
+

3ξ2φ

4

)
sin t+

(
ξ − ξ3

4
+
ξφ2

2
− 3ξφ2

4

)
cos t

+

(
ξ3

4
− ξφ2

2
− ξφ2

4

)
cos 3t+

(
−ξ

2φ

2
+
φ3

4
− ξ2φ

4

)
sin 3t

= φ

(
−1 +

φ2 + ξ2

4

)
sin t+ ξ

(
1− φ2 + ξ2

4

)
cos t

+ ξ

(
−3φ2 + ξ2

4

)
cos 3t+ φ

(
φ2 − 3ξ2

4

)
sin 3t. (1.22)

If the initial conditions are restricted as ξ2+φ2 = 4, the first order forcing functions

in Equation 1.22 are vanished. The result in this case is not resonant.

To solve the equation, it is assumed to have one homogeneous solution and two

particular solutions, x1(t) = x1,h + x1,p1 + x1,pw. With the initial conditions applied,

x1(0) = 0 and ẋ1 = 0.

Therefore, the first-order perturbation solution is,

x(t) = x0(t) + εx1(t)

= φ cos t+ ξ sin t+ ε(
ξ(ξ2 − 3)

8
cos t+

3φ(φ2 − 3)

8
sin t

+
ξ(−ξ2 + 3)

8
cos 3t+

φ(−φ2 + 3)

8
sin 3t). (1.23)

The solution above is restricted by a small value of ε, and the initial condition

φ2 + ξ2 = x2(0) + ẋ2(0) = 4.

The phase plot of no resonance case is presented in Figure 2. The initial values

are selected as x(0) = 1.5 and ẋ(0) =
√

4− x(0).
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Figure 2. Phase Plot of No Resonance Case

1.1.3 Solution of Resonance

The solving and simplification procedures are similar to the previous subsection.

However, it is slightly difficult to guess the form of the particular solutions of the

first-order component, x1(t). This solution is still derived according to the first-order

approximation, the much more complicated high-order solutions are ignored due to

the small value of ε. Without the restriction of ξ2 + φ2 = 4, four particular solutions
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of equation 1.22 exists.

x1,p1 =

(
1− φ2 + ξ2

4

)
φt cos t

2
(1.24)

x1,p2 =

(
1 +

φ2 − ξ2

4

)
ξt sin t

2
(1.25)

x1,p3 =

(
ξ2 − φ2

4
− 1

)
ξ cos 3t

8
(1.26)

x1,p4 =

(
3ξ2 − φ2

4

)
φ sin 3t

8
. (1.27)

After applying the initial conditions, x1(0) = 0 and ẋ1 = 0, the solution of x1(t)

with homogeneous and particular terms can be derived as,

x1(t) = x1,h + x1,p1 + x1,p2 + x1,p3 + x1,p4

=
(
4− ξ2 + φ2

) ξ cos t
32

−
(
16 + 5ξ2 − 7φ2

) φ sin t

32

+

(
1− φ2 + ξ2

4

)
φt cos t

2
+

(
1 +

φ2 − ξ2

4

)
ξt sin t

2

+

(
ξ2 − φ2

4
− 1

)
ξ cos 3t

8
+

(
3ξ2 − φ2

4

)
φ sin 3t

8
. (1.28)

Then, the first-order-approximated perturbation solution with potential resonance

is,

x(t) = φ cos t+ ξ sin t+
(
4− ξ2 + φ2

) εξ cos t
32

−
(
16 + 5ξ2 − 7φ2

) εφ sin t

32

+

(
1− φ2 + ξ2

4

)
εφt cos t

2
+

(
1 +

φ2 − ξ2

4

)
εξt sin t

2

+

(
ξ2 − φ2

4
− 1

)
εξ cos 3t

8
+

(
3ξ2 − φ2

4

)
εφ sin 3t

8
. (1.29)

The resonant effect is observed in Figure 3. Comparing to the no resonance case,

the limit cycle boundary increases dramatically. By solving Van der Pol equation

using perturbation for first order approximation, it is realized that initial condition

can affect the performance significantly. The start-up condition of an oscillator is

discussed in the next chapter.
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Figure 3. Resonance Case
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1.2 Technologies Necessary to Construct a Nonlinear Phased Array

The rapid growth in bandwidth of wireless data links in recent years has led the

industry towards utilizing range 24− 60 GHz for high-speed internet, data and voice

channels and 77 GHz for automotive radar applications. The channel behavior has

been studied and reported that antennas with appropriate characters can make the

wireless channel very efficient and reliable. Intricate multi-antenna schemes such as

MIMO and space-time coding can dramatically increase the channel throughput and

frequency reuse. However, a full utilization of these benefits requires cost-effective

implementations of the electronically scanning antenna (ESA) array architectures.

Phased antenna array places important roles in the ESA system.

An ESA array must have two properties to be suitable for wide-band applications.

First, the antenna elements and the feed network must be wide-band to allow proper

matching and consistent array coefficients throughout the band. Second, the position

of the main beam in the radiation pattern must be stable in the band of operation.

A stable beam is necessary for systems with wide instantaneous bandwidth such as

pulse communication or radars, or in fast orthogonal frequency division multiplexing

(OFDM) type systems that the speed of electronic beam-steering can become limiting.

A stable beam angle requires the use of true-time delay (TTD) devices to cancel the

propagation delay differential from the antenna elements in a given direction at all

frequencies. Simple phase-shifters can achieve this goal only at the design frequency.

Figure 4 depicts the configuration of ESA arrays, in which ∆T is TTD or other type

of phase shifter.

The phase shifters can be ferroelectric barium strontium titanate (BST) based

11



(a) Corporate Feed

(b) True-Time Delay

Figure 4. Antenna Array with Phase Shifters

phase shifter of true-time delay, or CMOS devices, or MEMS products; either way

they are cumbersome and costly. Table 1 provides a side to side comparison.

Metric Technology MEMS CMOS
Insertion Loss 2− 3 dB 6− 8 dB
Noise Figure 2− 3 dB > 4 dB
IIP3 (RX) > 30 dBm < −20 dBm
P1−dB(TX) > 15 dBm ∼ 0 dBm

Operation Voltage 20− 80 V 3.5 V
DC Consumption ∼ 0 mW 10 mW
True-time Delay Yes No

Reciprocal Yes No

Table 1. A Side-By-Side Comparison of the Passive and Active Phase Shifters
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Fortunately, the coupled phased array can provide antenna beam scanning elec-

tronically without TTD or any other phase shifters. The nonlinear dynamics show

that for a coupled array of N elements satisfies [25]

dθ1
dt

= ω1 −
ω1κ

2Q
sin(Φ + θ1 − θ2),

dθi
dt

= ωi −
ωiκ

2Q
[sin(Φ + θi − θi−1) + sin(Φ + θi − θi+1)] , 1 < i < N (1.30)

dθN
dt

= ωN − ωNκ

2Q
sin(Φ + θN − θN−1).

where θi is the instantaneous phase of each oscillator, ωi is the free-running frequency

of the ith oscillator, and Q is the quality factor of the oscillator elements, and κejΦ is

the coupling factor between adjacent oscillators. The steady state solution indicates

that each oscillator has very close resonant frequencies and the small differences

achieve the amount would be produced by the individual phase shifters.
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Chapter 2

DESIGN OF THE OSCILLATOR ARRAY

In this chapter, a reliable coupled phased array to feed the scanning antenna array

as a platform is studied [26, 27]. The coupled oscillators array (COA) regime is the

framework for the application of Lyapunov theory to prevent unwanted defects such

as Hopf bifurcation, quasi-periodic route to chaos, and exponential divergence. We

have studied Lyapunov stability, limit cycles, bifurcation, and phase locking principles,

and then moved on to resonator and antenna design.

We apply the Van der Pol model to a single-transistor oscillator (STO) and obtain

the isolated limit cycle. Employing the Keysight ADS, we tune and optimize the STO

with a free-running frequency fs = 5.35 GHz. The STO circuit and its mirror image

are joined by a Wilkinson power combiner, forming a double-transistor oscillator

(DTO) that is a frequency doubler (see Figure 12), with the second harmonic as

output, namely, a free-running frequency fd = 10.71 GHz. Throughout the paper,

the antenna operating frequency is fd = 10.71 GHz, while the oscillator free running

frequency is fs = 5.35 GHz. In such a configuration, the antenna scanning range will

be augmented remarkably.

An example of a voltage-controlled oscillator (VCO) from the ADS design library

is studied for the varactor design and implementation. The results show a linear

variation of the resonant frequency when adjusting the tuning voltage. The varactor

is then applied to the project for setting up a resonant frequency configuration of the

phased array.

The output performance of the phased oscillator array is investigated. The phase
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and amplitude relationships between neighboring elements in differential equation

form are derived from Adler’s equation. The equations are solved numerically using

the Runge-Kutta method. The results are compared with the simulation results from

the ADS model.

2.1 Single-Transistor Oscillator Design

Self-oscillating circuit is the basic unit for coupled COA systems. We conducted

design and simulation of self-oscillating circuits using Keysight PathWave Advanced

Design System (ADS). Resonator and oscillator theory and practice are in the literature

and college textbooks. Based on piezoelectric resonance, crystal oscillators are stable

and precise operating in the low mega-hertz region. Hartley-Colpitts oscillators are

types of feedback networks, work in the mega-hertz and sub-GHz region. Transistor

oscillators generally have lower frequency and power capabilities than diode sources but

more flexible and compatible with monolithic microwave integrated circuit (MMIC),

and we choose to use transistors. Dielectric resonator and split ring resonator (SRR)

may provide oscillations in the X- to Ku- band, but they require specific components.

In our design, we use gate stub resonance, employing only microstrip transmission

lines without high-Q disk or SRR.

2.1.1 Circuit and Component Selection

Among BJT and FET, the BJT usually has slightly higher frequency and uses more

current. We selected the NEC’s NE3201S01, which is a low noise AlGaAs/InGaAs
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N-channel pseudomorphic Hetero-Junction FET with fc = 12 GHz. Table 2 below

lists its electric characteristics at temperature T = 25◦ C.

Characteristics Symbol Test Conditions MIN TYP MAX Unit
Gate to Source
Leak Current IGSO VGS = −3V − 0.5 10 µA

Saturated Drain
Current IDSS

VDS = 2V , VGS =
0V

15 40 70 mA

Gate to Source
Cut-Off Voltage VGS(off)

VDS = 2V , IDS =
10mA

−0.2 −0.7 −2.0 V

Transconductance gm
VDS = 2V , IDS =
10mA

40 55 − mS

Noise Figure NF
VDS = 2V , IDS =
10mA, f = 12GHz

− 0.35 0.45 dB

Associated Gain Ga
VDS = 2V , IDS =
10mA, f = 12GHz

12.0 13.5 − dB

Table 2. Electric Characteristics of NE3201S01

This FET model is within the ADS libraries provided by Renesas Electronics

Corporation [28] and readily for simulation. The device, NE3201S01 is obsolete and

its drop-in replacement is CEL’s CE3512K2.

Based on NE3201S01 data sheet and S-parameters, we conducted the stability

µ′ − µ test that the device will be working in the unstable condition around f = 5.4

GHz. Figure 8 depicts the ADS schematic and the simulation results.

Figure 8 illustrates the DC bias circuit. Under 4 volts dc voltage the drain current

is close to the typical values of Table 2, namely VDS = 2V, IDS = 10mA.

16



Figure 5. Stability Tests and Schematic

Figure 6. Stability Values, µ and µ′

2.1.2 Single Transistor Oscillator Based upon Gate Stub Resonator

The resonating mechanism of single transistor oscillator is negative resistance, or

equivalently negative total admittance, namely,

Re {YT}ω=ω0
< 0 (2.1)

The Kurokawa resonation criteria require admittance crossing zero at resonant

frequency,

Im {YT}ω=ω0
= 0 (2.2)
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(a) Source Circle

(b) Load Circle

Figure 7. Stability Circles
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Figure 8. DC Bias Circuit and Typical Drain-Source Conditions

and
∂Im {YT}ω=ω0

∂ω
|ω=ω0 > 0 (2.3)

Equations above are the start-up conditions. For gate stub resonator, we first

choose source stub width to match the device source pad, and the line impedance

per unit length is determined by the substrate selected. The length is such that the

negative resistance is preserved in the frequency sub-bands.

The transmission lines and stub by drain-gate are to convert negative resistance

to network 50Ω environment. Figure 9 demonstrates the ADS schematic diagram of a

single FET self-oscillator whose 1st harmonic is 5.35 GHz.

Figure 10 shows the time-domain waveform of this single FET self-oscillator. Its

19



Figure 9. ADS Schematic Diagram of Single FET Self-Oscillator with f = 5 GHz

start-up, transient and steady state stages are clearly observed. The frequency-domain

discrete Fourier transform of the waveform shows the fundamental frequency f1 = 5.35

GHz, and output power in 9.42 dBm, and 2nd harmonic f2 = 10.71 GHz, and output

power in −1.65 dBm.

Figure 11 shows the validation of the design principles. Negative resistance

preserved at the resonant frequency, and the slop of imaginary part of the admittance

is upward.

2.2 Push-Pull Transistor Oscillator Design

On many occasions, higher frequencies are desired. If we combine two identical

single transistor oscillators with a Wilkins power combiner, we may cancel the odd

harmonics and enhance the even harmonics by connecting a series of transmission
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Figure 10. Performance of the Single FET Self-Oscillator in Time and Frequency
Domains

Figure 11. Start-Up Condition Verification for the Single FET Self-Oscillator
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lines between the gates of the FET devices. As a result, the push-pull oscillator is

designed. Figure 12 is the ADS schematic.

Figure 12. ADS Schematic Diagram of Push-Pull FET Self-Oscillator at Second
Harmonic Frequency

Figure 13 and Figure 14 show the simulation results of the push-pull oscillator.

The best resonating frequency appears to be at 10.3 GHz, at which all three criteria

are satisfied. The analysis of time-domain results indicates that the ultimate resonant

frequency is 10.82 GHz. The output power is 0.539 dBm, which is improved by 2.1

dB compared to the 2nd harmonic power of the single FET oscillator. Further study

and work are needed to fully understand the nonlinear oscillator.
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Figure 13. Start-Up Condition Verification for Push-Pull Oscillator

Figure 14. Performance of the Push-Pull FET Oscillator in Time and Frequency
Domains

2.3 Voltage-Controlled Oscillator

The topology of single FET oscillator of Figure 9 and double FET push-pull

oscillator of Figure 12 is easily to control. Figure 15 is the schematic of an open loop

resonance model for NEC 3210S01 HJFET based voltage-controlled oscillator (VCO),
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where a varactor, Cvar, is connected to the gate of the FET. By changing the voltage

of Cvar and associated transmission line parameters, the resonant frequency can be

tuned and optimized.

Figure 15. Schematic of Open Loop Resonance Model

The adjustable capacitor, varactor, near the gate stub can be achieved with a FET

or diode. Figure 16 is an example from the help document of ADS shows the testing

and integration procedures of designing a varactor.

Figure 16 shows a biased FET being tested as a varactor. The linearity of voltage

change can be observed in the figure, and this phenomenon will be utilized to adjust

the resonant frequency.

Figure 17 demonstrates a VCO design with an FET used as a varactor. The

resonant frequency varies by more than 250 MHz as the tuning voltage changes from
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(a) Varactor Testing Circuit

(b) Capacitance with Control Voltage (Linear Part Marked)

Figure 16. Voltage Variation of a Biased FET for Varactor Designing

2.8 V to 3.3 V. However, the slope of the frequency differential rate is not constant,

which increases the complexity of controlling the phased oscillator array.
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Figure 17. An ADS Example of VCO with Varactor Operating at 3 GHz
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2.4 Phased Oscillator Array

2.4.1 Phase Relationship Derived from Adler’s Equation

The output phase of an oscillator with an injected signal is given by Adler’s

equation:
dϕ

dt
= ω0 − ωinj +

ρω0

2αQ
sin(ψ − ϕ), (2.4)

where ω0 is the free-running frequency, α is the amplitude of the free-running output,

and Q is the quality factor of the resonant circuit, ρ, ωinj and ψ are the amplitude,

frequency and phase of the injected signal respectively. The “locking range” is defined

as,

∆ωm =
ρω0

2αQ
. (2.5)

For the steady-state, dϕ
dt

= 0, relationship between the phase and the instantaneous

frequency is derived as
ω − ω0

∆ωm

= sin(ψ − ϕ). (2.6)

By solving the steady-state, phase difference between the oscillator and injected

signal is,

∆ϕ = sin−1

(
ωinj − ω0

∆ωm

)
. (2.7)

Equation 2.7 indicates that the frequency difference between injected signal and

oscillator must be within the locking range for a valid injection-locked solution.

The steady-state phase is perturbed from its free-running state, ϕ = ϕ0 + ϕδ,

Equation 2.4 and be reduce to

dϕδ

dt
= −ϕδ∆ωm cos(∆ϕ). (2.8)
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The criteria for the perturbation decays in time, dϕδ

dt
< 0, is cos∆ϕ > 0. Thus, the

phase range is restricted:

−π
2
< ∆ϕ <

π

2
. (2.9)

Since the Q factor is known as frequency-to-bandwidth ratio, Equation 2.5 can be

rewritten as

∆ωm =
ρω0

2αQ
=
ρω0

2α

∆ω3dB

ω0

=
ρ

2α
∆ω3dB,

∆fm =
ρ

2α
f3dB. (2.10)

To enlarge the locking range in a practical design, the designer could increase the

injection-oscillator amplitude ratio, or increase the resonant frequency. Thus, the

coupled phased array can provide antenna beam scanning electronically without TTD

or any other phase shifters.

For one-dimensional nearest-neighbor coupled oscillator array,

Yi(ω, [V ]) = YOSC,i(ω, Vi) + YCPL,i(ω, [V ]) = 0, i = 1, 2, · · · , N (2.11)

YCPL,i =
N∑
j=1

Yij
Vj
Vi

(2.12)

Yij = yije
−jΦij (2.13)

where yij is the coupling strength, and Φij is the coupling phase between oscillator i

and j.

Vi = Ai(t)e
jθi(t) (2.14)

where Ai and θi are the amplitude and the instantaneous phase of the ith oscillator.

The input admittance of a shunt equivalence showing in Figure 18 is written as:

YOSC(ω, Vi) =
1

jωL
−Gd +GL + jωC. (2.15)
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Figure 18. The Shunt-Resonance Equivalent Circuit of an Oscillator

And for a one-dimensional phased oscillator array, the admittance parameters can be

derived as:

Yij =



1
2Z0

, if i = j = 1 orN

1
Z0
, if i = j ̸= 1 andN

−1
Z0
e−jΦ, if |i− j| = 1

0. otherwise

(2.16)

The nonlinear dynamics show that for a coupled array of N elements satisfies [25]

dθ1
dt

= ω1 −
ω1κ

2Q
sin(Φ + θ1 − θ2),

dθi
dt

= ωi −
ωiκ

2Q
[sin(Φ + θi − θi−1) + sin(Φ + θi − θi+1)] , 1 < i < N (2.17)

dθN
dt

= ωN − ωNκ

2Q
sin(Φ + θN − θN−1),

and

dA1

dt
=
ω1A1

2Q
[µS1(A1)− κ cosΦ] +

ω1κ

2Q
A2 cos(Φ + θ1 − θ2),

dAi

dt
=
ωiAi

2Q
[µSi(Ai)− 2κ cosΦ] (2.18)

+
ωiκ

2Q
[Ai−1 cos(Φ + θi − θi−1) + Ai+1 cos(Φ + θi − θi+1)] ,

dAN

dt
=
ωNAN

2Q
[µSN(AN)− κ cosΦ] +

ωNκ

2Q
AN−1 cos(Φ + θN − θN−1),
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where θi is the instantaneous phase of each oscillator, ωi is the free-running frequency

of the ith oscillator, and Q is the quality factor of the oscillator elements, and κejΦ is

the coupling factor between adjacent oscillators.

κ =
yij
GL

=
1

2Z0GL

(2.19)

The steady state solution indicates that each oscillator has very close resonant fre-

quencies and the small differences achieve the amount would be produced by the

individual phase shifters.

The steady-state phase shift (θi − θi+1) can be obtained as:

θi − θi+1 = arcsin

[
1

ρ

(
i∑

k=1

ωk −
i

N

N∑
i=1

ωi

)]
. (2.20)

A coupled oscillator array configuration addressed in [10] that the oscillators’

resonant frequency at the boundaries are tuned away from other middle elements by

∆ω and −∆ω. The linear inter-element shift is calculated as:

θi − θi+1 = arcsin

[
1

ρ

(
i∑

k=1

ωk −
i

N

N∑
i=1

ωi

)]

= arcsin

[
1

ρ

(
ω̄ +∆ω +

i∑
k=2

ωk − ω̄i

)]

= arcsin

(
∆ω

ρ

)
. (2.21)

2.4.2 Evaluate Phase Shifts with Different Methods

The dynamic behavior of the locking process can be analysed by numerically

solving Equation 2.18. The Runge–Kutta method is adopted for iteratively evaluate

the output phases from each coupled oscillator. A MATLAB script in Appendix is

developed according to:

yn+1 = yn +
1

6
(k1 + 2k2 + 2k3 + k4)h, (2.22)
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where 

tn+1 = tn + h,

k1 = f(tn, yn),

k2 = f(tn +
h
2
, yn + hk1

2
),

k3 = f(tn +
h
2
, yn + hk2

2
),

k4 = f(tn + h, yn + hk3).

With the estimated values, κ = 0.8, Q = 3.8, ∆ω = 100MHz, and ω = 5.3 GHz,

the results of different initial conditions converge to the the same phase shift value,

shown in Figure 19.

In order to verify the results obtained using the Runge-Kutta method, a simulation

model is built in ADS with the same resonant frequency configuration. Figure 20

shows the schematic of the phased array, and Figure 21 demonstrates evenly separated

oscillator outputs with the expected phase shift. Comparing the results from the

Runge-Kutta method and ADS simulation, as shown in Figure 22, they show good

agreement in terms of the linearity of the phase distribution.

In Figure 23, the outputs of all the oscillators in the time domain and frequency

domain are plotted. It shows that the resonant frequency of all oscillators is synchro-

nized at 5.3 GHz, although the two on the boundaries are resonating at 5.4 GHz and

5.2 GHz, respectively.
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Figure 19. Solving the Phase Shifts between Neighbor Oscillators with the Runge-
Kutta Method
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Figure 20. Bilateral Coupling Configuration of the Phased Oscillators.

Figure 21. Time-Domain Result from ADS that Shows the Phase Shifts between Each
Oscillator
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Figure 22. Plot of Output Phases from ADS Simulation and the Runge-Kutta Method
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Figure 23. Oscillator Outputs in Time Domain and Frequency Domain from ADS
Simulation
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Chapter 3

ANTENNA ELEMENTS OPTIMIZATION AND ARRAY DESIGN

In this chapter, three types of antennas are studied and implemented in a simulation

software, Ansys HFSS. Section 3.1 presents the optimization of the feeding of horn

antennas and their cross-coupling. Section 3.2 discusses impedance matching of a

cavity-backed slotted antenna. The gain improvement of a cavity slotted array is

shown in Section 3.3. Section 3.4 demonstrates a uniform antenna array with coupled

oscillators implemented.

3.1 Optimization of Feeding of Horn Antennas and Cross Coupling

The horn antenna is studied due to its characteristics of high gain and low cross-

talk. These advantages make the horn antenna a good candidate for automobiles.

However, the disadvantage of horn antennas is their high profile. Unlike cavity-backed

slotted antennas that can be made on a printed circuit board (PCB), horn antennas

occupy more space and their scale is positively correlated to the operating wavelength.

A pyramidal horn antenna working at 76.5 GHz, designed in HFSS, is shown in Figure

24.

The simple design in Figure 24 meets the requirement of gain by using the default

feeding port provided by HFSS, which assumes the antenna is fed by a rectangular

waveguide. Waveguide provides low attenuation. However, feeding by a waveguide is

not only hard to implement in circuits, but also requires more longitudinal space.

To overcome the disadvantage, an improved model, shown in Figure 25, fed by a
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Figure 24. Pyramidal Horn Antenna in HFSS

coaxial cable is built. This design is able to be connected to a Sub-Miniature version

A (SMA) adaptor. An optimization is essential to shrink the size of device and match

the circuit.

Figure 25. Pyramidal Horn Antenna Fed by Coaxial Cable

As indicated in Figure 26, the performance of the matching network is determined

by three variables. d is the length of the probe part, l is the distance from the center

of the probe to the back wall, and hw is the depth of the waveguide part.

The problem has been analysed in [29]. It mentioned the dimensions of coaxial

aperture have a significant influence on the matching network. For this specific design,
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Figure 26. Feeding Network Variables (Side View)

variables are determined by optimization procedure. Thus, d = 0.63 mm, l = 0.475

mm and hw = 2 mm. The return loss is plotted in Figure 27.

Figure 27. The Optimized S-Parameters with Provided Variables
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This set of variables achieved a good impedance match at the operating frequency,

76.5 GHz. It also provides a more than 3 GHz (> 4%) 10-dB bandwidth. If the

requirement is not restricted, the longitudinal dimension can be further shrunk down.

The shortest hw value is 0.853 mm, which still provides a board 10-dB bandwidth,

Figure 28.

Figure 28. The Return Loss Value with Shortest Dimension

Cross-coupling is undesired between antennas in multiple-input and multiple-

output (MIMO) communication systems. A comparative study of three types of

cross-coupling was conducted. They are long-edge cross-talk (figure 29), short-edge

cross-talk (figure 30), and orthogonal cross-talk (figure 31).

As shown in Figure 29, 30, and 31, purple lines are indicating cross coupling level
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(a) (b)

Figure 29. Long-Edge Cross-Talk

(a) (b)

Figure 30. Short-Edge Cross-Talk
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(a) (b)

Figure 31. Orthogonal Cross-Talk

of each type of configurations. The cross-talk level for long-edge, short-edge and

orthogonal cases are around −40 dB, −60 dB and −80 dB correspondingly.

Comparing between long-edge case and short-edge case, the polarization of radia-

tions are the same. The cross coupling level is affected by distance and gain patterns

in E-plane and H-plane. The orthogonal case provides the lowest cross-talk level since

the polarization from two horn antennas are perpendicular to each other. Thus, the

orthogonal configuration is the ideal case for MIMO circuits.

3.2 Cavity Backed Slotted Antenna

Substrate integrate waveguides (SIW) has advantages of low profile and low cost.

Which makes it as one type of candidate antenna for automotive multiple-input and

multiple-output (MIMO) radars. The objective of this part is designing a Cavity
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Backed Slotted Antenna [21] with an operating frequency at 5.30 GHz. Also study

the impedance and gain properties from HFSS simulation.

The cavity resonance frequency is,

f =
1

2
√
µϵ

√(
m

a

)2

+

(
n

b

)2

. (3.1)

For TE120 mode, m = 1 and n = 2. The experimental formula for the normalized

width of the equivalent waveguide is [30]

ā = ξ1 +
ξ2

p
d
+ (ξ1+ξ2−ξ3)

(ξ3−ξ1)

, (3.2)

where

ξ1 = 1.0198 +
0.3465

a
p
− 1.0684

,

ξ2 = −0.1183− 1.2729
a
p
− 1.2010

,

ξ3 = 1.0082− 0.9163
a
p
− 0.2152

.

(3.3)

Therefore, the equivalent waveguide is

aRWG = aā. (3.4)

The geometry [21] of CSA is presented in Figure 32. The model built in HFSS is

shown in Fig 33.

From the HFSS simulation, a = 37.46 mm, b = 47.30 mm, Ls = 20.81 mm, and

Ws = 1.89 mm. The 3-D radiation pattern is shown in Fig 34.

The return loss is finely tuned to the operating frequency at 5.30 GHz.It is shown

in Fig 35, the −10-dB bandwidth is 61 MHz. The result suggests that the working
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Figure 32. The Geometry of a Cavity-Backed Slotted Antenna.

(a) (b)

Figure 33. The CSA Model Built in HFSS, (a) Back Side, (b) Front Side
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Figure 34. 3-D Radiation Pattern on Top of the Model

frequency of the CSA can be adjusted easily without modifying the fundamental

design.

Figure 35. Plot of Return Loss (S11 Parameter)

Figure 36 denote the far-field radiation pattern of the antenna in E-plane and

H-plane. On E-plane, the maximum gain 6.00 dB occurs at θ = −158◦. The 3-dB

beamwidth on E-plane is 85◦. On H-plane, the maximum gain 5.05 dB occurs at
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θ = 180◦. And the 3-dB beamwidth is 80◦. The front-to-back ratio is 16 dB for both

E-plane and H-plane.

(a) (b)

Figure 36. Plots of Radiation Patterns, (a) E-Plane, (b) H-Plane.

Fig 37 is showing plots of polarization ratio in E-plane and H-plane. The maximum

ratio on E-plane is 67.98 dB, which stands for a high purity in polarization. On

H-plane, the polarization ratio varies from 0 dB to 30 dB in most directions.

(a) (b)

Figure 37. The Polarization Ratio, (a) E-Plane, (b) H-Plane.
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The antenna was originally operated at 10 GHz. By re-scaling the dimensions [22],

we achieved a 0.35 GHz −10-dB bandwidth and maintained the gain to 6 dB.

3.3 Gain Improvement of Cavity Slotted Array

A cavity slotted array antenna (CSAA), shown in Figure 38, designed by a private

company is studied in this section. It is a more sophisticated design than the one

from Section 3.2. This cavity slotted array antenna has seven dielectric layers and

eight conductive layers with the staggered arrangement, shown in Figure 39. The

top conductive layer is the feeding part with co-planar waveguide. The bottom layer

contains 3× 16 T-shaped slots, shown in Figure 42 (a).

Figure 38. Original Cavity Slotted Array Model in HFSS
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Figure 39. Different Layers of Cavity Slotted Array

The operating frequency of this antenna is 76.5 GHz. Figure 40 indicates gain

plots in two principal planes. The original gain is 13.36 dB.

After studying the antenna by observing simulated electric fields, we were looking

for performance improvements by modifying slots on the bottom layer.

Since the original 3-D model in HFSS is provided by the design company, a rebuilt

bottom layer is needed in order to modify slots on it. The rebuilt model, shown in

Figure 41, is identical to the original model in dimensions.

The first tested approach is substituting T-shaped slots with fractal slots. The

comparison between two types of slots is shown in Figure 42. However, the maximum

gain dropped to 10.43 dB, shown in Figure 43. The size of T-shaped slots is already a

result of optimization. It is not easy to improve the gain by changing the shape of

slots.
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Figure 40. Original Gain Plot

Figure 41. Remodeled Cavity Slotted Array
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(a) (b)

Figure 42. View of Slots, (a) Original Slot, (b) Fractal Slot.

Figure 43. Gain Plot with Fractal Slots

The second modification approach is applied by adding more slots on top of

dielectric cavities. In total, 6 sets of one and half T-shaped slots are added to the

bottom layer. Figure 44 is the zoomed in view at revised part.
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Figure 44. Additional Slots

With additional slots, the maximum gain is increased to 14.67 dB, shown in Figure

46.

One more approach, scaling the electric size of the device [22], is utilized to improve

the gain and impedance performances. This procedure is conducted based on the

additional-slot model. After scaling the original antenna size with a factor of 0.982, the

results are improved. The updated gain is 15.59 dB, shown in Figure 47. Comparing

to the original simulation result, the improvement of gain is 29.2% (2.23 dB). Figure

48 is the return loss plot over a frequency range from 75 GHz to 78 GHz.
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Figure 45. E-Field on Top of the Bottom Layer

3.4 Antenna Array Design with Phased Oscillators

The horn antenna is studied and prototyped using 3D printing technique, as shown

in the Appendix. The cavity slotted array is investigated and applied to another

specific commercial project. The cavity-backed slotted antenna from section 3.2 is

selected as the radiating element to be integrated with the oscillator array on the same

PCB. A seven-element one-dimensional array in Figure 49 is simulated to investigate

beam steering.

After combining the antenna and oscillator arrays, radiation patterns are obtained

from HFSS simulation, as shown in Figure 50. The scanning range is around ±4◦,
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Figure 46. Gain Plot with Additional Slots

which is relatively narrow for many applications. There are multiple approaches to

improve the scanning performance of the array.

3.5 Augmentation of Scanning Range

One approach to increase the scanning range is by adding frequency multipliers to

the output of the oscillators [31–34]. By adding frequency multipliers to the circuit,

the frequency and phase of each element are doubled. The radiation pattern and
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Figure 47. Gain Plot of the Optimized Model Applying Correct Loss Tangent Value

Figure 48. Return Loss Plot of the Optimized Model
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Figure 49. A Seven-Element One-Dimensional Antenna Array with the Radiation
Elements Separated by 3

4
λ: λ = 56.56 Mm with Dielectric Constant of the Substrate

as 2.2

Figure 50. Radiation Patterns of Unsteered and Steered Beam Directions Drove by
the Coupled Oscillators with Linear Phase Steps: Scanning Range ±4◦

original scanning range of the uniform antenna array in Figure 49 is given by

|A(∆ϕ)| = 1

N

∣∣1 + ej∆ϕ + ej2∆ϕ + · · ·+ ej(N−1)∆ϕ
∣∣

=
1

N

∣∣∣∣1− ejN∆ϕ

1− ej∆ϕ

∣∣∣∣ (3.5)

=
1

N

∣∣∣∣∣sin N∆ϕ
2

sin ∆ϕ
2

∣∣∣∣∣
and

θscan = arcsin (
2∆ϕ

3π
). (3.6)
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Due to the limitation of ∆ϕ from Equation 2.9, the ideal maximum scan range is

±19.5◦. With the doubled phases from oscillators, the updated equation for the

scanning range is

θscan = arcsin (
4∆ϕ

3π
). (3.7)

And the updated ideal maximum scanning range is ±41.8◦. Figure 51 shows the

configuration of the array with frequency multipliers.

Figure 51. The Phased Array with Frequency Multipliers Implemented

In this project, the push-pull configuration, which is introduced in Section 2.2,

presents an approach for frequency multiplication. Compared to the circuit previously

described in the dissertation, the new version incorporates a frequency doubler in

each oscillator, as detailed in Figure 52. Each oscillator operates at the fundamental

frequency of 5.32 GHz, while the antennas operate at the second harmonic of 10.64

GHz, resulting in a doubling of the phase shift. Figure 53 demonstrates good agreement

with the numerical prediction from Equation 3.7, with the phase shift doubled and

an associated increment in the scanning range. Figure 54 further illustrates that the

scanning range of the current design is increased to around ±7.5◦. It is noted that the

separation between radiation elements will affect the scanning performance. As shown

in Figure 55, the cavity backed slotted antennas are scaled and separated by half

wavelength. Comparing to the model dimensions from Section 3.2, the parameters

are scaled to: a = 8.8 mm, b = 11.11 mm, Ls = 4.89 mm, and Ws = 0.44 mm.
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The antenna array will be built on the same PCB board as the oscillator array.

Roger RO3010 with a dielectric constant of 10.2 has been selected. The impedance

performance is plotted in Figure 56, where the antenna operates at 10.65 GHz, and

further tuning is needed for better return loss. Equation 3.7 is rewritten due to the

element distance changes:

θscan = arcsin (
2∆ϕ

π
). (3.8)

Figure 57 depicts a scanning range of ±10.5◦, which represents a 40% improvement

compared to the antenna array with 3
4
wavelength element interval.
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Figure 52. Schematic of Coupled Oscillator Array Using Push-Pull Configuration
(Fundamental Resonant Frequency of Single Oscillator at 5.3 GHz, Radiation Elements
Operating at 10.64 GHz Connected to the Load Port after Wilkinson Power Combiners)
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Figure 53. Augmented Phase Shift due to the Multiplied Frequency

Figure 54. Radiation Patterns of Unsteered and Steered Beam Directions Driven by
the Coupled Oscillators with Frequency Multipliers Added (Fundamental Resonant
Frequency of Single Oscillator at 5.3 GHz, Antenna Array at Doubled Frequency
Showing an Improved Scanning Range ±7.5◦)
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Figure 55. Antenna Array with the 10.64 GHz Scaled Radiation Elements Separated
by 1

2
Wavelength (λ = 28.18 Mm)

Figure 56. The Return Loss Performance of Individual Antenna that Scaled to Working
at 10.65 GHz
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Figure 57. Radiation Patterns Augmented by Adjusting the Element Distance from
3
4
λ to 1

2
λ (Fundamental Resonant Frequency of Single Oscillator at 5.3 GHz, Antenna

Array at Doubled Frequency: Scanning Range ±10.5◦)
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Chapter 4

CONCLUSION AND FUTURE WORK

In this document, a novel design is introduced for a phased array antenna that does

not require individual phase shifters. The relationship between the Van der Pol (VDP)

equation and resonant circuit is explored, and an approximate solution of the VDP

equation is derived. The output performance of coupled oscillators is derived based on

Adler’s equation. Topics such as phased arrays without phase shifters, single-FET and

push-pull oscillator designs, and antenna element designs are studied and discussed.

The coupled oscillators, operating at 5.30 GHz, are utilized to build a reliable phased

oscillator array to feed the scanning antenna array as a platform. The augmented

scanning range is achieved by implementing frequency multipliers to the fundamental

oscillators, resulting in a resonant frequency increase to 10.64 GHz and a doubling

of the phase shift. This extends the scanning range and enables work on an antenna

array with higher frequency. It is demonstrated that the operating frequency of the

cavity backed slotted antenna can be modified with much flexibility.

This phased array design is verified analytically and through simulations in this

document. It is shown that by coupling voltage-controlled oscillators together, the

radiation beam direction can be steered without microelectromechanical systems

(MEMS) phase shifters. This brings significant benefits, including but not limited

to higher scanning speed, lower manufacturing and maintenance costs, lower system

complexity, and space savings in compact designs.

The literature indicates that frequency multiplication techniques may enhance the

phase-shift range of a coupled oscillator array. We propose to compare and contrast
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the performance of traditional linear antenna arrays with nonlinear antenna arrays of

various sizes (e.g., 16×16, 32×32, 64×64, etc.) in basic and sub-arrayed architectures

through system level simulations. Fundamental trade-offs between gain, loss of the

feed network, scan field of view, side-lobe level, front-to-back ratio, complexity, and

cost will be determined in the future phase of the project. In addition, scanning errors

and phase noise (flicking noise) are important topics to be studied.
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APPENDIX A

WOLFRAM MATHEMATICA CODES OF VAN DER POL SOLUTIONS
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=================== No Resonance Case =====================

In [ 2 9 ] := i n i t i a l P o s i t i o n =1.5;
i n i t i a l S p e e d=Sqrt [4− i n i t i a l P o s i t i o n ^2 ] ;
In [ 3 1 ] := x=x0 Cos [ t ]+v0 Sin [ t ]+\[ Alpha ] ( ( v0 ( v0^2−3) ) /8 Cos [ t

]+3/8 x0 ( x0^2−3)Sin [ t ]+(v0 (3−v0^2) ) /8 Cos [ 3 t ]+(x0 (3−x0
^2) ) /8 Sin [ 3 t ] )

Out[31 ]= x0 Cos [ t ]+v0 Sin [ t ]+\[ Alpha ] (1/8 v0 (−3+v0^2) Cos [ t
]+1/8 v0 (3−v0^2) Cos [ 3 t ]+3/8 x0 (−3+x0^2) Sin [ t ]+1/8 x0
(3−x0^2) Sin [ 3 t ] )

In [ 3 2 ] := x \ [ Alpha]=x / . { \ [ Alpha ]−>0.01 , x0−>i n i t i a l P o s i t i o n , v0
−>in i t i a l S p e e d }

Out[32 ]= 1 .5 Cos [ t ]+1.32288 Sin [ t ]+0.01 (−0.206699 Cos [ t
]+0.206699 Cos [ 3 t ]−0.421875 Sin [ t ]+0.140625 Sin [ 3 t ] )

In [ 3 3 ] := v \ [ Alpha]=D[ x , t ] / . { \ [ Alpha ]−>0.01 , x0−>
i n i t i a l P o s i t i o n , v0−>in i t i a l S p e e d }

Out[33 ]= 1.32288 Cos [ t ]−1.5 Sin [ t ]+0.01 (−0.421875 Cos [ t
]+0.421875 Cos [ 3 t ]+0.206699 Sin [ t ]−0.620098 Sin [ 3 t ] )

In [ 1 ] := data=Table [ { x \ [ Alpha ] , v \ [ Alpha ] } , { t , 0 , 6 0 , 0 . 0 1 } ] ;
In [ 3 5 ] := p=ListPlot [ data ,AxesLabel−>{"x ( t ) " , "v ( t ) " } ,PlotLabel

−>"Phase␣ plane ␣ f o r ␣ I .C. ␣x (0 )="<>ToString [ i n i t i a l P o s i t i o n
]<>"␣and␣v (0)="<>ToString [ i n i t i a l S p e e d ]<>"␣ \ [ Alpha ]=0.01 "
] ;

In [ 3 6 ] := p2=Graphics [ {PointSize [ 0 . 0 3 ] ,Point [ { i n i t i a l P o s i t i o n ,
i n i t i a l S p e e d } ] } ] ;

In [ 3 7 ] := Show [ { p , p2 } ,AspectRatio−>1]

==================== Resonance Case =======================

Resonance
i n i t i a l P o s i t i o n =1.5 ;
i n i t i a l S p e e d=Sqrt [4− i n i t i a l P o s i t i o n ^2 ] ;
(∗ i n i t i a l P o s i t i o n =1.5;
i n i t i a l S p e e d=Sqr t [4− i n i t i a l P o s i t i o n ^2 ] ; ∗)
pe r tu rba t i on f =2;
x=x0 Cos [ t ]+v0 Sin [ t ]+\[ Alpha ](−( v0^3/32)+(v0 x0^2)/32+1/8 v0

)Cos [ t ]−\[Alpha ]/32 x0 (5 v0^2−7 x0^2+16)Sin [ t ]+\[ Alpha ] t
(1/2 x0(1−(x0^2+v0^2) /4)Cos [ t ] ) +\[Alpha ] t (1/2 v0(1−(v0^2−
x0^2) /4)Sin [ t ] ) +\[Alpha ]/8 v0 ( ( v0^2−x0^2)/4−1)Cos [ 3 t ]+\[
Alpha ]/8 x0 ( (3 v0^2−x0^2) /4)Sin [ 3 t ] ;

x \ [ Alpha]=x / . { \ [ Alpha]−>per tu rbat i on f , x0−>i n i t i a l P o s i t i o n , v0
−>in i t i a l S p e e d }
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v \ [ Alpha]=D[ x , t ] / . { \ [ Alpha]−>per tu rbat i on f , x0−>
i n i t i a l P o s i t i o n , v0−>in i t i a l S p e e d }

data=Table [ { x \ [ Alpha ] , v \ [ Alpha ] } , { t , 0 , 6 0 , 0 . 0 1 } ] ;
p=ListPlot [ data ,AxesLabel−>{"x ( t ) " , "v ( t ) " } ,PlotLabel−>"Phase␣

plane ␣ f o r ␣ I .C. ␣x (0 )="<>ToString [ i n i t i a l P o s i t i o n ]<>"␣and␣v
(0 )="<>ToString [ i n i t i a l S p e e d ]<>"␣ \ [ Alpha]=␣"<>ToString [
p e r tu rba t i on f ] ] ;

p2=Graphics [ {PointSize [ 0 . 0 3 ] ,Point [ { i n i t i a l P o s i t i o n ,
i n i t i a l S p e e d } ] } ] ;

Show [ { p , p2 } ,AspectRatio−>1]
Out[465]= 0 . +1.87206 Cos [ t ]−0.372059 Cos [ 3 t ]+0.479126 Sin [ t

]+1.48824 t Sin [ t ]+0.28125 Sin [ 3 t ]
Out[466]= 0 . +0.479126 Cos [ t ]+1.48824 t Cos [ t ]+0.84375 Cos [ 3

t ]−0.383824 Sin [ t ]+1.11618 Sin [ 3 t ]
Out[470]=
In [ 4 31 ] := Plot [ v \ [ Alpha ] , { t , 0 , 400} ,PlotRange−>5]
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APPENDIX B

RUNGE–KUTTA METHODS WITH MATLAB
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h=2.6e−12;
omega0=5.35 e9 ∗2∗pi ;
kapa0=0.5 ;
Qfactor =18;
delta_omega=20e6 ∗2∗pi ;
end_time=12e−8;

%i n i t i a l phase in degree
phase_no (1) =90;
phase_no (2 ) =60;
phase_no (3 ) =30;
phase_no (4 ) =0;
phase_no (5 )=−30;
phase_no (6 )=−60;
phase_no (7 )=−90;

N_element=7;

N=f loor ( end_time/h) ;
omega1=omega0+delta_omega ;
omega7=omega0−delta_omega ;

% Pre−c a l c u l a t i o n o f l o c k i n g range
locking_range0=kapa0∗omega0/2/Qfactor ;
locking_range1=kapa0∗omega1/2/Qfactor ;
locking_range7=kapa0∗omega7/2/Qfactor ;

theta=zeros (N_element ,N+1) ;
theta ( : , 1 )=phase_no ' ∗ pi /180 ;
time=linspace (0 , end_time ,N+1) ;
k1=zeros (N_element ,N) ;
k2=zeros (N_element ,N) ;
k3=zeros (N_element ,N) ;
k4=zeros (N_element ,N) ;
phase_shi f t=zeros (N_element−1,N) ;

for i =2:N+1
k1 (1 , i −1)=omega1−locking_range1 ∗ sin ( theta (1 , i −1)−theta (2 ,

i −1) ) ;
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k1 (2 , i −1)=omega0−locking_range0 ∗( sin ( theta (2 , i −1)−theta
(1 , i −1) )+sin ( theta (2 , i −1)−theta (3 , i −1) ) ) ;

k1 (3 , i −1)=omega0−locking_range0 ∗( sin ( theta (3 , i −1)−theta
(2 , i −1) )+sin ( theta (3 , i −1)−theta (4 , i −1) ) ) ;

k1 (4 , i −1)=omega0−locking_range0 ∗( sin ( theta (4 , i −1)−theta
(3 , i −1) )+sin ( theta (4 , i −1)−theta (5 , i −1) ) ) ;

k1 (5 , i −1)=omega0−locking_range0 ∗( sin ( theta (5 , i −1)−theta
(4 , i −1) )+sin ( theta (5 , i −1)−theta (6 , i −1) ) ) ;

k1 (6 , i −1)=omega0−locking_range0 ∗( sin ( theta (6 , i −1)−theta
(5 , i −1) )+sin ( theta (6 , i −1)−theta (7 , i −1) ) ) ;

k1 (7 , i −1)=omega7−locking_range7 ∗ sin ( theta (7 , i −1)−theta (6 ,
i −1) ) ;

k2 (1 , i −1)=omega1−locking_range1 ∗ sin ( theta (1 , i −1)−theta (2 ,
i −1)+(k1 (1 , i −1)−k1 (2 , i −1) ) ∗h/2) ;

k2 (2 , i −1)=omega0−locking_range0 ∗( sin ( theta (2 , i −1)−theta
(1 , i −1)+(k1 (2 , i −1)−k1 (1 , i −1) ) ∗h/2)+sin ( theta (2 , i −1)−
theta (3 , i −1)+(k1 (2 , i −1)−k1 (3 , i −1) ) ∗h/2) ) ;

k2 (3 , i −1)=omega0−locking_range0 ∗( sin ( theta (3 , i −1)−theta
(2 , i −1)+(k1 (3 , i −1)−k1 (2 , i −1) ) ∗h/2)+sin ( theta (3 , i −1)−
theta (4 , i −1)+(k1 (3 , i −1)−k1 (4 , i −1) ) ∗h/2) ) ;

k2 (4 , i −1)=omega0−locking_range0 ∗( sin ( theta (4 , i −1)−theta
(3 , i −1)+(k1 (4 , i −1)−k1 (3 , i −1) ) ∗h/2)+sin ( theta (4 , i −1)−
theta (5 , i −1)+(k1 (4 , i −1)−k1 (5 , i −1) ) ∗h/2) ) ;

k2 (5 , i −1)=omega0−locking_range0 ∗( sin ( theta (5 , i −1)−theta
(4 , i −1)+(k1 (5 , i −1)−k1 (4 , i −1) ) ∗h/2)+sin ( theta (5 , i −1)−
theta (6 , i −1)+(k1 (5 , i −1)−k1 (6 , i −1) ) ∗h/2) ) ;

k2 (6 , i −1)=omega0−locking_range0 ∗( sin ( theta (6 , i −1)−theta
(5 , i −1)+(k1 (6 , i −1)−k1 (5 , i −1) ) ∗h/2)+sin ( theta (6 , i −1)−
theta (7 , i −1)+(k1 (6 , i −1)−k1 (7 , i −1) ) ∗h/2) ) ;

k2 (7 , i −1)=omega7−locking_range7 ∗ sin ( theta (7 , i −1)−theta (6 ,
i −1)+(k1 (7 , i −1)−k1 (6 , i −1) ) ∗h/2) ;

k3 (1 , i −1)=omega1−locking_range1 ∗ sin ( theta (1 , i −1)−theta (2 ,
i −1)+(k2 (1 , i −1)−k2 (2 , i −1) ) ∗h/2) ;

k3 (2 , i −1)=omega0−locking_range0 ∗( sin ( theta (2 , i −1)−theta
(1 , i −1)+(k2 (2 , i −1)−k2 (1 , i −1) ) ∗h/2)+sin ( theta (2 , i −1)−
theta (3 , i −1)+(k2 (2 , i −1)−k2 (3 , i −1) ) ∗h/2) ) ;

k3 (3 , i −1)=omega0−locking_range0 ∗( sin ( theta (3 , i −1)−theta
(2 , i −1)+(k2 (3 , i −1)−k2 (2 , i −1) ) ∗h/2)+sin ( theta (3 , i −1)−
theta (4 , i −1)+(k2 (3 , i −1)−k2 (4 , i −1) ) ∗h/2) ) ;

k3 (4 , i −1)=omega0−locking_range0 ∗( sin ( theta (4 , i −1)−theta
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(3 , i −1)+(k2 (4 , i −1)−k2 (3 , i −1) ) ∗h/2)+sin ( theta (4 , i −1)−
theta (5 , i −1)+(k2 (4 , i −1)−k2 (5 , i −1) ) ∗h/2) ) ;

k3 (5 , i −1)=omega0−locking_range0 ∗( sin ( theta (5 , i −1)−theta
(4 , i −1)+(k2 (5 , i −1)−k2 (4 , i −1) ) ∗h/2)+sin ( theta (5 , i −1)−
theta (6 , i −1)+(k2 (5 , i −1)−k2 (6 , i −1) ) ∗h/2) ) ;

k3 (6 , i −1)=omega0−locking_range0 ∗( sin ( theta (6 , i −1)−theta
(5 , i −1)+(k2 (6 , i −1)−k2 (5 , i −1) ) ∗h/2)+sin ( theta (6 , i −1)−
theta (7 , i −1)+(k2 (6 , i −1)−k2 (7 , i −1) ) ∗h/2) ) ;

k3 (7 , i −1)=omega7−locking_range7 ∗ sin ( theta (7 , i −1)−theta (6 ,
i −1)+(k2 (7 , i −1)−k2 (6 , i −1) ) ∗h/2) ;

k4 (1 , i −1)=omega1−locking_range1 ∗ sin ( theta (1 , i −1)−theta (2 ,
i −1)+(k3 (1 , i −1)−k3 (2 , i −1) ) ∗h) ;

k4 (2 , i −1)=omega0−locking_range0 ∗( sin ( theta (2 , i −1)−theta
(1 , i −1)+(k3 (2 , i −1)−k3 (1 , i −1) ) ∗h)+sin ( theta (2 , i −1)−
theta (3 , i −1)+(k3 (2 , i −1)−k3 (3 , i −1) ) ∗h) ) ;

k4 (3 , i −1)=omega0−locking_range0 ∗( sin ( theta (3 , i −1)−theta
(2 , i −1)+(k3 (3 , i −1)−k3 (2 , i −1) ) ∗h)+sin ( theta (3 , i −1)−
theta (4 , i −1)+(k3 (3 , i −1)−k3 (4 , i −1) ) ∗h) ) ;

k4 (4 , i −1)=omega0−locking_range0 ∗( sin ( theta (4 , i −1)−theta
(3 , i −1)+(k3 (4 , i −1)−k3 (3 , i −1) ) ∗h)+sin ( theta (4 , i −1)−
theta (5 , i −1)+(k3 (4 , i −1)−k3 (5 , i −1) ) ∗h) ) ;

k4 (5 , i −1)=omega0−locking_range0 ∗( sin ( theta (5 , i −1)−theta
(4 , i −1)+(k3 (5 , i −1)−k3 (4 , i −1) ) ∗h)+sin ( theta (5 , i −1)−
theta (6 , i −1)+(k3 (5 , i −1)−k3 (6 , i −1) ) ∗h) ) ;

k4 (6 , i −1)=omega0−locking_range0 ∗( sin ( theta (6 , i −1)−theta
(5 , i −1)+(k3 (6 , i −1)−k3 (5 , i −1) ) ∗h)+sin ( theta (6 , i −1)−
theta (7 , i −1)+(k3 (6 , i −1)−k3 (7 , i −1) ) ∗h) ) ;

k4 (7 , i −1)=omega7−locking_range7 ∗ sin ( theta (7 , i −1)−theta (6 ,
i −1)+(k3 (7 , i −1)−k3 (6 , i −1) ) ∗h) ;

theta ( : , i )=theta ( : , i −1)+(k1 ( : , i −1)+2∗k2 ( : , i −1)+2∗k3 ( : , i
−1)+k4 ( : , i −1) ) ∗h/6 ;

phase_shi f t ( : , i −1)=(theta ( 1 : N_element−1, i )−theta ( 2 :
N_element , i ) ) ∗180/pi ;

end

phase_step=(theta ( : , 2 :N+1)−theta ( : , 1 :N) ) ∗180/pi ;

l ine_width=2;
f igure ;
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han1=plot ( time ( 2 :N+1) , phase_sh i f t ( 1 , : ) ," LineWidth " , l ine_width
) ;

hold on
han2=plot ( time ( 2 :N+1) , phase_sh i f t ( 2 , : ) ,"Marker " ,"+" ,"

MarkerIndices " , 1 : f loor (N/30) :N, " LineWidth " , l ine_width ) ;
han3=plot ( time ( 2 :N+1) , phase_sh i f t ( 3 , : ) ," L ineSty l e ","−−","

LineWidth " , l ine_width ) ;
han4=plot ( time ( 2 :N+1) , phase_sh i f t ( 4 , : ) ," L ineSty l e " , " : " , "

LineWidth " , l ine_width ) ;
han5=plot ( time ( 2 :N+1) , phase_sh i f t ( 5 , : ) ," L ineSty l e " ,"− ." ,"

MarkerIndices " , 1 : f loor (N/30) :N, " LineWidth " , l ine_width ) ;
han6=plot ( time ( 2 :N+1) , phase_sh i f t ( 6 , : ) ,"Marker " ,"x" ,"

MarkerIndices " , 1 : f loor (N/30) :N, " LineWidth " , l ine_width ) ;
legend ( [ han1 han2 han3 han4 han5 han6 ] , { ' \theta_1−\theta_2 ' , '

\theta_2−\theta_3 ' , ' \theta_3−\theta_4 ' , ' \theta_4−\theta_5 '
, ' \theta_5−\theta_6 ' , ' \theta_6−\theta_7 ' } ," Locat ion " ," best
")

t i t l e (" Phase S h i f t s between O s c i l l a t o r s ") ;
ylabel (" Phase S h i f t s in Degree ")
xlabel ("Time in Second ")
hold o f f
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APPENDIX C

PROTOTYPING OF THE HORN ANTENNA
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The prototypes of the horn antenna were built and measured at the Arizona State
University facility. The 3D printed horn antennas were made of conventional ABS
material, which is non-conductive. We then coated the horns with copper in the lab,
using various methods of electroplating. A graphite-acetone mixture was utilized as a
conducting base because acetone can etch the ABS material and allow the graphite to
adhere to the ABS surface. The resulting copper electroplated horn antennas with
WR-12 connectors are shown in Figure 58.

Figure 58. Copper Electroplated Horn Antennas with WR-12 Connector

The insertion loss and gain are presented in Figure 59 and Figure 60, respectively,
and are compared to the values obtained from HFSS simulations and analytic calcu-
lations. However, due to surface roughness and fabrication variance, there are some
differences between the measured and simulated values.

The results demonstrate that electroplating 3D printed horn antennas yields good
agreement with simulation results at E-band frequencies. This process could also be
applied to other types of antennas in the future, particularly for low-cost, small, and
irregular antennas.
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Figure 59. Comparison of HFSS Simulated and Measurement Insertion Loss

Figure 60. Comparison of HFSS Simulated, Measurement and Analytic Solution of
Antenna Gain
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