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ABSTRACT

Despite extensive research by the security community, cyberattacks such as phishing

and Internet of Things (IoT) attacks remain profitable to criminals and continue to cause

substantial damage not only to the victim users that they target, but also the organizations

they impersonate. In recent years, phishing websites have taken the place of malware web-

sites as the most prevalent web-based threat. Even though technical countermeasures effec-

tively mitigate web-based malware, phishing websites continue to grow in sophistication

and successfully slip past modern defenses. Phishing attack and its countermeasure have

entered into a new era, where one side has upgraded their weapon, attempting to conquer

the other. In addition, the amount and usage of IoT devices increases rapidly because of

the development and deployment of 5G network. Although researchers have proposed se-

cure execution environment, attacks targeting those devices can often succeed. Therefore,

the security community desperately needs detection and prevention methodologies to fight

against phishing and IoT attacks.

In this dissertation, I design a framework, named CrawlPhish, to understand the preva-

lence and nature of such sophistications, including cloaking, in phishing attacks, which

evade detections from the anti-phishing ecosystem by distinguishing the traffic between a

crawler and a real Internet user and hence maximize the return-on-investment from phish-

ing attacks. CrawlPhish also detects and categorizes client-side cloaking techniques in

phishing with scalability and automation. Furthermore, I focus on the analysis redirection

abuse in advanced phishing websites and hence propose mitigations to classify malicious

redirection use via machine learning algorithms. Based on the observations from previ-

ous work, from the perspective of prevention, I design a novel anti-phishing system called

Spartacus that can be deployed from the user end to completely neutralize phishing attacks.

Lastly, inspired by Spartacus, I propose iCORE, which proactively monitors the operations

in the trusted execution environment to identify any maliciousness.
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Chapter 1

INTRODUCTION

Cyber attacks such as phishing and IoT attacks have reached record levels of volume in

recent years and continue to cause substantial damage—both direct and collateral—to In-

ternet users and victim organizations. According to the analysis of Google Safe Browsing

shown in Figure 1.1, phishing attacks have been increasing in recent years and have re-

placed malware websites to be the most popular online attack. Pandemics such as COVID-

19 can also be exploited by phishers to deploy their attacks in large scale, which is ob-

served also in Figure 1.1 as a spike in February 2020. Despite advancements in detection

and mitigation efforts, the fight against phishing continues to be a cat-and-mouse game

[3, 4]. Sophisticated phishing websites implement evasion techniques to delay or avoid

detection by automated anti-phishing systems, which, in turn, maximizes the attackers’

return-on-investment [5]. Such evasion—known as cloaking—typically seeks to determine

if a visitor to the website is a bot, and shows benign content if so. The danger posed by

successful evasion is exacerbated by these websites’ efforts to steal more than just user-

names and passwords: today’s phishing attacks seek to harvest victims’ full identities,

which can cause wider damage throughout the ecosystem and is more challenging to ef-

fectively mitigate [6]. In addition, as the development of 5G network, the number of IoT

devices increases rapidly in recent years. To protect security sensitive operations, platforms

such as ARM have proposed a secure execution environment (or secure world). However,

the secure world is a slave of the normal world and only does security operations that the

normal world asks. Therefore, the secure world is passively protecting the IoT devices even

with high privileges. Similar to the anti-phishing ecosystem, attackers who compromise the

normal world can easily disable the secure world.
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Thwarting criminals’ evasion efforts is, thus, an important problem within the security

community, as timely detection and continuous monitoring is the key to successful miti-

gation. Prior research has characterized server-side cloaking techniques used by phishing

websites [4, 7, 8] and showed that they can defeat key ecosystem defenses such as browser-

based detection [5]. However, the nature and prevalence of advanced cloaking techniques,

such as those implemented on the client-side using JavaScript, is poorly understood. Client-

side cloaking can be particularly dangerous because it enables the implementation of com-

plex interactions with potential victims.

Moreover, today’s cybercrime is fueled by an underground economy that is capable of

providing a full suite of commoditized services, such as web hosting [9], e-mail spam-

ming [10], and cash-out [11], which greatly lowers the barrier to entry for phishing attacks

and other mischief. Phishers can retrieve and exploit defaced servers from blackmarkets

for malicious purposes. For this reason, servers which are defaced have subsequently been

linked to future attacks such as phishing and malware [12]. Prior work has shown a clear

temporal correlation between defacements and phishing, but prediction been limited in

scope to phishing sites with the same domain as the defacement [13] or existing web pages

which subsequently turn malicious [14].

The ultimate desire of phishers is to maximize the profits from attacks by extending the

lifespan of their phishing websites as long as possible and to lure real human visitors to

submit credentials. To destroy phishing attack completely, I need an anti-phishing system

that neutralize phishing content from the user end.

On the other hand, researchers have proposed two classes of monitoring mechanisms to

monitor potential malicious activities for IoT devices [15]. First, “in-the-box” approaches,

refer to the security tools that reside in the OS kernel. Second, “out-of-the-box” ap-

proaches, are the tools who stay outside of the kernel. However, both of the mechanisms

have limitations. For example, “in-the-box” security tools can be easily compromised if
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the OS kernel is under attacker’s control. Also, “out-of-the-box” tools rely on vulnerable

hypervisors and external hardware components. The shortcomings make it difficult to keep

the security tools safe or to reduce the cost of virtualization and additional hardware deploy-

ment. Recently, hardware isolated execution environments, such as ARM TrustZone [16],

AMD SVM [17], and Intel TXT [18], were proposed to provide a trusted environment for

secure execution outside of the normal execution environment. Among the isolated ar-

chitectures, ARM TrustZone is exploited most on IoT devices [19]. In the existing ARM

TrustZone paradigm, the secure world is designed as a slave of the normal world, because

it only executes the operations that the normal world requests. This architecture facili-

ties the researchers to develop security tools that reside outside of the monitored system,

such as in TZ-RKP [20] and SPROBES [21]. However, to implement such security tools,

the developers have to make invasive changes in the normal world OS kernel to interrupt

certain functionalities. Besides, these methodologies burden the normal world OS kernel

by frequently performing a world switch. Additionally, due to the traditional relationship

between two worlds, the functionalities of the security tools can be never invoked if the

attacker who compromises the normal world chooses not to. Therefore, IoT devices still

encounter with potential attacks even though such security tools reside.

Therefore, in this dissertation, I propose both pain relief pills and a vaccine against

phishing-virus as follows. I design a framework named CrawlPhish to first understand

the nature and prevalence of client-side cloaking techniques in phishing and then to detect

and categorize cloaked phishing websites automatically. CrawlPhish is a robust frame-

work that harvests the source code of live, previously reported phishing websites in the

wild and automatically detects and categorizes the client-side cloaking techniques used by

these websites. By efficiently adapting advanced program analysis techniques inspired by

prior research of JavaScript malware [22, 23, 24, 25], my framework can not only identify

the semantics of these cloaking techniques, but also track the evolution of code written by

3



specific phishing kit authors [26]. I use the CrawlPhish framework to perform a large-scale

evaluation of the landscape of client-side cloaking used by phishing websites. In total, over

a period of 14 months from mid-2018 to mid-2019, I collected and thoroughly analyzed

112,005 phishing websites. I measured the prevalence of client-side cloaking techniques

within these websites and discovered that 35,067 (31.3%) use such cloaking. Thereof,

I identified 1,128 groups of related implementations which I believe stem from distinct

threat actors. Moreover, I observed that the percentage of phishing websites with client-

side cloaking grew from 23.32% in 2018 to 33.70% in 2019. To understand why client-side

cloaking is used so frequently, I characterize the ways in which it functions, and I define

eight different types of evasion techniques in three high-level categories: User Interaction,

Fingerprinting, and Bot Behavior. Respectively, the techniques within these categories re-

quire human visitors to perform a task, profile the visitor based on various attributes, or

exploit technical differences between browsers used by crawlers and real browsers. I eval-

uated CrawlPhish and found that it could detect the presence of cloaking with low false-

positive (1.45%) and false-negative (1.75%) rates, while requiring an average of 29.96

seconds to analyze each phishing website. Once CrawlPhish has detected cloaking, it can

then reliably categorize the semantics of the cloaking technique by using both static and

dynamic code features. Finally, to show that client-side cloaking poses a real-world threat, I

deploy 150 carefully-controlled artificial phishing websites to empirically demonstrate that

all three categories of evasion can successfully bypass browser-based detection by Google

Chrome, Microsoft Edge, and other major web browsers. I also demonstrate that these web-

sites remain accessible to potential human victims. As a result, I disclosed my findings to

the aforementioned browser developers, who are working to improve the timeliness of the

detection of the corresponding phishing websites. My analysis furthers the understanding

of the nature of sophisticated phishing websites. In addition, the CrawlPhish framework

can be deployed to continuously monitor trends within complex evasion techniques while
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identifying new types of techniques as they are introduced by attackers. My methodol-

ogy can not only directly help address gaps in the ecosystem’s detection of sophisticated

phishing websites, but can also aid in the development of attributes to improve existing

anti-phishing mitigations such as browser-based detection.

I then propose PHISHPATH to perform the first large-scale analysis on redirection use in

the modern phishing ecosystem by collecting and analyzing phishing emails and live web-

sites. I ran my study for over a year from 2020 to 2021, collecting and analyzing 136,791

distinct phishing URLs from the Anti-Phishing Working Group (APWG), PhishTank, and

victim-reported phishing emails from a frequent phishing-targeted organization. I discov-

ered that phishers are using redirection techniques and that current anti-phishing systems

are not capable of effectively detecting phishing campaigns that use redirection links. I

found extensive redirection use in phishing, with 34% of phishing attacks making use of

redirection techniques. I identified a common pattern in the design of redirection chains,

which I diagram in Figure 4.1: a lure phase, when a URL is embedded in phishing emails or

social media posts that trick victims into clicking, after which the victim’s HTTP request

is redirected through the intermediate phase, where phishers identify anti-phishing bots

and divert them to legitimate websites. Finally, after passing the server-side and client-side

cloaking techniques in the intermediate phase, the visitors will see the phishing content

in the landing phase. While prior work studied phishing from the perspective of the lure

phase and landing phase, I found that the intermediate phase is critical in the evasion of

phishing detection (Section 4.4.1). I found that attackers employ URL shortening services

to help evade detection systems, including shorteners that require user interaction with a

web page, rendering detection systems ineffective. Such phishing links were active (and

not blacklisted) five months after initial detection. Moreover, I found that phishers exploit

open redirect services in LinkedIn and Google to hide their malicious URLs. Aside from

the use of the intermediate phase for cloaking, I found that it also granted attackers ad-
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ditional flexibility in adapting to blacklist-based defenses. Because anti-phishing systems

only blacklist specific URLs instead of domains, I observed phishers generating new URLs

under the same domain to replace previously-blacklisted hops and keep the chain acces-

sible for as long as seven months. In fact, I found that over 30% of phishing redirection

chains reused domains in their intermediate layers. I also measured the performance of anti-

phishing blacklisting, online URL scanning, and feature-rich machine learning classifica-

tion against redirection- and non-redirection-enhanced phishing attacks. Facing redirection

phishing websites, these methodologies show degradation on the performance, compared

with that against non-redirection ones. The difference in blacklisting [27] and online URL

scanning [28] latency between the two groups is 6 hours and 42 minutes on average. Ad-

ditionally, a state-of-the-art machine learning classifier [29] has a high false-negative rate

(10.82%) and a low F1 score (0.87) when categorizing redirection phishing websites, com-

pared with the 0.37% of false-negative rate and the 0.99 F1 score recorded in the previous

work. These results demonstrate that redirection techniques effectively delay detection and

classification. Based on my analysis results, I propose two mitigation techniques. First,

blacklist-based anti-phishing systems can block commonly reused redirection domains in-

stead of only specific URLs, with few resulting false positives. This defense would end the

currently trivial bypass of blacklists by attackers and reduce phishing attack profitability

due to increasing malicious domain “burn rate.” Next, I design a machine learning model

based on attributes of redirection chains used in phishing websites to classify such sites

without relying on content-based features in often-stealthy landing pages. The PHISH-

PATH classifier can identify phishing pages with only redirection information with high

accuracy (90.76%) and a high F1 score (0.92). Finally, I discover that many entities are

involved in redirection use in phishing. Based on this finding, I propose several ecosystem

mitigations, including the tracking of redirection data, using redirection data to classify ad-

vanced phishing as well as locate lures, and restricting redirection services without identity
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information.

Furthermore, I consider the anti-phishing problem from a different angle and strike at

the core reason behind the effectiveness of server-side cloaking techniques: rather than at-

tempting to detect server-side cloaking through improved analysis tools, I instead make the

legitimate users themselves look like anti-phishing crawlers, so that server-side cloaked

phishing pages will decline to phish them. In this way, users can evade phishing con-

tent in real time, without prior knowledge of the phishing web site, by leveraging, in-

stead of fighting, the cloaking functionality in the phishing site itself. To realize this idea,

I propose Spartacus, a framework that disguises user browsers as anti-phishing crawlers

when requesting web page content. When visiting web sites, Spartacus mutates the infor-

mation that phishers may fingerprint in the HTTP request such as User-Agent, Referrer,

or IP address 1 to make the request appear to be from an anti-phishing crawler. When

the server-side cloaking script examines the HTTP request, it will decide that the visit is

from an anti-phishing system, and will return a benign-looking web page to the user, spar-

ing them from the phishing attack. Spartacus is quite effective at defending users against

server-side cloaking, as I demonstrate in several evaluations. First, to estimate the potential

benefits of Spartacus, I measured the prevalence of server-side fingerprinting-based cloak-

ing techniques in phishing kits (programs used by phishers to easily create phishing web

sites) using an automated analysis. In total, I analyzed 2,933 phishing kits and discovered

that 96.52% (2,831) of them contain server-side fingerprinting-based cloaking techniques.

Then, I performed an evaluation to see if Spartacus can trigger evasion in real-world phish-

ing sites. In my large-scale evaluation of the framework, over a period of nine months

from late-2020 to mid-2021, Spartacus visited 160,728 real phishing web sites (provided

by the Anti-Phishing Work Group) and evaded 82.28% of them without relying on black-

lists or other anti-phishing techniques. Because the Spartacus framework is designed to
1IP address is optional due to privacy concerns, as discussed in Section 5.3.
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protect end-users directly, its impact on the functionality of benign web sites is a concern.

I evaluated the performance and functionality impact of Spartacus on benign web sites

both automatically and manually. I found that with Spartacus installed, the tested benign

web sites displayed properly (i.e., benign web sites do not perform server-side cloaking or

otherwise change the HTML that they send based on the mutated HTTP headers). When

visiting benign web sites hosted on providers that employ security mechanisms such as

Akamai and Cloudflare, Spartacus could successfully visit the majority of them (99.84%

out of 10,000). Complex components in these web sites, such as buttons/links, online chat,

register/login, shopping carts, checkout, etc. functioned correctly without any error. I also

installed Spartacus in their daily-use browsers to visit web sites for one month, and Spar-

tacus did not cause any issues when used in real-world web browsing for a month. I also

evaluated current anti-phishing systems against modern phishing web sites and compared

that to Spartacus. I submitted the 45,526 phishing web sites that Spartacus visited as part of

my large-scale evaluation to anti-phishing systems and monitored the result. After waiting

five days for blacklists to update, 24,154 (53.1%) phishing sites that were evaded by Spar-

tacus (i.e., they showed benign content to Spartacus) were not detected by anti-phishing

systems, 16,698 (36.7%) were evaded and detected, 4,598 (10.1%) were not evaded but

were detected, and 76 (0.2%) were neither evaded nor detected. In other words, Spartacus

alone can protect users against 89.8% of this subset of phishing sites I analyzed in real time,

and the combination of Spartacus and current techniques can protect users against 99.8%

of them, whereas existing techniques alone protect against only 46.8% (and these have a

median blacklisting lag time of 2.58 hours, compared to Spartacus’ real-time effect). These

results suggest that the idea of Spartacus traps phishers in a dilemma: to attack Spartacus

users, phishers should disable at least some server-side cloaking criteria and therefore allow

more HTTP requests to successfully retrieve the phishing content. However, this strategy

allows anti-phishing crawlers to view the phishing content and use content-based detection
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techniques.

As I notice when proposing Spartacus, the anti-phishing ecosystem is passively protect-

ing users from phishing websites. What it does is to analyze reported phishing URLs and

detect/blacklist them. However, phishing attacks develop fast so they are often ahead of the

anti-phishing ecosystem in the cat-and-mouse game. Any development of their phishing

techniques may disable the current anti-phishing techniques. Similarly, in the IoT field, the

secure world is a slave of the normal world and only does security operations that the nor-

mal world asks. Therefore, the secure world is passively protecting the IoT devices even

with high privileges. Similar to the anti-phishing ecosystem, attackers who compromise

the normal world can easily disable the secure world. So inspired by Spartacus, I propose

iCORE, where the secure world is not a slave any more. Instead, it proactively monitors

the operations in the secure world to identify any maliciousness. Like Spartacus, iCORE

does not impact the benign activities in the normal world while monitoring it. iCORE is

a novel continuous and proactive extrospection system with high visibility on IoT devices

deploying multi-core ARM platforms exploiting ARM TrustZone extensions, to overcome

the aforementioned limitations of current security tools. Dedicated cores named Isolated

Cores are assigned to the secure world in the full power cycle starting from the system boot-

ing period to proactively, continuously, and stealthily extrospect the normal world. Secure

boot procedure is deployed to help ensure the initialization of iCORE, which, in turn, pro-

vides a small trust computing base (TCB). The implementation of iCORE does not require

any changes on the normal world operating system. Moreover, iCORE ameliorates the tra-

ditional master-normal-world and slave-secure-world concept by making the secure world

play a role as a master of the system. Therefore, iCORE can execute its functionalities in-

dependently even if the normal world is compromised by an attacker. iCORE is designed as

an integrity monitor with the attributes of continuousness, stealthiness, proaction, and high

visibility. First, continuousness allows iCORE to detect any malicious modifications in time
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Figure 1.1: The Volume of Phishing Attacks Have Been Surging Year over Year [2].

when monitoring the normal world operating system. Event-driven monitoring methods,

such as [30, 20, 21, 31], are easy to implement, but malicious operations cannot be detected

or responded if certain events do not occur. Second, iCORE is staying and operating the

monitoring functionalities in the secure world. Therefore, attackers in the normal world

cannot detect its existence. Third, iCORE is out of the control of the normal world, hence

it can provide proactive and independent monitoring functionalities over the normal world.

Last, the high visibility is brought by the design of ARM TrustZone architecture that the

secure world where iCORE resides can access all the resources of the normal world with

the highest privilege.
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Chapter 2

BACKGROUND

Over the past years, a myriad of techniques have been implemented by the anti-phishing

ecosystem to detect and mitigate phishing attacks [4]. Analysis of phishing URLs [32, 33,

34, 35] and website content [36, 37, 38, 39, 40] has given rise to ecosystem-level defenses

such as e-mail spam filters, malicious infrastructure detection, and URL blacklists.

Specifically, systems such as Google Safe Browsing [41] and Microsoft SmartScreen [42]

power the anti-phishing backends that display prominent warnings across major web browsers

when phishing is detected. These warnings are primarily blacklist-based: they rely on

content-based detection. Evasion techniques commonly used by phishing websites are ca-

pable of bypassing or delaying such blacklisting [43, 5, 44].

2.1 Cloaking Techniques in Phishing

Attackers leverage cloaking techniques to evade detection by anti-phishing systems:

phishing websites with cloaking display benign-looking content instead of the phishing

page whenever they suspect that a visit originates from security infrastructure [4]. Server-

side cloaking techniques identify users via information in HTTP requests [45]. Among

them, fingerprinting-based cloaking techniques are widely used in advanced phishing web

sites. Figure 2.1 depicts how phishing web sites use fingerprinting-based cloaking tech-

niques. Cloaking code in the phishing web server fingerprints the profile in the HTTP

request and responds with different web page content (with the goal of showing phishing

content only to potential victims). Client-side cloaking is implemented through code that

runs in the visitor’s browser (JavaScript) to apply filters using attributes such as cookies or

mouse movement.
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Figure 2.1: Typical Operation of Server-side Fingerprinting-based Cloaking in Phishing

Web Sites.

Phishing Website 
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Phishing or Benign 
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Figure 2.2: Typical Operation of Client-side Cloaking in Phishing Websites.

Existing anti-cloaking methodologies focus on bypassing server-side cloaking by com-

paring the visual and textual features of different versions of a crawled website retrieved

by sending multiple web requests with different configurations (e.g., user agents or IP ad-

dresses) [46, 45, 7]. Client-side cloaking techniques, however, are still poorly understood

due to challenges in automatically analyzing JavaScript code and understanding its seman-

tics. Moreover, neither the prevalence nor impact of client-side cloaking has been investi-

gated in the context of phishing.

Figure 2.2 shows how client-side cloaking techniques are used in phishing websites.
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Cloaking code embedded in the HTTP response payload shows different web page content

based on the identification of visitors (as either potential victims or bots). Consequently,

cloaked phishing websites may have a longer life span than ones without: by delaying

or avoiding detection, the attackers who launch these websites maximize their return-on-

investment [5]. Because client-side evasion techniques enable complex interactions be-

tween potential victims and phishing websites, they may be more effective in hampering

automated detection than traditional server-side cloaking, and, thus, pose a threat to poten-

tial victim users.

2.2 Challenges in Analyzing Client-side Cloaking

Unlike server-side code, the client-side code (JavaScript) of websites can trivially be

obtained through crawling. Therefore, malicious websites typically leverage code obfusca-

tion methods such as string array encoding, object key transformation, dead code injection,

and even full encryption [47, 48]. Attackers also can dynamically generate and execute

code (e.g., using eval) to hide malicious behaviors. Such obfuscation methods pose a

challenge for static code analysis approaches, which are otherwise favored for their effi-

ciency.

Other types of obfuscation also seek to prevent dynamic analysis approaches from de-

tecting malicious behaviors. Malicious JavaScript code often targets specific versions of

web browsers and operating systems by fingerprinting them [25]. Such attacks are diffi-

cult to discover because detection systems require extensive resources to reveal the con-

ditions that trigger attacks [47]. Besides, external and inter-block dependencies, which

require recording states in different execution paths, can be obstacles that thwart the anal-

ysis of JavaScript code [22]. Furthermore, scripts may execute in an event-driven manner

to necessitate external triggers to initiate malicious behavior while otherwise appearing

benign [22].
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All of the aforementioned anti-analysis methods can potentially be leveraged by phish-

ing websites’ implementations of client-side cloaking techniques. Given the difficulty of

analyzing such cloaking, the security community struggles to thoroughly understand the

impact and prevalence of phishers’ tactics, and, thus, may fail to appropriately mitigate

them. When we consider the scale on which phishing attacks occur [49], the consequences

of the corresponding gaps in detection and mitigation can be significant.

2.3 Redirection

Redirection refers to an activity that when a web browser attempts to visit a URL that

has been redirected, a web page with a different URL is opened. The implementation of

redirect can be through server (e.g., 3XX status code) or in the client browser (JavaScript

and meta tag in HTML). Redirection contains both benign and malicious usage. People

implement redirection to shorten long URL links, prevent broken links, protect privacy,

and etc. However, miscreants (phishers) leverage such technique to evade detection from

anti-phishing systems. Criminals often shorten the phishing URLs spread in social media

so that ordinary users may not notice whether the link is legitimate [50]. They also ex-

ploit the open redirect vulnerabilities found in Google, YouTube, Google Docs, and etc.,

where a legitimate website allow any redirections, to bypass the URL based anti-phishing

systems [51]. Last but not the least, phishers implement redirect chains, where more than

one redirection occurs from the entry URL to the destination [52]. As researchers pro-

posed several mechanisms to detect and mitigate malicious use of redirection in phishing,

the miscreants began to embed advanced evasion techniques such as cloaking techniques

to power the redirection.
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2.4 IoT Platform and Security

2.4.1 Monitoring Mechanisms

In-the-box vs Out-of-the-box

To prevent and detect potential attacks on OS kernels, researchers developed two categories

of approaches, namely ”in-the-box” approach and ”out-of-the-box” approach [15]. ”In-the-

box” approach utilizes system software where the protection and monitoring tools reside

in the monitored system. One instance is kGuard [53], which is a compiler plug-in to re-

inforce the kernel to detect return-to-user attacks. Such approaches have been proved less

practical because the security tools can be disabled or even eliminated if the OS kernel is

compromised [31]. Based on this observation, the research community has realized that the

monitoring and protection tools should be correctly isolated from the monitored system so

that attacks on the monitored system will not affect the security tools [20]. As a result, ”out-

of-the-box” approach was proposed. ”Out-of-the-box” approaches, such as [30, 20, 21, 31],

purport to deploy security tools outside of the monitored system. The ”out-of-the-box”

approaches can be further categorized into hypervisor-assisted and hardware-assisted ap-

proaches based on the components that the security tools reside and take advantage of [31].

Hypervisor-assisted vs Hardware-assisted

The essence of hypervisor-assisted approaches is to utilize virtualization to provide security

tools with a higher-privileged and isolated execution environment. Residing in a hypervi-

sor or a virtual machine monitor (VMM), which runs on host’s hardware to control the

hardware and guest operating systems, the security tools such as [54, 55, 56, 57, 58] can

inspect the monitored operating system along with its interaction with hardware resources,

and thus can detect potential attacks. However, the hypervisor itself is fragile because
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it also contains large code base bringing countless vulnerabilities, such as [59, 60, 61].

Although sacrificing the whole hypervisor as a security tool can avoid the hypervisor be-

ing compromised, it is an unrealistic way because this idea will block the virtualization

functionalities [21]. Furthermore, the high-cost of virtualization on IoT devices makes it

difficult to deploy hypervisor-assisted protection approaches [20].

The hardware-assisted approach is also prevalent, where researchers develop their secu-

rity tools with the help of isolated hardware. Some protection methodologies are designed

to monitor kernel objects using external hardware [31, 30], which increase the cost of se-

curity tool deployment. Since 2004, new isolated hardware architectures, such as ARM

TrustZone [16], AMD SVM [17], and Intel TXT [18], were proposed to provide a trusted

area for secure executions. The essence of the isolated architectures is to physically seg-

ment the system resources into two worlds, named as the normal world (also as rich execu-

tion environment, REE) for conventional processing, and the secure world (also as trusted

execution environment, TEE) for secure processing, respectively. This design guarantees

that the security-sensitive data can be properly protected in the secure world [62]. With the

assist of isolated hardware architectures, researchers have been transferring their focus to

developing security tools based on the trusted execution environment. Among the security

tools based on TEE, TZ-RKP [20] and SPROBES [21] are recent examples, which exploit

the secure world to deploy the security tools. Both of the security tools protect the Linux

kernel code area by trapping the normal world page table update operations and judging in

the secure world if the operation is legitimate.

However, the execution time of workload increases due to performing world switch

each time when a page table update occurs. In addition, modifications on both the normal

and secure world OS before implementing the security tools are needed to interrupt the

page table updates. Also, the attackers who have successfully compromised the normal

world can opt out the functionalities of the secure world.

16



Event-driven vs Continuous

Lunt et al. [63] proposed a prototype real-time intrusion-detection expert system (IDES).

In IDES, discrete and continuous measures were discussed. A discrete measure is used on

a finite and unordered set of range of values, while a continuous measure is deployed for

an infinite and continuous set of range of values.

Some of the modern monitoring and protection mechanisms implement a discrete vari-

ant, event-driven, aiming to detect after certain events happen. Vigilare [30], Ki-Mon [31],

TZ-RKP [20], and SPROBES [20] use different techniques to implement their security

tools, but they all leverage the concept of event-driven.

Other techniques, such as HookSafe [64] and SecVisor [65], aim to protect the kernel

code continuously, which means the protection methods keep the integrity of the kernel not

affected by events taking place.

2.4.2 ARM TrustZone Architecture

Overview of TrustZone

ARM TrustZone [16] is designed as a hardware-assisted security extension to ARM archi-

tecture, such as ARM Cortex-A and Cortex-M. ARM TrustZone physically partitions the

system into two worlds, namely the normal world and the secure world. Each world has

its own banked registers and memory which are running on the world-specific operating

systems and applications. Trusted applications (TA) can execute secure processes in the

secure world. Client applications (CA) are running in the normal world to operate conven-

tional processes. Shared memory and general registers are used to communicate between

the secure world and the normal world. Processes that are running in the normal world

must call the smc [66] instruction to trigger one of the services in the secure world in or-

der to request the security-sensitive data, and the secure world will send the data back to
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the normal world if the request is accepted. The services that execute in the secure world,

however, can access the resources in the normal world without permission from the normal

world.

The secure world is proposed to help the normal world operate security-sensitive exe-

cutions with high privileges to protect the secure data from being attacked and leaked. So

it only executes the functionalities that the normal world requests. Hence, the secure world

by the default design plays a role as a slave of the normal world even with the highest

privileges among the whole system. Take comparing Apple Touch ID [67] as an example.

The normal world calls smc instruction along with the fingerprint collected from the sen-

sor to request a Touch ID comparison in the secure world. The secure world then executes

certain functionalities and returns the result back to the normal world. However, it can-

not invoke such operation without the request of the normal world. From this perspective,

the functionalities of the secure world will not be executed if the normal world never calls

them.

Core Initialization with Secure Boot

ARM Trusted Firmware (ARM-TF) is one of the major booters that is designed to initialize

the ARM cores with TrustZone extension. Both cold boot, where the system is switched

on physically, and warm boot, where cores have already been initialized, should go to

ARM-TF reset entry point. Afterwards, different booting procedures step into their own

initialization sequence.

For the cold boot, the initialization of hardware, including core, platform, and architec-

ture, is performed first. The primary core, which is selected when it is released from reset

and executes mainly the cold boot path, starts with the C runtime initialization. And the

other cores, called secondary cores, are placed in a platform-specific state and wait to be

woken up after the primary core finishes initializing enough functionalities [68].
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As for the warm boot procedure, the system goes to the warm boot entry point to con-

tinue the configuring PSCI, platform, architectural, and generic setup, along with PSCI

state maintenance [68].

During the initialization, secure boot procedure is exploited to protect the integrity of

all the secure world software images from being unauthorized or illegally modified, apply-

ing cryptographic checks to every stage of the secure world booting procedure [69]. For

example, a trusted vendor would sign the image that she plans to execute on the device

with her private key and then send the image along with the signature to this device. The

corresponding public key is stored and protected from being substituted to verify whether

the image has been tampered with and whether it is from the trusted vendor. The secure

boot procedure also exploits the concept of chain of trust, meaning that starting from the

root of trust that located in on-SoC ROM, every other software component can be verified

by its higher level component before being executed.

Normal World Memory Access from Secure World

User and kernel processes running in the normal world have their own private virtual ad-

dress memory space, which is the contribution of MMU. When a process in the normal

world wants to access the memory through the virtual address, MMU will convert the vir-

tual address through translation tables to the corresponding physical address to access the

memory.

Although the secure world can access all the resources in the normal world, physical

addresses are required by the secure world to access the specific normal world memory.

Since there is no function designed by default to convert the virtual address to the physical

address, we design one which will be discussed in detail in Section 6.2. After acquiring the

physical address, the secure world can access the static kernel memory in the normal world

directly. In addition, the static kernel data is linearly mapped in the normal world memory.
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Therefore, with the starting and ending physical addresses, the secure world can load the

whole data stored in the static memory area [70].
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Chapter 3

UNDERSTANDING AND CATEGORIZING SOPHISTICATIONS IN PHISHING

As mentioned above, sophisticated phishing websites contain different evasion tech-

niques to circumvent anti-phishing systems, such as cloaking and redirection. So in this

chapter, I first present CrawlPhish to mitigate sophisticated phishing attacks from the per-

spective of detection.

Client-side cloaking techniques can help phishing websites evade detection by anti-

phishing entities [5], yet prior studies have not investigated them in detail, despite evidence

that sophisticated phishing websites—such as those with client-side cloaking—are respon-

sible for a majority of real-world damage due to phishing [71].

I discover eight different types of JavaScript cloaking techniques across three high-level

categories: User Interaction, Fingerprinting, and Bot Behavior (summarized in Table 3.1).

Cloaking techniques in the User Interaction category show phishing content only if visitors

interact with a phishing website (e.g., by moving the mouse or clicking a specific button).

Phishing websites with Fingerprinting identify visitors by inspecting the configuration of

browsers or web requests. Finally, phishing websites with Bot Detection identify anti-

phishing crawlers based on factors such as how long the web page stays open and whether

the web request is repeated after failing initially.

I aim to comprehensively understand and characterize the landscape of client-side cloak-

ing techniques used by phishing websites in the wild through an automated methodology

for analyzing them. To this end, I design, implement, and evaluate CrawlPhish: a frame-

work that automatically detects and analyzes client-side cloaking within phishing websites.

Figure 3.1 provides an overview of the CrawlPhish architecture. CrawlPhish is composed

of the following components:
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Cloaking Category Cloaking type Requirement

User Interaction
Pop-up Click on alert/notification window

Mouse Detection Move mouse over browser
Click Through Pass Click Through on browser

Fingerprinting
Cookie Check document.cookie
Referrer Check document.referrer

User-Agent Check navigator.userAgent

Bot Behavior
Timing

Render webpage after certain time
using sleep()/Date.getTime()

Randomization
Show content randomly using
Math.random()

Table 3.1: Summary of the Client-side Cloaking Technique Types Identified in This Work.

Forced
Execution

Engine

Screenshots

EventAPI AST

Code Structure

Live
Phishing

URLs

IPs

User-Agents

Crawler

① Crawling & Pre-processing ② Feature Extraction ③ Cloaking Detection

yes

Cloaking Type

④ Type Categorization

HAR Files

Prune Data

Phishing
Websites

Visual 
Similarity 
Matches?

Cloaked

no

Uncloaked
yes

Cloaking
Technique 
Database

Manual
Inspection

no

Prune
Blank
Pages

Code 
Similarity 
Matches?

Original
Webpage

Figure 3.1: CrawlPhish Architecture.

1 Crawling and pre-processing (§3.1): CrawlPhish first collects web page source code

(along with any external file inclusions) by visiting live phishing website URLs recently

reported to anti-phishing feeds. We then filter URLs that cannot be retrieved as well as

URLs without any JavaScript code.

2 Feature extraction (§3.2): CrawlPhish adapts a state-of-the-art code analysis method,

forced execution [22], to execute JavaScript regardless of branch conditions, and extracts

all possible execution paths in which evasion techniques could be implemented. We then

derive (1) visual features of the rendered web pages, by means of screenshots, and (2)

code structure features such as web API calls, event listeners, and the Abstract Syntax

Tree (AST) for each path.

3 Cloaking detection (§3.3): CrawlPhish analyzes the visual features corresponding to
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each execution path to detect if cloaking exists, and it stores the corresponding code

structure features of every such path.

4 Cloaking categorization (§3.4): Using the code structure features, CrawlPhish cate-

gorizes the cloaking techniques used by phishing websites based on their semantics.

3.1 Crawling & Pre-processing

To collect the source code of live phishing websites to detect and classify client-side

evasion methods that are currently employed in the wild, CrawlPhish first obtains URLs of

known phishing websites in real-time.

In our deployment, CrawlPhish continuously ingested URLs from the APWG eCrime

Exchange database—a curated clearinghouse of phishing URLs maintained by various or-

ganizations engaged in anti-phishing. Because this database receives frequent updates and

tracks phishing URLs that target a diverse range of brands, it is well-suited for phishing

website analysis. 1 Note, however, that the inclusion of a URL in the database does

not mean that it was adequately mitigated (e.g., through timely blacklisting) [44]. Hence,

websites found to use sophisticated client-side cloaking still warrant scrutiny.

Next, CrawlPhish downloads source code by visiting each phishing website URL (shortly

after being ingested) using a programmatically controlled web browser. Specifically, Crawl-

Phish stores source code using HAR files, which capture all HTTP requests/responses be-

tween our client and the server, and ensure that all dependencies (such as linked scripts)

are preserved for each website. In case of a failed request, CrawlPhish switches between

different configurations of IP addresses and user-agents in an effort to circumvent potential

server-side cloaking techniques used by phishing websites [4]. 4,823 of the 128,973 web-
1Although the goal of cloaking is to evade detection by automated anti-phishing systems, such evasion

will often delay detection rather than outright prevent it. Phishing websites may also be detected by other
means (e.g., manual review) [71]. Thus, we expected the AWPG database to contain a representative sampling
of any client-side cloaking that might be used in the wild.
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sites we crawled (3.74%) showed different response status codes after we switched request

configurations.

Finally, CrawlPhish filters out URLs that contain blank pages or non-phishing websites.

Such websites were either already taken down [72] or were false-positive detections by the

time of crawling. We found 0.53% of URLs within the APWG Dataset to be false positives.

Therefore, CrawlPhish excludes data in the following cases:

i. empty websites: servers respond with no content.

ii. error websites: requests for URLs were denied because the phishing websites were

already taken down, or used server-side cloaking which we could not bypass.

iii. non-phishing websites: mistakenly reported URLs, which CrawlPhish filters based

on a manually curated whitelist of reputable domains.

3.2 Feature Extraction

Cloaked content detection. Client-side cloaking techniques used in phishing websites can

be more diverse than server-side cloaking because they can not only fingerprint visitors

based on configurations of browsers and systems, but may also require visitors to inter-

act with websites. To effectively detect client-side cloaking techniques, CrawlPhish adapts

J-Force: a forced execution framework implemented in the WebKitGTK+ browser that exe-

cutes JavaScript code along all possible paths, crash-free, regardless of the possible branch

conditions, event handlers, and exceptions [22]. We modified J-Force to whitelist (avoid

force-executing) well-known JavaScript libraries, such as Google Analytics or jQuery, to

expedite execution by ignoring the benign content changes that such libraries could intro-

duce.

Execution time limit. We select a time limit for each invocation of forced execution by

CrawlPhish to avoid failures due to long-running scrips (e.g., due to heavy branching or
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long-running loops).

As a starting point, we chose an execution limit of 300 seconds. We conducted an

experiment by force-executing 2,000 randomly selected phishing websites in our crawled

dataset to record the execution time. We found that 1.75% of phishing websites contained

JavaScript code that exceeded the time limit. Execution finished as quickly as 12.56 sec-

onds, the median execution time was 13.82 seconds, the average execution time was 29.96

seconds, and the standard deviation was 54.89 seconds. Based on this experiment, we chose

a final execution limit of 195 seconds (three standard deviations above the mean) so that

CrawlPhish could efficiently analyze the majority of phishing websites.

Feature extraction. To facilitate detection of (the existence of) cloaking and categorization

of the corresponding cloaking type, CrawlPhish extracts both visual and code structure

features from each phishing website. Each phishing website’s visual features consist of

the set of all web page screenshots (in our implementation, at a resolution of 2,495×1,576

pixels) captured after every possible execution path is explored by forced execution. In

our dataset, each website generated 46.3 screenshots on average. CrawlPhish compares the

screenshots of each execution path within one website against the original screenshot to

detect if cloaking exists, because the presence of cloaking will result in significant visual

layout changes [45]. The code structure features include web API calls, web event listeners,

and ASTs, which can characterize different types of cloaking techniques and reveal how

the cloaking techniques are implemented. Using forced execution, CrawlPhish can reveal

and extract the web APIs and events contained in every code block, even if the code is

obfuscated. CrawlPhish can then classify the cloaking types in a website using the code

structure features.

Code structure features used. According to preliminary analysis which we conducted by

manually inspecting cloaking techniques in a sampling of phishing websites in our dataset,

different client-side cloaking techniques each have substantially different features. For
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example, a cloaking technique that checks mouse movement waits for an onmousemove

event, then performs DOM substitution or redirection. However, a cloaking technique

that checks screen size would first access the screen.height property. Therefore, as

CrawlPhish executes a code block via forced execution, it records the web APIs and events

that are invoked in the code block.

In addition, we found that the same semantic types of client-side cloaking techniques

have many different implementations. CrawlPhish distinguishes between different im-

plementations of each type of cloaking technique by comparing ASTs. Even though

JavaScript code is often obfuscated, the AST feature is still useful because most phishing

websites are deployed using phishing kits, so the corresponding websites, with the same

phishing kit origin, share the same source code structure [6]. Furthermore, by computing

the AST similarity, we can trace the origin of the cloaking technique by finding similar

implementations earlier in phishing pages.

3.3 Cloaking Detection

CrawlPhish examines the visual similarity between force-executed screenshots and a

screenshot of the website rendered in an unmodified version of WebKitGTK+ (i.e., as

would be shown during a normal browser visit) to detect if cloaking exists. Because phish-

ers implement JavaScript cloaking techniques to evade detection by anti-phishing systems,

they remove suspicious attributes in websites (e.g., login forms) or outright redirect to a

benign website. Therefore, the visual content shown when the cloaking condition is not

satisfied will differ significantly from that of the malicious page.

For example, consider a phishing website that asks visitors to click on a button in a

pop-up window prior to showing the phishing content. After forced execution, two dif-

ferent execution paths result in two different screenshots: one as an initial benign-looking

page (Figure 3.3a), and the other with phishing content (Figure 3.3b). Therefore, we con-
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sider a phishing website as cloaked if any of the screenshots taken during forced execution

noticeably differ from the original one.

CrawlPhish can also reveal phishing content hidden behind multiple layers of cloaking.

Consider a phishing website with a cloaking technique that (1) detects mouse movement

and (2) checks the referrer such that the malicious content will appear only if both require-

ments are met. CrawlPhish will explore the execution path that shows the malicious content

by force-executing it, regardless of the branching conditions. Therefore, after each screen-

shot is compared with the screenshot of the original page, CrawlPhish determines that a

cloaking technique exists because one of the screenshots will differ.

Removal of blank pages after forced execution. Screenshots of pages rendered by force-

executed paths may be blank, which can be caused by (1) negative branches from cloaking

techniques (such as mouse movement detection) that require user input or (2) execution

paths that take longer to finish than the execution time limit. In the latter case, CrawlPhish

can mislabel a website as cloaked if an initial screenshot is compared to an empty page

caused by unfinished execution paths. For example, phishers may trigger an infinite loop if

they identify that a visit is from an anti-phishing system. In this case, CrawlPhish cannot

finish forced execution and hence the screenshot remains empty. Thus, a current limitation

of CrawlPhish is that it cannot detect cloaked websites with very long execution times.

However, according to our evaluation, this situation does not happen often: only in 1.75%

of the websites we considered.

Detection algorithm. To perform visual similarity checks between the screenshots, we

implement the pHash algorithm [73], which compares visual similarity with robustness

and good discrimination. We calculate pHash scores between the original screenshot and

those captured after each path finishes execution.

score = pHash(Soriginal, Si), i ∈ [1, 2, ..., n] (3.1)
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(b) Code structure feature threshold.

Figure 3.2: ROC Curves to Select Thresholds for Cloaking Detection and Cloaking Type

Categorization.

In Formula 1, S represents each screenshot and n is the number of screenshots captured

from forced execution. We consider two screenshots to be similar (no cloaking) if the

pHash score is less than a threshold (5.0) that we set based on preliminary testing results

on 1,000 phishing websites. Differing screenshots will have a score of 5.0 or greater. Fig-

ure 3.2a shows the ROC curve for selecting the visual similarity threshold. We selected the

threshold that provides a 92.00% true-positive rate with a 6.77% false-positive rate. We

note that our evaluation in Section 5.4 shows that CrawlPhish exhibited higher detection

accuracy (98.25%) with a lower false-positive rate of 1.45% than what was indicated by

the threshold in the ROC curve.

3.4 Cloaking Categorization

Once CrawlPhish detects the presence of cloaking on a web page, categorization of the

specific type of cloaking allows us to measure and understand the prevalence of different

high-level client-side cloaking techniques used by phishers. To facilitate this categoriza-
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tion, CrawlPhish maintains a cloaking technique database that contains the code structure

features for each instance of cloaking, annotated with the corresponding cloaking seman-

tics. Using the database, CrawlPhish can not only identify known cloaking types, but also

provide detailed information about emerging cloaking techniques.

Initial database. We first obtained 1,000 cloaked phishing websites (true positives),

for which we used CrawlPhish to determine the existence of client-side cloaking. Then,

we manually examined the source code of the phishing websites to label the corresponding

cloaking techniques. We also recorded code structure features as ground truth.

For example, we labeled one type of cloaking technique as Mouse Detection if the

recorded code features have the onmousemove event and use the location.hrefAPI.

Over time, as CrawlPhish executes, if the presence of cloaking is detected on a website but

the code features do not sufficiently closely match any of the records in the database, the

website is flagged for manual review such that the missing features (and, potentially, new

cloaking types) can be populated. Otherwise, the website is automatically labeled with

the corresponding semantic cloaking type. Within the dataset we crawled, manual effort

was rarely needed after we populated the initial database. Thus, this requirement does not

impede the automated operation of our framework.

Categorization algorithm. CrawlPhish employs the Hamming Distance (HD) algorithm

[74] to compute the similarity of the API calls and web events. To this end, we use

an array data structure with one position for each of the 4,012 types of web API calls or

events as defined by the Mozilla MDN [75, 76], which documents currently available web

APIs. At each position in the array, we store the number of corresponding API calls or

events as observed by CrawlPhish. We then convert this array to a fixed-length string (e.g.,

string[0] is the number of ActiveXObject in the code block and string[1] stores the

amount of Date API calls) so that we can apply the HD algorithm. Thus, the result of the

HD algorithm on a pair of strings represents the similarity of web APIs and events between
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two code blocks. Lower HD values indicate higher similarity.

We also leverage JSInspect [77] to find structurally similar code snippets based on

the AST. This will identify code with a similar structure based on the AST node types

(e.g., BlockStatement, VariableDeclaration, and ObjectExpression). We combine these

approaches to overcome limitations of code similarity checkers based solely on either ASTs

or API calls. Consequently, by comparing the code structure similarity of all suspicious

code blocks against records in the database, all known cloaking types can be identified in

one website (even if there are multiple types). If the features of a suspicious code block are

not sufficiently similar to any record in the database, we will manually examine it, label

the cloaking type, and then add it to the database, which is the only process that requires

manual effort in the CrawlPhish framework.

Similar to the visual similarity check, we empirically set a threshold for the code sim-

ilarity check based on preliminary manual analysis of 1,000 cloaked phishing websites.

We consider only two categories to find a threshold: correctly labeled cloaking types and

mislabeled cloaking types. Per Figure 3.2b, we selected a code structure threshold with a

true-positive rate of 95.83% and a false-positive rate of 0.79%. When CrawlPhish com-

pares the code structure features of a new phishing website to ones in our database, the

AST similarity score must be greater than 0.74 and the Hamming Distance of web APIs

and events must be within 34 for a new website to be marked with a known type of cloaking

technique.

3.5 Evaluation: Detection of Cloaked Phishing Websites

In this section, we evaluate the client-side cloaking detection accuracy of CrawlPhish.

In this experiment, we first randomly sampled and manually labeled 2,000 phishing web-

sites that did not contain JavaScript cloaking techniques as well as 2,000 phishing websites

with various types of client-side cloaking. We then ran CrawlPhish to detect if client-side
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Crawled Phishing
Websites From APWG

Analyzed
Cloaked Non-cloaked

Cloaked TP FN

Actual 1,965 98.25% 35 1.75%

Non-cloaked FP TN
29 1.45% 1,971 98.55%

Table 3.2: Accuracy of Cloaking Detection by CrawlPhish.

cloaking exists. Finally, we compared the automated cloaking detection results against our

manually labeled ground truth dataset to calculate the detection accuracy.

Table 3.2 shows the confusion matrix of CrawlPhish’s detections. Within the 4,000

phishing websites, CrawlPhish correctly detected 1,965 phishing websites as cloaked and

1,971 as uncloaked, with a false-negative rate of 1.75% (35) and a false-positive rate of

1.45% (29). Note that unlike a general phishing detection tool that should prioritize false

positives over false negatives [41], the client-side cloaking detection component in Crawl-

Phish does not critically need to do so, because the goal of our detection is to study the

nature of client-side cloaking, rather than to detect a phishing attack. If CrawlPhish trades

higher false negatives for lower or even zero false positives, the study might be less com-

plete because we might miss many relevant instances of cloaking. Therefore, the detection

of CrawlPhish should balance false positives with false negatives.

Each of the 29 false-positive cases was caused by one of two errors. The first error was

due to the rending overhead of the unmodified browser which loaded the original phishing

page. WebKitGTK+, the web browser we used in the CrawlPhish framework, failed to

render the original websites within an allotted time limit due to a large number of CSS

and JavaScript files included by the website. As a result, the original screenshot of each

website was blank, but the screenshots after forced execution were not blank, so CrawlPhish

mislabeled the corresponding websites as cloaked because the screenshots differed before

and after forced execution. The second error was caused by inaccuracies in our image

31



similarity checks. The image similarity check module erroneously distinguished between

screenshots of identical pages due to slight variations in the page layout generated by the

browser with and without forced execution.

In terms of the false negatives, we found that 32 out of the 35 stemmed from a long

execution time of cloaked phishing websites (similar to the first reason for false positives).

Forced executed screenshots are not taken if an execution path takes too long to finish ex-

ecution. We used a 195-second execution time window for each execution path. However,

the paths that CrawlPhish does not execute due to a timeout may contain cloaking tech-

nique implementations. Without those screenshots, CrawlPhish cannot detect the cloaking

technique, so it mislabels the corresponding website as uncloaked.

In three rare cases, real phishing websites appeared nearly blank due to low page con-

trast. For example, if phishing websites have a white background with light text, Crawl-

Phish would not distinguish between the corresponding screenshot and a blank one. We

manually examined these cases and found that CSS inclusions were missing from those

websites (i.e., they could not be retrieved by our crawler).

Client-side cloaking occurrence statistics. Within our dataset of 112,005 phishing web-

sites, CrawlPhish found that 35,067 (31.31%) phishing websites implement client-side

cloaking techniques in total: 23.32% (6,024) in 2018 and 33.70% (29,043) in 2019. We

note that cloaking implementations in phishing grew significantly in 2019. We hypothesize

that phishers are either leveraging such cloaking because it increases their profitability or

because improving detection systems make advanced evasion necessary, or both.

3.6 Evaluation: Cloaking Categorization

In this section, we elaborate on the eight types of client-side cloaking techniques de-

tected by CrawlPhish (as previously introduced in Table 3.1). We also evaluate the ac-

curacy of CrawlPhish’s semantic cloaking categorization, track trends in the deployment
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(a) Initial appearance. (b) Force-executed appearance.

Figure 3.3: Initial and Force-executed Appearance of a Phishing Website With Pop-up

Cloaking.

and evolution of different implementations of these cloaking techniques, and analyze how

frequently they are used.

3.6.1 Categorization of Cloaking Types

User Interaction: Pop-up. With this technique, phishing content remains hidden until a

button in a pop-up window is clicked. Specifically, JavaScript code listens for an onclick

event to evade anti-phishing bots. Figure 3.3 shows an example of a phishing website that

implements this technique. The website in Figure 3.3a initially shows an alert window

to an anti-phishing bot or a real user. Thus, this phishing website seeks to evade detection

by anti-phishing bots because no phishing content or typical attributes (such as a login form

or logos of a legitimate organization) are found on the page. However, CrawlPhish reveals

the phishing content hidden behind the popup window as shown in Figure 3.3b.

Figure 3.4 shows a more advanced version of the pop-up cloaking techniques that

CrawlPhish detected. Because an alert window can easily be closed through common

browser automation frameworks such as Selenium [78] or Katalon [79], some phishers in-

stead use the Web Notification API [80]. We observed that due to technical limitations, top

automation frameworks [81] do not currently support interaction with web notifications.
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Figure 3.4: A Phishing Website with the Evolved Pop-up (Notification) Cloaking Tech-

nique, in Which the Web Page Directs Human Visitors to Click on the “allow” Button by

Showing an Arrow.

These automated browsers opt to disable the notification window to avoid such interac-

tions. Phishers, however, only allow visitors who actually click the “Allow” button to

access the phishing content. Therefore, because the phishing website will not show any

phishing content until a visitor clicks the “Allow” button in the notification window, it will

evade detection. Phishers use a deceptive web page that asks visitors to click the button

on the notification window, as shown in Figure 3.4. As an added benefit to attackers, by

using a notification window, cloaked phishing websites could also directly send spam to

visitors through their browsers (we do not evaluate the extent of such abuse). Through this,

we show that criminals are using cutting-edge browser features to evade existing detection

systems.

User Interaction: Mouse Detection. This cloaking type seeks to identify whether a web-

site visitor is a person or an anti-phishing bot by waiting for mouse movement before dis-

playing the phishing content. Specifically, the cloaking code listens for the onmousemove,

onmouseenter, or onmouseleave events. This technique is used frequently by phish-
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Cloaking Technique Public Dataset APWG Dataset Identical
GroupsUnique

Groups
Top Group Unique

Groups
Top Group Earliest

Impl.
Groups Used
From 2018Category Type Count Percentage Count Percentage

Fingerprinting
Cookie 43 437 15.01% 28 325 7.39% 09/2018 12 14
Referrer 27 156 5.85% 37 92 3.92% 08/2018 21 9

User-Agent 65 563 53.31% 33 181 12.97% 07/2018 24 20

User
Interaction

Pop-up
Alert 424 249 3.26% 335 73 1.21% 06/2018 276 127

Notification 29 52 4.22% 17 284 18.67% 11/2018 7 11
Click Through 105 1,541 22.88% 51 1,275 16.45% 10/2018 13 31

Mouse Detection 87 138 6.81% 108 500 8.63% 06/2018 47 37

Bot
Behavior

Randomization 73 42 16.03% 125 58 3.57% 09/2018 62 43
Timing 597 387 7.76% 394 416 5.99% 06/2018 303 197

Table 3.3: Overview of the Number of Distinct Groups of Cloaking Code Implementations

in the APWG and Public Datasets.

ers, and accounts for 16.53% of all cloaking technique implementations in Table 3.4, be-

cause most people have a habit of moving the mouse while a website is rendering in the

browser [82].

User Interaction: Click Through. Some phishing websites require visitors to click on a

specific location on the page before displaying phishing content [83]. Simple variants of

this cloaking technique require visitors to click on a button on the page and are, thus, similar

to alert cloaking. However, more sophisticated variants display fake CAPTCHAs that

closely mimic the look and feel of Google’s reCAPTCHA [84]. Given the common use

of reCAPTCHA by legitimate websites, phishing websites with fake CAPTCHAs make it

difficult for potential victims to identify that they are fake. If anti-phishing systems cannot

access phishing content because of the Click Through technique, they may fail to mark the

websites as phishing.

Bot Behavior: Timing. Some phishing websites show phishing content only at a certain

time, or deliberately make rendering slow by using the setTimeout() or

Date.getTime() APIs. If phishing websites take a longer time to render than thresh-

olds set by detection systems, such websites can evade detection. Actual visitors, however,

might wait for the completion of web page rendering [85].
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(a) Benign page shown when cookies

are disabled.

(b) Force-executed version, which re-

veals the login form.

Figure 3.5: Appearance of a Phishing Website with The Cookie Cloaking Technique.

Bot Behavior: Randomization. Some phishers try to evade detection by using a non-

deterministic mechanism: such phishing websites generate a random number before the

page is rendered, and only show phishing content if a certain threshold is met. Anti-

phishing crawlers or human inspectors may not visit the same website again if it ini-

tially shows benign content. Therefore, this technique may appear to be a “dumb” way

to evade detection by anti-phishing systems. However, its use in the wild suggests that

it may be worthwhile: we suspect that phishers who use this technique are aware of the

conditions for detection by anti-phishing entities and try to trick anti-phishing bots with a

non-deterministic approach to cloaking.

Fingerprinting: Cookie. Similar to server-side cloaking techniques, client-side cloaking

techniques can also check visitors’ request attributes to fingerprint them. Figure 3.5 illus-

trates a phishing website that fingerprints whether a visitor is a person or an anti-phishing

bot by checking if cookies are disabled in the browser. When cookies are disabled, the

phishing websites will display benign content, as shown in Figure 3.5a. Some anti-phishing

crawlers disable cookies to avoid being bound to a single session. However, CrawlPhish de-

tects cloaked phishing content as shown in Figure 3.5b. Similarly, this cloaking technique

may also test if the browser cache is enabled [86].
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Fingerprinting: Referrer. Phishing websites can check whether incoming traffic origi-

nates from phishers’ lures or other unwanted sources. Therefore, some phishing websites

display benign content to visitors with a blank Referer [87], which could indicate that a

URL was directly typed in. Similarly, referrals from search engines or known security

domains can be blocked.

Fingerprinting: User-agent. Some phishing websites seek to identify anti-phishing crawlers

based on their user-agent strings. The navigator.userAgent property stores infor-

mation about the browser and operating system (e.g., Mozilla/5.0 (X11; Linux x86 64)).

Therefore, anti-phishing bots such as Googlebot can be blocked as their userAgent prop-

erty is a known value.

Combinations of cloaking techniques. Multiple client-side cloaking techniques are occa-

sionally used together by phishing websites, as doing so may further increase evasiveness.

For example, CrawlPhish found 503 instances of Click Through and Referrer used together.

Also, we found Timing and Cookie in 476 cloaked phishing websites.

3.6.2 Accuracy of Cloaking Categorization

To evaluate the accuracy of CrawlPhish’s categorization of cloaking types, we selected

the same 2,000 cloaked phishing websites as in Section 5.4 (this set contains all three cat-

egories of client-side cloaking techniques) and manually labeled the correct cloaking type

based on their code structure features. We, then, sent these websites through the feature

extraction ( 2 ) and the cloaking detection ( 3 ) phases of CrawlPhish to locate the code

blocks in which each cloaking technique is implemented. CrawlPhish checked the code

structure feature similarity as populated over the course of our deployment ( 4 ). As stated

in Section 3.4, CrawlPhish compares the code structure features of all snippets flagged by

Step 3 with the records in the database to discover all possible cloaking techniques in a

given phishing website.
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We found that CrawlPhish correctly categorized the cloaking type with 100% accuracy.

This high accuracy stems in part from the manual inspection involved when the code struc-

ture features of the examined snippet do not match any existing records in the database,

as discussed in Section 3.4. Thus, we conclude that web API calls, web events, and ASTs

suffice for distinguishing between different cloaking types, even when the underlying im-

plementations vary.

3.6.3 Grouping of Implementations

Because phishing kits directly enable the scalability of phishing attacks and are readily

available through underground markets [88, 6, 89], tracking the deployment and evolution

of kits can help researchers and investigators pinpoint the threat actor (i.e., a kit author or

criminal group) behind a series of phishing websites and identify the prevalence phishing

attacks attributable to the same author. The web page source code collected by CrawlPhish

is suitable for this purpose because such source code can be obtained for virtually any

phishing URL—unlike server-side code [4].

By comparing code similarity between JavaScript snippets used by cloaked phishing

websites, over time, we can group related cloaking technique implementations (i.e., im-

plementations attributable to the same origin) together. Specifically, we compare the AST

similarity among cloaking technique implementation code blocks to find matches using

JSInspect [77] (the same technique we leveraged to check the code structure similarity). In

Table 3.3, we provide an overview of the number of implementation groups that we found

for each cloaking technique within the APWG Dataset and the Public Dataset. In addition,

we compare the overlap in groups between the two datasets, and we determine the earliest

date that each technique was observed.

Implementation groups in the APWG Dataset. We found that the earliest implemen-

tation of each cloaking type was in 2018. Also, we found that 1,128 groups account for
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Figure 3.6: CDF of Implementation Groups for All Phishing Websites in the Apwg Dataset.

35,067 cloaked phishing websites detected by CrawlPhish. Figure 3.6 shows the cumula-

tive distribution function (CDF) of unique implementation groups in the APWG Dataset:

20% of unique cloaking implementation groups account for 74.65% of all phishing web-

sites. This shows that a small number of phishing kits is likely responsible for a significant

proportion of sophisticated phishing websites in the wild. We discover that the Timing

cloaking type has the most groups (394) among all cloaking types. Because this cloaking

technique is less popular according to our findings, we suspect that prominent phishing

kit developers do not deploy it, though individual criminals may still want to leverage it.

Among the largest groups, we observe that one group of Click Through cloaking accounted

for 16.45% (1,275) of code variants. As many as 18.67% (284) of the Notification Window

occurrences were within a single group.

Implementation groups in the Public Dataset. We also compare the cloaking groups

within the Public Dataset [90], which was sourced from OpenPhish [91], PhishTank [92],

PhishStats [93], and other phishing URL archives. Using this additional dataset, we can

validate that the APWG dataset was representative of the ecosystem and evaluate the exis-
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tence of other cloaking techniques that may not have been present in the APWG dataset.

Table 3.3 shows detailed statistics on the cloaking group distributions between the two

datasets. The number of groups found for each cloaking type from both datasets is similar.

The Timing and Alert cloaking techniques still have the highest overall number of groups,

which matches the findings from the APWG dataset. The number of groups for Click

Through cloaking, however, increases from 51 to 105. We suspect that different phishers

are developing more phishing kits with this cloaking technique because they realize that it

can effectively evade detection by anti-phishing systems.

In addition, by comparing the AST similarity of implementation groups between the

Public Dataset and the APWG Dataset, we discover that the same groups of cloaking tech-

nique types exist in both datasets. 11 out of 17 distinct groups of the Notification cloaking

technique in the APWG Dataset also appear in the Public Dataset. Additionally, the Alert

and Timing cloaking techniques have the most identical groups between the two datasets.

This result indicates that phishing kits leveraging client-site cloaking techniques are widely

used.

Evolution of cloaking groups over time. Because we crawled phishing data in both 2018

and 2019 from APWG feed, this dataset enables us to trace the origin of each cloaking type.

The Timing, Alert, and Mouse Detection cloaking techniques were first used in phishing

websites from June 2018 in our dataset. The (more advanced) Notification technique first

appeared in November 2018. The early occurrence of these evasion methods reminds us

that phishers are trying to stay one step ahead of the anti-phishing ecosystem. While re-

searchers and anti-phishing entities were working on mitigations against server-side cloak-

ing techniques [7, 4], those attackers had already turned their focus toward implementing

client-side evasion methods. We suspect that those client-side cloaking techniques may

have already been employed well before June 2018 [7, 22] (the date we started crawling).

We also observe the evolution of cloaking techniques from the perspective of obfus-
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Cloaking Technique 2018 2019 Total Share

Category Type
Count
(%)

Count
(%)

Count
(%)

Count (%)

Fingerprinting
Cookie

1,295
(21.50%)

6,842
(23.56%)

8,137
(23.20%)

4,395 (12.53%)
Referrer 2,346 (6.69%)

User-Agent 1,396 (3.98%)

User
Interaction

Pop-up
Alert

2,416
(40.11%)

17,782
(61.23%)

20,198
(57.60%)

6,027 (17.19%)
Notification 1,521 (4.34%)

Click Through 7,753 (22.11%)
Mouse Detection 5,797 (16.53%)

Bot
Behavior

Randomization 2,427
(40.29%)

6,141
(21.14%)

8,568
(24.43%)

1,623 (4.63%)
Timing 6,945 (19.80%)

Total Cloaking Implementations 6,138 30,765 36,903 -

Table 3.4: Cloaking Technique Types in the APWG Dataset, as Detected by Crawlphish.

cation. From our crawling process, we found that the code obfuscation rate on phishing

websites increased from 20.79% in 2018 to 24.04% in 2019. For example, for the Pop-

up cloaking technique, the earliest variant from June 2018 was not obfuscated. Gradually,

phishers started to obfuscate their cloaking technique implementations: in October 2018,

they added an encoding algorithm, while the AST structure remained highly similar to un-

obfuscated implementations. Later, phishers started to symmetrically encrypt client-side

cloaking techniques (e.g., by using AES) and included decryption keys only as request pa-

rameters. In such cases, the AST of the same cloaking technique would differ from an

existing group, so we place them in a new group. However, with CrawlPhish, we still find

similar web API calls, so we consider this group to be an evolution of a prior group (its

origin). From this finding, we gain the intuition that cybercriminals are improving client-

side cloaking techniques in phishing to make the latest implementations more difficult to

analyze.

3.6.4 Trends in Cloaking Usage

Table 3.4 shows the prevalence of each client-side cloaking technique type that Crawl-

Phish detected. Note that the sum of each cloaking technique’s occurrence may exceed
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Cloaking Technique Total Share
Category Type Count Percentage Count Percentage

Fingerprinting
Cookie

6,633 24.28%
2,912 9.87%

Referrer 2,665 9.03%
User-Agent 1,056 3.58%

User
Interaction

Pop-up
Alert

17,634 64.55%

7,641 25.89%
Notification 1,233 4.18%

Click Through 6,735 22.82%
Mouse Detection 2,025 6.86%

Bot
Behavior

Randomization
5,294 19.38%

262 0.89%
Timing 4,987 16.90%

Total Cloaking Implementations 29,561 - - -

Table 3.5: Cloaking Technique Types in the Public Dataset (September to December 2019),

as Detected by CrawlPhish.

100% because some phishing websites implement multiple cloaking techniques. In the ta-

ble, the percentage under the “2018”, “2019”, and “Total” columns represents the share

of each category of JavaScript cloaking technique implementation in the respective time

period. The percentage under the Share column refers to the percentage of each type of

cloaking technique in all the cloaked phishing websites we detected.

We categorize the cloaking types in phishing websites from both the APWG Dataset

and the Public Dataset. As shown in Table 3.4, the User Interaction cloaking category

has the most implementations among phishing websites in the APWG Dataset. In 2018,

2,416 phishing websites (40.11%) leveraged cloaking within the User Interaction category,

while in 2019, the usage ratio of User Interaction cloaking grew to 61.23%. The usage ratio

of cloaking techniques in the Fingerprinting category over two years is almost the same.

Within the Bot Behavior category, the usage ratio dropped significantly, from 40.29% to

21.14%. We find that phishing websites rely more on cloaking techniques in the User

Interaction category than the others. We believe that this is because it is more difficult

for anti-phishing crawlers to impersonate human behaviors than to bypass other types of

cloaking.
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2018
Targeted Brand Count Share

LinkedIn 2,317 38.46%
PayPal 1,104 18.33%
Microsoft 646 10.72%
Bank of America 309 5.13%
Apple 153 2.54%

2019
Targeted Brand Count Share

Apple 6,298 21.69%
Bank of America 3,572 12.30%
Facebook 2,230 7.68%
PayPal 1,841 6.34%
Microsoft 987 3.40%

Table 3.6: Top Brands Targeted by Cloaked Phishing Websites in the APWG Dataset.

Table 3.5 demonstrates the usage of each cloaking type CrawlPhish detected from the

Public Dataset. Just as we observed from the 2019 portion of the APWG Dataset, the User

Interaction category was also the most frequently implemented in the Public Dataset.

Brand distribution. Among the 6,024 cloaked phishing sites in 2018, LinkedIn and PayPal

were the most frequently impersonated brands, as shown in Table 3.6. In 2019, the distri-

bution changed: Apple and Bank of America phishing websites were the most prevalent.

Overall, four of the top five brands in 2018 were also in the top five in 2019. Neverthe-

less, because of changes within the phishing landscape between the two years, our findings

regarding the relative distribution of cloaking phishing websites may be skewed.

3.7 Evaluation: Impact of Cloaking techniques

We have, thus far, shown that phishing websites make extensive use of client-side cloak-

ing techniques. To demonstrate that this cloaking represents a significant threat to users,

we deployed two experiments to verify that these techniques can truly evade detection by

anti-phishing systems, and that they generally do not discourage victim visits—the two key

factors to increasing attackers’ return-on-investment.

3.7.1 Effectiveness Against Anti-Phishing Entities

We evaluate how effective client-side cloaking techniques are against real-world anti-

phishing systems. Using a testbed for empirically measuring anti-phishing blacklists [5],
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we first deployed 150 carefully-controlled artificial PayPal-branded phishing websites us-

ing new and previously unseen domain names: 50 for each of the top three User Interaction

cloaking types we found in the wild (Notification, Click Through with a fake CAPTCHA,

and Mouse Detection). We then simultaneously reported the URLs to key anti-phishing en-

tities across the ecosystem (Google Safe Browsing, PhishTank, Netcraft, APWG, PayPal,

and US CERT [4]) to evaluate if the ecosystem can collectively detect our cloaked web-

sites. Lastly, we monitored the detection status (i.e., blacklisting) of our websites in major

web browsers (Google Chrome, Opera, and Microsoft Edge, each powered by different

detection backends) over seven days.

At the conclusion of these experiments, we found that none of our phishing websites

were blacklisted in any browser, with the exception of Click Through websites, 21 (42%)

of which were blocked in Microsoft Edge a median of 3 hours after we reported them.

The detection occurred because Microsoft SmartScreen classified the obfuscation in the

JavaScript source code as malware, not because it was capable of bypassing the cloaking

technique itself. The fact that so many of our websites remained unmitigated after a seven-

day period shows that client-side evasion methods are indeed effective at evading detection

by modern anti-phishing systems.

Manual inspection is used by some anti-phishing entities [94]. Recurring suspicious

websites that cannot be detected by automated systems should go to manual inspection for

further analysis. With specialists’ inspection, any malicious websites therein should be la-

beled as phishing and be blacklisted to protect users. Our observations, however, imply that

our test phishing websites may have simply been classified as benign by anti-phishing sys-

tems and never sent for manual review. We believe that this is a clear limitation of current

anti-phishing mitigations. Therefore, it is important for the whole anti-phishing ecosystem

to understand the nature and prevalence of client-side cloaking techniques used by sophis-

ticated phishing websites, especially when we consider the growth of such websites [71].
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Mouse
Detection

Click
Through

Notification
Window

Count (%) Count (%) Count (%)

Can See 879 (100.00%) 859 (97.72%) 374 (42.55%)
Cannot See 0 (0.00%) 20 (2.28%) 505 (57.45%)

Table 3.7: Experimental Results on the Effect of Cloaking Techniques on Users’ Ability to

See Phishing Content.

3.7.2 Hampering Victim User Traffic

To verify that client-side cloaking techniques in the User Interaction category do not

significantly prevent users from being exposed to phishing content on cloaked phishing

websites, we conducted an IRB-approved user study through Amazon Mechanical Turk [95].

Using a free hosting provider, we generated three websites: one with each of the same three

types of cloaking as considered in the previous section (Notification, Click Through with

a fake CAPTCHA, and Mouse Detection). Rather than hiding phishing content behind the

cloaking, however, we simply hid the text “Hello World”. By default, a blank page would

be shown. We then hired 1,000 workers in Amazon Mechanical Turk and requested them

to report what they saw after visiting each of the three websites [96]. We choose these three

cloaking techniques because they are unique to client-side (rather than server-side) cloak-

ing implementations, and because the other techniques have been tested in a server-side

context [5].

Table 3.7 shows the detailed experimental results. 121 of the 1,000 workers could not

view our phishing websites due to a technical problem: their browsers automatically added

“www” in front of the sub-domains in our URLs, which may occur in older versions of

web browsers [97]. Thus, the responses of 879 workers were suitable for analysis.

For the Mouse Movement cloaking technique, 100% of the workers saw the “Hello

World” text, and thus would have also seen phishing content had they visited a malicious
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website. For the Click Through websites, 97.72% saw the text, which shows that this

cloaking technique is also effective against users. However, only 42.55% of the users saw

the text on websites with the Notification Window cloaking technique. Nearly all users

who did not see the text (94.94%) opted to deny notifications; the rest had incompatible

browsers.

Although two of the cloaking techniques did not significantly prevent users from view-

ing the content, we found that the Notification Window cloaking technique has a negative

impact on phishing success rates against potential victims. However, had these users been

successfully deceived by a phishing lure (e.g., one that conveys a sense of urgency) prior

to visiting the page, we believe that they would have been more likely to allow notifica-

tions [98]. Moreover, given the fact that websites with this cloaking technique were not

detectable by the anti-phishing ecosystem (as we showed in Section 3.7), we still believe

that this technique remains viable overall. In fact, the website shown in Figure 3.4 was still

online in January 2020 even though we first observed the phishing URL in May 2019.

Consequently, we conclude that client-side cloaking techniques in the User Interaction

category enable phishing websites to maintain profitability through a much longer life span,

generally without discouraging victim visits, which in turn allows phishers to harm more

users.

3.7.3 Responsible Disclosure

Once we established that the cloaking techniques discovered by CrawlPhish were capa-

ble of evading anti-phishing systems while remaining effective against human victims, we

disclosed our findings, and the corresponding JavaScript code for each technique tested, to

the major anti-phishing blacklist operators: Google, Microsoft, and Opera. All companies

acknowledged receipt of our disclosure. Google followed up by requesting more infor-

mation on the semantics and prevalence of the cloaking techniques, and concurred with
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our finding that such techniques could potentially bypass detection by current automated

anti-phishing systems.

3.8 Countering Client-side Cloaking Techniques

As we have observed, phishers make extensive use of sophisticated evasion techniques

in their phishing attacks. The unique feature of client-side cloaking techniques is to re-

quire visitors to interact with the website or browser, such as through a button click or

mouse movement. Phishers adopt such strategies because they believe that their victims

will exhibit these behaviors when visiting a website [82]. If the website is in the process of

rendering and shows a blank page, most people tend to move their mouse subconsciously.

Similarly, out of habit, users will click a button from a pop-up or notification window to

make web page content appear. We expect that phishers’ degree of sophistication will

only continue to grow. Therefore, the ecosystem should ensure that existing detection and

mitigation systems are capable of adapting to such evasion techniques.

To detect advanced phishing websites with client-side cloaking techniques, anti-phishing

crawlers should match the behaviors that sophisticated phishing kits expect. Specifically,

crawlers need to impersonate human behaviors such as mouse movement and button clicks.

To examine a given website, anti-phishing systems can emulate such behaviors using au-

tomated browsers. In addition, as we observed in our analysis, the Notification Window

technique seems to exploit the lack of support for web notifications by current automated

browsers. Thus, it is important for anti-phishing systems to close this gap and ensure that

the browsers being used for detection support the same features as those used by potential

victims.

Also, CrawlPhish can be directly incorporated into existing anti-phishing crawlers.

With the hidden web page content revealed by CrawlPhish alongside traditional attributes

such as URLs, we believe that current anti-phishing systems could identify malicious web-
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sites that would otherwise evade detection. Furthermore, by implementing CrawlPhish

analysis, crawlers would be able to more accurately classify and fingerprint new variants

of evasion techniques employed phishing websites, or even discover entirely new types of

cloaking. Such analysis would be particularly helpful in countering phishing websites that

cannot currently be classified with high confidence.

3.9 Related work

Studies on phishing and cloaking techniques: Oest et al. analyzed server-side cloaking

techniques within a dataset of 2,313 phishing kits and proposed a taxonomy of five differ-

ent types of cloaking [4]. These authors also showed that cloaking techniques, including

basic JavaScript cloaking, can effectively bypass detection by anti-phishing blacklists [5].

Based on an end-to-end analysis of large-scale phishing attacks, Oest et al. discovered that

phishing websites with sophisticated evasion techniques are prevalent in the wild but the

anti-phishing ecosystem has not effectively mitigated them [71]. In this work, we have

presented the first in-depth analysis of client-side cloaking techniques in the context of

phishing based on a dataset of 112,005 live phishing websites.

Invernizzi et al. studied server-side web cloaking techniques against search engines,

and proposed mechanisms to identify and bypass such cloaking [7]. CrawlPhish leverages

these methods to overcome server-side cloaking during crawling. The authors rooted their

study in black markets and built a classifier to detect cloaking techniques implemented

on the server side that returned different content to distinct browsing clients. This work

mainly focused on the mutation of browser profiles to bypass server-side cloaking tech-

niques to discover divergent web content. The authors found that 11.7% of search results

were cloaked. The authors considered cloaking techniques used for Search Engine Opti-

mization (SEO), advertisements, and drive-by download attacks. However, they did not

investigate client-side cloaking techniques implemented in JavaScript (i.e., that execute in
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the browser). In contrast, we discovered diverse client-side cloaking techniques and ana-

lyzed them from the perspective of phishing attacks.

JavaScript analysis techniques: Although a number of static analysis [99, 25, 23] and

dynamic analysis [24, 22] approaches have been proposed to analyze malicious JavaScript

code, there has been no attempt to automatically extract JavaScript code semantics for iden-

tifying and classifying cloaking techniques. Arrow and Zozzle are static analysis methods

to classify JavaScript malware based on previously discovered malicious scripts [99, 25].

Revolver tried to detect evasive JavaScript code through similarity checks against known

malicious matters [23]. Rozzle is a multi-execution virtual machine to explore multiple

execution paths in parallel for enhancing the efficiency of dynamic analysis so that it can

be used in large-scale experiments [24]. J-Force enhanced dynamic analysis methods to

find hidden malicious behaviors by force-executing JavaScript code, regardless of the con-

ditions, to explore all possible execution paths in an automated way [22]. Hence, J-Force

lends itself well to revealing content hidden behind JavaScript cloaking code.

Analysis of program semantics similar to ours has been performed within other con-

texts. To deal with virtualization-based obfuscation, Coogan et al. proposed a de-obfuscation

approach that identifies behaviors of malicious programs based on the flow of values to sys-

tem calls [100]. BEAGLE assigns semantics to malware by dynamically monitoring system

and API calls that malware uses to compare versions of malicious code and quantify their

differences—to observe the evolution of a series of malware [101]. Zhang et al. intro-

duced a semantic-based static analysis approach to reveal malicious Android applications’

behaviors regardless of minor implementation differences [102]. The authors leveraged an

API dependency graph to determine the semantics of the program to classify malware and

identify malware variants.
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3.10 Conclusion

Through the first in-depth analysis of the client-side JavaScript code used by phishing

websites, we have uncovered a wide gamut of sophisticated evasion techniques used by

attackers. In addition to categorizing such evasion techniques based on their semantics, our

approach enabled us to measure the prevalence of each technique in the wild. In doing so,

we observed that client-side evasion is becoming increasingly common.

Client-side JavaScript enables website developers to implement complex interactions

between their websites and visitors. Thus, evasion techniques implemented in this manner

pose a particular threat to the ecosystem: websites that use them can effectively discrimi-

nate between automated crawler visits and potential human victims. Unfortunately, client-

side evasion techniques are difficult to analyze due to the dynamic nature of JavaScript

code. CrawlPhish addresses this difficulty in a scalable manner. In addition to being able

to detect and categorize client-side evasion with high accuracy, our approach can also track

the origin of different implementations.

Given the rise of sophisticated phishing websites in the wild, we believe that auto-

mated analysis systems such as CrawlPhish are essential to maintaining an understanding

of phishers’ evolving tactics. Methodology such as ours can be incorporated by the ecosys-

tem to more expeditiously and more reliably detect sophisticated phishing, which, in turn,

can help prevent users from falling victim to these attacks through the continuous enhance-

ment of the appropriate mitigations.
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Chapter 4

UNDERSTANDING THE SCALY UNDERBELLY OF REDIRECTION CHAINS IN

PHISHING

CrawlPhish can help the ecosystem analyze and detect phishing websites with client-

side cloaking techniques, which is a symptom of this attack. However, there are phish-

ing websites which implement other evasion techniques such as redirection to circumvent

anti-phishing systems including CrawlPhish. So I present PHISHPATH to analyze phishing

websites with redirection and help detect such advanced attacks.

Even though previous studies focused on the detection and analysis of phishing lures

(e.g., emails and social media posts) [50, 103, 104], identifying phishing content in landing

pages by using content-based features [33, 34, 35, 37, 29], and developing anti-phishing

blacklists to prevent phishing by blocking known malicious URLs [27, 105], there still

remains a significant gap in understanding the phishing ecosystem: The gap between when

a user clicks on a phishing lure and the point at which they arrive on the landing page. In

the online malware context, Stringhini et al. [106] discovered complex strategies, centering

around the use of website redirection chains, that were leveraged by attackers to evade

detection systems. Phishing seems ripe for similar use, but the use of redirection chains in

phishing and, critically, their impact on the detection and prevention of phishing attacks,

has not yet been studied.

By collecting and measuring redirection behaviors in phishing links in the wild, I can

not only gain an understanding of redirection use, but also use this knowledge to improve

existing anti-phishing systems and propose new mitigations. Understanding the prevalence

and effectiveness of redirection in phishing is thus an important problem for improving the

anti-phishing ecosystem.
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Figure 4.1: Example of a Phishing Redirection Chain: The lure phase (Green), intermediate

phase (Blue), and landing phase (Red).

To this end, I propose PHISHPATH to perform the first large-scale analysis on redirec-

tion use in the modern phishing ecosystem by collecting and analyzing phishing emails and

live websites. I ran my study for over a year from 2020 to 2021, collecting and analyzing

136,791 distinct phishing URLs from the Anti-Phishing Working Group (APWG), Phish-

Tank, and victim-reported phishing emails from a frequent phishing-targeted organization.

I discovered that phishers are using redirection techniques and that current anti-phishing

systems are not capable of effectively detecting phishing campaigns that use redirection

links.

I found extensive redirection use in phishing, with 34% of phishing attacks making use

of redirection techniques. I identified a common pattern in the design of redirection chains,

which I diagram in Figure 4.1: a lure phase, when a URL is embedded in phishing emails or

social media posts that trick victims into clicking, after which the victim’s HTTP request

is redirected through the intermediate phase, where phishers identify anti-phishing bots

and divert them to legitimate websites. Finally, after passing the server-side and client-side

cloaking techniques in the intermediate phase, the visitors will see the phishing content in

the landing phase.

While prior work studied phishing from the perspective of the lure phase and landing

phase, I found that the intermediate phase is critical in the evasion of phishing detection
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(Section 4.4.1). I found that attackers employ URL shortening services to help evade detec-

tion systems, including shorteners that require user interaction with a web page, rendering

detection systems ineffective. Such phishing links were active (and not blacklisted) five

months after initial detection. Moreover, I found that phishers exploit open redirect ser-

vices in LinkedIn and Google to hide their malicious URLs.

Aside from the use of the intermediate phase for cloaking, I found that it also granted at-

tackers additional flexibility in adapting to blacklist-based defenses. Because anti-phishing

systems only blacklist specific URLs instead of domains, I observed phishers generating

new URLs under the same domain to replace previously-blacklisted hops and keep the

chain accessible for as long as seven months. In fact, I found that over 30% of phishing

redirection chains reused domains in their intermediate layers.

I also measured the performance of anti-phishing blacklisting, online URL scanning,

and feature-rich machine learning classification against redirection- and non-redirection-

enhanced phishing attacks. Facing redirection phishing websites, these methodologies

show degradation on the performance, compared with that against non-redirection ones.

The difference in blacklisting [27] and online URL scanning [28] latency between the two

groups is 6 hours and 42 minutes on average. Additionally, a state-of-the-art machine learn-

ing classifier [29] has a high false-negative rate (10.82%) and a low F1 score (0.87) when

categorizing redirection phishing websites, compared with the 0.37% of false-negative rate

and the 0.99 F1 score recorded in the previous work. These results demonstrate that redi-

rection techniques effectively delay detection and classification.

Based on my analysis results, I propose two mitigation techniques. First, blacklist-

based anti-phishing systems can block commonly reused redirection domains instead of

only specific URLs, with few resulting false positives. This defense would end the cur-

rently trivial bypass of blacklists by attackers and reduce phishing attack profitability due

to increasing malicious domain “burn rate.” Next, I design a machine learning model based
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Figure 4.2: PHISHPATH Analysis Flow.

on attributes of redirection chains used in phishing websites to classify such sites with-

out relying on content-based features in often-stealthy landing pages. The PHISHPATH

classifier can identify phishing pages with only redirection information with high accuracy

(90.76%) and a high F1 score (0.92). Finally, I discover that many entities are involved in

redirection use in phishing. Based on this finding, I propose several ecosystem mitigations,

including the tracking of redirection data, using redirection data to classify advanced phish-

ing as well as locate lures, and restricting redirection services without identity information.

4.1 PHISHPATH Overview

We design PHISHPATH as a framework to understand and characterize the landscape

of redirection techniques used by phishing campaigns in the wild. As illustrated in Fig-

ure 4.2, PHISHPATH contains two steps. First, PHISHPATH continuously crawls phishing

URLs, collects redirection data, and filters non-redirection links (Section 4.2). Based on

the collected data, PHISHPATH then conducts data analysis, extracting redirection attributes

and investigating the characteristics in the redirection in phishing attacks (Section 4.3 and

Section 4.4). Next, we demonstrate the impact of using redirection techniques on the anti-

phishing ecosystem (Section 4.5). Finally, based on the analysis results, we propose two

types of defenses (Section 4.6 and Section 4.7) against phishing websites using redirection

techniques.
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4.2 Data Collection

The inputs to PHISHPATH are phishing lure and page URLs. We collected URLs from

the following three datasets 1 :

1. Phishing Email Dataset. From May 2020 to August 2020, we successfully crawled

10,564 distinct URLs directly extracted from phishing emails reported to a large industry

organization that is commonly targeted by phishing. To avoid ethical concerns, the organi-

zation programatically extracted these URLs for the purposes of this research; we did not

have access to sensitive information such as email addresses or the email body. 79.45%

(8,393) of the URLs from phishing emails contain redirection.

2. Commodity Dataset. We also crawled malicious URLs from two commodity datasets:

APWG eCrime Exchange Database [107] and PhishTank Database [92] — curated clear-

inghouses of phishing URLs maintained by various organizations engaged in anti-phishing.

Both of the databases have a low false positive rate [108], which enables us to understand

the nature of redirection techniques in phishing attacks. These datasets help gain a wide

understanding of redirection use in phishing attacks in the wild from the perspective of dif-

ferent targeted brands and possibly different redirection behaviors. We first crawled 45,475

unique phishing entries from June 2020 to February 2021 from the APWG Database, which

we refer to as Legacy Commodity Dataset. We then collected another 80,752 distinct URLs

from June 2021 to September 2021, named as Current Commodity Dataset. As we no-

tice, 32.50% (14,781) of the Legacy Commodity Dataset and 28.07% (22,671) of the Cur-

rent Commodity Dataset contain redirection, compared with 79.45% redirection rate in the

Phishing Email Dataset. We believe that this difference is due to reporters submitting the

destination URL to the commodity databases, while people who receive phishing emails of

a targeted organization report the email containing the lure URL.
1We open source the Commodity Dataset and the Benign Dataset: https://mega.nz/folder/

nSIggRYQ#p9WFzujoP3eKHYuKHITXkQ
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3. Benign Dataset. From June 2021 to September 2021, we crawled 15,128 benign redirec-

tion chains out of 27,162 URLs extracted from legitimate emails to compare the difference

of redirection behaviors between both categories. We believe that benign redirection chains

can be compared with the malicious ones because both groups of the redirection chains start

with the entry hop in the lure.

Redirection Collection. To understand the intermediate phase in the phishing ecosystem,

we collected redirection data for phishing campaigns in the wild. Through manual analysis,

we observed that many phishing redirections use client-side redirection (e.g., JavaScript-

based or meta HTML element redirections). Therefore, we design our crawler to sup-

port client-side redirection by opening the suspicious URLs in a real browser that executes

JavaScript. With a modified browser extension [109], the crawler can collect the IP address,

URL, redirection type (both server- and client-side), HTTP request, and HTTP response for

each hop. PHISHPATH automatically collects the redirection information by crawling each

reported URL, shown in Figure 4.2.

The PHISHPATH crawler analyzes each reported lure or landing page, traverses the redi-

rection chain, and collects the URL, IP address, redirection technique used, reported date,

and the raw HTTP response. PHISHPATH also continuously queries a blacklist based anti-

phishing system and one online scanning engine to check when each URL is blacklisted or

detected, and hence measures the latency. After automatic crawling, we identified 1,127

missing chains, due to redirection services that require manual clicks/intervention, such

as linktr.ee. We manually investigate and fix all the missing chains.

Phishers use both server- and client-side redirection techniques in the wild. To capture

the URLs generated by both types, we design multiple schemes to capture the redirections

and label them by the associated technique. For server-side redirection, we inspect the

HTTP response status where a 30* code implies a redirection. For client-side redirection,

we analyze the meta HTML element and related JavaScript code.
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Figure 4.3: Example of Redirection Chain with Re-used Hops.

4.3 Redirections in Phishing Campaigns

To understand how redirections are used by phishing campaigns, we address the fol-

lowing research questions:

1. How often do phishing campaigns use redirection? (Section 4.3.1)

2. How well do anti-phishing systems detect redirection chains? (Section 4.3.2)

3. Do phishing campaigns use redirection in the same way that benign websites users do?

(Section 4.3.3)

4. What is the relationship between redirection and cloaking? (Section 4.3.4)

4.3.1 The Prevalence of Redirection

We analyzed all 10,564 unique phishing URLs in the Phishing Email Dataset and found

that 8,393 (79.45%) URLs pointed to malicious redirection chains. On average, each redi-

rection chain has 3.73 hops. We found that phishing websites extensively reuse hops in

their redirection chains. There were 1,692 unique domains in the intermediate and landing

layers: only 20.1% of the 8,393 total redirection chains.

We extracted domain names from these phishing URLs and created ?? in Appendix.

The bigger a node is, the more often its corresponding domain name is used by redirection

chains. The largest two nodes (marked by black boxes) are each shared by over 500 chains.
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Upon closer examination, we found that these two shared domains are dedicated for redi-

recting traffic to phishing websites. Malicious redirection chains also use legitimate URL

shortening services. Figure 4.3 shows a 4-hop redirection chain that uses one of the two

domains, watervang.com, as well as legitimate shortening services, me2.do and gg.gg. All

four hops are in different geo-locations.

Summary. Phishing campaigns frequently use redirection chains, and many chains share a

large portion of domains.

4.3.2 Anti-phishing System Performance

Browser-based blacklisting is one of the main approaches to protect users from phish-

ing websites. To study how malicious redirection chains impact anti-phishing systems, we

first reported all the 8,393 phishing lures in the Phishing Email Dataset to Google Safe

Browsing as we received them. We then observed how soon these URLs would be black-

listed. Within three days, Google Safe Browsing only blacklisted 289 out of 1,692 phishing

domains, where 235 (81.31%) were landing hops. This indicates nearly 80% of these phish-

ing websites successfully delayed or evaded detection by the state-of-the-art anti-phishing

system. From May 2021, we also reported all 22,671 redirection chain lures in the Current

Commodity Dataset when crawling to Google Safe Browsing. Within three days, Google

Safe Browsing could blacklist 8,123 (35.83%) malicious redirection chains, where 59.33%

(4,819) were destinations. It is possibly because Google Safe Browsing updated the black-

listing algorithm over the past year since our disclosure (Section 4.8.4) to block more entry

and intermediate hops.

Since Google Safe Browsing uses content-based features to blacklist websites, it mostly

blacklisted landing hops and left the majority of intermediate hops untouched. This behav-

ior makes it easier for phishers to reuse intermediate domains in their malicious redirection

chains.
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Figure 4.4: Comparisons Between Malicious and Benign Redirection Implementation to

Quantify Indicators.

Additionally, we examined the performance of one of the online scanning engines,

urlscan.io [28], by submitting 22,671 phishing websites with redirection from the Current

Commodity Dataset. Only 954 were marked as malicious by urlscan.io. This evaluation

also indicates that phishing websites with redirection can evade current anti-phishing sys-

tems.

Summary. Redirection chains allow phishing websites to significantly delay or even evade

detection by anti-phishing systems. And anti-phishing systems like to blacklist landing

hops more than phishing lures and intermediate hops.

4.3.3 Benign and Malicious Redirection Chains

We analyzed 46,192 unique phishing redirection chains in the Commodity and Phish-

ing Email Datasets along with 15,128 benign chains in the Benign Dataset. Figure 4.4

shows clear differences in the characteristics of malicious and benign redirection chains.

As shown in Figure 4.4a, the majority of benign chains (94%) has more than or equal to

three hops, while half of malicious ones (55%) have more than three hops. Also, Fig-

ure 4.4b shows that many malicious chains heavily rely on URL shortening services (15%

malicious and 2% benign chains use more than one shortened URL). Moreover, Figure 4.4c

shows that only 5% of benign chains involve more than two geographically distinct IPs, but
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Top Redirection
Usage

Commodity
Dataset

Email
Dataset

Benign
Dataset

Redirection hop reuse 31.06% 16.36% –
Shortened link service abuse 24.42% 15.55% 1.48%
Client-side redirection 23.78% 28.44% 6.84%
Long length redirection 30.73% 55.82% 6.56%
Distinct geo-locations 28.26% 46.30% 7.18%
Open redirect exploit 7.13% 0.62% –

Table 4.1: Percentage of URLs in Malicious (APWG and Phishing Email) and Benign Data

Sets Demonstrating Each Feature.

Listing 4.1: Example of mandatory redirection in a phishing kit.
<?php
# -> All Created By [REDACTED]
# -> https://www.facebook.com/[REDACTED]
# -> ICQ : [REDACTED]
# -> // : Instructions
// You must use redirect or the scam
// will not open
$redirectlink = "l34kc0de.today";
...

over 55% of malicious ones involve three or more IPs in different geo-locations. Finally,

benign chains rarely use client-side redirection techniques (Figure 4.4d).

Further, Table 4.1 shows a breakdown of each dataset in terms of percentages of redi-

rection chains that exhibit each of the following features: redirection domain reuse, use of

multiple URL shortening services, use of client-side redirection techniques, long redirec-

tion chains (in the rest of this paper, we define any chains with more than three hops as

long redirection chains), involving IPs of multiple geo-locations, and use of open redirect

exploits. The clear distinction of features between malicious and benign redirection chains

convinces us that automatically differentiating them is possible, which encouraged us to

develop a machine-learning based classifier as a defense (see Section 4.6).

Summary. Malicious and benign redirection chains exhibit significantly different features.
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4.3.4 Redirection with Cloaking Techniques

Phishing websites heavily rely on cloaking techniques to evade the detection by anti-

phishing systems [108, 4, 44]. We found that phishers usually implement cloaking tech-

niques with redirection to display different content to different visitors.

To understand how redirections and cloaking techniques are used in tandem, we man-

ually analyzed 512 phishing kits retrieved by phishunt.io [110] from May 2020 to July

2021. Four phishing kits mandate the use of at least one redirection hop (one such phish-

ing kit is shown in Listing 4.1). In 198 of the examined phishing kits, redirections occur

once the server side believes the visitor is a victim (instead of an automated detector), e.g.,

via header("LOCATION: ../index.php"). Hence, the use of redirections may

indicate the existence of cloaking techniques in phishing attacks. Six phishing kits only

redirect to real phishing pages after the visitor clicks a button on the phishing website. In

this way, they reduce the risk of exposing phishing content to anti-phishing systems [104].

Additionally, we read posts in underground forums and discovered that these forums

promote the use of malicious redirection, such as through the use of free VPS or rproxy

servers from online service providers; criminals also exchange information on domains

with open redirect vulnerabilities.

Summary. Phishing kits implement malicious redirection. Redirections usually occur with

cloaking techniques.

4.4 Phishing Redirection Behavior

In this section, we analyze redirection behaviors in phishing to explain how phishers

exploit limitations and vulnerabilities in the ecosystem through redirection.
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Commodity Dataset Phishing Email Dataset Benign Dataset
Service
Provider Count

Ratio
(%)

Service
Provider Count

Ratio
(%)

Service
Provider Count

Ratio
(%)

s.id 1,681 32.53 me2.do 1,451 31.79 exct.net 881 25.33
linktr.ee 1,127 21.81 snip.ly 1,002 21.95 rebrand.ly 724 20.82
bit.ly 983 19.02 rebrand.ly 943 20.66 bit.ly 523 15.04
bitly.com 237 4.59 bit.ly 464 10.17 gg.gg 314 9.03
bit.do 204 3.95 s.id 241 5.28 s.id 286 8.22
snip.ly 172 3.33 zpr.io 82 1.8 goo.gl 246 7.07
rebrand.ly 170 3.29 bb3x.ru 70 1.53 snip.ly 152 4.37
tinyurl.com 170 3.29 gdy.club 68 1.49 ow.ly 123 3.54
rb.gy 124 2.4 gg.gg 58 1.27 attn.tv 121 3.48
me2.do 90 1.74 vk.cc 33 0.72 tinyurl.com 108 3.11

Table 4.2: Top URL Shortening Providers Abused by Phishing Attacks in Our Datasets.

4.4.1 Redirection Domain Reuse

We find that more than 30% of phishing redirection chains in the Commodity Dataset

reuse redirection domains used in another chain, as shown in Table 4.1. Phishers share redi-

rection services, which may be used to reduce the cost of phishing attack deployment [52]

or to evade detection through previously deployed servers with cloaking techniques [108].

Thus, attackers can leverage existing infrastructure to avoid implementing redirection and

evasion themselves.

By analyzing our results, in Figure 4.5, we summarize the top 10 shared domains in the

redirection data that PHISHPATH crawled from the Commodity Dataset. Those common

hops are responsible for 48.31% of reused domains in phishing campaigns in our dataset.

This result shows that a small number of redirection technique implementations are likely

responsible for a substantial portion of sophisticated phishing campaigns in the wild. Ad-

ditionally, based on our analysis, phishers prefer to use REGRU-RU (31.06%) and No-IP

(28.03%) to create malicious redirection services within the top 10 domains. Among the

top 10 reused domains, selcdn.ru is reused the most among all domains: it is very versa-

tile because it can be the domain of an entry URL, an intermediate hop, or a landing one.
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Figure 4.5: Most Used Redirection Domains in the Commodity Dataset. Long Domain

Names Are Shortened by First Removing Their Tlds and Then Leaving the First 18 Char-

acters.

However, according to our findings, anti-phishing systems such as Google Safe Browsing

and urlscan.io did not blacklist or detect them until September 2021. Another popular do-

main is myvnc.com. Redirection chains using this domain contained seven redirection hops;

while the entry URLs of these redirection chains have different domains, the intermediate

and landing hops reuse this domain with different sub-domains and paths. The earliest

observation of redirection chains using this domain is in May 2020, and the latest one is

in November 2020. For the seven-month duration, despite URL blacklists such as Google

Safe Browsing that detect the landing pages, new URLs with different paths were deployed

every day. Therefore, while anti-phishing systems blacklist some destination paths, others

remain accessible to potential victims, and the lures will work. The domain is now offline

and was never marked as malicious by Google Safe Browsing.

Summary. Phishers reuse redirection domains to exploit the limitation that anti-phishing

systems block only specific URLs instead of domains.
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4.4.2 Malicious URL Shortening

To evade detection by the anti-phishing ecosystem, phishers use URL shortening ser-

vices in malicious redirection chains. The first two hops in Figure 4.3 shows this in

action—these services hide malicious redirection links and are used to bypass URL-based

anti-phishing approaches [32, 33, 34, 35] so that malicious lures can reach the victim suc-

cessfully. Additionally, phishing links with shortened URLs can appear benign to poten-

tial victims [111]. However, some URL shortening service providers strengthened their

anti-abuse mechanisms [112], so phishers nest shortened links (as in Figure 4.3) to evade

detection by using these shortening service providers.

As shown in Table 4.1, in the Commodity Dataset 24.42% of redirection chains use

more than one URL shortening service. In contrast, the Phishing Email Dataset has similar

evidence of shortened links usage: 15.55% contain more than one shortened links. Benign

redirection links do not often include more than one shortened link: only 1.48% of them

use multiple shorteners.

We inspect the top 10 shortening service providers in both datasets, shown in Ta-

ble 4.2. In the Commodity Dataset, the top 10 URL shortening service providers account

for 95.93% of malicious shortened link service use, compared with 96.67% of the usage

in the Phishing Email Dataset. Among the used service providers, phishers prefer popular

providers, such as bit.ly, snip.ly, and rebrand.ly in both datasets. We believe the following

reasons are why phishers use URL shortening services:

Novel features used by phishers. linktr.ee usage is 21.81% in the Commodity Dataset,

and its feature is displaying a list of links that the visitor is required to click. This feature is

designed to help linktr.ee users guide their customers to specific websites, but it is used by

phishers to evade detection as shown in Figure 4.6. To avoid detection, phishers misspell

the linktr.ee account as PayPa1. According to Zhang et al. [108], current anti-phishing sys-
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Figure 4.6: A Novel Feature in linktr.ee (https://linktr.ee/PayPa1) That Re-

quires User Interaction.

tems cannot detect phishing websites preceded by a page with user interaction, so services

such as linktr.ee are particularly dangerous due to their evasiveness. In fact, our collection

system would have been unable to uncover these instances without our additional manual

analysis. From the 1,127 phishing links redirected by linktr.ee in the Commodity Dataset,

20.88% of them were still live even five months after initial detection.

Redirection providers lack reporting channels. We find that some URL shortening

providers do not offer any methods to report malicious redirections. Without reporting

channels, it is difficult for providers to discover and remove malicious shortened links. Ta-

ble 4.3 summarizes the malicious reporting type of top URL shortening services based on

the observation in Table 4.2. For example, bit.ly and rebrand.ly only allow users to report

suspicious shortened links [113, 114], while snip.ly does not provide any reporting options.

Summary. Phishers leverage required user interaction in URL shortening services to evade

detection, and users do not have reporting channels for shortening services.

4.4.3 Redirection Chain Length

Our results demonstrate that 30.73% of the phishing websites with redirection in the

Commodity Dataset use long redirection chains (defined in Section 4.3.3 as more than three
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hops), while in the Phishing Email Dataset over 55% of redirection chains are long. Be-

cause phishing websites in the Phishing Email Dataset target only one brand, long redirec-

tion chains may be effective at evading detection, while phishing websites in the Commod-

ity Dataset include a variety of brands, a less portion of which implement long redirection

chains.

According to the CDF in Figure 4.4a, over 80% of malicious redirection chains have

more than two hops. This may be because phishing redirection chains with only one basic

cloaking technique, such as .htaccess, can be quickly detected within two hours [44].

Therefore, the improvement of detection systems forces phishers to improve their eva-

sion techniques. We believe that phishers use multiple redirection hops in their phishing

campaigns to either directly evade detection or introduce cloaking techniques from shared

domains. We also find that 36.81% of the long malicious redirection chains contain reused

domains. It is likely that phishers prefer to reuse existing cloaking implementations on

dedicated servers rather than develop their own infrastructure. With multiple evasions im-

plemented in one phishing attack, it is difficult for content-based anti-phishing systems to

bypass all checks at all the hops and reach the final malicious phishing content.

Summary. The use of long redirection chains suggests that phishers need to implement

advanced evasion techniques.

4.4.4 Open Redirect Vulnerability Exploitation

We find that phishers actively exploit open redirect vulnerabilities in the Commod-

ity Dataset (7.13%), while they rarely exploit such vulnerabilities in the Phishing Email

Dataset (0.62%). We determine that a domain is an open redirect vulnerability exploitation

if it embeds another URL as a parameter. The difference between exploit rates of open

redirect vulnerabilities in the two datasets results from the difference of phishing target.

Among those exploits, we find legitimate domains from services such as Google and
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ActionTop Service
Report through email Report online No action

Blacklisted
by GSB

linktr.ee 3 7

sniply.io 3 7

me2.do 3 7

rebrand.ly 3 7

s.id 3 7

bit.ly 3 7

tinyurl.com 3 7

cutt.ly 7

rb.gy 3 7

zpr.io 3 7

Table 4.3: Abuse Reporting Types of Top URL Shortening Services.

LinkedIn: 467 (17.48%) of open redirect exploits were from LinkedIn and 255 (9.55%) of

them came from Google, including Google Drive and Firebase. Phishers exploit LinkedIn

open redirect vulnerabilities 2 to redirect traffic through a shared domain onthewifi.com,

which is also observed in Figure 4.5. In the Phishing Email Dataset, we find that phishers

use Google’s Firebase service 1,081 times to create a dynamic redirection.

Summary. In malicious redirection chains, phishers exploit open redirect vulnerabilities in

prominent websites.

4.4.5 Miscellaneous

Other redirection behaviors in Table 4.1 also appear in malicious redirection chains.

Multiple geo-locations may result from phishers using different redirection infrastructure.

According to our analysis of malicious and benign redirection chains in Section 4.3.3, we

define a redirection chain as having multiple geo-locations if it contains more than two

different geo-locations. We also define that two hops have different geo-locations if their

IPs are in different States/Provinces. For example, phishers reuse shared domains or use
2An example of such URL is https://www .linkedin.com/<READACTED>?url=http%

3A%2F\%2Fwkei281321%2Emerlontean%2Enet&urlhash=DsM6&trk=public profile-
settings topcard website?idtrack=ueDW1xfL.
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URL shortening services to redirect the traffic to their own landing websites, both of which

may contain hops from different geo-locations. We observed that 71.26% of redirection

chains with reused domains have more than two distinct geo-locations.

Phishers also implement client-side redirection in their malicious redirection chains.

We believe that use of client-side redirection is due to increases in client-side cloaking

techniques [108]. After client-side cloaking techniques, phishers can either show or hide

the web page content through JavaScript execution, or redirect the visitor to different web-

sites by changing location.href. Besides, client-side redirection can help phishing

websites evade anti-phishing crawlers that do not support JavaScript execution.

Summary. Phishers use multiple geo-locations and client-side redirection in malicious

redirection chains.

4.5 Impact of Malicious Redirection

Thus far, we have demonstrated that phishing attacks extensively use redirection tech-

niques and their redirection chains have distinctive features from benign ones. In this sec-

tion, we show that the use of redirection in phishing can be a significant threat to the

anti-phishing ecosystem. To this end, we selected one blacklist-based anti-phishing system

(Google Safe Browsing) and one online scanning engine (urlscan.io) to evaluate the impact

of malicious redirection chains [115, 116].

Specifically, we evaluate the ecosystem’s blacklist/detection speed on the examined

phishing websites. We define the blacklist/detection speed of an anti-phishing system as the

duration between when one phishing URL is reported and when the anti-phishing system

blacklists/detects the URL. We submitted each URL in the Current Commodity Dataset to

Google Safe Browsing (GSB) and urlscan.io at the same time that the PHISHPATH crawler

visited them. Then we periodically (every 15 minutes) queried the inspection result from

both anti-phishing systems. Because we discovered that phishers combine redirection and
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Redirection
Technique

Mean
Speed

Median
Speed

Avg. Delta
w/

Non-redi

# of Chains
Over

Avg. Delta

# of Chains
Not

BL/Detected

Total # of
Chains

Long chain 10:45 09:02 07:16 1,527 3,831 5,742
Hop reuse 10:26 09:13 06:57 1,351 3,323 5,207
Client redirection 09:46 07:32 06:17 1,978 4,798 7,435
Shortened link 10:29 08:10 07:00 1,429 4,072 5,924
Geo-locations 10:34 09:39 07:05 1,240 2,820 4,546
Open redirect 09:33 03:57 06:04 203 1,549 1,943
All techniques 10:11 08:22 06:42 5,969 14,633 22,671

Non-redirection 03:29 02:52 00:00 – – –

Table 4.4: Blacklist/Detection Speed by the Ecosystem in hh:mm Break-down by Redirec-

tion Techniques in the Current Commodity Dataset.

cloaking to evade detection, we cannot separate these two techniques to measure the impact

of only redirection. To compare reaction time between non-redirected URLs and redirected

chains, we also measure reaction time of non-redirected phishing URLs.

Table 4.4 shows the blacklist/detection speed. In the Current Commodity Dataset, the

average blacklist/detection speed for redirected phishing URLs is 10:11 (hh:mm) and the

median speed is 08:22. Among them, 14,633 are not blacklisted or not detected by the

anti-phishing systems, probably because the phishing URLs successfully evade detection.

We find that non-redirection phishing URLs are blacklisted/detected with an average re-

action time of 03:29, which is much faster than redirection-enhanced ones. This result

highlights the danger that malicious phishing redirection chains can significantly reduce an

anti-phishing system’s blacklist/detection speed.

We further analyze redirection chains and the blacklist/detection speed in terms of

redirection behaviors, and we discover that using every redirection technique reduces the

blacklist/detection speed. A long redirection chain reduces the blacklist/detection speed of

anti-phishing systems most, probably because cloaking techniques in the long chain makes

analysis difficult. Redirection chains using URL shortening services also have a high im-

pact on the blacklist/detection speed from the anti-phishing ecosystem, which is due to the
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Model Precision
(%)

Recall
(%)

FPR
(%)

FNR
(%) F1 ACC

(%)
ROC-
AUC

Proc
Time (s)

PHISHPATH

(regular) 92.28 92.26 11.48 7.74 0.92 90.76 0.95 35,985

PHISHPATH

(w/ sub-chain) 86.78 92.28 15.76 7.72 0.89 88.49 0.94 6,797

CANTINA+
(regular) 85.84 89.18 19.57 10.82 0.87 85.42 0.95 23,133

CANTINA+ w/
PHISHPATH

98.95 98.64 1.53 1.36 0.99 98.57 0.99 59,118

Table 4.5: Evaluation Metrics of Evaluation of Our Classification on Websites with Redi-

rection.

non-disclosure and detection gaps between anti-phishing systems and URL shortening ser-

vice providers. This result demonstrates that the high usage of URL shortening services is

because of its effectiveness of extending the “golden hour” of phishing [104].

Summary. The decreased blacklist/detection speed from the anti-phishing ecosystem due

to malicious redirection chains indicates that phishers use redirection in the intermediate

phase of the phishing process to delay detection and sometimes evade anti-phishing sys-

tems.

4.6 Machine Learning Based Classification

Our analysis of differences in the redirection features between benign and malicious

phishing redirection chains demonstrates that those features can be leveraged in a ma-

chine learning classifier to detect attacks. Classifying a lure as malicious using only the

redirection chain would augment content-based anti-phishing systems that have difficulty

identifying maliciousness due to cloaking techniques [108, 7].

In this section, we describe our classifier design, show that it is effective at identifying

malicious redirection chains, and demonstrate how it can detect partial chains and be used

to augment existing classifiers.
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Attributes (in a redirection chain)
Name Type Explanation

301 Numerical Number of Moved Permanently code
302 Numerical Number of Found code
303 Numerical Number of See Other code
307 Numerical Number of Temporary Redirect code
308 Numerical Number of Permanent Redirect code

JavaScript Numerical Number of JavaScript redirects

Redirection
Type

meta Numerical Number of meta redirects

chain length Numerical Length of the chain
hop reuse Numerical Number of reused domains

shortened links Numerical Number of shortened links
Derived

Attribute
distinct geo Numerical Number of distinct IP/geo-locations

open redirect Numerical Number of open redirect vuln. exploited

Output label Categorial Binary: benign or malicious

Table 4.6: 12 Features That PHISHPATH Uses for Prediction and the Output Label of the

Prediction.

4.6.1 Feature Selection

We first extract features from redirection behaviors as redirection features, shown in Ta-

ble 4.6. The first group of numerical attributes—Redirection Type—refers to the number

and type of client- or server-side redirect methods in one redirection chain. Server redi-

rection HTTP status codes in benign redirection chains vary from those in malicious ones,

so we treat different status codes as different features, unlike the work from Stringhini et

al. [106].

Derived Attribute represents advanced attributes calculated from the raw redirection

data, and include length, number of reused hops in the chain, amount of shortened link

services, and distinct number of geo-locations of a redirection chain.

Our “output” layer represents intelligence we collect from the anti-phishing ecosys-

tem about the analyst-determined maliciousness of the (landing pages at the end of the)

redirection chains.

Evaluating features. To understand the impact of redirection features to PHISHPATH’s
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Figure 4.7: Feature Importance Indicated by Decrease on ROC-AUC. The Decrease Is

Calculated by Subtracting Permutated ROC-AUC from Baseline ROC-AUC (0.954). Pre-

dictive Features Are Mainly from Advanced Feature Groups.

classifier, we evaluate the importance of each feature used in the model. The evaluation

metrics used in our case is decrease on ROC-AUC score, because it is a good indicator for

a model’s comprehensive ability. The impact of each redirection feature on the decrease

of ROC-AUC score is shown in Figure 4.7. num geolocation and shorten links features

appear to have the most impact on the decrease of ROC-AUC score, meaning that these

features are strong indicators to distinguish malicious and benign redirection chains. This

matches our intuition that a chain with various geolocations or multiple shortened links in

the redirect chain indicates its maliciousness, as discussed in Section 4.3.3. Other features,

such as open redirect and hop reuse, also provide strong impact on the classification model.

4.6.2 Model Selection

We define malicious as 1 (positive) and benign as 0 (negative). To find the optimal

machine learning algorithm for PHISHPATH’s classifier, we randomly selected benign and

malicious websites with redirection, 1,000 each, to train and test five machine learning
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algorithms (train:test ratio is 8:2). The five algorithms are Logistic Regression (LR), K-

Nearest Neighbor (KNN), Classification and Regression Trees (CART), Random Forest

(RF), and Support Vector Machines (SVM). All five algorithms have an at least 88% ac-

curacy rate (four of them even have an accuracy rate above 90%), which implies that the

redirection features can explicitly help the machine learning models distinguish benign

and phishing websites. Among all five algorithms, RF has the best accuracy rate. Hence,

we selected RF as the classification algorithm. We then randomly selected another 2,000

websites with redirection, equally distributed on malicious and benign sides, and used grid

search and five-fold cross-validation to tune the RF model parameters.

Websites with redirection in both the Benign and Current Commodity Dataset are in-

cluded in the machine learning procedure. We choose these two datasets because they

both fall into the same time frame (from May to September 2021). Following a 8:2 train-

ing:testing rule, the dataset used for training and testing contains, respectively, 30,239 and

7,560 redirect chains. As shown in Table 5.5, with the tuned parameters and the RF model,

our classifier achieves an overall accuracy of 90.76% with an FP rate of 11.48% and an F-1

score of 0.92, using only redirection data, demonstrating the promise of our approach in

detecting advanced phishing websites 3 .

Validation. To validate the effectiveness of the PHISHPATH classifier, we selected 500

previously unseen phishing redirection chains newly crawled from APWG and PhishTank

and 500 benign ones from Common Crawl [117]. The accuracy rate reached 89.59% along

with an F1 score to 0.89. The validation evaluation result demonstrates the effectiveness of

the PHISHPATH classifier.
3We open source the training and test datasets along with the model: https://mega.nz/folder/

napBRCiR#iNTn9t5szqMJLK2aDgzWFA
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Figure 4.8: ROC Curves of PHISHPATH with and Without Sub-chain Mechanism.

4.6.3 Early Classification of Sub-chains

In the basic design, the classification system must visit all hops of a suspicious redirec-

tion chain to collect redirection information and then classifies. This design can have high

accuracy because it has full information of the chain. However, the processing time for

crawling one hop is 4.72 seconds on average in our experiments, which may negatively im-

pact timely classification in practice for the real-time requirements of current anti-phishing

systems.

Therefore, we also design a detection mechanism for early detection of suspicious redi-

rection chains. We input sub-chains of a full redirection chain into the classifier to identify

maliciousness before crawling the whole chain. The idea of the sub-chains mechanism is

that the classifier is trained on redirection chains with a different number of hops, therefore,

it is also reasonable to assume that the classifier is generalizable to capture features and can

make an early classification when fed a sub-chain.

For example, consider a malicious redirection chain that contains five hops. When the
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system inspects this suspicious chain, it crawls the first two hops of it as a two-length sub-

chain, and then classifies whether it is phishing. If so, it stops crawling and saves execution

time for future chains. Otherwise, the framework will crawl the next hop and classify

the three-length sub-chain, until the full chain is crawled. Therefore, this technique can

improve scalable for anti-phishing systems that require fast processing time.

Evaluating sub-chain detection. To evaluate the quick classification with sub-chain, we

conduct an experiment to measure how much processing time on inspecting suspicious

redirect chains PHISHPATH can save with sub-chain mechanism. In our test dataset, we

still use the same test dataset in Section 4.6.2, containing 7,560 redirection chains with

16,371 hops. After eliminating chains with length of two (otherwise, the sub-chains will

not actually be chains, but single hops), we have 1,982 redirection chains with 7,544 hops

for both malicious and benign URLs. 1,400 (70.63%) of the total redirection chains are

classified before PHISHPATH needs to crawl a complete redirect chain. With sub-chain

mechanism, PHISHPATH only needs to crawl 1,425 hops. According to our experiments,

average crawling time for one hop is 4.77 seconds. Thus, while the full-chain configuration

of PHISHPATH needs 35,985 seconds (4.77 × 7,544) to finish crawling and classifying

redirect chains, the sub-chain mechanism brings the runtime down to 6,797 seconds (4.77

× 1,425), saving 81.11% of the original processing time. 4

To illustrate the difference, we conduct a comparison experiment between PHISHPATH

with sub-chain and without sub-chain. The ROC curve of the modified classifier is shown

in Figure 4.8. While the sub-chain classifier is effective, it is markedly less effective than

the full-chain, with a 15.76% false positive rate. This false positive rate makes PHISH-

PATH’s subchain mechanism unusable on its own, but its high precision (92.28%) and

recall (92.26%) would make it a good pre-filter to inform defense systems in the use of
4We open source the training and test datasets along with the model: https://mega.nz/folder/

CSpmkTLT#NyxXX6iparTsEKcuYbrraw
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higher-overhead analyses.

4.6.4 Complementing Current Systems

Previously, we have shown that PHISHPATH is effective at detecting phishing attacks

based solely on features of their redirection chains. However, in actual usage, more infor-

mation than just the redirection chain can be used to make the classification decision. To

explore this, we evaluate PHISHPATH’s efficacy when running in tandem with an existing

ML- and content-based phishing classifier, CANTINA+ [29].

We collected the features proposed in CANTINA+ of our malicious and benign redi-

rection chains to demonstrate PHISHPATH’s potential for this evaluation. In this configu-

ration, CANTINA+’s content-based features are essentially disabled, as cloaking prevents

the crawler from reaching the landing page 5 .

Following a 8:2 training:testing ratio, we train CANTINA+ and CANTINA+PHISHPATH

(a union of the features from CANTINA+ and from PHISHPATH) with the same amount

of websites with redirection as the evaluation in Section 4.6.2. As displayed in Table 5.5,

CANTINA+PHISHPATH has a significantly higher detection ratio, achieveing a 98.57% ac-

curacy rate and a 0.99 F1 score, compared to a 85.42% accuracy rate and 0.87 F1 score for

CANTINA+ alone.

Failure of the retrieval of final web page content of phishing websites is likely the

main reason why CANTINA+ has limited performance against advanced phishing web-

sites. However, the CANTINA+PHISHPATH classifier allows it to reason about the path

the victim takes toward the landing page, even if the landing page is unreachable. It, thus,

can out-perform CANTINA+ over phishing links with redirection.
5We open source the CANTINA+ features: https://mega.nz/folder/ObBG3ToT#bsXRr-

JSCLDYXbPblrIayA
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4.7 Blacklisting Less, Blocking More

Our machine learning classifier predicts malicious redirection chains with high accu-

racy. While the classification result allows blacklisting-based anti-phishing systems to

block destination phishing websites, it will cause the blocking of a large number of URLs,

making it easy for phishers to revive phishing campaigns by swapping only the last hop.

For example, in the Phishing Email Dataset, blacklisting destination websites would block

8,393 landing URLs.

Through analyzing data in PHISHPATH, we found that the only domains that are com-

mon to both malicious and benign redirection chains are URL shortening services and web

hosting providers. Other commonly reused domains by malicious chains can be safely

blacklisted. Therefore, we propose an improvement on blacklisting: Blocking malicious

intermediate domains that are dedicated to malicious phishing redirection chains. This

approach will blacklist more phishing websites with less blocklist entries while increasing

the cost for phishers to maintain malicious redirection chains. It will effectively disable the

intermediate layer.

Accurately identifying these malicious intermediate domains is possible since PHISH-

PATH has a global view on intermediate hops in both benign and malicious redirection

chains. We first compared 699 domains in the Benign Dataset with 1,692 domains in the

Phishing Email Dataset, which collectively account for 8,393 malicious redirection chains.

We found only 42 common domains across two datasets, 24 of which are either URL short-

ening or web hosting services. The other 18 domains either had an open redirect vulnera-

bility (such as LinkedIn) or are legitimate destination domains. These 42 domains should

be excluded from domain blacklisting.

Next, we analyzed the 8,393 malicious redirection chains to find the minimum number

of intermediate domains needed to be blacklisted to disable all malicious redirection chains,
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excluding URL shortening and web hosting domains. We found that 675 of 1,692 domains

in the Phishing Email Dataset would need to be blacklisted. Additionally, we manually

inspected these 675 domains and found four false positives. Among them, three were

compromised domains exploited by attackers to host phishing servers, and one was a false

positive in the Phishing Email Dataset. Thus, our improvement on blacklisting can reduce

the blacklist size by 92.4%, from 8,939 to 675 records, based on our dataset. Doing so

blocks 5,377 more phishing websites, or 178% on top of the real-world blacklist of 3,016

URLs that we identified from Google Safe Browsing.

Finally, we analyzed the level of blacklisted domains in redirection chains. Six are

phishing lures. 178 are in the first level of the intermediate layer, and the rest are in the

second level. This shows that the proposed blacklisting mechanism can block malicious

redirection chains within three hops.

4.8 Discussion

In this section, we consider our findings and reason about what actions might be taken

to mitigate the threat posed by redirection chains in phishing.

4.8.1 How Did We Get Here?

The use of redirection chains to hide phishing campaigns seems in line with expecta-

tions in the field. Given this, why has the ecosystem (comprised of many companies that

suffer from these attacks) not evolved mitigations?

Collaborative failures. The main reason, of course, is the required collaboration between

the many entities in the ecosystem, which is true of phishing in general [44], but even

worse when redirection chains are concerned, as this adds even more organizations into the

mix. For example, a redirect chain could hop through public URL shorteners, exploit open

redirect vulnerabilities in public websites, and use attacker-deployed redirection domains.
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Detection and blocking of such a chain would involve entities ranging from anti-phishing

systems (e.g., Google Safe Browsing), to URL shortening service provider (bit.ly), to web

hosting provider, and even to domain registrars. All of the entities have to act, in tandem,

to effectively block the phishing attack.

For a number of reasons, the necessary collaboration to facilitate such action does

not exist. As a result, as we observe and measure throughout the paper, remediation of

redirection-using phishing attacks happens in a piecemeal way, leading to a quick resump-

tion of phishing activity as attackers simply route around the “damage.”

Individual failures. Even on the level of individual entities, we identified redirection-

induced limitations in anti-phishing systems. For example, Google Safe Browsing does not

crawl data if a redirection chain is over five hops long [118], leading to evasion potential by

phishing campaigns. Even when a redirection chain is short enough, Google Safe Browsing

blacklists the landing page of the whole redirection chain, rather than lure or intermediate

URLs in our datasets (this appears to be due to the risk of over-blacklisting [119]). As a

result, phishers can easily “resurrect” an otherwise-burned lure by updating the destination

of any of the intermediate redirects.

These gaps in individual services also reduce collaboration potential. For example,

because Google Safe Browsing tends to blacklist only the landing page of a phishing cam-

paign, legitimate URL shorteners used by phishers to redirect to other intermediate hops

cannot effectively check the safety of the redirect [120].

Wide availability of phishing service resources. Phishers develop and share redirection

hops for easy attack deployment and low cost [121, 52], abusing domain registrars, web

hosting services, or even compromised servers to achieve this goal. Many of these services

require only a credit card [122], and many provide their services for free. The availabil-

ity of compromised and anonymized credit cards, used by cyber-criminals in their opera-

tions [123], makes these services ripe for misuse in phishing redirection chains. Though
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many of these providers offer channels for users to report abuse, it takes an average of three

days for them to respond to the report, giving phishers time to phish potential victims [124].

Vulnerable websites. Phishers exploit open redirect vulnerabilities in legitimate websites

as part of their redirection chains to evade anti-phishing crawlers, automated filters, and

even human scrutiny [125, 126]. These vulnerabilities are common on the web, with 46

assigned CVEs in 2020 alone [127] and an average time-to-fix of 34 days [128], meaning

that multiple such vulnerabilities tend to be active (and exploitable by phishers) at any

given time.

4.8.2 Where Do We Go?

Having reviewed the contributing factors behind redirection chain misuse in phishing,

we provide several recommendations about potential mitigation techniques across the dif-

ferent entities involved.

Anti-phishing blacklists. Anti-phishing systems must move toward domain-level, rather

than URL-level blacklists, as our results demonstrate the reuse of malicious redirection

domains by phishers. This will force phishers to acquire additional domains, reducing the

profitability of their attacks. As discussed in Section 4.7, this defense is more effective than

current blacklist techniques and can maintain a low false positive rate.

Anti-phishing crawlers. Server-side anti-phishing systems are impacted by the wide-

spread use of cloaking techniques [108, 5], which often foils the retrieval of the landing

page by crawlers. In this case, the sub-chain mechanism of PHISHPATH can allow these

systems to reason about maliciousness even when the landing page fails to be reached,

blacklisting malicious intermediate hops even in the face of successful evasion. Interest-

ingly, Google’s Suspicious Site Reporter [129] has started collecting redirection data from

the client side, though it is not clear how this data is currently used.

Web browsers. Major modern web browsers use client-side classifiers to identify mali-
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cious pages [130], because evasion techniques, by definition, cannot be used to mask the

landing page from victims (otherwise, the victim will not see it). However, these classifiers

are oblivious to redirection chain data, and evasive measures can be taken by the content

of the landing page to hide its maliciousness [43]. Augmenting existing browsers with our

PHISHPATH ML classifier, as described in Section 4.6, would significantly improve the

protection of web users against phishing.

Redirection service providers. In Section 4.4.2, we show that phishers abuse URL short-

ening services due to the lack of usage monitoring and user report channels. Also, as

shown in Table 4.3, blacklist-based anti-phishing systems tend to not blacklist URL short-

eners. Phishers use the interplay between these two situations to build effective, evasive

redirection chains. To avoid large-scale abuse, URL shortener providers must implement

up-to-date anti-phishing mechanisms.

4.8.3 Limitations

Though we shed light on serious problems limiting the modern ecosystem’s ability to

identify and prevent phishing attacks, there are a number of limitations to our work. In this

section, we discuss these limitations.

As discussed in Section 4.3.3, the threshold of redirection features are selected empir-

ically, by comparing features between the Benign and Phishing Email Datasets. However,

redirection behavior in malicious and benign redirection chains may change over time,

leading to degradation in PHISHPATH’s ML-based classifier. This challenge is straightfor-

ward to tackle: PHISHPATH can continuously collect redirection data from phishing and

benign URLs, measure current redirection trends, and refine its classifier with new data.

Data evasion attacks. Criminals could leverage techniques from Adversarial Machine

Learning, tuning redirection implementations in phishing attacks to mimic benign redi-

rections and bypass PHISHPATH’s classifier. Though such evasions might have success,
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this represents a fundamentally different environment than the freedoms phishers currently

enjoy regarding redirection chains. Instead, it would force trade-offs onto phishers. For

example, to weaken our classifier, phishers would likely have to remove cross-chain hop

sharing, which, as discussed in Section 4.4.1, currently provides cost reduction and sim-

plicity.

Data source selection. We leverage two data sources, the Commodity Dataset and the

Phishing Email Dataset, as discussed in Section 4.1. The former contains phishing data for

attacks targeting various organizations, while the latter lets us extract lure URLs directly

from phishing emails. Together, this allows us to collect full redirect chains and to measure

the redirection abuse targeting specific organizations.

However, reporters may submit only the landing URL of a chain to APWG or Phish-

Tank, which may dilute our reasoning about redirection abuse rate. There are additional

anti-phishing resources such as PhishLab that can be used as data sources, which can help

mitigate this dilution. However, this dilution can only cause us to under-estimate rather

than over-estimate the prevalence of redirection chains in phishing.

Potential biases in data source. There is a possibility that reporters may submit URLs

of intermediate hops to APWG, leading to inconsistent features and classifier confusion.

This is something that we can measure by leveraging duplicate submissions to APWG: if

we check all submitted URLs against all intermediate hops seen in all redirection chains

crawled by PHISHPATH, we can identify direct submissions of intermediate hops. In fact,

analyzing our data, we found no such occurrences. We believe that it is mainly because

redirection happens quickly when transferring users from the lure to the landing layer,

leaving no chance for the victim to capture intermediate URLs to report.

Limited phishing kit availability. Phishing kits are difficult to acquire unless the mali-

cious server is taken down by anti-phishing infrastructures. Therefore, with limited amount

of phishing kits retrieved by phishunt.io [110], our analysis of redirection setting in phish-
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ing kits may not comprehensively cover all possibilities and implementations. However,

the wide abuse of redirection techniques observed from both datasets help us demonstrate

that redirection is widely implemented in phishing kits.

4.8.4 Responsible Disclosure

Once we established that the redirection behavior measured by PHISHPATH was capa-

ble of facilitating phishing campaign deployment and helping evade anti-phishing systems,

and determined that PHISHPATH can classify by only using redirection features, we dis-

closed our measurement, machine learning based classifier, and ecosystem recommenda-

tions to the major entities in the anti-phishing ecosystem. These were Google, Linktr.ee,

bit.ly, and Namecheap, because they are the representatives in blacklist-based anti-phishing

systems, URL shortening services, and web hosting/domain registrars according to our

analysis above. Google and Linktree acknowledged receipt of our disclosure. Linktree did

not have a further response; Google followed up by requesting detailed redirection data for

the reported phishing URLs, and we believe this may have contributed to the change in the

behavior of Google Safe Browsing, as discussed in Section 4.3.2.

4.9 Related Work

To mitigate large-scale phishing, the research community has conducted a surge of

research. However, the prevalence and nature of redirection abuse in phishing has not been

thoroughly studied yet.

Oest et al. [104] discovered that sophisticated phishing attacks are causing substan-

tial damage to users. Especially, redirection techniques with cloaking techniques are a

key component of advanced phishing websites to hamper detection [108, 7]. Redirection,

also, distributes benign-looking URLs to potential victims, routing them through complex

chains [131, 132].
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To investigate malicious use of redirections, Bhargrava et al. [133] compared legitimate

and malicious redirections and found that spammers leverage client-side redirections more

often than server-side ones. Also, Stringhini et al. [106] proposed complex strategies for

the use of redirection chains in the context of drive-by-download attacks. Chellapilla et

al. [134] studied the nature of JavaScript redirection spam techniques and demonstrated

that obfuscated JavaScript is very prevalent to evade detection from anti-spam systems.

Webb et al. [135] proposed an automated framework to identify web spam from emails

spam based on redirection data. Fette et al. [136] attempted to detect phishing emails using

several features which include whether a shortened link is embedded.

Other work focuses on the phishing detection on a specific area such as Twitter using

the information of the account along with features of the tweets including redirection [50,

137, 138, 139, 131].

Redirection is also implemented in other areas to impact users’ security and privacy.

In the cross-site tracking field, people use redirection techniques to build user’s visit ac-

tivity [140]. Others employ redirection to bypass third-party cookie policies because the

policies often do not consider redirection as cross-site requests [141]. Additionally, attack-

ers use redirection to conduct affiliate marketing fraud [142]. But methodologies mitigating

such fraud can employ redirection as an important feature [142, 143]. The significance of

the redirection feature in affiliate marketing abuse detection and user privacy protection

inspires us to take advantage of the redirection attributes to mitigate emerging phishing

attacks.

4.10 Conclusion

Demonstrating the classic attacker-defender asymmetry, phishers carefully craft cam-

paigns to circumvent anti-phishing defenses by capitalizing on cracks in defenders’ under-

standing of the phishing landscape. Through the first in-depth analysis of redirection chains
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in phishing websites, we have shown that these redirection chains are actively and effec-

tively being leveraged by phishing campaigns to evade detection, and we have proposed

practical approaches for enhancing anti-phishing systems to disrupt such chains. We be-

lieve that analysis systems such as PHISHPATH are critical to maintaining an understanding

of phishers’ evolving tactics. The anti-phishing ecosystem can employ our methodology to

more expeditiously and more reliably detect sophisticated phishing.
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Chapter 5

SPARTACUS: CLOAK USERS AGAINST CLOAKED PHISHING WEBSITES

After the analyses of cloaking and redirection techniques in phishing attacks that help

evade anti-phishing mechanisms, I realize that phishers can continuously develop and de-

ploy novel evasion techniques to the malicious websites. It indicates that the attackers are

always one step ahead of the anti-phishing ecosystem. To protect the ecosystem proac-

tively, I mitigate phishing attacks from the perspective of prevention, by completely neu-

tralizing advanced phishing websites with fingerprinting-based cloaking techniques, and

hence present Spartacus.

5.1 Prevalence of Fingerprinting-based Cloaking

Oest et al. [4] analyzed .htaccess files in phishing kits and demonstrated that fingerprinting-

based cloaking is popular. To examine the prevalence of fingerprinting-based cloaking tech-

niques used in advanced phishing kits, we manually inspect a random 10.93% (56) of phish-

ing kits from a dataset by phishunt.io [110], and extract common patterns of fingerprinting-

based cloaking techniques.

The patterns include (1) blocked words, for example, any potential crawler identifica-

tion such as “google,” “facebook,” or “phishtank” (e.g., blocked words in Figure 5.6),

(2) IP checks that block visit from IP addresses, such as bannedIP in Figure 5.6, and (3)

error responses (i.e., returning an error status code and an error web page). These attributes

reflect the implementation of fingerprinting-based cloaking techniques in real-world phish-

ing kits.

We use the identified patterns to automatically find fingerprinting-based cloaking tech-

niques in phishing kits. Among the inspected kits in phishunt.io [110] from May 2020 to
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Sensitive Word Amount Sensitive Word Amount

bot 1,273 crawler 371
curl 581 facebook 223

google 447 phishtank 200
amazonaws 446 atn 125
compatible 432 spinner 113

Table 5.1: Top 10 Sensitive Words Appeared in the Phishing Kits Examined by Us.

July 2021, 410 of 512 contain fingerprinting-based cloaking techniques through IP, Refer-

rer, or User-Agent. We also analyze 2,421 phishing kits provided to us by Cisco and find

that all of these phishing kitsimplement fingerprinting-based cloaking techniques. Among

them, 1,983 of the phishing kits contain a User-Agent check, and 1,660 contain an IP

address check. In total, 96.52% (2,831) out of 2,933 phishing kits contain fingerprinting-

based cloaking techniques.

Popular fingerprinting words. To understand the popularity of blocked User-Agent words

(e.g., “bot” and “curl”) that phishing kits use to evade anti-phishing crawler, we counted

the appearance of 407 unique words in the User-Agent checks of phishing kits. Table 5.1

displays the top 10 blocked words. Note that one phishing kit can contain multiple rules

using a word. The result shows that if a request contains “bot” or “curl” in the HTTP

User-Agent header, phishers will return an error rather than phishing content. A potential

victim’s HTTP request, however, does not include those blocked words [144]. Based on

this analysis, we can use the frequently blocked words and turn them into trigger words

that will cause an HTTP request to evade the phishing content by triggering the phishing

web site’s fingerprinting-based cloaking.

5.2 Design

By turning fingerprinting-based cloaking against phishing web sites, we can create a

proactive anti-phishing defense for users who attempt to visit such web sites. To this end,
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Figure 5.1: Spartacus Architecture and Its Workflow.

we design, implement, and evaluate Spartacus, a framework that automatically and se-

lectively mutates HTTP requests made by a user’s web browser to resemble those of an

anti-phishing entity. If a user protected by Spartacus was to visit a phishing web site with

fingerprinting-based cloaking, the mutated request would trigger the cloaking, which will

then display benign content rather than a phishing page.

First, we define a profile as the set of fingerprintable attributes and their values. For

instance, one profile might contain a User-Agent string with bot, an empty Referrer, or an

AWS IP address. Profiles are used by Spartacus to generate an appropriate HTTP request

for the target web site. Whenever phishers add new fingerprints to fingerprinting-based

cloaking, these attributes can also be added to the Spartacus profiles.

5.2.1 Overview

Figure 5.1 illustrates the Spartacus architecture. The framework consists of two parts,

the front end and the back end. The front end is responsible for the primary functionality,

such as deciding if and how to mutate profiles, and the back end stores information.

When a user visits a URL, it is first checked against blacklists maintained by current

anti-phishing systems, and if the URL is found, Spartacus outright blocks the access (by
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displaying a prominent phishing warning). Otherwise, the front end queries the Finger-

printing Database to see if it has processed the URL before. If the URL is found, and was

previously successfully mitigated, Spartacus will use the same profile to request the web

site.

If the URL is neither blacklisted nor in the database, Spartacus will mutate the profile

based on the Anti-phishing Bot Profile Database, skipping any mutations that previously

failed to trigger cloaking 1 . Then, the HTTP request, with the mutated profile, is sent

to the server. After receiving the page content, we determine whether it has suspicious

content by using a classification engine that executes concurrently with Spartacus and runs

in the background to avoid delaying page rendering. The purpose of the suspicious content

classification is to verify if the mutated profile was effective at triggering cloaking. The

Fingerprinting Database is, therefore, updated with the visited URL, the mutated profile

Spartacus used, and the classification result.

5.2.2 Visit Pre-filters

When a user visits a URL, it must first pass through two pre-filters.

Blacklist Filter. With the contributions of the anti-phishing ecosystem, Spartacus can filter

known phishing URLs that have already been blacklisted by commodity blacklists, specif-

ically Google Safe Browsing and Microsoft SmartScreen. Any match will block access to

the URL without further action.

Prior Visits. If the URL is not blacklisted, Spartacus will examine if the URL was previ-

ously visited by querying the Fingerprinting Database. If the URL was already visited and

was successfully evaded, then Spartacus will use the successful profile mutation.
1We populate the Anti-phishing Bot Profile Database with known crawler-looking profiles (e.g., extracted

from phishing kits as discussed in Section 5.1).
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5.2.3 Bot Profile Mutator

The Bot Profile Mutator is responsible for profile mutation to trigger fingerprinting-

based cloaking in advanced phishing web sites. Items in the profile can be modified or

changed to camouflage the user as anti-phishing crawlers, for instance the User-Agent

HTTP header. Generally, anti-phishing crawlers contain “bot” and “crawler,” or the name

of the company such as “Google” and “Facebook” in the User-Agent HTTP header. The

mutator uses the trigger words that we automatically extracted from phishing kits (dis-

cussed in Table 5.1).

Another aspect is the Referrer HTTP header. Typically, the potential victim visits from

the phisher’s phishing lures. Therefore, phishers can block all visits that are not from the

phishing lures.

Optionally, the profile mutator can leverage proxy servers to camouflage the user’s IP

address. For example, a proxy server on AWS EC2 is useful because phishers have inferred

that some anti-phishing crawlers use AWS EC2 (according to our analysis in Table 5.1).

In this case, the bot mutator can proxy the request through an evaded IP. Even though the

proxy server can help evade fingerprinting-based cloaked phishing websites, it can also

raise privacy concerns (discussed in Section 5.3). Therefore, users must consent to the

privacy implications before enabling it.

In the mutation process, Spartacus appends one trigger word from the Anti-phishing Bot

Profile Database to the user’s own User-Agent string, following the order of the popularity

in Table 5.1. Spartacus also avoids using trigger words that were not successful for the

same URL. Additionally, Spartacus sets the Referrer to None (to remove the header). As

for the optional IP/Hostname mutation, Spartacus reroutes the request to a proxy server,

whose IP is in one of the most popular blocked IP ranges.

90



5.2.4 Suspicious Content Classification

After submitting the HTTP request to the server, Spartacus will receive an HTTP re-

sponse from the server. After the suspicious content classification, there are four different

possibilities:

1. The server is benign and responds with benign content.

2. The server is benign and responds with suspicious content.

3. The server is malicious and responds with benign content (e.g., error page or redi-

rection to a benign web site, as shown in Figure 5.2c).

4. The server is malicious and responds with suspicious content.

For case (1), there is no security risk to the user, so we consider it a successful eva-

sion. However, there is a possibility that the benign web site serves different content to

Spartacus (due to User-Agent sniffing or other server-side techniques) and that Spartacus

breaks the functionality of the web site for the user. Our experimental results (presented in

Section 5.4.5) demonstrate that very few modern web sites change functionality/responses

based on our changes to the HTTP request. In addition, we present in Section 5.4.5 a pro-

posal, with experimental results, of adding another pre-filter to Spartacus to apply Spartacus

to only suspicious web sites.

Case (2) happens when the user visits benign web sites that contain phishing-like fea-

tures such as a login form, sensitive (phishy) words (e.g., “username” and “password”),

and a submission button. As these are often indistinguishable from phishing pages (in fact,

they are copied by phishers), we still consider it as an unsuccessful evasion. In the suspi-

cious content classification, we still determine it as “suspicious” and the mutation will be

marked as “unsuccessful.” Similar to case (1), this situation does not affect users’ browsing
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activities on those web sites, according to the experimental result in Section 5.4.5. When

the user visits the same web site next time, Spartacus will mutate the profile with other

available trigger words in the Anti-phishing Bot Profile Database. Based on the evaluation

result in Section 5.4.5, changing trigger words does not impact the web site’s accessibility,

layout, or functionality.

In case (3), the server is malicious with evasion techniques and determines that the

visit from Spartacus is an anti-phishing bot visit. So it either returns an error web page, or

redirects the visit to a benign web site. Consequently, Spartacus successfully prevents users

from seeing phishing content, by triggering the fingerprinting-based cloaking techniques in

the phishing web sites.

In case (4), the phishing web site either (a) does not perform any fingerprinting-based

cloaking or (b) the profile failed to trigger the fingerprinting-based cloaking. In the former

case (a), Spartacus cannot trigger any cloaking behavior in the phishing site, so we consider

it as an unsuccessful evasion. However, our results in Section 5.5 demonstrate that these

phishing sites are quickly detected by the anti-phishing ecosystem (median detection of

28 minutes). In the latter case (b), Spartacus will store the failed profile to help inform

future visits to this URL to trigger the fingerprinting-based cloaking. Note that, from the

perspective of the browser, this case is the same as case (2), which is why we cannot simply

block the URL (we do not know if the server is malicious or benign).

5.3 Privacy

The Spartacus framework, as discussed in Section 5.2, is a client-side framework that

runs solely on the user’s machine. However, we strive to protect as much of the user’s

privacy as possible. In addition, these privacy protections are important to enable a potential

centralized Spartacus in future work (discussed in Section 5.6).
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5.3.1 Privacy Information

Spartacus requires four types of sensitive information from users: (1) visited URL:

When Spartacus mutates the profile, it operates on a hashed URL, and only stores the

hashed URL, along with the successfulness of evasion. (2) The HTTP profile used: Sparta-

cus stores the user’s HTTP profile to modify it. The privacy information in the profile in-

cludes the User-Agent string, which contains browser version, browser type, and operating

system information, and the Referrer. (3) Returned HTTP response: Spartacus analyzes,

but does not store, the returned HTTP response to inspect whether the HTTP response is

suspicious. If valid content is returned, an external classification process will determine its

suspiciousness by searching for content such as sensitive words and login forms [29]. The

classification result is then stored to mark if the corresponding profile mutation successfully

evades suspicious content. (4) Potential proxy server monitoring: if a user wants improved

evasion performance beyond the User-Agent/Referrer mutation, he/she can choose to turn

on the proxy server option in Spartacus. In this case, all user’s HTTP requests will be sent

through a proxy server, but the user can be susceptible to monitoring.

5.3.2 Privacy Consent and Protection

We ensure that Spartacus reasonably considers users’ privacy, so we implemented both

consent and protection methodologies to notify users of the data that is collected and pre-

vent their information from being stolen and abused.

Consent. To ensure that users are aware of the privacy information Spartacus access and

stores, a privacy policy consent notice is presented on first use. First, the privacy informa-

tion used by Spartacus is summarized. Then, using Privacy Policies [145], a privacy policy

is created for Spartacus. The information Spartacus collects and how it uses the informa-

tion are described on the privacy policy page. Users can choose to opt out and not install
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Spartacus if they do not consent. Especially, when users want to turn on the proxy server

option to improve evasion performance, they must understand and consent to the option’s

trade-off. We created a dedicated privacy policy page for the proxy server option.

Protection Methodology. The privacy information Spartacus collects does not contain any

PII, which minimizes potential harm. Spartacus stores the hashed URL, bot profile (IP

address, User-Agent triggering word, and Referrer), and evasion success.

5.4 Evaluation

We implemented Spartacus as a Chrome browser extension, and we evaluate Spartacus

through three perspectives: effectiveness, latency, and functionality impact. These three

aspects demonstrate the feasibility of the Spartacus framework in practice because it can

successfully evade advanced phishing web sites, introduce negligible latency to user brows-

ing, and not introduce breakage.

Dataset. In our evaluation, we used two different datasets, a malicious one, to test the

effectiveness of Spartacus, and a benign one, to understand its potential impact on benign

web sites.

(1) APWG Dataset: For the effectiveness evaluation, Spartacus visited 160,728 live phish-

ing web sites from November 2020 to July 2021 using the Anti-Phishing Working Group

(APWG) URL feed [146], which is a curated dataset of reported phishing URLs, supported

by a large number of collaborating members. Additionally, we leveraged another 8,474 live

phishing web sites in the APWG Dataset to evaluate the effectiveness of IP mutation.

(2) Benign Dataset: To evaluate the impact on benign web sites, we collected a dataset of

60,848 benign domains, randomly selected from 629,843 domains in the Alexa Top One

Million Domain List [147].
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(a) Default browser visit.
(b) Spartacus browser visit

with error.

(c) Spartacus browser visit

with content.

Figure 5.2: Web Page Content from Default and Spartacus Browser Visits for a Cloaked

Phishing Web Site.

5.4.1 Effectiveness

We evaluate the effectiveness of Spartacus by visiting the same phishing web sites with

two different browser configurations: one with default settings (default browser) and the

other with Spartacus installed (Spartacus browser). The phishing URLs for both visits are

from the APWG Dataset. To reduce the impact of the selection of trigger words on the

results, for each URL the Spartacus browser uses a profile with a random trigger word

from the 407 trigger words, no Referrer header, and no IP proxy. Note that in Section 5.4.2

we evaluate the effectiveness of each trigger word and in Section 5.4.3 we evaluate the

effectiveness of proxying the IP address. For each visit, we record the final landing web

page content and URL.

In the experiment on 160,728 phishing URLs from APWG from November 2020 to

July 2021, 132,247 (82.28%) did not contain malicious content in Spartacus. We consider

an HTTP response from the Spartacus browser benign if its web page (1) is different from

the one shown on the default browser and (2) does not contain suspicious content, such as

“phishy” words or bad forms, according to the content features in our reimplementation of

CANTINA+ [29].
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Figure 5.2 demonstrates the difference of response web page content between the de-

fault and the Spartacus browser visit for a cloaked phishing web site. The content in Fig-

ure 5.2a shows the phishing content when the default browser visits it. When Spartacus mu-

tates the HTTP profile to include a random trigger word and removes the Referrer header,

the phishing web site shows the error web page in Figure 5.2b. Other phishing web sites

redirect visitors to a benign URL instead of returning an error page. In this way, Spartacus

receives the web page content shown in Figure 5.2c, also indicating a successful evasion.

This result shows that Spartacus can camouflage users as anti-phishing entities and

prevent users from phishing content on phishing sites with fingerprinting-based cloaking

techniques. Because the users see benign content (either an error page or a benign URL),

the user is never exposed to the phishing attack, thus proactively preventing the user from

falling victim to the phishing attack—even if they are the first user to visit the phishing

URL.

5.4.2 Effectiveness of Trigger Words

In the prior Spartacus experiment, we used random trigger words for each URL visit.

While this limited the impact of trigger word selection on the results, in our design of

Spartacus the profile mutator selects trigger words in order of their popularity. Therefore,

we evaluate the effectiveness of each trigger word on actually triggering fingerprinting-

based cloaking techniques.

We tested all the trigger words by visiting each phishing web site with a different profile

consisting of the trigger word, no Referrer header, and no IP proxy. Similar to the effec-

tiveness evaluation, we also visit the web site using a default browser as a comparison. We

conduct the experiment on 916 phishing web sites. 725 of them show web page differently

at least under one trigger word between Spartacus browser and default browser.

In the 725 cloaked phishing web sites, each trigger word has different evasion capabil-
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Trigger Word Count Trigger Word Count

bot 720 atn 717
amazonaws 718 curl 717
phishtank 718 facebook 716

dwcp 717 crawler 716
google 717 katipo 713

Table 5.2: Top 10 Trigger Words That Evaded Phishing Content.

ities. Table 5.2 is the result of the top 10 trigger words in successfully evading phishing

content. The word bot has the most sites evasion. 99.31% of the cloaked phishing web

sites can be evaded by appending bot in the User-Agent. Compared with the popularity

rank in Table 5.1, it is also the most popular blocked word in the phishing kits we ex-

amined. The effectiveness of this word in practice confirms its popularity in the phishing

kits. Similarly, the top trigger words such as “amazonaws,” “phishtank,” and “google” also

have high usage in phishing kits. An interesting note is that “bot” and “amazonaws” com-

bined can trigger cloaking in all phishing web sites that used fingerprint-based cloaking

techniques.

This result shows that trigger words can effectively evade phishing web sites with

fingerprinting-based cloaking techniques. Furthermore, a small number of trigger words

can evade a myriad of cloaked phishing web sites.

5.4.3 Effectiveness of Proxy Server Option

Even though Spartacus can successfully evade phishing content in over 80% of the

phishing web sites by mutating User-Agent and Referrer headers, we want to analyze the

effectiveness of mutating the IP address. Therefore, we conducted another experiment with

a Spartacus profile that had default User-Agent header, has Referrer header, but proxied the

connection through a server with an Amazon AWS IP address. Since the proxy server

option may introduce privacy implications, we turn off this option by default. Users can
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opt to use this feature in Spartacus only if they read, understand, and consent to the privacy

implications.

In this experiment we used 8,474 phishing web sites. Similar to the evaluation pro-

cedure in Section 5.4.1, we visited those web sites in both the default and the Spartacus

browsers (only changing the IP address according to the profile). Then, we compared the

web page contents of each phishing web site on both visits and detected if the web page

of the Spartacus browser does not contain suspicious content. Among the visited phishing

web sites, Spartacus evaded 88.98% (7,540) of them through the proxy server. Therefore,

Spartacus can evade phishing web sites that implement IP, User-Agent, or Referrer cloak-

ing. Phishers may design emerging cloaking techniques in the future, however Spartacus

was designed as an extensible framework so that fingerprint features can be added.

5.4.4 Efficiency and Latency

We next explore Spartacus’ impact on the user experience when they visit benign web

sites. By design Spartacus may introduce latency to the HTTP request, due to the database

query, HTTP profile mutation, and returned content inspection.

We conducted an experiment to measure the latency of Spartacus from the following

three perspectives: database query, profile mutation, and content inspection. We used ex-

thouse [? ], which analyzes the impact of a browser extension on web performance, as our

test bench, which contains five major measurements:

• Time to Interactive (TTI): the time it takes for the page to become fully interactive

with the extension.

• First Input Delay (FID ∆): the time from when a user first interacts with the web site

to the time when the browser is actually able to begin processing event handlers in

response to that interaction.
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• Scripting Time (Scripting ∆): the amount of time JavaScript execution in the exten-

sion.

• Long Task (Added Long Task): this value represents a sum of Long Tasks added by

the extension, where Long Tasks are defined as a task that blocks the main thread for

50 ms or more 2 .

• Extra CPU Consumption (Extra CPU Time): the extra CPU consumption of the ex-

tension for each URL the browser visits.

The lower the factors are, the better the web site performs with the tested extension.

Lastly, exthouse creates a score for the extension. A higher score reflects a better perfor-

mance of the extension.

Table 5.6 illustrates the exthouse scores of the top 10 Chrome extensions [? ] and

Spartacus when visiting benign and malicious web sites. We tested these extensions with

100 web sites, including half benign and half malicious, and used the average in the metrics.

Spartacus has a score of 100, based on a 20 ms FID, 0 scripting delta, and 800 ms of TTI

when visiting benign web sites. The metrics of Spartacus visiting malicious web sites also

outscores those of other popular extensions. Even though it takes a longer time to interact

with the malicious web site, it is still acceptable because Spartacus needs time to mutate

the profile, which is still less time than other extensions. For instance Avira Browser

Safety (ABS) is an extension that warns users if the web site is unsafe. It adds long tasks

and extra CPU time when visiting malicious web sites.

This evaluation result shows that Spartacus adds minimal overhead to web browsing.

The inspection result shows that Spartacus outscores popular Chrome extensions and has

negligible impact on the performance of the web sites, compared with other extensions.
2https://developer.mozilla.org/en-US/docs/Web/API/Long Tasks API
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Experiment Tested Passed Blocked Different
Layout

W/out algorithm 1 60,848 60,574 150 124
W/ algorithm 1 60,848 60,688 29 39

Table 5.3: Coarse-grained Experiment Result Of Spartacus with and Without Applying

Logic of Mutating HTTP Profile.

5.4.5 Impact on Benign Web Sites

Merzdovnik et al. discovered that add-ons can cause some web sites to malfunction

(e.g., they found that the PrivacyBadger extension led to a large number of timeouts and

therefore to a potentially large number of malfunctioning web sites) [148]. Therefore, it is

important for Spartacus to minimize the negative impacts on benign URL visits. Impacts

may include the ability to access web sites, the correct display of web site layout, and the

correct web site functionality. To evaluate functionality of benign web sites, we conducted

two experiments: a Coarse-Grained (a large-scale evaluation with automated analysis) and

Fine-Grained (a small-scale evaluation with in-depth manual analysis). In each experiment,

for each URL, the Spartacus browser used a profile with a random trigger word, no Referrer

header, and no IP proxy.

Coarse-Grained Experiment

In the Coarse-Grained experiment, we intended to evaluate if the Spartacus framework has

negative impacts on access to the web site or the web site layout through automated analysis

of results on a large crawl of benign domains. We randomly sampled 60,848 (9.66%)

from the 629,843 URLs in Alexa Top One Million Domain List [147] and visited them in

both default and Spartacus browsers. We compared the resulting web page screenshot and

HTML similarity on the visited URLs. The result is shown in Table 5.3: 0.25% (150) have

different layouts, and 0.20% (124) block access to the Spartacus browser.
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We first manually examined the results to identify why the Spartacus browser shows

different layouts from the default browser. We found that although the screenshot and

HTML were dissimilar between the default and Spartacus browser visits, such differences

did not impact the use of the web site. Figure 5.7 and Figure 5.8 show typical differences

in browser rendering between the default and Spartacus browser visits. For example, the

web page is rendered differently in terms of screenshot similarity between the default and

Spartacus browser visits shown in Figure 5.7. The difference here is due to the shape of the

buttons, different background color, and content spacing. In Figure 5.8, a window popped

up to ask for permission to use cookies in the default browser, but did not in Spartacus’s

visit. The cookie request pop-up that was missing in the Spartacus browser is not due to the

extension: in 10 visits in different default browsers, the pop-up appeared only three times.

Benign web sites with security mechanisms. Some benign web sites are built on web

hosting services such as Cloudflare and Akamai, and the services contain security mech-

anisms such as anti-DDoS and anti-crawling. Therefore, to make sure that users can suc-

cessfully visit those web sites with the protection of Spartacus, we visited 5,000 Cloudflare-

based and 5,000 Akamai-based benign web sites using Spartacus. In total, we could suc-

cessfully visit 99.86% of 10,000 web sites. 14 benign sites were inaccessible. It is mainly

because the web site owners employ traffic filtering mechanisms over the CDNs. With such

low false-evasion rate, users can visit most benign web sites hosted on the CDNs success-

fully, and can report the falsely evaded benign web sites to the Spartacus provider, who can

asynchronously inspect them and force Spartacus to use the default profile to visit the web

sites.

Potential Improvement. Although Spartacus has low false positives when visiting benign

web sites, there is still the possibility to reduce false positives. We inspected the 150 be-

nign web sites that were falsely evaded by Spartacus and 150 cloaked phishing web sites

that were successfully evaded by Spartacus. To further differentiate the two categories, we
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extracted domain reputation [149], domain age [150], and top viewed sub-domains [151]

of URLs from benign and malicious web sites. Cisco Talos 3 defines reputation of a do-

main using five categories: Trusted, Favorable, Neutral, Questionable, and Untrusted [149].

Reputation-wise, 136 out of 150 phishing URLs have a reputation lower or equal to Neu-

tral level, the lowest of which is Untrusted. In contrast, only 24 of 150 benign URLs have

a lower reputation than Favorable, the lowest of which is Questionable (and only one is

Questionable). In terms of domain lifespan, the mean value of domain duration since regis-

tration for benign URLs is 4,692 days and the median is 4,521 days. However, the average

lifespan of the malicious domains is 1,618 days, with a median of 900 days. Moreover,

all 150 benign URLs fall into the top viewed sub-domains of the corresponding domain

names, while none of the phishing ones matches.

Therefore, we summarize that a legitimate domain has a higher reputation and longer

life than a malicious one, and they are within top viewed sub-domains. We can further

reduce the possibility of Spartacus falsely evading benign web sites by introducing another

pre-filter to Spartacus before mutating the HTTP profile.

We choose the phishing domain age that resides on 75% in the list (1,501) and the

Neutral level as thresholds because these thresholds clearly divided trustworthy domains

from un-trustworthy domains. With this pre-filter, if a URL has a lifespan lower than 1,501

days and its reputation level is Neutral or worse, or its sub-domain is not top viewed, then

Spartacus will mutate the HTTP profile. The logic is shown in Algorithm 1.

We evaluated this augmented version of Spartacus and found that 29 legitimate do-

mains show different web page content on the default and augmented version of Spartacus

browsers, as listed in Table 5.3. Hence, only 0.04% of 60,848 domains result in a false

positive detection of a phishing web site. This is because the 29 domains do not meet

the trustworthiness requirements and therefore Spartacus mutated the profile when visit-
3Cisco Talos is a threat intelligence service and used by other studies [152, 153, 154].
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Algorithm 1: Logic of mutating HTTP profile
1: p = default profile
2: u = url to visit
3: if
4: (reputation(u) ≤ Neutral) and
5: (duration(u) ≥ 1, 501) or
6: (u.domain NOT in top reviewed sub-domains) then
7: p = mutate http profile(p)
8: end if
9: send request(p)

Evaluation Perspective Amount
Default Spartacus

Accessibility 58 58

Correct Layout 58 58

Proper
Functionality

Click Buttons 58 58
Online Chat 3 3

Shopping Cart Add 5 5
Registration/Login 22/22 22/22

Table 5.4: Fine-grained Experiment Result Of Spartacus Visit, Compared with the Result

of Default Browser Visit.

ing them. As one possible mitigation, we can provide a channel for users to report falsely

evaded web sites. After receiving a report, we can conduct a manual inspection and force

Spartacus to trust the false-positives. In comparison, phishing URLs can still be evaded

through Spartacus because they pass through the augmented pre-filter.

Fine-Grained Experiment

Inspired by the methodology used by Snyder et al. [155] and Trickel et al. [156], in the

Fine-Grained experiment, we aim to manually evaluate the operation of web sites visited

through Spartacus.

This methodology concentrates on the operation of a web site from the perspective of
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the user. Even though Spartacus may introduce an error to a web site, if the users do not

perceive any difference when browsing, then we consider that Spartacus does not negatively

impact the web site. This methodology focuses on user-facing impacts to benign web site

functionality, and the experiment was performed by the authors manually.

The experiment includes the evaluation of a web site’s rendering and interactions be-

tween visitors and the web site. There are four steps in the experiment methodology: (1)

Open legitimate domains in a browser with Spartacus installed and also in a browser with

default settings. (2) Inspect the accessibility of the web site, similar to the Coarse-Grained

experiment. (3) After successful web page content retrieval, compare the layouts between

different visits. (4) Interact with links, buttons, and other activities such as register/login,

online chat, or shopping to make sure that the web site performs correctly. (5) Finally, test

the authentication functionality to ensure that Spartacus will not impact it.

We randomly selected 60 domains from the Alexa Top One Million List, choosing 20

every 200,000 (for an even distribution), and the result is displayed in Table 5.4. As a

comparison, the default browser had the same result as that of Spartacus. Among the 60

legitimate domains, 58 were accessible. Two domains were inaccessible even in the default

browser, so we suspect that they are offline. For the 58 accessible domains, we followed

the steps described previously to inspect them. All of them have the same layout as the visit

from the default browser. Then, we interacted with the 58 web sites by clicking buttons,

chatting online, and adding items into the cart if it is a shopping web site. All 58 web

sites performed normally. Lastly, we registered an account on 15 web sites, and all were

successful in Spartacus. Even though we can successfully register an account, we still need

to make sure that we can log in properly with those accounts to test the authentication

process under Spartacus. The results shows that all the accounts we registered during the

Fine-Grained experiment could be logged in successfully.

With the experimental results from both the Coarse- and Fine-Grained experiments, we
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can summarize that Spartacus has little impact on the accessibility and visibility on benign

web sites. Therefore, Spartacus can protect users from visiting advanced phishing web sites

while keeping their normal browsing activities.

Trigger words on benign web sites. When browsing benign web sites, Spartacus can

think that the visit resulted in evasion failure, and then mutate future visits with new trigger

words. Therefore, we conducted an experiment to show that these trigger words do not

impact the layout and functionality of benign web sites. We tested the top 10 popular

trigger words in Table 5.1 on 30 randomly selected benign domains. We then compared

the screenshot and HTML similarity between the default browser visit and 10 Spartacus

browser visits using the different trigger words. The result shows that each of the 30 benign

domains have the same layout using different trigger words. Additionally, we manually

tested the functionality as in the Fine-Grained experiments and found that all web sites

performed correctly with different trigger words.

Benign web sites with risk-based authentication mechanism. Risk-based authentication

(RBA) mechanism prevents web sites from requiring users to use Two-Factor Authentica-

tion by inspecting the features in an HTTP request such as IP addresses and/or User-Agent

string [157]. As major web sites such as Amazon, Google, LinkedIn, and Facebook have

employed such a mechanism [157], we evaluate Spartacus’s ability to trigger Two-Factor

Authentication in RBA enhanced web sites. To this end, we visited eight web sites that are

known to employ RBA using Spartacus 4 . These web sites cover all three types of RBA

implementations mentioned in prior work [157]. The result shows that we could success-

fully visit all eight web sites without encountering a Two-Factor Authentication prompt,

which demonstrates that Spartacus does not cause inconvenience for users visiting RBA

protected benign web sites.
4Amazon, Facebook, GOG.com, Google, iCloud, LinkedIn, Steam, and Twitch [157].
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Long-term Use

To determine long-term impact on the user experience, we evaluate how Spartacus performs

in a long term usage scenario. The authors installed Spartacus in their primary browsers

for daily use for a period of one month. During the experiment, we looked for abnor-

malities, such as unexpected access blocking, frequent risk-based authentications (e.g., re-

CAPTCHA and two-factor authentication), and slow page rendering. After the one-month

experiment, the authors did not encounter with any abnormal actions during normal brows-

ing.

Reason of Low Breakage.

In both Fine-Grained and Coarse-grained experiments, the Spartacus browser could suc-

cessfully request and render benign web sites and allow users to interact with them as usual.

It is mainly because we only append one of the trigger words in the User-Agent string, in-

stead of replacing the string with a crawler one. As we discovered in Section 5.1, phishing

servers will deny the request because they employ an aggressive filtering mechanism—

blocking access as long as there is any suspicious patterns in the User-Agent string. How-

ever, benign web sites perform anti-crawling in a different way. For example, they monitor

new or existing user accounts with high levels of activity and no purchases, or they detect

abnormally high volumes of product views as a sign of non-human activity [158]. Addi-

tionally, benign web apps such as WordPress [159] check the User-Agent string mainly

because they need the visitor’s browser version to deliver the best web page layout and

according functionalities. Therefore, the difference between benign and malicious server’s

anti-crawling mechanisms allows Spartacus to evade phishing sites and access benign ones.
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Figure 5.3: Venn Diagram Describing the Ability of Spartacus and Current Anti-phishing

Systems Against Phishing Web Sites. The Unit Is the Amount of Phishing Web Sites.

5.5 Ecosystem Support

Note that in our experiments (detailed in Section 5.4.1) Spartacus cannot evade 17.72%

of the URLs. We hypothesize that these phishing web sites do not rely on fingerprinting-

based cloaking techniques. Nowadays, the anti-phishing ecosystem such as Google Safe

Browsing and VirusTotal can quickly detect and/or blacklist such phishing attacks. There-

fore, we can rely on support from the ecosystem to handle the phishing web sites that

Spartacus cannot evade.

To verify our hypothesis, we evaluated the blacklist/detection speed of current anti-

phishing systems on the examined phishing URLs. We submitted the phishing URLs to

Google Safe Browsing and VirusTotal at the same time that Spartacus visited them, and

queried the results every 15 minutes to calculate the speed. Due to the deployment time of

this experiment, we submitted 45,526 phishing URLs: 40,852 that Spartacus could evade

and 4,674 that Spartacus could not evade. Among the 4,674 submitted phishing URLs that
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Spartacus could not evade, Google Safe Browsing and VirusTotal combined blacklisted

4,598 of them. The remaining 76, after manual inspection, were found that they were not

phishing web sites and were falsely reported to APWG. This evaluation result verifies that

the ecosystem currently can protect users from phishing web sites that Spartacus cannot

evade, which acts as a complement to Spartacus. In contrast, we submitted 40,852 phishing

web sites that Spartacus successfully evaded. This result shows that 24,154 of them were

not detected or blacklisted by the anti-phishing systems.

Figure 5.3 overviews the ability of Spartacus along with support from the anti-phishing

ecosystem. Within our dataset, advanced phishing web sites significantly outnumber basic

ones, which is shown in Figure 5.3 as the blue circle and red circle, respectively. However,

the anti-phishing ecosystem detects only 40.87% of the submitted evaded phishing URLs.

As a comparison, Spartacus can evade 89.73% of submitted phishing URLs. The ecosystem

can mostly handle the non-evaded phishing URLs as a complement to Spartacus, and hence

both advanced and basic phishing web sites can be evaded or detected.

We also measure the detection speed of current anti-phishing systems, which is visual-

ized in Figure 5.4 (within 24 hours) and Figure 5.5 (whole frame). All submitted phishing

web sites that Spartacus cannot evade are detected/blacklisted in two hours, and 50% of

these can be detected within 22 minutes. As a comparison, current anti-phishing systems do

not perform well against phishing web sites that can be evaded by Spartacus. The median

detection time is 154 minutes. However, within 24 hours, they only detect/blacklist 76.16%

of the cloaked phishing web sites. Moreover, it can take as long as 47.82 hours to finally

detect a cloaked phishing web site. This reflects the ability of the current anti-phishing

ecosystem against phishing web sites: for basic phishing web sites, current anti-phishing

systems can react and blacklist them quickly, however, for advanced phishing, it takes a

long time to detect, which is exploited by phishers to victimize users. Spartacus, however,

only needs an average of 3.2 seconds (based on Table 5.6) to evade advanced phishing

108



0 5 10 15 20 25
Blacklist/Detection Speed (hr)

0.0

0.2

0.4

0.6

0.8

1.0

Pe
rc

en
ta

ge
 o

f p
hi

sh
in

g 
U

R
L

s

24.00

2.58

1.97

0.36

Evaded
Not Evaded

Figure 5.4: CDF of Blacklist/Detection Time Within 24 Hours of Current Anti-phishing

Systems Against Detected Phishing URLs Evaded and Not Evaded by Spartacus.

web sites. Therefore, Spartacus can not only greatly shorten the golden hour [160] left

by the current anti-phishing ecosystem, but also evade cloaked phishing web sites that the

ecosystem cannot detect.

5.6 Mitigating Server-side Cloaking

According to our observation and analysis in Section 5.1, phishers use fingerprinting-

based cloaking techniques to accomplish their phishing attacks. We expect that the sophis-

tication of phishing web sites will continue to improve, and that advanced phishing kits

will create more fingerprints to inspect, match, and block requests that appear to be from

anti-phishing entities.

Although researchers and organizations have proposed mitigations for phishing web

sites [29, 161], they all require malicious web page content to feed the classifier and make

decisions. Server-side cloaking techniques deny requests from the anti-phishing systems,

and their methodologies may not be useful. To demonstrate this, we selected 500 cloaked
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Detected Phishing URLs Evaded and Not Evaded by Spartacus.

Model Precision
(%)

Recall
(%)

FPR
(%)

FNR
(%) F1 ACC

(%)
ROC-
AUC

Proc
Time (s)

PHISHPATH

(regular) 92.28 92.26 11.48 7.74 0.92 90.76 0.95 35,985

PHISHPATH

(w/ sub-chain) 86.78 92.28 15.76 7.72 0.89 88.49 0.94 6,797

CANTINA+
(regular) 85.84 89.18 19.57 10.82 0.87 85.42 0.95 23,133

CANTINA+ w/
PHISHPATH

98.95 98.64 1.53 1.36 0.99 98.57 0.99 59,118

Table 5.5: Evaluation Metrics of Evaluation of Our Classification on Websites with Redi-

rection.

phishing web sites that can be evaded by Spartacus and 500 benign web sites from the Alexa

Top One Million List to test our implementation of CANTINA+ [29], which is a phishing

classifier with URL-, web-, and HTML-based features. The result, depicted in Table 5.5,

shows a high false-negative rate when classifying cloaked phishing web sites. Therefore,

the ecosystem should ensure that existing and new detection and mitigation systems are

capable of adapting to fingerprinting-based cloaking techniques.
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While Spartacus attempts to modify the user’s HTTP requests to appear as anti-phishing

systems, to best combat server-side cloaking anti-phishing systems should carefully modify

the HTTP requests of their crawlers to mimic users. In this case, the anti-phishing systems

can bypass the cloaking techniques and retrieve the actual malicious content. For example,

they should avoid sending requests based on the IP addresses of well-known anti-phishing

entities.

Additionally, Spartacus can be extended to share resources among users. Instead of

only locally recording visited URLs and successfulness of profile mutations, Spartacus can

merge the visit history from users in a centralized server. Then, the server can distribute

and update periodically to the clients. In this way, users can benefit from an up-to-date

Fingerprinting Database because Spartacus knows to block access if it ever successfully

evaded the web site from other users. Furthermore, the Fingerprinting Database is designed

to minimize privacy issues in this centralized setting, because all URLs are hashed and only

the triggering words and proxy server IP are stored in the database.

5.7 Countermeasures to Spartacus

Even though Spartacus can successfully prevent users from seeing phishing content in

fingerprinting-cloaked phishing web sites, attackers will explore countermeasures to miti-

gate it.

5.7.1 Using Other Cloaking Techniques

There are different types of phishing web sites in the wild, roughly categorized into ba-

sic and advanced. Within advanced phishing web sites, server-side and client-side cloaking

techniques are two techniques that help evade detection from the anti-phishing ecosystem.

Because Spartacus focuses on the evasion of phishing attacks with server-side cloaking

techniques, attackers can use other types of cloaking techniques to harm individuals and
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organizations.

Phishers can use basic phishing web sites, phishing web sites with client-side cloaking,

or those with User Interaction Cloaking (e.g., CAPTCHAs). As we presented in Sec-

tion 5.5 and with the analysis results from Oest et al. [162], basic phishing web sites can

be quickly detected and blacklisted by anti-phishing systems in a median of 28 minutes.

As for client-side cloaking techniques, phishers can implement them into their web sites

to bypass Spartacus. However, Zhang et al. [108] proposed a methodology to detect such

evasion by force-executing JavaScript. Hence, client-side cloaked phishing web sites can

also be detected using prior techniques.

Finally, phishers can create a CAPTCHA web page as a barrier before showing phishing

content. Such a technique can bypass evasion from Spartacus. However, using CAPTCHA

may lower phishers’ profit because it is time consuming and challenging for potential vic-

tims [163]. Secondly, it does not distinguish real users from anti-phishing crawlers because

every visitor needs to solve the puzzle [163]. Recently, researchers have proposed method-

ologies of bypassing CAPTCHAs [164, 165, 108], which further allows anti-phishing

crawlers to bypass them.

In a future with Spartacus deployed and support from the anti-phishing ecosystem, it is

challenging to bypass all anti-phishing methodologies while allowing only potential victim

traffic to visit. Such dilemmas force attackers to either spend resources inventing new

evasion techniques or accept reduced profit.

5.7.2 Emerging Phishing Based on Spartacus

We assume that phishers can gain full knowledge of Spartacus and develop counter-

measures accordingly.

For example, phishers could develop stateful server-side cloaking techniques: allowing

the first person with a matching template to evade the phishing content, then change the
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cloaking so that future visits would see phishing content. This could affect the second user

who visits the same phishing web site, because Spartacus uses the “successful” profile for

the user. Hence, the user views the phishing content due to the stateful nature of the server-

side cloaking. However, by design, the suspicious content classification module is run

externally and determines whether the returned web page has suspicious content, no matter

if Spartacus mutates the profile or uses a successful one. Therefore, when the classification

module determines that the profile is unsuccessful to evade phishing, Spartacus will mark

it as failed and will select a new one in the future.

As another example, phishers could enumerate the bot profiles in Spartacus and de-

velop high-fidelity cloaking techniques which identify anti-phishing ecosystem HTTP pro-

files more precisely. For example, phishers could only cloak visits that contain the exact

User-Agent string of anti-phishing crawlers 5 . This technique could bypass Spartacus’s

evasion. However, these precise fingerprints increase the ease of anti-phishing systems to

successfully bypass the cloaking by trivially changing their User-Agent string. Finally,

phishers could develop complex and advanced fingerprinting techniques to use fingerprints

that Spartacus does not consider, such as the order of HTTP headers, TCP/IP fingerprints,

support for esoteric HTTP features (e.g., supporting the 100 Continue response code),

timing side-channels, and so on. While some of these fingerprints could be added to Sparta-

cus, it might not be technically feasible to add all of them. Therefore, we could work with

anti-phishing entities (or they could deploy Spartacus themselves) to integrate the exact

Spartacus framework into their anti-phishing systems, so that these low-level fingerprints

would be identical to Spartacus users.
5E.g., phishers only block visits whose User-Agent perfectly matches Mozilla/5.0 (Linux; Android 5.0;

SM-G920A) AppleWebKit (KHTML, like Gecko) Chrome Mobile Safari (compatible; AdsBot-Google-Mobile;
+http://www.google.com/mobile/adsbot.html).
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5.8 Limitations

Even though Spartacus can protect users from a diverse array of sophisticated phish-

ing web sites using server-side cloaking techniques in the wild, our framework should be

considered alongside certain limitations.

5.8.1 Spartacus Design

Phishing Classification. The Spartacus framework is not a phishing classification system.

Instead, it camouflages users as security crawlers when they visit web sites with cloaking

techniques and can evade malicious content if they use fingerprinting-based cloaking. This

approach proactively protects users in nearly real time. As evaluated in Section 5.4, Spar-

tacus can evade 82.28% of phishing web sites in real time using only User-Agent and Re-

ferrer mutation, with a negligible impact on benign web sites. Previous work has proposed

methodologies classifying phishing web sites with high accuracy [41, 161]. Therefore,

with Spartacus and existing classification methodologies, the anti-phishing ecosystem can

cover a broader range of phishing attacks.

HTTP request mutation. As discussed in Chapter 2, fingerprinting-based cloaking tech-

niques can inspect IP, Hostname, User-Agent, Referrer, and other fingerprints to classify

whether the visitor is an anti-phishing crawler or a potential victim. In Spartacus’s design,

we consider mutating User-Agent and Referrer in the HTTP request, along with changing

the IP address using proxy servers. There is a limitation where Spartacus cannot evade

phishing web sites that only identify crawlers/bots by new fingerprints that Spartacus does

not mutate. One solution for the potential limitation is that we intentionally designed Spar-

tacus as an extendable framework. In this case, Spartacus can remain up-to-date to evade

new cloaked phishing web sites.
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5.8.2 Spartacus Deployment and Evaluation

Phishing kit analysis. In the analysis to understand the prevalence of fingerprinting-based

cloaking, we hope to include as many phishing kits as possible. Due to resource limita-

tions, we only analyzed phishing kits from phishunt.io [110] and those from the public

dataset from Cisco. Within both resources, we analyzed 2,933 phishing kits and summa-

rized that the fingerprinting-based cloaking techniques exist in 96.52% of the phishing kits.

We believe that this analysis demonstrates the prevalence of fingerprinting-based cloaking

techniques.

Data collection. We selected the APWG Dataset to evaluate the effectiveness of Sparta-

cus. Due to infrastructure and resource limitations, we were only able to test Spartacus

over total of nine months from November 2020 to July 2021. Even though additional data

crawling would be desirable to evaluate Spartacus, the APWG Dataset provides a breadth

of phishing data collection because it contains diverse types of phishing web sites targeting

different brands. The phishing web sites are submitted periodically by collaborating mem-

bers including anti-phishing systems and financial organizations impersonated by phishing

web sites. Overall, we tested Spartacus on over 130,000 live phishing web sites and verified

that Spartacus could evade malicious content by triggering fingerprinting-based cloaking.

Therefore, we believe this limitation is mitigated to the extent allowed by current resources.

5.9 Related Work

Researchers have studied phishing for several decades. They have proposed several

methodologies to detect phishing attacks based on features from the URL, content, etc.,

and then warn users before visiting the deceptive web sites. Some work analyzes the URL

of a suspicious web site based on the lexical features or URL ranking to determine the

maliciousness of the site [33, 166, 167, 168]. Others collect web page content and detect
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phishing web sites with textual and visual similarity features [37, 38, 169]. Combining

these techniques with other available features, including both URL and web page content,

researchers developed blacklist-based anti-phishing systems such as Google Safe Brows-

ing [41] to protect users from visiting suspicious web sites. All the proposed methodologies

in the past, however, have a limitation that they are detection systems, and require certain

features to classify the maliciousness, which can take time to acquire (due to cloaking).

Furthermore, Bijmans et al. [170] found that the median uptime for phishing domains is

24 hours, showing the fast move of phishers. The delay of detection from anti-phishing

systems and quick action of phishers extends the gap to mitigating phishing attacks [160].

With the large-scale implementation of cloaking techniques in phishing attacks [160,

162, 5, 4], researchers realize that sophisticated phishing attacks are responsible for a sub-

stantial portion of damage and that the whole ecosystem should prioritize mitigating phish-

ing with evasion techniques. Cloaking techniques make anti-phishing more challenging

because it becomes more and more difficult to retrieve the phishing content, which most

anti-phishing systems depend on. With a very limited amount of web site features, current

anti-phishing systems cannot precisely determine the maliciousness.

Therefore, analysis and detection of server-side and client-side cloaking techniques

have been proposed to fight against such sophistication. For client-side cloaking tech-

niques, Zhang et al. [108] proposed CrawlPhish to force-execute JavaScript snippets in

the HTML response to reveal malicious content. As for server-side cloaking in phishing,

previous work [45, 7, 4] categorizes types of server-side cloaking through analysis of com-

promised phishing kits.

We consider the nature and prevalence of cloaked phishing web sites [4, 5] and provide

a novel methodology to proactively prevent users from seeing phishing content. Rather than

bypass cloaking techniques in phishing web sites, Spartacus deliberately triggers them and

hence prevents users. Our framework is also extensive with the ability to add fingerprints
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that phishers use in the future.

5.10 Conclusion

Through our analysis of compromised phishing kits, we understand that fingerprinting-

based cloaking techniques are largely implemented in the sophisticated phishing attacks

and help to evade visits from anti-phishing entities. Such evasion is difficult to mitigate

because phishers can always include new features of the up-to-date anti-phishing crawlers

and identify them.

We consider this problem from a different perspective. The current state of the ecosys-

tem is that the anti-phishing entities identify the fingerprints that phishing kits use to trig-

ger cloaking and design new crawlers without those fingerprints, which are then learned by

phishers. The phishers then add new fingerprints—in a never-ending cycle.

The Spartacus system proposes a new angle for the anti-phishing ecosystem to fight

against cloaked phishing web sites. Rather than attempting to circumvent cloaking tech-

niques, Spartacus beats the advanced phishing web sites at their own game by deliberately

triggering the cloaking behavior to protect users against cloaked phishing web sites. For

benign web sites, we demonstrated that Spartacus has negligible impact on users’ access,

web layout, and web functionality.

Due to the rise of sophisticated phishing web sites in the wild, we believe that auto-

mated evasion systems such as Spartacus are essential to keep trapping phishers in a lose-

lose dilemma where they cannot differentiate real users from anti-phishing crawler visits.

Methodologies such as ours can be incorporated into the ecosystem to more expeditiously

and reliably evade sophisticated phishing, thus proactively protecting users from phishing

attacks.
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Figure 5.6: Simplified PHP Code Snippet of Fingerprinting-based Cloaking in a Phishing

Kit, Checking IP, Hostname, and User-Agent.

Score FID ∆ (ms) Scripting ∆ (ms) TTI (ms) Added Long Task (ms) Extra CPU Time (ms)Name
B M B M B M B M B M B M

Grammarly for Chrome 50 60 20 190 300 1,000 1,300 3,500 380 1,740 300 961
Adblock Plus 59 100 20 20 0 100 900 3,300 0 0 0 0

Skype 82 74 140 130 100 300 900 3,300 130 250 141 277
Avira Browser Safety 94 90 60 50 100 200 1,100 3,600 0 110 63 112

Avast SafePrice 99 68 120 90 100 200 1,100 4,000 310 400 67 82
AdBlock 100 100 50 20 0 100 1,000 3,300 0 0 0 0

Google Translate 100 100 20 20 0 100 900 3,200 0 0 0 0
Pinterest Save Button 100 100 30 30 0 100 800 3,200 0 0 0 0

Tampermonkey 100 100 20 20 0 100 1,000 3,400 0 0 0 0
uBlock Origin 100 100 20 20 0 100 1,000 3,600 0 0 0 0

Spartacus 100 100 20 20 0 100 800 3,200 0 0 0 0

Table 5.6: Exthouse Metrics of Top 10 Chrome Extensions [1] along with Spartacus When

Visiting Benign and Malicious Websites.
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(a) Default browser visit. (b) Spartacus visit

Figure 5.7: Difference Due to the Shape of Buttons.

(a) Default browser visit. (b) Spartacus visit

Figure 5.8: Difference Due to Popup.
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Chapter 6

ICORE: CONTINUOUS AND PROACTIVE EXTROSPECTION ON MULTI-CORE

IOT DEVICES

Inspired by the proactive mechanism such as Spartacus that prevents users from seeing

sophisticated phishing websites, I also think of a similar methodology to protect the OS

kernels of IoT devices. By design, the secure world is a slave of the normal world even

though it has the highest priority in an IoT device. The security functionalities in the secure

world may not be invoked if the attacker that compromised the normal world chose not to.

To overturn the master-slave role between the normal and secure world, I present iCORE to

have the secure world independently and proactively monitor the operations and activities

of the IoT device.

6.1 Assumptions and Threat Model

6.1.1 Assumptions

We assume that iCORE is implemented on IoT devices deploying multi-core ARM plat-

form with ARM TrustZone extension. We consider the secure world as trusted and the

normal world as our monitoring target. Also, we assume that the system will not be com-

promised or attacked during the cold boot procedure. To prevent the system from being

tampered during the booting time, ARM secure boot [69] procedure can be leveraged to

initialize the processors in order to guarantee the integrity of the whole memory area.

6.1.2 Threat Model

The normal world OS kernel mainly encounters the threats from kernel level rootkits.

As aforementioned, the normal world OS is vulnerable and can be compromised any time
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Figure 6.1: ICORE Architecture.

after the system has booted [171]. Therefore, kernel-level rootkits can be installed to take

control of and attack the normal world OS. To hide the evidence of their intrusion, rootkits

will tamper with some parts of the OS kernel such as setting a hook in certain system calls,

which reside in the static kernel memory area.

Furthermore, attackers may notice that some security tools reside in the normal world

OS. To avoid the detection from the security tools, the rootkits can deploy transient at-

tacks [30], which do not tamper with the system permanently, in the kernel. By exploit-

ing transient attacks, rootkits mitigate the permanent modifications on the kernel memory,

which sets a camouflage to cheat on the security tools. However, iCORE checks the integrity

of the static kernel memory area of the normal world continuously. Any modification on

the monitored area will be detected. Consequentially, temporary modifications through

transient attacks can still be detected by iCORE.

6.2 System Design

In this section, we present iCORE, a novel continuous and proactive extrospection with

high visibility on IoT devices to monitor and detect the integrity of the static kernel memory

in the normal world.
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Figure 6.2: Core Initialization with ICORE.

Figure 6.1 illustrates the architecture of iCORE. Dedicated cores assigned as iCORE

for security uses are deployed and running only in the secure world, meanwhile, the other

cores are processing the conventional workload with the access of both normal and secure

worlds. Security tools of iCORE are residing in exception level EL1 in the secure world OS.

With the privilege of EL1, iCORE has the right to access the normal world kernel memory

that has the same exception level as iCORE. According to our design, iCORE can access

and monitor the static kernel memory of the normal world continuously and proactively

without notifying or getting permission from the normal world.

In the following subsections, we demonstrate how dedicated cores are chosen as iCORE

and initialized during a modified booting procedure deployed in the secure world. Mean-

while, cryptographic checks are applied to each stage of the secure world boot procedure,

pointing to protect the integrity of the secure world image from unauthorized and malicious

modification. Then, we discuss a mechanism that iCORE acquires data stored in the static

kernel memory region of the normal world and checks the integrity of the specific memory

area with the acquired data proactively and continuously.

6.2.1 Initialization of iCORE

Figure 6.2 shows the flow chart of iCORE’s initialization. The sequence of core ini-

tialization is from the primary core to the secondary cores and finally to iCORE. When
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the device is cold booted, the primary core is first invoked by a trusted booting firmware,

for example, ARM-TF, and initialized in the secure world with exception level EL3. The

primary core executes the boot path in the trusted booting firmware following such steps:

Application Processor Trusted ROM (Boot Loader Stage 1, BL1), Trusted Boot Firmware

(BL2), and EL3 Runtime Software (BL3). After the initialization of primary core is fin-

ished by the trusted firmware with EL3, the firmware then switches the control to the secure

world OS with EL1 as shown in Step 1© to continue the initialization of the primary core.

In Step 2©, the secure world OS should switch back to the trusted booting firmware after

it finishes primary core initialization to perform the world switch operation with smc in-

struction through the trusted firmware. After the normal world OS gains the control from

the secure world in Step 3©, the primary core will have its initialization finalized in the

normal world. The process of initializing secondary cores is similar to that of the primary

core. After the primary core finishes its initialization in the normal world OS, a switch to

the secure world that the trusted booting firmware generates to wake the secondary cores

up, as shown in Step 4©. Secondary cores are also initialized through the firmware to the

secure world OS (Step 5©), switching the world by the trusted booting firmware (Step 6©),

and eventually to the normal world OS (Step 7©).

The regular cold boot procedure of an ARM multi-core platform indicates that the ini-

tialization of each core goes through the secure world and the normal world. As discussed

in Section 6.1, the normal world can be compromised anytime so that the normal world is

our monitoring target and cannot be trusted. To prevent iCORE from being infected, iCORE

should never go to the normal world from the beginning of the initialization. To achieve

this goal, we modify the boot procedures of iCORE by redirecting the core sequence to

execute the monitoring functions. After the secondary cores finish the initialization in the

normal world, a world switch to the secure world (Step 8©) occurs to start the initialization

of iCORE. iCORE is first initialized in the trusted booting firmware and then goes to the
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secure world OS to continue its booting (Step 9©), as what other cores do. However, iCORE

never switches to the normal world to finalize the initialization. Instead, it dedicates itself

to stay in the secure world forever by executing security functionalities (Step 10©) to monitor

the normal world kernel memory and to detect potential malicious modification.

The normal world OS kernel waits for the cores to come online or time out. For ex-

ample, when the normal cores switch to the normal world eventually, the normal world

OS detects the normal cores online within certain time limit and notifies the successful de-

tection to the system. When the normal world OS tries to detect iCORE, however, iCORE

never returns to the normal world. After the time exceeds the threshold, the normal world

OS stops waiting the dedicated cores to execute the following operations but informs the

system during the booting period. Therefore, it does not influence the normal initialization

and execution of the system that iCORE never returns to the normal world. By now, iCORE

officially gets out of control of the normal world to be able to execute the monitoring func-

tionalities independently and proactively.

In summary, by initializing and staying only in the secure world, iCORE can avoid the

detection of potential attacks coming from the normal world. The normal world can still

continue its conventional executions without iCORE coming online.

6.2.2 Continuous and Proactive Extrospection

To provide continuous and proactive extrospection with high visibility on the static ker-

nel memory blocks of the normal world, iCORE needs to access the designated memory

area, load the data, and check the integrity. Figure 6.3 shows the process of the extrospec-

tion of iCORE.

Though as originally designed in ARM TrustZone the secure world has the privilege to

access all the resources in the normal world, which facilities iCORE to protect the normal

world with high visibility, two features form an obstacle for iCORE. The first feature is that
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Figure 6.3: Extrospection of ICORE.

the normal world memory is not yet registered in the secure world, but the secure world

can only access registered memory region. And the other one is that the addresses of kernel

memory area are stored as virtual ones, the secure world, however, exploits the physical

addresses to access the normal world memory. If iCORE plans to monitor one specific

kernel memory region of the normal world, the corresponding memory region should be

properly registered in the secure world beforehand and the starting and ending physical

addresses must be obtained by converting the virtual addresses that the normal world use.

However, ARM architecture does not offer any facilities for the secure world to register

the normal world memory or to convert the virtual addresses. Hence, we design a function

for iCORE by traversing a given virtual address on the normal world translation tables to

retrieve the corresponding physical address. Additionally, we modify the configuration

of memory layout to register the normal world memory in the secure world before the

system boots. The detailed implementation of registering memory and converting virtual

addresses will be discussed later in Section 6.3. Afterwards, iCORE can load the data used

for integrity checking from the specific static kernel memory region of the normal world.

iCORE checks the integrity by the following steps. First, when the normal world OS is

waiting for iCORE online during its initialization, iCORE loads the data from the monitored

memory region and calculates a hash value of the data, named as pre-hash. Based on the

assumption in Section 6.1, the attackers cannot compromise the normal world OS until the
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system is completely booted. Therefore, we can trust pre-hash as the root of trust. Also,

pre-hash is stored in the secure world memory that cannot be accessed by the normal

world and any trusted applications because trusted applications are in EL0, lower privilege

than that of iCORE, EL1. Next, when the normal world OS is ready and the user processes

start to execute, iCORE again accesses the same memory region and retrieve the hash value,

named current-hash. Then iCORE compares current-hash with pre-hash. If

these two values are equal, it indicates that the integrity of the monitored memory region

is guaranteed. Otherwise, iCORE will report it as tampered memory area with memory

dumped to be further analyzed.

Such extrospection provided by iCORE is continuous. iCORE is repeatedly computing

current-hash of the monitored area and comparing those two values to guarantee the

integrity. Moreover, the monitoring functionalities of iCORE are proactive. iCORE is com-

pletely running independently without permissions or requests from the normal world since

it has got rid of the control of the normal world during the initialization.

6.3 Implementation

We implemented the prototype of iCORE and tested it on a Hikey LeMaker board,

which has 8 ARM Cortex-A53 1.2GHz cores and 2GB of memory. Regarding the software

stack of our testing environment, the secure world side runs OP-TEE version 2.0.0 [172],

combined with ARM-TF [68], while the normal world runs Linux distribution with kernel

version 4.15. we open source the prototype with the expectation that it will be exploited

and extended further by security researchers 1 .
1https://github.com/FormerBuckeye/iCore.git
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Listing 6.1: Code of core initialization in ICORE.
LOCAL_FUNC vector_cpu_on_entry , :

...
bl get_core_pos

/* begin to select iCORE*/
cmp x0, #7
beq iCORE_func
/* end*/
...
smc #0
b . /* SMC should not return */
END_FUNC vector_cpu_on_entry
...
LOCAL_FUNC iCORE_func , :

/* execute functionalities of iCORE */
b do_extrosepction

END_FUNC iCORE_func

6.3.1 Core Initialization

As mentioned earlier in Section 6.2, all the cores are firstly initialized in the secure

world by the ARM-TF and then the secure world OS, in our case, OP-TEE. Eventu-

ally, all the cores are returned to the normal world to finalize the initialization by the

normal world OS. We analyze the source code of OP-TEE and modify it to select ded-

icated cores as iCORE. In OP-TEE source code, Function vector cpu on entry()

in File thread a64.S is responsible for switching from the secure world to the normal

world using smc #0 instruction after the core initialization is finished in the secure world.

The detailed iCORE selection procedure we implement has been shown in Listing 6.1.

Function get core pos() in Line 3 gets the number of the current core and stores

the result to Register x0. Line 5-6 is the modified code to assign dedicated cores. In

our implementation, we select one secondary core as iCORE from the perspective of per-

formance efficiency. There are 8 cores in the Hikey LeMaker board, one primary core

numbered as 0 and seven secondary cores numbered through 1 to 7. We choose the core

No.7 as iCORE because as discussed in Section 6.2, iCORE will be booted after all nor-

mal cores finish initialization. When core No.7 is initializing, Line 6 forces it to execute
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Function iCORE func() to invoke iCORE functionalities, instead of executing smc #0

to switch back to the normal world. In the normal world side, Function cpu up() in

File cpu.c of the normal world OS is waiting for core No.7 to switch to the normal world.

After time exceeds the limit, cpu up() will only notify the system that core No.7 fails

to come online. Sequentially, the normal world OS ignores the offline core and contin-

ues to execute the following operations. By now, iCORE loses the control of the normal

world and can perform the monitoring functionalities proactively and independently. The

whole initialization does not require any changes on the normal world OS, which lighten

the workload for developers to deploy iCORE architecture.

6.3.2 Memory Acquisition

After iCORE gets initialized and started to execute the functionalities, the static kernel

memory region of the normal should be properly acquired by iCORE to load data. To make

the secure world access the static kernel memory region of the normal world, as afore-

mentioned in Section 6.2, two tasks should be resolved. First, the normal world memory

should be correctly registered in the secure world. Second, the virtual addresses used by the

normal world should be converted to the corresponding physical addresses for the secure

world to use.

We conquer the first task by modifying the boot configuration memory map in the

secure world OS. Specifically, the secure world exploits bootcfg memory map to man-

age the memory layout provided to the TEE core. bootcfg memory map is a struc-

ture type of map area to record the memory area registered in the secure world. In this

structure, every memory area that the secure world needs to access is listed along with

its type (all types of memory area have been enumerated in mmu.h), starting physical

address, size, and attribute. Hence, we register the normal world memory to the secure

world by adding the corresponding memory layout in bootcfg memory map. List-
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Listing 6.2: Memory registration.
static struct map_area bootcfg_memory_map[] =
{

{
.type = MEM_AREA_NSEC_SHM,
.pa = DRAM0_BASE, .size = DRAM0_SIZE,
.cached = true, .secure = false,
.rw = true, .exec = false,

},
...

}

ing 6.2 demonstrates the memory layout that we insert. The type of the memory layout

is MEM AREA NSEC SHM, which represents that the normal world memory now is reg-

istered as non-secure shared RAM between the normal world and the secure world; the

starting physical address is DRAM0 BASE, which is the base address of the DRAM of the

normal world; the size is DRAM0 SIZE, which is the size of DRAM of the normal world;

and it can be cached, can be read and written, cannot be executed, and is non-secure.

Afterwards, we should solve the second task. There is no related instruction or function

for the secure world to convert the virtual address to the physical address by default. In

the normal world, one process accesses the memory by providing the virtual address in

its own private space to MMU, and MMU then looks up the page tables to calculate the

physical address. The secure world has to traverse the same page tables to convert the

virtual address. Hence, we implement the converting function called va2pa in sec()

in iCORE before accessing the memory of the normal world. Specifically, for a given virtual

address in AArch64, the most significant bits determine the base address of the page table,

and then bits [41:29] and [28:16] are the index of Level 2 and Level 3 page tables to find

the corresponding page table entry level by level. Finally, we combine the bits [47:29] of

the page table entry and the least significant bits of the virtual address to get the proper

physical address.
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6.3.3 Continuous and Proactive Extrospection

Finishing two tasks mentioned above, iCORE has the ability to monitor the normal

world kernel and to check its integrity. As the static data in the normal world kernel mem-

ory is consecutively stored, iCORE can load data in the static memory regions of the normal

world kernel by accessing from the starting to the ending physical addresses. However,

iCORE can only obtain the virtual addresses of the corresponding memory area by ana-

lyzing File system.map, which is generated during the kernel compiling and records the

virtual addresses of symbols used in the normal world kernel. Function va2pa in sec()

is then exploited to convert the virtual addresses to physical addresses to help iCORE access

the data.

To measure the integrity of static data and code, first iCORE deploys SHA-1 crypto-

graphic hash algorithm to compute the root of trust, pre-hash, of the loaded data before

the normal world OS finishes the initialization. The pre-hash is then stored in the se-

cure world memory. Second, when all the processes starts to execute, iCORE loads the data

from the same normal world kernel memory region and computes the current-hash.

Next, iCORE compares current-hash with pre-hash. The result of two hash-value

comparison will determine whether the static kernel memory of the normal world has been

tampered with.

To provide continuous monitoring functionalities, except the first step (because pre-

hash is the root of trust), others should be processed repeatedly. iCORE leverages an in-

finite loop to achieve the continuous extrospection. Thus, in each loop iCORE can check

the integrity by calculating and comparing the hash values. All the monitoring procedures

are also executed by iCORE independently, without requesting or getting permission from

the normal world, because the normal world cannot detect the existence of iCORE. Con-

sequently, iCORE shows continuousness and proactiveness to detect the malicious modifi-
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cation in the monitored memory areas, and will not be affected or disabled by the normal

world.

6.4 Evaluation

After implementing iCORE, we answer the following questions that may be asked: How

effective is iCORE? Can iCORE be detected or even terminated from the normal world?

Losing one core brings a negative impact on the performance of IoT and mobile devices,

can such a device be qualified to meet the daily requirements?

6.4.1 Effectiveness of iCORE

To evaluate the effectiveness of iCORE to protect the static kernel memory area of the

normal world against the attacks and vulnerabilities that are probably exploited, we design

experiments trying to (1) tamper the monitored memory area, and (2) terminate iCORE

from the normal world. To experiment the first task, we deploy Loadable Kernel Module

in the normal world attempting to read and write the monitored static kernel memory area

with root privilege. Unsurprisingly, iCORE detects all the modifications on the memory

region. It indicates that iCORE can detect any malicious modification on the static kernel

memory area of the normal world from potential attacks such as malicious code injec-

tion [173] and vulnerabilities that are exploited to tamper with the static kernel memory

such as allowing privileged users to modify a limited range of kernel memory in syscall

interface of bridging [174].

Secondly, to verify that iCORE cannot be detected or disabled from the normal world,

we check the cpuinfo of the normal world OS that records the CPU information. The

content in cpuinfo only shows the information of CPU 0 to 6. It indicates that the normal

world cannot detect the existence of iCORE and thus it does not provide any methods for

attackers in the normal world to detect or even disable iCORE.
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Table 6.1: Performance Overhead When Checking Different Size of Static Memory Area.

Benchmark Monitoring whole Monitoring specific
application static memory static memory

perlbench 2.28% 1.25%

mcf 3.61% 2.42%

omnetpp 3.14% 2.02%

xalancbmk 12.50% 2.79%

x264 2.38% 0.77%

deepsjeng 1.17% 1.01%

leela 1.92% 0.73%

xz 3.95% 2.64%

Figure 6.4: Evaluation Result in SPEC CPU2017.

6.4.2 Performance with iCORE

iCORE may impact the performance of the device by frequently checking the whole

static kernel memory of the normal world. Besides the impact of losing one core, frequent

memory access may influence the speed of workload execution as well. Reading normal

world memory may fill up L2 cache shared among cores and the data bus between CPUs

and memory. Therefore, the data required by processes in the normal world would be

delivered slower than the original system. We evaluate the performance of the system with

iCORE by checking the whole static kernel memory of the normal world and by checking
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a portion of kernel text (code) area to determine how the impact of iCORE scales when

it monitors different sizes of static kernel memory. According to our analysis, the size of

whole static kernel memory is around 13MB while that of selected text (code) area is about

12KB.

We evaluate the performance of the normal world OS using the SPEC CPU2017 to

measure the impact of permanently losing one core to the secure world. Figure 6.4 repre-

sents the evaluation result under 3 situations, a system with 7 cores and iCORE checking

the whole static memory of the normal world, one with 7 cores and iCORE checking a small

portion of the static memory, and the original system with 8 cores, in SPEC CPU2017’s

8 benchmarks of intrate suit. Table 6.1 shows the performance overhead of the system

when checking a different size of the static kernel memory area of the normal world. From

the evaluation result, iCORE unsurprisingly brings the overhead on CPU performance of the

system because of losing one core and frequently accessing the memory. When checking

the whole static kernel memory of the normal world, iCORE generates 1.17% (deepsjeng)

to 12.50% (xalancbmk) performance overhead compared with the original system.

According to the analysis of SPEC CPU2017 in [175], benchmark xalancbmk has

the highest percentage of branch instructions, over 30%, while the benchmarks omnetpp,

leela, and deepsjeng only have 15% of branch instructions. Besides, xalancbmk consumes

a considerable percentage of their execution time on cache and memory related operations.

This explains why iCORE has a more overhead fraction on operating xalancbmk: executing

this benchmark application requires much more memory/cache accesses than operating the

other ones; however, the system with iCORE does not provide as much computation power

as the original system does because it only has 7 cores to process the workload in the

benchmark, and iCORE uses L2 cache lines and data bus between CPU and memory for the

monitoring purpose.

We also evaluate that monitoring smaller portion of static kernel memory of the normal
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world, which brings the system less performance degradation as shown in Figure 6.4. The

performance overhead of checking 12KB static memory on xalancbmk is 2.79% compared

with that on the original system. The CPU performance increases, but not significantly,

even though iCORE only checks 0.1% of the whole static kernel memory of the normal

world. One possible reason is that the Linux scheduler helps the system work efficiently by

checking the load balancing of each CPU dynamically and distributing the routine workload

to the low CPU usage core so that the tasks can be executed as fast as possible.

As a consequence, the system with iCORE, checking even the whole static kernel mem-

ory, can still finish the same workload within the negligible performance overhead.

6.5 Discussion and Future work

6.5.1 Response After Detection

After detecting the malicious modification in the monitored memory region of the nor-

mal world, iCORE should have corresponding measures to report and analyze the memory

area. However, there exists a semantic gap that iCORE only detects the modification but has

no ability to extract the semantic information such as the current CPU info, the active pro-

cesses, or potential hooks on system calls. iCORE has to get a hand from memory forensic

tools [176] developed to analyze and extract digital artifacts.

Memory forensic tools generally require the memory sample file, which iCORE can

provide. If there are malicious modifications occurred under the monitoring of iCORE,

the normal world memory can be dumped since iCORE has the ability to access the whole

normal world resources. Afterwards, the dumped memory file will be sent to memory

forensic tools outside the device. We can leverage one of the memory forensic tools such

as Volatility [177]. The memory forensic tools, then, can analyze the memory sample and

extract semantic-rich information, such as the active process list, potential hooks on system
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Table 6.2: Comparison of the Related Works with ICORE.

Criteria kGuard SIM NOVA Vigilare MIPE TZ-RKP SPROBES SecVisor iCORE[53] [55] [178] [30] [179] [20] [21] [65]

Resides out of the monitored system #         
Provides proactive monitoring    # # # #   

No need for virtualization supports  # #     #  
No need additional hardware    #      

No need to modify monitored system     # # #   
In-time tamper detection # # # # # # # #  

 : satisfying the criteria, #: not satisfying the criteria.

calls, and a list of opened files by the normal world OS kernel. Therefore, by means of the

memory forensic tools, the semantic gap between iCORE and the normal world can be

narrowed down. Also, the further analysis after detecting malicious modifications can be

possible.

6.5.2 Potential Threats Against iCORE

iCORE is designed to detect malicious modifications on the static kernel memory area

of the normal world. However several types of threats can be exploited to potentially hazard

iCORE.

First, during the booting procedure of a system with iCORE, a threat that the attacker

is attempting to modify the kernel image file may occur. To protect the kernel binary

from maliciously tampering, we implement secure boot procedure [69] on ARM platform

that is mentioned in Section 6.2. Hence, secure boot procedure guarantees that iCORE

can be booted safely. Once iCORE is booted, the attacker cannot detect or turn off the

functionalities of iCORE, because it is completely isolated from the monitored system.

Secondly, as we mention in Section 6.2, to load memory data, iCORE exploits

system.map to get the starting and ending address of the static kernel memory area of

the normal world. Some may concern that the addresses where the static kernel data is

stored can be modified by the attackers so that iCORE cannot work properly with incorrect

addresses. This is avoidable because File system.map is generated before the system
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booting. Static kernel data of the normal world will be loaded according to the file during

the initialization of the system. Before the attacker takes control of the normal world,

iCORE has already gained the physical addresses of the monitored memory area. Hence,

the changes of the addresses do not influence the correctness of iCORE’s functionalities.

Thirdly, when iCORE detects the malicious modification on the monitored memory

area, the normal world memory can be dumped for further analysis. However, the normal

world RAM could be tampered again by the attacker to erase the evidence of crimes. To

avoid the situation mentioned above, TrustDump [180] provides an approach to allow the

device user to switch into the secure world safely when the normal world OS crashes or is

compromised in order to cease the operations in the normal world. Therefore, the normal

world memory cannot be further tampered with and the memory dumped by iCORE can be

trusted.

6.5.3 Extension of iCORE

Our current design of iCORE checks the static code and data in the normal world kernel

memory. However, the attackers would attempt to tamper with the dynamic code to make

the attacks successful. Unlike the static code and data, it is much more difficult to check the

integrity of the dynamic data memory region, as the data is changing all the time when the

system is running. It is a challenge for an integrity check to distinguish between a normal

operation modification and a potential tampering behavior. Petroni et. al [181] propose an

architecture to provide the integrity to dynamic kernel data using a specification language-

based approach. Also, the code-reuse attacks are popular now which execute the existing

code in the memory instead of code injection to by-pass the integrity check of security

tools. In the future, we will develop iCORE to monitor the dynamic memory area and

protect the normal world from the code-reuse attacks.

In addition to the integrity check improvement, iCORE will be able to overcome the
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semantic gap. As aforementioned, iCORE can exploit the data read from the static memory

region in the normal world to check the integrity. However, the real meaning of the data

iCORE reads remains unknown, so we can leverage the existing memory forensic tools to

extract the semantic-rich info from the memory dump file. Nevertheless, analyzing the

dump file in device is necessary because transferring the dumped memory file out of the

device can be disabled by the attacker if she has the physical control of the device. The

following work of iCORE will be attempting to narrow the semantic gap itself to enforce

the security since the bridge between binaries and the kernel structures will help iCORE to

monitor the real critical information.

6.6 Related Work

Hardware/Hypervisor-assisted Monitoring Methods. As we mentioned in Chap-

ter 2, modern monitoring methods are classified into hardware-assisted and hypervisor-

assisted methods, the shortcomings and advantages of both of which have also been dis-

cussed. Other efforts have been made to expand the monitoring fields and to mitigate the

negative impact brought by these two categories.

Articles [182, 183, 178] proposed another method called tiny-hypervisor. It is a thin

software TCB (trusted computing base) that has a small amount of code to reduce the

attack interface to monitor and protect the system, which performs well on monitoring

virtual machines. However, they still require virtualization support on the target system,

which is costly deployed on all mobile devices. Since most mobile and IoT devices are

deploying ARM TrustZone extension, iCORE will have a better performance than the tiny-

hypervisors do.

As for hardware-assisted methods that we mentioned in Section ??, Vigilare [30] and

Ki-Mon [31] provided additional external equipment to protect the static and dynamic ker-

nel objects from being tamped, respectively. Davi et. al [184] designed a hardware-based
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control flow integrity defense for embedded systems against return-oriented programming

(ROP) attacks. Based on this work, HAFIX [185] is proposed as a defensive extension

against ROP attacks using backward edges. However, it is costly and inconvenient to take

another device dedicated to real-time protection and monitoring purposes along with the

mobile devices. To avoid using additional equipment, TZ-RKP [20] and SPROBES [21]

take advantage of ARM TrustZone extension to trap the page table updates, switch to the

secure world through smc instruction, and verify the write signal on the monitored mem-

ory area. MIPE [179] does the similar work to protect the memory of the normal world.

It checks in the secure world if the previous status of a physical address that the normal

world maps when a page fault occurs has already been mapped to a virtual address. These

methods still require operations in the normal world to switch to the secure world, which

slows the execution down and can be disabled by the compromised normal world. iCORE

provides a possibility to the research on developing security tools based on ARM Trust-

Zone that the monitoring tool in the secure world can struggle out of control of the normal

world with self-decision-making power so that the attackers in the normal world cannot

disable its functionalities.

Continuous Monitoring Mechanisms. Current continuous monitoring mechanisms

exploit trampolines, which are used to store addresses pointing to interrupt service rou-

tines, or hooks pre-installed in the monitored system to change the control flow of the

existing execution path to the monitoring functionalities. This requires that the hooks and

trampolines should be properly protected from tampered so that the monitoring mechanism

can keep their integrity and availability. Articles [58, 55] implement trampolines that are

guaranteed by a hypervisor level memory protection approach to monitor the VM.

From another perspective, ARM TrustZone is also exploited to deploy the continu-

ous monitoring. Mechanisms such as TIMA (TrustZone Integrity Measurement Architec-

ture) [186, 187] implement the monitoring code in TrustZone and implant the trampoline
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in the secure world kernel to enhance the integrity of the static memory block in the nor-

mal world. The purpose of iCORE is also to provide a secure environment based on ARM

TrustZone for normal world OS. However, iCORE is more effective because it does not

require additional modifications on the normal world OS source code and can get access to

all the normal world memory with high visibility due to its highest privilege state. Thus,

iCORE is an improvement of the traditional continuous monitoring mechanism.

6.7 Conclusion

In conclusion, we present iCORE, an innovative continuous and proactive extrospection

system with high visibility technique on IoT devices deploying multi-core ARM platform

in this paper. iCORE exploits ARM TrustZone technology to dedicate one core in the se-

cure world forever, assuring the computing integrity of static kernel memory region of the

normal world. By breaking the original time-sharing paradigm of such systems, iCORE en-

ables continuous co-processor-like monitoring with high visibility into the rich execution

environment on such mobile and IoT platforms based on the design of ARM TrustZone

architecture that the secure world can access all the resources in the normal world. iCORE

plays a role as master and monitors the pre-selected memory area proactively so that the

normal world cannot detect or disable the functionalities of it because iCORE gets out of

control of the normal world since the system booting procedure. And by ensuring that secu-

rity tools execute on certain physical CPU cores, the system’s attack surface is significantly

reduced. Also, with the increasing number of mobile CPU cores and based on the results

of the evaluation, iCORE only introduces a negligible overhead.
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Chapter 7

CONCLUSION

7.1 Attacks Can Be mitigated

Through the work presented in this dissertation, I have analyzed cyber attacks from

different types — phishing and IoT attacks. The analysis results offer critical inspirations

to the security community and hence the community can propose mitigations accordingly.

The solutions based on my analysis of cyber attacks have clearly showed paths to im-

prove the defenses against emerging and advanced attacks, such as anti-phishing black-

lists, machine-learning based anti-phishing systems, back-end anti-cloaking mechanisms,

in-browser defense, and monitoring in IoT devices.

I started my analysis from the nature and prevalence of server-side and client-side

cloaking techniques in phishing attacks, which provided me an insight that the current anti-

phishing ecosystem has limited solutions mitigating such advanced attack. So I designed,

implemented, and evaluated CrawlPhish to force the client-side cloaked phishing websites

to reveal the hidden malicious content. To prevent phishing attacks, I leveraged the finger-

printing feature in server-side cloaking techniques and proposed Spartacus. It deliberately

triggers server-side cloaking techniques in phishing websites and hence users will not see

the phishing content. Therefore, the ecosystem has state-of-the-art methodologies to fight

against server-side and client-side cloaking techniques.

Next, in PHISHPATH, I analyzed another technique that criminals implement in phish-

ing attacks — redirection, to evade automated detection. Phishers use redirection tech-

niques differently from those in benign websites. This finding inspires me to leverage such

difference to identify phishing redirection chains out of benign ones. Hence, I developed a
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machine learning based classifier, which only uses redirection features, and it can precisely

distinguish malicious and benign redirection chains. I also provided a recommendation

to blacklist based anti-phishing systems that they need to block intermediate domains and

hence the landing hops that use those intermediate ones will be inaccessible automatically.

The mitigations I proposed to the ecosystem greatly increase the speed and accuracy of

identifying and blocking phishing redirection chains in a large scale.

Finally, inspired by Spartacus, the IoT devices can proactively extrospect activities in

the normal execution environment. So I designed iCORE to overturn the master-slave re-

lationship between the normal and secure world. Hence, with the highest privilege in the

platform, the secure world can independently monitor all the operations in the device even

though the device is compromised.

7.2 Remaining Challenges

Even though the modern security society represents a significant improvement over

cyber attacks such as phishing and IoT compromise, criminals can leverage the similar

ideas under different context.

For example, there are advertisements in the social media who leverage cloaking tech-

niques to fool detection systems. They display shopping web pages with legal items to the

ad host, but sell users who click in prohibited goods such as drug and weapon. Further-

more, as the concept of metaverse emerges, similar attacks can be deployed to tackle users

in the metaverse society. Phishing attacks can steal the credentials from users and transfer

their NFTs (Non-Fungible Token), which may generate more loss than the current stage of

phishing. The attacks focusing on compromising systems can also be deployed on the new

devices such as VR (Virtual Reality) devices because users need them to experience the

metaverse.

I hope that beyond improving defense methodologies in the current platforms such
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as IoT devices and emails/text/social media posts, the security society should expand the

methodologies to other architectures or concepts. By closing the gap between existing

and new platforms, criminals cannot simply deploy an existing type of attacks on the new

platforms. If the attacks cease being sufficiently profitable, criminals will likely focus on

other type of attacks.
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Kevin Tyers. Phishfarm: A scalable framework for measuring the effectiveness of
evasion techniques against browser phishing blacklists. In Proceedings of the 40th
IEEE Symposium on Security and Privacy (Oakland), pages 764–781, Oakland, CA,
May 2019.

[6] Kurt Thomas, Frank Li, Ali Zand, Jacob Barrett, Juri Ranieri, Luca Invernizzi, Yarik
Markov, Oxana Comanescu, Vijay Eranti, Angelika Moscicki, et al. Data breaches,
phishing, or malware?: Understanding the risks of stolen credentials. In Proceedings
of the 2017 ACM SIGSAC conference on computer and communications security,
pages 1421–1434. ACM, 2017.

[7] Luca Invernizzi, Kurt Thomas, Alexandros Kapravelos, Oxana Comanescu, Jean-
Michel Picod, and Elie Bursztein. Cloak of visibility: Detecting when machines
browse a different web. In 2016 IEEE Symposium on Security and Privacy (SP),
pages 743–758. IEEE, 2016.

[8] Nektarios Leontiadis, Tyler Moore, and Nicolas Christin. Measuring and analyzing
search-redirection attacks in the illicit online prescription drug trade. In USENIX
Security Symposium, volume 11, 2011.

[9] Davide Canali, Davide Balzarotti, and Aurélien Francillon. The role of web hosting
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