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ABSTRACT  
   

 Stiffness and flexibility are essential in many fields, including robotics, aerospace, 

bioengineering, etc. In recent years, origami-based mechanical metamaterials were 

designed for better mechanical properties including tunable stiffness and tunable 

collapsibility. However, in existing studies, the tunable stiffness is only with limited range 

and limited controllability. To overcome these challenges, two objectives were proposed 

and achieved in this dissertation: first, to design mechanical metamaterials with 

metamaterials with selective stiffness and collapsibility; second, to design mechanical 

metamaterials with in-situ tunable stiffness among positive, zero, and negative. 

In the first part, triangulated cylinder origami was employed to build deployable 

mechanical metamaterials through folding and unfolding along the crease lines. These 

deployable structures are flexible in the deploy direction so that it can be easily collapsed 

along the same way as it was deployed. An origami-inspired mechanical metamaterial was 

designed for on-demand deployability and selective collapsibility: autonomous 

deployability from the collapsed state and selective collapsibility along two different paths, 

with low stiffness for one path and substantially high stiffness for another path. The created 

mechanical metamaterial yields unprecedented load bearing capability in the deploy 

direction while possessing great deployability and collapsibility. The principle in this 

prospectus can be utilized to design and create versatile origami-inspired mechanical 

metamaterials that can find many applications. 

In the second part, curved origami patterns were designed to accomplish in situ 

stiffness manipulation covering positive, zero, and negative stiffness by activating 
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predefined creases on one curved origami pattern. This elegant design enables in situ 

stiffness switching in lightweight and space-saving applications, as demonstrated through 

three robotic-related components. Under a uniform load, the curved origami can provide 

universal gripping, controlled force transmissibility, and multistage stiffness response. This 

work illustrates an unexplored and unprecedented capability of curved origami, which 

opens new applications in robotics for this particular family of origami patterns. 
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CHAPTER 1 

INTRODUCTION 

1.1 Background 

Mechanical metamaterials are artificially engineered materials with unusual 

mechanical properties.1, 2 In recent years, the ancient paper arts of origami (paper folding; 

in Japanese, “ori” means “fold” and “gami” means “paper”) and kirigami (paper cutting; 

in Japanese, “kiri” means “cut” ) have become popular for building mechanical 

metamaterials and now provide valuable design guidelines.3, 4 By means of folding and 

cutting, simple two-dimensional thin-film materials can be transformed into complex 

three-dimensional structures with unique and programmable mechanical properties, such 

as shape morphing,5 flexibility,3 tunable Poisson’s ratio,4 tunable stiffness,6 and multi-

stability.7 Recently, origami and kirigami structures have been created from not only paper 

but also metals,8-10 polymers,11 hydrogels,12, 13 and graphene,14 with sizes ranging from 

macroscale to microscale15 to nanoscale.10 Origami- and kirigami-based Mechanical 

metamaterials have be applied in many fields, including flexible electronics,16-19 medical 

devices,20 and robotics.6, 21-25 

Regarding mechanical properties, origami and kirigami are similar because both 

folding and cutting are mechanical means of dividing thin materials into flexible areas (i.e., 

creases in origami, and linkages in kirigami) and stiff areas (i.e., thin panels in both origami 

and kirigami). Therefore, the mechanical behavior of origami or kirigami structures is 

determined to a considerable degree by the balance between flexibility and rigidity 

conferred by the origami or kirigami pattern. However, origami and kirigami offer different 
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and unique behaviors. An origami structure is folded from the initial planar state into a 

compacted volume,4-9, 12, 15, 16, 18, 20-24, 26-115 whereas a kirigami structure is stretched from 

the initial state into an expanded configuration.10, 11, 14, 17, 19, 25, 116-136 Also, hybrid origami–

kirigami designs are emerging that combine the two concepts to take advantage of both.21, 

22, 81, 92, 98, 120, 137-165 

 

Figure 1. Venn graph with schematics showing the category of origami- and kirigami- 
based mechanical metamaterials. 

1.2 Catogary of Origami and Kirigami-Based Mechanical Metamaterials 

When designing mechanical metamaterials, one of the most important concepts is 

the mechanical energy landscape, which describes how the strain energy varies with 

different geometrical and/or deformation variables in the deformed configuration space of 

metamaterials . The mechanical energy landscape affects almost all the properties of an 

mechanical metamaterial, such as its deployability, stability, and stiffness.2 For example, 

bistability is due inherently to the double local minima of elastic energy,7 and self-

deployment occurs as the mechanical energy decreases along the deployment path.7, 24 

Origami and kirigami both provide elegant ways to design the energy landscape through 

the folding and cutting patterns. As shown in Fig. 1, for some origami and kirigami patterns 
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under specific conditions, the panels remain rigid during deformation and energy is stored 

only in the crease or linkage areas; known as rigid origami or kirigami, this type confers 

more-predictable kinetics and mechanical behavior and is ideal for applications such as 

shape morphing.5, 26, 116-118 Otherwise, the panels deform as well, and elastic energy is 

stored in both the crease or linkage areas and the panel areas; known as deformable origami 

or kirigami, the complex energy landscape of this type offers more programmability 

regarding forces, stiffness, and stability.6, 7, 12, 24, 95 

 

Figure 2. Subcategories of each group of origami- and kirigami-based mechanical 
metamaterials. 

1.3. Mechanical Metamaterials Based on Rigid Origami 

Rigid origami (also known as rigid foldable origami) involves folding and 

unfolding without deforming the origami panels. There are three requirements for origami 

to be rigid: (i) the pattern must be mathematically foldable166; (ii) the panels must be much 

stiffer than the creases; (iii) the material should be under uniform loading along the 

folding/unfolding directions instead of under concentrated, bending, or twisting loads. In 
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rigid origami, elastic energy (or strain) is stored only in the folding creases, so the energy 

can be expressed in terms of only the changes of the dihedral angles of the creases.  

Depending on the transformation mode, rigid origami can be divided into one-DOF 

(i.e., degree of freedom) and multi-DOF types. The DOF of rigid origami depends on the 

number of creases at each vertex,166 e.g., rigid origami with four creases per vertex has 

only one DOF. The best-known one-DOF rigid origami is the Miura pattern, which has an 

elegant geometry and unique mechanical properties.4, 49, 72 Assembled Miura-based 

mechanical metamaterials can be formed by assembling multiple layers of Miura origami 

and have more-complex geometries and performances.40, 43, 54, 64, 72 Multi-DOF origamis 

have more than four creases per vertex, e.g., Ron Resch and waterbomb origamis.4, 22, 39, 50, 

52 Multi-DOF rigid origami is more flexible than one-DOF origami. 

Miura origami (one-DOF) 

As a periodic parallelogram pattern, the Miura pattern was designed by Koryo 

Miura in the 1970s.74  The geometry of Miura origami can be determined by the lengths a 

and b and the plane angle β, and the folding state of Miura origami can be determined by 

the folding angle φ.4, 49, 72 All the other geometric variables during folding (e.g., the dihedral 

angles) can be expressed in terms of these four parameters.4, 72 

The Miura pattern has many unique yet intrinsic mechanical properties during 

folding and unfolding, such as tunable Poisson’s ratio, panel directions, and stiffness.4, 72 

These behaviors of the Miura pattern have been harnessed to make flexible lithium-ion 

batteries,16 artificial muscles,22 heat-dissipation enhancement,122 and solar cells.167 

Depending on the geometry, the Poisson’s ratio can be either negative, positive, or in 
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transition between negative and positive during folding. More interestingly, Miura origami 

exhibits bistability when the geometrical and mechanical parameters are in a specific range, 

thereby conferring efficient deployment.37 By changing the folding direction of Miura 

origami between upward and downward, different chirality can be tuned for 

electromagnetic behaviors.35 Similar functions of Miura origami are used to control 

electromagnetic waves,31, 70 deflect light,58 and reduce radar cross section.71 Miura origami 

also has interesting dynamic properties. By analyzing and designing the transformation 

dynamics of Miura origami, a branching Miura origami structure can have 17 distinct 

configurations activated by different dynamic inputs of a single actuator.168 

The mechanical properties of Miura origami can be programmed by modifying the 

creases. By changing the material distribution at the creases and panels, a metamaterial 

based on Miura origami can have a tunable coefficient of thermal expansion (CTE), from 

negative to zero to positive, with potential applications in aerospace and optics.65 

Stretchable materials are also used at the creases of Miura origami to realize dual stiffness, 

which has been applied in robotics for rapid and robust gripping.21 Moreover, photoactive 

materials and four-dimensional printing methods are applied to control the deformation of 

creases and realize self-folding Miura origami.169 Thin creases design are realized via 

three-dimensional (3D) printing, thereby enabling Miura origami to confer either 

loadbearing or flexibility properties.46 Meanwhile, for enhanced panel rigidity for better 

application in engineering structures, origami with thick panels has been designed and the 

related theories have been developed.27, 75 
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By modifying the geometry of Miura origami facets from periodic parallelograms 

to aperiodic general quadrilaterals, complex surfaces with designed curvature can be 

created.5, 36 The modified Miura origami tessellations can be folded into complex 

curvatures, such as cylinders or spheres.63 Optimization algorithms have also been 

developed for designing the 3D shapes of folded Miura origami.26, 170 Modified Miura 

origami strings are used in robot hands for programmed motions.171 

Assembled Miura origami (one-DOF) 

Although Miura origami has many interesting mechanical properties, the original 

single-layer Miura origami can only be folded as a plane or a shell, which somehow limits 

its applications. To develop metamaterials that can deploy in 3D, the original Miura 

origamis are assembled in different ways to form 3D metamaterials, while keeping their 

original mechanical properties, e.g., negative Poisson’s ratio. The most straightforward 

assembly method is to connect identical Miura origami sheets layer by layer and form 

cellular materials.42 Layer-stacked Miura origami-based mechanical metamaterials are 

flexible in the in-plane directions but stiff along the stacking direction. These simply 

assembled Miura origamis can be used as sandwich cores for anti-blast structures and as 

frequency-selective surfaces.68, 172 

Miura origami sheets with different geometries and layers can be assembled and 

have more interesting and nonlinear mechanical properties. Assembled Miura-origami-

based metamaterials with “ABAB” stacking mode have been designed that enable self-

locking behavior due to their mathematical nonflat-foldability.72 A more general case is 

shown in Fig. 2(d), where the unit cell of the Miura pattern is modified into a collinear 
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pattern consisting of four different parallelograms.54 The assembled metamaterials have 

even more programmability with multi-stage nonlinear force responses. The stacking of 

Miura origami has been widely used for graded stiffness.56, 67, 121 The assembled origami 

has nested-in and bulged-out design with bistability34 and  can be used as a mechanical 

dianode,57 as well as metamaterials with tunable bandgaps.69 The bistability can also be 

realized by coupling the elasticity of origami with magnetics.41 Inspired by the fluid 

mechanism of plants, Miura origami tubes can be assembled with pressurized air pouches 

inside for tunable stability,173 tunable stiffness,64, 174 and vibration isolation.175, 176 

Using nonidentical parallelogram patterns instead of the original Miura pattern, 

tubular origami structures can be designed with reconfigurable polygonal cross sections.30, 

55 Using polygonal cross-sectioned origami tubes as building blocks, cellular origami 

metamaterials with either foldable or self-locking properties can be achieved.33, 177 Another 

family of Miura-derived polygonal tubes is based on the Tachi–Miura polyhedron (TMP), 

fabricated by connecting two identical papers with different patterns.76 The TMP structures 

have negative Poisson’s ratio and bistability between concave and convex configurations.43 

Metamaterials assembled by TMPs provide a platform for forming rarefaction waves 

because of their controllable strain-softening behavior.44, 66 Moreover, TMP structures can 

be tuned between a collapsible state and a load-bearing state.77 

Other than changing the Miura origami pattern in each layer, the manners of 

assembly play an even more important role in tuning the stiffness of Miura origami. By 

assembling two stripes of Miura origami together, a Miura tube can be made.9, 60 A “zipper” 

Miura origami tube made of two perpendicular tubes has much higher bending stiffness 
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than that of the original Miura origami.40 This “zipper” tube design provides Miura origami 

tubes and tessellations with much higher stiffness and so is excellent for load bearing and 

rapid deployment. Zipper-coupled Miura origami tubes are also fabricated using 3D direct 

laser writing fabrication, thereby achieving tunable stiffness and deployability at the 

microscale.15 

Multi-degree-of-freedom rigid origami 

More DOFs are desired in some applications, e.g., multi-state shape morphing. 

When there are more than four creases at one vertex, rigid origami has multiple DOFs. A 

well-known multi-DOF origami is Ron Resch origami, which can be folded in different 

modes. The fully folded state of Ron Resch origami is a flat plate that has remarkable load-

bearing capacity because of its six-fold structure.4 When forming a tubular structure, Ron 

Resch origami still has good load-bearing ability for axial loads because of its negative 

Poisson’s ratio and self-locking phenomenon. Based on these properties, Ron Resch-

inspired structures have been designed for impact protection.47, 178 

Another well-known multi-DOF origami is waterbomb origami (also known as 

magic-ball origami). The unit cell of the waterbomb pattern has six creases on each vertex. 

The unit cell of waterbomb origami has bistability and can represent binary states 0 and 1 

by upward and downward folding, respectively.51, 52, 62 Therefore, the tessellation of 

waterbomb origami can be designed for mechanical logistic calculation,52 in which humid 

sensitive materials are used for the creases to enable humidity-responsive computation. 

Waterbomb origami has also been used for tunable robotic wheels to adapt to different 

environments38; wheels made using waterbomb origami can change radius because of the 
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rich DOFs of the latter. Integrated with a pneumatic system, waterbomb origami has also 

been designed into a soft gripper that can grip different objects by shape transformation.22 

The radius-changing property of waterbomb origami has also been harnessed to design 

crawling robots.34 Under symmetric folding, the number of DOFs of waterbomb origami 

reduces to one, and it can be used in deployable structures with predictable kinetics.73 

Waterbomb origami has been used as a building block to design metamaterials with 

programmable stiffness and deformation,39, 45, 48, 50 and topology optimization has been 

performed on waterbomb-like origami to design actuators with specific movement.29 By 

adding a single quadrilateral face to the unit cell, multi-DOF origami can become one-DOF 

origami and is easier to control.78 

1.4 Deformable Origami-Based Mechanical Metamaterials 

Deformable origami involves storing energy in both creases and panels during 

folding, and so it confers a complex energy landscape and mechanical performances. 

Patterns of deformable origami include rigid-foldable patterns, Kresling/Yoshimura 

patterns, and curved patterns, among others. In rigid-foldable origami, although the panels 

remain rigid during folding in theory, they may still deform in reality. Therefore, these 

patterns are still categorized as deformable origami and specifically deformable rigid 

origami. For the other patterns that are not mathematically foldable, panels must undergo 

deformation to be folded. 

Deformable Rigid Origami-Based Mechanical Metamaterials 

In practice, during folding and unfolding, theoretically rigid origami will introduce 

deformation in the panels, especially when they are flexible. Consequently, these 
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deformable rigid origami patterns have more DOFs and unusual behaviors. For example, 

Miura origami made of paper can be easily bent or twisted, although these deformations 

are not theoretically allowed by rigid-body kinetics.49, 83 Consequently, the deformation 

energy of the panels is as important as the energy stored in the creases when analyzing the 

mechanical responses of deformable rigid origami structures. To analyze the stiffness of 

Miura tubes under bending, eigenvalue analysis is performed by considering the 

deformation of both creases and panels. Zipper-coupled Miura tubes have much higher 

eigenvalues of bending and so are stiffer under bending.40, 106 A bar-and-hinge model can 

efficiently capture the elastic energy of both creases and panels to simulate the mechanics 

of deformable Miura patterns.84, 90, 106 

Deformable rigid origami patterns enable many applications. Considering the 

energy absorption of both crease folding and panel bending, deformable rigid origami has 

been used for impact energy absorption.8, 23, 32, 104 Deformable Miura origami also allows 

flexible and nonuniform deformation that is effective for protecting robots from rotary 

collisions.23 The elastic behavior of panels also enables rigid origami tessellations to work 

as acoustic metamaterials.103 The non-rigid deformation of Miura origami has been 

harnessed for complex shape morphing by using distributed actuators.105, 110 With some 

panels being floppy while others are rigid, the designed metamaterials can have a certain 

number of DOFs and so can be used to store information.28 

Imperfection can be introduced artificially and locally into Miura origami panels to 

reprogram their mechanical properties. Pop-up defects have been introduced at the vertices 

of Miura origami to change the latter into defected stable states.95 Defects on vertices can 
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improve the in-plane stiffness of Miura-origami-based metamaterials. By tuning the 

number and locations of the defects, the stiffness response of the metamaterial can be 

reprogrammed in situ. It has been discovered that small imperfections and modifications 

in rigid origami can influence the mechanical properties considerably.87, 89 Topological 

principles have also been used to understand and design deformable-origami-based 

mechanical metamaterials.85 

Kresling Origami-Based Mechanical Metamaterials 

Kresling origami is folded to a cylindrical shape with triangulated unit cells. The 

folding pattern is shown in Fig 3(c), where the parameters n, α, and β determine the 

geometry as well as the mechanical performance of the Kresling origami. To satisfy the 

flat-foldable condition, the smallest angle of the triangular unit cell is π/n, where n is the 

number of edges per circle.179 By modifying the unit-cell geometry (α and β), Kresling 

origami can become either stiff or flexible. Flexible Kresling origami (left) can be fully 

collapsed from its deployed state and exhibits bistability, whereas diamond origami (or 

Yoshimura origami, which can be modified from the Kresling pattern) is stiff and not 

foldable.7 The differences between Kresling and diamond origamis can be analyzed using 

a truss-based model.7, 91, 96 From the perspective of energy, Kresling origami has double-

well energy and an in-plane strain of less than 2% (as shown in Fig 3(c)). The vanishing 

strain energy at initial and deployed states means that Kresling origami has zero strain at 

both states. For the other configuration of Kresling origami (α = β = 50°), the elastic 

energy under compression increases monotonically and the in-plane strain is much higher. 

Compared with diamond origami, Kresling origami has more unusual mechanical 
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properties, including bistability, tunable stiffness, and coupled compressing-twisting 

deformation. 

One of the most interesting properties of Kresling origami is tunable stiffness. By 

combining the flexible Kresling pattern and the rigid diamond pattern, truss-based 

mechanical metamaterials have been designed for on-demand deployability and tunable 

stiffness.7  In the designed origami-inspired metamaterials, two paths can be triggered 

selectively by direct compressing or twisting-compression, corresponding to a collapsible 

state with low stiffness or a non-collapsible state with high stiffness. The two different 

collapsing paths can be visualized by an energy landscape varying with deploying state and 

rotating state. The metamaterial deploys along the energy valley, where the normalized 

energy has local minimum around 0.1. There are two possible paths for collapsing. Without 

twisting, the metamaterial experiences a load-bearing path where the normalized energy is 

around 1,000. If twist is applied before compressing, the metamaterial enters an easy-

collapsing state, which is the same as the deploying path, and the energy is around 0.1. 

Four orders of magnitude differences of the strain energy during deploying and collapsing 

explain the mechanical responses of the metamaterial. In the load-bearing state, the 

prototyped metamaterials can hold 1,600 times their own weight. A series of Kresling-

origami-inspired structures has been assembled with decreasing stiffness under 

compression loading. When an impact load is imposed on the left side, the strain field 

exhibits a rarefaction wave (i.e., tensile wave) travelling from left to right. This unique 

behavior of the designed Kresling structures can be used in reusable impact-mitigating 

systems. By tuning the compressive stiffness, Kresling origami can also be used for the 
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transmission of rarefaction solitary waves,80 tunable frequency bands,86 tunable dynamic 

behaviors,88 and vibration isolation.99 

The bistability and compression-twist coupling of Kresling origami have been 

explored for other applications, such as mechanical memory operation,81, 96 binary 

switches,79 haptic feedback mechanisms,108 and crawling robots.101, 114 Kresling origami 

has been coupled with magnetism to change the mechanical information remotely.81 The 

coupling between rotation and compression in Kresling origami allows the magnetic field 

to control the origami structure remotely. A Kresling origami unit cell can be triggered into 

binary states 0 and 1 by rotating the magnetic field. By connecting multiple magnetic 

Kresling origamis in series, the designed metamaterial can store binary information and 

perform digital computation via its multi-stable states. 

Curved Origami-Based Mechanical Metamaterials 

Curved origami is origami with curved creases and/or panels. Curved origami has 

a more elegant geometry compared to the corresponding straight-crease origami. Curved-

crease origami has one crease and two panels, compared with similar Miura origami with 

four creases and four panels.6 Moreover, a simple circular strip with a curved crease can 

be folded into unusual buckled and symmetric shapes.109 Because of its elegant geometry, 

curved origami has been used for face shields and generating curved surfaces.20, 111 

Unlike in the aforementioned deformable origami patterns, the bending energy in 

the curved panels makes an important contribution to the mechanical properties of curved 

origami. Recently, curved origami has been designed for the in-situ manipulation of 

mechanical stiffness. By changing the curvature of the curved creases, the stiffness of 
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curved origami can be tuned from negative to zero to positive.6 The crease folding in the 

designed curved origami provides negative stiffness, while the panel bending provides 

positive stiffness. Therefore, via the competing folding and bending deformations, the 

stiffness of curved origami can be elegantly tuned. The energy and force variation of the 

curved origami with negative stiffness is shown on the right side of Fig 4(a). The energy 

of crease folding and panel bending (and stretching) both contributes to the mechanical 

response of the curved origami. However, the strain energy of crease folding contributes 

to the negative stiffness, and the strain energy of panel bending leads to the positive 

stiffness. At small deformation, crease folding and panel bending have similar contribution 

to the total energy, while at larger deformation the panel bending contributes more than 

90% to the total energy. The balance between crease folding and panel bending results in 

the different stiffness of the curved origami, which can be realized by tuning the normalized 

curvature and folding modulus of the curved creases. Because the deformation of panel 

bending is totally elastic, it also resolves the issue of plastic hysteresis on origami creases.6 

The designed curved origami can be applied to robotics and many other fields. In 

deployable and reconfigurable structures, the coupling relationship between crease folding 

and panel bending has been harnessed to design self-folding curved origami, where the 

bending of panels also folds the curved creases.102 A pre-cut curved crease pattern on a 

tube can be used to control the buckling mode and so thus improve the load-bearing 

capacity.112 The bending stiffness of curved origami can be strengthened by corrugation,113, 

115 with application for reinforcing lightweight structures.94 
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Curved-panel origami is origami with curved panels but straight creases. Curved-

panel origami has been designed based on inspiration from the ladybird beetle for fast 

actuation.24 The undeformed configuration of the curved-panel is shown on the left side, 

where the origami consists of a curved compliant facet and a folding crease. At a small 

folding angle, the curved-panel origami has high positive bending stiffness and high 

bending moment, leading to the self-locking property; when the folding angle is larger than 

the critical angle (around 10°), it has negative stiffness and low bending moment, leading 

to the flexible and snap-through collapsing behavior. The prototyped curve-panel origami 

has a self-locking moment of about 0.02 N·m, which is about 20 times higher than its 

folding moment. When released in a folded state, the stored bending energy can quickly 

become dynamic energy, resulting in rapid deployment and locking functions. Curved-

panel origami has also been used in designs such as those for solar deployment systems, 

where smooth panels are preferred rather than discrete creases.107 

Other Origami-Based Mechanical Metamaterials 

Other deformable origami patterns include square-twist origami and hypar bistable 

origami. The folding crease pattern of the square-twist origami has zero DOFs when 

considered as rigid origami, but it has a twisting DOF when panel bending is allowed.12 

Square-twist origami exhibits bistable and bifurcated behaviors and can be used to build 

mechanical metamaterials with multi-stability. With α = 45°, the negative stiffness of 

square-twist origami leads to a snap-though phenomenon, while with α = 10°, the square-

twist origami has only positive stiffness and no snap-through is observed. The bending of 

panel provides negative stiffness while the folding of creases provides positive stiffness. 
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By changing the angle α, the energy landscape of both the crease bending and panel folding 

alters. Larger angle α will result in higher bending energy but lower folding energy. At α = 

45°, the square-twist origami has the most pronounced bistability and negative stiffness. 

By using thermally reactive materials, metamaterials based on square-twist origami have 

been designed with five stable states and self-deploying properties.100 Another deformable 

origami is hypar origami with a pattern of concentrically pleated squares. Hypar origami is 

folded between two saddle-shaped stable states.82, 93 During deformation, the crease folding 

energy, panel bending energy, and panel stretching energy vary. Among the three energies, 

the panel stretching energy has the least contribution to the total strain energy (i.e., less 

than 5%). At the two stable states, crease folding and panel bending have a similar 

contribution to the strain energy. When the hypar origami is closing to the planar state, 

folding has larger contribution; when the hypar origami is more bent, panel bending has 

more contribution. The bistability and negative stiffness of hypar origami is mainly resulted 

from the crease folding deformation, since the crease folding provides a double-well energy 

landscape while the panel bending provides much lower energy gaps. Based on those 

distinct mechanical behaviors, the hypar origami can be used to from multi-stable meta-

surfaces with non-Euclidean geometries. 
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CHAPTER 2 

ORIGAMI WITH TUNABLE DEPLOYABLILITY 

2.1 Introduction 

A deployable structure is a structure that can reconfigure and change shape/size 

mainly from folding and unfolding, and has many applications from daily essentials (e.g., 

umbrella), vascular stents180, to solar panels181 for spacecraft. Origami, the art of paper 

folding, thus naturally provides inspirations for deployable structures. In addition to 

deployable structures, origami recently has gained lots of attention as it has offered an 

appealing strategy on the development of 3D architectures across different length scales182-

184 and metamaterials with tunable properties65, 185-190. Many origami-inspired deployable 

structures are based on rigid origami patterns, in which the kinematic deformation is solely 

limited to the folding lines while the panels remain undeformed. Well-known 

representatives of deployable rigid origami patterns are the Miura folding181 and its 

derivates185, 191. In addition to rigid origami, another type of origami is deformable origami 

where the panels and the folding lines all bear deformation, such as the twisted square 

pattern192. Due to the simplicity of the kinematics of rigid origami, much attention has been 

focused on this type of origami. 

Despite of recent active research in origami and related deployable structures, one 

critical aspect seems being overlooked: if the deployed structure can remain at the deployed 

state under loading, such as vibration experienced by a deployed structure used in 

spacecraft. From the perspective of mathematics of origami, deployability means the 

kinematics of the pattern geometry allows deploy and collapse. Since this is a pure 
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mathematic point of view, there is no energy associated with deploy and collapse. 

Therefore, a deployable structure at the same time also allows it to collapse through which 

it deploys. Thus, easy deploy, one of the many attractive attributes of some origami patterns 

(e.g., Miura pattern and its derivates), simply also indicates easy collapse. In addition to 

utilize mechanical mechanisms to lock the deployed state, the discovery of deployable and 

yet stiff origami patterns, such as zipper-coupled tubes185, has gained attentions. However, 

the stiffness along the deploying direction is not enhanced in order to ensure readily 

retracting to the collapsed state in the same way it deploys. To fully harness the exemplar 

properties of origami in terms of its deployability and tunable properties, it is essential to 

create a deployable structure with on-demand deployability and collapsibility, i.e., while 

keeping the easy deploy, the collapse can be selective, either hard or easy, depending on 

the collapse path. 

 
Figure 3. Crease pattern of a triangulated cylinder origami. 
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Figure 4. The load-bearing performance of different triangulated cylinder origami. 

Here in this paper, an origami – inspired mechanical metamaterial was created with 

on-demand deployability, collapsibility, and tunable stiffness, where the deploy and 

collapse can follow two paths. Thus, easy deploy and hard collapse, seemly contradictory 

attributes, are achieved simultaneously. The metamaterial is inspired by a triangulated 

cylinder pattern193, 194 that has been studied as one type of deformable origami patterns. Its 

crease pattern is shown in Fig. 3. By altering the angles α and β, two distinct cylinders can 

be folded (Fig. 4). For α = 38o and β = 30o (left panel of Fig. 4), a construction paper-folded 

triangulated cylinder can be deployed in the axial direction but at the same time a small 

compressive load (e.g., a 100-g weight) will collapse it along the same way. This suggests 

an “easy deploy and easy collapse” structure. For α = 50o and β = 50o (right panel of Fig. 

4), the construction paper-folded cylinder is not deployable (or collapsible) and can bear 

much larger compressive load (e.g., a 500-g weight). This pattern is “hard deploy and hard 

collapse”. This paper combined these two patterns and created an on-demand “easy deploy 

and selective collapse” origami-inspired truss structure, as illustrated by the middle panel 

of Fig. 4. To create such a metamaterial, I first analyzed the deformation energy of 
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triangulated cylinder patterns and elucidated the deployability and collapsibility from the 

energy and strain perspectives. This provides an inspiration to develop this metamaterial 

by employing a member with an asymmetric tensile and compressive behavior and leads 

to distinct deploy and collapse paths. A representative model was then built and its on-

demand deployability and collapsibility along with tunable stiffness were characterized. 

This work provides an unprecedented and unappreciated perspective to achieve truly 

deployable and stiff origami-inspired mechanical metamaterial with great on-demand 

tunability, which can find tremendous applications in many fields. 

2.2 Results 

Deformation energy analysis of triangulated cylinder patterns 

The triangulated cylinder has many identical triangles and its unit cell is highlighted 

in Fig. 3 and can be characterized by three parameters, namely one side a, two angles, α 

and β. The lengths of three folding lines at the planar state are given by ABL a= , 

sin
sinBCL a α

β
= , and ( )sin

sinACL a
α β

β
+

= . n is the number of triangles to sew the right and 

left boundaries for a closed cylinder, i.e., n = 6 for Fig. 3. At the folded cylindrical state 

(Fig. 5), the positions of the representative unit cell ABC∆  are characterized by the height 

h and twist angle φ between two neighboring lines in the vertical direction, as well as the 

radius r of the triangulated cylinder. Thus, the lengths of the three folding lines at the folded 

state are given by 2 sinABl r
n
π =  

 
, 2 2 22 cos 2BCl h r rφ= − + , and 

2 2 222 cos 2ACl h r r
n
π φ = − + + 

 
. As illustrated by Fig. 5, there are many folded 
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cylindrical states characterized by different height h, twist angle φ, and radius r, which 

apparently cannot be determined by three constants a, α, and β. Strains ABε , BCε , and ACε  

are thus introduced as variables to link these three variables (h, φ, and r) to three constants 

(a, α, and β), e.g., AB AB
AB

AB

l L
L

ε −
= . For the sake of simplicity, the deformation of the panel 

(i.e., ABC∆ ) is solely concentrated at the three folding lines, AB, BC, and AC. In other 

words, the unit cell is represented by a three-member truss structure. Thus, the deformation 

energy stored in one strip as marked in Fig. 3 is given by 

( )2 2 2

2 AB AB BC BC AC AC
nEAU L L Lε ε ε= + + , where EA is the tensile rigidity of the truss. At a 

given height h, i.e., a prescribed deploy/collapse height, minimization of the deformation 

energy U with respect to twist angle φ and radius r gives the folded states.  

 
Figure 5. Geometrical parameters to define the folded states of triangulated cylinder 

origami. 
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Figure 6 shows the variation of normalized deformation energy 
total

U
EAL

 and 

strains in AB, BC, and AC members during the deploy and collapse processes for the 

triangulated cylinder in the left panel of Fig. 4 ( 38α °=  and 30β °= ), characterized by 

normalized height 
AB

h
L

 with 0
AB

h
L

=  for a completely collapsed state. Here 

( )total AB BC ACL n L L L= + +  is the total length of the truss members. The 3D illustrations 

were generated using the calculated results. The deformation energy suggests an apparent 

bistable states, where both the completed collapsed state and deployed state have the 

minimum energy. An energy barrier exists between these two equilibrium states, which 

indicates that this energy barrier needs to be overcome during deploy and collapse. It is 

observed that the strains are vanishing at the two equilibrium states and the maximum strain 

during the processes of deploy and collapse is approximately 1%, which is within the 

fracture strain of construction papers195, 196. The triangulated cylinder is thus clearly a 

deformable origami. The same deploy and collapse paths indicate this pattern does not 

possess on-demand or selective deployability and collapsibility. 
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Figure 6. Energy landscapes and strain variations during the deploy and collapse 

processes for a collapsible pattern. 

 
Figure 7. Energy landscapes and strain variations during the deploy and collapse 

processes for a load-bearable pattern. 
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For another triangulated cylinder shown in the right panel of Fig. 4 (with 50α °=  

and 50β °= ), as shown in Fig. 7, qualitatively distinct deformation energy and strains 

present. Instead of a bistable state as in Fig. 6, the completed collapsed state is no longer 

an equilibrium state but rests at an elevated energy state, and only the deployed state 

remains at the equilibrium configuration. This energy landscape indicates that the deploy 

process can be autonomous since there is no energy barrier, and during collapse, there is 

an energy barrier to overcome. Moreover, this energy barrier is about 600 times higher than 

that in Fig. 6. However, this origami pattern cannot be claimed as an “easy deploy but hard 

collapse” pattern because of the large strain. The maximum strain exceeds 10%, which in 

fact explains the reason construction paper-folded pattern cannot be collapsed (right panel 

of Fig. 4) because a construction paper cannot bear this large strain. This pattern has been 

considered as non-foldable origami. However, the energy landscape indicates that this 

origami pattern is in fact foldable, but the required strain cannot be achieved using paper 

as the folding materials. Another distinct feature of this pattern is that the strain for the 

members varies between tension and compression. For example, AC truss is in tension 

during most of the deploy process and turns compressive right before reaching the deployed 

state. For collapse, AC member needs to be compressed and then stretched.  
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Figure 8. Energy landscapes and strain variations during the deploy and collapse 

processes for a mechanical metamaterial inspired by a triangulated cylinder origami. 

The distinct strain variations between Fig. 6 (for 38α °=  and 30β °= ) and Fig. 7 

(for 50α °=  and 50β °= ) are attributed to the measure of another angle ABC∠  in the unit 

triangle (Fig. 3). When 90ABC °∠ > , the strain in each member remains tension or 

compression throughout the deploy and collapse processes (e.g., in Fig. 6). When 

90ABC °∠ < , the strain may vary between tension and compression (e.g., in Fig. 7). The 

threshold is 90ABC α β °∠ = + = , which is a catastrophic point that governs the strain 

variations in AC and AB trusses197. Non-energy barrier, and particularly strain variation 

between tension and compression, together suggest an origami-inspired mechanical 

metamaterial to achieve “on-demand deploy and selective collapse”. 

Rationale of origami-inspired mechanical metamaterials with on-demand deploy and 

collapse 
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An on-demand deploy and collapse needs “easy deploy” and “selective collapse”. 

In other words, distinct and selective deploy and collapse paths are necessary. The strain 

paths of AC and AB trusses that vary between tension and compression suggest such a 

possibility: if AC truss is easy to be stretched and hard to be compressed, or AB truss is 

easy to be compressed and hard to be stretched, the desired distinct and selective deploy 

and collapse paths should become possible. For the same triangulated cylinder pattern with 

50α °=  and 50β °= , I have studied three combinations with asymmetric 

tension/compression behavior for just AC, just AB, and both AC and AB. The details of AC 

truss are provided here because it offers the most desired energy landscape and is 

experimentally achievable. AC truss is assigned an asymmetric tension/compression 

behavior. Its tensile rigidity is four orders of magnitude smaller than its compressive 

rigidity that is as the same as that for AB and BC trusses. Now the deformation energy and 

strain variation are shown in Fig. 8. In addition to the similar energy landscape that the 

collapsed state has an elevated energy and the deployed state is at equilibrium, an 

apparently distinct feature for the deformation energy is that during collapse, a different 

path appears (○1  -> ○2  -> ○3  -> ○4 ) with a much higher energy barrier for collapse. Thus, 

during deploy, the energy decreases and the collapsed state autonomously deploys; AC 

truss experiences large strain while other members barely deform because of the low tensile 

rigidity of the AC truss. While during collapse through path ○1  -> ○2  -> ○3  -> ○4 , in which 

the strain variations are marked as the dashed lines, the energy barrier can be very high 

because of the high compressive rigidity. It is noted that the strain in BC member during 
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collapse (dashed line) is too high to be practically achievable and thus the high energy 

barrier just represents an ideal limit. 

 
Figure 9. Energy contour showing two collapse paths. 

 
Figure 10. The configurations of the mechanical metamaterials along two collapse paths. 

At the completely deployed state, a subtle feature that the height h is not at its 

extrema in fact defines two selective collapse paths. The first collapse path is distinct from 

the deploy path (i.e., ○1  -> ○2  -> ○3  -> ○4 ). It starts by directly compressing the structure, 

i.e., decreasing height h, and leads to a much higher energy barrier. The second collapse 
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path (i.e., ○1  -> ○5  -> ○3  -> ○4 ) is by firstly increasing the height h (○1  -> ○5 ) followed by 

a compression (○5  -> ○3  -> ○4 ), which leads to the same path as deploy. Consequently, an 

on-demand deploy and collapse origami-inspired mechanical metamaterial is just created 

that can always be autonomously deployed and selectively collapsed, hard or easy, 

depending on two different paths.  

 
Figure 11. Tunable reaction force and stiffness of the origami-inspired mechanical 

metamaterial during deploy and collapse. 

This new deploy and collapse property can be further shown in the contour plot of 

the deformation energy as a function of height h and twisting angle φ (Fig. 9). The deploy 

path is along the minimum energy “valley” from the collapsed state to the deployed state 

(i.e., an equilibrium state). The zoom-in near the deployed state (marked as ○1  in Fig. 10) 

shows that the deployed state does not have an extreme height h. The first collapse path 

(○1  -> ○2  -> ○3  -> ○4 ) involves directly decreasing the height h and thus experiences a very 
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high energy barrier, i.e., hard collapse. The second collapse path (○1  -> ○5  -> ○3  -> ○4 ) 

needs to increase the height h to pass the extrema (○5 ) and then decreasing, which leads to 

the same path as deploy. To pass the extrema from the deployed state, i.e., ○1  -> ○5 , a 

tensile load in the axial direction (i.e., along the deploy direction) or a torque to change the 

twisting angle φ needs to be applied. The 3D configurations (i.e., ○1  to ○5 ) are based on 

the calculated results.  

This structure also has tunable axial reaction force and stiffness. The normalized 

axial reaction force AB

total

L U
EAL h

∂
∂

 and stiffness 
2 2

2
AB

total

L U
EAL h

∂
∂

 are provided in Figs. 11. At 

the collapsed state, both the reaction force and the stiffness are infinitesimal, which 

suggests just a vanishing force is needed to hold the collapsed structure. At the deployed 

state, for the easy collapse path (○1  -> ○5  -> ○3  -> ○4 ), a very small axial force, in tension 

and then in compression is needed to collapse the structure. The corresponding stiffness is 

also low. It is apparently different from that for the hard collapse path (○1  -> ○2  -> ○3  -> 

○4 ), a compressive axial force with magnitude 12,000AB

total

L U
EAL h

∂
≈

∂
 (2,000 time higher 

than that for the easy deploy path) needs to be applied in order to collapse the structure. 

The corresponding stiffness is also 3 orders of magnitude higher than that for the easy 

deploy path.  

As can be imagined, the variation of deformation energy strongly depends on the 

geometry of the crease patterns, specifically, the number of triangles in the circumferential 

direction n, angles α, and β. Another pattern was also studied, with n = 4, 50α °= , and 
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50β °= . The pattern has a collapsed state with elevated energy and an equilibrium state 

for a deployed configuration. Also, distinct deploy and collapse paths also present when 

the asymmetric tension/compression behavior is prescribed. It also confirms that the 

condition 90α β °+ ≥  leads to this behavior and n does not play an important role. Thus, 

these two structures all suggest an on-demand deployability and collapsibility: autonomous 

deployability and selective collapsibility.  

Deformation energy analysis of triangulated cylinder with n = 4, 50α °= , and 50β °=  

However, there is still an energy barrier to overcome from the collapsed to deployed 

states, which is similar to that shown in Fig. 6. This energy barrier is about 300 times higher 

than that in Fig. 2a. For strain variations, the maximum strain exceeds 10%, such that a 

construction paper-folded pattern cannot be collapsed because a construction paper cannot 

bear this large strain. Also, similar to the strains in Fig. 2b, strains vary between tension 

and compression. For example, AC truss is in tension during the most of the deploy process 

and turns compressive right before reaching the deployed state. 

The energy landscape and strain distribution for the triangulated cylinder with n = 4, 

50α °=  and 50β °=  are shown in Fig. 12. It can be seen that this pattern shows very similar 

feature as that for n = 4, 50α °=  and 50β °= . Specifically, the completed collapsed state is 

at a higher energy state and the deployed state remains at an equilibrium configuration. 

However, there is still an energy barrier to overcome from the collapsed to deployed states, 

which is similar to that shown in Fig. 6. This energy barrier is about 300 times higher than 

that in Fig. 6. For strain variations, the maximum strain exceeds 10%, such that a 

construction paper-folded pattern cannot be collapsed because a construction paper cannot 
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bear this large strain. Also, similar to the strains in Fig. 7, strains vary between tension and 

compression. For example, AC truss is in tension during the most of the deploy process 

and turns compressive right before reaching the deployed state. 

 
Figure 12. Energy landscapes and strain variations during the deploy and collapse 

processes for origami with n = 4. 

Similar to Fig. 8, AC member is assigned asymmetrical tension and compression 

behavior. Figures 13 and 14 show the energy landscape, strain variations, and stiffness. 

This pattern again shows autonomous deploy and selective collapse as there are two 

collapse paths, with one for easy collapse and one for hard collapse. 
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Figure 13. Energy landscapes and strain variations during the deploy and collapse 

processes for a mechanical metamaterial with n = 4. 

 
Figure 14. Tunable reaction force and stiffness of the origami-inspired mechanical 

metamaterial with n = 4. 
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Figure 15. Energy contour showing two collapse paths of metamaterials with n = 4. 

 
Figure 16. Two collapse paths of metamaterials with n = 4. 

Experimental realization of on-demand deployable and collapsible origami-inspired 

mechanical metamaterials 
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To realize the merit of on-demand deployability and collapsibility, models were 

built using standard components, such as bolts, rod end bearing, springs, tubes, and acrylic 

plates. Figure 20 shows the deployed and collapsed states. The list and details of the 

components are provided in Table 1. The key component to achieve the 

tension/compression asymmetrical behavior is AC, consisting of a spring inside a tube, 

where the spring bears tension while the tube resists compression. Rod end bearing enables 

smooth rotation at the joints. The design has deployability and selective collapsibility yet 

strong load bearing capability of the mechanical metamaterial. I characterized the load 

bearing capability of this origami-inspired mechanical metamaterial by directly placing the 

deployed structure between two plates of a uniaxial compression machine, and the 

load/displacement curve is shown in Fig. 21, provided with a few representative snapshots 

of the metamaterial during compression. For the 1st compression, the maximum load 

approached 2,700 N, more than 1,600 times of the weight of this metamaterial (~160 g). 

Beyond the peak compressive load, a few BC members fractured and the load dropped. 

The fractured members after compression is consistent with the strain variation in Fig. 8 

where BC member bears larger strain while being collapsed along the path 2, i.e., hard 

collapse path. After the 1st compression, the structure can still be deployed and collapsed, 

though with a few BC members fractured. Then the deployed structure with a few fractured 

BC members after the 1st compression was subjected to the 2nd compression. The peak load 

can achieve ~ 1,500 N, which is still 900 times its weight. This defected structure is still 

deployable and collapsible, though the collapsed configuration is not perfect. A 3rd 

compression was run and again this very damaged structure can still carry significant load 
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~ 1,500 N. With more BC members fractured after the 3rd compression, the on-demand 

deployability and collapsibility still present. These observations confirm this origami-

inspired metamaterial possesses on-demand and defect insensitive deployability and 

collapsibility. The unprecedented load bearing capability leads to more practical 

applications.  

 
Figure 17. A spring inside a tube to achieve tension/compression asymmetry. 

 
Figure 18. Rod end bearing which enables smooth rotation. 
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Figure 19. SolidWorks model for the truss-based mechanical metamaterial. 

 

Table 1. List of components to build the truss-based mechanical metamaterial 
No. Description Quatity 
1 M2 × 10mm screw 12 
2 M2 × 25mm screw 12 
3 M2 × 40mm screw 6 
4 Spring 6 
5 M2 hex nut 48 
6 M4 hex nut 48 
7 Tube 2mm × 27mm 6 
8 Tube 2mm × 43mm 6 
9 Customized M4 × 

20mm screw 
24 

10 Customized PMMA 2 
11 Rod end bearing 24 
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Figure 20. Photos of the structure at the deployed and collapsed states. 

 
Figure 21. Load versus displacement curve for the metamaterial under compression. 

As shown in Fig. 22, simpler version of this origami-inspired mechanical 

metamaterial can be built by just using construction papers and rubber bands. A rubber 

band inside of a tube made of construction paper functions as the asymmetric 

tension/compression member. The similar load bearing and on-demand deployability and 

selective collapsibility have been achieved.  
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Figure 22. Rubber band design of the origami inspired metamaterial. 

2.3 Discussion 

 We have introduced an on-demand deployable and selectively collapsible origami-

inspired mechanical metamaterial whose configurations and stiffness are greatly tunable, 

depending on different states and loading paths, which leads to many unprecedented 

applications as reconfigurable and stiff mechanical metamaterials. The principle 

discovered in this work can be readily applied to other metamaterials. Still taking 

triangulated cylinder as an example, one can simply increase number of triangles (i.e., n) 

to create a deployable cylinder or tube with great axial stiffness. By altering the angles α 

and β with 90α β °+ ≥ , the strains can be designed eventually across AB, BC, and AC 

members during the hard collapse path and all strains do not exceed the fracture threshold 

of the constitutive materials; thus, one can create on-demand deployable and very stiff 

mechanical metamaterials. The lesson to create such a metamaterial can be greatly 

extended to other structures by achieving non-monotonic strain path, or in other words, 

deformable origami with interesting strain path. Though deformable origami was not 

extensively studied or discovered, one can create deformable origami patterns using rigid 

origami as the building block. For example, two Miura unit cells can be brought together 
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to form composite, deformable origami patterns. The similar approach has been utilized to 

create a Miura tube185, though this tube is a rigid origami because it satisfies a certain 

constraints. Without these constraints, the formed composited origami patterns are in 

general deformable. It is expected that this work can be employed to create more versatile 

mechanical metamaterials with tunable deployability and stiffness. 
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CHAPTER 3 

ORIGAMI WITH TUNABLE STIFFNESS 

3.1 Introduction 

The stiffness of a material or a structure is of key importance in most, if not all, 

applications, with positive stiffness as a common property for bearing loads and 

transferring motion 198, zero (or quasi-zero) stiffness for vibration isolation and protection 

199, and negative stiffness for fast switching between states 200, high-speed actuation 201-203, 

and programmed deformation 204. Many species possess ingenious mechanisms to switch 

among different stiffnesses to maintain motion, save energy, or deliver high power 205, 206. 

Scientists and engineers have also deliberately created various means to manipulate 

stiffness for various applications, including in automotive 207, robotics 208, and aerospace 

components 209. However, these mechanisms are rather complicated (e.g., spring structures) 

and often require considerable energy inputs (e.g., electromagnetic and piezoelectric 

mechanisms 203, 210), which unfortunately cannot be employed in size-limited applications 

(e.g., small robots 211, soft robots without rigid parts 212 or passive systems without power 

input 213), even though these applications may represent the true need for in situ stiffness 

manipulation. To somewhat circumvent the complex structures and expensive energy input, 

mechanical metamaterials have been designed to achieve stiffness manipulation using 

simple mechanisms 40, 95, 214, 215; however, for a given metamaterial, the range of 

manipulation is limited and cannot switch all the way from positive to negative. 

Mechanical metamaterials with elegant mechanisms for manipulating the stiffness of the 

structure in situ covering positive, zero, and negative ranges are highly desired. 
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Origami provides an elegant means to design metamaterials with tunable properties, 

such as diverse spatial configurations 40, 216-218, on-demand deployability 7, controllable 

multistability 219, and tunable thermal expansion 65 and stiffness 7, 40, 54, 64, 95, 220. However, 

these strategies for tunable stiffness cannot achieve in situ stiffness manipulation, i.e., the 

stiffness cannot be altered on demand once the pattern is determined. In addition to the 

incapability for in situ stiffness manipulation, note that the current origami-based 

metamaterials are solely based on straight-creased patterns, particularly the so-called rigid 

origami patterns, in which the deformation energy is theoretically only stored at the creases, 

not in the origami panels. For example, the well-known Miura pattern and its derivatives 

have been extensively utilized 4, 40, 95, 220. Though simple, rigid origami patterns have an 

inherent limitation when used for tunable stiffness, a single energy input from the folding 

of creases leads to a simple energy landscape and thus a limited range of stiffness tunability. 

To create a complex energy landscape, another energy input should be considered: energy 

in the origami panels. Deformable origami falls in this category, although the candidate 

patterns are very limited 7. In addition to in-plane energy in the panel, bending energy in 

the panel can also be introduced. By combining folding energy at the creases and bending 

energy in the panel, curved origami can be created 109. In contrast to straight creases, there 

can be multiple curved creases between two points rather than just one straight crease 221. 

The competition between bending energy in the panel and the folding energy at the creases, 

along with multiple curved creases between two points, would lead to in situ stiffness 

manipulation covering positive, zero, and negative ranges, which forms the key aspects of 

this paper. 
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In this dissertation, I designed a family of curved origami-based metamaterials for 

in situ stiffness manipulation. A specific unit cell of curved origami-based metamaterials 

was studied, which can be manipulated in situ to exhibit positive, zero, or negative stiffness 

and functions as a fundamental building block to design curved origami-based 

metamaterials with different stiffnesses. Then, three applications were presented to 

demonstrate the unique functions of the metamaterials: a curved origami-based gripper 

with a negative-stiffness rapid mode or a positive-stiffness precise mode, curved origami 

cubes for in situ switching between a zero-stiffness vibration isolation mode and a positive-

stiffness responsive mode, and a two-dimensional modular metamaterial for programmable, 

multistage stiffness responses upon homogenous loading. This work provides an 

unprecedented principle for curved origami-based mechanical metamaterials for in situ 

manipulation of stiffness in full ranges, which can be applied in many fields. 

3.2 Results 

Rationale of curved origami-based in situ stiffness manipulation 

We started by studying two fundamental deformation modes of origami, namely, 

crease folding and panel bending, with the former for the deformation between creases and 

the latter for that in the panel. Figure 23 shows the simplest folding (hereinafter referred to 

as “folding I”) where a horizontal valley crease (marked by a dashed line) is subjected to a 

compressive load F in the vertical direction. As rigid origami, the only resistance during 

compression is from the bending at the creases, which provides positive stiffness during 

the 1st loading cycle. Upon unloading, the plastic deformation leads to a permanent shape 

and defines the folded state. The 2nd loading cycle follows the unloading path of the 1st 
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cycle, and the subsequent loading/unloading cycles follow the same route. Another folding 

mode (hereinafter referred to as “folding II”) is when the folding direction is close to the 

loading direction (Fig. 23), where a common cell for quadrilateral rigid origami (e.g., 

Miura pattern)—a single-vertex, four-crease pattern with an angle 80β = o   between a 

mountain crease (marked by solid line) and valley creases (marked by dashed lines)—is 

subjected to a compressive force F in the vertical direction. Upon compression, this rigid 

origami exhibits a higher positive stiffness than that shown in Fig. 23. In fact, as shown in 

the analytical analysis in the Appendix B, for an ideal rigid origami, the initial positive 

stiffness should be infinite. Then, this positive stiffness quickly transitions to a negative 

stiffness due to the snap-through at the two vertical valley creases. Theoretical analyses 

and experimental tests have shown that a positive to negative stiffness transition appears 

for larger β angles. Upon unloading, this pattern has plastic deformation, which is also 

observed in other “folding II” deformations with different β angles. The 2nd loading cycle 

follows the unloading path of the 1st cycle and does not exhibit negative stiffness, because 

the permanent folded state after the 1st load has exceeded the critical point for the snap-

through of the vertical creases. These two types of crease folding describe the key features 

of rigid origami: positive stiffness from the creases perpendicular to the loading direction 

and negative stiffness from the creases close to the loading direction due to snap-through, 

though the negative stiffness may not reappear after the 1st loading cycle. The third 

deformation mode is simply a bending mode, which provides positive stiffness and elastic 

deformation (Fig. 23). When the vertical straight creases are replaced with a curved crease 

and the horizontal creases are replaced by the bending mode, curved origami appears. 
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Depending on the curvature of the curved crease, negative stiffness may occur during 

compression due to the snap-through when the curvature is small (corresponding to a larger 

β angle for straight creases), whereas the bending mode provides positive stiffness. 

Connecting two points, there can be multiple curved creases with different curvatures (κ1, 

κ2, κ3) and possibly different stiffnesses (H1, H2, H3) via means such as creases with 

different thicknesses (Fig. 24), which would provide a means to switch in situ between 

different modes for various stiffnesses. This is the rationale to use curved origami for 

stiffness manipulation. 

 
Figure 23. Mechanical behaviour of a unit cell of the Miura origami 

 
Figure 24. Mechanical behaviour of a unit cell of the curved origami 
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Finite element simulations were conducted in ABAQUS to study the stiffness of 

the square-shaped panel (length a, thickness t, and elastic modulus E) with the coexistence 

of three arc-shaped creases (curvatures κ1, κ2, and κ3) in the middle (Fig. 24). Details of 

the finite element simulation can be found in APPENDIX B. The crease modulus H is 

defined as the applied bending moment per folding angle per crease length and is 

normalized as 
3

HaH
Et

= . The arc-shaped crease can be activated by applying a bending 

deformation α = 70° (Fig. 24), and then a compressive load is applied (Fig. 24). For a 

specific crease modulus 1 2 30.07, 0.03, and 0.01H H H= = = , the deformed configurations 

and the relationship between the normalized force F  (
3

Fa
Et

= ) and the compressive 

displacement u  ( u
a

= ) are shown in Fig. 24. Clearly, the same square with different creases 

has different stiffness values, which can be positive, zero, or negative, as highlighted in the 

blue shadowed area. Specifically, crease ○1  (shown in green) with a smaller curvature κ1 

exhibits negative stiffness due to the snap-through similar to the folding II mode in Fig. 23, 

crease ○2  (shown in black) with a median curvature κ2 exhibits zero stiffness, and crease 

○3  (shown in red) with a larger curvature κ3 exhibits positive stiffness. Hence, hereinafter, 

I use red, black, and green to represent positive, zero, and negative stiffness, respectively. 

Thus, the correlation between the curvature and the origami stiffness provides an elegant 

way to manipulate stiffness. 
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Figure 25. Normalized total energy, bending energy, and folding energy of the curved 

origami with crease 1 activated as a function of normalized displacement. 

Figure 25 presents the essential mechanism for using curved origami to provide in 

situ stiffness manipulation. During the collapse of curved origami, there are two parts of 

deformation energy: panel bending energy and crease folding energy. For curved origami 

with only crease ○1  activated (Fig. 24), the normalized bending energy in the panel bU

( 3
bU

Et
= ), the folding energy at the curved crease fU ( 3

fU
Et

= ), and the total energy totU

( 3
totU

Et
= ) are plotted for various displacements u  ( u

a
= ) in Fig. 25 (a). The total normalized 

reaction force totF  ( 3
totUFa

Et u
∂

= =
∂

), which is the derivative of the energy with respect to the 

displacement, can also be divided into two parts: bF  ( bU
u

∂
=

∂
) due to panel bending and fF  

( fU
u

∂
=

∂
) due to folding at the crease, which are plotted in Fig. 25 (b) for crease ○1 . It is 

found in all cases that the forces due to panel bending bF  and crease folding fF  are 

increasing and decreasing during compression, respectively. Now, it is clear that the 
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bending deformation of the panel provides positive stiffness, whereas the folding at the 

curved crease provides negative stiffness. By adjusting the contributions of the panel and 

crease, positive, zero, and negative stiffness can be achieved. 

 
Figure 26. Comparison of the deformation, stress contour, and force-displacement 

relationship for curved origami with three coexisting creases but only one activated 
crease and its counterpart with only one curved crease. 

Individual activation of one of multiple coexisting curved creases without (or with 

negligible) interference is a required characteristic for in situ stiffness manipulation using 

curved origami. To verify this characteristic, Fig. 26 (a) compares the deformation and 

stress contour for curved origami with three creases but only one activated crease (Fig. 24) 

and its counterpart with only one curved crease at a given normalized displacement 

0.15u = . It is clear that these two scenarios are undifferentiable at a given displacement. 

The relationship between the reaction force F  and displacement u  for curved origami 

with three creases but only one activated crease and its counterpart with just one crease is 

shown in Fig. 26 (b), where negligible differences are observed for a given displacement 

range 0.025 0.075u< <  for all three curvatures. Moreover, finite element simulations show 

that only one crease can be activated at a given time, thus ensure the precise control of 



 

  48 

creases. The negligible interference among the curved creases suggests that the design 

principle for a single curved crease can be applied to design curved origami with multiple 

curved creases, providing astounding merit to build a universal phase diagram of a single 

curved crease through two control parameters: normalized curvature κ  ( aκ= ) and crease 

modulus H  ( 3

Ha
Et

= ). Figure 27 (a) provides such a phase diagram for a single crease with 

a normalized curvature 0.4 1.8κ< <  and a crease modulus 0.01 0.09H< < . More than 400 

cases were simulated through finite element analysis to calculated the stiffness k  (
2

3

ka
Et

= ), 

and an interpolation was conducted to smooth the plotting. It is observed that by changing 

the two control parameters κ  and H , one can readily design curved origami that exhibits 

a wide spectrum of stiffness k  (
2

3

ka
Et

= ), including positive, zero, and negative values. 

Given that it is not operationally trivial to change the crease modulus H  and that it is 

relatively easy to alter the curvature κ , I presented a relationship between the reaction 

force F  and the displacement u  for a given crease modulus 0.05H =  and varying crease 

curvatures 0.4, 0.8, 0.9,1.4, and 1.7κ =  in Fig. 27 (b), where the dots in dark red to dark 

green are also shown in Fig. 27 (a). This figure again shows that in practice, one can achieve 

positive, zero, and negative stiffness by simply changing the curvature of a crease. Given 

the negligible interference among different creases, Fig. 27 (a) essentially provides a design 

map to create origami with multiple curved creases with any range of stiffness 

manipulation in two steps: (1) choosing a desired value of stiffness k  from the stiffness 

phase diagram and (2) then locating the corresponding crease curvature and crease modulus. 
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I will demonstrate the in-situ stiffness manipulation of curved origami using the following 

three applications. 

 
Figure 27. Phase diagram of normalized stiffness for single-crease curved origami with 

different normalized curvature and crease modulus 

  
Figure 28. Force-displacement relationship of single crease curved origami. 
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Demonstration I: A lightweight, universal gripper 

The first demonstration is a lightweight, universal gripper with two modes: a 

negative stiffness mode for fast gripping and a positive stiffness mode for precise gripping. 

The gripper consists of two plastic films: one handler with an ON/OFF switch for fast and 

precise gripping and one clipper for gripping objects (Fig. 29). The ON/OFF switch is 

realized by activating two curved creases (dashed green lines, κ  = 0.46, and H = 0.072) 

with negative stiffness ( 0.489 N/mmFk
u

∆
= = −

∆
at 0.3 mm < u < 2 mm; k = -0.016 N/mm at 

3 mm < u < 12 mm) for ON and deactivating the creases for OFF (k = 0.001 N/mm at 0.3 

mm < u < 12 mm). The clipper has two curved creases (solid red lines, κ = 1.68, and H = 

0.072) and has a positive stiffness (k = 0.109 N/mm at 0.3 mm < u < 12 mm) for actual 

gripping. The two pieces are connected by tape, as shown in Fig. 29 (a). The overall 

stiffness of the gripper can be switched between ON and OFF modes by (de)activating the 

green curved creases. Top and side views of the gripper in the ON and OFF modes are 

shown in Fig. 29 (b). Rubbery pieces were added to increase friction for gripping. To 

trigger the gripper to switch between ON and OFF modes, one can easily apply bending on 

the green curved creases to lock the gripper in a desired mode. Figure 29 (c) shows the 

force vs. displacement relationship for the ON/OFF modes. Under the same 

precompression with displacement 0u  at point A, the ON mode needs a larger preload than 

the OFF mode, i.e., ON OFFF F> . Under displacement-controlled loading, the ON mode has 

a smaller force increment ONF∆  to reach the peak force, and then a snap-through occurs, 

causing an instantaneous jump to the final state at point B with displacement 1u , whereas 
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for the OFF mode, the force gradually increases to the peak with a larger force increment 

OFFF∆ . It is clear that because of the negative stiffness for the ON mode, high power can be 

achieved through instantaneously large deformation from 0 0.5 mmu =  at the initial state to 

the final state 1 11.6 mmu = , whereas for the OFF mode, monotonically increased gripping 

force can achieve precise handling. 

 
Figure 29. Design and testing of a curved origami-based lightweight, universal gripper. 

We conducted experiments to grip different objects with both modes in Fig. 30 to 

demonstrate the importance of switching between ON and OFF modes. For easy-to-grip 

objects, which are of medium size and regular shape and have a frictional surface, the ON 

mode will save much time with rapid actuation. In Fig. 30 (a), when the ON mode is 

activated, the gripper spent 0.033 s (0.029 s before snap-through and 0.004 s after snap-

through) with a speed of 10 m/s (40 mm in 0.004 s), whereas 0.504 s elapsed in the OFF 
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mode. The speed of gripping is higher than the speed of a frog’s tongue when capturing 

prey (1.67 m/s; 50 mm in 0.030 s 222). Compared with the OFF mode, the ON mode for 

gripping objects such as a Lego block saves up to 0.471 s (i.e., 93.5% of the time), 

providing a means for high-efficiency gripping. However, there are also some hard-to-grip 

objects. Though the ON mode saves time, it may not be successful or even do harm to the 

objects. An example is a grain of rice (Fig. 31 (b)), which is small, lightweight, and 

irregularly shaped. Using the ON mode to grip results in the rice slipping and being kicked 

away. Using the OFF mode can accurately grip rice without slipping. Another example is 

soft objects that are likely to be damaged for fast gripping. In Fig. 31 (c), soft tofu (modulus 

= 8.005 kPa, strength = 3.298 kPa, and toughness = 875 J/m2) is damaged when gripping 

with the ON mode, whereas it is safely and effectively gripped with the OFF mode for 

precise gripping. These demonstrations suggest that one can use the same principle to 

design grippers with more than two modes to realize more selectable modes of different 

speeds, gripping forces, and actuation responses. 
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Figure 30. Mechanical characterization of the gripper. 

 
Figure 31. Process of gripping a Lego block, a grain of white rice, and a piece of soft 

tofu. 

Demonstration II: a cube with tunable stiffness for controllable force transmissibility 
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Another demonstration is to use the in situ stiffness manipulation from the curved 

origami to control force transmissibility. The in situ tunability of force transmissibility is 

necessary in many situations. For example, people in many areas of the world habitually 

carry heavy loads on their head instead of by hand or on their shoulders to save energy 223, 

224 because the lower stiffness of the neck results in a lower force transmissibility and thus 

a reduced energy cost from the vibrations of loads. Another example is the suspension 

system in an automobile, which can be switched to a higher stiffness for responsive driving 

(i.e., sport mode) and a lower stiffness for smooth driving (i.e., comfort mode). 

Unfortunately, this system is too bulky and complicated to be applied in areas such as 

robotics. Here, I designed curved origami-based cubes that can switch between an isolating 

mode and a responsive mode for low frequency ranges (e.g., lower than 20 Hz). The planar 

folding pattern is shown in Fig. 32 (a), in which white, 0.6-mm-thick, plastic panels are 

used for the top and bottom plates, whereas blue, 0.125-mm-thick, plastic panels are used 

for the side plates. Tape was used to connect the panels and is represented by thick bars in 

the folding pattern. The folding creases for modes A ( 1κ = , 0.084H = ) and B ( 1.8κ = ,

0.084H = ) are represented by black and red lines, respectively, with mode A for zero 

stiffness and mode B for positive stiffness, and their locations on the stiffness phase 

diagram are explicitly shown in the inset of Fig. 32 (a). The finished cubes at modes A and 

B are shown in Fig. 32 (b). Figure 32 (c) provides the reaction force-displacement 

relationship during compression for both modes, which clearly shows that mode A exhibits 

a quasi-zero stiffness and mode B exhibits a positive stiffness. Specifically, at a load of 

2.35 N, mode A exhibits approximately zero stiffness. Hence, 2.35 N is the matching force 
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to achieve quasi-zero stiffness. Near the critical load of 2.35 N, mode B exhibits a positive 

stiffness of k = 0.584 N/mm. 

 
Figure 32. Design of the curved origami cube with predefined curved creases A and B. 

We used four curved origami cubes as an array for vibration isolation experiments. 

Figure 33 (a) shows that the four curved origami cubes of mode A can stay balanced at any 

position when the matching mass of 960 g (= 4 × 2.35 N) is applied. A frequency sweep 

vibration with a power spectrum spreading was used to test the performance of the curved 

origami isolators. Figure 33 (b) shows the setup of the experiments. An electromechanical 

shaker (S 51120 from TIRA Vibration Test Systems Inc.) was used to generate vertical 

vibrations at varied frequencies, and two identical acceleration sensors (352C33 from PCB 

Piezotronics Inc.) were attached on the bottom and top surfaces to record the input and 

output accelerations ina  and outa , respectively. Comparisons of the output and input 

accelerations of modes A and B for a frequency sweep vibration are shown in Fig. 34 (a). 

The transmissibility of the curved origami isolators in dB is defined by 1020log out

in

a
a

. Fig. 

34 (b) shows the transmissibility at frequencies from 1 Hz to 30 Hz for modes A and B. 

The isolators at mode A can isolate vibrations (i.e., transmissibility less than 0) when the 

frequency is higher than 5 Hz. The transmissibility of mode B is approximately 20-30 dB 
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higher than that of mode A, which means that mode B can transfer vibration. Larger output 

vibrations can be observed at mode B for all ranges, suggesting a responsive mode. For 

mechanical vibrations, the isolation range exists when the vibration frequency is higher 

than the critical frequency ( 1
2c

kf
mπ

=  225). For mode A, the theoretical critical frequency 

is 0 because the stiffness k is zero, which enables ultralow frequency vibration isolation. 

However, because of the plasticity of the creases, the viscoelastic damping of the panels, 

and the existence of the tape, the isolation is only effective for frequencies higher than 5 

Hz. For mode B, the theoretical critical frequency is 1 4 584 N/m 7.85 Hz
2 4 240 gcf π

×
= =

×
, which 

results in the isolation range (frequency higher than 12.5 Hz) of mode B. It is believed that 

this lightweight curved origami-based isolator can be used in many applications in soft and 

small robotics. 

 
Figure 33. Experimental setup used to measure the acceleration transmissibility of the 

curved origami cubes. 



 

  57 

 
Figure 34. Acceleration transmissibility of curved origami cubes in modes A and B under 

various vibration frequencies. 

Demonstration III: curved Miura pattern for in situ multistage stiffness response 

Here, I design two-dimensional (2D) modular metamaterials using curved origami 

as building blocks, taking a similar approach as the Miura pattern, and demonstrate their 

unprecedented capability of in situ multistage stiffness response under a uniform load. 

Figure 35 (a) shows a 3 × 3 Miura pattern, a 3 × 3 curved Miura pattern, and their 

corresponding unit cells. The curved Miura pattern replaces the mountain creases in the 

Miura pattern (shown in green) with a curved crease and the two other creases (shown in 

red) with curved plates. When the top and bottom boundaries are constrained, the curved 

Miura pattern exhibits different behaviours from the Miura pattern during compression. 

Different deformation modes of curved Miura are observed under different loading 

conditions (i.e., concentrated loading on the concave side or convex side and uniform 

loading), and it is found that the deformation can only transfer from the concave side to the 

convex side. Moreover, when the concave segment is confined, the curved Miura becomes 

very stiff. Figure 35 (b) shows the deformation of a curved Miura with identical unit cells 

characterized by the curvature κ  (= 0.56) of the crease subjected to a compressive load 
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along the A-A direction. The concave segment snaps and moves to the right. This snap is 

ubiquitous, for another crease with curvature κ  = 1.10 that has negative stiffness. For 

curved Miura patterns that have positive stiffness, snap does not occur, and the applied 

force monotonically increases with respect to the displacement for curved origami with 

curvature κ = 1.62. Figure 35 (c) compares these three curved Miura patterns with κ  = 

0.56 for □1 , κ  = 0.95 for □2 , and κ  = 1.62 for □3 . When 0.125-mm-thick plastic film is 

used, the normalized crease modulus is 0.063H = . Based on the stiffness diagram, these 

three curved origami patterns have normalized stiffness 10.9, 1.6k = − − , and 6.1, which 

leads to snap-through behaviours for □1  and □2  and gradual deformation without snap-

though for □3 . Upon compressive loading along the A-A path at progressive displacement 

u = 0 mm, 5 mm, and 10 mm, these three patterns exhibit different responses. Pattern □1 has 

the highest negative stiffness 10.9k = −  and the highest transverse displacement of 25 mm, 

whereas pattern □3  has positive stiffness 6.1k =  and the lowest transverse displacement of 

9 mm. For the curved Miura with homogeneous curvature, there is a one-to-one relation 

between the curvature and the transverse displacement under compressive loading, which 

leads to the design of curved Miura with inhomogeneous curvatures. 

 
Figure 35. Design and mechanical performance of the curved Miura pattern. 
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Figure 36. Photographs and Force-displacement relationship of curved origami patterns 
upon compressive load on A-A direction. 

Curved Miura with inhomogeneous curvature can be modularly designed to achieve 

in situ switching and multistage stiffness manipulation. Figure 37 (a) illustrates a 4 × 3 

curved Miura with in situ switchable creases along the A-A and B-B paths. Along each path, 

the three creases □1 , □2 , and □3  that were studied in Fig. 35 (c) can be turned ON or OFF 

to control the transmissibility of the transverse buckling deformation. As shown in Fig. 35 

(c), transverse buckling always initiates at the concave site of a curved Miura and then 

propagates inward; thus, this 4 × 3 curved Miura has two transverse buckling paths along 

Γ and Ξ, and each path has three candidate curvatures □1 , □2 , and □3 . Thus, this 4 × 3 
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curved Miura can achieve 6 in situ switchable and accessible states, representing the 

stiffness response. Considering symmetry, these states can be expressed by a 3 × 3 

symmetric matrix shown in Fig. 37 (b). Figure 39 shows the configurations of these 6 states 

and their force/displacement responses under a uniform compressive load. Multistage 

stiffness manipulation is accomplished by a uniform load depending on the ON/OFF 

combination of different creases. The diagonal components for the matrix in Fig. 37 (b) 

represent the stiffness response when two identical creases are activated on both paths. 

When two creases □1 are activated on both paths Γ and Ξ (□1 -□1  combination), the reaction 

force of this curved Miura will undergo a single peak and then drop because of concurrent 

transverse buckling at both paths, which is denoted by a ↑↓  stiffness response (with ↑  for 

peak and ↓  for drop), and a similar situation occurs for a □2 -□2  combination. When crease 

□3  is turned ON for both paths, positive stiffness provides a monotonic increase in the force 

response, which is denoted by ↑ . The off-diagonal components in Fig. 37 (b) are for those 

with nonidentical creases activated. When crease □1 is activated on path Γ and □2  on path 

Ξ (i.e., a □1 -□2  combination), the reaction force will experience a peak-valley-peak-valley 

change, i.e., a ↑↓↑↓  multistage stiffness response achieved by a uniform load. The □1 -□3  

combination exhibits a peak-valley-peak pattern, i.e., ↑↓↑ . The □2 -□3  combination 

exhibits a peak-flat pattern, i.e., ↑→ . For a curved Miura with more unit cells (e.g., a 6 × 

3 pattern), the leftmost and rightmost creases have more choices in terms of curvature (e.g., 

4), so a much more complicated stiffness response can be generated, which can be 

represented by multidimensional tensors. Inhomogeneous curved Miura with in-situ 
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switchable curvatures produces complicated multistage stiffness responses under uniform 

loading. Thus, a controllable and in situ switchable nonlinear mechanism can find many 

applications, such as in robotics. 

 
Figure 37. Design of a swimming robot based on curved Miura origami. 

One of the challenges in robotics is to accomplish different moving patterns with 

less actuators, in order to improve the reliability and reduce the cost 226. To solve this 

problem, I built a curved Miura-based swimming robot with a single pneumatic actuator, 

which can be switched in situ among different actuation modes (Fig. 39). When air fills the 

balloon, the inflation compresses the frame in grey that is glued to the curved Miura, and 

two paddles are attached to the frame via a sliding trench. When the frame moves 

downwards, the paddle rotates, and the rotation increases as the displacement of the frame 

increases. Based on the matrix in Fig. 37 (b), the stiffness response with a ↓  mode will 

lead to a sudden displacement of the frames and thus a larger rotation of the paddle. 

Consequently, by altering the combinations (e.g., □1 -□1 , □1 -□3 ), six types of complex 

motions can be realized in situ through simple air flow. Figure 39 shows the motion of the 

robot on water by inflating the balloon using 50 ml of air with a constant flow within 1 s. 

The activated paddle during motion is highlighted by a green arrow, and the inactivated 
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paddle is indicated by a red cross. The displacement and rotation resulting from the 

inflation are also presented in Fig. 39. Modes □1 -□1 , □2 -□2 , and □3 -□3  have linear 

displacement without rotation because of the symmetrical buckling in paths Γ and Ξ, with 

mode □1 -□1  providing the largest displacement of 63 mm in 1 s because of the largest 

negative stiffness snap-through, mode □2 -□2  having a 36 mm displacement because of the 

snap-through, and mode □3 -□3  generating the least displacement of 16 mm because of 

positive stiffness. Modes □1 -□2 , □1 -□3 , and □2 -□3  provide both linear displacement and 

rotation because of the asymmetrical deformation of the two paths. The other three modes 

(i.e., □2 -□1 , □3 -□1 , and □3 -□2 ) in Fig. 37 (b) also have asymmetrical motion but clockwise 

rotation. In summary, the curved Miura-based swimming robot enables different moving 

modes including fast, slow, linear, and rotational moving with a single pneumatic actuator. 

This demonstration only presents one of the possible applications to employ the in situ 

multistage stiffness response rooted from curved origami. 
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Figure 38. Design of a curved origami-based swimming robot. 
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Figure 39. Configurations, force-displacement relationship, and swimming robot performances of 

the six different states. 

3.3 Discussions 

In summary, curved origami was introduced in this paper to accomplish in situ 

stiffness manipulation by changing the curvature of the creases. The variation in stiffness 

among positive, zero, and negative stiffness results from the competition of the crease 

folding and the panel bending, with the former providing negative stiffness and the latter 

providing positive stiffness. The in situ stiffness manipulation is achieved by activating 

different curved creases on curved origami containing multiple creases. A universal 

stiffness design diagram was discovered and can be used to design curved creases for 
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specific applications. Three demonstrations were presented to highlight the versatility of 

the curved origami, including a universal and lightweight gripper, a cube with tunable 

stiffness for controllable force transmissibility, and curved Miura patterns for in situ 

multistage stiffness response. This work presents an essential and elegant resolution to 

utilize curved origami for complicated, in situ stiffness manipulation, which opens an 

unexplored direction to design mechanical metamaterials. 

Like many other mechanical metamaterials, the presented curved origami needs to 

be mechanically and manually tuned. A remote-control method will provide better 

applicability, which can be realized by utilizing temperature-activated 227, photoactivated 

228, electronic 229, and magnetic materials 123 on the creases. Moreover, the principle of 

designing curved origami can be extended from the present one-dimensional (e.g., gripper 

and isolator applications) and two-dimensional (e.g., curved Miura patterns and their 

application in robots) patterns to three-dimensional and tessellated curved origami 

scenarios by combining curved origami patterns and other existing designs in origami, e.g., 

Miura tube design 40, multilayered Miura design 54, and origami-inspired structural designs 

7. 
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CHAPTER 4 

CONCLUSIONS 

In the first part, this work explores the on-demand deployability and collapsibility 

and achieve these characteristics manually. Various type of automatic actuations, including 

pneumatic force186, 230, heat231-234, light235-238, swelling235, 239, and magnetic forces240, 241, 

can be considered in the future to develop responsive, self-deploy/collapse, and stiff 

metamaterials. Although the structure is at the centimeter scale, the principle discovered 

can be applied to make miniaturized structure. Moreover, by connecting the metamaterials 

in series with each metamaterial with different stiffness at the deployed state, one can make 

a mechanical metamaterial with continuously tunable stiffness. 

In the second part, the work represents a new and innovative approach to create a 

mechanical metamaterial with on-demand and selective deployability and collapsibility 

and great stiffness and load bearing capability. The principle in this work can be utilized 

to design and create versatile origami-inspired mechanical metamaterials that can find 

many applications, ranging from deployable structures for aerospace, civil applications, 

implantable medical devices, daily essentials, toys, bistable states for vibration isolations, 

to continuous tunable stiffness for wearable robotics.  

I believe that the presented work will establish an essential principle to use various 

curved origami patterns for designing mechanical metamaterials with unprecedented 

functions, including stiffness manipulation and deformation reprogramming, which can be 

readily coupled with other physical fields, such as electromagnetics. Materials and 

structures created through this principle can be applied in many fields, including daily 
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essentials, protections, robotics, automobiles, aerospace components, and biomedical 

devices. 
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CHAPTER 5 

FUTURE WORK 

There are several directions and challenges for future research work. 

First, for novel mechanical properties, new origami and kirigami designs are highly 

desired, but most origami and kirigami patterns have been well studied, and discovering 

new patterns requires tremendous work both mathematically and mechanically. The 

existing library of origami and kirigami provides useful information for designing 

metamaterials with different applications. Rigid kirigami and origami are relatively 

straightforward to design, though with plain mechanical responses. Deformable kirigami 

and origami has complex mechanical responses such as multi-stability and tunable stiffness, 

however the patterns are limited. An alternative solution is to combine existing patterns 

and knowledge from either origami or kirigami to create new hybrid patterns. There are 

several methods for discovering mechanical properties without discovering new patterns, 

such as curved origami design, hybrid origami–kirigami design, modular design, and 

hierarchical design. 

Second, the selection of materials for origami- and kirigami-based mechanical 

metamaterials has been overlooked. Most origami and kirigami metamaterials are 

prototyped with paper, and their mechanical properties are influenced and limited by the 

plasticity and fragility of paper. To design origami and kirigami for real-world applications, 

materials with different properties should be considered, such as thin or thick, soft or hard, 

elastic or plastic. The creases of origami and the linkages of kirigami, where stress 

concentrates, should be designed specifically to prevent fatigue and improve flexibility. A 
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possible solution is hybrid origami–kirigami design, in which origami and kirigami can be 

used to relieve the stress for each other. Another solution involves designs inspired by 

origami and kirigami, such as truss-based designs,7, 96, 155 where origami and kirigami 

structures are redesigned and replaced by mechanical components including trusses and 

springs, thereby preventing unnecessary issues. 

Third, energy landscape and energy distribution are two powerful tools to analyze 

mechanical performances of origami and kirigami and should be leveraged in future 

investigations. Energy landscape is an effective way to visualize and evaluate the 

mechanical behavior of metamaterials at different deformation configurations. For 

example, the valleys on energy landscape indicate the stable states, high energy barrier 

indicates high load-bearing ability, and the slope and curvature of energy indicates the 

force and stiffness responses, respectively. On the other hand, the energy distribution of 

the origami and kirigami deformation modes essentially determines the mechanical 

performances and provides important guidelines to design mechanical metamaterials with 

different properties. For example, the contributions of crease folding energy and panel 

bending energy affect the mechanical stiffness and stability in curved origami. However, 

the deformation modes (i.e., folding, bending, and stretching) have different contributions 

and functions depending on the origami and kirigami patterns.  For example, folding 

provides negative stiffness in curved origami while contributes positive stiffness in square-

twist origami. Therefore, there is no universal guideline to design the deformation modes 

of origami and kirigami yet. In future works, there are still a lot to discover from the 
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perspective of energy, e.g., programmable energy landscape, multi-path energy landscape, 

controllable energy distribution, etc. 

Lastly, to use origami and kirigami in applications such as robotics, medical devices, 

and deployable structures, the actuation method must be designed carefully. Currently, 

origami and kirigami structures are actuated by cable-driven, pneumatic, magnetic, 

photonic, thermal, and chemical methods, but these are not yet perfect and have their own 

limitations (e.g., low speed, high cost, sensitive to environment, hard to control) and may 

only work for specific patterns in specific environments. A universal actuation method 

remains highly desired to actuate different patterns efficiently and robustly. 
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APPENDIX A 

DETAILS IN KRESLING ORIGAMI MODELING 
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Geometry of triangulated cylinder patterns 

Figure 40 shows a unit cell of a triangulated cylinder pattern from the crease pattern 

(Fig 1a). At the planar state, 

 ABL a= ,  (1) 

and the law of sines gives 

 
sin sin sin

AC BCAB L LL
ABCβ α

= =
∠

,  (2) 

Thus,  

 sin
sinBCL a α

β
=   (3) 

 ( )sin
sinACL a
α β

β
+

=   (4) 

At the folded state, height h, twist angle φ, and radius r are used to characterize the 

geometry (Fig. 40). The coordinates of the points O, O’, A, B, and C are given by, 

 
( ) ( )(0,0,0), 0,0, , ,0,0

2 2 2 2cos , sin ,0 , cos , sin ,

O O h A r

B r r C r r h
n n n n
π π π πφ φ

′

      − + − +      
      

.  (5) 

Then the length of the three folding lines, AB, BC, and AC at the folded state become 

 2 sinABl r
n
π

=   (6) 

 2 2 22 cos 2BCl h r rφ= − +   (7) 

 2 2 222 cos 2ACl h r r
n
π φ = − + + 

 
  (8) 

The strains in these three folding lines are  
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 2 sin 1AB AB
AB

AB

l L r
L n

πε −
= = −   (9) 

 2 2 2sin 2 cos 2 1
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BC BC
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l L h r r
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βε φ
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2 2 2sin 22 cos 2 1
sin

AC AC
AC

AC

l L h r r
L n

β πε φ
α β
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  (11) 

Here hh
a

= , and rr
a

=  are normalized height h, and radius r, respectively.  

 

Figure 40. Illustrations of the triangulated cylinder origami. 

Deformation energy analysis 

For a stripe (highlighted in Fig. 3), the deformation energy is given by 

 2 2 2( )
2 AB AB BC BC AC AC

nEAU L L Lε ε ε= + +   (12) 
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As shown in Eqs. (9) to (11), the deformation energy U depends on three variables, namely 

height h, twist angle f, and radius r. Using the principle of stationary potential energy, 

optimization with respect to these variables determines the folded states. Specifically, when 

only height h is prescribed, the folded state can be obtained by solving the following 

nonlinear equations, 

 
2 2

2 20, 0, 0
hh h h

U U U U
r rφ φ

∂ ∂ ∂ ∂
= = > >

∂ ∂ ∂ ∂
.  (13) 

When both h and φ are prescribed, the following equations will be solved, 

 
2

20, 0
h h

U U
r r

∂ ∂
= >

∂ ∂
.  (14) 

MATLAB was used to solve these nonlinear equations.  
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APPENDIX B 

DETAILS IN CURVED ORIGAMI MODELING 
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Modelling of a Quadrilateral Rigid Origami Cell upon Compression 

This model is based on the theory of rigid origami, where the strain energy is only 

stored in linear elastic creases. Fig. 41 (a) shows the folding pattern of a quadrilateral rigid 

origami unit cell. The angle between crease 1 and crease 2 is β. The summed length of the 

creases 2 and 4 is 2c. The length of crease 1 (or crease 3) is b and can be expresses by 

β  and c as 

 
( )sin
cb

β
=  (15) 

By compressing the origami through the top and bottom vertices, the origami will deform 

into a configuration as shown in Fig. 41 (b). The spatial geometry of the origami is very 

similar to the Miura pattern, as shown in Fig. 41 (c), and the same angle β is used. The 

geometry of Miura pattern during folding has been studied somewhere else4, which will be 

used to study the relationship between force and displacement. The same notations4 are 

adopted here in Fig. 41 (c). The projection angle between two ridges is φ . The dihedral 

angles 1α  at crease 4 and 2α  at crease 3 can be expressed as functions of φ as 4 

 
( )

2

1
1 2

sin
2( ) cos 1 2

sin

φ

α φ
β

−

  
    = −

 
  

 (16) 

 ( )1 2 2
2 ( ) cos 1 2cot tan

2
φα φ β−   = − ⋅     

 (17) 

l is the distance between the top and bottom vertices and can characterize the deformation 

with 2l c=  for undeformed state. Angle φ  can be expressed as a function of l, 
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 ( ) 12sin
2
ll
b

φ −  =  
 

 (18) 

Given the crease modulus H (unit: N), the strain energy of the unit cell U can be 

expressed as 

 ( ) ( ) ( ) ( )2 2 2 2
1 2 1 2

1 12 2
2 2

U cH bH H c bπ α π α π α π α = − + − = − + −   (19) 

The reaction force F can be calculated as a derivative of U with respect to l, 

 ( ) ( )1 2
1 2 2

12 sin

1
2

UF H
l l

b

α αα π β α π
φ φ

 ∂ ∂∂
= = − + − ∂ ∂ ∂   −  

 

, (20) 

The force F can be normalized as 

 ( ) ( ) ( )1 2
1 2 2

12 sin

1
2

FF l
H l

b

α αα π β α π
φ φ

 ∂ ∂
= = − + − ∂ ∂   −  

 

 (21) 

The normalized reaction force due to creases 1 and 3 1,3F  is expressed as the second part 

of Eq. (21), 

 ( )
( ) 2

2

1,3 2

2

1
2

F l
l
b

αα π
φ

∂
−

∂=
 −  
 

 (22) 

The normalized reaction force due to creases 2 and 4 2,4F  is expressed as the first part of 

Eq. (21), 
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 ( )
( ) 1

1

2,4 2

2 sin

1
2

F l
l
b

αα π β
φ

∂
−
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 (23) 

Define the collapsing ratio as 1
2
l
c

− . Figures 41 (d), (e), and (f) show the normalized forces 

versus the collapsing ratio.  

 
Figure 41. Mechanical behavior of a quadrilateral rigid origami cell. 
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Figure 42. Force-displacement relationship of quadrilateral rigid origami cells upon 

compression. 

Modeling of Creases in Finite Element Simulation 
 

We model the creases as linear elastic perfectly plastic materials in finite element 

simulations using ABAQUS. Using this model, the reaction moment per unit crease length 

as a function of rotation angle is shown in Fig. 43 (a). The slope of the curve in the elastic 

range ( )unit: /N m m N⋅ =  is the crease modulus H. The yield rotation angle is set as 1 rad, 

which is verified by the following experiments as shown in Fig. 43 (b), in which a square-

shaped origami with a straight crease in the middle is used, with the right part of the origami 

is constrained and the left part is free to rotate about the straight crease. A tweezer is used 

to rotate the left part of origami to a specific angle (i.e., 130° in Fig. 43 (c)) and then 

released (i.e., 80° in Fig. 43 (d)). We then used the linear elastic and perfect plastic model 

to theoretically predict the relaxed angle. For example, as shown in Fig. 43 (e), for a given 

rotation angle 130°, the predicted relaxed angle is 73°, which agrees reasonably well with 

the experiments (Fig. 43 (d)). The comparison between the experiment results and the 
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predictions for different angles is shown in Fig. 43 (f), where the experimental and the 

predicted results show a same trend. Therefore, a linear elastic perfect plastic model with 

yield angle of 1 rad is verified to be reasonable for the simulation. 

 
Figure 43. Rationale of the linear elastic perfectly plastic model of creases used in 

simulation. 

Loading Steps in The Finite Element Simulations 

As shown in Fig. 44, the curved origami is undeformed and has zero energy at the 

initial state (step 0). The curved origami is bent for 250° in step 1, and released in step 2. 
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In step 3, the curved origami is compressed under a displacement load u = 0.2. In step 4, 

the displacement load is gradually released to zero. In the following steps, the displacement 

load is applied and removed periodically as steps 3 and 4. The plastic dissipation energy 

Up increased during the 1st and 3rd step, and keeps constant after the step 4, which means 

no dissipation exists during the repeated loading and unloading steps of curved origami 

afterwards. 

 
Figure 44. Loading steps in the finite element simulations. 

Normalization of the Parameters  

Three basic parameters, i.e., unit cell length a, thickness t, and panel modulus E, 

are used for normalization. The displacement is normalized as uu
a

= . Curvature is 

normalized as aκ κ= . The energy, force, and stiffness are normalized by a bending 

deformation of panel. The bending energy of the panel for normalization normU  has the unit 
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of 
2

2 3 31
norm x panelU EI a Et a a Et

a
κ   = 

 
: : , where the second moment of cross-sectional 

area about x axis 3~xI t a , and curvature of panel 1~panel a
κ . Therefore, the energy of the 

curved origami unit cell can be normalized as 3

UU
Et

= . The reaction force due to bending 

has the unit of 
3

norm
norm

U EtF
a a

: : . Thus, the reaction force of the curved origami unit cell 

F is normalized as 3

FaF
Et

= . Since crease modulus has the same unit as force, it is also 

normalized as 3

FaH
Et

= . Stress has the unit of 
2

2
norm

norm
F Et
at a

σ =: , so normalized stress σ  

is expressed as 
2

2

a
Et
σσ = . 

 
Figure 45. A square shaped panel of length a and thickness t bent by a uniform force F. 

Estimation of the Crease Modulus 

We performed compression test for a simple straight crease origami made of the 

plastic in Fig. 46. The depth of the crease is 100 µm. The experimental result is shown in 



 

  104 

Fig. 46 (a). The same relationship between normalized reaction force FF
H

=   and 

compressive strain was also theoretically studied and shown in Fig. S1f. By fitting the 

experimental result with theoretical result (Fig. S10b), we have H = 0.01667 N. For the 

plastic film used in this study, the film Young’s modulus E = 3.54 GPa (Fig. S9). For a 

crease of 100 µm cut depth, film thickness t = 125 µm and unit cell length a, the normalized 

crease stiffness can be expressed as 

( )
1

33 9 -2 4

0.01667N (2.41m )
3.54 10 N m 1.25 10 m

Ha aH a
Et

−

−

×
= = = ⋅

× ⋅ × ×
. 

For example, if a =30 mm (Fig. 3a), normalized crease stiffness is 

1(2.41m ) (0.03 ) 0.072H m−= ⋅ = . 
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Figure 46. Comparison between theoretical and experimental normalized forces as 

functions of compressive strain. 

Mechanical Characterization of Soft Tofu 

We conducted a compression test to measure the mechanical properties of soft tofu. 

A piece of soft tofu in cylindrical shape with height h = 22 mm and diameter d = 43 mm 

was used. The photographs of the tofu before and after compression are shown in Fig. 47 

(a)  and (b), respectively. The force-displacement relationship is shown in Fig. 47 (c). The 

true strain is calculated as  
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 ln h u
h

ε − =  
 

, (24) 

where u is the vertical displacement. The true stress is calculated as  

 ( )
2

4 h u F
h d

σ
π
−

=  (25) 

assuming the tofu is uncompressible.242 The true stress-true strain relationship is shown in 

Fig. 47 (d). The Young’s modulus of soft tofu is calculated as 

 8.005kPatofuE σ
ε

∆
= =

∆
 (26) 

The strength of the soft tofu is 3.298 kPa. The toughness of soft tofu is calculated as 

 2d 875J/m
f

tofu
o

T
ε

σ ε= =∫  (27) 

where 0.4fε =  is the fracture strain. 
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Figure 47. Mechanical characterization of soft tofu 
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