
Perceiving, Planning, Acting, and Self-Explaining:

A Cognitive Quartet with Four Neural Networks

by

Yantian Zha

A Dissertation Presented in Partial Fulfillment
of the Requirements for the Degree

Doctor of Philosophy

Approved June 2022 by the
Graduate Supervisory Committee:

Subbarao Kambhamapti, Chair
Baoxin Li

Siddharth Srivastava
Jianjun Wang

ARIZONA STATE UNIVERSITY

August 2022



ABSTRACT

Learning to accomplish complex tasks may require a tight coupling among different

levels of cognitive functions or components, like perception, acting, planning, and

self-explaining. One may need a coupling between perception and acting compo-

nents to make decisions automatically especially in emergent situations. One may

need collaboration between perception and planning components to go with optimal

plans in the long run while also drives task-oriented perception. One may also need

self-explaining components to monitor and improve the overall learning. In my re-

search, I explore how different cognitive functions or components at different levels,

modeled by Deep Neural Networks, can learn and adapt simultaneously. The first

question that I address is: Can an intelligent agent leverage recognized plans or hu-

man demonstrations to improve its perception that may allow better acting? To

answer this question, I explore novel ways to learn to couple perception-acting or

perception-planning. As a cornerstone, I will explore how to learn shallow domain

models for planning. Apart from these, more advanced cognitive learning agents may

also be reflective of what they have experienced so far, either from themselves or from

observing others. Likewise, humans may also frequently monitor their learning and

draw lessons from failures and others’ successes. To this end, I explore the possibility

of motivating cognitive agents to learn how to self-explain experiences, accomplish-

ments, and failures, to gain useful insights. By internally making sense of the past

experiences, an agent could have its learning of other cognitive functions guided and

improved.
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Chapter 1

INTRODUCTION

If you have a car, remember how you learn to drive it. You probably start by learning

how to observe your local environment effectively (attention) and efficiently (attention

control). You world learn to coordinate different observing actions like checking your

rearview or side mirrors or attending the front or areas on both sides. Next, you would

learn how to react in different situations. Are you in the blind spot of another vehicle?

What should you do when you want to change lanes when there is an approaching

vehicle behind? How to handle different road signs? Finally, you probably would learn

to plan and execute the best route. This could be learned from your experiences if

you have stayed in an area long enough (e.g. you know when are peak hours for

a road), or from learning to use navigation tools like Google Maps together with

visually searching for landmarks that match your route plan.

During the process of learning these, you sometimes would introspect to improve

yourself. Consider the two examples in Figure. 1.1. Assuming you already learned

how to turn right when there is no obstacle, by observing how close you and the road

corner are and making a circular turn at a proper time. However, when you meet a

new situation as in the Figure. 1.1.a (there is a truck and the road is narrow), you

make a right turn just as how you used to do and hit the edge of the truck. You

may then think about why you fail this time, what are the differences between how

you make the right turn this time that you fail and the last time when you were

successful. Maybe you should observe the truck edge instead of the road corner, and

only use the truck edge as the reference to your decision-making? Based on this kind

of retrospective thinking, you may make a plan to practice to handle such a situation.
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Figure 1.1: An Illustrative Example of Learning to Drive.

Eventually, you would handle a new subskill of turning right: make an L-turn.

Another example is in the Figure. 1.1.b. Imagining when you observe your friend’s

driving, and she/he always try to avoid driving into a lane marked with a diamond

symbol that you don’t know the meaning of. Your friend’s behavior is mismatching to

your current knowledge. By self-explaining this, you may conclude that the diamond

symbol has some kinds of negative effects on driving. After having this knowledge,

when you drive next time and see a lane with such diamond symbols again, you would

also avoid driving into that lane.

The above example illustrates how you, as a human, may use your cognitive intel-

ligence during the process of learning something difficult. Human intelligence, most

of the time, is the biggest resource to inspire the development of Artificial Intelligence

(AI) theories. The ultimate goal of researching AI is to make machines as smart as

humans, according to Alan Turing and his famous Turing Test. To be more specific,

such smart machines should have these capabilities: natural language processing,

knowledge representation, automated reasoning, machine learning, computer vision,
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and robotics ([126]).

In the old days before the rise of Deep Neural Networks, AI researchers kind of

isolatedly contributed to those subfields. For example, Standford Research Institute

Problem Solver (STRIPS) is a classic planner whose theory is closely connected to

automated reasoning and knowledge representation. Applications for problems in the

fields of natural language processing and computer vision usually take advantage of

machine learning theories like Hidden Markov Models (HMMs) or Support Vector

Machine (SVM).

However, the learning-to-drive example suggests that those AI fields could have

more and tighter interconnections, especially with the rise of Deep Neural Networks

that mimic how humans’ neurocognitive functions work. While deep learning is es-

sentially a machine learning technique in large part inspired by neuroscience, the fact

that it can be effectively trained as a super-powerful nonlinear function approxima-

tor by large-scale datasets leads to more cross-fertilization among those sub-fields

in AI. Heretofore, deep learning is the dominating method in Computer Vision and

Natural Language Processing communities. Beyond this, most recently people have

also applied deep learning to solve problems that span more broadly across multiple

sub-fields (e.g. Visual Question Answering).

When we consider Deep learning from an AI perspective, we would like to ask

what it can bring to enhance AI agents. Deep Learning can enhance a traditional

AI learning agent by improving the performances of each component separately (e.g.

sensing, reasoning, or planning). However, Deep neural networks that are inspired

by how animal brains work naturally have tight connections to cognitive psychology

and neuroscience. From a cognitive psychology perspective, cognitive functions like

perception, attention, reasoning, planning, and acting are interleaved that contribute

together to agents’ intelligence, according to [140].
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Figure 1.2: A Traditional Learning Agent (from [126])

1.1 A Traditional Learning Agent

The idea of obtaining intelligence by learning instead of programming for AI agents

was proposed by Turing. A traditional learning agent is illustrated in Figure. 1.2

([126]). The framework describes how an agent could improve its functions by learning

from its experiences of behaving in an environment. The learning agent framework has

four basic conceptual components: Learning element, Critic, Performance element,

and Problem Generator.

1.1.1 Critic

The role of the Critic is to evaluate the current performance of the learning agent.

The evaluation requires applying some kind of predefined performance criteria to the
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current agent states and the observation of the world. The performance criteria can

be seen as a human-given knowledge, like loss functions, rewards, etc. The evaluation

from the Critic is then used by the learning agent as a training signal.

1.1.2 Learning Element

The Learning element takes feedback signals from the Critic component to improve

all functional elements like the Performance element. For example, suppose that the

Critic is a reward function, the Learning element could use the rewards to learn a

value estimator that predicates the value of taking an action in a state with long-term

consideration. Then with this value estimator, the Performance element could select

the best actions in the long run. By using feedbacks, the Learning element enables

the agent to be adaptive and robust to environment changes. In this thesis, almost

all learnable elements are formulated by parameterized models (e.g. deep neural

networks).

1.1.3 Performance Element

The Performance element is essentially responsible for acting in the world based

on current environment observation, which influences the world and what would be

sensed the next. For example, a navigation robot has its motor controllers as Per-

formance element. Its motor controllers may take the information processed from

camera images and output linear and angular velocities, which in turn change the

state of the robot and give the robot new sensations.

1.1.4 Problem Generator

With the Learning element, the Performance element would be able to behave

optimally based on the agent’s model. This kind of optimality matches the past
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Figure 1.3: A Cognitive Learning Agent With Performance-level Cognitive Func-

tions Like Perception and Actuation Elements, and Metacomponential-level Cognitive

Functions Like Metacognition and Executive Functions.

experiences that the agent has collected. However, due to incomplete explorations

and/or potential environmental changes, the agent’s model may not be fully correct.

This means there could have a better action that goes beyond the current knowledge

of the agent. In this sense, the Problem Generator is responsible for the agent’s

exploration and obtain new experiences with unseen states, or actions that the agent

does not think to be optimal.

1.2 A Revised Cognitive Learning Agent

According to [140], cognition is the ability to process information and react accord-

ingly. To process information, humans or animals need to perceive, learn, remember,
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and plan/act accordingly. More advanced cognitive agents may also need to con-

sciously think about what they need to perceive (i.e. top-down attention), or why

what they did led to good/bad outcomes, etc. [140] concludes from The Triarchic

Theory of Intelligence ([141]) that cognition lies the center of intelligence, and the

information processing in cognition is a highly interdependent corporation among

three functional components: metacomponent (metacomponential component), per-

formance component, and knowledge-acquisition component. The metacomponential

component is responsible for higher-order processes like planning, monitoring, and

evaluating in the problem solving processes of agents. The performance component is

involved in processes like sensing and acting that are directly related to performance.

The knowledge-acquisition component aims at learning how to solve problems so that

the agent can keep improving itself and adapt to new changes. The metacomponential

component includes higher-order cognitive functions, and therefore is more conscious,

slower in processing, and consumes more resources like memory ([80]). In contrast, the

cognitive functions included in the Performance component are more tacit and uncon-

scious. As reviewed in [80; 17; 122; 121], more recent cognitive psychological studies

(especially after the year 2011) further divide metacomponential component into two

highly-interdependent parts: Metacognition and Executive Functions. Metacognition

can be understood as “thinking about thinking”, which deals with meta-level tasks like

managing or strategizing someone’s thinking (introspecting), monitoring the learning

or problem-solving, retrospecting, and self-evaluating. Executive Functions are high-

order cognitive functions that are goal-directed, self-regulative, and adaptive ([121]).

To achieve Metacognition, you would need to call some of your Executive Functions

like planning and reasoning.

Current researches that connect cognitive learning and neural networks mostly

dive into knowledge-acquisition components and performance components. They
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more or less overlook metacomponential components (Executive Functions and par-

ticularly Metacognitive functions). While there are different subclasses of Executive

Functions and Metacognition functions, in this thesis, I would focus on planning and

plan recognition as Executive Functions, and a novel Metacognition process, called

self-explanation. Self-explanation is an important Metacognition function, which is

also connected to the current popular literature of interpretable AI.

1.2.1 Perception Element

The Perception element in Figure. 1.3 is different from the Sensors module in

the traditional learning agent framework (Figure. 1.2). The Perception element

may further have an attention mechanism. Bottom-up attention is an automatic

process that an agent focuses on a seemingly interesting region without any deliberate

thinking. Top-down attention typically means that the attention is intentionally

guided or biased by cognitive processes that require extra mental efforts, like memory-

calling, reasoning, etc., as described in [140].

Classic visual sensations are automatic and unconscious. The Performance ele-

ment takes processed visual signals from the Perception element to make decisions.

The Perception element may also provide visual recognition outputs for functions that

require a state abstraction of the world (e.g. motion control for grasping). However,

when perception is conditioned on conscious cognition functions, it becomes a con-

scious process too. A planning system could actively adjust perception configurations

like resolutions, view of fields, view angles, etc. A plan recognition system may also

consciously guide the top-down attention.
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1.2.2 Executive Functions

Executive Functions are high-order cognitive functions that are conscious, more

controlled, and sometimes self-regulated. Typical Execution Functions includes plan-

ning, decision-making, inhibiting, and memory updating. Inhibition is an ability

to interrupt or inhibit an automated behavior for avoiding risks or gaining benefits

([122; 121; 80]). In this thesis, I mainly focus on planning, plan recognition and

conscious decision-making.

Planning

When an agent does planning, it typically tries to find a sequence of high-level actions

given a domain model, an abstracted description of initial states, and goal constraints.

Such an action sequence would lead the agent to go from the initial state to the

goal. Therefore, this action sequence would be the solution of a planner, which

takes as input a task description (initial and goal states) and action models (models

for describing preconditions and effects of available actions). The simplest version

of planning is deterministic planning, which means after applying an action in the

current state, the agent can deterministically reach a new state. Note that parts of

the new state is the effect of applying the action, which can be modelled as a set of

predicates with satisfiable arguments in PDDL language ([3]) or terminal conditions

in Options framework ([143]).

Planning is naturally connected to the Perception element. Most classic planning

works assume that there is an optimal visual recognition module, which could tell if an

effect is satisfied or not. When you drive a car, you have your navigation plan, which

is a sequence of high-level actions and subgoals (effects) with some kinds of landmark

information (e.g. go forward until you see X avenue). You would visually check if your
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surroundings satisfy the effect or not of current action in your plan. If satisfied, which

means you have reached the current subgoal, you would probably continue to execute

the next action and keep visually checking the corresponding effect’s satisfiability

again. Thus, planning is also naturally connected to the Performance element, so far

as you need to perform in the world.

Decision-Making (Conscious)

Different from planning that finds an activity sequence between initial state and goal

state, the decision-making process is about taking an action given a state. The action

does not necessary to be a high-level activity. It could also be as low-level as control

commands. A conscious decision-making process would rely on not only states but

also some high-level feature output from higher-order cognitive functions like planning

or inhibition controlling. For example, the former could give subgoal features to guide

the decision-making, and the latter could provide risk predictions to self-regularize

the decision-making.

1.2.3 Metacognition

According to [95; 96], a fundamental metacognitive model can be formulated as

a two-level structure: a meta-level model and an object-level model. The object-

level model includes all basic cognitive functions. The meta-level model can monitor

and metacognitively-control (meta-control) the object-level model. Monitoring and

meta-control are two opposite directions. Monitoring allows object-level information

goes up to the meta-level model, while meta-control allows the meta-level model to

guide, influence, and control the functioning/learning of the object-level model. In

this thesis, I use the term metacognition model to represent the meta-level model, and

other conscious processes (e.g. executive functions) to represent object-level cognitive
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functions. Unconscious cognitive processes are at the lowest-level (performance-level).

As illustrated in Figure. 1.3, monitoring allows metacognition model to track and

evaluate the learning and functioning of lower-level cognitive functions, like executive

functions. For example, with monitoring and self-evaluation, the metacognition model

could know what plan or action makes the agent perform well or into failures. Then

more introspective processes could happen in the metacognition model to acquire

meta-level knowledge like why it caused a failure. With such knowledge, the agent

could meta-control those executive functions.

Inspired by the ongoing popularity of interpretable AI/ML as well as the self-

monitoring, introspection, and retrospective self-evaluation processes in metacogni-

tion, in this thesis I introduce self-explanation, which can be seen as a novel metacog-

nition mechanism for a neural network based learning agent to better improve itself

(via meta-control). A similar idea of formulating metacognition as self-explanation

for enhancing the learning of a traditional AI and learning agent is proposed in [27].

When an AI system meets a performance failure, the system is required to self-explain

how and why the error happened. Then based on this explanation, the system would

decide on what to learn (learning goals) and a better order of several learning algo-

rithms to be tried (learning strategies). In contrast to this work, this thesis views the

self-explanation from a more general perspective of connecting cognitive psychology

and modern machine learning based on deep neural networks.

Self-Explaining

Self-explanation is an important metacognition that can guide the Learning element

and improve the agent by itself. Self-explanation has relevance to the explanations

introduced by the state-of-the-art interpretable AI/ML works. Both self-explanation

and explanation aim at determining how and why some parts of inputs, some factors,
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etc. lead to a model output (decision). The difference is that self-explanation should

be used by the agent itself to improve its further learning, but an explanation from

an interpretable AI model aims at making humans know more computational details

of the AI model.

The intuition behind using self-explanation to support the learning of agents is

simple: if you can explain it well, you should also learn it well. Embedding self-

explanation in learning forces the learning agent to simultaneously learn to predicate

an output, and learn to recognize “how” and “why” it makes that prediction. The

latter could provide extra assistance/guidance to the learning of that agent, and

make the agent more robust to environmental noise or domain change.

Meta-Control

The meta-control component should work with metacognition processes like self-

explainer (which monitors lower-level processes) to generate meta-control signals to

manage lower-level cognitive processes. For example, in the work [27], the gener-

ated explanation of a failure helps construct a learning strategy that could specify

specific learning goals or constraints. In this thesis, I will show that an agent uses

self-explanation to trigger meta-control signals like a predicted subskill that seemingly

fit the current situation the best. This meta-control signal would then guide execu-

tive functions like conscious decision-making and regularize the Performance element.

This finally shifts the distribution of experiences and guides the Learning element.

1.2.4 Learning Element

Similar to the traditional learning agent, the Learning element in this cognitive

learning agent framework is responsible for taking the guidance from the Critic func-

tion and improve all trainable functions. To train those cognitive functions, the
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Learning element also needs to retrieve data stored in the memory. The data typi-

cally are batches of stored experiences that the agent has collected via acting in the

world.

In this thesis, I will show in Chapter 3 how to design a neural network to approx-

imate planning functions, by learning shallow planning domain models. In Chapter

4, I will show how planning and the Perception element improves each other.

Here I would highlight the relationship between metacognition and the Learning

element, which would be explained in detail in Chapter 5. Metacognition model could

guide the learning of lower-level cognitive processes by adding extra feedback signals.

Metacognition model could also directly send control signals to adjust those executive

functions.

1.2.5 Performance Element

Performance element includes all automated (unconscious) processes required to

construct a complete loop from environment to sensing, from sensing to acting, and

from acting to the environment again.

Decision-Making (Unconscious)

An unconscious decision-making process directly maps sensing information or uncon-

scious perception to low-level control commands, without searching a model, memory,

or calling any higher-order conscious processes. Unconscious decision-making happens

much more frequently than conscious decision-making in everyday life. Again taking

the learning to drive as an example, most of your decisions that you make when you

are driving are unconscious. You would not have time to think about if braking is

reasonable when you are about to hit someone.
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Motion Controller

Motion Controller contains unlearnable performance processes for precise speed, po-

sition, and torque control. The Motion Controller sends low-level control signals to

the drive and motors in Actuators.

For example, in an industry, a sensing process with a depth camera sends a target

pose estimation to the motion controller of an arm. Then the motion controller cal-

culates a trajectory via certain kinematics solvers (e.g. an inverse kinematics solver).

A trajectory usually comes in the format of a sequence of velocities and accelerations

for all revolute joints per time step. At each time step, the corresponding velocities

and accelerations data are used. Each velocity and acceleration value matches a rev-

olute joint. After applying those velocities and accelerations to all revolute joints the

desired motion can be done.

Motion Controller can be connected to the decision-making process by using out-

put actions from it, instead of calculating trajectories. Note that in this case we

assume the output actions follow the format of low-level control commands.

There could also have a connection between Motion Controller and Executive

Functions (e.g. a planner), as in the works [67; 171]. The planner could work together

with the Perception element to properly configure the motion controller. For example,

a high-level action from the planner could be “pick_up_mug”, then the Perception

element uses this information to recognize the pose of a mug. Then the pose configures

the motion controller to calculates a trajectory and execute it. Finally, the trajectory

execution feedback could be sent back to the planner to decide if it should go to

the next high-level action or redo the current one. A video demonstration for this

example can be accessed at https://bit.ly/2JweeYk.
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1.3 Dissertation Overview

My research aims at helping the learning of cognitive functions like perception,

planning, and acting to be simultaneous, more tightly connected, and improved as a

whole based on deep neural networks. I also specifically investigate if self-explaining,

which can be viewed as a meta-level cognitive function, could further improve the

overall learning of an agent. Therefore, the primary contribution of the dissertation

is to leverage deep learning to achieve the following four goals:

• Integrating Perception and Acting (Chapter 2)

• Learning Shallow-Models for Planning Domains (Chapter 3)

• Integrating Perception and Planning (Chapter 4)

• Self-Explaining to Support the Overall Learning of an Agent (Chapter 5)

To enable a natural combination between the learning of a planning component

and that of other cognitive functions, cornerstone research is how to reformulate

symbolic classical planning problems as neural network based learning problems. This

will be explained in Chapter 3. This further allows a more general and realistic view

from a visual-plan-recognition perspective: grounded activities for planning might

come from noisy and erroneous visual recognitions. In such cases, a more robust

learning algorithms for learning shallow planning domains would be required.

In Chapter 4, I consider how a perception module and a plan recognition module

could be tightly coupled. I investigate if a plan recognition model can be used to

improve the learning of a visual recognition task.

In Chapter 5, I propose and explore how to embed self-explaining functions into

learning to support the overall neural networks training.
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Finally, in Chapter 6, I will conclude this dissertation with a summary of my

contributions, some interesting alternative perspectives of viewing my research, and

future directions based on self-explanation guided robot learning (Chapter 5) and

advisable cognitive agents learning.
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Chapter 2

COUPLING BETWEEN PERCEPTION AND ACTING

2.1 Cognitive Perception for Acting

Directly taking an action (or making a decision) based on the current visual obser-

vation of the world is important for accomplishing many valuable tasks in real world

environments. Typical tasks include robotic grasping, autonomous driving, and play-

ing video games. In such tasks, it would be difficult to specify or capture a clean state

representation of objects that benefit task accomplishments. Imagine when a robot

needs to grasp objects in different shapes and colors. Colors may hint at different

textures and shapes may hint at geometric characteristics. Both are important for

grasping but are hard to be described in a clean state representation like object poses.

Many researches have been conducted in the fields of Reinforcement Learning,

Imitation Learning, and Robotics. All of such works in recent years tend to pro-

pose various convolutional neural networks (ConvNets) based policies to handle pixel

abstraction. The mapping from pixels to actions are learned in various learning frame-

works, which can generally be categorized into Imitation Learning and Reinforcement

Learning. Imitation Learning is a supervised learning framework that learns a policy

model by minimizing the distance between its predication and ground-truth action per

step. On the other hand, Reinforcement Learning seeks for taking actions that could

potentially maximize a reward objective based on neural network approximation of

Q values.

In this chapter, I would introduce my work of contrastively learning visual atten-

tion as affordance cues from demonstrations for robotic grasping ([164]), which can

17



be seen as a novel way of acting in the world based on task-driven perception. The

discovery of such affordance cues requires agents to deliberately discover distinctive-

ness underlying different expert demonstrations that accomplish a task in different

ways (and therefore under different affordance assumptions).

2.1.1 Chapter Highlights

- In Sec. 2.2, I will show that imitating both the sequential decision-making and

visual affordance knowledge from human outperforms merely imitating the former

in robotic grasping tasks. The perception of visual affordance is driven by decision-

making which makes the perception cognitive.

2.2 Learning Visual Attention as Affordance Cues from Demonstrations

Humans tend to understand objects and their parts from potentially applica-

ble actions or motion primitives that can achieve effects for accomplishing a task.

This phenomenon is abstracted as an ecological psychology concept called affordance

established by J. J. Gibson ([44]). An affordance defines a mapping from an ob-

ject feature to all applicable actions ([111]). Essentially, an affordance represents an

object-action-effect relationship, which is an interactive procedure between an actor

(e.g. a hand) and an object (e.g. a mug). Consider the example shown in Fig.

2.1, in a mug grasping task, a human teacher’s affordance biases (affordance-effect

judgments) might vary with the shape and size of the mug – the mug-A is graspable

from its handle, whereas the mug-B is graspable from its body. When a robot learns

from human demonstrations, it would be beneficial if the robot also discovers such

affordance bias behind human demonstrations and generate (visual) affordance cues

to support its learning.

There are several works ([29; 144; 31]) that propose to learn affordance knowl-
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edge from human demonstrations that avoid a labor-intensive process of collecting

affordance labels. However, previous works fully decouple affordance discovery from

behavior learning and execution, which means the affordance predictor and the robot

controller are trained or constructed separately. In those methods, the predicted af-

fordances are fed into classic motion planners in an engineered fashion. In this work,

we instead combine the learning of affordance knowledge and motion generation from

human demonstrations in an end-to-end deep imitation learning framework. We fur-

ther argue that learning visual attention as affordance cues, rather than explicitly

modeling affordances, is enough to be a reliable latent feature for the actor. The

actor here is also a part of the whole neural network, instead of being a separate and

unlearnable external planner.

When learning affordance knowledge from demonstrations, visual attention can

be an informative cue for inferring affordance. In fact, the close association between

visual attention and affordance has been investigated by some cognitive psychology

works ([8; 66]). According to them, humans use visual attention conditioned on

objects’ geometric and spatial properties to speed up affordance-effect judgments,

which then helps generate motor signals (behaviors). When the attention comes from

a controlled mental process (i.e. top-down attention) driven by a task, object parts

that are permittable for accomplishing the task would be highlighted, from which

proper affordance-effect judgments can be derived ([120]). Indeed, humans do not

explicitly think about what are all possible ways of picking-up a mug at each of its

parts or pixels once she or he already learned how to grasp different mugs. An earlier

work ([85]) also investigates how visual attention could be associated with affordance

cueing in the context of robotics.

In this work, we hypothesize that by encouraging the robot to attend to discrimi-

native features that explain the differences between different demonstrated behaviors,
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Figure 2.1: An Example of Two Mugs: Humans Should Have Different Affordance-

effect Judgments on Their Bodies or Handles. At Each Step, the Robot Takes One

Depth Image (Observation) and Generates One Attention Map, a.k.a Affordance

Cue, That Further Triggers an Action. We Also Show how the Robot Eventually

Picks Up a Mug, Either By Holding the Body or Handle, By Showing the Final Step

Observation.

the robot will be able to more effectively discover affordance information and better

imitate human behavior. This is because when a human teaches affordance knowl-

edge to a robot, the human tends to think about what makes he/she have different

affordance-effect judgments and how could the resulting trajectories be accordingly
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different. Again taking Fig. 2.1 as an example, if the human shows two different

trajectories for the robot to pick up the two different mugs, the robot could discover

important discriminative features regarding mug shapes and sizes and consequently

better learn from demonstrations. If the robot could attend to the handle of Mug-A,

then it would be more likely for the robot to grasp the Mug-A by its handle, rather

than its body.

Therefore, our central problem is to help robots to imitate humans not only at the

behavior level but also with a hidden objective of discovering the affordance-relevant

distinctiveness underlying human demonstrations. As such, robot could attend to

appropriate parts of a specific mug that hints on the same affordance in human’s mind

and therefore helps trigger a similar behavior to humans’. To address the problem, we

propose to use a deep Siamese encoder and trajectory decoder that are trained jointly

with a contrastive loss and a behavior cloning loss in an end-to-end fashion. We also

propose a coupled triplet loss to encourage the discovered discriminative features to

be more affordance-relevant.

To thoroughly evaluate our work, we compare our model with a variant version

that uses a normal triplet loss, a version without using Siamese network, and a baseline

ConvNet-based behavior cloning model. We evaluate those models in terms of the

grasping success rates and visualizations of predicted affordance cues. We empirically

show that our model with the coupled triplet loss performs the best.

To the best of our knowledge, our work is the first to combine grasping affordance

learning and imitation learning from expert demonstrations based on deep neural

networks. The video that demonstrates the advantage of our model with the coupled

triplet loss can be accessed at https://youtu.be/F5kbmEuH-Gg.
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2.3 Problem Settings

Our goal is to encourage robots to learn from expert demonstrations more effi-

ciently by taking advantage of discovering affordance-relevant distinctiveness under-

lying all demonstrations. To capture such distinctiveness, we could learn an attention

model that predicts affordance cues from observations. We assume that humans

have hidden affordance knowledge that is associated with visual cues. When focusing

on a region of an object, humans also know what could be affordable grasps on that

region. The highlighting of such a region could serve as an affordance cue

that supports the imitation learning of the learner itself.

Our task is to pick up mugs in a way that allows pouring water in the near future.

Hence, a robot could grasp a mug by reaching its gripper horizontally to the mug

body, grasp the left and right sides of a handle, or grasp the front and back sides

of a handle. Therefore, we have three candidate affordances (an object part and an

applicable grasp): body-grasp, handle-left-right-grasp, and handle-front-back-grasp,

as shown in Fig. 2.2.

Mug-A Mug-B

observation observationaffordance-cue affordance-cue

body-grasp handle-left-right-grasp handle-front-back-grasp

Figure 2.2: The Picture Depicts Three Examples of the Three Candidate Affordable

Grasps: Body-grasp, Handle-left-right-grasp, and Handle-front-back-grasp.

We assume that robots share the same embodiment with humans: a human expert
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teleoperates a robot to collect demonstration trajectories. The collected trajectories

are categorized in terms of the three candidate affordances. Each trajectory τ is a

sequence of triplets (ot, st, a
∗
t ): τ := {(ot, st, a∗t )}T−1

t=1

⋃
(sT , o

∗
T ). T denotes the trajec-

tory length. ot denotes a depth image at step t. st denotes a state vector at t which

has eight values: the relative 3-D position of the gripper to a mug, the relative 3-D

Euler orientation of the gripper to mug, and two finger position values. a∗t denotes an

expert action vector that has seven values: the translation of x, y, and z; the rotation

of roll, pitch, and yaw; and a value that indicates if the fingers should be closed or

not. All trajectories are categorized into C affordance categories (C is three in

this work). In each category c, there are Nc expert trajectories {τ ci }Nci=1.

2.4 Contrastively Learning Affordance Cues from Demonstrations

Our framework learns to reproduce humans’ behavior with visual cues that hint

at different affordances from human demonstrations. The learning of such visual cues

is achieved by training a Siamese encoder (e.g. [129]), and the policy imitation is

by a behavior-cloning-based trajectory decoder. The Siamese encoder and trajectory

decoder are trained simultaneously in a contrastive learning framework.

2.4.1 A Challenge and A Graphical Model

Since human embeds her/his hidden knowledge of affordances into trajectories of

different affordance categories, intuitively we could use contrastive learning to help

discover affordance cues. A well-known contrastive loss is the triplet loss ([129])

defined in Equation 2.1.
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L(A,P ,N ) =

N∑
i=1

[‖f(Ai)− f(Pi)‖2
2 − ‖f(Ai)− f(Ni)‖2

2 +M ]+

(2.1)

where A, P , and N denote the sets of anchor, positive, and negative trajectories; Ai

denotes the i-th trajectory in A (likewise for Pi and Ni); The i-th positive trajectory

is sampled from the same affordance category of the i-th anchor trajectory, whereas

the i-th negative trajectory is sampled from a different category. M denotes a margin

value, ‖z‖2
2 denotes a squared Euclidean distance metric, [z]+ denotes any z that is

larger than zero, and, f() is an encoding function that can be parameterized by a

neural network.

Contrastive losses encourage a learner to discover recurring patterns in one cate-

gory and discriminative patterns across different categories. From humans’ perspec-

tive, shifting affordance cues would lead to the change of affordance-effect judgment

such that a different action would be taken. Thus, for two trajectories that come

from the same affordance category, their affordance cues would share certain similar-

ities; for two trajectories that are sampled from different affordance categories, their

affordance cues tend to be different.

However, one potential challenge in using traditional contrastive learning frame-

works is that the agent might learn to exploit affordance-irrelevant information (e.g.

contexts, initial configurations) to distinguish two trajectories. Inspired by earlier af-

fordance learning from demonstration works which extract grasping preshapes ([31])

or gripper-object approaching orientations ([29]) to learn affordance clusters, we also

extract the segment of interaction state-action pairs (shortly interaction seg-

ment) of each trajectory as an affordance-relevant feature. An interaction segment

of a trajectory includes the state-action transitions that an actor (e.g. a gripper)
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changes the state of a target object. Since affordance is about object-action-effect

relationships ([78]), we use the current state and previous expert action as the state-

action features per step. Specifically speaking, we extract the interaction state-action

transitions from the trajectory τ : {(st, a∗t−1)}nt=m|τ . The curly brackets {}nt=m mean

that the state of an object changes between the step m and n due to the motion of

an actor.

By contrastively learning from such interaction segments, we could learn a clean

representation of affordances in the form of embeddings. Such embeddings could be

named affordance embeddings ZA which are computed by using Equ. 2.2. We

do not directly condition robots’ decision-making on ZA. Instead, we treat ZA as

a guidance to help robots learn an attention model that extracts an affordance-cue

from an observation for decision-making. To achieve this objective, we feed state st,

image ot, and action a∗t−1 at an arbitrary step t of a trajectory into a neural network

that generates latent features: an affordance-cue and a processed visual feature. We

then convert such latent features to observation embedding zo,At as illustrated in

Equ. 2.3. In the rest of this paper, we use ZA and ZA
τ to denote the same thing:

an affordance embedding for an arbitrary trajectory (τ). We use ZA
τ when we need

distinguish among different trajectories. Likewise for zo,At and zo,At,τ . Now we can

encourage zo,At to be either closer or farther from ZA depending on if the trajectory

that gives zo,At belongs to the same affordance category of the trajectory that gives

ZA or not. This is essentially using the spatial relationships among embeddings in the

space of ZA to guide the learning of observation encoding (Equ. 2.3). This way, we

link the visual processing of high-dimensional sensory input at any step of a trajectory

to the affordance knowledge that can be learned faster from the lower-dimensional

data of interaction segments.
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Figure 2.3: The Graphical Model of Our Siamese Encoder. Each © Denotes a Node

That Represents a Feature. Each Directed Edge From Node X to Node Y Represents

That “Y” Depends on “X”. The	 Denotes Two Nodes (Features) That Are Generated

by the Same Component One By One. The Dashed Edge Means That the Learning

of Affordance Embedding ZA Guides the Learning of Observation Embedding zo,At at

Each Step t.

ZA
τ = fA(interaction-segmentτ ) = fA({(st, a∗t−1)}nt=m|τ ) (2.2)

zo,At,τ = fO(sτt , o
τ
t , a

τ,∗
t−1) (2.3)

where fA() and fO() are two encoding functions whose neural network architectures
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Figure 2.4: The Overall Contrastive Learning Architecture of our Siamese Encoder

and Trajectory Decoder. The Dashed Edge With an Orange Arrow Means That the

Distance Between its Connected Features Needs to Be Minimized.

are explained in Sec. 2.4.3; ZA
τ encodes the interaction segment of the trajectory τ ;

and zo,At,τ mainly encodes the high-dimension observation ot (e.g. a depth image) at

the current step t of the trajectory τ with auxiliary information like the current state

st and previous ground-truth action a∗t−1.

The graphical model that describes the above idea is illustrated in Fig. 2.3 which
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shows two transitions in a trajectory. We start by extracting the interaction state-

action segment of this trajectory. The interaction segment is converted to the em-

bedding ZA which guides the learning of zo,At as explained before. The current state

st, observation ot, and observation embedding zo,At determine what is the proper ac-

tion at to take. The generation of zo,At depends on an affordance-cue (aff-cuet) that

is extracted from ot. Note that the embedding zo,At can essentially be viewed as a

non-visual part of affordance-cue. However, in this chapter, we focus on the visual

part and we refer to the affordance-cue as an attention map.
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Figure 2.5: The Detailed Architecture of the Trajectory Encoder. “×#” Denotes

That a Neural Network Component Needs to be Replicated # Times.

2.4.2 Siamese Encoder and Coupled Triplet Loss

Based on the graphical model, our design of Siamese encoder is depicted in the

yellow region of Fig. 2.4. The Siamese encoder includes a LSTM layer to encode an

interaction segment to generate ZA
τ (ZA for a trajectory τ). It also includes a trajec-

tory encoder that encodes all information (image, state, and previous action) per step

to generate zo,At,τ (zo,At at step t in a trajectory τ). Fig. 2.4 depicts the architecture

at step t, but in the training phase, we feed into the Siamese encoder a trajectory

of T steps and would obtain a sequence of observation embeddings {zo,At,τ }Tt=1. We

also replicate a Siamese encoder into three copies and they share the same weights

at any time during training. The three copies take three trajectories as inputs dur-
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ing training: an anchor, positive, and negative trajectory. The anchor and positive

trajectories are sampled from the same affordance category of data, while the anchor

and negative trajectories come from two different categories. Given a trajectory, each

copy of Siamese encoder generates ZA
τ and {zo,At,τ }Tt=1 for different possible τ as ex-

plained before. Based on Equ. 2.1, 2.2 and 2.3, we propose the coupled triplet loss

(Equ. 2.4) to couple the learning of the two types of embeddings together.

L(A,P ,N ) =
N∑
i=1

{[
∥∥ZA
Ai − Z

A
Pi

∥∥2

2
−
∥∥ZA
Ai − Z

A
Ni

∥∥2

2
+M ]+

+
T∑
t=1

[
∥∥∥Zo,A
Ai − z

A
t,Pi

∥∥∥2

2
−
∥∥∥Zo,A
Ai − z

A
t,Ni

∥∥∥2

2
+M ]+}

(2.4)

where A, P , and N are the anchor, positive, and negative sets of demonstration

trajectories; Ai denotes the i-th trajectory in A (likewise for Pi and Ni); T denotes

the length of an arbitrary trajectory; fA() and fO() are explained under the Equ.

2.3, which generates an affordance embedding ZA and a observation embedding zo,At

respectively. ZA
τ (τ could be either Ai, Pi, or Ni) denotes an affordance embedding

ZA for a trajectory τ ; Likewise, zo,At,τ denotes an observation embedding zo,At for a

trajectory τ ; the Sec. 2.4.3 explains fO() in more details.

The coupled triplet loss can be decomposed into two contrastive learning objec-

tives in the two square brackets []+ that are summed together. The first objective

contrastively learns affordance embedding ZA from all extracted interaction segments.

ZA could also be learned faster due to the low-dimensionality of interaction segment

data. The second objective uses ZA to guide the learning of the observation em-

bedding zo,At . Note that Zo,A
Ai is adjusted by both of the affordance embeddings zAt,Pi

and zAt,Ni . This way of formulating the coupled triplet loss provides a strong training

signal for the observation encoder that generates zo,At . In this sense, the learning of

the embeddings ZA and zo,At are coupled together.
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2.4.3 The Details of Siamese Encoder

The architecture of a Siamese encoder at an arbitrary time step is illustrated in

the yellow region of Fig. 2.4 and with more details in Fig. 2.5. The input can be

either an anchor, positive, or negative trajectory. The definition of a trajectory is

explained in Sec. 2.3.

We start by explaining the detailed formulation of the encoding function fA(). At

the initial step of an input trajectory, we append a dummy action vector of all zeros

to provide a dummy previous action for the first step. We extract the interaction

segment between the step m and n and feed them into an LSTM network (fA()) to

generate the affordance encoding ZA. In our work, the values of m and n are provided

by a human expert. But in reality, m and n can be determined by tracking when the

relative pose of the target object to gripper starts and stops changing.

We now explain the formulation of the encoding function fO(). To process the

observation encoding Zo,A
t per step t of a whole trajectory, we feed it step-by-step into

the trajectory encoder (fO()) module of Siamese encoder. As depicted in Fig. 2.5,

the trajectory encoder module is a two-branch architecture. The bottom branch is

used to process visual features and the top branch is used to process low-dimensional

features like state and action vectors. The top branch concatenates state and action

together and feeds them to a fully-connected layer. After that, it tiles (repeats)

the fully-connected layer feature along the x and y dimensions (e.g. 36 × 36) of

the visual feature map generated after the third convolutional layer at the bottom

branch. This way, the feature map representation of low-dimension inputs is merged

with the convolutional features of visual inputs by element-wise addition. Then two

deconvolution layers are used to generate a two-channel feature map. After applying

the feature map with a channel-wise Softmax, its two channels represent graspable and
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non-graspable probabilities per pixel respectively. We then extract the first channel

of this feature map as an attention map (affordance-cue), aff-cuet. Note that in our

work, such attention maps are essentially latent attention maps because their spatial

dimension matches that of the first convolution layer (Conv(oτt )) output, rather than

the dimension of a raw input image. We then concatenate aff-cuet with Conv(oτt ).

After this, the two convolutional layers, one LSTM network, and two fully connected

layers are used to generate Zo,A
t . In our work we set the encoding size of Zo,A

t to 32.

𝑪𝑪𝒐𝒐𝒐𝒐𝒐𝒐(𝒐𝒐𝒕𝒕)

𝒛𝒛𝒕𝒕
𝒐𝒐,𝑨𝑨

𝐚𝐚𝐚𝐚𝐚𝐚-𝐜𝐜𝐜𝐜𝐞𝐞𝐭𝐭𝝉𝝉
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Feature 
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Flatten �𝒂𝒂𝒕𝒕
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Figure 2.6: The Detailed Architecture of the Trajectory Decoder. “×#” Denotes

That a Neural Network Component Needs to be Replicated # Times.

2.4.4 Policy Network as Trajectory Decoder

The design of our trajectory decoder is based on a convolutional policy network,

as illustrated in Fig. 2.6. The inputs include current state st, the latent convolution

feature Conv(ot), the affordance cue (aff-cuet), and the contrastive embedding zo,At .

Since we treat a discovered affordance cue as an attention feature, we multiply aff-cuet

with each channel of the convolution feature Conv(ot).

We concatenate st and zo,At together and obtain a new 1-D feature. We then tile

(repeat) it across x and y dimensions of the visual feature map generated by the first

convolutional layer at top branch. This way, we could concatenate the visual feature
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Conv(ot), state feature st, and contrastive embedding zo,At together along the channel

dimension. This new feature is then fed into two convolution layers and three fully

connected layers to obtain a predicted action ât.

The loss function for behavior decoding is based on a behavior cloning loss in Equ.

2.5. The overall loss function for training the entire Siamese encoder and trajectory

decoder is a sum of the coupled triplet loss (Equ. 2.4) and behavior cloning loss (Equ.

2.5), which enables a simultaneous learning of affordance knowledge and affordance-

aware grasping from expert demonstrations.

lossbc =
N∑
i=1

{
T∑
t=1

[L1(a∗t , ât) + L2(a∗t , ât)]|τi} (2.5)

where L1 and L2 denotes L1-norm and L2-norm respectively; T denotes the length of

a trajectory; |τi denotes that the ground-truth action a∗t is from the i-th trajectory τi

in dataset.

2.4.5 Testing a Trained Model

When we test a trained Simease encoder and trajectory decoder (Fig. 2.7), we

fix their neural network weights. Since we do not start with an entire trajectory,

there is no interaction segment that provides an affordance embedding. Instead, the

trained weights in Trajectory Encoder already obtained affordance knowledge due to

the coupled triplet loss (Equ. 2.4). Once the trajectory decoder outputs a predicted

action ât at step t, the ât, rather than a ground-truth action as in Equ. 2.3, would

be used for the computation at step t+ 1.
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Figure 2.7: The Overall Architecture of our Siamese Encoder and Trajectory Decoder

in Testing Phase. The Rectangular Filled With Black Color Means That the Model

Weights Are Fixed. The Dashed Arrow and Box Represent That the Prediction of

Action ât at Each Step Would Be Fed Into the Trajectory Encoder at the Next Step.

2.5 Evaluation

We design our experiments in order to answer the following questions: 1) How

helpful is the coupled triplet loss? 2) How helpful is the contrastive learning framework

with a deep Siamese network? 3) How good is our model in comparison with a state-

of-the-art baseline? The codes for this project can be found at 1 .

To answer 1, we compare our full model with a version that uses a normal triplet

loss; to answer 2, we compare our full model with a version that does not have

Siamese network and is trained totally based on behavior cloning losses; to answer 3,

we compare our full model with a recently published work [90] as a baseline. Since we

essentially solve an affordance-aware imitation learning problem for robotic grasping

tasks, our evaluation metric involves grasping success rates which has been widely

used for evaluating the learning of grasping/manipulation tasks (e.g. [62; 119]). We

also show and analyze predicted affordance cues in a video from our project website1

1https://github.com/YantianZha/Affordance-Aware-Imitation-Learning
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and partially in Fig. 2.1.

2.5.1 Evaluation Domain and Data Collection

In our evaluation domain as shown in the leftmost region of Fig. 2.1, we have a

mug that is put in front of a Franka Panda Arm in the PyBullet simulator [26]. We

use 24 mugs in our experiments. These mugs have different affordance characteristics

and each belongs to one or more of the three affordance categories. The task for

the robot is to pick up the mug and lift it up for 5 centimeters. To do this, the

robot needs to intelligently infer the best way of grasping the mug, e.g., by its body,

the left and right sides of its handle, or the front and back sides of its handle. This

domain reflects a common service that humans may need from robots in our everyday

lives. This domain is also sufficient for evaluating our algorithm due to the fact

that naturally there are a large number of mugs that have different structures and

geometric characteristics. It could even be necessary to consider totally different ways

of grasping them from different locations.

When we collect data, we randomly select a mug model and put it in a predefined

position. We fix its initial pose across all of our experiments to guarantee the existence

of an affordable grasp that can be categorized into either of our three affordance

categories. All demonstration trajectories are 8 steps long. We use PyBullet’s function

of reading users’ debugging commands to interactively move the gripper to a good

target pose with a mouse. Once the gripper is moved to an ideal target pose, the

robot then executes with that target pose, and relevant information like observation,

action, and state are recorded. We collect 27 trajectories for our training dataset.

After every 10 training epochs, we test a model by randomly sampling 20 mugs and

perform 20 grasps, respectively, and then record the success rate.
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2.5.2 Experimental Results and Analysis

The quantitative performance is measured by grasping success rates and the qual-

itative performance is evaluated by showing predicted affordance cues in our video

as mentioned before. The grasping results of our model, the baseline, and ablation

study models are reported in Table 4.1. The success rate values are the highest test-

ing success rates that a model achieves across all learning epochs. Table 4.1 provides

experiment results of grasping success rates for four models: 1. our Siamese encoder

with coupled triplet loss; 2. our Siamese network without coupled triplet loss (we ap-

ply normal triplet loss on observation embeddings); 3. our model that is not trained

in a contrastive learning framework, and 4. a baseline behavior cloning work [90].

Model Success Rate

1. Ours (Full Model): Siamese + Coupled Triplet Loss 65%

2. Ours (Ablation): Siamese + Normal Triplet Loss 35%

3. Ours (Ablation): Without Contrastive Learning 45%

4. Baseline [90] 25%

Table 2.1: The Results of Grasping Success Rates for our Model, Ablation Study

Models, and a Baseline Model.

The results clearly show the advantage of using our coupled triplet loss with a

Siamese neural network for the learning of affordance cues and grasping from demon-

strations. An interesting finding is that the model 3 still performs better than model

2. This suggests that merely doing contrastive learning at observation level via the

normal triplet loss could misguide the policy learning. Instead, the coupled triplet

loss in this work contrastively learn affordance embeddings to guide the learning of

observation encoding.
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2.6 Related Work

2.6.1 Affordance Learning for Grasping

Regarding learning affordances for grasping, the majority of previous works use

ground-truth affordance labels to learn affordances for grasping ([83; 159; 163; 139]).

[83] use thermal maps to learn the graspable positions of several household objects.

[159] employ transfer learning from pre-trained vision models to pixel-wise affordance

prediction networks that help the robot generalize over novel objects. [163] also uses

pixel-level affordances to identify multi-grasp possibilities for objects present in a

cluttered area.

There are also works that propose to learn affordances from demonstrations or via

imitation learning: [54; 29; 144; 31]. All of these works share similar frameworks of

using classic unsupervised learning (e.g. clustering) to identify gripper control param-

eters that would be fed into a motion planner. In [54], the affordance is represented

by contact points for grasping an object. They use a predefined tracking configura-

tion to reduce the number of potential contact points from demonstrations. After

detecting a set of contact points on a new object, nearest-neighbor classification is

used to identify a template grasp that matches their demonstration data on similar

objects. In [29; 144; 31], they define affordable actions in affordances as approaching

angles ([29]), grasp preshape hypotheses ([144]), or grasping prototypes ([31]). Then

they use clustering to find condensed representations of affordances. In this work,

we leverage the expressiveness of deep neural networks to implicitly learn affordance

knowledge from human demonstrations. By learning from demonstrations with a deep

contrastive learning framework, we evade the need of using ground truth affordances.
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2.6.2 Attention Guided Imitation Learning

Imitation learning or learning from demonstrations [90; 119] has been at the core

of teaching robots to perform object-manipulation tasks in a similar way to humans

performing the same task. By combining visual attention with imitation learning,

robots could learn the information better by focusing on smaller but more important

regions in manipulation tasks. In [2], authors use natural language descriptors that are

specific to the task at hand to generate guided attention cues. The masked attention

method places attention on the entire object that is to be grasped but does not focus

on the specific region that the robot needs to interact with. A similar issue can be

observed in [113] where the model first captures attention features of the object by

generating attention maps for different stages of the object manipulation task. But

the robot, in this case, can only learn to imitate the task and can not decide how

to perform a specific task in a variable environment setting. Hence, one potential

advantage of our approach is that it allows the robot to learn the specific graspable

points in scenarios where the shape of the object (mug and its handle, in this case)

can also vary restricting the possible graspable areas even for a human.

2.6.3 Discriminative Feature Learning

The objective of discriminative feature learning is to make sure that the learned

features of deep neural networks can represent different inputs contrastively enough

[151]. Usually, such learned features can be easily separated by k-nearest neighbors

algorithms [40]. Various approaches have been proposed to address the discriminative

learning problem for deep neural networks. One popular approach is Siamese neural

network [15] that was proposed in 1994 for verifying signatures. Quite a few works

used Siamese neural networks as a backbone for new deep network models of discrim-
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inative feature learning. Siamese neural network can be combined with ConvNets

and trained with a Binary Cross Entropy loss as in [63], or triplet loss as in [129]).

Recently deep learning based Siamese neural networks are also applied in many new

applications, like face recognition ([129; 135]), object discovery ([138; 55]), object

co-segmentation ([10; 79; 92]), and re-identification as in [169; 97].

Besides using Siamese neural networks for discriminative feature learning, [151]

proposes to replace normal classification loss functions in ConvNets with the Cen-

ter loss. Center loss works by minimizing the intra-class variations and meanwhile

keeping the inter-class feature variations separable enough. The work [155] proposes

a prototype-based discriminative feature learning (PDFL) method. The work [74]

follows a similar idea to [151] and designs a discriminative feature learning algorithm

for domain adaption.

2.7 Concluding Remarks

We present an imitation learning algorithm that seeks training guidance not only

from teachers’ actions but from simultaneously discovering teachers’ hidden affor-

dance bias as well. We propose a contrastive learning framework with a Siamese

encoder for affordance discovery and a trajectory decoder for policy learning. We

represent affordance cues as visual attention. We further propose the coupled triplet

loss to encourage the learned discriminative features to be more affordance-relevant.

To the best of our knowledge, we initialize the direction of bridging the gap between

affordance discovery and policy engineering/learning by achieving the two objectives

together via an end-to-end deep neural network. Our work inherits the benefits of the

class of works that learns affordances from demonstrations: there is no need of col-

lecting ground-truth affordance labels for each image or pixel. However, such works

focus on affordance learning and predicted affordances is still used by external mo-
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tion planners. Our evaluation shows that our algorithm achieves the highest grasping

success rate and predicts meaningful affordance cues.

While the affordance-cue learning made the perception more “conscious”, its learn-

ing is “model-free” that does not support “long-term thinking”. Therefore, in Chapter

3, I would introduce my works that learn neural networks to couple planning and

perception.

2.7.1 Significance

We believe our affordance-guided policy imitation framework has potential for

solving more complex tasks, which could be pursued in the future extensions of this

work:

1) The tasks that involve multiple levels of interactions, instead of only the inter-

action between gripper and mug. Most tool-using tasks would require multiple levels

of interactions;

2) The prediction of affordance-cue could be conditioned on different high-level

tasks such that the attention map would be different even on the same object but w.r.t

different tasks. In our work, we have a fixed high-level task of picking-to-pour-water,

but if there is another task like pick-and-relocate, the discovered affordance cues

might be different. This can be achieved by integrating our work into a hierarchical

imitation learning framework.

3) It might also be interesting to explore how the coupled triplet loss could also

be used to address other robot learning problems other than affordance-aware policy

imitation.
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Chapter 3

LEARNING A SHALLOW PLANNING MODEL FOR PLAN RECOGNITION

3.1 Inspirations from Neural Language Models

Traditional symbolic planning approaches usually require a full model with com-

plete definitions of actions (with preconditions and effects). Such full models are usu-

ally defined by STRIPS ([34]) or PDDL ([3]). To enable a cognitive learning agent

with planning functions, it is crucial to research a learning counterpart of classical

planning algorithms. The benefits are two-fold: 1) learning-to-plan allows the plan-

ning to be more robust and better adapt to specific environments and tasks without

requiring a human domain expert to make domain modifications; 2) learning-to-plan

allows a planning component to better match other cognitive components like per-

ception by simultaneous learning them together.

Neural Language Models refer to the class of deep learning methods for learning

language models. Such language models could solve tasks like translation, language

embedding, and language generation. By viewing symbolic plan traces as sentences

and Neural Language Models as approximated planners, we can potentially adopt

some Neural Language Models to address planning tasks.

In this chapter, I mostly focus on symbolic plan recognition tasks that can be

addressed by learning a shallow planning model. There is a close connection between

planning and plan recognition: Solving plan recognition problems can be reduced to

solving planning problems, as illustrated and proven in [117; 114; 133]. However,

these plan recognition works rely on fully defined planning models. In the rest of the

sections of this chapter, I will draw a connection between Neural Language Models
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and Planning. That is to say, instead of constructing a formal planning model, we

could learn a shallow planning model from plan corpora with novel algorithms inspired

by Neural Language Models. The various incompleteness of shallow planning models

and other types of planning models are summarized in Fig. 3.1.

Figure 3.1: Schematic View of Incomplete Models and Their Relationships in the

Spectrum of Incompleteness (from [176])

3.1.1 Chapter Highlights

- In Sec. 3.2, I will start by discussing two methods in [176] to learn shallow

planning models via Neural Language Models for solving plan recognition problems.

However, they rely on optimal visual recognition of actions from videos.

- In Sec. 3.3, I introduce an extension work [166] that could handle erroneous

perception of actions from videos by directly learning from observed (uncertain) action

distributions.
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3.1.2 Background

Word2Vec and Hierarchical Softmax for Learning Distributed Represen-

tations of Actions

In this section we make a brief review about the Skip-gram Word2Vec works based

on [86]. To be consistent with the whole paper, we use the term “action” and treat it

an equivalence to the term “word” in other papers which introduces Word2Vec. The

Word2Vec works such as Skip-gram models can be used as fundations for learning

distributed representations of actions (action embeddings). We then explain how the

learned action embeddings could be used for plan recognition as introduced in [146].

Given a corpora which contains action (word) sequences, a Skip-gram model is

trained by maximizing the average log probability:

1

T

T∑
t=1

∑
−W≤j≤W,j 6=0

log p(at+j|at) (3.1)

where T is the length of a sequence, W is the context window size, at is fed as the

model input, aI , and at+j is used as the target action (word), aO. The probability

p(aO|aI) is computed as:

p(aO|aI) =
exp(v′TaOvaI )∑A
a=1 exp(v

′T
a vaI )

(3.2)

which is essentially a softmax function. A denotes a vocabulary of all possible actions.

Other symbols follows the definition in Equation 3.1. We can use this equation that

computes p(aO|aI) to compute p(at+j|at) in Equation 3.1.

The p(at+j|at) in the Word2Vec with hierarchical softmax is calculated in the fol-

lowing manner. The output layer’s weight matrix of the regular Word2Vec is replaced
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by a binary tree whose leaf nodes are words in the trained vocabulary. Every node

on the path from the root node until the leaf node has a vector, excluding the leaf

node. The input action ai is converted into an embedding h which is the input into

the binary tree component. The probability of this input vector h that could go to

a particular leaf node is calculated by following the path from the root node to the

target leaf node, using the following formula:

p(at+j|at) =

L(at+j)−1∏
i=1

{
σ(I(n(at+j, i+ 1) =

child(n(at+j, i))) · vn(at+j ,i) · h)
}
, (3.3)

where I(x) is a function that returns 1 if the next node on the path to the target leaf

node is on the left of the current node, and -1 if the next node is to the right. L(at+j)

is the length of path from root to the leaf node at+j, vn(at+j ,i) is the vector of the

i-th node along the path. h is the embedding obtained by multiplying the embedding

matrix and vector of the input action at. h is the vector that represents the input

action in the embedding space. In order to maximize the probability, the vectors of

the intermediary nodes are updated with each training sample which has the target

action at and an action in its context at+j.

Recurrent Neural Networks (RNNs)

In this chapter, we consider a specific type of RNNs, which generates an output

sequence with the same length of an input sequence. Note that in natural language

processing (NLP) community, various RNN models, such as deep RNNs [105], Bi-

LSTM-CRF [5], etc., were designed to suit different complicated NLP tasks. The

more complex the model is, the more data are required to build the model. Compared

to NLP tasks, our plan recognition task is relatively not that complicated (plans in
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the plan library are formally represented by action sequences, while natural language

data in NLP tasks are often unstructured and ambiguous). In addition, our data is

relatively smaller than that used in many RNN models in complicated NLP tasks.

To avoid overfitting, we chose a basic RNN model (with a relatively small number

of parameters). Given an input sequence x, an RNN model could predict an output

sequence y, in which output yt at each step depends on the input xt at that step,

and the hidden state at the previous step. If we unroll this RNN cell along T steps,

it could accept an input sequence x = (x1..., xT ), and compute a sequence of hidden

states h = (h1, h2, ..., hT ), as shown in Fig. 3.2. For each of these hidden states

ht (1 ≤ t ≤ T ), it contributes to predicting the next step output yt+1, and thus

RNN computes an output vector sequence y = (y1, ..., yT ), by iterating the following

equations from t = 1 to T :

ht-1 

xt-1 xt xt+1 

ht ht+1 

yt+1 yt yt-1 

Figure 3.2: The Framework of Recurrent Neural Networks

ht = H(Wxhxt +Whhht−1 + bh) (3.4)

yt = Whyht + by (3.5)

where the W terms denote weight matrices, i.e., Wxh is the input-hidden weight

matrix,Whh is the hidden-hidden weight matrix, andWhy is the hidden-output matrix.

The b terms denote bias vectors, i.e., bh is hidden bias vector, and by is the output bias
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vector. H is the hidden layer function, which is usually an elementwise application of

a sigmoid function. The RNN could also be utilized to directly generate, in principle,

infinitely long future outputs, given a single input xt. The sequence of future outputs

could be generated by directly feeding the output yt at a step t, to the input xt+1

at the next step t + 1, by assuming what it predicts is reliable (i.e., yt = xt+1).

As for training the RNN as a sequence generation model, we could utilize yt to

parameterize a predictive distribution P (xt+1|yt) over all of the possible next inputs

xt+1, by minimizing the loss:

L(x) = −
T∑
t=1

logP (xt+1|yt). (3.6)

where T is the number of steps of an observed plan trace, xt+1 is the observed action

at step t + 1, and yt is the output at step t as well as the prediction of what would

happen at step t+ 1. To estimate yt based on x1, . . . , xt, we exploit the Long Short-

term Memory (LSTM) model [46; 130], which has been demonstrated effective on

generating sequences, to leverage long term information prior to xt and predict yt

based on current input xt. We can thus rewrite Equation (3.6) as:

L(x; θ) = −
T∑
t=1

logP (xt+1|yt)LSTM(yt|x1:t; θ), (3.7)

where LSTM(yt|x1:t; θ) indicates the LSTM model estimates yt based on current input

xt and memories of previous input prior to xt. θ are parameters including Wxh, Whh,

Why, bh, and by.

The framework of LSTM [46; 130] is shown in Fig. 3.3, where xt is the tth input,

ht is the tth hidden state. it, ft, ot and ct are the tth input gate, forget gate, output

gate, cell and cell input activation vectors, respectively, whose dimensions are the

same as the hidden vector ht. LSTM is implemented by the following functions:
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Figure 3.3: The Framework of the Long Short-term Memory (LSTM) Cell

it = σ(Wxixt +Whiht−1 +Wcict−1 + bi) (3.8)

ft = σ(Wxfxt +Whfht−1 +Wcfct−1 + bf ) (3.9)

ct = ft ◦ ct−1 + it ◦ tanh(Wxcxt +Whcht−1 + bc) (3.10)

ot = σ(Wxoxt +Whoht−1 +Wcoct + bo) (3.11)

ht = ot ◦ tanh(ct) (3.12)

where ◦ indicates the Hadamard product, σ is the logistic sigmoid function, Wxi is an

input-input gate matrix, Whi is a hidden-input gate matrix, Wci is a cell-input gate

matrix, Wxf is an input-forget gate matrix, Whf is a hidden-forget gate matrix, Wcf

is a cell-forget gate matrix, Wxc is an input-cell gate matrix, Whc is a hidden-cell gate

matrix, Wxo is an input-output gate matrix, Who is a hidden-output gate matrix, Wco

is a cell-output gate matrix. bi, bf , bc, and bo are bias terms. Note that the matrices

from cell to gate vectors (i.e., Wci, Wcf andWco) are diagonal, such that each element

e in each gate vector only receives input of element e of the cell vector. The major

innovation of LSTM is its memory cell ct which essentially acts as an accumulator

of the state information. ct is accessed, written and cleared by self-parameterized

controlling gates, i.e., input, forget, output gates. Each time a new input xt comes,

its information is accumulated to the memory cell if the input gate it is activated.
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The past cell status ct−1 could be forgotten in this process if the forget gate ft is

activated. Whether the latest cell output ct is propagated to the final state ht is

further controlled by the output gate ot. The benefit of using the memory cell and

gates to control information flow is the gradient is trapped in the cell and prevented

from vanishing too quickly.

3.2 Recognizing Plans with Learned Shallow Planning Models

With a fully defined planning model, we can optimally predict what will be the

next state given the current state and action. For symbolic planning models, a full

model would require a complete symbolic definition of actions with their preconditions

and effects. However, to make a planning and perception model adaptable so that

they can work with each other as a whole, it would be promising to model them as

parametric models like neural networks. In contrast to full planning models, shallow

planning models refer to models that can be used to approximately solve planning

tasks yet without complete and syntactic definitions of planning domain knowledge.

In [145; 176], shallow planning models are approximated by a Word2Vec model ([123])

trained on corpora of plan traces.

There are certain similarities between planning and natural language processing

(NLP) tasks. The learning of a Neural Language Model requires natural language

sentences and each sentence is formed by a sequence of words. Likewise, a plan trace

can be viewed as a sentence if we treat each action in the plan trace as a word. Then

the dataset of natural language sentences for learning an NLP model helps in a similar

way to using a plan library for learning a shallow planning model.
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3.2.1 Problem Setting

In the work [176], we learn shallow planning models from such a plan library for

solving plan recognition problems. A plan library, denoted by L, is composed of a

set of plans {p}, where p is a sequence of actions, i.e., p = 〈a1, a2, . . . , an〉 where ai,

1 ≤ i ≤ n, is an action name (without any parameter) represented by a string. For

example, a string unstack-A-B is an action meaning that a robot unstacks block A

from block B. We denote the set of all possible actions by Ā which is assumed to be

known beforehand. For ease of presentation, we assume that there is an empty action,

φ, indicating an unknown or not observed action, i.e., A = Ā ∪ {φ}. An observation

of an unknown plan p̃ is denoted by O = 〈o1, o2, . . . , oM〉, where oi ∈ A, 1 ≤ i ≤ M ,

is either an action in Ā or an empty action φ indicating the corresponding action is

missing or not observed. Note that p̃ is not necessarily in the plan library L, which

makes the plan recognition problem more challenging, since matching the observation

to the plan library will not work any more.

We assume that the human is making a plan of at most lengthM . We also assume

that at any given point, the planner is able to observe M − k of these actions. The

k unobserved actions might either be in the suffiix of the plan, or in the middle. Our

aim is to suggest, for each of the k unobserved actions, l possible choices from which
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the user can select the action. (Note that we would like to keep l small, ideally close

to 1, so as not to overwhelm users). Accordingly, we will evaluate the effectiveness

of the decision support in terms of whether or not the user’s best/intended action is

within the suggested l actions.

Specifically, our recognition problem can be represented by a triple < = (L,O,A).

The solution to < is to discover the unknown plan p̃, which is a plan with unknown

observations, that best explains O given L and A. We have the following assumptions

A1-A3:

A1: The length of the underlying plan to be discovered is known, which releases us

from searching unlimited length of plans.

A2: The positions of missing actions in the underlying plan is known in advance,

which releases us from searching missing actions in between observed actions.

A3: All actions observed are assumed to be correct, which indicates there is no need

to criticize or rectify the observed actions.

Note that assumptionsA1 andA2 can be removed by leveraging auxiliary knowledge,

such as domain models, as done by previous approaches [115; 33; 134]. Building such

auxiliary knowledge often requires a lot of human efforts, we thus assume we do not

have that knowledge by considering assumptions A1 and A2. The Fig. 3.4 shows an

example for each of L, O, and R.

3.2.2 DUP – Discovering Underlying Plans

We introduce two approaches of learning shallow planning models via NLP meth-

ods as illustrated in Fig. 3.5. One approach is named DUP (Discovering Underlying

Plans) that leans semantic correlations among actions, which can be treated as words,

for plan recognition. The semantic correlations are captured by learning a Word2Vec
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Figure 3.5: Learning Shallow Planning Models via Neural Language Models: DUP

and RNNPlanner (from [176]).

model on the plan library L. With a learned action (or word) embedding model,

we could do planning or plan recognition by iteratively finding actions that have the

closest embedding distances to observed actions (a greedy algorithm) or by a more

efficient Expectation-Maximization searching algorithm.

Our DUP approach to the recognition problem < functions by two phases. We

first learn vector representations of actions using the plan library L. We then itera-

tively sample actions for unobserved actions oi by maximizing the probability of the

unknown plan p̃ via the EM framework. We present DUP in detail in the following

subsections.

Maximizing Probability of Unknown Plans

With the vector representations learnt in the last subsection, a straightforward way

to discover the unknown plan p̃ is to explore all possible actions in Ā such that p̃ has
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the highest probability, which can be defined similar to Equation (3.1), i.e.,

F(p̃) =
M∑
k=1

∑
−c≤j≤c,j 6=0

log p(wk+j|wk) (3.13)

where wk denotes the kth action of p̃ and M is the length of p̃. As we can see, this

approach is exponentially hard with respect to the size of Ā and number of unobserved

actions. We thus design an approximate approach in the Expectation-Maximization

framework to estimate an unknown plan p̃ that best explains the observation O.

To do this, we introduce new parameters to capture “weights” of values for each

unobserved action. Specifically speaking, assuming there are X unobserved actions

in O, i.e., the number of φs in O is X, we denote these unobserved actions by

ā1, ..., āx, ..., āX , where the indices indicate the order they appear in O. Note that

each āx can be any action in Ā. We associate each possible value of āx with a weight,

denoted by Γ̄āx,x. Γ̄ is a |Ā| ×X matrix, satisfying∑
o∈Ā

Γ̄o,x = 1,

where Γ̄o,x ≥ 0 for each x. For the ease of specification, we extend Γ̄ to a bigger

matrix with a size of |Ā| ×M , denoted by Γ, such that Γo,y = Γ̄o,x if y is the index

of the xth unobserved action in O, for all o ∈ Ā; otherwise, Γo,y = 1 and Γo′,y = 0

for all o′ ∈ Ā ∧ o′ 6= o. Our intuition is to estimate the unknown plan p̃ by selecting

actions with the highest weights. We thus introduce the weights to Equation (3.2),

as shown below,

p(wk+j|wk) =

L(wk+j)−1∏
i=1

{
σ(I(n(wk+j, i+ 1) =

child(n(wk+j, i))) · avn(wk+j ,i) · bvwk)
}
, (3.14)

where a = Γwk+j ,k+j and b = Γwk,k. We can see that the impact of wk+j and wk is

penalized by weights a and b if they are unobserved actions, and stays unchanged,

otherwise (since both a and b equal to 1 if they are observed actions).
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We assume X ∼ Multinomial(Γ·,x), i.e., p(X = o) = Γo,x, where Γo,x ≥ 0 and∑
a∈Ā η

a = 1. P (p̃|Γ) =
∏

x Γo,x

We redefine the objective function as shown below,

F(p̃,Γ) =
M∑
k=1

∑
−c≤j≤c,j 6=0

log p(wk+j|wk), (3.15)

where p(wk+j|wk) is defined by Equation (3.14). The gradient of Equation 3.15 is

shown below,
∂F
∂Γo,x

=
4c(L(o)− 1)

Γo,x
. (3.16)

The only parameters needed to be updated are Γ, which can be easily done by gradient

descent, as shown below,

Γo,x = Γo,x + δ
∂F
∂Γo,x

, (3.17)

if x is the index of unobserved action in O; otherwise, Γo,x stays unchanged, i.e.,

Γo,x = 1. Note that δ is a learning constant.

With Equation (3.17), we can design an EM algorithm by repeatedly sampling an

unknown plan according to Γ and updating Γ based on Equation (3.17) until reaching

convergence (e.g., a constant number of repetitions is reached).

Overview of our DUP approach

An overview of our DUP algorithm is shown in Algorithm 1. In Step 2 of Algorithm

1, we initialize Γo,k = 1/M for all o ∈ Ā, if k is an index of unobserved actions in

O; and otherwise, Γo,k = 1 and Γo′,k = 0 for all o′ ∈ Ā ∧ o′ 6= o. In Step 4, we

view Γ·,k as a probability distribution, and sample an action from Ā based on Γ·,k if

k is an unobserved action index in O. In Step 5, we only update Γ·,k where k is an

unobserved action index. In Step 6, we linearly project all elements of the updated

Γ to between 0 and 1, such that we can do sampling directly based on Γ in Step 4.
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In Step 8, we simply select āx based on

āx = arg max
o∈Ā

Γo,x,

for all unobserved action index x.

Algorithm 1 Framework of our DUP algorithm
Input: plan library L, an observation O

Output: plan p̃

1: learn vector representation of actions based on L

2: initialize Γo,k with 1/M for each o ∈ Ā and each k that is an unobserved action

index

3: while the maximal number of repetitions Λ is not reached do

4: sample unobserved actions in O based on Γ

5: for each unobserved action x, update Γ·,x based on Equation (3.17)

6: project Γ to [0,1]

7: end while

8: select actions for unobserved actions with the largest weights in Γ

9: return p̃

Our DUP algorithm framework belongs to a family of policy gradient algorithms,

which have been successfully applied to complex problems, e.g., robot control [99],

natural language processing [12]. Our formulation is unique in how it recognizes plans,

in comparison to the existing methods in the planning community. The first step of

Algorithm 1 is O(Iters×Tmax×|L|×WinSize), where Iters is the maximal number

of iterations for vector representations of actions, and Tmax is the maximal length of

plans in L and |L| is the number of plans in L, andWinSize is the size of the window

(WinSize = 2c+1). The time cost of Step 2 is O(|A|×unobserved(O), and the time

cost of Steps 2 to 7 is O(Λ×|A|×unobserved(O), where unobserved(O) is the number
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of unobserved actions in O. In general, the time cost of the first step is much higher

than other steps, i.e., the time cost of Algorithm 1 is O(Iters×Tmax×|L|×WinSize).

3.2.3 RNNPlanner

The other approach is named as RNNPlanner (Recurrent Neural Network based

Planner). RNNPlanner works by learning a recurrent neural network (a Long-Short-

term Memory net) as a sequential generative model to directly output missing or

future actions from an observed plan prefix. As such, planning or plan recognition

tasks can be accomplished. As we model our plan recognition problem as an action-

sequence generation problem, our aim of exploring RNN-LSTM architecture is to

leverage longer-horizon of actions to help improve the accuracy of generating new

actions based on previously observed or generated actions. We will first introduce the

RNN-LSTM architecture, and then introduce our RNNPlanner model.

Discovering Underlying Plans with the RNN Model

With the distributed representations of actions addressed in Section 3.1.2, we view

each plan in the plan library as a sequence of actions, and the plan library as a set of

action sequences, which can be utilized to train the RNN model. The framework of

RNN with sequences of actions can be seen from Fig. 3.6, which is similar to [47]. The

bottom row in Fig. 3.6 is an input action sequence “pick-up-B, stack-B-A, pick-up-C,

stack-C-B, pick-up-D”. The “Embedding Layer” computes vector representations of

actions, which is pretrained by Section 3. Similar to a classic RNN cell, the LSTM

cell feeds its output to both itself as a hidden state, and the softmax layer to obtain

a probability distribution over all actions in the action vocabulary A. From the

perspective of the LSTM cell at the next step, it receives a hidden state from the

previous step ht−1, an action vector at the current step xt. To obtain the index of
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most possible action, our model samples over the action distribution output from

softmax layer. That retrieved index could be mapped to an action in the vocabulary

Ā.

LSTM

stack-B-A

OUT1

pick-up-B

Embedding 

Layer

pick-up-C stack-C-B pick-up-D

Softmax 

Layer

LSTM

OUT2

Embedding 

Layer

Softmax 

Layer

LSTM

OUT3

Embedding 

Layer

Softmax 

Layer

LSTM

OUT4

Embedding 

Layer

Softmax 

Layer

LSTM

OUT5

Embedding 

Layer

Softmax 

Layer

Sampling

Figure 3.6: The Framework of our RNNPlanner Approach

The top row in Fig. 3.6 is the output sequence, denoted by “OUT1, OUT2, OUT3,

OUT4, OUT5, ...”, which corresponds to the estimated sequence “y1, y2, y3, y4, y5,

. . .” in Equation (3.18). Note that we exploit the dotted arrow to indicate two folds of

meanings in Fig. 3.6. When training the RNN model, the one pointed by the head of

the dotted arrow (the embedding of the input) is used to compute the cross entropy

with the output at tail (output of LSTM cell at the previous step), and next-step

observation as the input at the head, to train the model. When using the trained RNN

model to discover unknown actions, the model assumes what it predicts is the real

next input, and takes it to continue its prediction. Thus the one pointed by the head

is copied and identical to the one denoted by the tail. For example, the embedding of

“stack-B-A” is copied from the prediction vector of “OUT1” if the input “stack-B-A”

was unknown. In addition, the arrows between each of two LSTM cells shows the

unrolling of a LSTM cell. The horizontal dashed line suggests that we obtain the

action output at each step, by sampling from probability distribution, provided by
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the softmax layer. With the trained RNN model, we can discover underlying actions

by simply exploiting the RNN model to generate unknown actions based on observed

or already discovered actions.

An overview of our RNNPlanner algorithm can be seen from Algorithm 2. In

Algorithm 2, Step 1 is the same as Step 1 of Algorithm 1. In Step 2, we let yt = xt+1,

such that, given p(xt+1|yt) = 1, Equation (3.18) can be calculated by

L(x; θ) = −
T∑
t=1

logLSTM(xt+1|x1:t; θ), (3.18)

where x is a plan in L. We use MLE (Maximal Likelihood Estimation) to estimate

parameters θ given x1:t as input and xt+1 as output for each t ∈ [1, |x|), where x is a

plan from L.

For example, given the observation:

pick-up-B φ unstack-D-C put-down-D φ stack-C-B φ φ

we can generate the first φ based on pick-up-B, the second φ based on actions from

pick-up-B to put-down-D, the third φ based on all previous actions (including the

generated actions for φs).

The running time complexity of Step 1 in Algorithm 2 is the same as addressed

in the Algorithm 1, i.e., O(Iters× Tmax × |L| ×WinSize). The time cost of Steps 2

to 7 of Algorithm 2 is O(Λ× |L| × T 2
max), where T 2

max is the time cost of updating θ

(Step 5) based on plan p since it needs to scan each action a in p and a’s preceding

actions when computing the objective L(x; θ) as shown in Equation 3.18. The time

cost of Steps 8 to 15 is O(|O|2) based on the parameters θ learnt by previous steps.

In summary, the complexity of Algorithm 2 is O(Λ× |L|×T 2
max), considering Tmax is

much larger than WinSize, and the length of O is general much less than |L|×T 2
max.
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Algorithm 2 Framework of our RNNPlanner algorithm
Input: plan library L, observed actions O

Output: plan p̃

1: learn vector representation of actions based on L

2: initialize θ with random values

3: while the maximal number of repetitions Λ is not reached do

4: for each plan p ∈ L do

5: update parameters θ by optimizing the objective L(x; θ) based on the

vector representations of p

6: end for

7: end while

8: let p̃ = NULL

9: for each t = 1 to |O| do

10: if ot ∈ O is φ then

11: generate yt based on LSTM(yt|p̃; θ)

12: ot = yt

13: end if

14: p̃ = [p̃|ot]

15: end for

16: return p̃
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Figure 3.7: This Figure Illustrates the Framework of VPR, Which Does Plan Recogni-

tion on Uncertain Observations. Those Uncertain Observations Come From a Visual

Recognition Model, Video2Vec, Whose Training Is Explained in the Supplemental

Material (Section 1). The Number ‘18’, ‘24’, and ‘36’ Means the 18-th, 24-th, and

36-th Action in Action Vocabulary (Explained in Section 3.3.1)

3.3 What if Learning with Erroneous Visual Recognition?

The previous work has an underlying assumption that there is a perfect perception

module that provides optimal visual recognition results. But this assumption is too

strict to be held in real-world settings. Visual activity recognition is often noisy and

uncertain, typically represented as a probability distribution over possible actions.

When there is an erroneous sensory, the action that matches the ground-truth would

not be assigned with the highest probability. As a result, a high-level plan recognition

module would not access such an action, but the one with the highest probability.

However, if the plan recognition model uses the whole distribution, the plan recogni-

tion performance could be improved because the correct information is kept even at

high-level computation.

Consider the example in Figure 3.7, where a surveillance system attempts to

recognize plans from captured video clips of salad-making activities. In the first

three frames, the activity recognition module may generate a distribution over three

activities, and determine that the human grasps a pestle with the highest confidence

(probability), a cucumber, and a pen with lower confidences. In such a case there

is a perceptual error (PE), if we assume that the ground-truth activity is picking-up
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a cucumber. If the plan recognition module only takes the most likely activity (i.e.

grasping a pestle), only erroneous information is used by the plan recognition module

which may lead to poor performance. Hence the plan recognition module should

consider the information of less likely activities as well.

In our work [166], we tackle the problem of visual plan recognition. For most

real-world problems, visual plan recognition is challenging in the sense of defining

or learning a domain model for plan recognition. One approach to obtain such a

model is to learn embeddings to capture affinities. Our framework uses an affinity

model trained from the sequences of action distributions to do plan recognition. To

use embeddings for plan recognition, we treat actions as words and learn an affinity

model over actions based on their co-occurrences [145]. However, existing embedding

methods expect sequences of words with no uncertainty (no distributions). One way

to get such data is to greedily take the most possible action from each distribution,

which motivates us to design a baseline model GM (Greedy Model). To use more

information from uncertain observations, we can sample action sequences from each

sequence of action distributions, and then build a Word2Vec model. Based on this we

propose the Resampling-Based Model (RS2Vec). RS2Vec can be quite inefficient in

that it will have to generate many samples to capture the distribution. The requisite

sample size will increase with the length of the sequence, and the number of actions

in the distribution of each step. An alternative is to directly handle the distribution

data. We present such a method called Distr2Vec. Distr2Vec requires a modification

of the Word2Vec architecture to let it learn embeddings for distributions over words

as opposed to single words. To train the Distr2Vec affinity model, we introduce a

loss function based on combining Kullback-Leibler (KL) divergence and Hierarchical-

Softmax ([123]).

The resulting framework, called VPR (visual plan recognition), is described in our
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paper. Figure 3.7 shows the architecture of VPR. A pre-trained activity recognition

module converts a sequence of video clips from a camera, to a sequence of observed

action distributions (i.e. observed plans). Then we could do plan recognition by using

one of the three affinity models, GM, RS2Vec, or Distr2Vec. Those affinity models

serve as approximated planning domain models and generate affinity scores for plan

recognition. An affinity score represents how likely an activity is going to happen

given observed activities.

3.3.1 Problem Setting

The problem formulation of recognizing plans from noisy and distribution-style

action recognition is similar to the deterministic case explained below the Fig. 3.4.

The main difference is that the input of our Distr2Vec in VPR is in the form of

the following matrix. Each step is a distribution over actions (a1, ..., ak) with their

probabilities (confidence) (c1, ..., ck). The values of T and K represent the number of

time-steps and actions per step respectively.

Actions

y

Time−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→

a1
1, c

1
1 a1

2, c
1
2 a1

3, c
1
3 · · · a1

T , c
1
T

a2
1, c

2
1 a2

2, c
2
2 a2

3, c
2
3 · · · a2

T , c
2
T

a3
1, c

3
1 a3

2, c
3
2 a3

3, c
3
3 · · · a3

T , c
3
T

...
...

... . . . · · ·

aK1 , c
K
1 aK2 , c

K
2 aK3 , c

K
3 · · · aKT , c

K
T


Fig. 3.8, 3.9, and 3.10 show an example for each of a plan library L, an observed

plan O with missing observed action distribution, and a plan recognition solution R

with predicated actions filled at each step with missing observations.
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Plan1: [

𝑎𝑑𝑑-𝑜𝑖𝑙-𝑝𝑟𝑒𝑝 0.7
𝑎𝑑𝑑-𝑣𝑖𝑛𝑒𝑔𝑎𝑟-𝑝𝑟𝑒𝑝 0.2
𝑎𝑑𝑑-𝑤𝑎𝑡𝑒𝑟-𝑝𝑟𝑒𝑝 0.1

] [

𝑎𝑑𝑑-𝑜𝑖𝑙-𝑐𝑜𝑟𝑒 0.7
𝑎𝑑𝑑-𝑣𝑖𝑛𝑒𝑔𝑎𝑟-𝑝𝑟𝑒𝑝 0.2
𝑎𝑑𝑑-𝑤𝑎𝑡𝑒𝑟-𝑝𝑟𝑒𝑝 0.1

] [

𝑎𝑑𝑑-𝑣𝑖𝑛𝑒𝑔𝑎𝑟-𝑝𝑟𝑒𝑝 0.6
𝑎𝑑𝑑-𝑜𝑖𝑙-𝑝𝑟𝑒𝑝 0.3

𝑎𝑑𝑑-𝑤𝑎𝑡𝑒𝑟-𝑝𝑟𝑒𝑝 0.1
] [
𝑎𝑑𝑑-𝑣𝑖𝑛𝑒𝑔𝑎𝑟-𝑐𝑜𝑟𝑒 0.6

𝑎𝑑𝑑-𝑜𝑖𝑙-𝑐𝑜𝑟𝑒 0.3
𝑎𝑑𝑑-𝑤𝑎𝑡𝑒𝑟-𝑐𝑜𝑟𝑒 0.1

] [

𝑎𝑑𝑑-𝑝𝑒𝑝𝑝𝑒𝑟-𝑝𝑟𝑒𝑝 0.8
𝑎𝑑𝑑-𝑐𝑢𝑐𝑢𝑚𝑏𝑒𝑟-𝑝𝑟𝑒𝑝 0.1

𝑎𝑑𝑑-𝑠𝑎𝑙𝑡-𝑝𝑟𝑒𝑝 0.1
] 

Plan2: [

𝑎𝑑𝑑-𝑜𝑖𝑙-𝑝𝑟𝑒𝑝 0.7
𝑎𝑑𝑑-𝑣𝑖𝑛𝑒𝑔𝑎𝑟-𝑝𝑟𝑒𝑝 0.2
𝑎𝑑𝑑-𝑤𝑎𝑡𝑒𝑟-𝑝𝑟𝑒𝑝 0.1

] [

𝑎𝑑𝑑-𝑜𝑖𝑙-𝑐𝑜𝑟𝑒 0.7
𝑎𝑑𝑑-𝑣𝑖𝑛𝑒𝑔𝑎𝑟-𝑝𝑟𝑒𝑝 0.2
𝑎𝑑𝑑-𝑤𝑎𝑡𝑒𝑟-𝑝𝑟𝑒𝑝 0.1

] [
𝑎𝑑𝑑-𝑣𝑖𝑛𝑒𝑔𝑎𝑟-𝑝𝑟𝑒𝑝 0.7

𝑏 0.2
𝑐 0.1

] [
𝑎𝑑𝑑-𝑜𝑖𝑙-𝑝𝑟𝑒𝑝 0.7

𝑏 0.2
𝑐 0.1

] [
𝑎𝑑𝑑-𝑜𝑖𝑙-𝑝𝑟𝑒𝑝 0.7

𝑏 0.2
𝑐 0.1

] 

Plan3: [

𝑎𝑑𝑑-𝑜𝑖𝑙-𝑝𝑟𝑒𝑝 0.7
𝑎𝑑𝑑-𝑣𝑖𝑛𝑒𝑔𝑎𝑟-𝑝𝑟𝑒𝑝 0.2
𝑎𝑑𝑑-𝑤𝑎𝑡𝑒𝑟-𝑝𝑟𝑒𝑝 0.1

] [

𝑎𝑑𝑑-𝑜𝑖𝑙-𝑐𝑜𝑟𝑒 0.7
𝑎𝑑𝑑-𝑣𝑖𝑛𝑒𝑔𝑎𝑟-𝑝𝑟𝑒𝑝 0.2
𝑎𝑑𝑑-𝑤𝑎𝑡𝑒𝑟-𝑝𝑟𝑒𝑝 0.1

] [
𝑎𝑑𝑑-𝑣𝑖𝑛𝑒𝑔𝑎𝑟-𝑝𝑟𝑒𝑝 0.7

𝑏 0.2
𝑐 0.1

] [
𝑎𝑑𝑑-𝑜𝑖𝑙-𝑝𝑟𝑒𝑝 0.7

𝑏 0.2
𝑐 0.1

] [
𝑎𝑑𝑑-𝑜𝑖𝑙-𝑝𝑟𝑒𝑝 0.7

𝑏 0.2
𝑐 0.1

] 

 

Observation: [
𝑎𝑑𝑑-𝑝𝑒𝑝𝑝𝑒𝑟-𝑝𝑟𝑒𝑝 0.7

𝑎𝑑𝑑-𝑐𝑢𝑐𝑢𝑚𝑏𝑒𝑟-𝑝𝑟𝑒𝑝 0.2
𝑎𝑑𝑑-𝑠𝑎𝑙𝑡-𝑝𝑟𝑒𝑝 0.1

] 𝟇 𝟇 [
𝑎𝑑𝑑-𝑣𝑖𝑛𝑒𝑔𝑎𝑟-𝑐𝑜𝑟𝑒 0.6

𝑎𝑑𝑑-𝑜𝑖𝑙-𝑐𝑜𝑟𝑒 0.3
𝑎𝑑𝑑-𝑤𝑎𝑡𝑒𝑟-𝑐𝑜𝑟𝑒 0.1

]  [

𝑎𝑑𝑑-𝑠𝑎𝑙𝑡-𝑝𝑟𝑒𝑝 0.5
𝑎𝑑𝑑-𝑣𝑖𝑛𝑒𝑔𝑎𝑟-𝑝𝑟𝑒𝑝 0.3

𝑎𝑑𝑑-𝑜𝑖𝑙-𝑝𝑟𝑒𝑝 0.2
] 

 

Completed Plan: [
𝑎𝑑𝑑-𝑝𝑒𝑝𝑝𝑒𝑟-𝑝𝑟𝑒𝑝 0.7

𝑎𝑑𝑑-𝑐𝑢𝑐𝑢𝑚𝑏𝑒𝑟-𝑝𝑟𝑒𝑝 0.2
𝑎𝑑𝑑-𝑠𝑎𝑙𝑡-𝑝𝑟𝑒𝑝 0.1

] 𝑎𝑑𝑑-𝑝𝑒𝑝𝑝𝑒𝑟-𝑐𝑜𝑟𝑒  𝑎𝑑𝑑-𝑣𝑖𝑛𝑒𝑔𝑎𝑟-𝑝𝑟𝑒𝑝 [
𝑎𝑑𝑑-𝑣𝑖𝑛𝑒𝑔𝑎𝑟-𝑐𝑜𝑟𝑒 0.6

𝑎𝑑𝑑-𝑜𝑖𝑙-𝑐𝑜𝑟𝑒 0.3
𝑎𝑑𝑑-𝑤𝑎𝑡𝑒𝑟-𝑐𝑜𝑟𝑒 0.1

] [

𝑎𝑑𝑑-𝑠𝑎𝑙𝑡-𝑝𝑟𝑒𝑝 0.5
𝑎𝑑𝑑-𝑣𝑖𝑛𝑒𝑔𝑎𝑟-𝑝𝑟𝑒𝑝 0.3

𝑎𝑑𝑑-𝑜𝑖𝑙-𝑝𝑟𝑒𝑝 0.2
] 

Plan1: [

𝑎𝑑𝑑-𝑜𝑖𝑙-𝑝𝑟𝑒𝑝 0.7
𝑎𝑑𝑑-𝑣𝑖𝑛𝑒𝑔𝑎𝑟-𝑝𝑟𝑒𝑝 0.2
𝑎𝑑𝑑-𝑤𝑎𝑡𝑒𝑟-𝑝𝑟𝑒𝑝 0.1

] [

𝑎𝑑𝑑-𝑜𝑖𝑙-𝑐𝑜𝑟𝑒 0.7
𝑎𝑑𝑑-𝑣𝑖𝑛𝑒𝑔𝑎𝑟-𝑝𝑟𝑒𝑝 0.2
𝑎𝑑𝑑-𝑤𝑎𝑡𝑒𝑟-𝑝𝑟𝑒𝑝 0.1

] [

𝑎𝑑𝑑-𝑣𝑖𝑛𝑒𝑔𝑎𝑟-𝑝𝑟𝑒𝑝 0.6
𝑎𝑑𝑑-𝑜𝑖𝑙-𝑝𝑟𝑒𝑝 0.3

𝑎𝑑𝑑-𝑤𝑎𝑡𝑒𝑟-𝑝𝑟𝑒𝑝 0.1
] [
𝑎𝑑𝑑-𝑣𝑖𝑛𝑒𝑔𝑎𝑟-𝑐𝑜𝑟𝑒 0.6

𝑎𝑑𝑑-𝑜𝑖𝑙-𝑐𝑜𝑟𝑒 0.3
𝑎𝑑𝑑-𝑤𝑎𝑡𝑒𝑟-𝑐𝑜𝑟𝑒 0.1

] [

𝑎𝑑𝑑-𝑝𝑒𝑝𝑝𝑒𝑟-𝑝𝑟𝑒𝑝 0.8
𝑎𝑑𝑑-𝑐𝑢𝑐𝑢𝑚𝑏𝑒𝑟-𝑝𝑟𝑒𝑝 0.1

𝑎𝑑𝑑-𝑠𝑎𝑙𝑡-𝑝𝑟𝑒𝑝 0.1
] 

Plan2: [

𝑎𝑑𝑑-𝑜𝑖𝑙-𝑝𝑟𝑒𝑝 0.7
𝑎𝑑𝑑-𝑣𝑖𝑛𝑒𝑔𝑎𝑟-𝑝𝑟𝑒𝑝 0.2
𝑎𝑑𝑑-𝑤𝑎𝑡𝑒𝑟-𝑝𝑟𝑒𝑝 0.1

] [

𝑎𝑑𝑑-𝑜𝑖𝑙-𝑐𝑜𝑟𝑒 0.7
𝑎𝑑𝑑-𝑣𝑖𝑛𝑒𝑔𝑎𝑟-𝑝𝑟𝑒𝑝 0.2
𝑎𝑑𝑑-𝑤𝑎𝑡𝑒𝑟-𝑝𝑟𝑒𝑝 0.1

] [
𝑎𝑑𝑑-𝑣𝑖𝑛𝑒𝑔𝑎𝑟-𝑝𝑟𝑒𝑝 0.7

𝑏 0.2
𝑐 0.1

] [
𝑎𝑑𝑑-𝑜𝑖𝑙-𝑝𝑟𝑒𝑝 0.7

𝑏 0.2
𝑐 0.1

] [
𝑎𝑑𝑑-𝑜𝑖𝑙-𝑝𝑟𝑒𝑝 0.7

𝑏 0.2
𝑐 0.1

] 

Plan3: [

𝑎𝑑𝑑-𝑜𝑖𝑙-𝑝𝑟𝑒𝑝 0.7
𝑎𝑑𝑑-𝑣𝑖𝑛𝑒𝑔𝑎𝑟-𝑝𝑟𝑒𝑝 0.2
𝑎𝑑𝑑-𝑤𝑎𝑡𝑒𝑟-𝑝𝑟𝑒𝑝 0.1

] [

𝑎𝑑𝑑-𝑜𝑖𝑙-𝑐𝑜𝑟𝑒 0.7
𝑎𝑑𝑑-𝑣𝑖𝑛𝑒𝑔𝑎𝑟-𝑝𝑟𝑒𝑝 0.2
𝑎𝑑𝑑-𝑤𝑎𝑡𝑒𝑟-𝑝𝑟𝑒𝑝 0.1

] [
𝑎𝑑𝑑-𝑣𝑖𝑛𝑒𝑔𝑎𝑟-𝑝𝑟𝑒𝑝 0.7

𝑏 0.2
𝑐 0.1

] [
𝑎𝑑𝑑-𝑜𝑖𝑙-𝑝𝑟𝑒𝑝 0.7

𝑏 0.2
𝑐 0.1

] [
𝑎𝑑𝑑-𝑜𝑖𝑙-𝑝𝑟𝑒𝑝 0.7

𝑏 0.2
𝑐 0.1

] 

 

Observation: [
𝑎𝑑𝑑-𝑝𝑒𝑝𝑝𝑒𝑟-𝑝𝑟𝑒𝑝 0.7

𝑎𝑑𝑑-𝑐𝑢𝑐𝑢𝑚𝑏𝑒𝑟-𝑝𝑟𝑒𝑝 0.2
𝑎𝑑𝑑-𝑠𝑎𝑙𝑡-𝑝𝑟𝑒𝑝 0.1

] 𝟇 𝟇 [
𝑎𝑑𝑑-𝑣𝑖𝑛𝑒𝑔𝑎𝑟-𝑐𝑜𝑟𝑒 0.6

𝑎𝑑𝑑-𝑜𝑖𝑙-𝑐𝑜𝑟𝑒 0.3
𝑎𝑑𝑑-𝑤𝑎𝑡𝑒𝑟-𝑐𝑜𝑟𝑒 0.1

]  [

𝑎𝑑𝑑-𝑠𝑎𝑙𝑡-𝑝𝑟𝑒𝑝 0.5
𝑎𝑑𝑑-𝑣𝑖𝑛𝑒𝑔𝑎𝑟-𝑝𝑟𝑒𝑝 0.3

𝑎𝑑𝑑-𝑜𝑖𝑙-𝑝𝑟𝑒𝑝 0.2
] 

 

Completed Plan: [
𝑎𝑑𝑑-𝑝𝑒𝑝𝑝𝑒𝑟-𝑝𝑟𝑒𝑝 0.7

𝑎𝑑𝑑-𝑐𝑢𝑐𝑢𝑚𝑏𝑒𝑟-𝑝𝑟𝑒𝑝 0.2
𝑎𝑑𝑑-𝑠𝑎𝑙𝑡-𝑝𝑟𝑒𝑝 0.1

] 𝑎𝑑𝑑-𝑝𝑒𝑝𝑝𝑒𝑟-𝑐𝑜𝑟𝑒  𝑎𝑑𝑑-𝑣𝑖𝑛𝑒𝑔𝑎𝑟-𝑝𝑟𝑒𝑝 [
𝑎𝑑𝑑-𝑣𝑖𝑛𝑒𝑔𝑎𝑟-𝑐𝑜𝑟𝑒 0.6

𝑎𝑑𝑑-𝑜𝑖𝑙-𝑐𝑜𝑟𝑒 0.3
𝑎𝑑𝑑-𝑤𝑎𝑡𝑒𝑟-𝑐𝑜𝑟𝑒 0.1

] [

𝑎𝑑𝑑-𝑠𝑎𝑙𝑡-𝑝𝑟𝑒𝑝 0.5
𝑎𝑑𝑑-𝑣𝑖𝑛𝑒𝑔𝑎𝑟-𝑝𝑟𝑒𝑝 0.3

𝑎𝑑𝑑-𝑜𝑖𝑙-𝑝𝑟𝑒𝑝 0.2
] 

Plan1: [

𝑎𝑑𝑑-𝑜𝑖𝑙-𝑝𝑟𝑒𝑝 0.7
𝑎𝑑𝑑-𝑣𝑖𝑛𝑒𝑔𝑎𝑟-𝑝𝑟𝑒𝑝 0.2
𝑎𝑑𝑑-𝑤𝑎𝑡𝑒𝑟-𝑝𝑟𝑒𝑝 0.1

] [

𝑎𝑑𝑑-𝑜𝑖𝑙-𝑐𝑜𝑟𝑒 0.7
𝑎𝑑𝑑-𝑣𝑖𝑛𝑒𝑔𝑎𝑟-𝑝𝑟𝑒𝑝 0.2
𝑎𝑑𝑑-𝑤𝑎𝑡𝑒𝑟-𝑝𝑟𝑒𝑝 0.1

] [

𝑎𝑑𝑑-𝑣𝑖𝑛𝑒𝑔𝑎𝑟-𝑝𝑟𝑒𝑝 0.6
𝑎𝑑𝑑-𝑜𝑖𝑙-𝑝𝑟𝑒𝑝 0.3

𝑎𝑑𝑑-𝑤𝑎𝑡𝑒𝑟-𝑝𝑟𝑒𝑝 0.1
] [
𝑎𝑑𝑑-𝑣𝑖𝑛𝑒𝑔𝑎𝑟-𝑐𝑜𝑟𝑒 0.6

𝑎𝑑𝑑-𝑜𝑖𝑙-𝑐𝑜𝑟𝑒 0.3
𝑎𝑑𝑑-𝑤𝑎𝑡𝑒𝑟-𝑐𝑜𝑟𝑒 0.1

] [

𝑎𝑑𝑑-𝑝𝑒𝑝𝑝𝑒𝑟-𝑝𝑟𝑒𝑝 0.8
𝑎𝑑𝑑-𝑐𝑢𝑐𝑢𝑚𝑏𝑒𝑟-𝑝𝑟𝑒𝑝 0.1

𝑎𝑑𝑑-𝑠𝑎𝑙𝑡-𝑝𝑟𝑒𝑝 0.1
] 

Plan2: [

𝑎𝑑𝑑-𝑜𝑖𝑙-𝑝𝑟𝑒𝑝 0.7
𝑎𝑑𝑑-𝑣𝑖𝑛𝑒𝑔𝑎𝑟-𝑝𝑟𝑒𝑝 0.2
𝑎𝑑𝑑-𝑤𝑎𝑡𝑒𝑟-𝑝𝑟𝑒𝑝 0.1

] [

𝑎𝑑𝑑-𝑜𝑖𝑙-𝑐𝑜𝑟𝑒 0.7
𝑎𝑑𝑑-𝑣𝑖𝑛𝑒𝑔𝑎𝑟-𝑝𝑟𝑒𝑝 0.2
𝑎𝑑𝑑-𝑤𝑎𝑡𝑒𝑟-𝑝𝑟𝑒𝑝 0.1

] [
𝑎𝑑𝑑-𝑣𝑖𝑛𝑒𝑔𝑎𝑟-𝑝𝑟𝑒𝑝 0.7

𝑏 0.2
𝑐 0.1

] [
𝑎𝑑𝑑-𝑜𝑖𝑙-𝑝𝑟𝑒𝑝 0.7

𝑏 0.2
𝑐 0.1

] [
𝑎𝑑𝑑-𝑜𝑖𝑙-𝑝𝑟𝑒𝑝 0.7

𝑏 0.2
𝑐 0.1

] 

Plan3: [

𝑎𝑑𝑑-𝑜𝑖𝑙-𝑝𝑟𝑒𝑝 0.7
𝑎𝑑𝑑-𝑣𝑖𝑛𝑒𝑔𝑎𝑟-𝑝𝑟𝑒𝑝 0.2
𝑎𝑑𝑑-𝑤𝑎𝑡𝑒𝑟-𝑝𝑟𝑒𝑝 0.1

] [

𝑎𝑑𝑑-𝑜𝑖𝑙-𝑐𝑜𝑟𝑒 0.7
𝑎𝑑𝑑-𝑣𝑖𝑛𝑒𝑔𝑎𝑟-𝑝𝑟𝑒𝑝 0.2
𝑎𝑑𝑑-𝑤𝑎𝑡𝑒𝑟-𝑝𝑟𝑒𝑝 0.1

] [
𝑎𝑑𝑑-𝑣𝑖𝑛𝑒𝑔𝑎𝑟-𝑝𝑟𝑒𝑝 0.7

𝑏 0.2
𝑐 0.1

] [
𝑎𝑑𝑑-𝑜𝑖𝑙-𝑝𝑟𝑒𝑝 0.7

𝑏 0.2
𝑐 0.1

] [
𝑎𝑑𝑑-𝑜𝑖𝑙-𝑝𝑟𝑒𝑝 0.7

𝑏 0.2
𝑐 0.1

] 

 

Observation: [
𝑎𝑑𝑑-𝑝𝑒𝑝𝑝𝑒𝑟-𝑝𝑟𝑒𝑝 0.7

𝑎𝑑𝑑-𝑐𝑢𝑐𝑢𝑚𝑏𝑒𝑟-𝑝𝑟𝑒𝑝 0.2
𝑎𝑑𝑑-𝑠𝑎𝑙𝑡-𝑝𝑟𝑒𝑝 0.1

] 𝟇 𝟇 [
𝑎𝑑𝑑-𝑣𝑖𝑛𝑒𝑔𝑎𝑟-𝑐𝑜𝑟𝑒 0.6

𝑎𝑑𝑑-𝑜𝑖𝑙-𝑐𝑜𝑟𝑒 0.3
𝑎𝑑𝑑-𝑤𝑎𝑡𝑒𝑟-𝑐𝑜𝑟𝑒 0.1

]  [

𝑎𝑑𝑑-𝑠𝑎𝑙𝑡-𝑝𝑟𝑒𝑝 0.5
𝑎𝑑𝑑-𝑣𝑖𝑛𝑒𝑔𝑎𝑟-𝑝𝑟𝑒𝑝 0.3

𝑎𝑑𝑑-𝑜𝑖𝑙-𝑝𝑟𝑒𝑝 0.2
] 

 

Completed Plan: [
𝑎𝑑𝑑-𝑝𝑒𝑝𝑝𝑒𝑟-𝑝𝑟𝑒𝑝 0.7

𝑎𝑑𝑑-𝑐𝑢𝑐𝑢𝑚𝑏𝑒𝑟-𝑝𝑟𝑒𝑝 0.2
𝑎𝑑𝑑-𝑠𝑎𝑙𝑡-𝑝𝑟𝑒𝑝 0.1

] 𝑎𝑑𝑑-𝑝𝑒𝑝𝑝𝑒𝑟-𝑐𝑜𝑟𝑒  𝑎𝑑𝑑-𝑣𝑖𝑛𝑒𝑔𝑎𝑟-𝑝𝑟𝑒𝑝 [
𝑎𝑑𝑑-𝑣𝑖𝑛𝑒𝑔𝑎𝑟-𝑐𝑜𝑟𝑒 0.6
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𝑎𝑑𝑑-𝑤𝑎𝑡𝑒𝑟-𝑐𝑜𝑟𝑒 0.1

] [

𝑎𝑑𝑑-𝑠𝑎𝑙𝑡-𝑝𝑟𝑒𝑝 0.5
𝑎𝑑𝑑-𝑣𝑖𝑛𝑒𝑔𝑎𝑟-𝑝𝑟𝑒𝑝 0.3

𝑎𝑑𝑑-𝑜𝑖𝑙-𝑝𝑟𝑒𝑝 0.2
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Figure 3.11: The Architecture of our Distr2Vec Model for Learning Distribution

Embeddings and Action Affinity Models.

3.3.2 The Distr2Vec Model

Our Distr2Vec model framework is shown in Figure 3.11 which takes a distribu-

tion sequence like the one described above as input. Like the training of a Word2Vec

model, we try to maximize the similarity (of the embeddings) between an action distri-

bution and its neighbors. We minimize Kullback-Leibler (KL) divergence to maximize

the similarity between our target and predicted output distribution as follows;

DKL(Distrencoding(at+j)|| ˆDistr
encoding

(at+j)) (3.19)

where DKL represents the KL divergence. KL-divergence is calculated as per Equ.

3.20.
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KL(p||q) ,
K∑
k=1

pklog
pk
qk

=
K∑
k=1

pklogpk −
K∑
k=1

pklogqk (3.20)

where q is the output probability distribution of our Distr2Vec. q is also an approx-

imation of p, the target distribution Distr(at+j). We try to minimize the inclusive

KL divergence ([87]) with the model’s target distribution. An advantage of using

inclusive KL divergence is that we avoid computing the derivative of the entropy of

p when taking partial derivative of KL(p||q) with respect to model parameters. This

is because the values for p (which is Distr(at+j)), is a constant with respect to the

model parameters. Using this information, we can obtain the Equ. 3.21.

DKL(Distrencoding(at+j)|| ˆDistr
encoding

(at+j))

= Z(Distr(at+j))−
K∑
k=1

ckt+jlogp(a
k
t+j|h(Distr(at))) (3.21)

where Z(Distr(at+j)) =
∑K

k=1 c
k
t+jlog(ckt+j) is a constant, and

h(Distr(at)) is the embedding computed by multiplying the embedding matrix WE

and the distribution input vector Distrencoding(at) (Equ. 3.22). Distrencoding(at) =

〈0...0, c1
t , 0, ..., 0, c

2
t , 0, ...0, c

K
t , 0...〉 that is encoded from Distr(at).

h(Distr(at)) = WE ×Distrencoding(at) (3.22)

Now we elaborate how to combine Equ. 3.21 with using the hierarchical softmax

([123]). If we extend the hierarchical softmax in a normal Word2Vec to handle a

distribution input Distr(at), we obtain the probability of an action in the target

observed action distribution Distr(at+j):
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p(akt+j|h(Distr(at))) =

L(akt+j)−1∏
i=1

{
σ(I(n(akt+j, i+ 1) (3.23)

= child(n(akt+j, i))) · vn(akt+j ,i)
· h(Distr(at)))

}
And if we combine Equ. 3.23 and Equ. 3.21, we obtain the error function in Equ.

3.24. This is the error function as we are trying to minimize the KL divergence of

Equ. 3.21.

E = Z(Distr(at+j))−
K∑
k=1

ckt+j

L(akt+j)−1∑
i=1{

logσ(I(.)vn(akt+j ,i)
· h(Distr(at)))

}
(3.24)

Now with a trained Distr2Vec as the action affinity model, we use it as a sub-

routine in our VPR, which is similar to the usage of Word2Vec in DUP ([145]).

3.3.3 Resampling Based Model (RBM)

In RS2Vec, we first calculate the likelihoods of all possible paths from each trace

of action distribution. The path weights (PW ) can be calculated by multiplying the

confidence values of all actions along a path, and thus could be used to represent

the overall uncertainty of that path. The top N action sequences with probabilities

(ranked according to PW s) are selected and then resampled using the roulette wheel

resampling approach of [76]. This lets us drop some sampled traces that have low

probabilities, and increase the number of samples with high probabilities. The set

of traces selected after the resampling step is used to train a Word2Vec model. The

above procedure is summarized in Algorithm. 3.

That said, the potential problem for RS2Vec are the following. First, the resam-

pling would make the algorithm more computationally expensive, and the training
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time would be closely related to the number of samples and length of the training

data. This makes it hard to apply RBM to a real-time plan recognition system.

Secondly, the resampling approach would lose some information, whereas Distr2Vec

could directly use the entire distribution sequence.

3.4 Evaluation

3.4.1 Comparison between RNNPlanner and DUP

In this section we compare RNNPlanner with DUP to see the change of performance

with respect to different distributions of missing actions in the underlying plans to

be discovered. In this experiment, we are interested in evaluating the performance

on consecutive missing actions in the underlying plans since these scenarios often

exist in many applications such as surveillance [1]. We first test the performance

of both RNNPlanner and DUP in discovering underlying plans with only consecutive

missing actions in the “middle” of the plans, i.e., actions are not missing at the end

or in the front, which indicates missing actions can be inferred from both previously

and subsequently observed actions. Then we evaluate both RNNPlanner and DUP

in discovering underlying plans with only consecutive missing actions at the end

of the plans, which indicates missing actions can only be inferred from previously

observed actions. After that, we also evaluate the performance of our RNNPlanner

and DUP approaches with respect to the size of recommendation set. In the following

subsections, we present the experimental results regarding those three aspects. The

codes for evaluating DUP and RNNPlanner can be found at 1

1https://github.com/YantianZha/Discovering-Underlying-Plans-Based-on-Shallow-Models
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Algorithm 3 Algorithm for implementing RS2Vec model
INPUT: A library L of uncertain plans, and beam size S

OUTPUT: trained RS2Vec model that embeds action affinities in L

1: SSP ←[] . Initialize stored sampled plans set SSP

2: for each uncertain plan p in L do

3: SS ←heap_queue([]) . Initialize stored samples set SS as a heap queue

4: for i = t; t ≤ size(p); t+ + do

5: BSS ←heap_queue([]) . Initialize backup stored samples set BSS as a

heap queue

6: for each (akt , ckt ) from Distr(at) do

7: Copy each sample from SS, update its action sequence and score with

akt , c
k
t

8: Push the updated sample into BSS

9: end for

10: if S ≤ BSS then

11: Pop size(BSS)− S samples from BSS

12: end if

13: SS ← BSS

14: end for

15: SSP ← SSP ∪ SS

16: end for

17: Perform Rouletter wheel resampling on plans in SSP and keep the size of SSP

to be unchanged

18: Train a Word2Vec on samples from SP and obtain RS2Vec

19: return RS2Vec
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Performance with missing actions in the middle

To see the performance of RNNPlanner and DUP in cases when actions are missing in

the middle of the underlying plan to be discovered, we vary the number of consecutive

missing actions from 1 to 10, to see the change of accuracies of both RNNPlanner and

DUP. We set the window size to be 1 and the recommendation size to be 10. The

results are shown in Fig. 3.12.
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Figure 3.12: Accuracy With Respect to Missing Actions in the Middle

From Fig. 3.12, we can see that the accuracies of both RNNPlanner and DUP

generally become lower when the number of consecutive unobserved actions increas-

ing. This is consistent with our intuition since the more actions are missing, the

less information can be used to help infer the unobserved actions, which results in

low accuracies. Comparing the curves of RNNPlanner and DUP, we can see that the

accuracy of DUP is higher than RNNPlanner at the beginning. This is because DUP ex-

ploits information of both observed actions before and after missing actions to infer

the missing actions, while RNNPlanner just exploits observed actions before missing

actions. When the number of missing actions is larger than 3, the accuracy of DUP
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both low (i.e., lower than 0.2). This is because the window size of DUP is set to be 1,

which indicates we exploit one action before the missing actions and one action after

the missing actions to estimate the missing actions. When the consecutive missing

actions are more than 1, there may not be sufficient context information for inferring

the missing actions, resulting in low accuracy.

Performance with missing actions at the end

We also would like to see the performance of RNNPlanner and DUP in discovering

missing actions at the end, which is prevalent in application domains that aim at

discovering/predicting future actions. Similar to previous experiments, we vary the

number of consecutive unobserved or missing actions to see the change of accuracies

of both RNNPlanner and DUP. We set the window size to be 1 and the recommendation

size to be 10 as well. The experimental results are shown in Fig. 3.13.
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Figure 3.13: Accuracy With Respect to Missing Actions in the End.

From Fig. 3.13, we can observe that the accuracies of both RNNPlanner and DUP

generally get decreasing when the number of consecutive missing actions increases.
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This is similar to previous experimental results. That is, the more actions are missing,

the less information is available for estimating the missing actions, which results in

lower accuracy. In addition, we can also see that RNNPlanner generally performs

better than DUP, which indicates that the RNNs-based approach, i.e., RNNPlanner,

can indeed better exploit observed actions to predict future missing actions, since

RNNs are capable of flexibly leveraging long or short-term information to help predict

missing actions. We can also see that the performance of both RNNPlanner and DUP

decreases sharply when the number of consecutive missing actions is larger than 3.

This is because we set the window size to be 1 (i.e., we consider three consecutive

actions each time we calculate the posterior probability), which indicates we exploit

one action before the missing actions and one action after the missing actions to

estimate the missing actions. When the consecutive missing actions are more than

1, there may not be sufficient context information for inferring the missing actions,

resulting in low accuracies.

Performance with respect to different recommendation size

To see the change with respect to different recommendation size, we vary the size of

recommendation sets from 1 to 10 and calculate their corresponding accuracies. We

test our approaches with four cases: A. there are five actions missing at the end; B.

there are five actions missing in the middle; C. there is one action missing at the end;

D. there is one action missing in the middle. The results are shown in Fig.s 3.14-3.17

corresponding to cases A-D, respectively.

Case A: As shown in Fig. 3.14, RNNPlanner performs better than DUP mostly,

except for when the recommendation set size is larger/equal to eight in blocks do-

main. This is because RNNPlanner, which contains LSTM cells, is able to actively
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Figure 3.14: Case A: Accuracy With Respect to Different Size of Recommendations

remember or forget past observations (inputs) and computations (hidden states). For

example, if in a set of sequences, a pattern A∗∗ follows A∗ after three words (i.e.,

..., A∗, wi, wi+1, wi+2, A
∗∗, ...), where wi, wi+1, wi+2 could be any word from the vocab-

ulary except for A∗ and A∗∗. And if the window size of DUP is smaller than three,

then DUP is not able to utilize this pattern to predict A∗∗ mainly based on A∗. When

predicting the A∗∗, the DUP with context size one, works by searching for the most

similar word to the wi+2. One would yet argue that we can set a larger window size

for DUP. Larger window size does not necessarily lead to higher accuracy, since us-

ing a larger window size also add more noise in the training of DUP. Remember that

the word2vec model treats equally all possible word pair samples within its context

window.

In addition, observing the accuracies (in terms of the size of recommendation

Sx) of all three domains , we can see only in the blocks domain that DUP outper-

forms RNNPlanner, when Sx is larger than eight. Also in the blocks domain, DUP

has the best performance, comparing to how DUP functions in other two domains.
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This is because plans from the blocks domain has an overall higher ratio of #word to

#vocabulary, which increases the possibility that the word pattern outside a context

window, would reappear inside the window, and consequently help DUP recognize ac-

tions in the missing positions. Coming back to the example when we have a plan like

..., A∗, wi, wi+1, wi+2, A
∗∗, ..., in blocks domain, it’s more possible the word A∗ happens

again in one of wi, wi+1, and wi+2.
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Figure 3.15: Case B: Accuracy With Respect to Different Size of Recommendations

Case B: What we can observe here from Fig. 3.15, is similar to our observations

in case A. RNNPlanner generally performs better than DUP, except for when the size

of recommendation Sx is larger or equal to nine in blocks domain. It could also be

observed that both RNNPlanner and DUP have the best accuracy performance in the

blocks domain.

And by comparing the Fig. 3.15 in case B (five removed actions in the middle)

with Fig. 3.14 in case A (five removed actions at the end), we can see that, the

accuracy difference between DUP and RNNPlanner at each size of recommendation

along the x-axis, is smaller in case B . This is because, RNNPlanner only leverages
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the observed actions before a missing position, whereas DUP has the advantage of

additionally using the observation after a missing position.
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Figure 3.16: Case C: Accuracy With Respect to Different Size of Recommendations

Case C: From Fig. 3.16, we can see that both RNNPlanner and DUP could out-

perform each other in certain domains and recommendation set sizes (Sx). In blocks

domain, DUP is better when Sx is larger than five. In depots domain, RNNPlanner

is overwhelmingly better than DUP. In driverlog domain, DUP performs overall better

except that, when there is only one recommendation, DUP is as good as RNNPlanner.

This is because the domains blocks are driverlog are not as complex as depots, and

DUP performs better in relative simple domains while worse in complex domains com-

pared to RNNPlanner. In addition, if the number of consecutive unobserved action is

less or equal to context window size (e.g., window size is one, and number of missing

actions is one, in our case C ), then the fixed, and short context window of DUP, is

competitive enough.
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Figure 3.17: Case D: Accuracy With Respect to Different Size of Recommendations

Case D: From the results in Fig. 3.17, we can see that DUP functions better than

RNNPlanner over all three domains, whereas DUP is worse in case A and case B , and

could occasionally be better than RNNPlanner in case C . It makes sense in that, on

the one hand, within the fixed and short context window, if there is very less positions

with removed actions, DUP would have an improved performance. On the other hand,

RNNPlanner is not able to leverage the information from both sides of a position with

a missing action. Therefore, in case D , DUP gains the benefit from both assumptions

that there is only one missing action, and the position of that action is randomly

chosen in the middle of a plan.

3.4.2 Evaluation of Distr2Vec

We evaluate the performance of Distr2Vec in VPR by comparing the performance

with VPR that uses other affinity models trained with Word2Vec. To train a Word2Vec

model from traces that have distributions, we sample from the distributions at each

step and generate sampled traces of single actions (not distributions). The way we
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Figure 3.18: This Figure Demonstrates the Accuracy of GM, Distr2Vec, and Three

RS2Vec Instances on Synthetic Data of Different PERs, With Respect to Increasing

Plan (distribution Sequence) Lengths. The RBM-S, RBM-M, and RBM-L are RS2Vec

Instances That are Trained on Small (S), Medium (M), and Large (L) Numbers of

Samples.

sample the distributions gives us two baseline models: a Greedy Model (GM), and

a Resampling Based Model (RS2Vec). In GM, we feed what the perception module

considers the ground truth to Word2Vec for training affinity models. This is obtained

by choosing the most probable action from each step’s distribution. The codes for

evaluating Distr2Vec in comparison with RS2Vec and GM in our VPR framework can

be found at 2 .

In Figure 3.4.2, we show our plan recognition results for traces of length 10, 20,

and 30, with varying PER and fixed entropy, in four sub-plots on the left. The RBM-

S, RBM-M, and RBM-L are three RS2Vec instances that take three levels of samples

(small, medium, and large) when being trained. We set the sample numbers of the

small, medium, and large levels to 3, 9, and 27 respectively. In the rightmost sub-plot,

we also show a comparison of training time required by GM, Distr2Vec, and RS2Vec

with respect to an increasing number of samples that an RS2Vec instance takes when

sequence length is 20. We did training time experiments for lengths 10, 20, and 30 of
2https://github.com/YantianZha/Distr2Vec
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Figure 3.19: This Figure Demonstrates the Accuracy of GM, Distr2Vec, and Three

RS2Vec Instances on Synthetic Data of Different Entropies, With Respect to Growing

Sequence Lengths. The RBM-S, RBM-M, and RBM-L are Explained in the Descrip-

tion of Figure 3.4.2.

sequences, but because the three training time results are very similar to each other,

we only report the length 20 results.

We observe that the training time of RS2Vec increases linearly with the number

of samples per trace. This is easily explained by the fact that increasing the number

of samples, is increasing the training costIn contrast, the training time for Distr2Vec

and GM stay constant as there is no sampling step.

For plan recognition performances under all PER settings, Distr2Vec generally

gets better performances for longer training sequences. As the trace length increases,

RS2Vec requires more samples from the distribution sequence to match or outperform

the Distr2Vec model (this is more obvious when PER is high). For RS2Vec, increas-

ing the number of samples could be beneficial when PER is higher. Higher PER

means more observed action distributions in a plan would have lower probabilities for

correct actions (assuming each distribution must have one action that matches the

ground-truth). Thus, taking more samples would give RS2Vec more access to correct

information. We can observe clear patterns in sub-plots of 100% and 50% PER, that
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Figure 3.20: Results of Evaluating the GM, RS2Vec, and Distr2Vec on Videos, Which

Demonstrate the Effectiveness of Distr2Vec. The Left Sub-plot Shows how Distr2Vec,

GM, and RS2Vec With Small and Large Number of Samples Performs With Data of

Different Entropies.

RS2Vec could get better performance by training on more samples.

As for the GM model, its accuracy for 100% PER across all lengths is 0%. This

matches our expectations because the training data for the GM model does not have

the ground-truth action in any step for 100% PER. Therefore, the GM would not

capture any relevant information. For lower PER cases the GM performance is higher.

This matches our expectations since the GM gets more of the correct information from

the highest-probability sampling of low PER traces.

Lastly, for data with high and low entropies, the experimental results are shown

in Figure. 3.19. We set PER to zero, and sample numbers of RBM-S, RBM-M, and

RBM-L, to 7, 11, and 15 respectively. Thereby, the actions which match ground-truth

ones are the most probable ones in all distributions. As expected, GM performs the

best when the entropy of distributions in training distribution sequences (plan corpus)

is high, since it gets the correct plan trace when PER is zero. The performance of

Distr2Vec is expectedly lower than GM, yet it gets appreciably better than RS2Vec.

In low entropy cases, all models perform comparably well.
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We also evaluated the three models on the 50 Salads dataset which contains

real-world videos of activity sequences. Figure 3.20 shows evaluation results on a

plan corpus extracted from those salads-making videos. The left subplot shows how

Distr2Vec, GM, and RS2Vec which takes 9 (as RBM-S) and 27 (as RBM-L) samples

would perform, when PER is high (69%) and low (8%), meanwhile setting distribu-

tion size to 5. The right sub-plot shows how sizes of distributions per step influence

the accuracy (setting PER to 69%). We observe that when PER is high, VPR with

Distr2Vec clearly performs the best, whereas when PER is low, all models perform

comparably well. This is consistent with the results of synthetic data evaluation. We

also observe that overall the distribution size is not a key factor for deciding model

performance.

3.5 Related Work

Our work is related to the four aspects on plan recognition, i.e., plan recognition

with plan library, plan recognition with domain knowledge, senor-base activity/plan

recognition, and planning with incomplete domain models. We will introduce the

four aspects in the following subsections, respectively.

3.5.1 Plan Recognition with Plan Library

Our work is related to plan recognition with plan library. Kautz and Allen pro-

posed an approach to recognizing plans based on parsing observed actions as sequences

of subactions and essentially model this knowledge as a context-free rule in an “action

grammar” [59]. All actions, plans are uniformly referred to as goals, and a recognizer’s

knowledge is represented by a set of first-order statements called event hierarchy en-

coded in first-order logic, which defines abstraction, decomposition and functional

relationships between types of events. Lesh and Etzioni further presented methods in
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scaling up activity recognition to scale up his work computationally [71]. They auto-

matically constructed plan-library from domain primitives, which was different from

[59] where the plan library was explicitly represented. In these approaches, the prob-

lem of combinatorial explosion of plan execution models impedes its application to

real-world domains. Kabanza and Filion [56] proposed an anytime plan recognition al-

gorithm to reduce the number of generated plan execution models based on weighted

model counting. Avrahami-Zilberbrand and Kaminka [9] considered the observed

agent to be an adversary and built an efficient hybrid adversarial plan recognition

system that is composed of two processes, i.e., a plan recognizer capable of efficiently

detecting anomalous behavior, and a utility-based plan recognizer incorporating the

observer’s own biases. Mirsky and Gal [88] proposed an efficient algorithm for on-

line plan recognition called Semi-Lazy Inference Mechanism, which combined both

a bottom-up and top-down parsing processes. Massardi et al. propose an anytime

top-down approach [84] to deal with noisy observations based on the plan library.

These approaches are, however, difficult to represent uncertainty and recognize plans

that are not from the plan library. Bui et al. [18; 42] presented approaches to

probabilistic plan recognition problems. Although we exploit a library of plans in

our DUP and RNNPlanner approaches, we aim to learning shallow models and utilize

the shallow models to recognize plans that are not necessarily in the plan library,

which is different from previous approaches that assume the plans to be recognized

are from the plan library.

3.5.2 Plan Recognition with Domain Knowledge

Instead of using a library of plans, Ramirez and Geffner [115] proposed an ap-

proach to solving the plan recognition problem using slightly modified planning al-

gorithms, assuming the action models were given as input (note that action models
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can be created by experts or learnt by previous systems [158; 175]). Due to the com-

putational cost of calling a planner twice for each possible goal in [115], E-Martín

et al. [33] proposed an approach that can quickly provide a probability distribution

over the possible goals by computing cost estimates using a plan graph. Considering

unreliability of a sensor malfunction or intentional obfuscation by malware, Sohrabi

at el. [134] proposed a relaxation of the plan-recognition-as-planning formulation

that allows unreliable observations. Pereira et. al. [106] proposed two goal recog-

nition heuristics based on planning techniques that rely on planning landmarks [52].

Saria and Mahadevan presented a hierarchical multi-agent markov processes as a

framework for hierarchical probabilistic plan recognition in cooperative multi-agent

systems [128]. Singla and Mooney proposed an approach to abductive reasoning us-

ing a first-order probabilistic logic to recognize plans [132]. Amir and Gal addressed

a plan recognition approach to recognizing student behaviors using virtual science

laboratories [6]. Ramirez and Geffner exploited off-the-shelf classical planners to rec-

ognize probabilistic plans [118]. Albrecht and Stone recently provided a survey on

plan recognition in three aspects, i.e., plan recognition in hierarchical plan libraries,

plan recognition by planning in action models, and plan recognition by similarity to

past plans [4]. To alliviate the requirement of complete domain models, Pereira et al.

propose to recognize goals using incomplete domain theories by considering different

notions of planning landmarks [107]. Different from those approaches, we do not

require any domain model knowledge provided as input. Instead, we automatically

learn shallow action models from previous plan cases for recognizing unknown plans

that may not be identical to previous cases.
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3.5.3 Sensor-based Activity Recognition

Activity recognition with sensors has been a major focus in the area of artificial

intelligence. There has been an increasing interest in inferring a user’s activities

through low-level sensor modeling. Liao et al. applied a dynamic Bayesian network

to estimate a person’s locations and transportation modes [75] from logs of GPS data

with relatively precise location information. Bui et al. introduced an abstract hidden

Markov model to infer a person’s goal from camera data in an indoor environment,

but it is not clear from the article how action sequences are obtained from camera

data [19]. Yin et al. explicitly relied on training a location-based sensor model [160]

to infer locations from signals; the locations are part of the input that can serve

as labels in the training data. To reduce the human labeling effort and cope with

the changing signal profiles when the environment changes, Yin et al. dealt with the

second issue by transferring the labelled knowledge [161] between time periods. Pan et

al. proposed to perform location estimation [103; 104] through online co-localization,

and apply multi-view learning for migrating the labelled data to a new time period.

Different from considering location information, Lester et al. propose to build

user models [72] for different users and recognize user activities based on the models.

They treat all of the users equally by simply mixing their data in training. However,

different users may behave differently given similar sensor observations. For exam-

ple, a user may visit the coffee shop for meal and the other just enjoys sitting in its

outdoor couches to read research paper. These two users probably observe similar

WiFi signals, but their activities are quite personalized. This implies that it may

not be appropriate to require all of the users to share one common, user-independent

activity recognizer. Therefore, Zheng et al. proposed to build a personalized activ-

ity recognition model [172] by considering the relations among users. Using sensor
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data as input, Hodges and Pollack designed machine learning-based systems [51] for

identifying individuals as they perform routine daily activities such as making cof-

fee. Liao et al. proposed to infer user transportation modes [75] from readings of

radio-frequency identifiers (RFID) and global positioning systems (GPS). Freedman

et al. explore the application of natural language processing (NLP) techniques [37],

i.e., Latent Dirichlet Allocation topic models, to human skeletal data of plan execu-

tion traces obtained from a RGB-D sensor. Bulling et al. discussed the key research

challenges [20] that human activity recognition shared with general pattern recogni-

tion. When activity recognition is performed indoors and in cities using the widely

available Wi-Fi signals, there is much noise and uncertainty. Xie et al. proposed a

temporal-then-spatial recalibration scheme to build an end-to-end Memory Attention

Networks (MANs) [153] for solving skeleton-based action recognition task. Chen et

al. propose a multi-agent spatial-temporal attention model [23] to jointly recognize

activities of multiple agents. To tackle the limitations of feature extraction and train-

ing data labeling effort, Qian et al. propose a distribution based semi-supervised

learning approach [110] to recognize human activities.

Many different applications of activity recognition have been studied by researchers.

For example, Pollack et al. show that home-based rehabilitation [109] can be pro-

vided for people suffering from traumatic brain injuries by automatically monitoring

human activities. Chu et al. present a model of interactive activity recognition [25] to

determine the user’s state by interpreting sensor data and/or by explicitly querying

the user. The system can be used in an asssistive system for persons with cognitive

disabilities, which can prompt the user to begin, resume, or end tasks. Zheng et

al. proposed to recognize physical activity from Accelerometer Data [173] Using a

Multi-Scale Ensemble Method.

Different from the above-mentioned sensor-based activity/plan recognition, we do
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not assume we have any labeled sensing data for recognizing plans. Instead, we focus

on symbolic plan recognition in this thesis.

3.5.4 Sensor-based Intention Recognition

Another relevant body of research is intention recognition from visual observations

[154; 61; 53]. The intention recognition modules in these works remove observation

uncertainty by taking only the most likely observed (or demonstrated) trajectories

and object states from a tracking module in a similar sense of our GM. They will

therefore lose the information in the distribution-style observation sequences. Our

work may be used to augment these and similar visual intention recognition works

because our approach preserves the information from the uncertainty in the data.

3.5.5 Planning with Incomplete Action Models

Our work is also related to planning with incomplete action models (or model-

lite planning [57; 174]). Fig. 3.1 shows the schematic view of incomplete models

and their relationships in the spectrum of incompleteness. In a full model, we know

exactly the dynamics of the model (i.e., state transitions). Approximate models are

the closest to full models and their representations are similar except that there can

be incomplete knowledge of action descriptions. To enable approximate planners to

perform more (e.g., providing robust plans), planners are assumed to have access

to additional knowledge circumscribing the incompleteness [148]. Partial models are

one level further down the line in terms of the degree of incompleteness. While

approximate models can encode incompleteness in the precondition/effect descriptions

of the individual actions, partial models can completely abstract portions of a plan

without providing details for them. In such cases, even though providing complete

plans is infeasible, partial models can provide “planning guidance” for agents [170].
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Shallow models are essentially just a step above having no planning model. They

provide interesting contrasts to the standard precondition and effect based action

models used in automated planning community. Our work in this chapter belongs

to the class of shallow models. In developing shallow models, we are interested in

planning technology that helps humans develop plans, even in the absence of any

structured models or plan traces. In such cases, the best that we can hope for is

to learn local structures of the planning model to provide planning support, similar

to providing spell-check in writing. While some work in web-service composition

(c.f. [32]) did focus on this type of planning support, they were hobbled by being

limited to simple input/output type comparison. In contrast, we expect shallow

models to be useful in “critiquing” the plans being generated by the humans (e.g.

detecting that an action introduced by the human is not consistent with the model),

and “explaining/justifying” the suggestions generated by humans.

3.6 Concluding Remarks

In this Chapter, we present two shallow-domain model based plan recognition

approaches, DUP and RNNPlanner, based on vector representation of actions. For

DUP, we first learn the vector representations of actions from plan libraries using the

Skip-gram model which has been demonstrated to be effective. We then discover

unobserved actions with the vector representations by repeatedly sampling actions

and optimizing the probability of potential plans to be recognized. For RNNPlanner,

we let the neural network itself to learn the word embedding, which would then be

utilized by higher LSTM layers. We also empirically exhibit the effectiveness of our

approaches.

One main weakness of the DUP and RNNPlanner as plan recognition approaches

is that they assume that the visual recognition of activities must be accurate and
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deterministic. If recognized actions are from a visual recognizer trained on real world

data, the action recognition must have uncertainties. As such, there is a gap be-

tween plan recognition and real-world visual recognition. To make plan recognition

more practically useful in scenarios with observational error in action recognition,

we introduce our VPR framework that uses Distr2Vec and RS2Vec as action affinity

models, to do visual plan recognition which may suffer from perceptual uncertainty.

Distr2Vec and RS2Vec learn embeddings for distributions over actions to preserve

the information from the visual recognition module. Our VPR framework can thus

handle the uncertainty in visual data and perform plan recognition. We empirically

show that when there is a higher Perception Error Rates (PER), VPR with Distr2Vec

outperforms other models. When PER is lower, and sequence length is longer, all

models perform comparably well. Another advantage of using Distr2Vec to handle

distributions within the VPR framework is that the training time is shorter as com-

pared to the RS2Vec model in which we have to sample more action sequences for

comparable performance.

In my thesis, the works of learning shallow domain models for plan recognition

works as a cornerstone for learning to couple perception and plan recognition. The

Distr2Vec work presented in this Chapter bridges the gap between real-world visual

recognition and plan recognition so that the plan recognition performance is improved.

In the next Chapter, I investigate the question that can we use shallow-domain based

plan recognition to improve perception?

3.6.1 Significance

The significance of my works in this Chapter lies at many broad directions to

extend the shallow-domain based planning or plan recognition. In the future, it

would be interesting to consider future studies as shown below:
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1) While we focused on a one-shot recognition task in this chapter, in practice,

human-in-the-loop planning will consist of multiple iterations, with DUP, RNNPlanner,

and VPR, recognizing the plan and suggesting action addition alternatives; the human

making a selection and revising the plan. The aim is to provide a form of flexible

plan completion tool, akin to auto-completers for search engine queries. To do this

efficiently, we need to make the DUP, RNNPlanner, and VPR recognition algorithms

“incremental.”

2) Another potential application for this type of distributed or uncertain ac-

tion representations learned via Word2Vec or Distr2Vec is social media analysis. In

particular, work such as [60] shows that identification of action-outcome relationships

can significantly improve the analysis of social media threads. The challenge of course

is that such action-outcome models have to be learned from raw and noisy social me-

dia text or video data containing mere fragments of plans or their executions. We

believe that action vector models of the type we proposed in this chapter provide a

promising way of handling this challenge.

3) In the presented works, we considered distributed representations of actions.

In many real-world applications, however, more useful information could be in the

form of images or texts describing “states” between actions is ubiquitous. It would

be interesting to explore if we could leverage the representations of states, via deep

learning models, e.g. [70], to help recognize plans together with adopting distributed

representations of actions.

4) The plan to be recognized was assumed to be executed by a single agent in this

chapter. We believe that the distributed representations of actions could be extended

into handling team plan recognition [73].

5) Since the proposed Distr2Vec bridges the gap between visual recognition and

plan recognition, Distr2Vec has a great potential of helping more complex cognitive
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learning systems such as service robots that operate on visual sensory data. Such

robots that typically cohabitate with humans need to make preactive decisions with

considering humans in the loop.
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Chapter 4

COUPLING BETWEEN PERCEPTION AND PLAN RECOGNITION

4.1 Interplay between Perception and Planning

Perception is about understanding the raw sensory data and convert them to more

abstract and even semantic features that benefit higher-level information processing

(e.g. planning or plan recognition). In this chapter, I only focus on visual sensory

data. Visual perception has been one of the most popular research topics in Machine

Learning and Computer Vision. The tasks of visual perception are diverse. Some

of them aim at learning condenser and more expressive visual representations that

can be accomplished by ConvNets, Auto-Encoders, etc. Some other works propose

to learn high-quality mappings from raw video data to semantic abstractions, like

symbols, concepts, activities, events, etc.

Traditional works that involve an integration of perception and planning usu-

ally treat planning and perception as two loosely-connected modules in a system.

Once a perception model is trained, it will be fixed and treated as an external fea-

ture processing module that serves for high-level planning modules. Therefore, the

perception-planning connections are typically uni-directional and fixed (engineered).

I would argue that the perception and planning modules could help overcome the

limitations of each other. People tend to overlook that the perception module may also

be improved by the planning or plan recognition module. One research topic that goes

along this direction is active sensing, which leverages planning or sequential decision-

making to motivate an agent to actively act to collect more valuable information

and reduces its perceptual uncertainties. One way to achieve this is via updating
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the estimation and observation in a Bayesian filtering framework, e.g. [43; 136], and

the other way is by improving the quality of training data in a learning paradigm,

e.g. [162]. However, here I would provide a different perspective: we can use plan

recognition of agents to help generate a better attention map to support the visual

recognition module.

4.1.1 Chapter Highlights

- In Sec. 4.2, I introduce the Pixel Dynamics Networks ([166]) that generates

top-down attention maps driven by recognized human plans. Consequently, the per-

formance of a visual perception task like event recognition could be improved.

4.2 Enhancing Perception via Attention Driven by Plan Recognition

In dynamic and multi-agent environments, being able to selectively focus on cer-

tain interesting visual regions is crucial for intelligent agents. An intelligent surveil-

lance camera may monitor different people doing different activities in different areas.

Such tasks require high visual loads. Selective attention ([142]) allows agents to avoid

being overloaded, to make the best use of their intra-agent resources. The performance

and efficiency are thereby expected to be improved. The attention driven by high-level

and task-relevant information is called top-down attention (TDA). The generation of

TDA maps generally involves more cognitive processes, consuming mental resources

like memory, reasoning, and planning. Selective attention can be driven by top-down

feedback, or simultaneously triggered by physical characteristics, using bottom-up at-

tention (BUA). In the field of computer vision, researchers have traditionally delved

into constructing combined BUA and TDA for images, using hand-crafted features

([94]). In recent years, a few works using neural networks to learn combined BUA

and TDA models have also emerged, like [7; 45; 65]. Such models may work for static
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images or video streams. However, none of them considers if TDA could be

driven by the recognized plans of other agents in the environment, which

should be a natural consideration in multi-agent applications. We name

this kind of TDA as plan-recognition-driven attention (PRDA). In our work, we ad-

dress the problem of generating PRDA maps from video frames and corresponding

recognized plans.

PRDA may provide practically useful models of selective attention for agents that

act in multi-agent environments. In such scenarios, interesting regions that are far

away from each other are likely to be connected by a plan. The plan may be output

from a plan recognition module, and thus could be a sequence of actions that an

agent is expected to take shortly. Such plans contain useful long-term information

for guiding the PRDA generation.One of the major challenges for using recognized

plans is to collect clean observations of states and actions. This is traditionally

addressed by human or object recognition and tracking. However, in highly cluttered

and dynamic multi-agent environments, methods like object recognition and tracking

would become unreliable. Humans and objects in the video could be too small to

be reliably recognized. Human and objects in movements would even exacerbate the

difficulty. Consequently, the collected observations could be incomplete and noisy.

This motivates us to propose a pixel dynamics network (PDN), which learns to

directly predict the next state of an object at the position of a pixel. And the pre-

diction is conditioned on both a pixel-observation and pixel-level motion. Therefore,

it works like a dynamics model in control theory ([13]) – a model that can predict

the next state of an object, if given the current state, and a motion applied to that

object. Note that the attention PRDA is driven by the plans of agents, but the afore-

mentioned pixel-level motions do not directly belong to a plan because there is no

intention for object particles. Our PDN works by decomposing an action in a plan to
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Figure 4.1: The Event Recognition System ER-PDN With Pixel Dynamics Network.

a group of pixel-level motions (we denote them as action conditional filters or ACFs).

Then with a plan or a sequence of actions, we can convert each action to an ACF.

Each ACF allows PDN to predicate a feature map as explained before. By performing

channel-wise summarization through all pixel locations in those feature maps, we can

obtain a PRDA map.

The usage of PDN is illustrated in Fig. 4.1. It starts from collecting action features

from a plan. To do this, we extract frame-level motion features,from local video

frames (video tubes) where an event happens. These video tubes could be obtained

by temporally prolonging a bounding box. Then we do clustering on those features

to learn a set of augmented motion primitives (AMPs). Each AMP vector represents

an activity that happens in a video tube. After generating an ACF, PDN could take

it with a local image patch to predict the next state of the object particle, which was
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at the center location of that patch. We train the PDN in a weakly-supervised fashion

by using an auxiliary task of event recognition. The overall training framework is

named as ER-PDN which stands for Event-Recognition-PDN. As such, the learning of

PDN has the access to reliable ground-truth training signals of the event label.

We evaluate ER-PDN on VIRAT Dataset ([102]) against a state-of-the-art visual

recognition model [45].

4.3 Our Model

In this section we introduce our pixel dynamics network, and elaborate how it is

used in event recognition.

4.3.1 Augmented Motion Primitives Generation

Now we introduce our way of generating AMPs as the representation of pixel-level

actions. First, we extract features of HOG, HOF and HOD for each frame. Secondly,

we do a K-Means clustering on the total features of the whole dataset. We set the

number of clusters to A. We then assign the Ã nearest centroids of every frame

feature. Consequently, we convert a video sequence to an index distribution, which

is based on the frame feature clustering. Each distribution has Ã AMP indices. We

also assign a probability value for each index to approximate the uncertainty of an

activity. This probability is computed by using the distance between centroids and

the corresponding feature. Lastly, we merge several consecutive and identical index

distributions to one distribution. This merging of index distribution can make plan

traces less redundant.

Thus, recognizing the plan of a group of agents would be realized by predicting

a sequence of AMPs for a specific region. The region could either by generated by

using bounding boxes, or using attention logits as in our work. Then we assign each
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of these regions, an identical number m. This indicates that the m-th group agents

are doing m-th events. If there are totally M such regions, we label each image pixel

with those M numbers. This gives an extra channel (channel c = 1) of masking

codes, which serves as a mapping from a recognized plan to the corresponding image

area. We also add the second extra channel (channel c = 0) of pixel locations. After

concatenating the two extra channels with original R, G, and B channels, we obtain

a masked image, denoted as V µ, as illustrated in Figure 4.2. Correspondingly, the

Figure 4.3 illustrates the procedure of using a pair of local images (located by masking

channel) to extract one AMP as in the red circle.Inputs: Image, Masking Codes, and Pixel Locations

Plan Recognition Driven Attention 1
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Plan Recognition

We adopted the work of Distr2Vec, [167], to generate future AMPs, given a sequence

of observed AMP distributions. To elaborate, the plan recognition algorithm is based

on a shallow planning model, Distr2Vec (distribution to vector), proposed in the

work (Zha et al., 2018). Distr2Vec assumes observed action distribution sequences as
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Figure 4.3: The Illustration of Extracting One AMP (Augmented Motion Primitive)

From a Local Image Patch as a PDN Input.

inputs. This is a good fit for using noisy recognition outputs from a vision model ,

which consists of sequences of distributions over motion primitives. Distr2Vec then

learns an action affinity model from the distribution sequences, by minimizing the

distance between each of two action distributions. With this trained action affinity

model, plan recognition (predicting future actions) is done, by searching for the most

similar action (or motion primitive) to observed action distributions.

4.3.2 Pixel Dynamics Network

Our PDN also takes both a masked image, V µ (Figure 4.2), and an AMP (Figure

4.3), as inputs. With these two inputs, the PDN would generate a state prediction

map (SPM). The value at each location of the SPM represents the number of pixels

that have been moved to that location by that AMP (action). This is like parallelly

applying each of a group of dynamics models to each observation (a local image patch

of pixels with corresponding locations) extracted from V µ. The architecture of PDN

is shown in Figure. 4.4. How PDN works could be divided into three stages: action

conditional filter (ACF) generation (hidden output hl=3 after third layer), convolution

between ACFs and the input image to obtain state prediction values in a set of feature

maps (hl=4 after fourth layer), and a translation pooling applied to these feature maps,
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Figure 4.4: The Architecture of Pixel Dynamics Network.

to get a SPM (hl=5 after fifth layer). We will introduce the three stages one by one

in the following subsections.

Generation of Action Conditional Filter

Because we apply our PDN to generate attention maps driven by recognized plans, we

feed the input action to a Long Short-term Memory (LSTM) layer. The LSTM layer

could handle the sequential correlations among actions in a recognized plan. Note

that an AMP contains pixel-level motion information in a local region (of one event).

Hence, we cannot directly use the output of (the first) LSTM layer (hl=1) as the filter

to convolve with a local image patch. The local image patch being convolved might

be smaller than a bounding box or a region with high attention logits. As a result,

that local image patch only match a sub-region of the input AMP. This is why we

have a gate layer. The gate layer is used to select a certain part of hl=1 that matches
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a local image patch, which leads to the need of inputting the channel c = 0, the pixel

location map, to the gate layer. The output of (the second) gate layer, hl=2, could be

seen as a sparse version of the hl=1. After applying the gate function, some parts of

hl=2 are not usable anymore. When doing convolution between hl=2 and a local image

patch, some parts in a local image patch would not contribute to the computation.

The important information in a local image patch may be missed, which could be a

problem. We address this problem by proposing a biased encoding-decoding layer that

perform encoding-decoding on hl=2, which reflects parts of hl=1 selected by the gate

layer. Thus, it does encoding (compressing) based on input part that is being paid

attention to, and reconstruct with richer details (like zooming in). The reconstruction

output per step is an ACF. Generating an ACF is to convert a meta action (AMP) to

a group of pixel-level actions. hl=3 consists of M ×K ACFs. The equation for using

the above procedure to compute an ACF, is shown in Equation. 4.1.

ACFm
k,t = bias− decoding(bias− encoding(

LSTM(AMPm
1:k,t)� σ(WGXV µ,c=0

t +BG)),

1 ≤ k ≤ K, 1 ≤ m ≤M (4.1)

where ACFm
k,t is the k-th action-conditioned filter generated from the k-th AMP in a

plan of length K. That plan is the m-th recognized plan, of totally M plans. This is

also the plan of m-th group of people that are doing m-th event. We further assume

that all of the M recognized plans equally have length K. LSTM(·) denotes that the

observed k AMPs are fed into a LSTM cell one by one, and output a LSTM state

(hl=1) per step. V µ,c=0
t is the first channel of input image, containing a map of pixel

locations. The values in V µ,c=0
t would range from zero to the product of height of

width of input image. The WGX and BG denote weights and bias parameters of the
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gate layer. The � between LSTM output and gate layer output denotes the element-

wise multiplication. The result of this multiplication is fed into a bias-encoding and

bias-decoding module.

Our bias-encoding and bias-decoding module works by performing a K-max pool-

ing on the output from gate layer, which obtain a condensed vector, as shown in the

small interval (above the gate module) between two green lines in Figure. 4.4. Then

take that condensed input from K-max pooling as the hidden feature, and adopt nor-

mal auto-encoder framework to reconstruct the hidden vector to a feature, which is

an ACF.

Generation of State Prediction Values

With K ×M generated ACFs, the next task is to use each of them, to convolve with

input image. Values in output feature maps after the convolution between an ACF

and the input image, would be the offset values of the object particle at the center

location of local image patch being convolved with an ACF. The convolution between

an ACF and the input image could be described by the Equation. 4.2.

hl=4
ij = (V µ

t �W F ∗ Fm
k,t)ij =

F1−1∑
a=0

F2−1∑
b=0

[[V µ,c=0
i+a,j+b = m]]

4∑
c=2

(ACFm,k
a,b · (V

µ
c,i+a,j+b ·W

l=4
i+a,j+b) +Bl=4

i,j ) (4.2)

where hl=4
ij is the output from convolving ACFs with V µ, i.e., the computation of

fourth layer. W l=4
i+a,j+b and Bl=4

i,j are weights and bias in the fourth layer, that is used

for the convolution with value at location (i, j). F1 and F2 are respectively the height

and width of each ACF. ACFm,k
a,b is the value at location (a, b) in the k-th ACF of

m-th plan. As mentioned earlier, V µ
t is an masked image at time t, with five channels:
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pixel location map in channel 0, masking code map in channel 1, and RGB maps from

channel 2 to 4. Particularly, the masking code map has values that match the index

of a recognized plan. In a frame of image, if there are multiple groups of people doing

multiple events, then each group matches a highlighted region, and a recognized plan.

All pixels in that region are masked by the index of the recognized plan. The values

of masking code are in the masking map. If there are Mt different recognized plans

at time t (as shown in Figure. 4.1, there would be Mt + 1 different values in masking

map. The reason is, we assign the value zero, to the regions of pixels do not belong

to any of recognized plans.

Translation Pooling

Once obtaining a feature map of state prediction values, the next step is to convert

that to a SPM, which is accomplished by our translation pooling layer. A state predic-

tion value at a position represents the offset as explained before, and the translation

pooling layer works by converting that offset value, to a "plus one" operation at a

new position, after applying the offset value to the old position. The algorithm of

translation pooling is shown in Algorithm. 4.

4.3.3 PRDA Generation Layer

The role of this layer is to pixel-wise summarization across all channels of SPMs

(feature maps) from the translation pooling layer. This summarization will be taken

as a PRDA map. Intuitively, as each of those SPMs maps to an action of an agent,

summarization of SPMs would provide useful information of which visual region is

likely to get considerable amount of pixel objects. As mentioned before, a pixel object

means the object point at a location with the corresponding pixel as the observation.

The PRDA generation layer also needs to output a feature map that has the same
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Algorithm 4 Translation Pooling

1: procedure trans-pooling(hl=4, shape(N,N)) . From a set of N ×N feature

maps, in which values are computed using Equ. 4.2

2: hl=5
0:N×N−1 ← 0 . Initialize all values in the vector hl=5 (size is N2) to zeros

3: for i = 1; i ≤ N ; i+ + do

4: for j = 1; j ≤ N ; j + + do

5: hl=5
ID(i,j)−hl=4

ij
+ = 1. Generate statistics using all state prediction values

in hl=4

6: end for

7: end for

8: SPM ← reshape hl=5 : from (N2) to (N,N)

9: return SPM . Return a state prediction map

10: end procedure

11: procedure id(i, j) . Convert 2D index to 1D index

12: return i ∗N + j

13: end procedure

size of a SPM and V µ. We design a special ConvNet layer with filter size, weight,

and slide stride set to one. And the weights in this layer are not trainable. This way,

we are able to do summarization over all pixel regions, and across all SPMs, which is

identical to Equation 4.3.

hl=6
ij = PRDAt+1

i,j =

∑M×K−1
c=0 SPM t,i,j

c

Z
(4.3)

where Z is a normalization number, and we set it to one in our experiments. In hl=5,

there are M × K SPMs, because there are M plans of length K, and each AMP

leads to a SPM. Each SPM has N × N values. Generating a PRDA map requires
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calculating statistics over all of them. In addition, here c denotes the c-th channel

or SPM in hl=5, t denotes the current time step, and each pixel location in a PRDA

map is identified by i and j.

4.3.4 Event Recognition with PDN

Here we show how our PDN can be used to generate PRDA maps to support an

event recognition task. We denote our event recognition system as ER-PDN. The

overall framework is shown in Figure. 4.1. The solid paths are differentiable, and

dashed ones are not. At each step, a video frameXt, is filtered by bottom-up attention

model, to get a BUA map V BU
t . The V BU

t is then combined with a PRDA map from

the previous step, to get a highlighted frame Vt. The segmentation and masking

component then extracts Mt glimpses, which are disconnected highlighted areas in

Vt. Each of these glimpses are fed into a separate but structurally identical plan

recognition component, PR, to generate Mt recognized plans p. The segmentation

and masking component also adds additional channels as explained before, to map

each of Mt recognized plans that is indexed by m, to a highlighted region in V µ
t .

Consequently, every pixel in V µ
t also has a mask codem. The PDN takes all recognized

plans for different highlighted areas, and the masked V µ
t , to generate the PRDA map

PRDAt.

The above procedure describes the non-differentiable path (the dashed ones). In

order to train the model, we want to let the model to predict a label so that there is

a teaching signal. This is what the dashed path is showing. After generating V µ
t , an

intuitive recognition module is required to predict an event label at each step. The

intuitive recognition module is a LSTM layer, which has the advantage of handling

sequential inputs with internal long-term dependency.
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4.4 Evaluation

In this section, we provide experiment results and analysis. We compare our

PDN with a baseline vision model [45], by using them to solve an event recognition

task. Note that the baseline model also has an attention layer. Unlike existing event

recognition works which only use event-relevant sequences [150; 82], we did not do

pre-segmentation or use bounding boxes. We ran our experiments on a machine with

a Quad-Core CPU (Intel Xeon 3.4GHz), a 64GB RAM, a GeForce GTX 1080 GPU,

and Ubuntu 16.04 OS.

4.4.1 Dataset Pre-processing and Training Procedure

We used the VIRAT 1.0 Ground Dataset [102] for evaluation. We randomly select

70% of all videos for training, and the rest for testing. And we down-sampled videos

to use every six frames. We used different pre-processing procedures for learning

augmented motion primitives (AMPs), and learning the PDN.

To learn motion primitive clusters, we applied K-means clustering to find the

motion primitive cluster library. The motion primitive cluster library is a library of

mappings between a motion primitive vector, and a cluster index. We set the number

of clusters to 512, and apply clustering on HoD features collected from 70% of VIRAT

videos for training. We did not use the original VIRAT videos. Instead, we used the

video segments that are inside ground-truth bounding boxes. This means that the

videos we use are both temporally and spatially smaller than the original videos.

Those bounding boxes highlight event relevant frames and objects. In contrast, when

training the ER-PDN, we did not use any bounding box information in videos, which

significantly increases the event recognition difficulty. Once we obtain the AMP

clusters, we can convert sequences of HoD features to a sequence of motion primitive
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(or AMP) indices. Each of such a motion primitive index sequences could be seen as

a high-level plan. Then we use the work of [167] to learn a shallow plan recognition

model. When training the plan recognition model, we set the distribution size to

three, and training epoches to sixty.

When training ER-PDN and the baseline model [45], We feed both models with

resized images (450 × 450). Note that if there are multiple events simultaneously

happening, then some video frames may map to multiple labels. For this situation,

we copy certain images multiple times, and assign each with a corresponding event

label. The video down-sampling allows us to increase the variance between each of

two frames in our pre-processed dataset, and thereby increase the variance between

each of two AMPs in a recognized plan.

When we train the ER-PDN, we feed four frames as a batch to the pre-trained plan

recognition module to generate a K-step recognized plan (we set K to five). With two

consecutive frames, the HOD feature extraction component generates a HoD feature

vector, which would be used for searching top-3 AMP indices from the trained AMP

cluster library. Thus, we could obtain a sequence of three AMP index distributions

(each distribution has three AMPs), given an input image batch. This is similar to

the work [167]. This AMP distribution sequence is used as an observed plan, fed

into the plan recognition module, which returns a k-step sequence of future AMP

indices that is most likely to happen (the recognized plan). ER-PDN then converts

the future AMP indices back to a sequence of motion primitive feature vectors, by

using the AMP cluster libraray. ER-PDN then feeds these vectors one by one, to

generate proper ACFs, and SPMs. This is how ER-PDN uses input actions (AMP

vectors).

To generate a PRDA, ER-PDN also takes an image as input. After taking a batch

of four consecutive images from a video, ER-PDN uses the first image to generate
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Figure 4.5: Results Visualization of our Event Recognition System With the PDN.

a BUA, which is then used to generate glimpse for plan recognition. And ER-PDN

uses the last image, with the generated PRDA and BUA map, to augment the input

and predict which event is happening.

4.4.2 Results and Analysis of Event Recognition

Model Mean Average Precision

Baseline [45] 29.06%

ER-PDN 29.15%

Table 4.1: The Statistics of Event Recognition Performance on VIRAT Dataset, Using

the Baseline Model [45], and our ER-PDN.

A comparison of the results in Table 4.1 shows that the visual recognition could be

improved by a plan (a sequence of motion primitives). In addition, Figure 4.5 contains
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examples of input video frames, and the corresponding feature maps of BUA, PRDA,

and V µ
t . Specifically, in Figure 4.5, (a), (b) and (c) are resized video frames. (d)

is a visualization of V µ
t , by applying a BUA to a resized frame and keeping parts

within a threshold. (e), (f), and (g) are visualizations of applying a BUA to a resized

frame. (h) is the feature map of applying both a BUA and a PRDA to the output

of a convolutional layer, with an input frame. (i), (j) and (k) are visualizations of

applying a PRDA to input video frames. (l) is a PRDA feature map.

We can observe from (a), (b) and (c) in Figure 4.5 that, three people are moving

toward a car. (e), (f), and (g) in Figure 4.5 indicate that, the BUA map focus

properly to interesting image areas, where there is a car, and people. Because the

car is not moving, in (i), (j) and (k), the area with car is darker, which indicates less

attention. The area between the three people, and the car, is lighter, which suggests

that the moving people may want to get to the car. Thus, the lighter region between

the people and the car indicates that there is more attention put there.

4.5 Related Work

4.5.1 Soft Attention Driven by High-Level Signals

Here, we briefly introduce previous work on using neural networks to generate soft

attention maps, driven by high-level (or top-down) signals. The work [45] proposed

an attention pooling layer to replace the normal pooling layer in ConvNets. Their

high-level signal comes from class labels. For some other previous works that combine

top-down and bottom-up attention, their top-down attention model only imitates how

spatial reasoning influences attention. In [94], they use target object locations and

surrounding distractor feature in an image as high-level signals to guide the top-down

attention for visual search tasks. In [65], they use the appearance feature of targets.
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In contrast, our planning-driven attention model exploits both spatial and temporal

reasoning for long-term future, based on the awareness of environment dynamics and

recognized plan feature of other agents.

4.5.2 Pixel-wise Classification

The design of PDN is also inspired by pixel-wise classification problems (i.e.,

semantics segmentation). Semantics segmentation is the vision problem that requires

assigning a proper semantic label for each pixel. This could be accomplished by using

ConvNets [77; 100; 22; 24; 91]. Our PDN, instead, assigns a “state offset” value for

each pixel.

4.5.3 Plan Recognition

One of the main novelties of our work is to use high-level signals (recognized plans)

to form better attention maps. Plan recognition is about predicting the future action

sequences of an agent, given its observed actions. While traditionally people rely on

classic planning approaches with a domain model to do plan recognition [116], recent

years have seen an increasing interest in doing plan recognition on a learned and

approximated model. Zhuo et al., [146] treat all plans in a plan library as sentences.

Then they use the plan library as the training corpora to train a Word2Vec model.

The plan recognition task then becomes to find the action (in the action vocabulary)

that is most similar to surrounding actions in a testing plan. The similarity value is

provided by the learned Word2Vec. Most recently, [167] extends the problem range

of aforementioned work to using action distribution sequences as plans to learn a

Distr2Vec model to handle observational uncertainties.
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4.6 Concluding Remarks

Intuitively, we improve perception to improve high-level planning or plan recog-

nition. In this chapter, I present a work that uses plan recognition to improve visual

recognition (perception) tasks, via modeling Plan-Recognition-Driven-Attention. Es-

sentially, the recognized plans contain long-term information that a perception agent

could use to focus on proper regions that are closely relevant to a task.

This Chapter couples lower-level cognition functions like perception and conscious-

level cognition functions like planning together, which makes the perception task-

driven. In the next Chapter, I will present if we could use even meta-level cognitive

modeling (e.g. introspecting and self-explaining) to improve the learning of lower-level

cognition functions like perception and control.

4.6.1 Significance

One interesting insight for the Plan-Recogntion-Driven-Attention work is that it

essentially motivates agents to think ahead to better see the present – it predicts

future actions to guide the perception. This opens rich opportunities for future works:

1) While in this chapter, we use event recognition as a testbed perception task,

there are other interesting tasks as well. For example, one can consider if the affor-

dance prediction mentioned in Chapter 2 can be task-relevant – that is, conditioned

on a planning solution of future activities for a task. If the planning solution is plan

recognition results of human collaborators, then the resulting affordance prediction

could help robots make decisions that better collaborate with humans.

2) In this chapter, we consider a pretrained shallow-domain based planner that

provides action distribution representations for the perception agent. Future works

could consider jointly learning action representations and visual tasks so that the
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action representations could better fit perception agents. Note that a planner that

can solve planning or plan recognition tasks is still needed for long-term reasoning.
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Chapter 5

SELF-EXPLANATION GUIDED LEARNING

5.1 Self-Explaning: Figuring out “How” and “Why” for “Self”

Making deep learning models more interpretable has been a very popular research

direction since five years ago. Deep neural networks usually work as if a black box that

output a prediction from an input. However, interpretable deep neural networks offer

explanations regarding how and why it gives a prediction as well. Such explanations

help a human user or programmer understand the underlying computation process

of the neural networks better. This in turn enables a human to improve the design

of deep neural networks. Now a natural question to ask is, can machine-generated

explanations be directly used by an agent to improve itself?

If an agent generates explanations based on its current knowledge for improv-

ing the functioning/learning of itself, we call such explanations as self-explanations,

which lie in the intersection between Interpretable Machine Learning and Cognitive

Psychology. As introduced in Sec. 1.2.3, self-explanation is essentially a kind of

metacognition that monitors and improves the overall cognition (e.g. perception and

performance) of an agent. The Cognitive Psychology community also researches the

benefits of doing self-explanation for humans. As discovered by [131] (p. 53-54), such

benefits can be summarized as follows: 1) It encourages human learners to explain

and helps learners by increasing the depth of their explanations; 2) By self-explaining,

learners could more often generate conceptually more sophisticated solutions; 3) Ev-

idences also shows that self-explaining increases the range of strategies that a learner

attempt; 4) The process of doing self-explanation involves changing the accessibility
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of effective and ineffective ways of thinking; and 5) Self-explaining raises learners’

degree of engagement with the task.

Inspired by the above benefits, we can conjecture that integrating self-explanation

into the learning of neural networks could have similar benefits. First, self-explaining

helps a neural network learner to discover the underlying task logics, which can guide

the learning. This would probably be useful and even necessary when the environment

and task could easily lead to ambiguous experiences. This matches the benefit 4)

in the previous paragraph. The second benefit is that self-explanation inspires the

neural network learner to explore in a more efficient fashion, similar to the benefit

3) in the previous paragraph. Third, by doing self-explanation, the learning could be

regularized by preventing the agent from taking actions with a lower interpretability

score, at each learning step. This matches the benefit 2) in the previous paragraph.

All of the aforementioned benefits could origin from a reduced hypothesis space due

to performing self-explanation with some prior knowledge.

A formulation of improving agents’ learning with self-explaining is described by

Equ. 5.1, 5.2 and 5.3.

domain_knowledge ∧ inputs ∧ targets |= Train(SE) (5.1)

domain_knowledge ∧Train(SE) ∧ inputs |= SE (5.2)

SE ∧ inputs |= targets (5.3)

where SE denotes a Self-Explaining function, |= denotes an “imply” relationship,

targets can be seen as a final solution of the current task, Train denotes a training

algorithm or paradigm.

The Equ. 5.1 expresses that the searching of a good training algorithm for a self-

explainer SE, which could be done by human experts, requires domain_knowledge

and some examples of inputs and target. Such a training algorithm Train(SE) can
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be viewed as a solution_knowledge that could train a self-explainer in a way that

best matches the current task. Humans may have an ample resource of solution

knowledge, but some examples of inputs and targets could help humans find the

solution_knowledge that matches the current task. The domain_knowledge is task-

agnostic and describes objects and their relationships in the world. In Equ. 5.2, the

domain_knowledge may help the learning/construction of a Self-Explainer (SE) by

providing a smaller hypothesis space. Train(SE) would still need to be used to learn

how to map a new input to somewhere in such a reduced hypothesis space.

5.1.1 Chapter Highlights

- In Sec. 5.2, I will discuss a work that uses self-explanation to help robot learn

from ambiguous demonstrations – Self-Explaination forReinforcement-Learning from

Demonstration (SERLfD [165]).

5.1.2 Background

Reinforcement Learning and Reward Shaping

In our work we consider a finite-horizon and discounted Markov decision process

(MDP) model that can be learned by RL methods. In an MDP, the agent observes

the current state st ∈ S at step t, and then takes an action (or makes a decision)

at ∈ A. The action would influence the environment and lead to a reward r(st, at), a

new state st+1, and a binary value “done”. When “done” is True, the current episode

ends. The above procedure is an interaction and generates an experience, defined by

a 5-tuple (st, at, rt, st+1, done). Since the MDP is finite-horizon, each episode allows

at most T steps of interactions. The agent is trained with the objective of finding

a parameterized policy (a ∼ πθ(s|θ)) that maximizes the total accumulative rewards

(Equ. 5.4).
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max
θ

E
s,a∼πθ

[
T∑
t=1

γt−1r(st, at)] (5.4)

where E denotes expectation, γ denotes the reward discounting factor.

In our work, we further assume that the reward function r(st, at) is sparse, i.e.,

r(st, at) = 0 in most of the states s ∈ S. Training RL agents in sparse rewards

environments could be challenging due to the delayed training signals from effective

feedback. One extensively adopted way to ameliorate such training is by adding

reward shaping, which provides denser training signals so that the agent could obtain

valuable feedback much sooner. However, we need to be careful at providing shaped

rewards. As demonstrated in [98], a poorly-designed reward shaping function may

cause the converged optimal policy to shift as against the one under original rewards.

[98] proves that potential-based reward shaping function, which follows the form in

Equ. 5.5, is the only class of reward shaping function that can guarantee the invariance

of optimal policies.

r′(st, at) = r(st, at) + λΦ(st+1)− Φ(st) (5.5)

where r′(st, at) and r(st, at) denote the shaped and original reward respectively, λ is

an adjustment parameter, Φ denotes any real-valued function, and λΦ(st+1)− Φ(st)

is the reward shaping term. Note that we set λ to 1 in the rest of paper.

Inverse Reinforcement Learning (IRL)

IRL is about the problem that the reward function in an MDP model is unknown and

needs to be discovered from expert demonstrations. Typically in an IRL framework,

the unknown reward function is modeled by a parameterized function of certain fea-

tures. The design of our SERLfD framework is based on the Guided Cost Learning
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(GCL [36]) optimized by Generative-Adversarial Networks (GAN-GCL [35]). GCL

and GAN-GCL propose to couple maximum entropy IRL [177] and RL together to

do continuous control learning with unknown rewards. In the maximum entropy IRL

[177], a reward function is modeled as a parameterized function of states along a

trajectory. The proper parameters of a reward function are searched by maximizing

the likelihood of the demonstration data.

GAN-GCL integrates IRL and RL by viewing the RL model as a generator and

the IRL model as a discriminator that are trained in GAN formulation. The IRL

model provides rewards for the RL model. The RL model is trained to gradually

shift its sampling distribution to match that of demonstrations. The IRL model is

trained to distinguish sampled trajectories from demonstration trajectories, by using

the binary cross-entropy loss in Equ. 5.6.

Lirl(Dθ) = Eτ∼p[−logDθ(τ)] + Eτ∼q[−log(1−Dθ(τ))] (5.6)

Dθ(τ) =
exp{fθ(τ)}

exp{fθ(τ)}+ q(τ)
(5.7)

where Dθ denotes a discriminator model. p and q denote demonstration and sampling

distribution respectively. q(τ) is the probability density estimation of the trajectory

from RL-Agent; fθ(τ) denotes the estimation of trajectory rewards, computed by a

parameterized model (e.g. a neural network).

The work Adversarial IRL [38] further proposes to replace trajectory τ in Equ.

5.7 with state-action pairs, which makes the training more stable:

Dθ(s, a) =
exp{fθ(s, a)}

exp{fθ(s, a)}+ q(a|s)
(5.8)

where fθ(s, a) denotes the estimation of reward feature on a pair of state and action.

We refer to this version of GAN-GCL as State-Action-GAN-GCL (SA-GAN-GCL).
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5.2 SE Guides Learning by Discovering Underlying Task Logics

Ambiguities commonly exist in communications among people. Due to possible

vocabulary differences, when a human teacher attempts to train a robot by showing

demonstrations (Robot Learning from Demonstration or LfD), such demonstrations

may also suffer from being ambiguous. Maybe from the human’s perspective, what

he or she intends to demonstrate is clear, but the robot may still make sense of it in

a different way. Consider an example illustrated in Fig. 5.1.1: a robot needs to push

two components into two different target regions (L1 and L2) that have two different

colors (blue and yellow). Imagine a human teleoperates the robot to push the ring

object into L1 region in blue, and block object into L2 in yellow. The robot could

interpret this demonstration as pushing the block into the yellow region and ring into

the blue region or pushing the block into the region L2 and ring into L1.

If humans were in a robot’s position, they may ask themselves: What are the

features according to the other person that are more relevant to a good decision? After

seeing the pushing demonstration, the human may start from a random hypothesize

that the object-location relation (e.g. ring_at_L1) is more useful than the object-

color relation (e.g. block_at_yellow). Then they would push ring and block always

to L1 and L2 respectively, no matter which one is marked in blue or yellow. If

the human fails the task once the yellow and blue colors are exchanged (L1 and

L2 in yellow and blue respectively), they may consider the object-color relations

(e.g. ring_at_blue and block_at_yellow) to be more relevant to a decision. This

procedure is essentially self-explanation, which can be used to guide a learner to

learn better [131]. According to [131], self-explanations are inferences about relational

connections among objects and events, like how procedures cause their effects, and

how different structural components can affect a system.
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Figure 5.1: Sub-figure (1): the Setting of the Robot-push Task. There are Two Target

Regions Indexed By L1 and L2. L1 and L2 are Also Randomly Assigned With Colors

Either Blue-yellow or Yellow-blue. To Finish the Task, the Ring and Block Should Be

Pushed Into the Blue and Yellow Region Respectively. Sub-figure (2): an Example of

a Three-step Robot Execution With Grounded Predicates (p) and Self-explanations

(u) Per Step That Is Generated From our Model. Sub-figure (3): The SERLfD Frame-

work That Couples the Learning of Self-explaining (inside the Blue Region) and an

RL-Agent (inside the Yellow Region). The Learning of Self-explanation Is Integrated

Into a Discriminator. The Policy Can Be Viewed as a Generator. A Robotics Expert

Provides Background Knowledge Like Predicates Grounding Procedures for Robots,

Which Allow Robots to Disambiguate Demonstrations From Non-experts.
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Note that humans do not look at the world at the level of pixels, but could at more

abstract cognition levels, like concepts ([69; 137]), factors ([64]), and symbols ([101]).

As for robots, since they take human advice (demonstrations), intuitively it would

be beneficial if robots do disambiguation reasoning at a similar level to humans so

that control-level learning can be guided. Therefore, we assume the robot has some

background knowledge like classifiers for extracting important relations that can map

continuous states to a set of predefined predicate symbols, which describe various

relational connections among objects and/or events. A robotics expert could provide

such background knowledge that helps solve a class of tasks (e.g. Pushing).

Therefore, the key insight behind our approach is: by identifying which object-

event relations from each interaction are likely to be more relevant to a

decision, an agent can interpret why a trajectory is successful or unsuc-

cessful so that its learning would be guided and improved.

Reinforcement-Learning from Demonstration (RLfD) approaches (e.g. [50; 149;

127; 112]) that use demonstrations to accelerate RL training have the benefits of

only requiring a few demonstrations. However, traditional RLfD approaches may not

be able to handle ambiguous demonstrations efficiently. An optimal trajectory from

humans may also suffer from being ambiguous. This could make learners fail the task

during training by simply “copying” the demonstration due to varying initial states,

which is common in robotic tasks.

To mitigate this issue, we (robotics experts) give robots the aforementioned back-

ground knowledge so that robots can understand non-expert demonstrations with

human-relevant knowledge. Robots would then need to identify salient relations.

We introduce a neural network called self-explanation network (SE-Net) to explic-

itly output a set of predicate utility weights per step. Each utility weight indicates

how utilizable a ground predicate is for interpreting a decision. Therefore, the utility
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weights serve as an explanation hypothesis that self-explains which relations are im-

portant per step (e.g. the “u” columns in Fig. 5.1.2). Such information could guide

RL-Agents to learn better. At the step 2 in the Fig. 5.1.2, while both “ring_at_blue”

and “ring_at_L1” are satisfied at this time, weighting them differently can help the

agent to connect only useful relations to its decision-making. This also shows that

using task-agnostic background knowledge (e.g. human-understandable predicates

for a class of tasks) would not remove ambiguity.

However, it is not straightforward to learn to predict proper utility weights for

each predicate by using background knowledge. While a human demonstrator pro-

vides demonstrations for a specific task, we assume that she/he would not directly

tell robots which predicates are important. In other words, we do not have such

labels. Inspired by the aforementioned example of how a human may solve a similar

problem, one promising direction is to motivate robots to contrastively discover im-

portant predicates by distinguishing between successful and unsuccessful trajectories.

This requires integrating the ability of self-explaning and that of practising with the

current self-explanation hypothesis. To this end, we propose a Self-Explaination for

Reinforcement-Learning from Demonstration (SERLfD) framework based on Gen-

erative Adversarial Inverse Reinforcement Learning (GAN-IRL) methods [35; 38]. In

the GAN-IRL works, the learning of a non-linear reward predictor and an RL-Agent

can guide each other in a generative-adversarial fashion. In our approach, as illus-

trated in Fig. 5.1.3, we modify the reward predictor in GAN-IRL by inserting into

it a self-explanation network (SE-Net) that generates predicate utilities. While the

whole reward predictor can be trained as usual via a discriminator loss, we essen-

tially use the predicted utility weights (i.e. self-explanations) to guide the learning of

RL-Agents.

Our main contribution is the SERLfD framework that contrastively and iteratively
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learns to use background knowledge to self-explain which high-level predicates are

task-relevant and meanwhile perform the task. Our SERLfD algorithm is essentially

a modification of traditional GAN-IRL methods that were used for Imitation Learn-

ing (or LfD). Our SERLfD algorithm combines the benefits of both worlds (RLfD and

GAN-IRL). We extensively evaluate our SERLfD framework with multiple candidate

RL-Agents in four continuous robotics domains and one discrete Pacman domain.

Our evaluation demonstrates that SERLfD clearly outperforms traditional RLfD and

GAN-IRL methods with better learning stability and higher scores even in challeng-

ing continuous control domains. To the best of our knowledge, our work opens the

direction of learning to self-explain potentially ambiguous demonstrations to support

RLfD.

5.3 Problem

Grounded Predicates Values

A predicate is a logical formulation that describes a relationship among several

objects. The objects that a predicate concerns would form the arguments of the

predicate. Take for instance a predicate “pushed(obj)” in the aforementioned robot-

pushing domain, “obj” is an argument that can be grounded with “block” or “ring”.

When the argument is grounded, the predicate becomes a grounded predicate, e.g.

“pushed(block)”. In our work, we use a binary predicate variable to represent if

a grounded predicate is satisfied or not. For example, “pushed(block)” can be rep-

resented by a binary predicate variable “is_block_pushed”. When it is satisfied, we

assign this binary predicate variable with value 1, otherwise -1. We may have a set

of grounded predicates (and thus a set of binary predicate variables) to describe the

most important relations according to domain knowledge. Grounded predicate
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values at the current step are the values of all binary predicate variables obtained

by processing the current environment state. Since common functions can be reused

to ground certain groups of predicates, and a set of predicates could be shared across

multiple tasks, it is not expensive to provide agents with such predicate knowledge.

Self-Explanation Generation

We model the problem of generating a self-explanation as finding a set of predicate

utility weights that match the set of binary predicate variables. A predicate utility

weight serves as a quantitative estimation of how utilizable the corresponding predi-

cate variable is to interpret why making a decision is promising, given a state. Finding

utility weights (which can be either positive or negative) for all predicate variables

may highlight some predicate variables and play down the others. This way, we ap-

proximately build a connection between a subset of relations and a decision, since a

predicate is an abstracted representation of a relation. Even in extreme cases that all

predicates have satisfied/unsatisfied groundings, probably only a subset of them are

recognized to be useful. Then the utility weights for those predicates would probably

have larger absolute values. In our work, we use a neural network to generate a set

of utility weights from a state, which will be explained in Sec. 5.4.2.

Self-Explaination for RL from Demonstration (SERLfD)

Solving a SERLfD problem is similar to solving an RLfD problem as in [149; 50; 127]:

They use demonstrations to initialize a replay buffer and bootstrap the learning.

During the later training stages, whether demonstration experiences are still used

depends on how good the learning is. What distinguishes SERLfD from RLfD are as

follows: 1) Our environment provides both states and grounded predicate values with

an internal state processor; 2) The input for RL-Agent is a concatenation of state,
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grounded predicate values, and utility weights; 3) SERLfD would use a self-explainer

submodule to generate explanations (predicate utility weights) for each state. The

generated explanation would then be used to guide the learning of RL-Agent.

5.4 SERLfD Framework and Algorithm

In this section, we introduce our SERLfD framework (Fig. 5.1.3) which couples

two objectives together. One is to learn self-explanations that identify task-relevant

relations by distinguishing between successful and unsuccessful trajectories. The other

is to encourage RL-Agents to use self-explanations so that RL training can be im-

proved. We introduce a self-explanation network (SE-Net) that maps a state to a

set of utility weights u (self-explanation) that corresponds to a set of grounded pred-

icates values p. The predicates and their recognition classifiers can be viewed as

background knowledge that a robotics expert offered for helping a robot to handle

a class of tasks. We also propose to improve an RLfD agent with self-explanations

by either 1) state augmentation, i.e. 〈s〉 becomes 〈s, p, u〉; or 2) reward augmenta-

tion, i.e. r̂θ(s, u, a, r(s, a)) where r(s, a) is task reward function that comes from an

RL environment. The task reward also serves as an indicator that decides whether

a trajectory is successful or not. Since we rely on task rewards for learning both

SE-Net and RL-Agent, we do not break RLfD assumptions that demonstrations are

used to guide RL to maximize accumulative task rewards. Our RL-Agents can be

any deep RL algorithm that is adjusted to learn from demonstrations a policy that

optimizes accumulative task rewards, e.g. [50; 149]. To contrastively learn the SE-

Net, we merge the objective of learning to self-explain into the learning of GAN-IRL

frameworks ([35; 38]). The discriminators in GAN-IRL frameworks are trained by

distinguishing between two different distributions of trajectories: demonstrations or

generated samples. Unlike GAN-IRL, the discriminator in SERLfD includes the SE-

117



Net and is trained differently by distinguishing between successful and unsuccessful

trajectories. We will explain what are grounded predicate values (Sec. 5.4.1), how

to learn to “self-explain” (Sec. 5.4.2), how RLfD learning could be benefited from

self-explanations while RL-Agents also adapts the learning of SE-Nets further by

providing new samples (Sec. 5.4.3).

5.4.1 Grounded Predicate Values

A predicate is a logical formulation that describes a relationship among several

objects. The objects that a predicate concerns would form the arguments of the

predicate. Take for instance a predicate “pushed(obj)” in the aforementioned robot-

pushing domain, “obj” is an argument that can be grounded with “block” or “ring”.

When the argument is grounded, the predicate becomes a grounded predicate, e.g.

“pushed(block)”. In our work, we use a binary predicate variable to represent

if a grounded predicate is satisfied or not. For example, “pushed(block)” can be

represented by a binary predicate variable “is_block_pushed”. When it is satisfied,

we assign this binary predicate variable with a value of 1, otherwise -1. We may have

a set of grounded predicates (and thus a set of binary predicate variables), according

to background knowledge, to describe the most important relations. We assume that

the classifiers for detecting the satisfaction of such predicates are available. The

rapidly growing computer vision community is already able to provide high-quality

visual recognizers that detect objects and relations (e.g. through scene graph analysis

[157]). There are also works that improve RL by leveraging ground-truth symbolic

high-level knowledge, e.g. [81; 147; 21; 156].
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5.4.2 Training the SE-Net in a Discriminator

The input to the Discriminator (in Fig. 5.1.3) is obtained by sampling a batch

of experiences and grounded predicate values from buffers Dgood and Dbad. With an

experience, SE-Net takes a state s as input and generates a set of predicate utility

weights u : u = SE-Net(s). A predicate utility weight serves as a quantitative

estimation of how utilizable the corresponding predicate variable is to interpret why

making a decision is promising, given a state. The values in u may highlight some

predicate variables and play down the others. This way, we identify salient relations

for a decision, since a predicate is an abstracted representation of a relation. Even

in extreme cases that all predicates have satisfied/unsatisfied groundings, probably

only a subset of them are recognized to be useful. Then the utility weights for those

predicates would probably have larger absolute values.

Self-explaining can be seen as finding a set u of utility weights. The number

of output utility weights per step should match the number of grounded predicate

values. The neural network architecture of SE-Net is flexible and should match the

state-space. In some of our experiments, our state-space consists of features like

object poses. Then SE-Net could be implemented by using a multilayer perceptron.

By taking the dot-product of u and grounded predicate values, we can obtain a

scaler value hθ(s) that we would use later:

hθ(s, u) =
k−1∑
i=0

ui · P(s)i (5.9)

where P(s) denotes the grounded predicate values extracted from state s, and k

denotes the number of predicates. We explain how we obtain the function P in the

Sec. 2 of linked supplemental manuscript (note1).

Recall that GAN-GCL [35] and SA-GAN-GCL [38] train IRL and RL models

together as a GAN (a coupling of discriminator and generator). Traditionally, the
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IRL model is trained by differentiating demonstration and sampled trajectories. The

IRL model (discriminator) also provides rewards for training the RL-Agent to imitate

the demonstrations. However, solving a SERLfD problem is closer to solving an RLfD

problem as in [149; 50; 127]: They use demonstrations to initialize a replay buffer

and bootstrap the learning of maximizing task rewards.

Now an important question is how can we integrate the learning of the SE-Net

in a discriminator and an RL-Agent. Inspired by the difference between RLfD that

requires task rewards and GAN-GCL based Imitation Learning that only needs a

discriminator (discussed above Eq. 5.6), we decide to use the predicted utility weights

u to shape the task rewards. The value hθ(s) in Eq. 5.9 is essentially a reward

shaping term that rely on both SE-Net and background knowledge (predicates and

P(s)). Then we can compute the prediction of shaped rewards r̂ as:

r̂θ(st, ut, at, st+1, ut+1, r) =

r(st, at) + hθ(st+1, ut+1)− hθ(st, ut)
(5.10)

where r̂θ() models the prediction of shaped rewards r̂(st, at), and hθ(s) is computed in

Eq. 5.9. r(st, at) is the task rewards provided by an RL environment. The formulation

of Eq. 5.10 is based on Eq. 5.5 and shares similarities with the prediction of shaped

rewards in work [38]. However, different from [38], we include task reward r to train

the agent to accomplish the task instead of merely imitating. In the rest of this paper,

we shorten the r̂θ() with long lists of inputs to r̂θ(s, u, a, r).

Since our self-explanation u only “augments” the task rewards, our discrimina-

tor is trained to distinguish between successful and unsuccessful trajectories. In the

traditional GAN-IRL works, the task reward is missing. All demonstrations are la-

beled as good and all sampled trajectories are labeled as bad. But incorporating

task rewards can better motivate Self-Explainer to learn to discriminatively recognize

which predicates are more useful for solving a task. Sampled trajectories that can
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accomplish a task, in our problem, should be treated the same as demonstration tra-

jectories. Remember in Fig. 5.1.3, we store a sampled trajectory into either Dgood or

Dbad depending on if it accomplishes a task. The discriminator loss LSE for training

the SE-Net can be formulated as:

LSE = E(s,a)∼Dgood [−logD(r̂θ(s, u, a, r))] + E(s,a)∼Dbad [−log(1−D(r̂θ(s, u, a, r)))]

where u = SE-Net(s), the discriminator function D() is formulated in Eq. 5.8, and

r̂θ(s, u, a, r) in Eq. 5.10.

5.4.3 Improving RL-Agent (Generator) with Self-Explanation

The yellow area in Fig. 5.1.3 depicts how we train the RL-Agent with the help

of predicted self-explanations. Note that the SE-Net learns a complex non-linear

function to “explain” a state. SE-Nets also provide more detailed guidance (predicate

utilities) rather than merely a numerical reward prediction. In our work, we propose

two ways for an RL-Agent to take advantage of SE-Nets. One way is to augment RL

states by concatenating them with grounded predicate values and predicted utility

weights (self-explanation): 〈s〉 becomes 〈s, p, u〉. Then policy network in RL-Agents

becomes: a ∼ πθ(s, p, u). Another way is to estimate a shaped reward r̂θ(s, u, a, r)

by using Eq. 5.9 and 5.10. The former provides more detailed guidance whereas the

(shaped) rewards are more direct learning signals for RL-Agents. Intuitively, a good

explanation provides better guidance for the RL-Agent to sample a trajectory that in

turn makes the discriminator harder to distinguish, which adapts the SE-Net further.

The SERLfD learning is summarized in Algorithm. 1.
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Algorithm 5 The SERLfD Learning Algorithm
INPUT: A dataset of human demonstrations, an environment with reward

function r, state space S, action space A, and all hyper-parameters

1: Initialize the weights of an RL-Agent and a Self-Explainer

2: Initialize buffers Dgood and Dbad for training the Self-Explainer and DRL for RL

from Demonstrations as in [50; 149]

3: Store expert experiences into Dgood and DRL. Pretrain the RL-Agent with expe-

riences sampled from DRL

4: Sample K trajectories with a random policy and add them to DRL. Also add

successful and unsuccessful trajectories to Dgood and Dbad respectively.

5: for episode = 1; episode ≤ N ; episode+ + do

6: Sample experiences (including grounded predicate values) from Dgood and Dbad

. Train Self-Explainer

7: Compute utility weights u and shaped reward prediction

r̂θ(st, ut, at, st+1, ut+1, r) by using SE-Net, Eqs. 4 and 5

8: Update the SE-Net via binary cross entropy loss LSE to distinguish successful

experiences from unsuccessful experiences

9: Sample experiences with grounded predicate values from DRL . Train

RL-Agent

10: Run SE-Net on sampled states to obtain utility weights u

11: Augment input states with grounded predicate values and utility weight values

12: Augment rewards with predicted shaped reward by using Eq. 5

13: Update RL-Agent with the augmented experiences

14: Use RL-Agent to sample a new trajectory and add it to DRL. If the trajectory

is successful, it would also be added to Dgood. Otherwise, it would also be added

to Dbad . Sample a new trajectory

15: end for

16: return a trained RL-Agent and SE-Net
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5.5 Evaluation

Since self-explanations should play a general role in improving an RL-Agent that is

trained with ambiguous demonstrations, we evaluate our SERLfD framework in mul-

tiple domains and use different candidate deep RL models as the RL-Agent. We eval-

uate the RL learning performance in this section and the predicted self-explanations

in our supplemental video (note1). We design our evaluation to answer the fol-

lowing questions: 1) Can SERLfD outperform RLfD? 2) Which of the two ways of

using self-explanation to guide an RL-Agent (state or reward augmentation) is more

helpful? 3) What could happen if the self-explanation is used to define the entire

reward rather than just the reward shaping? 4) Do self-explanations play a general

role in supporting an RL-Agent to learn from ambiguous demonstrations or self-

explanations are only effective for certain of the RL models? 5) Since our SERLfD

combines the benefits of RLfD and GAN-IRL, does our SERLfD outperform a state-

of-the-art GAN-IRL as an Imitation Learning method? 6) Does SERLfD help in both

continuous and discrete domains?

To answer 1, we compare the performance of an RLfD model and the same one

supported by SE-Net. To answer 2, we do extensive studies of how RL agents can use

self-explanations by removing the predicate utility weights from the input of an RL-

Agent (RLfD+SE+nu), or by removing the reward shaping terms (RLfD+SE+nrs).

To answer 3, we remove task rewards and only use the dot-product of predicate

utility weights and predicate values as rewards to train RL agents (RLfD+SE+ntr).

To answer 4, we investigate a diverse set of RL-Agents. To answer 5, we compare

SERLfD with the SA-GAN-GCL (for Imitation Learning) proposed in [38]. To answer

6, we evaluate our models in three continuous robotic control domains and one discrete

Pacman domain.
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Figure 5.2: 2.1. Learning Curves of Training the Baseline RLfD Agents

(TD3fD/SACfD), RLfD With SE-Nets (RLfD+SE), the Extensive Studies of how

RLfD Can Use Self-explanations (RLfD+SE+nu and RLfD+SE+nrs), Using the Self-

explanation to Form the Entire Rewards for RL-Agents (RLfD+SE+ntr), and an Im-

itation Learning Agent Built By Using RL in the Original SA-GAN-GCL Framework

[38]; And 2.2. The Pacman Domain and the Learning Curves With the RL-Agent

SQLfD. For Each Curve, We Run Three Times of Each Algorithm and Report the

Mean and Standard-deviation, Which are Plotted in the Bold and Lighter Color Re-

gion Respectively. Y-axis Values are Scores That Each Is Measured as an Average

Over 100 Episodes. X-axis Values are Episodes.

5.5.1 Experiments in Continuous Domain

We start by evaluating SERLfD in a Robot-Push domain (as described in Fig.

5.1) that a continuous control model would need to be learned. We used a Fetch

Mobile Manipulator [152] that has a 7-DoF arm in PyBullet simulator [26]. We also

fixed its mobile base in experiments. In this Robot-Push domain, there are two tar-

get regions indexed by L1 and L2. Note that this indexing is static. By saying

a “region”, we mean a square that each side is approximately 0.1m. The region L1
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and L2 are assigned with either blue-yellow or yellow-blue colors. The predicate vari-

ables are: {is_block_pushed, is_ring_pushed, block_at_yellow, block_at_blue,

ring_at_yellow, ring_at_blue, block_at_L1, block_at_L2, ring_at_L1, ring_at_L2}.

The task is to push the block and ring into yellow and blue regions respectively, no

matter which is L1 or L2. Our design of state-space follows the FetchPush-v0 en-

vironment made by OpenAI-Gym 1 . The state-space consists of the positions and

orientations of the objects in domain w.r.t the world frame. Such objects include

the end-effector, ring, block, regions in blue and yellow colors, and regions L1 and

L2. The action space is defined as a 4-tuple: [translation_x, translation_y, transla-

tion_z, yaw_angle] of the end-effector w.r.t world frame. Once the block is pushed

to the yellow region and ring to the blue region, the robot finishes a task. The task

reward function is sparse: In most situations, r(s, a) is zero; If robot pushes an object

towards its target location to be δd closer, it receives a reward of 100 ∗ δd; If either

ring or block is pushed into its target region, the robot receives a reward of 25; If

both ring and block are pushed into their target regions, the robot receives a reward

of 50.

We also designed two simplified versions of the aforementioned Robot-Push do-

main, named Robot-Push-Simple and Robot-Push-Simple-2. In the Robot-

Push-Simple domain, the predicate variables are: {is_block_pushed, is_ring_pushed,

block_at_yellow, block_at_blue, ring_at_yellow, ring_at_blue}. The region L1

and L2 are always in blue and yellow. Other details are the same as the Robot-Push

domain. The Robot-Push-Simple-2 domain is identical to the Robot-Push-Simple do-

main except for that it has a larger predicate set that is the same as the Robot-Push

domain.

We use two state-of-the-art RLfD baselines for continuous control tasks: Twin-
1https://gym.openai.com/envs/FetchPush-v0/
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Delayed DDPG [39] from Demonstrations (TD3fD), and Soft-Actor Critic [49] from

Demonstrations (SACfD). To collect demonstrations, we use a keyboard to input

control commands. We collected 8 trajectories (averagely 17 steps each) for the

Robot-Push-Simple and Robot-Push-Simple-2 domain and 15 trajectories (averagely

19 steps each) for the Robot-Push domain.

Robot-Push-Simple, Robot-Push-Simple-2, and Robot-Push

The results are reported in Fig. 5.2.1. We extensively study what is the best way for

an RL-Agent to use self-explanations by introducing the models RLfD+SE+nrs and

RLfD+SE+nu along with our main model RLfD+SE. Please note that all of the three

models that use our self-explainer – either for reward shaping, state augmentation,

or both – are our models that require a SERLfD framework and SE-Net. The results

present multiple interesting findings. First, the RL-Agents with SE-Nets generally can

be trained more stably and achieve higher scores within a shorter time. One exception

is when we use SACfD as the baseline RL-Agent in Robot-Push-Simple and Robot-

Push-Simple-2. This is because the two domains have a lower degree of ambiguity.

The entropy-driven exploration in SACfD can find the optimal policy without the

help of self-explanations. Second, the results show that using self-explanations to

augment states is better than constructing shaped rewards with self-explanations.

The reason could be 1) the state augmentation provides detailed information of self-

explanation to RL-Agents, and 2) due to RL-Agents’ explorations, the reward shaping

that contains self-explanations would not be fully used at the beginning stage of

training. We also evaluate an incorrect way of using self-explanation to form the

entire rewards (RLfD+SE+ntr). Theoretically, RLfD assumes the task/extrinsic

reward is available. Demonstrations are used to guide RL agents to find a policy

that maximizes the accumulative extrinsic reward faster. Using the self-explanation
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to form the entire reward breaks this assumption of RLfD. Third, the domain Robot-

Push is harder than Robot-Push-Simple-2 but they have the same predicates. Our

results for the two domains show that the RLfD agents with SE-Nets can maintain

good performance even for harder tasks.

Robot-Remove-and-Push

Based on the aforementioned results, we evaluate some interesting models in this

more complex robot domain. There are two target regions indexed with L1 and L2.

The region L1 and L2 are assigned with either blue-yellow or yellow-blue colors. L1

and L2 are fixed whereas blue and yellow are exchangeable. In each episode, either

a block or a cylinder would show up. Both have a black cover at the top. If their

initial poses are on the left side of the table, the robot needs to push them to their

target regions with the black cover removed. The target regions for the block

and cylinder are blue and yellow regions respectively. Robots only get a reward of

+50 when they accomplish the task. This domain supports a more complex task

of 20 predicates (Sec. IV in the supplemental material in note1). We collected 16

demonstrations (averagely 5 steps each). We use TD3fD as a representative of RLfD

models. We report the results in the last column of Fig. 5.2.1 which shows clear

benefits from learning self-explainers.

5.5.2 Experiments in Discrete Domain

We report our results in a discrete Pacman Domain (Fig. 5.2.2) to demonstrate

if self-explanation is helpful with discrete state and action spaces. After taking the

power pellet, the Pacman should try to eat ghosts within a fixed amount of time.

Once the Pacman eats all of the randomly-wandering ghosts it completes the task.

Then it gets a reward of 1 and the current episode ends, otherwise, the reward is
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0. Two predicate variables, {ghost_nearby, eat_capsule}, are provided to describe

whether the ghost is close to the Pacman and whether the Pacman has eaten a

pellet. The ambiguity in this domain lies in the proper time to eat a pellet. In the

demonstrations (e.g. the red trajectory in Fig. 5.2.2), the agent rushed to eat the

pellet because the ghost was coincidentally nearby. But normally, the agent should

wait to eat the pellet until the ghost approaches. Our RL-Agent is Soft Q-Learning

[48] from Demonstration (SQLfD). We collected 5 demonstrations (averagely 18 steps

each). In our training, each episode has at most 2000 steps. From the results, we can

conclude that the RL-Agents with SE-Nets perform better.

5.6 Related Work

5.6.1 Deep Reinforcement Learning from Demonstrations

Many works have investigated the benefits of using RLfD frameworks. The work

[127] uses states in demonstrations as starting points to train DRL with short-term

interactions. As such, explorations only happen in a local region around a good

state from demonstrations. [50] and [149] propose to use demonstrations to initialize

the replay buffer so that the training of a deep Q-Net ([50]) or a deep deterministic

policy gradient (DDPG) network ([149]) can be benefited. [28; 112; 108] propose to

directly use demonstrations to initialize neural network parameters by pretraining it

with an imitation learning objective. Besides pretraining a DRL model, imitation

learning can also be used to construct an auxiliary imitation learning loss ([149; 93]).

The work [41] addresses the problem of DRL from imperfect (noisy and corrupted)

demonstrations. [41] relies on reward information to perform a Q-function normaliza-

tion over actions. However, learning from ambiguous demonstrations is an orthogonal

issue: Such demonstrations could lead to the highest reward, may not necessarily be
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corrupted, but confuses the learner.

5.6.2 Imitation Learning from Ambiguous Demonstrations

So far only a few works have attempted to do robot LfD from ambiguous demon-

strations as in [14; 11; 89; 30]. [14] and [11] model demonstration ambiguity as the

intention differences of human and robot. [14] proposes to let a human teacher and

robot learner gradually improve the learning difficulty and quality. By explicitly mod-

eling human’s intention and belief in a Bayesian inference framework, the robot can

discover conflicts, query humans, and learn better. [11] models the ambiguity as a

joint hypothesis space of multiple categories of concepts (e.g. colors, shapes). To

disambiguate the demonstration is to reduce the hypothesis space. [11] then proposes

a concept learning approach to reduce the hypothesis space by using new demon-

strations step by step. [89] models the demonstration ambiguity as a difference in

demonstrated actions at the same (or similar) state. To disambiguate demonstrations,

[89] adopts clustering algorithms and proposes a two-level clustering approach to si-

multaneously categorize similar situations and ambiguous actions in each situation.

Another work [16] proposes to use Bayesian optimization to infer reward uncertainty

learned by an IRL algorithm, which has the potential of doing imitation learning

from ambiguous demonstrations. However, [16] mainly focuses on the IRL side and

evaluates in simple domains. The work [30] addresses distribution drift problems

[124; 125] in imitation learning by avoiding causal misidentification caused by using

ambiguous demonstrations. While [30] touches on the RL, it is not an RLfD approach

because the task (environment) rewards are not used. In contrast, according to [112]

the RLfD approaches and our work can naturally handle distribution drift problems

since we directly use task rewards.
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5.7 Concluding Remarks

In this work, we propose the Self-Explaination for Reinforcement-Learning from

Demonstration (SERLfD) framework for allowing RLfD agents to efficiently use

even ambiguous demonstrations by doing self-explanations. Our extensive evalua-

tion shows appealing benefits of training RLfD from learning self-explanations in

one discrete Pacman and three challenging robotics control domains. The experi-

mental advantage also suggests that our SERLfD could lead to compelling practical

applications since ambiguous demonstrations could frequently happen when robots

cohabitate with non-practitioner humans in real-worlds.

5.7.1 Significance

In this work, we open the direction of using self-explanation to help reinforcement

learning from human demonstrations. One may continue this direction by:

1) Improving the self-explanation mechanisms that can fit for more and more

challenging settings;

2) Applying the self-explanation mechanism to help address other interesting prob-

lems;

3) Studying the broader version of introspection for robot learning – that goes

beyond the self-explanation.
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Chapter 6

CONCLUSION AND FUTURE WORK

6.1 Summaries of Contributions

This dissertation aims at achieving human-level intelligence by tightly coupling dif-

ferent levels of cognitive functions like perception, acting, planning, and introspection.

This dissertation explores novel directions for helping different levels of cognitive func-

tions learn and adapt together based on deep neural networks. The dissertation can

be divided into three main threads: perception-acting coupling, perception-planning

coupling, and self-explanation-guided learning.

I started out by studying perception-acting coupling – how the learning of

perception and that of acting could support each other in a tightly coupled fashion.

The perception-acting coupling is closely relevant to the concept of affordance which

describes the correlations among objects, actions, and effects. Traditional grasping

affordance prediction works typically predict rigorous forms of affordances so that

an external motion planner can accept it to execute and achieve certain effects like

picking a mug up. An important cluster of works along this direction includes learning

affordance from demonstrations [29; 31] which avoid the labor-intensive affordance

labeling collection. My work [164], however, is the first to combine two important

directions together: learning (grasping) affordances from demonstrations and deep

learning based imitation learning. This enables robots not only to learn to imitate

humans at the level of trajectories but also imitate their tacit knowledge of affordances

– which achieves affordance-aware imitation learning.

While the above direction of perception-acting coupling makes the perception
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“more conscious”, the overall learning process still lacks “long-term thinking” which

is crucial in a cognitive agent [68]. Thus, my second thread of research focuses on

a higher level of cognitive learning – the perception-planning coupling. My re-

search [166; 176] focuses on plan recognition problems that can be reduced from

planning problems. Different from traditional works that treat perception and plan

recognition modules as the separate parts of a pipeline, my research introduces a learn-

able perception-planning interface that allows a high-level plan recognition module

to effectively utilize even erroneous low-level perception outputs [166]. While most

perception-planning-or-plan-recognition works consider the flow from perception to

plan recognition, I further ask the question of whether we can do the opposite of using

plan recognition to improve perception [168]? My idea becomes part of a successful

ONR (Office of Naval Research) proposal.

Finally, to pursue human-level intelligence for robots, I also research if a cognitive

learning agent may also introspect (or self-explain) what it has experienced so far,

either from itself or from others. Likewise, humans may also frequently monitor their

learning and draw lessons from failures and others’ successes. To this end, I explore

the possibility of motivating cognitive agents to learn how to introspect human

demonstrations and agents’ own experiences, i.e. accomplishments and failures, to

gain useful insights. By internally making sense of the past experiences, advanced

cognitive agents could have their learning of other cognitive functions guided and

improved. My research in this thread [165] promises to open a new direction for

the robot learning community – self-explanation guided robot learning from human

demonstrations.

As many research endeavors that illuminate an unexplored region in darkness,

the research presented here may also suggest many open questions and unaddressed

challenges. Many of my presented works leverage human advice (e.g. demonstrations)
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to speed up the learning of cognitive agents as discussed in Chapter 2 and 5. Being

able to incorporate human advice also allows human users to customize learning

agents. One fundamental question is what should be the best form of human advice

and what could be the best way of incorporating human advice? I will provide some

partial answer towards the open question in Section 6.2 based on our Blue Sky paper

[58] in Section. 6.2.

Furthermore, one may discover interesting directions for future research by ex-

ploring potential connections among the three threads – perception-acting coupling,

perception-planning coupling, and self-explanation guided learning. In this disserta-

tion, I will point out some connections among the three threads that could lead to

interesting future works in Section 6.3.

6.2 Cognitive Learning with Humans Advice

Using human advice would greatly improve the learning efficiency of agents. To

achieve this, one naive way is to ask humans to figure out how to understand robots’

own (internal) representations. In this sense, there is no need to maintain an inter-

face between humans and learning agents. However, Human-AI systems should be

designed for the benefits of humans. Therefore, agents should maintain a communi-

cation channel so that humans can use to advice agents.

Given the popularity of learning to make decisions from pixels, it seems to be more

straightforward to ask humans and learning agents to communicate at the level of

raw data like images, videos, or trajectories. Communicating at the level of raw data

helps agents and humans convey each other tacit knowledge like how to grasp a mug

as in Chapter 2. However, this would make it inappropriate for tasks that involve

more explicit knowledge due to high cognitive load for humans. One great example

is my self-explanation paper [165] presented in Chapter 5, which shows that in more
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Figure 6.1: Overall Architecture of an AI System Exposing a Symbolic Interface to

a Human User, Enabling the AI Agent to Provide Explanations to its Decisions as

Well as Accept Guidance/preferences From the Human in the Form of Advice.

complex domains, human demonstrations can easily convey ambiguous information

to robots and hinder robots’ learning. Indeed, we humans do not communicate with

pixels or videos in the most of the time! Instead, we have developed our languages,

or more fundamentally, symbols and their combinations.

As illustrated in Figure. 6.1, [58] argues that it is important for robots to maintain

and use a symbolic interface to make them more explainable (explain to humans

why robots make a decision) and advisable (learn from human advice from humans’

perspectives) – even if robots’ core computation modules (e.g. the AI model and AI

Decision Making Component in Figure. 6.1) are inscrutable to humans.

One may find it straightforward to imagine how convenient it could be if robots

can clearly explain their decision-making to human users in human-understandable

symbols (thorough a symbolic interface). However, it could be more subtle to think

about the benefits that robots can gain if they learn from human advice thorough
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Figure 6.2: Interpreting Human Demonstrations in the Context of the Symbolic In-

terface (c.f. [165]

the symbolic interface, which allows robots to think about human advice from hu-

mans’ perspectives. One everyday example is that when you see someone who is

gesturing to you, you would deliberately think about the symbolic meaning behind

the gesture with the context of the person. The self-explanation guided robot learn-

ing work [165] explained in Chapter 5 also belong to this direction of making robots

more advisable by having them learn human demonstrations thorough a symbolic

interface. As described in Figure. 6.2, the set of predicates and their detection

functions (human-related background knowledge) constructs a symbolic interface be-
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tween robot learners and human teachers. Robots learns to better incorporate human

advice by introspecting and self-explaining which predicates are task-relevant. The

predicted self-explanations at each step help guide the AI model and Decision-Making

component.

6.3 Future Directions

Figure 6.3: The Section 6.3 Would Focus on Exploring Novel Connections Be-

tween the Self-Explanation Guided Learning Thread and the Other Two Threads:

1) Perception-Acting Coupling and 2) Perception-Planning Coupling.

Based on the discussion above, I focus on exploring new connections between the

self-explanation thread and the other two threads as illustrated in Figure. 6.3. This

is because combining self-explanation and deep learning could achieve human-level

intelligence, yet is quite under-explored in the robot learning community. A paper

published in 1999 ([27]) proposes to use self-explanation to enhance the learning of
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an agent. Unlike [27], the research presented in Chapter 5 views the self-explanation

from a more general perspective of connecting cognitive psychology and modern deep

neural networks for robotics.

Endowing robots that learn from teachers with the human-like self-explanation

mechanism brings up several significant challenges: 1) the challenge of defining the

form of teachers’ advice and formulating its incorporation – either at the level of

symbolic representations or raw data (space-time signal tubes or STST in short)

[58]; 2) the challenge of designing the self-explanation mechanism that can be tightly

coupled into robots’ learning algorithms; 3) the challenge of using self-explanation to

improve lower-level cognitive components, like perception, planning and performance

components, as a whole based on deep neural networks. Solving these challenges might

be achieved by exploring potential connections among the three research threads

described in Figure. 6.3. The connections between self-explanation guided learning

thread and perception-planning coupling thread hints at the need of maintaining

symbolic human-related background knowledge that benefits for agents to learn tasks

with more explicit knowledge. The symbolic background knowledge would be in the

format of models. On the other hand, the connections between self-explanation guided

learning thread and perception-acting coupling thread help address the challenges that

emerge when cognitive learning agents learn tasks with more tacit knowledge.

6.3.1 Self-Explanation-guided Learning for Tasks that Require Explicit Knowledge

When robots learn from humans the tasks that might need both explicit and tacit

task knowledge, robots might need a symbolic interface to help them understand hu-

man advice from humans’ perspectives as discussed in Section 6.2. The work presented

in Chapter 5 demonstrates the benefits of the self-explanation mechanism in support-

ing a reinforcement learning from demonstrations (RLfD) agent efficiently learn from
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ambiguous demonstrations. That said, the learning of self-explanation in Chapter

5 is essentially model-free (without using any formal action or dynamics models).

However, note that the symbolic interface that conveys human-related background

knowledge can be either model-free (there is no syntactic and semantic constraints

over symbols), or be a more systematical organization of symbols, e.g. symbolic or

causal models – therefore revealing connections between the self-explanation guided

learning thread and the perception-planning coupling thread. One promising fu-

ture direction, therefore, is to leverage the works that learn and use shallow-domain

planning models (Chapter 3 and 4) to develop novel model-based self-explanation

mechanisms which output self-explanation hypothesis as guiding signals for learning.

This would eventually further improve learning efficiency and generalizability.

6.3.2 Self-Explanation-guided Learning for Tasks that Require Tacit Knowledge

Unlike the previous research thread, cognitive learning agents sometimes need to

learn from humans those tasks that require much more tacit knowledge (e.g. Fig.

2.1). Consequently, it might be difficult and unnecessary to develop symbolic repre-

sentations to help robots learn from human advice. One of the promising direction for

future works is to use self-explanation to help learn tacit tasks like Chapter 2 – that is,

to explore novel connections between the self-explanation guided learning thread and

the perception-acting coupling thread in Figure. 6.3. Note that one strict assumption

that we have made in Chapter 2 is that humans demonstrations cover all required

tacit affordance knowledge. However, it mostly will not be the case when robot users

are non-practitioners. In such cases, robots need to explore. Self-explanation could

help cognitive learning agents gain useful insights from their past experiences to guide

the exploration.
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