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ABSTRACT

Visual question answering (VQA) is a task that answers the questions by giving

an image, and thus involves both language and vision methods to solve, which make

the VQA tasks a frontier interdisciplinary field. In recent years, as the great progress

made in simple question tasks (e.g. object recognition), researchers start to shift their

interests to the questions that require knowledge and reasoning.

Knowledge-based VQA requires answering questions with external knowledge in

addition to the content of images. One dataset that is mostly used in evaluating

knowledge-based VQA is OK-VQA, but it lacks a gold standard knowledge corpus for

retrieval. Existing work leverages different knowledge bases (e.g., ConceptNet and

Wikipedia) to obtain external knowledge. Because of varying knowledge bases, it is

hard to fairly compare models’ performance. To address this issue, this paper collects

a natural language knowledge base that can be used for any question answering (QA)

system.

Moreover, a Visual Retriever-Reader pipeline is proposed to approach knowledge-

based VQA, where the visual retriever aims to retrieve relevant knowledge, and the

visual reader seeks to predict answers based on given knowledge. The retriever is

constructed with two versions: term based retriever which uses best matching 25

(BM25), and neural based retriever where the latest dense passage retriever (DPR)

is introduced. To encode the visual information, the image and caption are encoded

separately in the two kinds of neural based retriever: Image-DPR and Caption-DPR.

There are also two styles of readers, classification reader and extraction reader. Both

the retriever and reader are trained with weak supervision. The experimental results

show that a good retriever can significantly improve the reader’s performance on the

OK-VQA challenge.
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Chapter 1

INTRODUCTION

Over the years, people’s interests keep growing in making computers to answer

questions like humans, and question answering (QA) has indubitably become a high-

profile domain in natural language processing (NLP). Among the various QAs, Visual

Question Answering (VQA) ranks as one of the most challenging tasks as it requires

combining the visual and linguistic information to answer the question. This work

targets to address the knowledge-based VQA, where knowledge present in an image is

insufficient to answer a question, and thus the external knowledge is required.

1.1 Motivation

1.1.1 OK-VQA Challenge

OK-VQA (Marino et al. 2019) is a knowledge-based VQA dataset proposed recently.

Figure 1 shows two examples from the OK-VQA benchmark. In each of the two

examples, external knowledge is needed to answer the question. For instance, in the

first example, to identify the vehicle used in the item shown in the image (top-left), a

system needs first ground the referred object to a fire hydrant and then seek external

knowledge (an example is top-right of the image). Compared to other knowledge-based

VQA tasks that generate questions based on some knowledge source and (or) use

question templates (such as FVQA (P. Wang et al. 2017) and KB-VQA (P. Wang

et al. 2015)), OK-VQA generated natural questions (details see Table 1).

1



Question: What sort
of vehicle used this

item?
Answer: fire truck

LXMERT: truck

LXMERT + Caption: fire
truck

Ours: fire truck

kn: fire engine, also called fire           
truck, mobile (nowadays self-            
propelled) piece of equipment            
used in firefighting....                          

Caption: a red fire hydrant sitting
on the side of a road.

Question: Where did
this sport originate?
Answer: australia,
hawaii, polynesian

LXMERT: california

LXMERT + Caption:
california

Ours: hawaii

kn: surfing was invented in               
hawaii...                                                            

Caption: a man riding a wave on a
surfboard in the ocean.

Figure 1. Two examples from OK-VQA.

Note: The middle column are predictions by two baselines and one by our proposed
Visual-Retriever-Reader pipeline. The left column are relevant knowledge and the
corresponding captioning of images.

More essentially, OK-VQA requires knowledge in rich diversity, where the topics

are divided into 11 classes, and thus this task is more challenging. The 11 classes are

listed as below:

1. Brands, Companies and Products

2. Plants and Animals

3. Science and Technology

4. Sports and Recreation

5. Vehicles and Transportation

6. Objects, Material and Clothing

2



7. Geography, History, Language and Culture

8. Weather and Climate

9. People and Everyday life

10. Cooking and Food

11. Other

Based on the features mentioned above, here we use the OK-VQA Dataset as the

basis to start our further work on knowledge-based VQA.

Table 1. Comparison of different knowledge-based VQAs

Dataset # I # Q Image Knowledge KB Type Template
KB-VQA 700 2,402 COCO & IN Human - yes
FVQA 2,190 5,826 COCO DB & CN & WC KG yes
KVQA 24,602 183,307 Wiki Wiki KG paraphrased
OK-VQA 14,031 14,055 COCO Human - no
text-KVQA 257,380 1,322,272 GSI Wiki & IMDb & BC KG paraphrased

Note: Here # I denotes the number of images whereas # Q denotes the number of
questions. Image refers to the image source, Knowledge refers to the knowledge
source to generate questions, KB Type shows the type of the knowledge base
provided to answer these questions, and Template indicates whether the template is
used to generate the questions. Abbreviations: IN-ImageNet, Wiki-Wikidata,
DB-DBpedia, CN-ConceptNet, WC-WebChild, KG-knowledge graph, GSI-Google
image search, BC-a book catalogue (Iwana et al. 2016)

1.1.2 Create A Knowledge Base for OK-VQA

Although the OK-VQA benchmark encourages a VQA system to rely on external

resources to answer the question, it does not provide a knowledge corpus for a QA

system to use. Some existing methods utilize different resources such as ConceptNet

(Speer, Chin, and Havasi 2017), WordNet (Miller 1995), and Wikidata (Vrandečić and

Krötzsch 2014), but consequently bring about the following issues:

3



Q: When was the cola brand
on the sign founded?
A: 1892

In 1892, Candler set out to incorporate
a second company; "The Coca-Cola

Company" (the current corporation) ...

<Cola, RelatedTo, Limonade>, <diet
coke, RelatedTo, cola> <Coca Cola,

IsA, Coke>, <water, RelatedTo, Cola>
...

Wikidata

ConceptNet

Figure 2. Example for Different Knowledge Structures

Note: The differences between the natural language knowledge base Wikidata and
knowledge-graph structured ConceptNet. Here the ConceptNet knowledge is
constructed by relation triple “< Object, Relation, Subject >”.

1. It is difficult to fairly compare different VQA systems as it is unclear whether the

difference in performance arises from differing model architectures or the different

knowledge sources.

2. Most current knowledge bases have different knowledge format, such as the struc-

tured ConceptNet and the unstructured Wikipedia (See Figure 2), demand different

modules to retrieve knowledge, resulting in making a knowledge-based VQA system

complicated.

Therefore, there is a need for a general and easy-to-use knowledge base for OK-VQA

task.

1.1.3 Natural Language Knowledge VS. Knowledge Graph

Most of the current knowledge-based VQA tasks (see Table 1) provide a knowledge

graph (KG) based structured knowledge set. Truly, the structured knowledge is

4



friendly for computer to reason, but there are still some limitations compared to the

unstructured knowledge.

1. Natural language knowledge (NLK) is easy to obtain, as it is widely used and

constitutes our daily conversations, production, commerce and all other activities,

but structured knowledge sources can only cover a limited amount of knowledge.

For example, ConceptNet provides only 34 relation types.

2. There is a vast amount of knowledge that is hard to be described by a relation in a

knowledge graph, such as, describe the logo of Apple Inc. However, with natural

language, it is simple to be depicted as “An apple with a bite taken.”

3. Constructing a structured KG requires using NLP techniques like parsing, where

the reliability is depend on the parser. Therefore, each structured knowledge base

is generated with large amount of human annotation. On the contrary, unlike KG,

no more further processing required for NLK.

4. The existing retrieval methods that widely used in information retrieval (IR) field

can be easily applied to NLK to retrieve a relevant knowledge. As the neural network

models has achieved a great progress in IR area (Lee, Chang, and Toutanova 2019;

Karpukhin et al. 2020), it can also improve the performance of the knowledge-based

VQA tasks.

In consideration of above aspects, we decide to build the knowledge base in

unstructured natural language style.

1.2 Contribution

The contributions are three folds. First, we build a general easy-to-use knowledge

corpus for the OK-VQA benchmark, which makes model evaluation fair. Second, we

5



propose a Visual-Retriever-Reader pipeline adapted from the NLP domain for the

knowledge-based VQA task. Our model establishes a new state-of-the-art. Third,

our experiments reveal several insights as mentioned above, and open a new research

direction.

1.2.1 Knowledge Collection

We collect a knowledge corpus for the OK-VQA benchmark. The corpus is

automatically collected via Google Search1 by using the training-split question and

the corresponding answers. The details of the collection will be shown in Chapter 3

We also provide a training corpus with 112,724 knowledge sentences in total. The

knowledge corpus is in a uniform format, i.e., natural language. Thus it is easy to

use by other OK-VQA methods. As we will show in Chapter 6, the knowledge base

provides rich information to answer OK-VQA questions.

1.2.2 Retriever-Reader Pipeline

Utilizing the curated corpus, we further develop a weakly-supervised Visual-

Retriever-Reader and evaluate it on the OK-VQA challenge. It consists of two stages

as seen in Figure 3. In the first stage, the visual retriever retrieves relevant knowledge

from the corpus. In the second stage, the visual reader predicts an answer based on the

given knowledge. Such a pipeline is well-studied in text-only open-domain QA (Chen

et al. 2017; Karpukhin et al. 2020). We apply its principles to the multi-modal vision

and language domain with novel adaptations. On the retriever side, we introduce

1https://developers.google.com/custom-search/v1/

6
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Question: Where did
this sport originate?

Caption: a man riding a
wave on a surfboard in

the ocean.

Knowledge
Base

surfing was invented in hawaii.         
the exact person know for                 
developing surfing is unknown,        
as the sport originated among          
the early polynesian peoples...          

Prediction:
hawaii

Visual
Retriever

Visual
Reader

Figure 3. Visual Retriever Reader Pipeline.

Note: Given an image and a question, a visual retriever is first to retrieve relevant
knowledge, and then a visual reader is to predict an answer based on the given
knowledge.

visual information and evaluate a cross-modality model and a text-only caption-driven

model (Section 4.1). On the reader side, we build two visual readers, a classification

and an extraction type, with both utilizing visual information (Section 4.2). We

observe in Chapter 6 that, our Visual-Retriever-Reader pipeline performs strongly on

the OK-VQA challenge and establishes a new state-of-the-art.

1.2.3 Results Analysis

Listed as below, our experiments reveal several insights.

1. The image captions can largely promote the performance for both visual retriever

and visual reader, which indicates the importance of applying image captioning

generator to knowledge-based VQA tasks.

2. A neural retriever has much better performance than a term-based retriever. This

observation is quite novel, as typically in the NLP domain, a term-based retriever

(e.g., TF-IDF and BM25) is a hard-to-beat baseline (Lee, Chang, and Toutanova

7



2019; Lewis et al. 2020; Ma et al. 2020). Our results suggest an essential role of

neural retrievers in the vision-&-language domain.

3. In the NLP domain, a reader can perform better if the given knowledge contains

more relevant information to the question. Similarly, we discover that our visual

reader has a significant leap between using noisy knowledge and high-quality

knowledge. It motivates the demand for developing a more efficient visual retriever

for knowledge-based VQA tasks.

In Chapter 7, we also analysis and evaluate the experiment results by using different

predicting strategy (Section 4.3.2) and comparing to the complete corpus.
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Chapter 2

RELATED WORK

2.1 Knowledge-based VQA

Many benchmarks have been proposed to facilitate the research in knowledge-based

VQA. FVQA (P. Wang et al. 2017) is a fact-based VQA dataset that provides image-

question-answer-supporting fact tuples, where the supporting fact is a structured triple,

e.g., 〈Cat, CapableOf,ClimbingTrees〉. KB-VQA (P. Wang et al. 2015) dataset consists

of three types of questions: “Visual” question answerable using the visual concept

in an image, “Common-sense” questions answerable by adults without looking for

an external source, and “KB-knowledge” questions requiring higher-level knowledge,

explicit reasoning, and external resource. KVQA (Shah et al. 2019) consists of

questions requiring world knowledge of named entities in images. Specifically, the

questions require multi-entities, multi-relation, multi-hop reasoning over Wikidata.

KVQA is challenging as linking the named entities in an image to the knowledge base is

hard on a large scale. text-KVQA (Singh et al. 2019) focuses more on the texts shown

in the image, which requires OCR technique to extract. In text-KVQA, the dataset

is split in three parts: business, books and movies, and each parts requires external

knowledge to the answer. For example, given a book cover, it requires knowledge to

understand its content. OK-VQA (Marino et al. 2019) covers 11 types of knowledge

than previous tasks, such as cooking and food, science and technology, plants and

animals, etc. VLQA (Sampat, Yang, and Baral 2020) consists of data points of
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image-passage-question-answer, it is proposed recently to facilitate the research on

jointly reasoning with both image and text.

2.2 OK-VQA Models

Out of the Box (Narasimhan, Lazebnik, and Schwing 2018) utilizes the Graph

Convolution Networks (Kipf and Welling 2016) to reason on the knowledge graph

(KG), wherein each node image and semantic embeddings are attached. Mucko (Z.

Zhu et al. 2020) goes a step further, reasoning on visual, fact, and semantic graphs

separately, and uses cross-modal networks to aggregate them together.

As pretrained model BERT (Devlin et al. 2018) has achieved great success in a

wide range of fields, it is also applied to language and vision cross-model recently,

such as LXMERT (Tan and Bansal 2019), VLBERT (Su et al. 2019) and VilBERT

(Lu et al. 2019). ConceptBert (Gardères et al. 2020) combines the BERT-pretrained

model (Devlin et al. 2018) with KG. It encodes the KG using a transformer with a

BERT embedding query. KRISP (Marino et al. 2020) involves a BERT-pretrained

transformer model to make a better semantic understanding and utilize the implicit

knowledge and reasons on a GCN model.

Recently some knowledge-oriented models are proposed to address OKVQA chal-

lenge. Span-Selector (Jain et al. 2021) extracts spans from the question to search

most relative knowledge from Google, whereas MAVEx (Wu et al. 2021) votes among

textual and visual knowledge from Wikipedia, ConceptNet, and Google Image. Besides

knowledge collection, knowledge alignment (Shevchenko et al. 2021) also helps acquire

a correct answer from knowledge.
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2.3 Open-Domain Question Answering

Open-Domain Question Answering (ODQA) tasks target collecting information

from a large corpus to answer a question. The advanced reading comprehension

model (Chen et al. 2017) split this complex task into two steps: a retriever selects

some most relevant documents from a corpus to a question, and a reader produces

answer according to the documents from retriever. Some previous work (Kratzwald

and Feuerriegel 2018; Lee et al. 2018; Das et al. 2019; S. Wang et al. 2018) train the

end-to-end models to rerank in a closed set. Although these models are better at

retrieval, they can hardly scale to larger corpora. Open-Retrieval Question Answering

(ORQA) (Lee, Chang, and Toutanova 2019) and Dense Passage Retriever (DPR)

(Karpukhin et al. 2020) constructed a dual-encoder architecture with BERT pre-

trained model. This dense retrieval model shows a better performance than classic

TF-IDF or BM25-based ODQA models.
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Chapter 3

KNOWLEDGE CORPUS CREATION

The overall process of knowledge corpus creation (Figure 4) consists of following

four steps.

3.1 Step 1: Query Preparation

Based on the assumption that the knowledge used for answering training set

questions can also help in testing, the OK-VQA training questions are used with

their answers to collect related knowledge from a search engine. We concatenate each

question with each answer to get a “Question, Answer” pair. For example, in Figure 4,

the question “What is the natural habitat of these animals?” has four answers, and

each answer is attached to the question one by one to construct four queries.

3.2 Step 2: Google Search Webpage

The generated queries are sent to Google Search API to obtain knowledge. As

presented in Figure 4, a good search result web page contains a title, a link, and a

snippet that consists of multiple complete or incomplete sentences and shows the most

relevant part to the query. The top ten web pages with their snippets as the raw

knowledge are chosen.
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Question: What is the natural
habitat of these animals?
Answer1:  arctic
Answer2:  cold
Answer3:  alaska
Answer4:  arctic sea ice

Question, Answer1

Question, Answer2

Question, Answer3

Question, Answer4

Remove 
Non-English 

Words
Knowledge

Corpus

Figure 4. The overall process of Knowledge Corpus Creation.

Note: The question first combines the answers one by one to form a query, and then
the query is sent to the Google Search API to retrieve the top 10 webpages. The
knowledge is obtained from the snippet with further processing. Finally, we integrate
the knowledge into the corpus. As shown in the searching result page, the black
boxes represent webpages, and red boxes represent snippets.

3.3 Step 3: Snippet Processing

The snippets from Google searching results consist of multiple sentences, some are

complete but some are not. One option is to split snippets into multiple sentences, but

experimental result shows sentence-level knowledge is worse than snippet-level. Thus,

we choose to use snippet as a knowledge. To address incomplete sentence issue, we

find and grab the complete sentence present in the webpage. After this pre-processing,

ten snippet-knowledge from each “Question, Answer” query are selected.

3.4 Step 4: Knowledge Processing

We first remove the duplicated data among each “Question, Answer” pair. Then

long knowledge (more than 300 words) or short knowledge (less than ten words)

13



are removed. Pycld22 is applied in this step to detect and remove the non-English

part of each knowledge. Each knowledge is assigned a unique ID and duplicate

knowledge sentences are removed. We curate in total 112,724 knowledge sentences for

the OK-VQA training set.

2https://pypi.org/project/pycld2/
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Chapter 4

VISUAL RETRIEVER-READER PIPELINE

We present our Visual Retriever-Reader pipeline for the OK-VQA challenge, where

the visual retriever aims to retrieve relevant knowledge, and the visual reader aims

to predict answers given knowledge sentences. This scheme has been widely used in

NLP (Chen et al. 2017; Karpukhin et al. 2020). While previous work focuses on pure

text-domain, we extend this to the visual domain with novel adaptation.

4.1 Retriever

In this section, two styles of visual retriever were introduced: term-based and

neural-network-based. In the neural style, we further introduce two variants. Following

the convention, we use the standard terms in next subsection, for example, in Section

4.1.1, we use documents and in Section 4.1.2, we use context, both of them are

knowledge in our task.

4.1.1 Term-based Retriever

BM25 is a widely-used algorithm in information retrieval (IR). In BM25 (Robertson

and Zaragoza 2009), each query and document is represented by sparse vectors in d

dimension space, where d is the vocabulary size. Then the score of a query and a

document is computed based on the inverse term’s frequency. BM25 can only retrieve

documents for a query in text format, but an image is a part of a query in our task. To
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Question

BERT

Context

BERT

Score

Standard-DPR
Question, Image

LXMERT

Context

BERT

Score

Image-DPR
Question, Caption

BERT

Context

BERT

Score

Caption-DPR

Figure 5. Comparison between standard DPR, Image-DPR and Caption-DPR.

Note: While the context encoder is the same for three models, in standard
BERT(left), the question encoder only takes question as input, the
Image-DPR(middle) takes both question and image as input, the Caption-DPR
(right) takes the question and the caption as input.

tackle this issue, we first generate image captions using the latest caption generation

model Oscar (Li et al. 2020). Then we concatenate the question and the caption as a

query and obtain a list of documents by BM25.

4.1.2 Neural-based Retriever

Unlike BM25, neural retrievers extract the dense representations for a query and a

context from the neural model(s). We use DPR (Karpukhin et al. 2020) as a neural

retriever, which employs two BERT (Devlin et al. 2018) models to encode the query

and context respectfully, then applies inner-dot product to estimate the relevancy

between a query and a context. Similar to BM25, the DPR model considers the

query in text format.To adapt DPR in the visual domain, we propose two methods:

Image-DPR and Caption-DPR.
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4.1.2.0.1 Image-DPR

In Image-DPR, we use LXMERT (Tan and Bansal 2019) as the question encoder,

which takes image and question as input and outputs a cross-modal representation. For

context encoder, we use the standard BERT. To train the retriever, we use inner-dot

product function to get the similarity score of relevant and irrelevant knowledge to a

question, and optimize the negative log likelihood of the relevant knowledge.

4.1.2.0.2 Caption-DPR

As its name suggests, we leverage the caption to capture the visual feature in

Caption-DPR. Similar to the strategy we use in term-based retriever, we concatenate

the question with the caption of an image as a query and use standard BERT as a

query encoder to get the representation. Here the captions are also generated by the

Oscar model. The resting parts remain the same as the Image-DPR. Figure 5 shows

the architectures of standard DPR, Image-DPR and Caption-DPR.

4.1.3 Retrieval Results

Figure 6 shows the top knowledge retrieved by Term-based Retriever, Image-

DPR and Caption-DPR. In this example, for the term-based retriever, key word

“motorcycle” and “parking” show up several times in the retrieved knowledge, but the

key word “sport” in the question is missing, resulting in the knowledge cannot answer

the question. However, in both neural-network retriever, the results not only count

into the effect of question, but also contain the correct answer, “race” or “racing”.
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Question: What sport can you
use this for?
Caption: A black motorcycle
parked in a parking lot.
Answers: race; motocross; ride

Term-Based Retriever
the sfmta designates a variety of parking spaces in

metered areas, non-metered areas and off street lots and
garages for motorcycle parking.  the city of san francisco
motorcycle parking map displays the locations of metered

and non-metered on-street motorcycle parking.
Image-DPR

racing has been one of the most exciting forms of sports
competition the human race has ever created.  in this type

of racing are from various classes, such as production
cars, trucks and motorcycles, and it is usually recreational.

Caption-DPR
motorcycle racing is an electrifying sport, requiring a

unique skillset and courageous dedication to the sport.  the
repsol honda team has shown superb performance in

motogp, with over 100 triumphs and even three
consecutive triple crown wins.

Figure 6. Examples of Knowledge Retrieved by 3 Retrievers.

Note: All the three knowledge are the top knowledge from the retriever results.

This example shows that the modified DPR models are able to retrieve the correct

knowledge for OK-VQA questions.

4.2 Reader

In this section, two styles of readers are designed to predict an answer given the

visual-linguistic features with the retrieved context: the classification reader (CReader)

and the extraction reader (EReader).
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4.2.1 Classification Reader

Current state-of-the-art VQA systems are classification models (Tan and Bansal

2019; Li et al. 2019; Gokhale et al. 2020), where a list of answer candidates are

pre-defined (from the training set), i.e., a fixed answer vocabulary, then a model

classifies one of the answers as the final prediction. We build a reader in this style but

incorporate external knowledge. In particular, given a question, an image, and a piece

of knowledge, we first concatenate the question with the knowledge and then apply a

cross-modality model to encode the text with the image and generate a cross-modal

representation. We feed this representation to a Multiple Layer Perceptron (MLP)

which finally predicts one of the pre-defined answers. We apply Cross-Entropy Loss

to optimize the model. In this work, we use LXMERT (Tan and Bansal 2019), while

any other cross-modality models like VisualBERT (Li et al. 2019) can be adapted.

4.2.2 Extraction Reader

The classification model fails to generalize to out-of-domain answers, i.e., questions

whose answers are not in the pre-defined answer vocabulary. To tackle this issue, we

use an extraction model which is adapted from machine reading comprehension model

(Chen et al. 2017). The model extracts a span (i.e., a start token and an end token)

from the knowledge to answer the question. The image caption is given to the model as

well to incorporate the image information. We also inject a special word “unanswerable”

before the caption so that the model can predict “unanswerable” if the given knowledge

can not be relied on to answer the question. This strategy is helpful since the retrieved

knowledge might be noisy. We use a RoBERTa-large (Liu et al. 2019) as the text
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encoder, whose inputs are {[SEP] question [SEP] [“unanswerable”], caption, knowledge

[SEP]}. Then each token representation is fed to two linear layers: one predicts a

score for a token being the start token, and the other predicts a score for the end

token. We apply the softmax function to get the probability of each token being start

and end token. The training objective is to maximize the probability of the ground

truth start and end token.

4.2.3 Reader Outputs

Figure 7 shows one example answered by CReader and EReader. This example

proves that the CReader correctly predict the answer several times, and we apply

a predicting strategy (See Section 4.3.2) to select one answer from the multiple

predictions.

EReader correctly answered this question, but the answer is not in the answer set

provided. To address this issue, we introduced an Open-Domain Evaluation in Section

5.2.2.

4.3 Strategies

This section would introduce some strategies we used in the retrievers and readers.

4.3.1 Weak Supervision

We trained the retriever and the reader using weak supervision, where the ground-

truth knowledge context is unknown for a given question-image pair.
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Question: What sport can you
use this for?
Caption: A black motorcycle
parked in a parking lot.
Answers: race; motocross; ride
CReader
Prediction

45 motorcycles : 5
motocross

EReader
Prediction

racing

Figure 7. Examples of Answer Predicted by 2 Readers.

Note: Here the CReader predicted 45 times motorcycles and 5 times motocross when
providing total 50 knowledges. EReader predicted racing, which is a correct answer
but not in the answer set.

For the retriever, given a query and an image, we assume that knowledge that

contains any of the answers is relevant, and we use the in-batch negative samples

(Karpukhin et al. 2020) for training, i.e., in the training time, any relevant knowledge

for other questions in the same batch are considered as irrelevant. For the reader, we

use the same relevant knowledge as the retriever; in addition, we use the collected

knowledge from Google, which does not contain any answer as the irrelevant knowledge.

If irrelevant knowledge is given, the reader should predict “unanswerable”.

4.3.2 Prediction Strategy

We use the retriever to retrieve K knowledge (the value and effects of K will be

presented in Section 7.2), and the reader predicts an answer based on each knowledge.

We propose and compare the following two strategies to predict the final answer (See
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Q: Where did this sport originate?

Retriever

K1

K2

K3

K4

Reader

Ans1, Score=0.87

Ans3, Score=0.51

Ans2, Score=0.63

Ans2, Score=0.76

Highest Score

Highest Frequency

Figure 8. Highest-Score Strategy and Highest-Frequence Strategy

Note: In this example, 4 knowledges are retrieved to predict 4 answers, in which Ans1
scores the highest, and Ans2 appears twice. We pick Ans1 as the Highest-Score
prediction, and Ans2 as the Highest-Frequency prediction.

Figure 8). Highest-Score: the answer which has the highest score is the final prediction.

Highest-Frequency : the answer which appears most frequently is the final prediction.
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Chapter 5

EVALUATION

In this chapter, we introduce our evaluation method for the retrievers and readers.

The retrievers are evaluated using metrics like Precision, Recall and F1 score, which

are commonly used in the NLP fields. For the readers, we adopt the general VQA

evaluation method. In order to avoid the effect of outer words bring from the Reading

Comprehension Model by the greatest extent, we also use the entailment method (Luo

et al. 2021) to re-evaluate the reader predictions (see Section 5.2.2), which largely

improved our SOTA accuracy to 45.8%.

5.1 Retriever Evaluation

We evaluate the performance of a retriever based on Precision, Recall and F1

score. The two metrics are based on the assumption that any retrieved knowledge

that contains any of the answers annotated in the OK-VQA dataset is relevant. This

assumption is because it is unknown which knowledge is relevant to a question-image

pair. Therefore the computation of Precision and Recall in our case is different from

the traditional definition and illustrated as follow:

5.1.1 Precision

Precision reveals the proportion of retrieved knowledge that contains any of the

answers to a question-image pair. Mean Precision is the mean of Precision of all
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question-image pairs. Mathematically,

P (Q,A,KN) =
1

K

i=K∑
i=1

min(

j=M∑
j=1

Aj∈KNi

1, 1),

where Q is a question, KN is a list of retrieved knowledge, A is a list of correct

answers, K is the number of KN , M is the number of A.

5.1.2 Recall

Recall reveals if at least one knowledge sentence in the retrieved Knowledge contains

any answers to a question-image pair. Mean Recall is the mean of the Recall of all

question-image pairs. Mathematically,

R(Q,A,KN) = min(
i=K∑
i=1

j=M∑
j=1

Aj∈KNi

1, 1),

where the meaning of the symbols are the same described in Precision.

5.1.3 F1 Score

F1 score takes both the precision and the recall into account, and can be considered

as the harmonic mean of the precision and the recall. Mathematically,

F1(Q,A,KN) = 2 · P (Q,A,KN) ·R(Q,A,KN)

P (Q,A,KN) +R(Q,A,KN)
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5.2 Answer Evaluation

5.2.1 Standard VQA Evaluation

In OK-VQA, each image-question pair has five answers annotated by humans. To

apply a similar evaluation as VQA (Agrawal et al. 2015), OK-VQA counts per answer

twice so that each image-question pair has ten answers, the same as VQA. The score

is computed as follows.

score(A) = min(
#human that said A

3
, 1)

We use the above equation to compute the score of each answer for training and

testing.

5.2.2 Open-Domain Evaluation

Considering that the Extraction Reader predicts an answer within the open domain,

probably resulting in the generated phrases not showing up in the answer field, we

introduced a novel open-domain evaluation using Sentence Textual Entailment (STE)

tool. This evaluating work contains two phases: Grounding that apply each answer

and prediction to the question to ground it as a statement; and Entailment that

calculate the similarity of the different grounded sentences. Then the final score is

calculated according to the STE results. One example is shown in Figure 9.
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Question Q1: What is the person in
the photo wearing?
Answers: wet suit, suit, ...

Question Q2: What are these
people wearing?
Answers: wet suit, scuba suit, ...
...

wet suit:
the person in the photo wearing is wet suit.
these people  are wearing  wet suit.
...

suit:
the person in the photo wearing is suit.
...

scuba suit:
these people  are wearing  scuba suit.
...

Q1: the person in the photo wearing is _.

Q2: these people  are wearing  _.
...

maximum:
0.868

 Question: What is the person in 
 the photo wearing?
 Answer: wet suit, suit, ...

P1: the person in the photo wearing is wet suit.
H1: the person in the photo wearing is wet suits.

P2: these people are wearing wet suit.
H2: these people are wearing wet suits.

Grounding Assembling

P1: the person in the photo wearing is suit.
H1: the person in the photo wearing is wet suits.

P2: the name for this style of clothing is suit.
H2: the name for this style of clothing is wet suits..

EScore1
0.838

EScore2
0.885

EScore1
0.001

EScore2
0.0002

mean:
0.868

mean:
0.021

VQA
Models

Prediction:
wet suits

threshold:
0.5

threshold:
0.5

Figure 9. Example of Open-Domain Evaluation

Note: This example calculates the entailment score of provided answer “wet suit” and
our prediction “wet suits”. We first ground all questions into statements with a
reserved position “_” for the answer. Then, we congregate all the grounded
statements by the provided answer. We replace the “_” with the provided and
predicted answer separately as the premise and hypothesis to get the entailment score.
The entailment score of a provided answer and a prediction is calculated as the mean
of all the entailment scores under that answer in the assembling list. We take 0.5 as
the threshold, and use the maximum as the final entailment score.

5.2.2.1 Grounding

In the grounding phase, we convert a question to a statement using the answers

and predictions. Since a good prediction should be of the similar semantic meaning

as the answers, we assume that for one question, every answer and prediction acts as

the same role in the grounded statement, and thus we ground the question with a

reserved position for any answer to fill in. For example, the original question “Who

invented this device?” is grounded to “_ invented this device.”, where “_” can be any

of the answers to this question. An example for grounding is shown in Figure 10.
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Figure 10. Example of Grounding Step in Open-Domain Evaluation

To achieve this, a simple sentence role labeling work is applied to the questions

to detect different elements in the sentence (question word, object, subject, auxiliary

word, etc.). After settling the role of elements, the question is then re-ordered to

accord with the word order of declarative sentences.

We apply the above method to the wh-questions and choice questions, which in

total cover the 98.6% of questions and 98.9% of unique answers. Table 2 shows some

examples of grounded sentences.
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Table 2. Examples for some grounded sentences where the hypothesis gets score over
the threshold.

Original Question Grounded Statement
What is this type of blanket called? this type of blanket is called _.

What is the name of the board he is on? the name of the board he is on is _.
The food in the photo contains which healthy vitamins? The food in the photo contains _ healthy vitamins.

Is this bathroom high or low end? this bathroom is _.
Why is the cow going to the water? the cow is going to the water because of _.

Figure 11. Example of Assembling Step in Open-Domain Evaluation

5.2.2.2 Assembling

In grounding step, the statements are gathered by question. We re-arrange the

these grounded statements ordered by the provided answers for the further processing.

Figure 11 provides an example for this assembling step.
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5.2.2.3 Entailment

The grounded sentences are then sent to the Natural Language Inference (NLI)

model 3. NLI is used widely in the NLP tasks to check whether the hypothesis can be

entailed from the given premise, and here we use NLI to check whether the provided

answers and the predicted answer are semantically the same. To compare between a

provided answer and a predicted answer, we first list all grounded statements that use

the provided answer as a correct answer. Then, for each of these statements, we fill

the reserved position with the provided answer as the premise, and our prediction is

the hypothesis, and calculate the entailment score. We use the arithmetic mean of

these scores as the final entailment score.

The threshold is set to be 0.5. We also skip the choice questions and the questions

with numbers as answers, since, with only grounded statements provided, it is hard

to tell whether the two numbers or two choices are similar. For each question with

multiple answers, we pick the highest entailment score as the similarity score.

5.2.2.4 Result

Finally we use the following equation to calculate the re-evaluated accuracy:

S(A) = argmax(
∑

gi∈GAns

E(A,Ans, gi))) ·max(
1

N
·

∑
gi∈GAns

E(A,Ans, gi))),

where the E(A, Ans, gi) denotes the entailment score given a prediction A, a correct

answer Ans and a grounded sentence gi, and argmax() picks the original score of

3https://github.com/allenai/allennlp-models/tree/v1.0.0.rc2/training_config/nli
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Figure 12. Example of Entailment Step in Open-Domain Evaluation

the correct answer corresponding to the highest NLI score. Here GAns is the set of

grounded sentences that uses Ans as answer, and N denotes the size of GAns.

Figure 12 shows the steps acquiring the entailment score and calculating the final

score for a predicted answer.

This open-domain evaluation promotes our SOTA model up to 47.3% score.
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Chapter 6

EXPERIMENTS AND RESULTS

6.1 Baselines

We use a state-of-the-art vision-language model, LXMERT (Tan and Bansal 2019),

as the baselines and apply Captioning and Optical Character Recognition (OCR)

results to the OK-VQA dataset to the original LXMERT model.

6.1.1 LXMERT

LXMERT is a BERT-based cross-modality model pretrained on five different VQA

datasets: MS COCO (Lin et al. 2014), Visual Genome (Krishna et al. 2017), VQA

v2.0 (Antol et al. 2015), GQA balanced version (Hudson and Manning 2019) and

VG-QA (Y. Zhu et al. 2016). We fine-tune LXMERT on OK-VQA and surprisingly

find that LXMERT ranks higher than most of the SOTA models, for which reason we

set LXMERT as our baseline model.

6.1.2 LXMERT with OCR

The OCR technique captures the textual contents from the image and transfers

them into characters. Here we use Google Vision API4 to extract the texts from

images. After the noise deduction step filtering all non-English words, we attach the

4https://cloud.google.com/vision/
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OCR results after the question and then sent them into the LXMERT model. Our

experiment shows that the OCR result helps to address the OK-VQA task.

6.1.3 LXMERT with Captioning

Similar to OCR, we also experiment with adding captioning when training the

LXMERT model. The captions are generated by the advanced model Oscar (Li

et al. 2020) and attached to each question when sent into the LXMERT model. Our

result shows that captioning improves the performance of the LXMERT model, and

therefore, we put the LXMERT with captioning as a baseline as well.

6.2 Main Results

We performed all the experiments at GTX1080 and V100 NVIDIA GPUs. For

both Image-DPR and Caption-DPR, we set the training epoch to be 30, learning rate

(lr) be 1e-5, batch size (bs) be 8, gradient accumulation step (gas) be 4. In CReader,

we set the training epoch as 3, lr as 2e-5, and batch-size as 16. In EReader, we set

the training epoch as 3, lr as 1e-5, batch-size as 4, and gradient accumulation as 4.

6.2.1 Performance

Table 3 shows that our best model based on Caption-DPR and EReader outperforms

previous methods and establishes the new state-of-the-art result on the OK-VQA

challenge. Interestingly, the LXMERT baseline without utilizing any knowledge
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Table 3. Performance on the OK-VQA Test-split.

Method Knowledge Src. Acc.

Existing Method
KRISP (Marino et al. 2020) W & C 32.3
ConceptBert (Gardères et al. 2020) C 33.7
MAVEx (Wu et al. 2021) W & C & GI 38.7
Baselines
LXMERT - 36.2
LXMERT + OCR - 37.2
LXMERT + Caption - 37.8
LXMERT + OCR + Caption - 37.2
Visual Retriever-Reader
BM25 + CReader GS 35.13
BM25 + EReader GS 32.10
Image-DPR + CReader GS 34.64
Image-DPR + EReader GS 33.95
Caption-DPR + CReader GS 36.78
Caption-DPR + EReader GS 39.20
Caption-DPR + EReader † GS 59.22

Note: Our model outperforms existing methods. † means given oracle knowledge to
the reader. GS-Google Search (Training Corpus). W-Wikipedia, C-ConceptNet,
GI-Google Image, Acc-Accuracy.

Table 4. Evaluation of three proposed visual retrievers on Precision, Recall and F1
score

Model # of Retrieved Knowledge

1 5 10 50 100

P* R* F1 P* R* F1 P* R* F1 P* R* F1 P* R* F1
BM25 37.63 37.63 37.63 35.21 56.72 43.45 34.03 67.02 45.14 29.99 84.56 44.27 27.69 89.91 42.34
Image-DPR 33.04 33.04 33.04 31.80 62.52 42.16 31.09 73.96 43.78 28.55 90.84 43.44 26.75 94.67 41.71
Caption-DPR 41.62 41.62 41.62 39.42 71.52 50.83 37.94 81.51 51.78 32.94 94.13 48.80 30.01 96.95 45.83

Note: Caption-DPR achieves the highest Precision, Recall and F1 Score on all
number of retrieved knowledge. We have a * marker on the Precision and Recall to
distinguish from traditional Precision and Recall as illustrated in Section 5.1.

achieves better performance than KRISP (Marino et al. 2020) and ConceptBert

(Gardères et al. 2020) which leverage external knowledge. Incorporating OCR and

captioning further improve the baseline accuracy by 1% and 1.6%, respectively.
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Among different variations of Visual Retriever-Reader, the best combination is

Caption-DPR and CReader when the retrieved knowledge size is 80. We evaluate

retrievers’ performance based on Precision, Recall and F1 score. Table 4 shows

that Caption-DPR consistently outperforms BM25 and Caption-DPR on the various

number of retrieved knowledge. It is interesting to see that Caption-DPR outperforms

BM25 significantly since BM25 is a hard-to-beat baseline in open-domain QA (Lee,

Chang, and Toutanova 2019; Lewis et al. 2020; Ma et al. 2020). It indicates that

neural retriever has better application than term-based retrieval methods in the vision

domain.

Table 5. Recall increases when the Caption-DPR method retrieves knowledge from a
complete knowledge corpus created using train and test questions.

Model # of Retrieved Knowledge

1 5 10 20 50 80 100
BM25 +6.00 +6.28 +4.88 +4.32 +3.83 +3.17 +2.56
Image-DPR +2.24 +2.60 +2.93 +2.29 +1.83 +1.29 +1.25
Caption-DPR +8.88 +8.88 +7.04 +4.65 +2.98 +2.23 +1.88
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Chapter 7

ANALYSIS AND DISCUSSION

Based on the experiments in Chapter 6, we do some further analysis that help

explore the deeper essence of our Retriever-Reader Pipeline. We compare our SOTA

model to the oracle one, which uses only the relevant knowledge to generate answer.

We also evaluate the effect of different prediction strategies and the effect of the

completeness of the corpus.

The detailed prediction may also review some essential features of our model. We

are planing to compare the different predictions by the two styles of readers, and

see where can our model be improved. This prediction analysis will be our future

directions (Section 8.2.2).

7.1 Effects of the Quality of Knowledge.

A common observation in open-domain question answering in NLP is that the

reader can perform well if the given knowledge is good to answer a question. Here,

we are interested to see if this also holds for our reader. Specifically, we set the

oracle-knowledge model as removing knowledge that does not contain any answer

before we feed the retrieved knowledge to the reader, and sending the remaining

knowledge to the reader. The last row in Table 3 shows that our reader can perform

much better if the quality of the knowledge is good, suggesting that a more efficient

cross-modality retriever is needed.
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7.2 Effects of Size of Retrieving Knowledge and Prediction Strategy.

The performance of reader is directly affected by the size of retrieved knowledge.

A more extensive knowledge set is more likely to include the relevant knowledge to

answer the question yet along with more distracting knowledge. In contrast, a small

set might exclude relevant knowledge but with fewer distracting knowledge. We use

Caption-DPR to retrieve the different number of pieces of knowledge and use the

EReader to predict an answer given the different number of pieces of knowledge. We

compare the effects on two prediction strategies mentioned in Section 4.3.2. Figure

13 shows the comparison, and we have the following observations. First, when the

knowledge size is small (equal or less than 5), the Highest-Score strategy is better

than the Highest-Frequency; on the other hand, when the knowledge size is large, the

Highest-Frequency strategy performs better than the Highest-Score strategy. Second,

for the Highest-Score strategy, the size of 5 is the best, and increasing the knowledge

size reduces the performance. Third, for the Highest-Frequency strategy, when the

size equal to 80, it yields the best performance. To summarize, if one uses a small

set of knowledge, then Highest-Frequency negatively impacts the accuracy and the

Highest-Score strategy is preferable. If one uses a larger corpus of knowledge, the

Highest-Frequency strategy can achieve higher accuracy.

7.3 Effects of Completeness of Corpus.

So far, when we test the model performance, we use the knowledge corpus collected

only by training questions. However, if the entire training corpus does not include

relevant knowledge to testing questions, our model is under-evaluated because of the
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Figure 13. Highest-Score Strategy and Highest-Frequencey Strategy.

Note: Highest-Score Strategy: Performance of EReader decreases when the knowledge
number increase and the best is at 5. Highest-Frequency Strategy: Performance of
EReader increase when the knowledge number increase and the best is at 80.

incompleteness of the knowledge corpus. To fairly see how our model performs when

the knowledge corpus is complete, we use the same knowledge collection method

described in Section 3 to collect knowledge for testing questions. Then we combine

the training and testing knowledge as a complete corpus, which increase the corpus

size from 112,724 to 168,306. We use Caption-DPR to retrieve knowledge from

the complete corpus and ask EReader to predict answers based on these pieces of

knowledge. Table 5 shows the increase of recall. As we expected, a complete corpus

is helpful for Caption-DPR even though the corpus size increased, thus yields better

performance of EReader. Figure 14 compares the accuracy of EReader using knowledge

retrieved from two corpora. EReader consistently achieves higher performance using
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Figure 14. EReader achieves significant improvement when using knowledge retrieved
from complete corpus compared to knowledge from training corpus.

the knowledge retrieved from complete corpus, where the biggest gain of 7.86% is

achieved when using 5 knowledge.

7.4 Discussion

Although our pipeline is evaluated on the OK-VQA benchmark, it is generic and

can be adapted for other knowledge-based question answering tasks such as FVQA

(P. Wang et al. 2017), KB-VQA (P. Wang et al. 2015), KVQA (Shah et al. 2019),

and text-KVQA (Singh et al. 2019). For example, in KVQA, we can first collect a

named-entity knowledge corpus by the proposed knowledge collection approach and

then apply our Visual-Retriever-Reader pipeline. It should be noted that our proposed
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extraction reader is a more challenging problem as classification models tend to learn

correlation between output classes (answers) (Agarwal, Shetty, and Fritz 2020) and

input image and question. In contrast, the extraction reader extracts answer-spans

which we exactly match with targets (answers).
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Chapter 8

CONCLUSION AND FUTURE DIRECTIONS

8.1 Conclusion

In this work, we collect an easy-to-use free-form natural language knowledge corpus

for VQA tasks with external knowledge. The corpus is collected on the training split of

OK-VQA task by searching each “Question, Answer” pair through the Google Search

API. We take the top ten results for each search, and do some further processing and

finally get 112,724 knowledge.

We also construct a weakly-supervised Visual Retriever-Reader Pipeline, where the

retriever consists of term-based BM25 model and neural-network-based Image-DPR

and Caption-DPR, and the reader contains classification and extraction two styles.

The Visual Retriever-Reader Pipeline has been evaluated on the OK-VQA challenge

benchmark and has established a new state-of-the-art performance.

We set the baseline using LXMERT model with captioning and OCR, and the

performance reveals that the captioning and the neural retriever can both significantly

improve the QA system’s performance. The further analysis, especially using oracle

knowledge retrieved and using complete knowledge searched by testing set questions

shows that good knowledge from the retriever makes vital progress in predicting the

correct answer.
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8.2 Future Directions

Although our model sets the SOTA for OK-VQA task, it still does not even reach

40% accuracy. As the experiments reveal that the knowledge is essential for the

readers to predict a correct answer, and that there is a large leap between our best

performance and the oracle score, how to retrieve better knowledge in retriever comes

to a vital stage.

8.2.1 Knowledge Selection

As the oracle-knowledge model shown in the last row of the Table 3, the existing

retriever is capable to retrieve the relevant knowledge, but there is some noise mixed

into it. Therefore, we proposed a knowledge selecting model as the future work.

This knowledge selecting model picks among the retrieved knowledge set to find the

knowledge that is more possible to answer the question.

We consider the weakly-supervised model can hardly give a more specific ranking

among the retrieved knowledge, and thus we manually annotated a subset of the

knowledge base to precisely find which knowledge is right for answering the question.

We first pre-train the knowledge selecting model using weakly-supervised method,

then use this annotated subset to fine-tune the model. After the knowledge selection

work, the most relevant knowledge may appear in a higher score among the retrieved

knowledge.
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8.2.2 Prediction Analysis

In Chapter 7 we analyze and evaluate the effect of different knowledge and pre-

dicting strategies on the Retriever-Reader Pipeline, but the prediction itself remains

unanalyzed. However, the prediction worth analyzing and will probably expose some

internal problems to us.

In future, we will look carefully into the predictions both by CReader and EReader,

comparing their prediction with the baselines to see which categories our model does

better than the LXMERT, and which categories not. We will also compare the different

predictions under the same question but given different knowledge to see how the

knowledge affect the answer prediction.
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