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ABSTRACT

This dissertation investigates the problem of efficiently and effectively prioritizing

a vulnerability risk in a computer networking system. Vulnerability prioritization

is one of the most challenging issues in vulnerability management, which affects al-

locating preventive and defensive resources in a computer networking system. Due

to the large number of identified vulnerabilities, it is very challenging to remediate

them all in a timely fashion. Thus, an efficient and effective vulnerability prioriti-

zation framework is required. To deal with this challenge, this dissertation proposes

a novel risk-based vulnerability prioritization framework that integrates the recent

artificial intelligence techniques (i.e., neuro-symbolic computing and logic reasoning).

The proposed work enhances the vulnerability management process by prioritizing

vulnerabilities with high risk by refining the initial risk assessment with the network

constraints. This dissertation is organized as follows. The first part of this disser-

tation presents the overview of the proposed risk-based vulnerability prioritization

framework, which contains two stages. The second part of the dissertation investi-

gates vulnerability risk features in a computer networking system. The third part

proposes the first stage of this framework, a vulnerability risk assessment model.

The proposed assessment model captures the pattern of vulnerability risk features to

provide a more comprehensive risk assessment for a vulnerability. The fourth part

proposes the second stage of this framework, a vulnerability prioritization reasoning

engine. This reasoning engine derives network constraints from interactions between

vulnerabilities and network environment elements based on network and system se-

tups. This proposed framework assesses a vulnerability in a computer networking

system based on its actual security impact by refining the initial risk assessment with

the network constraints.
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Chapter 1

INTRODUCTION

Vulnerability management can enhance the computer networking system security

by identifying, evaluating, and mitigating vulnerabilities in a computer networking

system. Vulnerability prioritization is a critical procedure in the vulnerability man-

agement. There are 43% of cybersecurity professionals report that vulnerability pri-

oritization is one of the most challenging issues in vulnerability management (Oltsik,

2019). In practice, vulnerability management contains three main steps. First, cyber

admins identify the vulnerabilities in a computer networking system. Secondly, the

identified vulnerabilities are prioritized based on risk levels. Lastly, cyber admins re-

mediate the system by mitigating or removing high-risk vulnerabilities. Prioritizing

vulnerabilities is required for efficiently managing the numerous vulnerabilities in a

computer networking system (Dempsey et al., 2020; Aboud, 2019).

1.1 Challenges of Vulnerability Prioritization in a Computer Networking System

The common vulnerability scoring system (CVSS) (The Forum of Incident Re-

sponse and Security Teams, 2021; Mell et al., 2006) has been widely used for vulner-

ability prioritization. The CVSS metrics contain three groups, i.e., base, temporal

and environmental metrics, where the temporal and environmental metrics are op-

tional. The CVSS score is derived from a static formula that depends on the experts’

knowledge. Using high CVSS base scores alone in vulnerability prioritization has lim-

itations, since the high CVSS score usually does not realistically represent the actual

vulnerability exploits (Allodi and Massacci, 2014; Jacobs et al., 2020). In practice,

there are 13.5% vulnerabilities (over 15k) in national vulnerability database (NVD)
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with the highest CVSS base scores range (9-10) (Alperin et al., 2019), and only 10-15%

publicly known vulnerabilities have a known exploit, and even fewer are weaponized

as part of hacking tool-kits (Jacobs et al., 2020). The previous study reveals that

“fixing a vulnerability just because it was assigned a high CVSS score is equivalent to

randomly picking ones to fix (Allodi and Massacci, 2014).” The CVSS is developed

“to measure the severity of a vulnerability and should not be used alone to assess risk

(Johnson, 2019).” Additionally, the CVSS method has limitations on handling such a

large amount of vulnerabilities in a timely fashion. In practice, there are thousands or

more vulnerabilities which can be discovered in an enterprise network (Alperin et al.,

2019). More new security vulnerabilities are disclosed in 2020 than ever before, with

an average rate of 50 vulnerabilities per day (Woollacott, 2021). However, according

to the existing CVSS scoring schema, it is infeasible to easily implement the CVSS

temporal and environmental metrics to adjust a CVSS base score w.r.t. a real sys-

tem’s setup in practice. To implement these two metrics usually requires a security

expert understanding both temporal and environmental situations very well, which

leads to difficulty in practical application (Jack Wallen, 2020; Nikolai Mansourov,

2018), especially for the system with limited time and resources.

As the development of artificial intelligence (AI) techniques, the machine learning-

based models support vulnerability prioritization by learning the patterns of vulner-

ability exploits. Researchers attempt to use machine learning (ML)/deep learning

(DL)-based approaches to explore better associations between vulnerability features

and exploits (Bozorgi et al., 2010; Chen et al., 2019). The existence of exploits is used

as a significantly better risk metric than CVSS scores (Alperin et al., 2019; Allodi and

Massacci, 2014; Jacobs et al., 2020; Sabottke et al., 2015). However, solely depending

on the supervised ML/DL-based model for risk prioritization still has limitations.

The existing ML/DL-based approaches assess risk by estimating how vulnerabilities’

2



features are associated with the exploits in the wild (Alperin et al., 2019; Allodi

and Massacci, 2014; Sabottke et al., 2015; Jacobs et al., 2020), where such associa-

tion varies on different datasets and ML/DL methods (Bullough et al., 2017). The

previous study also shows that the selection of training and testing dataset criti-

cally affects the estimated performance on assessing the likelihood of vulnerability

exploitation (Bullough et al., 2017).

It is worth mentioning that regarding a vulnerability risk in a computer networking

system, the security impact of a vulnerability is also closely associated with interac-

tions between a vulnerability and network environment elements (Chung et al., 2013;

Lai and Hsia, 2007; Ou et al., 2005). To analyze vulnerability-based attack scenarios

in a network, the existing solutions (Ou et al., 2005; Lai and Hsia, 2007) enumerate

all possible vulnerability-based attack paths to a given attacking target as an attack

graph (Ou et al., 2005). The attack graph-based approach is not specifically designed

for vulnerability prioritization. Therefore, when applying this approach on solving

vulnerability prioritization problems, it has some limitations in practice. One attack

graph only fits to a specific attack model with the “start” point and the “target”

point. In practice, for an attack model with a remote attacker, every host in the

network should be evaluated as both the “start” and “target” node (Lai and Hsia,

2007). When using the attack graph-based model to generate such attack graph for

each host in a large scale network, it usually has high complexity, which hinders secu-

rity admins in adopting this approach for vulnerability prioritization. Additionally,

some organizations prioritize vulnerabilities simply depending on the asset value of a

machine. The asset value can indicate the most vital assets to an organization, but

cannot indicate the risks that directly affect this machine. Such risks might come from

threats or vulnerabilities in a network. From the perspective of vulnerability man-

agement, it is more efficient to remediate the high-risk vulnerabilities that actually

3



affect the assets in a computer networking system than patching all vulnerabilities

associated with these high-value assets.

Furthermore, the existing study attempts to assess a vulnerability from various

perspectives, such as, attacker behavior and system criticality (Yadav and Paul, 2019),

vulnerability performance metrics (Farris et al., 2018), network architecture and po-

tential node interactions (Miura-Ko and Bambos, 2007), the attack path derived from

the vulnerabilities dependency graph (Duan et al., 2019), and so on. These solutions

either assume vulnerabilities have equal effects on network nodes (Miura-Ko and

Bambos, 2007; Farris et al., 2018) or fail to address the network environment into

the assessment model (Duan et al., 2019). None of these existing solutions can adopt

vulnerability prioritization to the network environment changes.

1.2 Research Problems

To address the aforementioned challenges, this dissertation focuses on the de-

velopment of a novel network risk-based vulnerability prioritization framework that

leverages multiple vulnerability risk features and network and security constraints to

assess the overall risk of a vulnerability to a computer networking system.

Research Problems. This dissertation investigates the two types of research

problems below:

- What are the risk features that determine a vulnerability’s security impact in a

computer networking system?

- How does a framework effectively and efficiently perform vulnerability risk pri-

oritization in a computer networking system?

To address these research problems, the main contributions of the dissertation

are summarized as follows. I characterize the risk features of a vulnerability in a

computer networking system based on the cybersecurity risk model. Then, I propose

4



a novel risk-based vulnerability prioritization framework. This proposed framework

contains two stages. The first stage of this framework is a proposed vulnerability

risk assessment model that utilizes the neuro-symbolic computing technique to learn

these risk features. The second stage of this framework is a proposed vulnerability

prioritization reasoning engine, which utilizes logic reasoning techniques to refine the

risk assessment model with network constraints in a computer networking system.

The rest of the dissertation is organized as follows. In Chapter 2, I present the litera-

ture review of the related work. In Chapter 3, I propose the risk-based vulnerability

prioritization framework. In Chapter 4, I characterize the vulnerability risk features.

In Chapter 5, I propose the vulnerability risk assessment model that is capable of

learning the characterized risk features. In Chapter 6, I develop the prioritization

reasoning engine that refines the risk assessment model by reasoning with network

constraints. In Chapter 7, I conclude this dissertation and discuss the future work.
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Chapter 2

LITERATURE REVIEW

According to the Verizon 2021 data breach investigations report, less than 25% of

discovered vulnerabilities can be remediated (i.e., be fixed or be patched) within 30

days (Verizon Corp., 2021). There can be several reasons that delay remediation in

reality: (a) for a high-ranked vulnerability, the system may not have the capability

(such as tools, financial support, or knowledge background of the defender) to reme-

diate it based on a software upgrading/patching solution (Rapid7 Corp., 2020); and

(b) defenders may want to postpone remediation due to management issues, such as

regular schedule of software release/upgrade, to avoid downtime that is required to

patch a vulnerability (Rapid7 Corp., 2020). The existing studies that support vul-

nerability prioritization in a network system are grouped as follows.

The Expert-based Approaches The existing predominant vulnerability priori-

tization approach is the CVSS scoring schema (Mell et al., 2006, 2007). The CVSS

is based on a static formula and cannot automatically associate vulnerabilities with

network environmental elements (Spring et al., 2018; Shah et al., 2019). The CVSS

score is widely used in the expert-based risk prioritization. The CVSSv2 was launched

in 2007 (Mell et al., 2007), and the CVSSv3 was released in 2015. The CVSSv2 base

score ranges from 0 to 10. It is computed by ordinal assignments of the ease and

impact of exploitation as CV SSbase = Impact×Exploitability (Allodi and Massacci,

2014). The CVSSv2 base score defines the severity level of a vulnerability as Low (0-

3.9), Medium (4-6.9), and High (7-10). The CVSSv3 (released in 2015) and CVSSv3.1

(released in 2019) change several metrics and values, as shown in Figure 2.1. It de-
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fines the severity level as None (0), Low (0.1-3.9), Medium (4.0-6.9), High (7.0-8.9),

and Critical (9.0-10.0) (The Forum of Incident Response and Security Teams, 2021).

CVSSv3 separates the Access Complexity (AC) in the CVSSv2 base score metric into

Attack Complexity (to address an attack’s former condition) and User Interaction

(UI) (to address its latter conditions) (The Forum of Incident Response and Security

Teams, 2021). The Confidentiality, Integrity, and Availability impact metric values

also change from CVSSv2 as None, Partial, and Complete to CVSSv3 as None, Low,

and High. The value in CVSSv2 reflects the overall percentage of the systems im-

pacted by an attack, and the value in CVSSv3 represents the overall degree of impact

the attack causes (The Forum of Incident Response and Security Teams, 2021). Since

the CVSSv3 or CVSSv3.1 were released very recently, many vulnerabilities have been

determined only for CVSSv2 (Figueroa-Lorenzo et al., 2020).

Figure 2.1: The CVSSv3 Metrics Group (The Forum of Incident Response and Secu-

rity Teams, 2015)

Although the CVSS score does not correlate well with attacks in the wild (Alperin

et al., 2019), the previous study still agrees that the CVSS provides an excellent esti-
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mation of vulnerabilities’ criticality (Feutrill et al., 2018; Allodi and Massacci, 2017;

Zimmermann et al., 2010; Allodi et al., 2021). In practice, organizations and com-

panies make their changes to the CVSSv2 scheme to make it work better in their

working scenarios. By analyzing the Symantec data on real attacks detected in the

wild, the CVSSv2 measurements of Access Complexity (AC), Confidentiality Impact

(C), Integrity Impact (I), and Availability Impact (A) provide a useful first indicator

for exploits in the wild (Allodi and Massacci, 2017). The level of Complete represents

the highest potential loss if the vulnerability is exploited. There is a clear cut-off

distinction about attacks in the wild between vulnerabilities with Low complexity,

High impact, and vulnerabilities with High complexity, Low impact (Allodi and Mas-

sacci, 2017), and a trade-off in vulnerability’s impact and complexity measurements

(Allodi et al., 2021). For example, the work-averse cyber attackers prefer to exploit

Low complexity High impact vulnerabilities (Allodi et al., 2021). Researchers also

study the effect of different CVSS measurements on vulnerability exploit delay, where

the CVSS measure is used as a condition to filter data (Feutrill et al., 2018). Ad-

ditionally, using the CVSS temporal and environmental metrics requires a security

admin to manually adjust measurements for each vulnerability. Thus, it is extremely

challenging to apply these two metrics in practice (Nikolai Mansourov, 2018).

The AI-based Approaches Researchers attempt to explore better associations

between vulnerabilities’ features and exploits (Bozorgi et al., 2010; Chen et al., 2019)

by using the machine learning/deep learning (ML/DL) model. The key risk factors of

vulnerabilities contain the probability of compromise, consequence, and time (Alperin

et al., 2019). The existence of exploits is identified as a significantly better risk metric

than CVSS scores (Alperin et al., 2019; Sabottke et al., 2015; Allodi and Massacci,

2014; Jacobs et al., 2020). Multiple databases (e.g., ExploitDB, Symantec WINE,

8



NVD, and Twitter data) are used to build a dataset for training and testing ma-

chine learning models (Sabottke et al., 2015; Bozorgi et al., 2010; Chen et al., 2019;

Chang et al., 2013). The NVD stores vulnerability data and is maintained by the

National Institute of Standards and Technology (NIST). The vulnerabilities in NVD

have the unique Common Vulnerabilities and Exposures (CVE) identification num-

ber, CVSS base score and vector. However, compared to a consistent estimation from

the expert-based CVSS approach, the results from the ML/DL-based approach vary

in different input and output datasets and ML/DL models. The possible reasons are:

(1) the ground truth of exploits varies case by case (Jacobs et al., 2020; Alperin et al.,

2019; Allodi and Massacci, 2014); and (2) the extracted vulnerabilities’ features vary

among studies (Sabottke et al., 2015; Bullough et al., 2017; Alperin et al., 2019). The

attack/non-attack data are usually highly imbalanced, and the selection of training

and testing datasets and critically affects the estimated performance of the predictive

model (Bullough et al., 2017); and (3) the limitation of tools for processing vulner-

ability data, e.g., using the Natural Language Processing (NLP) tools. NLP tools

are highly domain-specific tools, and all results are rooted in analyzing vocabularies.

Thus, the ML/DL-based model that was trained on some existing vocabularies (by

using NLP tools to process such text data (Alperin et al., 2019; Sabottke et al., 2015))

might be hard to capture the features of vocabularies that emerged later with high

quality (Sun et al., 2018). Due to these various reasons, assessing a vulnerability might

vary greatly among different ML/DL-based risk models under different datasets and

training techniques. Thus, solely depending on the supervised ML/DL-based model

for risk prioritization still has limitations.

Threat modeling is introduced into vulnerability prioritization to enhance the ML-

based model by the recent study (Alperin et al., 2019). Threat modeling provides

a systematic analysis of potential threats and vulnerabilities in a system. It is a
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process for capturing, organizing, and analyzing all the information that affects the

security of a system (The Open Web Application Security Project, 2021). Usually,

the threat modeling method assumes that attackers can arbitrarily choose whichever

attack vector or sequence that they think will maximize the function of the model

assigned to them (Allodi and Etalle, 2017). Based on this assumption, threat is

modeled either from the perspective of vulnerability and technical exposure (e.g.,

attack graphs), or from the perspective of strategies (e.g., using game theory to model

attacker strategies). Therefore, defenders need to defend against all vulnerabilities in

the system (Allodi and Etalle, 2017). For example, an attack graph enumerates all

known vulnerabilities that attackers may exploit in a system. A threat model is a

structured representation of such information (The Open Web Application Security

Project, 2021). According to the empirical observation, only a fraction of tens of

thousands of possible vulnerabilities has been actively exploited in the wild (Allodi

and Massacci, 2014). Thus, this approach might not be efficient in vulnerability

remediation.

The existing study attempts to model threats from the attackers’ views by an-

alyzing the characteristics of highly exploited vulnerabilities (Allodi and Massacci,

2017). When applying the threat model into risk assessment, attackers’ motivation,

capability, and the corresponding vulnerabilities are integrated to construct risk met-

rics (Bromander et al., 2016). A previous study attempts to tune vulnerabilities’ risk

assessment by integrating the attacker model into the ML/DL-based model (Alperin

et al., 2019). It tunes vulnerabilities’ assessment based on a known attacker group

with ML models and finds a more accurate prediction of risk prioritization. But this

existing study is limited to the known attacker groups.
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Network Specific Approaches The attack graph-based approaches (Tupper and

Zincir-Heywood, 2008; McQueen et al., 2006; Lai and Hsia, 2007; Jajodia et al., 2005)

aggregate the risk assessments for all vulnerabilities in the network as a single value to

represent the system-level security, which cannot prioritize vulnerability individually.

To analyze an attack scenario, all possible paths to a given attacking target in the

network are enumerated (Ou et al., 2005; Sheyner et al., 2002; Lai and Hsia, 2007),

which are impractical in practice. To enumerate all possible attack “start” points and

“target” points in these previous work would be very difficult in a large-scale network

with hundreds or thousands of machines.
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Chapter 3

PROPOSED RISK-BASED VULNERABILITY PRIORITIZATION

FRAMEWORK

This dissertation proposes a risk-based vulnerability prioritization framework. In

this chapter, an overview of this proposed framework is presented. This framework

assesses a vulnerability risk based on the characterized vulnerability risk features

(discussed in Chapter 4). This framework contains two stages, including the vulner-

ability risk assessment (discussed in Chapter 5) and the vulnerability prioritization

(discussed in Chapter 6).

3.1 Proposed Framework Overview

Figure 3.1: The Overview of the Proposed Risk-based Vulnerability Prioritization

Framework

In this section, the overview system architecture of the proposed risk-based vul-

nerability prioritization framework is presented in Figure 3.1. In this framework, a
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vulnerability risk is assessed based on the characterized vulnerability risk features in

Chapter 4, including the likelihood of exploitation: a multi-source measurement con-

sidering vulnerability exploitation history, vulnerability descriptions, access complex-

ity, and network reachability of a host that has this vulnerability; and the criticality

of exploitation: a multi-source measurement considering the security impact of suc-

cessful vulnerability exploits. Finally, this risk assessment is refined by the network

constraints in the prioritization reasoning engine, which prioritizes vulnerabilities un-

der the network and security constraints in a computer networking system. These

two stages are illustrated as follows.

Stage a Vulnerability Risk Assessment (discussed as LICALITY in Chapter

5) processes historical security data of a network to extract the threat attributes

in this network and learns such threat attributes by a neuro-symbolic learning-

based assessment model. In this stage, the risk assessment of vulnerability is

based on the likelihood and criticality measurements of vulnerability exploita-

tion.

Stage b Vulnerability Prioritization (discussed as ILLATION in Chapter 6)

incorporates the actual network and security setups (i.e., network reconfigura-

tion, access control, firewall rules updates, etc.) as the network profile to derive

the network constraints and then consolidates these constraints and the initial

risk assessment derived from the previous stage. ILLATION’s output can help

cyber admins understand the overall risk of a vulnerability w.r.t. the network

profile. In this way, cyber admins can evaluate different network profiles to

assess the effectiveness of different vulnerability mitigation strategies.

In the stage a Vulnerability Risk Assessment, 1 Vulnerability-Risk Mapping func-

tion maps NVD vulnerabilities to threat attributes. Such threat attributes are identi-
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fied from the threat in the Vulnerability Data Aggregation. The 2 Vulnerability Data

Embedding function embeds vulnerabilities as two types of features, which are ex-

tracted from vulnerability descriptions and CVSS metrics. The 3 Assessment Model

Training function learns the identified threat attributes from the embedded data. In

the stage b Vulnerability Prioritization (discussed as ILLATION in Chapter 6), a

cyber analyst is able to prioritize the discovered vulnerabilities under various network

profiles that are associated with mitigation actions. In this way, ILLATION could

help cybersecurity admins prioritize vulnerabilities under different attack assump-

tions. The 4 Network Profiling embeds the given network profiles as a knowledge

base, and the 5 Prioritization Reasoning function generates the network constraints

and then prioritizes vulnerabilities by consolidating the network constraints and the

initial risk assessment derived by the vulnerability risk assessment model.

3.2 Summary

In this chapter, an overview of the proposed risk-based vulnerability prioritization

framework is presented. This framework assesses a vulnerability risk based on the

characterized vulnerability risk features (discussed in Chapter 4). This framework

contains two stages, including the vulnerability risk assessment and the vulnerability

prioritization, which are presented in Chapter 5 and 6.
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Chapter 4

VULNERABILITY RISK FEATURES

This chapter illustrates the characterized vulnerability risk features in the proposed

risk-based vulnerability prioritization framework.

4.1 Characterized Vulnerability Risk Features Overview

Figure 4.1: The Characterized Vulnerability Risk Features

As shown in Figure 4.1, vulnerability risk features are characterized by considering

threat, vulnerability, consequence, and network and system setups. The vulnerability
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risk is modeled by several vulnerability risk features that are based on the Threat, Vul-

nerability, and Consequence risk framework (Kaplan and Garrick, 1981). The threat

refers to a harmful event and is collected from both the historical attack reports

in a computer networking system and the vulnerability-exploit records in the wild

(e.g., ExploitDB (The Offensive Security, 2020)). The vulnerability is identified by

NVD (The National Institute of Standards and Technology, 2020), the consequence

is from CVSS metrics (The Forum of Incident Response and Security Teams, 2021),

and the network and system setups are from a computer networking system, where

vulnerabilities will be patched sequentially based on the prioritization ranks from

high to low. As shown in Figure 4.1, a threat profile includes threat, vulnerability,

consequence, and network and system setups. The Cybersecurity and Infrastructure

Security Agency (CISA) highlights that a threat profile, that includes “characteriza-

tion of likely intent, capability, and target of threats to the function,” can be used

to guide the risk analysis (The Cybersecurity and Infrastructure Security Agency,

2016). Under this motivation, the previous study attempts to use the threat profile

to customize risk prioritization by tuning vulnerability risk assessment to a known

attacker group. The threat is defined as the most relevant information determined

from current and historical experience on the defended network, because “attackers

may prefer to reuse an existing exploit and make necessary changes over developing

a new exploit from scratch” (Bao et al., 2017), tuning a threat based on different

sets of threat profiles might lead to a more accurate prediction of vulnerability risk

prioritization (Alperin et al., 2019).

4.2 Relations to Risk-based Vulnerability Prioritization Framework

The characterized vulnerability risk features contribute to the proposed risk-based

vulnerability prioritization framework as shown in Figure 4.2, where the vulnerability
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Figure 4.2: The Relations of the Characterized Vulnerability Risk Features to the

Proposed Framework

risk features are learned and analyzed by the proposed vulnerability risk assessment

model and the proposed vulnerability prioritization reasoning engine in this frame-

work. Four arguments are proposed to construct the relations of the characterized

vulnerability risk features to this proposed framework.

• Argument 1 (A1) the threat profile (derived from both the threat of a defended

network and the exploits record in the wild) has attributes on identifying attack-

ers’ experiences of software services, which contributes to measure the likelihood

of exploitation;

• Argument 2 (A2) the latent vulnerability feature (derived from the vulnerabil-

ity description) contributes to measure the likelihood of exploitation;

• Argument 3 (A3) the CVSS feature (derived from the threat of a defended

network) has attributes on identifying access complexity (AC) and three impact

metrics (confidentiality impact, integrity impact, and availability impact (C, I,

A)), which contributes to measure the criticality of exploitation; and
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• Argument 4 (A4) the network profile (derived from network and system setups)

can affect a vulnerability’s security impact in a computer networking system,

which constrains the vulnerability risk assessment.

These proposed arguments are validated as follows. For argument 1 (A1), attackers

prefer to maximize their gains by leveraging costs and gains when using vulnerabili-

ties in attacks (Allodi et al., 2017). The more difficult it is to exploit vulnerabilities,

the higher the costs attackers pay; the more significant losses to victims when at-

tacked, the higher the gains attackers obtain. Thus, an attacker’s knowledge of the

experienced services/systems (e.g., the software set in the threat modeling method in

Section 5.1.2 ) may reduce associated costs on learning services and result in increas-

ing the likelihood of exploitation. Furthermore, the previous study (Alperin et al.,

2019) proves that the exploits record in the wild is the critical label for training the

supervised risk models to assess how likely a vulnerability is to be exploited. Thus,

the exploits record has attributes on assessing the likelihood of exploitation.

For argument 2 (A2), the latent vulnerability feature is derived from the vulner-

ability textual description by utilizing the natural language processing technique of

latent semantic analysis. Such vulnerability textual description indicates the vulner-

able components in product and versions, the attacker’s type, the attack vector, etc.

The previous study successfully utilizes the latent vulnerability feature to measure

the likelihood of exploitation for vulnerability prioritization (Alperin et al., 2019).

For argument 3 (A3), the CVSS vector of AC, C, I, A works as an indicator

for analyzing the exploits (Allodi and Massacci, 2017; Ross et al., 2017). The AC

indicates the costs of an attack since it measures how difficult it is to explore this

vulnerability. The C, I, A impact metrics indicate the gains of attack since it mea-

sures how significant losses could be when the vulnerability is compromised. Thus,

the CVSS ⟨AC,C, I, A⟩ vector has attributes on indicating the potential gains for at-
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tackers (e.g., how severe/critical impact is on the defended network when exploiting

the vulnerability), and then contributes to measure the criticality of exploitation in

the network.

For argument 4 (A4), the security impact of a vulnerability on a network is

closely associated with interactions among vulnerabilities and network environment

elements (Chung et al., 2013; Lai and Hsia, 2007; Ou et al., 2005). A vulnerability’s

security impact in a computer networking system can be affected by the status of

a service associated with this vulnerability directly. For example, for service A in a

machine that is totally isolated in the network, this means that in this machine, this

vulnerability cannot actually be exploited by attackers due to the lack of access paths.

In this situation, the security impact of this vulnerability might be constrained by

this specific network and system setup. Therefore, the network profile derived from

network and system setups can affect the vulnerability risk assessment.

4.3 Summary

In this chapter, the characterized vulnerability risk features are presented. This

chapter also explains how these vulnerability risk features contribute to the proposed

risk-based vulnerability prioritization framework. Based on the findings in the exist-

ing studies, the proposed arguments for vulnerability risk features are validated.
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Chapter 5

VULNERABILITY RISK ASSESSMENT

In this chapter, a new vulnerability risk assessment model is proposed, called

LICALITY. The previous study reveals that “fixing a vulnerability just because it

was assigned a high CVSS score is equivalent to randomly picking ones to fix”(Allodi

and Massacci, 2014). The existing AI-based approaches assess risk by estimating how

vulnerabilities’ features are associated with the exploits in the wild (Alperin et al.,

2019; Sabottke et al., 2015; Allodi and Massacci, 2014; Jacobs et al., 2020), which have

limitations that the estimation of risk varies on different datasets and ML/DL models

(Bullough et al., 2017). To overcome these limitations, LICALITY is proposed to

assess the risk from the “LIkelihood and critiCALITY” of exploitation. LICALITY

improves the existing vulnerability risk assessment solutions by developing a novel

threat modeling method based on three arguments (A1,A2,A3) discussed in Chapter

4. LICALITY captures and learns the threat attributes from a given historical threat

in a computer networking system.

5.1 Proposed Vulnerability Risk Assessment Model

LICALITY assesses a vulnerability’s risk by consolidating the criticality of ex-

ploitation derived from its CVSS features with the likelihood of exploitation derived

from a vulnerability’s latent semantic analysis (LSA) features. LICALITY utilizes a

neuro-symbolic technique with neural network and probabilistic logic programming

(NN-PLP) model to develop the risk assessment model. The neuro-symbolic comput-

ing is a novel AI technique that integrates neural networks with reasoning methods

(i.e., logic and probability) (De Raedt et al., 2019). This computation combines learn-

20



ing from the environment (on the neural network side) and reasoning from what has

been learned (on the reasoning side) (Garcez et al., 2019). By learning the threat

features identified by the threat modeling method, LICALITY can generate the risk

assessment for a vulnerability.

5.1.1 Background and Motivation

In this section, first, the background of neuro-symbolic computing is introduced.

Secondly, a motivation example for the neuro-symbolic computing-based risk assess-

ment model is demonstrated in Figure 5.1.

The Background of Neuro-symbolic Computing The neuro-symbolic comput-

ing model combines two fundamental cognitive abilities: learning from environment

and reasoning from what has been learned (Garcez et al., 2019). The neuro-symbolic

model in DeepProblog (Manhaeve et al., 2018) contains the neural network side and

the symbolic side, where the neural predicates is used as interface between the sym-

bolic side and the neural side. Both sides treat each other as a black box. For example,

the symbolic side does not know the internal parameters of the neural network but

can calculate the gradient of the loss related to the output of the neural network. The

neural network side can use the loss related to its output calculated by the logic side

to start backpropagation and then calculates the gradient for the internal parame-

ters. A standard gradient based optimization (eg, Adam, SGD, etc) can update the

internal parameters of the network. Meanwhile, the loss gradient for logic model is

used to update the learned probabilistic facts or clauses in logic program (Manhaeve

et al., 2018). The output comes from the logic reasoner, where comparing the pre-

dicted confidentiality of queries in all possible conditions. The higher confidentiality,

the more likely this prediction is to be true. The logic reasoner will output the query
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that has the highest confidentiality.

The neural network side takes ⟨features, label⟩ pairs directly for training. Each

label is viewed as an atom qlabel. Let p denote the vector of all the probabilities of

the probabilistic atoms; let P (qlabel) denote the probability of qlabel, and let θ denote

the neural network parameters. Note that p consists of neural network outputs and

probabilities from probabilistic rules. Thus, once the value of p is obtained through

the forward propagation, the value of ∂p
∂θ

is obtained through the backpropagation.

The symbolic side compiles all logic rules into a Sentential Decision Diagram (SDD),

a tree structure where each node represents an atom. The SDD defines the logical and

probabilistic relationships among atoms, and can represent a propositional knowledge

base for probabilistic reasoning. Due to the logic computation only uses differentiable

operators (i.e., addition, negation, and multiplication), the value of ∂P (qlabel)
∂p

can also

be obtained (Manhaeve et al., 2018). The chain rule in Equation 5.1 is used to back

propagate the loss of neural network to its parameters θ:

∂P (qlabel)

∂θ
=

∂P (qlabel)

∂p
× ∂p

∂θ
. (5.1)

The Motivation Example Figure 5.1 shows a motivation example of using LI-

CALITY to assess CVE-2020-2021. The LSA feature is learned by an neural net-

work (NN) model to output the likelihood of exploitation p1NN
. However, solely

depending on the ML/DL-based model has limitations. In this motivation example,

p1NN
= 0.3581 is a weak estimation of the actual risk. The vulnerability CVE-2020-

2021 was reported in an advanced persistent threat (APT) attack by the Cybersecu-

rity and Infrastructure Security Agency (CISA) (The Cybersecurity & Infrastructure

Security Agency (CISA), 2020). Thus, the desired output should identify this vul-

nerability as risky.

To overcome these limitations, LICALITY develops the probabilistic logic pro-
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Figure 5.1: A Running Example for Assessing CVE-2020-2021

gramming (PLP) model to efficiently learn threat attributes identified by threat

modeling. In this motivation example, the given threat is assumed that attack-

ers prefer to exploit Medium complexity (AC=Medium), High impact vulnerabilities

(C,I,A=Complete). Thus, LICALITY learns a higher probabilistic value in the PLP

model for the CVSS feature of ⟨M,C,C,C⟩. When assessing the risk of vulnera-

bility CVE-2020-2021, the PLP model refines the NN model’s initial assessment as

p1 = p1NN
∗ p1PLP

= 0.3573 and p0 = p0NN
∗ p0PLP

= 0.0013 (the computation is

based on Equation 5.2 discussed in Section 5.1.2). Finally, LICALITY generates the

normalized risk score, where p′1 = 0.9964 > p′0 = 0.00361, which matches the desired

1The sum of probabilities for a binary classifier outputted by the PLP model is not equal to 1.

Thus, vulnerabilities are ranked based on a normalized output.
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output (label is 1). LICALITY’s output more accurately represents this vulnerabil-

ity’s real risk, where is summarized in Table 5.1.

Table 5.1: Comparing Outputs from NN and PLP for CVE-2020-2021

Models The likelihood of exploitation from

NN model

Considering the criticality of ex-

ploitation from PLP model

Outputs p0NN
= 0.6419 > p1NN

= 0.3581 p′0 = 0.0036 < p′1 = 0.9964

Assessment less risk more risk

5.1.2 System and Model Design

This section presents the proposed study system, models, and assumptions of LI-

CALITY, the proposed vulnerability risk assessment model. LICALITY assesses a

vulnerability risk based on the Threat, Vulnerability, and Consequence risk frame-

work (Kaplan and Garrick, 1981). The CVSS feature of a vulnerability is defined

by the CVSS metrics and the LSA feature is derived from the vulnerability descrip-

tion. A novel neuro-symbolic computing-based vulnerability risk assessment model is

developed to learn the CVSS feature and LSA feature. LICALITY assesses a vulner-

ability’s risk from two perspectives as (1) the likelihood of exploitation: a multi-source

measurement considering the historical threat, exploits history(e.g., from ExploitDB),

and vulnerability descriptions from security experts; and (2) the criticality of exploita-

tion: the access complexity and the impacts of successful exploitation based on CVSS

metrics.

Figure 5.2 shows the overview of LICALITY’s system architecture. LICAL-

ITY contains two components: neural network-probabilistic logic programming (NN-

PLP)-based Learning and vulnerability risk assessment. In the NN-PLP-based learn-

ing, LICALITY processes the NVD vulnerabilities to obtain the LSA feature and
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Figure 5.2: The Overview of LICALITY System Architecture

CVSS feature of vulnerabilities through the vulnerability data processing ( 1 ). In

the threat modeling ( 2 ), LICALITY labels the NVD vulnerabilities based on the

identified threat attributes 2 and the labeling functions FlabelA and FlabelB. The pro-

cessed LSA feature (shown as lsa feature in Figure 5.2), CVSS feature (shown as cvss

feature in Figure 5.2), and label of vulnerabilities are used to construct a dataset (

3 ). Additionally, LICALITY develops the probabilistic rules in the PLP model by

the rule function Flogic ( 4 ) with the CVSS feature in the dataset. Lastly, the de-

veloped NN-PLP model is trained ( 5 ) with the dataset to learn the encoded threat

attributes.

In the vulnerability risk assessment, a security admin can evaluate a set of vulner-

2The threat attributes are characteristics or distinguishing properties of a threat. The combined

characteristics of a threat describe the threat’s willingness and ability to pursue its goal (Mateski

et al., 2012).
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abilities’ risk for future attacks. Given a set of vulnerabilities, LICALITY processes

them through the vulnerability data processing, and generates the related LSA fea-

ture and the CVSS feature. With the trained assessment model, LICALITY assesses

the likelihood of exploitation from lsa features, and assesses the criticality of ex-

ploitation from cvss features. LICALITY consolidates the likelihood and criticality

measurements to derive vulnerabilities’ risk scores for the given vulnerabilities from

a cyber admin.

Vulnerability Data Processing

As shown in step 1 in Figure 5.2, the input of the vulnerability data processing

function in LICALITY is a NVD dataset with vulnerabilities’ description and CVSS

measurements as shown in the gray box in Figure 5.1. The vulnerability data pro-

cessing function extracts a vulnerability’s cve id, and extracts its lsa feature from

description and cvss feature from CVSS measurements.

To extract the lsa features of vulnerabilities, a NLP tool of LSA (Dumais, 2004)

performs the data processing on text data of Description. LSA follows the statistical

computation to generate the contextual-usage meaning of words to a large text corpus.

The output of LSA focuses on representing the features hidden in the data. Such

features are mentioned as “latent vulnerability features” in a previous study for risk

prioritization (Alperin et al., 2019). Extracting the lsa features from text data usually

takes three steps as follows:

1. Transform Description for all V ul data ∈ NVD V ul into a corpus;

2. Use NLP’s technique of Term Frequency-Inverse Document Frequency (TF-

IDF) (Dumais, 2004) assigns each identified term in the corpus a weight from

0 to 1.
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3. Use truncated Singular Value Decomposition (SVD) algorithm (Dumais, 2004)

to extract lsa features from the TF-IDF matrix with a value between -1 and 1.

The TF-IDF weight indicates the importance of a term to a description as a

whole. TF-IDF weights a term by calculating the product of TF and its IDF. The

TF-IDF score shows how relevant a term is throughout all documents in a corpus. The

truncated SVD algorithm finds the most valuable information of the data matrix. It

reduces the TF-IDF matrix dimension by combining similar patterns between terms

and documents into a latent feature vector with a value between -1 and 1 (Dumais,

2004). To extract cvss feature, a developed python script is used to obtain the value

of ⟨AC,C, I, A⟩ vector for each vulnerability.

Threat Modeling

In Chapter 2, the existing risk prioritization approaches have limitations that the

high CVSS base score does not realistically represent the actual exploits (Allodi and

Massacci, 2014; Jacobs et al., 2020); and for a specific network’s defense, the record of

exploits in the wild (Alperin et al., 2019; Allodi and Massacci, 2014) does not associate

to vulnerabilities that are more critical to the defended network (Alperin et al., 2019).

According to the existing study(Allodi and Massacci, 2014; Jacobs et al., 2020), the

most relevant threat information should be considered in this risk model. Thus, the

threat modeling method is proposed based on the three arguments (A1,A2,A3). The

threat modeling (shown in step 2 in Figure 5.2) generates labels to a dataset to

train the NN-PLP model. This method encodes the threat attributes (including the

historical threat and the exploits record) through the labeling functions FlabelA and

FlabelB. Given any vulnerability cve id, Section 5.1.2 shows how its cvss and lsa

features are obtained. The label is defined according to Definition 1 to construct a

dataset (shown in step 3 in Figure 5.2).
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Definition 1 (Threat Modeling). For Threat = {Historical Threat, Exploits Record},

threat attributes are identified by:

• The risky vulnerability set Risky vul: a set of vulnerabilities that are associated

with the given historical threat;

• The service set Ssw: a set of software services that are associated with vulnera-

bilities in Risky vul;

• The CVSS set Scvss: a set of CV SS ⟨AC,C, I, A⟩ that are associated to vulner-

abilities in Risky vul;

• The exploits record Exploits Record: a set of vulnerabilities that are recorded

in the Vulnerability Exploit Database (e.g., ExploitDB (The Offensive Security,

2020))

Based on threat attributes, the labeling function A and B are defined as:

• Labeling function A FlabelA:

For a vulnerability with cve id, if its description contains at least one software

service in Ssw, or if its cvss feature is in Scvss, then, its label is 1, otherwise,

is 0.

• Labeling function B FlabelB:

For a vulnerability with cve id, if its cve id is in Exploits Record, then, its

label is 1, and is 0 otherwise.

• The logic OR is used to combine the labels generated by FlabelA and FlabelB as

label for each vulnerability.

□
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A dataset D is constructed in step 3 in Figure 5.2, where each data instance is

a 4-tuple ⟨cve id, lsa, cvss, label⟩ where

• cve id ∈ N is the id of the vulnerability;

• lsa ∈ R150 is the vulnerability description’s LSA feature;

• cvss is a 4-tuple ⟨ac, c, i, a⟩ as described in Definition 1;

• label ∈ {0, 1} is the label of whether this vulnerability is less or more risky.

Assessment Model Training

The NN-PLP model is developed on a neuro-symbolic computation platform Deep-

ProbLog (Manhaeve et al., 2018). As shown in Figure 5.1, the NN side takes LSA

features, and the PLP side takes CVSS features as inputs. In the NN-PLP model,

both sides treat each other as a black box. The NN-PLP model learns from the en-

vironment (on the neural network side), and reasons from what has been learned (on

the reasoning side)(Garcez et al., 2019). During the training processes, the label is

used to compute the loss to update the NN-PLP model’s parameters.

The NN side is a neural network model with a gradient-based algorithm, such as,

Adam (Kingma and Ba, 2014), SGD (Wiki, 2020), etc. The neural network can learn

the vulnerability’s LSA features, and output the risk score that is associated with the

exploits in the previous study (Alperin et al., 2019). LICALITY develops the PLP

model in probabilistic logic programming (PLP) language (Manhaeve et al., 2018;

De Raedt et al., 2007). For a given data instance ⟨cve id, lsa, cvss, label⟩ in dataset

D, the PLP model contains three types of rules as probabilistic rule c e (representing

for the criticality of exploit) , the neural rule l e (representing for the likelihood of

exploit),and the logical rule assessment.

29



• Logical rule

assessment(cve id, ac, c, i, a, l)← l e(lsa, l), c e(ac, c, i, a, l)

• Probabilistic rule

plPLP
:: c e(ac, c, i, a, l),l ∈ {0, 1}

• Neural rule

nn(model net, lsa, l) :: l e(lsa, l)

In the PLP model, l e represents the NN model’s output, where lsa is the LSA

feature, l is label. The c e represents the PLP model’s output on the criticality of ex-

ploitation, where ac, c, i, a is the CVSS feature. The probabilistic rules are developed

by the rule function Flogic (shown in step 4 in Figure 5.2) defined as:

Definition 2 (Rule function Flogic). For all cvss features in D, probabilistic rules

are developed as: p1PLP
:: c e(AC,C, I, A, 1), p0PLP

:: c e(AC,C, I, A, 0), where p1PLP

and p0PLP
are learned probabilities during training the NN-PLP model. Recall that c e

represents the PLP model’s output on the criticality of exploitation. The CVSS feature

has several values for each ⟨AC,C, I, A⟩ measure, e.g., None, Partial, Complete,

Low, Medium, and High. Thus, the total number of probabilistic rules is determined

by K = 2 × enum(AC) × enum(C) × enum(I) × enum(A), where enum(X) is to

enumerate the values of variable X. □

During the NN-PLP-based learning ( a), LICALITY trains the NN-PLP model

by following the parameter learning of DeepProblog (Manhaeve et al., 2018). There

are two types of parameter learning for the NN-PLP model in LICALITY as: (1)

the NN model’s parameters are updated by back-propagation (Werbos, 1990) with

the gradients of the loss w.r.t. the NN model’s output (e.g., l e); and (2) the PLP

model’s learnable parameters (e.g., p1PLP
and p0PLP

in Definition 2) are updated by
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gradient semiring (Manhaeve et al., 2018) with the gradients of the loss w.r.t. the

learnable probabilities in PLP model (e.g., in the c e). The NN-PLP model learns

parameters based on gradient descent by minimizing the loss function L (Manhaeve

et al., 2018):

argmin
X

1

|Q|
∑

(q,p)∈Q

L(PX(q), p)

where X are the NN-PLP model’s parameters. Given a set Q of pairs (q, p), q is a

query of the logical program (e.g., assessment), L is the loss function, PX(q) is the

query q’s probability with the given inputs (e.g., LSA feature and CVSS feature),

and p is the desired success probability (e.g., label). These gradients for parameter

learning are computed in the Sentential Decision Diagram (SDD) (Darwiche, 2011).

The SDD is a tree structure that defines the logical and probabilistic relationships

among nodes, and represents a propositional knowledge base for probabilistic reason-

ing. Refer to Figure 5.1, the input data instance for training the NN-PLP model is a

4-tuple with ⟨cve id, lsa, cvss, label⟩ shown in the yellow box.

Equation (5.2) (Manhaeve et al., 2018) is used in the SDD to compute gradients of

the loss w.r.t. the NN model’s output and the learnable probabilities in PLP model,

respectively.

(p
NN

,−−→vpNN
)
⊗

(p
PLP

,−−−→vpPLP
) =

(p
NN

p
PLP

, p
PLP

−−→vpNN
+ p

NN

−−−→vpPLP
)

(5.2)

p
NN

and p
PLP

represent the probability outputted by the NN model and the PLP

model’s probabilistic rules in LICALITY, respectively. −−→vpNN
represents the partial

derivative of p
NN

w.r.t. the NN model’s output. −−−→vpPLP
represents the partial derivative

of p
PLP

w.r.t. the learnable probabilities in PLP model. Figure 5.3 shows an example

of these vectors (−−→vpNN
and −−−→vpPLP

) as [1, 0] (for l e) and [0, 1] (for c e). The formula

−→vp = p
PLP

−−→vpNN
+ p

NN

−−−→vpPLP
computes the gradients. For the NN model’s output,
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the associated gradient is 0.9979; and for the PLP model’s probabilistic rules, the

associated gradient is 0.3581.

In addition, during the vulnerability risk prioritization ( b ), the input data is a

3-tuple ⟨cve id, lsa, cvss⟩. The lsa feature is fed into the NN model, and the cvss

feature is fed into the PLP model. The probability of assessment is calculated by p =

p
NN

p
PLP

in Equation (5.2). For example, in Figure 5.3, the NN model (represented by

the atom of l e(lcve−2020−2021, 1) in SDD) outputs the probability of p1NN
= 0.3581, and

the PLP model’s probabilistic rule c e (M,C,C,C, 1) has the probability of p1PLP
=

0.9979. The assessed probability of assessment(cve − 2020 − 2021,M,C,C,C, 1) is

p = p
NN

p
PLP

= 0.3573. Similarly, the assessed probability of assessment(cve−2020−

2021,M,C,C,C, 0) is 0.0013. Because the sum of probabilities for the predicate of

assessment is not equal to 1. Therefore, the LICALITY’s normalized risk score is

0.9964, where it is calculated by the following formula 0.3573/(0.3573 + 0.0013) =

0.9964.

Figure 5.3: The Example of Computing in SDD in LICALITY

5.2 Experimental Evaluation

This section presents a comprehensive case study to investigate LICALITY’s per-

formance (marked as the NN-PLP & Threat Modeling) on risk prioritization with

32



the existing approaches in Figure 5.9, Figure 5.10, Table 5.6, Table 5.7 and 5.8. The

Existing Expert-based Solution represents the predominant expert-based approach

that leverages the CVSS scores(Mell et al., 2007) for risk prioritization. The Existing

ML/DL-based Solution represents the existing ML/DL based approach that associates

a risk metric of vulnerabilities with the existence of corresponding exploits under an

attacker model (Alperin et al., 2019).

Additionally, two AI techniques are investigated to prioritize vulnerabilities for

remediation, including a neuro-symbolic model (the NN-PLP model) and a neural

network model (the NN-only model). To compare the effect of the proposed threat

modeling method, risks are identified as Threat Modeling and Without Threat Mod-

eling (e.g., ExploitDB) in case studies. Furthermore, to investigate the best working

scenario of LICALITY, the case studies cover different historical-future threat rela-

tionships3 as:

• Case 1 (Microsoft Vulnerabilities (MVs)): the historical threat is from the high-

risk Microsoft Vulnerabilities (called MVs 2015) in the 2015 CISA alert (The

Cybersecurity and Infrastructure Security Agency, 2015), and the future threat

(called MVs 2020) is from the top routinely exploited Microsoft Vulnerabilities

in the 2020 CISA alert (The Cybersecurity and Infrastructure Security Agency,

2020). Microsoft became cyber attackers’ preferred platform. The reported

Microsoft vulnerabilities have risen 64% from 2015 to 2019 (Microsoft, 2020). In

Case 1, the historical threat and the future threat are associated with Microsoft

products and share some of the same features (as shown in Table 5.2 and Table

5.5).

3The previous study revealed that there are some overlaps of features between the historical

threat and future threat in a defended network by analyzing attacks in reality (Allodi and Massacci,

2014; Jacobs et al., 2020)
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• Case 2 (Advanced Persistent Threat Vulnerabilities (APTVs)): the historical

threat (called APTVs 2017) is from the APT28 attacker in the FireEye 2017

report (The FireEye, 2017), and the future threat (called APTVs 2020) is from

the APT attack identified recently in the 2020 CISA alert (The Cybersecurity

& Infrastructure Security Agency (CISA), 2020). The APT attack is a stealthy

threat that uses continuous and sophisticated hacking techniques to access a

system (Alshamrani et al., 2019). Additionally, the APT attackers usually

pursue their targets over months or years. Thus the APT attack is challenging to

detect (Alshamrani et al., 2019). In Case 2, the historical threat and the future

threat are both from the APT attack, and their features of threat modeling

vary a lot (as shown in Table 5.2 and Table 5.5).

5.2.1 Experimental Settings

Figure 5.4: The Data Structure of the Dataset in the Evaluation

Figure 5.4 shows an overview of the dataset structure in the evaluation. This

dataset contains vulnerabilities from 1999 to June 2021 in NVD (The National Insti-

tute of Standards and Technology, 2020). Some CVEs are rejected due to a duplicated

record or are reserved for reports in the future. By excluding invalid CVEs marked

as ‘reject’ or ‘reserved’ in descriptions or have empty CVSS records, the amount of

NVD vulnerabilities are refined to total 155,176 in this chapter. A JSON parser is

developed in Python to extract vulnerabilities’ CVE IDs, descriptions, and CVSS
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vectors from NVD JSON files (The National Institute of Standards and Technology,

2020). The CVSS features (e.g., Xi+1, ..Xi+4) and the LSA features (e.g., X0, .., Xi)

are generated by using the vulnerability data processing function (defined in Section

5.1.2), where the NLP tool of LSA discovers features that cannot be directly measured

in the data. LSA features are extracted from vulnerabilities in three steps:

1. Transform all 155,176 vulnerabilities’ descriptions into a text corpus through

data processing, including lower-casing all text data, stemming and transform-

ing words into their root forms (e.g., using ‘attack’ to replace the words ‘at-

tacked’, ‘attacks’), removing stop-words (e.g., is, a, the, have, etc.), normaliz-

ing words (e.g., using ‘iptables’ to replace ‘ip-table’, ‘ip-tables’, ‘ip tables’, etc.),

and removing noise (e.g., digits, characters, special symbols, etc.)

2. Transform the text data into corpus by using the frequency-inverse document

frequency (TF-IDF) matrix (Dumais, 2004).

3. Transform the TF-IDF matrix into LSA features through a truncated SVD

algorithm (Dumais, 2004). Different features are explored to generate the LSA

features and select the best SVD explained variance ratio. In this chapter, the

features number is 150, and the SVD explained variance ratio is 0.87. Such LSA

features are shown as (X0, ..., Xi), i = 149 in the dataset.

Three types of labels are associated with the features in the dataset:

• L TM − Case1: labels the risk of vulnerabilities by using LICALITY’s threat

modeling method with the identified historical threat of MVs 2015 and Ex-

ploitDB records in Case 1;

• L TM − Case2: labels the risk of vulnerabilities by using LICALITY’s threat
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modeling method with the identified historical threat of APTVs 2017 and Ex-

ploitDB records in Case 2;

• L without TM : labels the risk of vulnerabilities with the given exploits from

ExploitDB without threat modeling.

For L TM − Case1 and L TM − Case2, the dataset is labeled by using the la-

beling function FlabelA (defined in Section 5.1.2) with the service set and the CVSS set

of the historical threat. Then, labels are generated by using FlabelB with the exploits

record from ExploitDB. Finally, a logic OR is performed to combine the labels gener-

ated by FlabelA and FlabelB as L TM − Case1 and L TM − Case2, respectively. Each

case study has one historical threat. In Case 1, the historical threat MVs 2015 is from

the CISA alert (The Cybersecurity and Infrastructure Security Agency, 2015), which

advises IT and security professionals to prioritize patching these most commonly

known vulnerabilities (The Cybersecurity and Infrastructure Security Agency, 2016).

In Case 2, the historical threat APTVs 2017 is from the Cybersecurity company Fire-

Eye’s advanced persistent threat (APT) report for the attackers’ group APT28 (The

FireEye, 2017). There are 16 Microsoft vulnerabilities in MVs 2015 and 12 vulner-

abilities in APTVs 2017. The threat modeling method labels the dataset based on

the features of these identified vulnerabilities. For L without TM , the ground truth

are the exploits records in ExploitDB(The Offensive Security, 2020) as the existing

study (Edkrantz et al., 2015; Alperin et al., 2019). A vulnerability’s L without TM

is 1 if there is a corresponding exploit record in the ExploitDB; otherwise, it is 0.

Table 5.2 shows the details of threats MVs 2015 and APTVs 2017, where the risky

vulnerabilities (Risky vul), software set (Ssw), and CVSS set (Scvss) are listed.
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Table 5.2: The Historical Threat of Case 1 and Case 2

The historical

threat

Risky vulnerabilities (Risky vul) The software set (Ssw) The CVSS

set∗ (Scvss)

MVs 2015 (The

Cybersecurity

and Infrastruc-

ture Security

Agency, 2015)

(Case1)

CVE-2006-3227, CVE-2008-2244, CVE-2009-

3129, CVE-2009-3674, CVE-2010-0806, CVE-

2010-3333, CVE-2011-0101, CVE-2012-0158,

CVE-2012-1856, CVE-2012-4792, CVE-2013-

0074, CVE-2013-1347, CVE-2014-0322, CVE-

2014-1761, CVE-2014-1776, CVE-2014-4114

Microsoft Internet Explorer, Microsoft Office,

Microsoft Word, Microsoft Excel, Open XML

file format converter mac, SQL Server, Biztalk

Server, Commerce Server, Visual Foxpro, Vi-

sual Basic, Host Integration Server, Microsoft

Silverlight, Sharepoint Server, Microsoft Win-

dows

⟨L,C,C,C⟩,

⟨M,C,C,C⟩,

⟨H,N,P,N⟩

APTVs 2017

(The FireEye,

2017) (Case2)

CVE-2015-2590, CVE-2016-7255, CVE-2017-

0263, CVE-2016-7855, CVE-2015-7645, CVE-

2015-1701, CVE-2015-5119, CVE-2015-3043,

CVE-2017-0262, CVE-2015-2424, CVE-2016-

4117, CVE-2017-11292

Adobe flash, Java, Microsoft Windows, Mi-

crosoft office, Microsoft word

⟨L,C,C,C⟩,

⟨L,P, P, P ⟩,

⟨M,C,C,C⟩

∗L/M/H/P/N/C: (L)ow, (M)edium, (H)igh, (P)artial, (N)one, (C)omplete.
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Table 5.3: An Overview of the Dataset

Property Dataset

Vulnerability NVD (The National Institute of Standards and Technology, 2020)

Exploits in the wild ExploitDB (The Offensive Security, 2020)

Historical threat MVs 2015 (The Cybersecurity and Infrastructure Security

Agency, 2015) (Case 1), APTVs 2017 (The FireEye, 2017) (Case

2)

Future threat MVs 2020 (The Cybersecurity and Infrastructure Security

Agency, 2020) (Case 1), APTVs 2020 (The Cybersecurity & In-

frastructure Security Agency (CISA), 2020) (Case 2)

Positive labels 38,036 (L TM − Case1), 65,871 (L TM − Case2) , 11,679

(L without TM)

Table 5.3 shows that there are 11,679 positive labels with L without TM , 38,036

positive labels with L TM − Case1, and 65,871 positive labels with L TM − Case2.

In this chapter, the training set (contains 124,094 data), validation set (contains

15,513 data), and testing set (contains 15,511 data). These data sets are randomly

sampled from 155,176 vulnerability data points at the rate of 80%, 10%, and 10%,

respectively.

Figure 5.5 shows the process of separating the dataset, where the identified his-

torical threats and the future threats are all excluded from the training, validation,

and testing set. Figure 5.6 shows the distribution of the popular CVSS features in

the datasets, where all listed CVSS features in this figure are associated with over 100

vulnerabilities among all 155,576 vulnerabilities in the dataset. Figure 5.6 reveals that

the CVSS features are not equally distributed. The CVSS features of ⟨L,N,N,N⟩,

⟨M,P,N, P ⟩, ⟨L,N, P, P ⟩, ⟨L,C,C,C⟩, ⟨M,N,N,N⟩, and ⟨L, P, P,N⟩ are associated
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with over 10,000 vulnerabilities in the dataset. In LICALITY, the PLP side of the

NN-PLP model is trained with the CVSS features.

Figure 5.5: An Overview of Separating the Dataset

Performance Measurements

Risk prioritization forms a basis for allocating resources, where the high-ranked vul-

nerabilities will be prioritized for taking defensive actions. The performance evalua-

tion contains two main measurements:

1. AUC (Area Under the receiver operating characteristics (ROC) Curve): the

AUC is widely used to evaluate different classification models’ performance

with a single measurement. The existing study (Alperin et al., 2019) uses this

metric to evaluate the efficiency of machine learning algorithms as a classifier

for a dataset in risk prioritization. In this section, the efficiency of using the

NN-PLP model or NN-only model as a classifier for the dataset is evaluated by

AUC.
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Figure 5.6: An Overview of CVSS Features’ Distribution in the Dataset

2. The recommend rankings (percentage) of the assessed vulnerability among all

vulnerabilities in the dataset: the existing study (Alperin et al., 2019) uses

this measurement to evaluate the performance of risk prioritization solutions.

The recommend rankings (percentage) of the future threats (e.g., MVs 2020 in

Case 1 and APTVs 2020 in Case 2) are compared among all vulnerabilities in

the dataset under LICALITY (marked as Threat Modeling) and the existing

approaches (marked as ExploitDB and CVSS Score) in Table 5.7 and 5.8.

The ROC curve is a plot that summarizes the performance of a binary classification

model. The AUC represents the area under the ROC curve. It ranges from 0 to 1. If

the model’s predictions are 100% correct, it has an AUC of 1.0. Its x-axis indicates

the false positive rate (FPR), and the y-axis shows the true positive rate (TPR). The

FPR is computed as FPR=False Positives/(False Positives + True Negatives), and

the TPR is computed as TPR=True Positives/(True Positives + False Negatives).
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Model Implementation

This section demonstrates the implementation of models in this chapter. There are

two types of models as follows:

• NN-only model : A neural network model with a gradient-based algorithm. The

neural network model is developed in Pytorch.

• NN-PLP model : A neuro-symbolic model with neural network (NN) and prob-

abilistic logic programming (PLP) techniques. To better compare the perfor-

mance of these two models, the NN-PLP model’s NN side (e.g., neural network

structure and the initial parameter settings) is the same as the NN-only model.

The NN-only model uses the artificial neural network for predictive modeling. It

has been used widely in binary classification. Figure 5.7 shows a developed four-

layer neural network model, which has 150 nodes in the input layer, 100 nodes in

the first hidden layer, and 50 nodes in the second hidden layer. The output layer

has a softmax to normalize the output. The dropout layer is applied after both

the input and hidden layers with a 0.25 dropout rate. The dropout layer can reduce

overfitting on the training data by randomly dropping 25% of nodes’ connections from

a layer. The design of this neural network follows the previous study (Alperin et al.,

2019), where the neural network has more potential to be an accurate classifier than

others for risk prioritization since it has the ability of batch training and multiple

hidden layers. This paper mainly focuses on illustrating the proposed solution for

risk prioritization, so investigating more NN model structure/parameters could be

discussed in future work.

The NN-PLP model keeps its NN side the same as the NN-only model. The PLP

side has probabilistic rules, neural rules, and logical relation rules. The vulnerability
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Figure 5.7: The NN-only Model in the Evaluation

CVE-2020-2021 in Figure 5.3 is illustrated as an example to explain model setup on

the PLP side:

• The probabilistic rules represent the vulnerability’s CVSS features ⟨M,C,C,C⟩

in the PLP model, and are generated by the rule function Flogic defined in Sec-

tion 5.1.2 as:

p0PLP
:: c e(M,C,C,C, 0),

p1PLP
:: c e(M,C,C,C, 1),

where p0PLP
and p1PLP

are the probabilities of the probabilistic rules, p0PLP
+

p1PLP
= 1. The value of p0PLP

and p1PLP
are learned by training the NN-PLP

model. By enumerating all possible values of ⟨AC,C, I, A⟩, 162 unique proba-

bilistic rules are in the PLP model.

• The neural rule represents the output of the NN model as:

nn(net, lsa, [0, 1]) :: l e(lsa, 0), l e(lsa, 1), where for the vulnerability CVE-

2020-2021, the neural network net takes its lsa features as inputs, and then

outputs the probabilities of l e(lsa, 0) and l e(lsa, 1).

• The logical rules represent the assessment of risk, which are measured by both
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the likelihood and the criticality of exploitation. The logical rules for the vul-

nerability CVE-2020-2021 are:

assessment(cve− 2020− 2021,M,C,C,C, 0)←

l e(lsa, 0), c e(M,C,C,C, 0);

assessment(cve− 2020− 2021,M,C,C,C, 1)←

l e(lsa, 1), c e(M,C,C,C, 1),

where assessment(cve−2020−2021,M,C,C,C, 1) represents the assessed risk

for CVE-2020-2021 when it is exploited in the defended network system. Be-

cause the sum of assessment(cve−2020−2021,M,C,C,C, 1) and assessment(cve−

2020− 2021,M,C,C,C, 0) are not equal to 1, the assessed risk score of vulner-

ability CVE-2020-2021 is the normalized value of assessment(cve − 2020 −

2021,M,C,C,C, 1).

5.2.2 Results

In the comparative study, the efficiency of using the neural network model (NN-

only model) is compared with using the neuro-symbolic model (NN-PLP model) on

prioritizing vulnerability based on risks identified by Threat Modeling. The results

show the effectiveness of using the NN-PLP model to learn the risk associated with

the threat modeling method. The best working scenario of LICALITY is investigated

by assessing the future threats in two cases.

Training the NN-only model

To train the NN-only model, the lsa features are fed into the model, and a validation

loss is calculated on the validation set at the end of each training epoch. The inputs

are the lsa features space described by a Jaccard similarity matrix on vulnerabilities’

description. Early stopping framework (Pytorch, 2021) is introduced into the model

43



to monitor the validation loss, and to stop the training when no improvement is

observed. Early stopping is widely used in Pytorch to avoid over-fitting. The model

with minimal validation loss is selected as the trained model.

The NN-only model shown in Figure 5.7 applies the Multilayer Perceptron (MLP)

algorithm. In this chapter, another gradient-based algorithm (Alperin et al., 2019)

(logistic regression) for learning LSA features is investigated as well. The logistic

regression algorithm performs a regression analysis on a linear relationship between

the predictor variables and the events’ logits (a logarithm of probabilities). A log

softmax is applied on the output layer with Criterion= NLLLoss and Optimizer =

SGD (Wiki, 2020). By following the previous study (Alperin et al., 2019), both MLP

and logistic regression algorithms are used to learn the LSA features. The MLP

(AUC=0.877) and logistic regression (AUC =0.875) are very close, and MLP has

better performance on the recommended ranking of assessed future threat in Case

1 and Case 2. Thus, this study focuses on using the MLP algorithm. Additionally,

the optimizer of Adam (Kingma and Ba, 2014) is investigated as well. Since the

SGD performs better on the testing set, the SGD is selected as the optimizer of the

NN-only model. Nonetheless, future work can explore a more complicated NN model.

The AUC of MLP and logistic regression in this evaluation both are better than what

was reported in the previous study (Alperin et al., 2019), so the NN-only model is

well trained for lsa features and is a valid comparative model for LICALITY.

Training NN-PLP model

The NN-PLP model is constructed on the platform of DeepProbLog (Manhaeve et al.,

2018). Thus the way of learning parameters on the NN model and PLP model follows

the design of DeepProbLog. The inputs are the vulnerabilities’ lsa features and cvss

features. The dataset label LTM−Case1 and LTM−Case2 represents a vulnerability-

44



exploit relationship identified by the threat attributes in two cases. Figure 5.6 shows

the cvss features in the dataset. The cvss features are fed into the NN-PLP model to

adjust the parameter of probabilistic atoms in the probabilistic rules. The NN-PLP

model is trained with a gradient-descent-based optimizer as SGD. Table 5.4 shows the

trained NN-PLP model and the NN-only model’s performance, where the NN-PLP’s

AUC of Case 2 is 0.926 as shown in Figure 5.8. The high AUC indicates that the

trained NN-PLP models can classify very well on the testing set verse the NN-only

model for the risk identified by threat modeling.

Figure 5.8: The ROC Curve of LICALITY in Case 2

Vulnerability Risk Assessment

In Case 1, the Microsoft vulnerabilities of the MVs 2020 are prioritized, where the

associated threat is identified by a CISA alert in 2020 (The Cybersecurity and Infras-

tructure Security Agency, 2020). As shown in Table 5.5, there are 5 Microsoft soft-

ware services and 2 different ⟨AC,C, I, A⟩ vectors as ⟨M,C,C,C⟩ and ⟨L, P, P, P ⟩ in

CVSSv2. In Case 2, the vulnerabilities of APTVs 2020 are prioritized, where the asso-
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Table 5.4: Comparing the NN-only Model and the NN-PLP Model on Classifying

Risk

Models Parameters AUC LTM−Case1 AUC LTM−Case2

NN-only Model Criterion = BCELoss,

Optimizer=SGD

0.844 0.844

NN-PLP Model Criterion = BCELoss,

Optimizer=SGD

0.846 0.926

ciated threat is identified by a CISA alert in 2020 (The Cybersecurity & Infrastructure

Security Agency (CISA), 2020). This threat covers 8 software services and performs

vulnerability chaining among them. There are 5 different ⟨AC,C, I, A⟩ vectors asso-

ciated with these vulnerabilities in CVSSv2. The changes of ⟨AC,C, I, A⟩ vectors in

CVSSv3 are compared as well, where the Assess Complexity (AC) in CVSSv2 is sep-

arated into the Attack Complexity and the User Interaction in CVSSv3. In CVSSv3,

Attack Complexity is measured as Low and High, User Interaction is measured as

None and Required, and ⟨C, I, A⟩ are measured as None, Low, and High.

The percentages of MVs 2020 and APTVs 2020’s vulnerabilities that rank among

all 155,176 vulnerabilities in the dataset are compared. Viewing ranked vulnerabilities

in descending order, the higher the risk score, the lower the percentage is shown in

Table 5.7 and Table 5.8. A vulnerability with the lowest percentage will first be

recommended for remediation. These percentages for Existing Expert-based Solution

and Existing ML/DL-based Solution are computed as well. The Existing Expert-

based Solution ranks vulnerabilities based on the CVSS score (Mell et al., 2007). The

Existing ML/DL-based Solution follows the previous study (Alperin et al., 2019) that

integrates the attacker model into risk prioritization.
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Table 5.5: The Software Services and CVSS Vector of Vulnerabilities for Evaluation

(Future Threat) in Case 1 and Case 2

Case CVE ID The software service The CVSS(v2)

feature 1

The CVSS(v3)

feature 1

Case 1 CVE-2012-0158 Microsoft Office ⟨M,C,C,C⟩ N/A

CVE-2015-1641 Microsoft Word ⟨M,C,C,C⟩ N/A

CVE-2017-0143 Microsoft Windows ⟨M,C,C,C⟩ ⟨H,N,H,H,H⟩

CVE-2017-0199 Microsoft Office ⟨M,C,C,C⟩ ⟨L,R,H,H,H⟩

CVE-2017-8759 Microsoft NET ⟨M,C,C,C⟩ ⟨L,R,H,H,H⟩

CVE-2017-11882 Microsoft Office ⟨M,C,C,C⟩ ⟨L,R,H,H,H⟩

CVE-2019-0604 Microsoft SharePoint ⟨L,P, P, P ⟩ ⟨L,N,H,H,H⟩

Case 2 CVE-2018-13379 FortiOS ⟨L,P,N,N⟩ ⟨L,N,H,H,H⟩

CVE-2019-11510 Pulse Connect Secure,

Policy Secure

⟨L,P, P, P ⟩ ⟨L,N,H,H,H⟩

CVE-2019-19781 Citrix Controller,

Gateway, SDWAN

WANOP

⟨L,P, P, P ⟩ ⟨L,N,H,H,H⟩

CVE-2020-1472 Microsoft Windows

Server

⟨M,C,C,C⟩ ⟨L,N,H,H,H⟩

CVE-2020-1631 Junos OS ⟨M,P, P, P ⟩ ⟨L,N,H,H,H⟩

CVE-2020-2021 PAN-OS ⟨M,C,C,C⟩ ⟨L,N,H,H,H⟩

CVE-2020-5902 BIG-IP devices ⟨L,C,C,C⟩ ⟨L,N,H,H,H⟩

CVE-2020-15505 MobileIron Core, Con-

nector

⟨L,P, P, P ⟩ ⟨L,N,H,H,H⟩

1CVSSv2 ⟨(A)ccess(C)omplexity⟩: (L)ow, (M)edium, (H)igh; ⟨C, I,A⟩: (N)one,(P)artial,

(C)omplete. 2CVSSv3 ⟨(A)ttack(C)omplexity⟩: (L)ow, (H)igh; ⟨(U)ser(I)nteraction⟩:

(N)one, (R)equired; ⟨C, I,A⟩: (N)one, (L)ow, (H)igh. N/A: Not available.47



Table 5.6: Summary of Vulnerabilities Recommended for Remediation in Case 1 and

Case 2

Case The Mitigated

Vulnerabili-

ties

Existing Expert-

based Solution (Mell

et al., 2007)%

Existing ML/DL-based

Solution (Alperin et al.,

2019)%

LICALITY%

Case 1 70% 18.5755 5.4963 4.9736

85% 18.5755 5.5504 5.3714

100% 19.2563 6.5087 6.6536

Case 2 70% 28.8986 61.7424 34.7993

85% 42.3362 68.1686 35.5897

100% 66.1836 78.1082 35.6226

Figure 5.9 and Figure 5.10 compare the risk rankings of the assessed vulnerabilities

in two cases, where the y-axis represents the risk rankings among all 155,176 NVD

vulnerabilities. The x-axis represents the number of vulnerabilities in the future

threat (MVs 2020 or APTVs 2020) recommended for mitigation. A lower bar height

in Figure 5.9 and Figure 5.10 leads to a higher priority for the recommendation among

all vulnerabilities in the dataset, which means that a smaller amount of remediation

work is associated with mitigation.

In Case 1, Figure 5.9 shows that LICALITY outperforms the Existing Expert-

based Solution (Mell et al., 2007) and the NN-PLP & Without threat modeling on

correctly ranking MVs 2020 on the top position (with the lower bar height shown in

Figure 5.9) for mitigation. Additionally, LICALITY has slightly better performance

than the Existing ML/DL-based Solution (Alperin et al., 2019) on classifying the risk

identified by Threat Modeling (LTM−Case1) in Case 1. Table 5.6 shows the details of
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Figure 5.9: Comparing the Prioritization Ranks of MVs 2020 in Case 1

Figure 5.10: Comparing the Prioritization Ranks of APTVs 2020 in Case 2

Figure 5.9. For example, if remediating 70% of Microsoft vulnerabilities in Table 5.7

and Table 5.8, LICALITY correctly places them on the top 4.9736% of all 155,176

vulnerabilities, while the existing expert-based solution (Mell et al., 2007) places them

on the top 18.5755%. The comparative results show that LICALITY (with NN-

PLP and threat modeling method) correctly places these seven vulnerabilities near

the top of the recommendation list for remediation. In Case 1, LICALITY reduces

the vulnerability remediation work required by the Existing Expert-based Solution

(Mell et al., 2007) by a factor of 2.89 (over 19K vulnerabilities, i.e., calculated as
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155176 ∗ (19.2563%− 6.6536%) = 19556), and obtains almost the same performance

as the Existing ML/DL-based Solution (Alperin et al., 2019). In Case 2, Figure

5.10 shows that LICALITY outperforms the existing two solutions on vulnerability

risk prioritization. As shown in Table 5.6, when remediating 100% of vulnerabilities

of APTVs 2020, LICALITY reduces the vulnerability remediation work required by

the Existing Expert-based Solution (Mell et al., 2007) by a factor of 1.85 (over 47K

vulnerabilities), and reduces such remediation work required by the Existing ML/DL-

based Solution (Alperin et al., 2019) by a factor of 2.19 (over 65K vulnerabilities,

i.e., calculated as 155176 ∗ (66.1836% − 35.6226%) = 47423; 155176 ∗ (78.1082% −

35.6226%) = 65927).

The Threat modeling method encodes the historical threat’s attributes as labels

in the dataset and as logic rules in the PLP side of the NN-PLP model. Based on our

best knowledge, Alperin et al.’s work (Alperin et al., 2019) is the first study to encode

an attacker model’s (APT28) target software service into risk prioritization through

labeling. In the evaluation, LICAILITY is compared with the existing ML/DL-based

model (Alperin et al., 2019) in Section 5.2). LICALITY can almost reach the same

performance in Case 1, and significantly outperform this existing solution in Case

2. Additionally, their work only focuses on the known attacker (e.g., labels with

APT28’s attributes, and then prioritizes APT28’s vulnerabilities). LICALITY has

no requirements on the attack signatures of attackers.

In this evaluation, LICALITY has a better AUC than the NN-only model, which

indicates that the NN-PLP model is an effective classifier for the risk identified

through the threat modeling method. Moreover, the historical threat (MVs 2015 and

APTVs 2017) is published before the future threat (MVs 2020 and APTVs 2020).

LICALITY correctly places the high-risk vulnerabilities of the future threat on the

top positions, which outperforms the existing approaches. These findings indicate
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that LICALITY assesses vulnerabilities based on the defended network’s historical

threat and can prioritize newly discovered vulnerabilities.

Furthermore, by comparing the results of risk prioritization in two cases, LICAL-

ITY reduces more vulnerabilities in Case 1 than in Case 2. This finding matches our

expectation since these two cases cover different historical-future threat relationships

and have different attack detection difficulties. Case 2 is a more challenging working

scenario for LICALITY since the future threat APTVs 2020 contains vulnerabilities

mostly published in 2020. The software services vary a lot compared to the historical

threat APTVs 2017, so the historical threat’s attributes on the attacker’s strength

and preference (encoded as the software set (Ssw)) might make it hard to support

assessing this future threat. Additionally, the APT attack is a stealthy threat that

uses continuous and sophisticated hacking techniques to gain access to a system,

which requires a more in-depth analysis on vulnerabilities’ interactions in vulnera-

bility chaining (The Cybersecurity & Infrastructure Security Agency (CISA), 2020).

Although being evaluated under this more challenging case, LICALITY prioritizes

all vulnerabilities in the top 35.6226%, which reduces the vulnerability remediation

work required by the Existing Expert-based Solution (Mell et al., 2007) by a factor

of 1.85, and reduces such remediation work required by the Existing ML/DL-based

Solution (Alperin et al., 2019) by a factor of 2.19.

Details of the risk scoring and ranking data are shown in Tables 5.7 and 5.8, where

the risk scores and the associated rankings are the updated assessments by updating

the ⟨C, I, A⟩ to CVSSv3.

5.3 Summary

In this chapter, a novel vulnerability risk assessment model is proposed. This

vulnerability risk assessment model assesses a vulnerability risk from the likelihood

51



of exploitation and the criticality of exploitation. A threat modeling method is pro-

posed to encode a historical threat’s attributes into the dataset. The NN-PLP model

is trained to learn such threat attributes. The best working scenario of LICALITY

is investigated by comparing the corresponding risk ranking results in two cases.

LICALITY (NN-PLP model & threat modeling method) successfully prioritizes vul-

nerabilities (refers to the future threat) on the top positions in the evaluation.
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Table 5.7: Comparing Risk Scores and Ranking (%) of MVs 2020 and APTVs 2020 in Case 1

Case CVE ID Existing

Expert-

based

Solution

(Mell et al.,

2007)

Existing

ML/DL-

based

Solution

(Alperin

et al., 2019)

NN-PLP

& Without

Threat

Modeling

NN-PLP

& Threat

Modeling

(LICAL-

ITY)

Existing

Expert-

based

Solution

(Mell et al.,

2007)%

Existing

ML/DL-

based

Solution

(Alperin

et al.,

2019)%

NN-PLP

& Without

Threat

Modeling

%

NN-PLP

& Threat

Modeling

(LICAL-

ITY)%

Case CVE-2012-0158 9.3 0.6678 0.0328 0.9999 10.5215 6.5087 18.1268 5.3714

1 CVE-2015-1641 9.3 0.7994 0.0166 0.9999 10.5215 2.8632 30.4388 3.8990

CVE-2017-0143 9.3 0.6998 0.0911 0.9999 10.5215 5.5504 8.7585 4.9736

CVE-2017-0199 9.3 0.9141 0.0299 1.0000 10.5215 0.8835 19.4458 1.3499

CVE-2017-8759 9.3 0.7979 0.0067 0.9999 10.5215 2.8896 51.3403 4.9175

CVE-2017-11882 9.3 0.7006 0.0077 0.9999 10.5215 5.4963 47.7456 6.6536

CVE-2019-0604 7.5 0.7220 0.0096∗ 1.0000∗ 28.8986 4.8777 42.6024 2.5342
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Table 5.8: Comparing Risk Scores and Ranking (%) of MVs 2020 and APTVs 2020 in Case 2

Case CVE ID Existing

Expert-

based

Solution

(Mell et al.,

2007)

Existing

ML/DL-

based

Solution

(Alperin

et al., 2019)

NN-PLP

& Without

Threat

Modeling

NN-PLP

& Threat

Modeling

(LICAL-

ITY)

Existing

Expert-

based

Solution

(Mell et al.,

2007)%

Existing

ML/DL-

based

Solution

(Alperin

et al.,

2019)%

NN-PLP

& Without

Threat

Modeling

%

NN-PLP

& Threat

Modeling

(LICAL-

ITY)%

Case CVE-2018-13379 5 0.0891 0.0124∗ 0.9981∗ 66.1836 78.1082 36.8017 34.7993

2 CVE-2019-11510 7.5 0.1477 0.0084∗ 0.9988∗ 28.8986 68.1686 45.6362 33.7156

CVE-2019-19781 7.5 0.1862 0.0092∗ 0.9991∗ 28.8986 61.7424 43.4701 32.7841

CVE-2020-1472 9.3 0.6304 0.0073 0.9989 10.5215 30.6701 49.0730 33.3630

CVE-2020-15505 7.5 0.8728 0.0043∗ 0.9999∗ 28.8986 12.5663 62.7999 11.8929

CVE-2020-1631 6.8 0.3707 0.0010∗ 0.9965∗ 42.3362 44.7238 93.1684 35.5897

CVE-2020-2021 9.3 0.3828 0.0029 0.9964 10.5215 44.0239 72.8433 35.6226

CVE-2020-5902 10 0.5616 0.0015 0.9997 5.4499 34.3492 87.2562 26.0750

∗ by updating ⟨C, I,A⟩ with the CVSSv3 vector in Table5.5.
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Chapter 6

VULNERABILITY PRIORITIZATION

In this Chapter, a prioritization reasoning engine ILLATION is proposed. The

security impact of a vulnerability on a network is closely associated with interactions

among vulnerabilities and network environment elements (Ou et al., 2005; Lai and

Hsia, 2007; Chung et al., 2013). However, the existing network agnostic approaches

(i.e., the expert-based approaches and the AI-based approaches) either use predefined

measurements and static metrics (Mell et al., 2006, 2007), or do not consider actual

network setup and constraints (Spring et al., 2018; Shah et al., 2019; Chen et al.,

2019; Sabottke et al., 2015; Alperin et al., 2019; Zeng et al., 2021; Bozorgi et al.,

2010). The network specific approaches (i.e., the attack graph-based approaches

(Tupper and Zincir-Heywood, 2008; McQueen et al., 2006; Lai and Hsia, 2007; Jajodia

et al., 2005)) usually have high complexity, which hinder security admins in adopting

these approaches for vulnerability prioritization. The vulnerability’s features (i.e.,

the likelihood of vulnerability exploitation, attacker’s preference, etc.) cannot been

covered in attack graphs as well. By considering the effects of particular network

environmental elements (e.g., running service, node reachability, asset value, etc.) on

a vulnerability’s security impact, ILLATION enhances the existing network agnostic

approaches. ILLATION ranks out vulnerabilities that have security influences on the

critical assets by refining the initial assessment with two network constraints. Such

constraints are derived from network profiles of a network and security setup (i.e.,

network reconfiguration, access control, firewall rules updates, etc.).
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6.1 Proposed Vulnerability Prioritization Reasoning Engine

Prioritizing vulnerability under different network profiles is needed in an organi-

zation. This is due to cyber defenders usually adjusting the network setups (e.g.,

changing firewall rules, suspending services, etc.) to accommodate various reasons

for postponing vulnerability remediation without increasing the entire system risk.

6.1.1 Background and Motivation

First, this section presents an illustrative example of how ILLATION prioritizes

vulnerabilities before and after mitigation.

Figure 6.1: The Network Segmentation Overview in the Illustrative Example.

Figure 6.1 describes a mock enterprise network system established on a private

cloud (i.e., Amazon AWS). The network system consists of two virtual networks:

a Data Center Site and a Customer Service Site, which can access the services on

each site through the internet. Several security policies are deployed in this network

environment. In the demilitarized zone (DMZ) of this network segmentation, virtual

machines (VMs) have limited access to the private network. As shown in Figure 6.1,

there are 8 virtual machines in this network segmentation. Vulnerability scanning
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tools (e.g., Nessus (Wiki, 2021), Nmap (Lyon, 2008), etc.) detect vulnerabilities in

this network. Table 6.2 shows 9 scanned vulnerabilities, where mail servers, web

servers, and database servers have the same vulnerabilities. Table 6.1 presents the

details of network and system setups in this illustrative example.
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Table 6.1: The Example of Security Rules Configuration for NP-1 and NP-2.

Network

Profile

Destination

VM

Source VM Protocol Port Status Mitigated Vul-

nerabilities

NP-1 IT1 WebServer1, WebServer2,

MailServer1

TCP, IMAP 1433, 3306, 5439, 5432, 1521, 80,443, 993 OPEN N/A

NP-1 FIN1 WebServer1, MailServer1 TCP, IMAP 1433, 3306, 5439, 5432, 1521, 80, 443, 993 OPEN N/A

NP-1 WebServer1 IT1, FIN1, MailServer1 TCP, IMAP 80,443, 1433, 3306, 5439, 5432, 1521,993 OPEN N/A

NP-1 MailServer1 IT1, FIN1, WebServer1 TCP, IMAP 80,443, 1433, 3306, 5439, 5432, 1521,993 OPEN N/A

NP-1 Client1 WebServer2 TCP, IMAP 1433, 3306, 5439, 5432, 1521, 80, 443, 993 OPEN N/A

NP-1 Client2 MailServer2 TCP, IMAP 1433, 3306, 5439, 5432, 1521, 80, 443, 993 OPEN N/A

NP-1 WebServer2 IT1, Client1 TCP, IMAP 993, 80, 443, 1433 OPEN N/A

NP-1 MailServer2 Client2 TCP, IMAP 1433, 3306, 5439, 5432, 1521, 80, 443, 993 OPEN N/A

NP-2 WebServer1 IT1, FIN1, MailServer1 TCP, IMAP 80,443, 1433, 3306, 5439, 5432, 1521,993 OPEN N/A

NP-2 MailServer1 IT1, FIN1, WebServer1 TCP, IMAP 80,443, 1433, 3306, 5439, 5432, 1521,993 OPEN N/A

NP-2 Client1 WebServer2 TCP, IMAP 1433, 3306, 5439, 5432, 1521, 80, 443, 993 OPEN N/A

NP-2 Client2 MailServer2 TCP, IMAP 1433, 3306, 5439, 5432, 1521, 80, 443, 993 OPEN N/A

NP-2 WebServer2 IT1, Client1 TCP, IMAP 993, 80, 443, 1433 OPEN N/A

NP-2 MailServer2 Client2 TCP, IMAP 1433, 3306, 5439, 5432, 1521, 80, 443, 993 OPEN N/A

NP-2 IT1 MailServer1 TCP, IMAP 1433, 3306, 5439, 5432, 1521, 993 OPEN CVE-2000-1221,

CVE-2008-4306

NP-2 FIN1 MailServer1 TCP, IMAP 1433, 3306, 5439, 5432, 1521, 993 OPEN CVE-2018-8626

NP-2 IT1 WebServer1, WebServer2 TCP, IMAP 80, 443, 1433, 3306, 5439, 5432, 1521,993 CLOSE CVE-2000-1221,

CVE-2008-4306

NP-2 FIN1 WebServer1 TCP, IMAP 80, 443, 1433, 3306, 5439, 5432, 1521,993 CLOSE CVE-2018-8626
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Network Profiles under Mitigation Actions

In practice, mitigation actions may include various security defense solutions at the

software level (e.g., software upgrades/patches) and/or network level (e.g., changing

firewall rules). The selection and evaluation of mitigation actions can be guided

by comparing the intrusiveness and cost of countermeasures (e.g., traffic redirection,

deep packet inspection, IP address change, etc.) (Chung et al., 2013). For example, to

reduce the likelihood of a vulnerability being exploited, some mitigation actions might

change firewall rules or enforce more strict access control policies. In this illustrative

example, two network profiles (NP-1 and NP-2) represent the network environments

before and after mitigation. Figure 6.2 shows the network reachability in the NP-2,

where the dashed line represents the blocked connections compared to the NP-1.

Figure 6.2: The Network Reachability of NP-2 in the Illustrative Example.

Because ILLATION places CVE-2000-1221 (on IT1), CVE-2008-4306 (on IT1),
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and CVE-2018-8626 (on FIN1) in NP-1 (marked in red in Table 6.2) on the top for

remediation recommendation. Cyber admins can reduce the associated risk of these

vulnerabilities by reducing the attack surface of IT1 and FIN1. The common mit-

igation actions contain: (1) enforcing security control by specifying which types of

traffic are allowed. The inbound and outbound access control rules are changed; (2)

enabling security control on a specific VM that is identified as the highest risk re-

source. In NP-1, FIN1 is directly reachable by WebServer1 and MailServer1, and IT1

is directly reachable by WebServer1, WebServer2, and MailServr1. In this illustrative

example, two web servers are viewed as the highest risk resources for IT1 and FIN1

since they are in the DMZ and connected to the internet. To minimize the impact

of mitigation actions on the daily network operation, cyber admins might work on

blocking the traffic from these high risk resources (web servers) first. Under this sit-

uation, all traffics that send from WebServer1 and WebServer2 to IT1 and FIN1 are

blocked until the vulnerability CVE-2000-1221, CVE-2008-4306, and CVE-2018-8626

on these VMs have been patched. As shown in Figure 6.2, in NP-2, IT1 and FIN1

are only directly reachable by MailServer1, which is in the private network, where it

usually has secure and encrypted connections in the network operation.

Motivation of the Proposed Prioritization Reasoning Engine

ILLATION is motivated by the observations that the risk of a vulnerability is associ-

ated with network environmental elements (Mell et al., 2006, 2007; Ou et al., 2005).

It considers the actual network setup and the associated constraints on vulnerability

risk assessment. In Table 6.2, the output of ILLATION reflects the changes of network

setups from NP-1 to NP-2. After cyber admins take mitigation actions, ILLATION’s

output reflects the changes to the network environment as the changes to the target

hosts’ vulnerability risk ranks. In this illustrative example, the risk ranks of vulner-
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Table 6.2: The Vulnerability Risk Ranks in the Illustrative Example

VM Asset

Value

Vulnerability on

this VM

For NP-1∗ For NP-2 ∗

IT1 10 CVE-2000-1221 0.9997 (1) 0.4998 (4) (↓)

WebServer2 8 CVE-2010-3972 0.7997 (3) 0.7997 (2) (↑)

WebServer1 7 CVE-2010-3972 0.6998 (4) 0.6998 (3) (↑)

FIN1 10 CVE-2018-8626 0.9997 (1) 0.4998 (4) (↓)

Client1 8 CVE-2016-1930 0.7997 (3) 0.7997 (2) (↑)

IT1 10 CVE-2008-4306 0.9997 (1) 0.4998 (4) (↓)

MailServer2 9 CVE-2007-0671 0.8997 (2) 0.8997 (1) (↑)

MailServer1 10 CVE-2007-0671 0.4998 (5) 0.4998 (4) (↑)

Client2 8 CVE-2017-8487 0.7997 (3) 0.7997 (2) (↑)

WebServer2 8 CVE-2002-0150 0.1990 (7) 0.1990 (6) (↑)

WebServer1 7 CVE-2002-0150 0.1741 (8) 0.1741 (7) (↑)

MailServer2 9 CVE-2004-0284 0.2571 (6) 0.2571 (5) (↑)

MailServer1 10 CVE-2004-0284 0.1429 (9) 0.1429 (8) (↑)
∗ Using ILLATION, the arrow after each ranking value represents its increasing

or decreasing status compared to the ranking value in the previous column.

abilities CVE-2000-1221 (on IT1), CVE-2008-4306 (on IT1) and CVE-2018-8626 (on

FIN1) are affected by mitigation actions, and have been lowered down.

To prioritize vulnerabilities in this example, ILLATION initially assesses vulnera-

bilities in vulnerability scanning reports by using the existing risk-based vulnerability

assessment model (Zeng et al., 2021). And then, ILLATION embeds the network

and security setups as network profiles (i.e., NP-1, NP-2) and derives the network

constraints for each network profile. ILLATION consolidates initial risk assessments

and network constraints of each network profile by following Rule 6.2 (discussed in

Section 6.1.2). In the illustrative example, NP-1 and NP-2 represent network setups
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before and after mitigation. The changes in network environments from NP-1 to

NP-2 lead to the changes in both defense rules and node reachability statuses in the

logical reasoning engine (discussed in Section 6.1.2), which might modify the defined

three logic features (discussed in Section 6.1.2). In this way, the effects of network

constraints on assessing the risk of a vulnerability will be adjusted (discussed in Rule

6.3 and 6.4 in Section 6.1.2).

Design Improvements

To reflect how network environment changes affect vulnerability risk assessment before

and after mitigation actions in NP-1 and NP-2, ILLATION considers the network

setups as an important input for the vulnerability risk assessment model, and makes

several design improvements to address the design challenges discussed previously.

The key improvements are briefly summarized as follows.

Key improvements: ILLATION focuses on assessing the actual effects of a vul-

nerability on critical assets. ILLATION ranks out vulnerabilities that have high risk

and could actually affect the most critical assets by introducing two constraints of

constr corr serv and constr critical serv, where the value of these constraints range

from 0 to 1. The constr corr serv represents how likely a running service in a ma-

chine can be reachable by neighbor nodes in a network. For example, for service

A in a machine that is totally isolated in the network (i.e., no neighbor nodes can

reach this machine, no open ports for this service, etc.), the value of constr corr serv

is 0. This means that in this machine, although a scanned vulnerability is able to

harm this service A, it cannot actually be exploited by attackers due to the lack of

access paths. Similarly, constr critical serv represents how a vulnerability might af-

fect such service in a machine. The details of these two constraints are discussed in
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Section 6.1.2. In the system and model design, ILLATION defines the following logic

features to compute these two constraints to enhance the existing network agnostic

vulnerability prioritization solutions.

Three logic features: ILLATION derives the value of two constraints based on

the defined three logic features that represent the overall network reachability, the

protocol match, and the vulnerability service status (details are discussed in Section

6.1.2). The logic feature of overall network reachability is to avoid the high

complexity of generating all possible attack paths in the existing attack graph-based

models. ILLATION utilizes the absorption law of the logic reasoning engine, and

computes the overall network reachability instead of path enumeration. This design

improvement can support using ILLATION in a large scale network system, where the

computation complexity is very high when applying the attack graph-based models.

The logic feature of protocol match considers the various relationships among

protocols, services, and neighbor nodes in a network. A matched protocol pair repre-

sents a direct attack path to exploit a vulnerability in the target host (i.e., Nodedst)

by matching the protocol that supports network connection (i.e., Protocolr) and the

protocol that supports the vulnerable service program running (i.e., Protocols). For

example, in NP-2, FIN1 is only reachable by MailServer1 (Protocolr=IMAP). The

vulnerability CVE-2018-8626 (on FIN1) is associated with Operating Systems Win-

dows10 (Protocols=no protocol). Although these two protocols do not match, usually

this means no direct attack path w.r.t. CVE-2018-8626 on FIN1, ILLATION still

considers the potential risk that might come from the available connections between

WebServer1 and MailServer1, where the attacker might create an indirect attack path

to exploit this vulnerability. Thus, ILLATION reduces this vulnerability risk with a

risk factor (Pm = 0.5). Cyber admins can adjust this risk factor to other values in
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implementation. The logic feature of vulnerability services status in a ma-

chine shows how a vulnerability might affect a service in a machine. A vulnerability

usually is associated with a specific service. The description of a vulnerability illus-

trates how such service could be harmed by this vulnerability. ILLATION parses the

given network profiles to capture a service’s status in a machine, and defines whether

or not a vulnerability could directly harm such service from the NVD records (The

National Institute of Standards and Technology, 2020). ILLATION derives the logic

feature of vulnerability service status for a specific machine in a network by reasoning

with this given information.

6.1.2 System and Model Design

Figure 6.3: The Overview of ILLATION System Architecture.

This section presents the overview of ILLATION system architecture with two

main functions in Figure 6.3: 1 network profile parsing embeds the given network

profiles as a knowledge base, and 2 prioritization reasoning function generates the

network constraints and then prioritizes vulnerabilities. ILLATION supports a cyber

analyst to prioritize the vulnerabilities discovered by vulnerability scanning tools. By

using ILLATION, the vulnerability risk is assessed under various attack assumptions

w.r.t. network profiles. Finally, ILLATION ranks out the high-risk vulnerabilities

to a network profile. As shown in Figure 6.3, ILLATION embeds the given network
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profiles as a knowledge base through 1 network profile parsing. In 2 prioritization

reasoning, ILLATION generates the constraint of the network that affects the risk of

a vulnerability in a given network, and consolidates these constraints and the initial

assessment derived by the initial assessment model.

ILLATION implements logical rules in a logic program ProbLog (De Raedt et al.,

2007), which contains a set of ground probabilistic facts F in the form of p :: f ,

and a set of rules R, where p is a probability and f is a ground atom. The rule is

an expression in the form h : −b1, ..., bn, where h is an atom and the bi are literals.

(: −) represents the logical implication (←), and the comma (, ) represents the logic

conjunction (∧).

Network Profile Parsing

A network profile can be viewed as an attack scenario of a network, i.e., it describes

what defensive system an attacker needs to penetrate for a successful exploitation.

The cyber admins can assess vulnerability risk under various attack assumptions by

feeding network setups into ILLATION to form the network profiles. All nodes in

the network profile are embedded into a knowledge base. Given a network with

several services running on machines, ILLATION encodes its network setup as a

network profile knowledge base with several logical facts, i.e., network reachability,

network serv, and asset value. The network reachability information indicates the

service level connections among machines; the network service information indicates

the available services on the listed machines.

• Network reachability: denotes the network reachability for all nodes in the net-

work, and is in the form of: network reachability(Nodesrc, Nodedst, P rotocolr),

where Protocolr supports the network communication between Nodesrc and

Nodedst.
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• Network service: denotes a set of services installed on a machine Node in the

network as network serv(Node, Service, Protocols), where Protocols supports

the operation of this service.

• Asset value: denotes the asset value of a machine in the network as Pv ::

asset value(Node), where Pv is the machine Node’s asset value divided by the

upper bound of the asset value range. For example, in a network, asset values

range from 1 to 10, the machine Node has a value of 7. Thus, its Pv value is

0.7.

ILLATION encodes and reasons with the given inputs of network setups by fol-

lowing Rule 6.1, where the network topology is identified by the connectivity of nodes

(e.g., host, firewall, gateway, etc.) in a network. node connect l3(Nodesrc, Nodedst,

P rotocolr) represents connection at the layer-3 (identified by IP address), where the

Protocolr represents the associated protocol to an open port on the Nodedst. IL-

LATION also considers the popular protocol-based defense mechanisms, such as the

firewall rules and flow rules. For example, security rule(Nodesrc, Nodedst, P rotocolr)

represents firewall rules or flow rules that allow network communications under a

specific protocol between two hosts.

network reachability(Nodesrc, Nodedst, P rotocolr) : −

node connect l3(Nodesrc, Nodedst, P rotocolr),

security rule(Nodesrc, Nodedst, P rotocolr).

(6.1)

Prioritization Reasoning

ILLATION’s prioritization phase aims at ranking vulnerabilities based on the risk

score under different network profiles, i.e., network profiles that are associated with
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mitigation actions. ILLATION can reason vulnerabilities with the time complexity

of O(n), where n is the number of nodes in the network.

The 2 prioritization reasoning function reasons with the given network profile

and the initial assessment. Based on the network profile knowledge base, for each

machine in the network, ILLATION can indicate which service exists, how critical

the service is, and which vulnerability can be used to attack such service through

the constr corr serv and constr critical serv constraints. ILLATION evaluates the

effects of network profiles on vulnerability risk from the defender’s view, where it

focuses on analyzing the traffic flows of the destination node (Nodedst).

Figure 6.4: The Overview of Network Constraints.

Figure 6.3 presents that ILLATION’s prioritization reasoning engine modifies the

initial risk assessment with the constraints of constr corr serv and constr critical serv.

Figure 6.4 shows the overview of these two constraints with three defined logic fea-

tures. As discussed in Section 6.1.1, ILLATION ranks out high-risk vulnerabilities

that could actually affect critical assets. These two constraints range from 0 to 1,

which will maintain or reduce the initial assessment of a vulnerability by considering

the actual effects of such vulnerability on a machine in the given network profile.

Details of these two constraints are discussed in Section 6.1.2. Rule 6.2 presents the

67



prioritization reasoning model as:

vul risk(Cve id,Nodedst) : −

initial assess(Cve id),

constr critical serv(Cve id, Service,Nodedst),

constr corr serv(Cve id, Service,Nodedst).

(6.2)

where initial assess(Cve id) is the output of the initial assessment model. A most-

to-least-risky rank-order of vulnerabilities is generated by 2 prioritization reasoning

based on the value of vul risk(Cve id,Nodedst). A vulnerability that has the highest

risk score will first be recommended for remediation. ILLATION reasons with network

profiles for the vulnerability prioritization task without the cyber analyst performing

any manual analysis. In the illustrative example, ILLATION outputs the prioritized

vulnerabilities listed in Table 6.2 w.r.t the network profiles (NP-1, NP-2) before and

after mitigation.

Network Constraints for Prioritization Reasoning

ILLATION ranks out vulnerabilities that both have high risk and could actually affect

critical assets as the constraint of constr corr serv in Rule 6.3 and constr critical serv

in Rule 6.4. In Rule 6.4, the constr critical serv represents how a vulnerability

might affect a service in critical assets. asset value represents the critical level of

a machine in a network, where a cyber admin must ensure the secure operation of

this machine. Usually, a larger value is associated with a higher critical level. To

derive these two constraints, ILLATION defines the overall network reachability,

protocol match, and vul serv status in logic features 1-3. This section illustrates the

details of logic features.
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constr corr serv(Cve id, Service,Nodedst) : −

overall network reachability(Nodedst, P rotocolr),

protocol match(Protocolr, P rotocols, Nodedst),

vul serv status(Cve id, Service,Nodedst).

(6.3)

constr critical serv(Cve id, Service,Nodedst) : −

asset value(Nodedst),

vul serv status(Cve id, Service,Nodedst).

(6.4)

Logic feature 1: overall network reachability. ILLATION generates the overall

reachability information of Nodedst in the network as overall network reachability

(Nodedst, P rotocolr) by reasoning with all existing network reachability in the given

network profile for a node Nodedst through Rule 6.5. These network reachability

atoms are viewed as independent events. By following the absorption law, the overall

reachability overall network reachability is computed with the logic disjunction (∨)

to all network reachability atoms for the node Nodedst in Rule 6.5.

overall network reachability(Nodedst, P rotocolr) : −

network reachability(Nodesrc, Nodedst, P rotocolr).

(6.5)

Additionally, to implement Rule 6.1, ILLATION considers the common mitigation

actions in a network. In the evaluation, ILLATION uses node connect l3(Nodesrc,

Nodedst, P rotocol) to represent the layer-3 connectivity. By taking layer-3 mitiga-

tion actions, such as creating filtering rules, changing IP address, blocking the port,

and so on (Chung et al., 2013), the possible attack paths from neighbor hosts to the
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suspicious host can be restricted. Such mitigation can result in reducing the likeli-

hood of exploiting vulnerabilities associated with layer-3 attacks, e.g., the distributed

denial-of-service (DDoS) attack (Zargar et al., 2013).

Logic feature 2: protocol match. ILLATION assesses the correlation between

Protocolr (supporting network communication between hosts) and Protocols (sup-

porting the operation of a vulnerable service program on a host) through Pm ::

protocol match(Protocolr, P rotocols, Nodedst), where Pm is a probabilistic value that

can be assigned in implementations. If Protocolr matches Protocols, it means the at-

tacker might have a chance to exploit the service’s vulnerability through this network

connection. A matched protocol pair means a direct attack path exists between two

nodes. An unmatched protocol pair only represents that a direct attack path does

not exist. But still, the attacker might have a chance to utilize other available con-

nections to create an indirect attack path and then exploit this vulnerability finally.

Thus, ILLATION sets the value of Pm as a risk factor to handle this situation. If no

matched protocol pair and no direct connection exists, the target node is isolated in

this network. In this situation, ILLATION assesses this vulnerability risk as 0 with

Pm = 0.

To set up the value of Pm, ILLATION considers various relationships among pro-

tocols, services, and neighbor nodes in a network, including (1) relationships between

protocols on different layers of the network stack, i.e., TCP/IP protocol stack layers.

For instance, TCP supports application-layer protocols, such as SMTP, FTP, and so

on. ILLATION defines a subset condition (i.e., TCP ⊃ {SMTP, FTP,HTTP, etc.})

to represent such layer-based dependency in the reasoning engine; and (2) interactions

between neighbor nodes and the target node. ILLATION suggests that if Protocolr

matches Protocols, Pm is set to 1. Otherwise, if the target node Nodedst is still reach-
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able by other neighbor nodes, Pm is set to 0.5; if the Nodedst can’t be reached by any

other nodes in the network, Pm is set to 0. Cyber admins can adjust these values in

implementation.

Logic feature 3: the vulnerability service status in a machine. ILLATION

defines vul serv status to capture how likely a vulnerability might directly harm a

service in a machine as Rule 6.6.

vul serv status(Cve id, Service,Nodedst) : −

network serv(Nodedst, Service, Protocols),

network serv vul relation(Cve id, Service).

(6.6)

where network serv represents a service’s status (running or not exists) in a ma-

chine, and network serv vul relation represents whether or not a vulnerability can

directly harm this service based on records in the national vulnerability dataset

(NVD) (The National Institute of Standards and Technology, 2020). For exam-

ple, 1 :: network serv(webServer, apache, https) represents that the Apache service

is running in webServer and communicates with other neighbor nodes through the

HTTPS protocol. network serv vul relation(cve − 2006 − 7098, apache) indicates

that a vulnerability CVE-2006-7098 can directly harm this Apache service based on

NVD records. In this way, ILLATION derives the value of vul serv status(cve −

2006− 7098, apache, webServer) as 1, which means that the discovered vulnerability

CVE-2006-7098 can actually harm the Apache service in webServer. For the network

profile, where the Apache service in the webServer is not exists, ILLATION parses this

network profile with the value of network serv(webServer, apache, https) as 0. Thus,

ILLATION derives the value of vul serv status(cve−2006−7098, apache, webServer)

as 0. In this situation, ILLATION reduces the risk assessment for CVE-2006-7098 in
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webServer to 0.

To assess a vulnerability CVE-2006-7098 in webServer, ILLATION derives the

following logic features based on Rule 6.5 and 6.6.

overall network reachability(webServer, https) : −

network reachability(vmGroup, webServer, https),

network reachability(gatewayServer, webServer, https).

vul serv status(cve− 2006− 7098, apache, webServer) : −

1 :: network serv(webServer, apache, https),

network serv vul relation(cve− 2006− 7098, apache).

ILLATION also defines the protocol match value Pm = 1 as 1 :: protocol match

(https, https, webServer). This is due to the fact that the protocol that supports

the network communication for webServer matches the protocol that support Apache

service operation. By reasoning with these three logic features, ILLATION then

derives the value of constr corr serv(cve − 2006 − 7098, apache, webServer) as 1

through Rule 6.3, which indicates that the running service Apache in webServer can

be reachable by neighbor nodes in the network.

constr corr serv(cve− 2006− 7098, apache, webServer) : −

1 :: overall network reachability(webServer, https),

1 :: protocol match(https, https, webServer),

1 :: vul serv status(cve− 2006− 7098, apache, webServer).
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constr critical serv(cve− 2006− 7098, apache, webServer) : −

1 :: asset value(webServer),

1 :: vul serv status(cve− 2006− 7098, apache, webServer).

Similarly, ILLATION derives the value of constr critical serv(cve − 2006 − 7098,

apache, webServer) as 1 through Rule 6.4, which indicates that the vulnerability

CVE-2006-7098 can actually affect the Apache service in webServer.

1 :: asset value(webServer) represents that this machine webServer has the highest

critical level in this network. When applying mitigation actions in this network by

uninstalling the Apache service on webServer, ILLATION derives 0 :: vul serv status

(cve−2006−7098, apache, webServer). In this case, constr critical serv(cve−2006−

7098, apache, webServer) is computed with the value of 0, which indicates that the

vulnerability CVE-2006-7098 cannot actually affect the Apache service in webServer

under this given network profile.

Network Defense Assumptions for ILLATION

ILLATION is developed under three network defense assumptions. Assumption 1:

the network reachability among hosts can be controlled through network defense

rules and access control policies in Rule 6.1 and 7.1; Assumption 2: ILLATION

only considers the direct vulnerability exploitation. For example, this study does

not consider multi-hop attach-chain scenarios; Assumption 3: there is no defense

rule (i.e., firewall policy/flow rule) conflicts when performing the mitigation. For

example, overlapping firewall rules are not allowed in the entire network system. In

this study, based on Assumptions 1 & 2, any given vulnerability risk can be adjusted

by specifying a mitigation action that can block assess to such vulnerable services.
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Based on Assumption 3, changing one defense rule for mitigating a vulnerability on

a node will not impact the vul risk of vulnerabilities on other nodes in the network

in Rule 6.2.

6.2 Experimental Evaluation

To evaluate ILLATION, this section studies the performance of the initial assess-

ment model and prioritization reasoning engine, where the initial assessment model

decides how accurate the initial assessment of vulnerability risk could be, and the

prioritization reasoning engine decides how fast to consolidate the initial risk assess-

ment and the network constraints in various network setups. The performance and

scalability of prioritization reasoning engine are evaluated under scalable network se-

tups (50-10k hosts) and various amounts of vulnerabilities (10-10k) in Section 6.2.2.

The experimental settings for performance evaluation are illustrated in Section 6.2.1.

6.2.1 Experimental Settings

Vulnerability Mitigation Assumptions

ILLATION takes a new approach by considering the vulnerability mitigation from

the defenders’ view. It treats a vulnerable end-host (or an application/service) as

the attacking target and assumes an attacker may locate inside or outside a network

system. In this way, ILLATION can avoid enumerating all possible attack paths,

which most of the graph-based vulnerability analysis models require. The cyber

analyst performs mitigation actions by using defense mechanisms to effectively re-

configure networks. For example, when using Software Defined Networking (SDN)

approaches (Huang et al., 2018), the defense mechanism (e.g., firewall, vulnerability

scanning tool, gateway, etc.) can be implemented using an SDN controller to re-

configure network setup and enable/disable basic network flows and access control
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between hosts and networking devices. ILLATION is capable of using SDN-supported

security solutions (e.g., secure service function chaining (Bhamare et al., 2016)) to

implement secure networking services (e.g., application firewall, IDS/IPS, DPI, etc.).

Network Setup

A network environment in a private cloud environment is emulated in this evaluation

by using Mininet (Mininet, 2021). Mininet is a network simulator that allows users to

create a network with virtual hosts, switches (supporting the OpenFlow protocols),

controllers, and links. In this experiment evaluation, several scripts are developed to

customize network topology and emulate a software-defined network (SDN) (Huang

et al., 2018) in our private cloud. Open Network Operating System (ONOS) (Berde

et al., 2014) is used as the core SDN controller to support standardized communication

protocols. In the real working scenario, the security admin can conduct mitigation

actions through a security appliance. All the network profiles that regard layer-2

and layer-3 mitigation actions can be obtained through the SDN controller. Due to

the limitation of Mininet and the computer resource on emulating virtual hosts for a

network (Di Lena et al., 2021), which is up to 100 hosts in this system. A Python

script is developed to simulate the SDN controller data for the large-scale network

(i.e., for 500, 1k, 5k, 10k hosts).

To evaluate the performance of the ILLATION reasoning engine on a large-scale

network with a large number of vulnerabilities, vulnerabilities deployment is simulated

in the network by using a developed Python script. Vulnerabilities are randomly

assigned to each host based on operation system compatibility, network service, and

opened ports. These vulnerabilities are from 69,730 vulnerabilities associated with

the top 50 products in CVEDetails (CVEDetails, 2021). These products cover the

common modern operation systems (OS) (i.e., Windows, Linux distributions, and
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Mac OS), popular applications, such as web browsers (e.g., Chrome, IE, Edge, Safari,

Firefox, etc.), and server software (e.g., databases, web servers, etc.). According

to the recent report (EdgeScan, 2020), there are over 75% of applications and over

67% of assets have at least one vulnerability. In this experiment design, each host

was assigned 0 to 5 operation system vulnerabilities. There are 0 to 15 applications

vulnerabilities associated with various applications discussed above. All the assigned

vulnerabilities are recorded as (Cve id, Node) pairs. ILLATION creates the query as

vul risk(Cve id,Node) based on these pairs.

Model Implementation

ILLATION is implemented on a Linux PC with two Intel(R) Xeon(R) CPU @2.30GHz

processors and 26GB RAM. ILLATION is developed in Python 3.7 and the logic

programming language ProbLog (De Raedt et al., 2007), with around 2,500 lines of

code in total.

In the evaluation, ILLATION adopts LICALITY (Zeng et al., 2021) (discussed in

Chapter 5) to develop an neuro-symbolic model in DeepProbLog (Manhaeve et al.,

2018) as the initial assessment model. To setup the initial assessment model, ILLA-

TION integrates an NLP tool of latent semantic analysis (Dumais, 2004) to trans-

form vulnerability descriptions to be vector representations. All vulnerability descrip-

tions are embedded as vector representations by using the NLP techniques of Term

Frequency-Inverse Document Frequency (TF-IDF) and truncated Singular Value De-

composition (SVD) algorithm. ILLATION captures such latent vulnerability features

from its description as LSA feature, and captures the CVSS ⟨AC,C, I, A⟩ as CVSS

feature by using a developed python script.

ILLATION’s assessment model assesses vulnerability risk w.r.t. a network from

two measurements: the likelihood of exploitation (w.r.t. the probability of com-
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promise) and the criticality of exploitation (w.r.t. the consequence of compromise)

as (Zeng et al., 2021). To learn the features of these two measurements, a neuro-

symbolic learning-based assessment model is developed in DeepProbLog (Manhaeve

et al., 2018), where the NN side learns the pattern that contributes to assessing the

likelihood of exploitation from vulnerability description data in 2 , and the symbolic

side learns the pattern that contributes to assessing the criticality of exploitation from

CVSS metric data. The symbolic side is developed in probabilistic logic programming

(PLP) (Manhaeve et al., 2018; De Raedt et al., 2007). ILLATION trains this neuro-

symbolic learning-based assessment model by following the parameter learning of

DeepProblog (Manhaeve et al., 2018) as 1) the NN model’s parameters are updated

by back-propagation (Werbos, 1990) with the gradients of the loss w.r.t. the output

of the NN side (e.g., likelihood exploit); and 2) the symbolic side’s parameters are

updated by gradient semiring (Manhaeve et al., 2018) with the gradients of the loss

w.r.t. the learnable probabilities in the symbolic side (e.g., in the criticality exploit).

To train this initial assessment model, a dataset D is constructed with the data

instance and the label ∈ {0, 1} represents whether a vulnerability is less or more likely

to be exploited. The training set, validation set, and testing set from the dataset D

(e.g., at the rate of 80%, 10%, and 10%) are randomly sampled by excluding vulner-

abilities for labeling and evaluation that are covered in evaluation cases. ILLATION

obtains initial assess(Cve id) in Rule 6.2 from this initial assessment model and

prioritizes vulnerabilities under the given network profiles. In the implementation,

a knowledge base is constructed to represent the relationship between vulnerabili-

ties and services as network serv vul relation(Cve id, Service). In this evaluation,

a developed script randomly deploys vulnerabilities from 69,730 vulnerabilities that

are associated with the top 50 products in CVEDetails (CVEDetails, 2021). Thus,

the network serv vul relation knowledge base covers these vulnerabilities’ relations
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w.r.t. services in the evaluation.

Training the Risk Assessment Model

ILLATION processes vulnerabilities in the NVD (The National Institute of Standards

and Technology, 2020) format. The historical threat contains the exploits in the

wild (e.g., ExploitDB (The Offensive Security, 2020)) and historical attack records

in the network. We extract vulnerabilities from 1999 June to 2021 November in

NVD with 163,404 vulnerabilities in total (The National Institute of Standards and

Technology, 2020). All NVD vulnerabilities have the unique Common Vulnerabilities

and Exposures identification number (CVE-ID). Some CVEs are rejected due to a

duplicated record or are reserved for reports in the future. By excluding invalid CVEs

marked as “disputed” or “unsupported when assigned” in descriptions, we removed

971 CVE ID in the NVD and refined it to 162,433 vulnerabilities in this study. We

develop a parser in Python to extract vulnerabilities’ CVE IDs, descriptions, and

CVSS vector from JSON files (The National Institute of Standards and Technology,

2020). In the evaluation, we first clean vulnerability descriptions data by transforming

162,433 vulnerabilities’ descriptions into a text corpus through the most popular data

clean processes, such as lower-casing all text data, removing stop-words, stemming,

and normalizing words. Then, the vulnerability description is embedded as a vector

representation (called LSA feature) by using the Sklearn (Scikit-learn, 2021) toolkits.

In this study, we explore the different combinations of dimensions for the LSA feature.

In the evaluation, we select the dimension of the LSA feature as 150, which has the

best explained variance ratio as 0.87.

Due to the lack of attack datasets that have the associated network system en-

vironmental data, the historical attack records is simulated based on the real APT

attack reported by the cybersecurity company FireEye in 2017 (The FireEye, 2017).
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The APT attack is a stealthy threat that uses continuous and sophisticated hacking

techniques to access a system over months or years and is very challenging to be

detected (Alshamrani et al., 2019). Table 6.3 presents the details of the threat.

Table 6.3: The Overview of Threat Features in the Evaluation

Case The Software Set (Ssw) The CVSS Set∗ (SCV SS)

The FireEye (2017) Adobe flash, Java, Microsoft Windows,

Microsoft office, Microsoft word

⟨L,C,C,C⟩, ⟨L,P, P, P ⟩,

⟨M,C,C,C⟩
∗L/M/H/P/N/C: (L)ow, (M)edium, (H)igh, (P)artial, (N)one, (C)omplete.

The neural network side of the neuro-symbolic learning-based assessment model is

a four-layer neural network model with 150 nodes in the input layer, 100 nodes in the

first hidden layer, 50 nodes in the second hidden layer. A dropout layer is applied with

a 0.25 dropout rate to prevent overfitting. To train the assessment model, the training

set, validation set, and testing set are randomly sampled from the dataset at the rate

of 80%, 10%, and 10% by excluding vulnerabilities for labeling and evaluation.

6.2.2 Results

ILLATION consolidates the initial risk assessment derived by the initial assess-

ment model and the network constraints. These constraints are derived from network

setups by the prioritization reasoning engine. The network setups are flow policies

from an SDN controller in the simulated SDN network. A flow rule indicates the

flow traffic directions and types that are allowed in this network setup by applying

defense mechanisms. A logical fact in the network profile knowledge base repre-

sents the network traffic reachability between hosts. For example, the logic fact

of network reachability(host1, host2, http) indicates that host1 can send packets to

host2 through HTTP. ILLATION can identify network reachability representations
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at both layer-2 and layer-3 by associating a host to its MAC address and IP address,

respectively. ILLATION can execute on multiple network profile knowledge bases

and can output the vulnerability prioritization result to a specific network profile. By

reasoning with the network profile knowledge base and the initial assessment model’s

output, the prioritization reasoning engine assesses vulnerability risk as Rule 6.2.

Table 6.4: The Running Time (in Second) of the Network Profiling Parser in a Scal-

able Computer Networking System.

Vulnerable

Hosts in the

network

Numbers of Node Con-

nectivity

Network Setups Data

Size (in MB)

Network Profiling

Parser Running Time

(in Second)

10 48 0.009 0.609

50 447 0.079 0.61

100 1261 0.24 0.911

500 8108 1.6 1.01

1K 23405 4.6 1.11

5K 124447 25.2 2.21

10K 364476 74.1 4.13

The running time of the network profiling parser and the prioritization reasoning

engine are measured to show ILLATION’s performance and scalability in a scalable

network environment. This scalable network environment has vulnerable hosts rang-

ing from 10 to 10k and have up to 10k vulnerabilities. The average node connectivity

w.r.t. a host is around 31 in the evaluation. Table 6.4 shows the running time (in

seconds) of the network profiling parser. This parser processes the network setups

(up to 10k vulnerable hosts) listed in Table 6.4 within 5 seconds. The running time

of network profiling parser for a large size network setup data (12.65 GB) is measured

as well, and this running time is around 622 seconds.
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Table 6.5: The Running Time (in Second) of the Prioritization Reasoning Engine for

Assessing Vulnerabilities in a Scalable Computer Networking System

Vulnerable

Hosts

10 Vulner-

abilities

50 Vulner-

abilities

100 Vul-

nerabili-

ties

500 Vul-

nerabili-

ties

1K Vul-

nerabili-

ties

5K Vul-

nerabili-

ties

10K

Vulnera-

bilities

10 35.9 42.9 50.2 106 181 664 1248

50 36.2 44.4 51.5 107 184 669 1270

100 36.4 43.5 53.6 110 186 674 1255

500 38.6 45 54.2 122 195 693 1233

1K 40.2 46.4 56.8 123 218 725 1249

5K 55 61 73 142 231 931 1458

10K 93 100 109 175 271 944 1909

Based on the observation of running time in Table 6.5, the reasoning engine’s

running time is affected by the number of vulnerable hosts and the number of vulner-

abilities. The running time of the prioritization reasoning engine increases as either

the number of vulnerable hosts increases or the number of vulnerabilities increases.

ILLATION’s reasoning engine can assess 500 vulnerabilities in the network with thou-

sands of vulnerable hosts within 3 minutes (up to 175 seconds). When increasing the

vulnerabilities assessed to 1k, our reasoning engine can handle it around 4.5 minutes

(up to 271 seconds).

To investigate how the number of vulnerable hosts and vulnerabilities affect the

reasoning engine’s running time, Figure 6.5 presents the average running time for as-

sessing a vulnerability. Due to space limits, this chart only labels the average running

time of assessing 10, 50, 100, and 10000 vulnerabilities. Figure 6.5 shows that in a net-

work with 10-10k hosts, the curve of average running time per vulnerability becomes

flattened when assessing more vulnerabilities. For example, when assessing 10k vul-
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Figure 6.5: The Average Running Time (in Second Per Vulnerability) for Assessing

a Vulnerability in the Evaluation

nerabilities, the average running time per vulnerability changes from 0.12 seconds (in

10 hosts) to 0.19 seconds (in 10k hosts). While, for 10 vulnerabilities, it changes from

3.59 seconds (in 10 hosts) to 9.3 seconds (in 10k hosts). ILLATION implements Rule

6.3, 6.4, and 6.5, where more vulnerable hosts usually associate with more network

profile data (i.e., network reachability, network service, network asset). A significant

increment of the average running time per vulnerability is observed after increasing

the number of hosts over 1k. This observation matches the expected behavior of our

reasoning engine, because the node connectivity data size mainly affects the running

time, in this evaluation, the networks with less or equal to 500 hosts have less than

8.2k node connectivity, while the networks with 1k, 5k, and 10k hosts have 23k, 124k,

and 364k node connectivity, respectively, as shown in Table 6.4. Another factor that

mainly affects the total running time is the number of vulnerabilities. This reasoning
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engine is based on the Sentential Decision Diagram (SDD) (Darwiche, 2011), which is

a tree structure that defines the logical and probabilistic relationships among nodes

for reasoning. So, to assess a vulnerability, ILLATION must construct an SDD tree

structure to conduct reasoning. Assessing more vulnerabilities is usually associated

with constructing more SDD tree structures, which then results in a longer running

time. Figure 6.5 also shows the average running time per vulnerability for assessing

10k vulnerabilities is almost at the lowest level among all network setups. In the

scenario of assessing 10k vulnerabilities in the network with 10k hosts, the average

running time is 0.19 seconds per vulnerability. This finding supports that ILLATION

has the potential to handle the vulnerability prioritization tasks in a large-scale net-

work.

6.3 Summary

In this chapter, ILLATION is proposed, which is a comprehensive framework for

vulnerability prioritization in the scalable working scenarios. ILLATION enhances

the existing network agnostic vulnerability prioritization approaches by reasoning

with real network system setups (network profiles). Two network constraints are

derived based on the given network profiles. ILLATION consolidates the initial risk

assessment and network constraints as an overall risk assessment by a prioritization

reasoning engine. ILLATION models the overall risk of a vulnerability w.r.t. a

network and security setups, and establishes an efficient and scalable solution to

assess a large number of vulnerabilities in the scalable networking system.
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Chapter 7

CONCLUSION AND FUTURE WORK

This chapter summarizes the key contributions of this dissertation and present a

brief discussion on promising future research directions.

7.1 Conclusion

In this dissertation, a risk-based vulnerability prioritization framework is pro-

posed. In this framework, a vulnerability risk is assessed based on the characterized

vulnerability risk features (discussed in Chapter 4). This framework contains two

stages by successfully incorporating multiple vulnerability attributes and the net-

work and security setups into vulnerability prioritization. These two stages include

the vulnerability risk assessment (discussed in Chapter 5) and the vulnerability pri-

oritization (discussed in Chapter 6). This framework employs novel combination

of neuro-symbolic learning, natural language processing and logical reasoning tech-

niques that model the overall risk of a vulnerability w.r.t. a network profile. The

main contributions are as follows.

Characterizing vulnerability risk: This proposed framework characterizes vul-

nerability risk from the likelihood of exploitation and the criticality of exploitation.

The initial risk assessment is refined by two network constraints, which are derived

from the given network profile based on three defined logic features as overall network

reachability, protocol match and vulnerability services status in a machine. By rea-

soning with both the node connectivity and the defense rules from a network profile,

this framework considers which service exists, how critical the service is, and which
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vulnerability can be used to attack such service.

Introducing the neuro-symbolic computing to vulnerability prioritization:

Based on our best knowledge, the proposed vulnerability risk assessment model is

the first study to assess vulnerability risk by utilizing the neuro-symbolic computing.

This proposed vulnerability risk assessment model learns threat attributes, and pro-

vides a realistic assessment solution based on past risk/attack history for a computer

networking system. The output of the symbolic side (based on logic reasoning) refines

the output of the neural network model (based on machine learning/deep learning).

By reasoning with the likelihood of exploitation from LSA features and the criticality

of exploitation from the CVSS features, this neuro-symbolic computing-based risk

assessment model is more data-efficient than the neural network-based model.

Establishing an efficient and scalable solution to assess a large number

of vulnerabilities: This framework embeds the network setup data as knowledge

bases. To avoid the high computation complexity in the existing network specific ap-

proach, the absorption law of logic reasoning engine is applied by deriving the overall

network reachability for the host instead of path enumeration. In the evaluation, the

proposed vulnerability prioritization reasoning engine can assess 1k vulnerabilities in

the network (up to 10k vulnerable hosts), in about 4.5 minutes in total, which could

support the network security operation in real-time. To assess vulnerabilities under

the same network setups, the average running time of assessing 10k vulnerabilities is

always at the lowest level with up to 0.19 seconds per vulnerability. This makes the

proposed vulnerability prioritization reasoning engine suitable for implementation in

a large-scale network system, which usually has a large number of vulnerabilities.
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7.2 Future Work

In the evaluation, due to the lack of attack data and network setups data from a

real system, the proposed vulnerability risk assessment model is evaluated with his-

torical threats (identified by Microsoft vulnerabilities in MVs 2015 and APT attack

vulnerabilities in APTVs 2017). It may not have all historical threats from the given

dataset for a given system, and in reality, it can be very challenging to build such

a dataset. Furthermore, the proposed prioritization reasoning engine is evaluated

in an emulated computer networking system with randomly deployed vulnerabilities

simulated by a script. The overall result shows the potential to handle vulnerabil-

ity prioritization tasks in large-scale networks with a large number of vulnerabilities.

To implement this prioritization reasoning engine in a real working scenario, users

might need to customize the basic logic engines w.r.t. their own network setup fea-

tures. Additionally, only the basic defense rules are applied when implementing the

prioritization reasoning engine in this dissertation. As discussed in Chapter 6, this

prioritization reasoning engine can be extended to analyze more complex scenarios

with more input features. Thus, the future work can investigate the performance of

the proposed framework by deploying it in a real large-scale network system to test

its performance on vulnerability management.

By considering the access control policy in the reasoning engine, this prioritization

reasoning engine can be implemented as Rule 7.1, where acl(Nodesrc, Nodedst, P riv)

represents the access control policy. According to the existing study (Ou et al., 2005),

a successful vulnerability exploit can be indicated by the escalation of privilege. By

defining the access control policy with accounts (e.g., with the client, user, root

privilege, etc.), this reasoning engine can extend Rule 6.1 to Rule 7.1 to capture the

change of privilege on machines. Additionally, this reasoning engine can extend to
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use node connect l2(Nodesrc, Nodedst) to represent the layer-2 connectivity to assess

vulnerabilities for layer-2 attacks (e.g., the ARP Spoofing attack). In this way, the

proposed framework can be used to analyze layer-2 mitigation actions, which adjust

network configurations at the data link layer (e.g., isolating a suspicious host by

changing its MAC address (Chung et al., 2013)). The good extension capability of

the logic model has been proved in other logic model-based studies (Bacic et al., 2006).

By building upon this basic model, this framework has the capacity to analyze more

complex scenarios with more input features in future studies.

network reachability(Nodesrc, Nodedst, P rotocol, Priv) : −

node connect l2(Nodesrc, Nodedst),

node connect l3(Nodesrc, Nodedst, P rotocol),

acl(Nodesrc, Nodedst, P riv),

security rule(Nodesrc, Nodedst, P rotocol).

(7.1)

In addition, although this framework proposes the neuro-symbolic computing-based

assessment model, it can be easily extended to other assessment models (e.g., machine

learning-based models). This is because the prioritization reasoning engine processes

the initial assessment value from the assessment model as a given input, and outputs

the consolidated assessment for a vulnerability w.r.t. the given network profile. The

future work can extend this framework to various vulnerability assessment models.

Furthermore, the future study can involve the attack detection/prevention tools (e.g.,

Intrusion Detection/Prevention System, Deep Package Inspection, etc.), address how

to detect and handle the attack traffic, and investigate how to generate an optimal

mitigation action plan as well.
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