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ABSTRACT

Computational social choice theory is an emerging research area that studies the com-

putational aspects of decision-making. It continues to be relevant in modern society

because many people often work as a group and make decisions in a group setting.

Among multiple research topics, rank aggregation is a central problem in compu-

tational social choice theory. Oftentimes, rankings may involve a large number of

alternatives, contain ties, and/or be incomplete, all of which complicate the use of

robust aggregation methods.

To address these challenges, firstly, this work introduces a correlation coefficient

that is designed to deal with a variety of ranking formats including those containing

non-strict (i.e., with-ties) and incomplete (i.e., unknown) preferences. The new mea-

sure, which can be regarded as a generalization of the seminal Kendall tau correlation

coefficient, is proven to satisfy a set of metric-like axioms and to be equivalent to a

recently developed ranking distance function associated with Kemeny aggregation.

Secondly, this work derives an exact binary programming formulation for the gen-

eralized Kemeny rank aggregation problem—whose ranking inputs may be complete

and incomplete, with and without ties. It leverages the equivalence of minimizing

the Kemeny-Snell distance and maximizing the Kendall-tau correlation, to compare

the newly introduced binary programming formulation to a modified version of an

existing integer programming formulation associated with the Kendall-tau distance.

Thirdly, this work introduces a new social choice property for decomposing large-

size problems into smaller subproblems, which allows solving the problem in a dis-

tributed fashion. The new property is adequate for handling complete rankings with

ties. The property is leveraged to develop a structural decomposition algorithm,

through which certain large instances of the NP-hard Kemeny rank aggregation prob-

lem can be solved exactly in a practical amount of time.
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Lastly, this work applies these rank aggregation mechanisms to novel contexts

for extracting collective wisdom in crowdsourcing tasks. Through this crowdsourcing

experiment, we assess the capability of aggregation frameworks to recover underlying

ground truth and the usefulness of multimodal information in overcoming anchoring

effects, which shows its ability to enhance the wisdom of crowds and its practicability

to the real-world problem.
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Chapter 1

INTRODUCTION

Group decision-making has been studied extensively since the shaping of demo-

cratic society. To give equal rights to each individual, rather than a selected few, many

people have devoted their efforts to develop fair and consistent systems that aggre-

gate the opinions of several individuals to make egalitarian social decisions. Eliciting

and/or expressing the preferences over a set of alternatives or candidates as rankings

(e.g., candidate i is in first place, candidate j is in second place, etc.) is popular

across many decision-making contexts due in part to the scale-free characteristics of

these evaluations and their efficient encapsulation of large numbers of pairwise com-

parisons. Therefore, rank aggregation is a common and widely studied topic in group

decision-making. A famous early result is that of Arrow et al. (1951) who studied the

theoretical implications of the concept of a social welfare function (SWF), which maps

individual rankings into a single ranking that should represent the best compromise

among the given rankings. Therein, the author provided a set of fundamental condi-

tions that a SWF should satisfy and demonstrated that they could not be satisfied

simultaneously by any SWF. Despite this “impossibility” result, rank aggregation has

been widely used across a number of practical group decision-making settings. For

instance, Fields et al. (2013) consider a health care problem of improving nurse triage

and patient prioritization in the emergency department of a hospital. When there

are more patients waiting in the emergency room than available resources or staff,

it is important to order the patients based on the severity of their condition. How-

ever, different nurses at times provide differing prioritization of patients, which can

be represented by rankings, and thus it is necessary to resolve the conflicts among
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the multiple rankings. As additional examples, rank aggregation has been applied

to evaluate research proposals (Cook et al., 2007a), to judge student paper compe-

titions (Hochbaum and Levin, 2006b; Escobedo et al., 2021), and to improve the

annual draft preparation decision-making process of Major League Baseball (Streib

et al., 2012). Besides decision-making, rank aggregation has extensive applicability

in various other domains, such as information retrieval (Farah and Vanderpooten,

2007; Yilmaz et al., 2008), similarity search (Fagin et al., 2003; Ye et al., 2016; Gao

and Xu, 2019), and bioinformatics (Lin, 2010a,b; Marbach et al., 2012; Mandal and

Mukhopadhyay, 2017). From an operations research perspective, rank aggregation has

been previously connected to the linear ordering problem (Mart́ı and Reinelt, 2011)

and the theory of order polytopes owing to its inherent combinatorial nature—i.e., a

linear ordering is a permutation of the candidates (Fiorini and Fishburn, 2004; Heiser,

2004). Therefore, the rank aggregation problem is worth discussing in terms of both

its potential impact on core methodological aspects and its practical benefits in a

wide array of applications.

To solve the rank aggregation problem, Kemeny and Snell (1962) introduced a

distance-based framework founded on a set of intuitive metric axioms; its associated

SWF has been verified to possess many theoretical and practical benefits. Indeed,

the consensus ranking problem based on the Kemeny-Snell distance has competitive

advantages over other aggregation frameworks. Known widely as Kemeny (rank) ag-

gregation, the objective of this problem is to find a consensus ranking solution, which

is defined as a ranking with the minimum number of pairwise reversals to the set of

input rankings. Assuming there are no cycles in the majority’s pairwise preferences

and the input rankings are complete, Kemeny aggregation is guaranteed to return the

ranking solution that reflects the majority’s pairwise preferences. On the other hand,

scoring methods are not guaranteed to do so, for instance, the consensus ranking
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solution may not place the Condorcet winner (see Section 5.1) in first place. Kemeny

aggregation has been repeatedly demonstrated to be less vulnerable to manipulation

than scoring methods and more robust to outliers (Feld and Grofman, 1988; Favardin

et al., 2002; Endriss et al., 2016). The satisfaction of this and other key social choice

properties are fundamental reasons that Kemeny aggregation is preferred over various

voting methods. The Borda count method (de Borda, 1781) serves as a notable ex-

ample of the vulnerability to outliers of scoring methods. This method, which assigns

a score to each candidate based on the number of opponents it beats in an evaluation

and calculates a final score for each candidate by summing the scores earned over all

evaluations, is widely employed even though it can yield very inconsistent outcomes

(Dummett, 1998; Favardin et al., 2002), especially when the rankings are incomplete

(Moreno-Centeno and Escobedo, 2016). We remark that Kemeny aggregation and

various extensions of the Kemeny-Snell distance have been developed and applied in

the area of decision analysis—e.g., (Dwork et al., 2001; Cook, 2006; Moreno-Centeno

and Escobedo, 2016)—to reflect different assumptions about the judges’ evaluations.

1.1 Existing Challenges in Rank Aggregation

Yet, there are remaining challenges for rank aggregation: high dimensionality, in-

completeness, and ties. Large rank aggregation problems are prevalent in practice.

For example, it is not uncommon for a federal funding agency to receive hundreds

of submissions to a single program. Cushman et al. (2015) mentioned that the num-

ber of submitted proposals to the AAG program in the National Science Foundation

Astronomical Sciences Division Astronomy was 731 in 2014. As a second example

from portfolio decision analysis, Keisler (2004) and Schilling et al. (2007) consider

problems with 500 options and 173 options, respectively; in the latter, it is mentioned

that individual decision-makers had to assess their preferences for more than 50 alter-

3



natives. Furthermore, rank aggregation is applicable not only to preferential rankings

obtained from human judges but also to a variety of ordinal data encountered in a

wide array of non-human contexts such as bioinformatics, web-search engines, and

recommendation systems. In bioinformatics, rank aggregation is used to integrate

several lists of genes obtained from genomic experiments and find putative genes for

specific diseases, where each list may consist of thousands of elements (Lin, 2010a,b;

Wald et al., 2012; Kolde et al., 2012; Marbach et al., 2012; Mandal and Mukhopad-

hyay, 2017). Rank aggregation can be also used in metasearch, where a user query is

sent to multiple search engines and then the separate ranked lists returned are aggre-

gated into a representative collective list (Dwork et al., 2001; Desarkar et al., 2016).

These and other examples underscore the need to consider large rank aggregation

problems in practical decision analysis research.

Incomplete rankings are another common occurrence across various decision-making

contexts. When the overall number of alternatives to evaluate is large, it may not be

feasible or prudent for any single judge to provide a complete ranking of these al-

ternatives. Indeed, according to Miller’s law (Miller, 1956), an average human can

hold in short-term memory and judge properly only 7±2 alternatives. In addition to

this cognitive limitation, there are various other constraints (e.g., time) that would

motivate the evaluation of a smaller subset of the alternatives (i.e., an incomplete

ranking). Similarly, having the flexibility to tie some of the alternatives (i.e., a non-

strict ranking) may help make an evaluation task more manageable. In practice, it

is common for groups of alternatives to be perceived as being indistinguishable from

one another and, therefore, it may not be possible for judges to order them strictly

(Kendall, 1945). Additionally, in a wide array of contexts, a set of evaluations may

have very few distinct values and, hence, the corresponding rankings obtained from

them may have many ties (Fagin et al., 2004).
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Due to their combinatorial nature, rank aggregation problems with a large number

of alternatives are highly computationally demanding. It is known that finding the

consensus ranking is NP-hard (Bartholdi et al., 1989; Good, 1975), even when there

are only four complete rankings to be aggregated. Considering incomplete-ranking

inputs exacerbates these computational difficulties. When solving the problem via the

standard branch and bound algorithm, incompleteness increases solution symmetry,

which is defined as a permutation of the values of the variables that preserves the

set of solutions (Cohen et al., 2005; Liberti, 2008). This has the effect of slowing

down pruning of nodes and, consequently, leads to a larger branch and bound tree

(Sherali and Smith, 2001). Moreover, incomplete-ranking instances may yield a higher

number of alternative optimal solutions than complete-ranking instances, which could

also lead to less decisive outcomes (Yoo et al., 2020).

Although a number of methodologies to solve the rank aggregation problem have

been proposed, only few works have addressed the difficulties of solving this NP-

hard problem exactly (Good, 1975). To date, the vast majority of works have been

able to solve only small instances of non-strict complete rank aggregation problems

exactly. For example, Emond and Mason (2000) developed and applied a special

branch-and-bound algorithm to problems with 15 alternatives, which took an average

of one hour to solve. Ali and Meilă (2012) performed an experiment on comparing

several methods for Kemeny rank aggregation including both exact and approximate

algorithms. They tested the algorithms on the various datasets, the largest of which

considered 348 alternatives (the average length of the rankings is 314.86), which took

an average of 16 minutes to solve exactly. However, ties in the dataset are broken

with an arbitrary alphabetical rule, which means the rankings are transformed to

be strict. Betzler et al. (2014) also tested real-world as well as synthetic datasets.

The largest instance consists of 200 alternatives and it took 100 seconds to solve.
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However, their algorithm neither handled ties nor incomplete rankings. Yoo et al.

(2020) used a customized branch-and-bound algorithm to find all the exact optimal

solutions for non-strict and incomplete ranking instances. Many instances with weak

collective similarity and more than 16 alternatives could not be solved to completion

because of insufficient memory and excessive computing time.

Because the computing time and the number of solutions increase drastically as

the number of alternatives increases in the rank aggregation problem (Gross, 1962;

Dwork et al., 2001), most works have primarily focused on (meta)heuristics and ap-

proximation algorithms. For instance, Mandal and Mukhopadhyay (2017) proposed

a metaheuristic rank aggregation approach, called particle swarm optimization-based

rank aggregation. However, this approach is not applicable to partial ranked lists

(i.e., incomplete rankings) and still returns suboptimal solutions. Davenport and

Kalagnanam (2004) developed a greedy heuristic approach and applied to small and

medium sized instances (up to 50 alternatives), but their method does not provide

performance guarantees. Amodio et al. (2016) provided two heuristic algorithms, and

the largest instance they considered consists of 50 alternatives. While one of the al-

gorithms obtained three optimal solutions in 20 minutes, the other obtained only one

optimal solution within 17 seconds. It is important to highlight, however, that neither

algorithm is guaranteed to obtain optimal solutions. Moreno-Centeno and Escobedo

(2016) introduced an axiomatic distance to solve the incomplete rank aggregation

problem and developed an algorithm that was tested on instances with up to 40 al-

ternatives by adapting the implicit hitting set approach (Moreno-Centeno and Karp,

2013). Their algorithm takes at most 160 seconds to solve these instances, however, the

solution cannot contain ties. It is important to note that several approximation algo-

rithms (i.e., heuristics with provable performance guarantees) have been proposed—

e.g., (Fagin et al., 2003; Kenyon-Mathieu and Schudy, 2007; Ailon et al., 2008; Ailon,
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2010). Most notably, Ailon et al. (2008) proposed a 11/7-approximation algorithm for

strict complete rankings and Ailon (2010) introduced a 3/2-approximation algorithm

for non-strict complete rankings. The objective of this dissertation is to delve into

the three above-mentioned characteristics of rank aggregation (high dimensionality,

incompleteness, and ties) and to propose new exact approaches for addressing the

associated computational challenges.

1.2 Multimodal Judgments in Decision Making: Ranking and Rating

While this introduction has focused on ranking aggregation up to this point, it is

important to recognize that ratings are another popular mechanism for eliciting and

aggregating preference data. In fact, there is a longstanding debate as to whether

rankings or ratings, otherwise known as ordinal and cardinal preferences, should be

adopted for opinion elicitation (Ammar and Shah, 2011). Each format has its pros

and cons. One of the advantages of using ratings is that they enable the expression

of the intensity of preference, while rankings are only able to express preferences in

the relative sense. A key disadvantage of ratings is that the rating scale may not

be consistent from one person to another (Ammar and Shah, 2012); for example,

in conference peer review, certain reviewers are lenient and tend to provide higher

scores and others are more stringent and tend to provide lower scores (Wang and Shah,

2018). Contrary to cardinal inputs, ordinal inputs can avoid the issue of inconsistent

subjective scales by focusing on pairwise comparisons between items, which can be

condensed into a ranking vector (assuming each individual’s pairwise preferences are

transitive). For these and other reasons, there is no definitive conclusion whether

ratings are superior to rankings for preference elicitation or vice versa.

The vast majority of existing works on preference elicitation and collective decision-

making focus on only one modality of preference data (cardinal or ordinal). A few
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works use both types of modalities to arrive at a more comprehensive decision—e.g.,

(Kim et al., 2015; Wang and Shah, 2018; Li et al., 2018; Wang and Shah, 2020). How-

ever, these works tend to aggregate the two types of preference data separately or to

convert from one type of information to the other (e.g., induce rankings from ratings).

For example, Kim et al. (2015) integrates the scores (ratings) of individual genes to

determine a prioritized ordered list of a set of genes (ranking), which is induced from

the aggregate rating vector. One exception is that Li et al. (2018) proposes approaches

to aggregating rating and ranking information jointly from a statistical perspective.

This dissertation investigates not only the distinctive usefulness of different ranking

and rating measures, but also the effectiveness of jointly integrating both types of

data via multimodal aggregation (Section 6.5). It is worthwhile to note that con-

cept of multimodality is broadly defined across various applications (e.g., image-text

representation (Kruk et al., 2019), visual-acoustical features (Sun et al., 2020)). This

dissertation focuses only on integrating cardinal and ordinal inputs (i.e., rankings and

ratings) in a context where they are naturally related to each other.

1.3 The Wisdom of Crowds

The essence of eliciting and combining individual preferences into collective pref-

erences can be related to the idea of crowdsourcing, which is a growing paradigm

that has proven to be beneficial in a wide range of applications. Certain benefits of

crowdsourcing are enabled by the principle commonly referred to as the “wisdom

of crowds”. The wisdom of crowds theorizes that aggregated information from large

groups of people generally results in better outcomes than that from any individ-

ual, including experts (Galton, 1907). Many prominent researchers have argued and

demonstrated that individual decisions are riddled with biases and/or subjectivity,

(e.g., (Tversky and Kahneman, 1974; Kruger and Dunning, 1999; Budescu and Chen,
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2015). For example, anchoring is a cognitive bias to be assessed in this dissertation

(see Chapter 6), whereby an individual judgment heavily depends on an implicit or

explicit reference point (Tversky and Kahneman, 1974). Underestimation and over-

estimation refer to the tendency to provide relatively small estimates (Hollingsworth

et al., 1991; Charras et al., 2012; Au and Watanabe, 2013) and relatively large esti-

mates (Goldstone, 1993; Gebuis and Reynvoet, 2012), respectively. There exist several

other cognitive biases in quantitative estimation tasks (Helson, 1964; Kahneman et al.,

1982). Utilizing the collective intelligence of crowds can be recommended as a way to

attenuate such biases (Jayles and Kurvers, 2020).

However, crowds are not always wise; according to Surowiecki (2005), the follow-

ing four conditions are required to extract crowd wisdom: independence, diversity,

decentralization, and aggregation. In greater detail, each person in the crowd should

be independent, so that they pay attention mostly to their own information. The

crowd needs to be diverse, so that people are bringing different pieces of information

and not worrying about what everyone around them thinks. Moreover, each crowd

member should work in a decentralized way, so that no one is dictating or unduly

influencing the collective answer. Lastly, there needs to be a reasonable mechanism

for aggregating the separate judgments into one collective verdict. When one of these

conditions is violated, the crowd may fail to provide an accurate judgment. As a

side note, the four aforementioned conditions help define a specific version of crowd-

sourcing founded on the wisdom of crowds. Although these two concepts are used

interchangeably in many works, they are in fact not equivalent. Specifically, while the

four conditions are necessary for achieving crowd wisdom, it is not uncommon for one

or more of them to be violated in certain crowdsourcing contexts. For example, Tri-

pAdvisor and Yelp are online review platforms that use crowdsourcing but violate the

independence and decentralization conditions—each person’s ratings can be affected
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by reviews from other users and other external factors. Hence, one must be cautious

when utilizing these terminologies.

Given the importance of utilizing crowd wisdom in decision-making, it is worth-

while to sample a few recent works that utilize this concept to address a variety of

problems. As an example, Galton’s experiment use a demonstrated that the average of

787 individual estimates of the weight of an ox provided a nearly perfect guess of the

true value (Galton, 1907). Da and Huang (2020) describes how collective intelligence

can accurately forecast corporate earnings in an open web-based platform and offers

empirical evidence that encouraging independent voices among individuals improves

the accuracy of the forecast consensus. Steyvers et al. (2009) demonstrates the idea

of the wisdom of crowds effect in various complex settings. In particular, this work

asks participants to recall the correct ordering of specific sets of items or events—e.g.,

ordering the U.S. states from east to west, sorting U.S. presidents based on the time

they served in office, and ordering U.S. cities from largest to smallest populations.

The featured activities are more complicated than estimating single numerical point

estimates or answering multiple-choice questions. Yi et al. (2010) demonstrates that

the wisdom of crowds effect can be leveraged to solve combinatorial optimization

problems including instances of minimum spanning tree problem and of the traveling

salesman problem. The authors explain that the aggregated solution outperforms the

solution from the best individual. In contrast to guessing facts and predicting future

events, Müller-Trede et al. (2018) investigates whether the benefits of crowd wis-

dom can be extended to deal with judgments where there is no formal ground truth

(i.e., preferences, level of satisfaction). The work supports the notion that combin-

ing divergent perspectives can provide wise advice even in subjective decision-making

contexts—e.g., predicting the enjoyment of musical pieces and short films.

As the preceding paragraphs explain, the majority of the wisdom of crowds litera-
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ture deals with quantitative judgments in large part because it is more straightforward

than aggregating qualitative judgments. The average and median are the most popu-

lar methodologies to aggregate quantitative judgments (Mannes, 2009; Müller-Trede

et al., 2018; Winkler et al., 2019). For example, Galton (1907), Da and Huang (2020)

and Müller-Trede et al. (2018) use a simple arithmetic average to compute the col-

lective estimates. A few works implement more advanced aggregation methods. Mao

et al. (2012, 2013) assess the accuracy of computational social choice approaches

(e.g., the Borda rule) to derive the top alternative and the correct ordering of all

alternatives and compare the results with traditional approaches. This dissertation

seeks to compare the performances of nine different aggregation methods, including

the average and the median,to obtain accurate collective estimate on a crowdsourcing

activity.

Although the wisdom of crowds is generally beneficial, collecting information costs

time and money, and the quality of the resulting collective judgment may have a

practical ceiling. In other words, the additional cost to increase the crowd size may

be outweighed by the marginal improvement in collective estimation accuracy. Finding

the optimal trade-off point at which good crowd wisdom can be obtained with fewer

resources is an intriguing topic. A small number of studies have investigated the power

of the wisdom of crowds under limited crowd sizes (Goldstein et al., 2014; Siddharthan

et al., 2016; Navajas et al., 2018). For example, Mannes (2009) discovered that as few

as five selected crowd members can outperform the best member or the average of

the whole crowd, when these members are selected based on historical performance.

Goldstein et al. (2014) showed theoretically that it is worthwhile to increase the size of

the crowd when the added individuals are at least half as good as the crowd average.

However, the historical performance of individual participants or workers may not be

available, and it may be difficult to assess how well new participants will perform in a
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particular real-world context. This dissertation contributes to this research direction

by finding the adequate crowd size for different aggregation methods with respect

to a standard dot-counting crowdsourcing experiment which does not require any

information regarding the historical performance of the participants.

1.4 Contributions and Overview of the Dissertation

This dissertation makes both theoretical and practical contributions to the fields of

computational social choice and crowdsourcing. In summary, we introduce mathemat-

ical frameworks for handling heterogeneous ranking data with three practical charac-

teristics that have been historically overlooked: high dimensionality, incompleteness,

and ties. More specifically, we introduce a new correlation coefficient measure for han-

dling non-strict and incomplete rankings and prove that this measure satisfies a set of

metric-like axioms. Moreover, we develop a generalized binary programming formu-

lation for high-dimensional non-strict incomplete rank aggregation. To handle even

larger ranking instances, we also develop a social choice property to solve large-scale

rank aggregation problems that allows for the decomposition of certain large instances

into smaller subproblems. Moreover, we adapt these mathematical frameworks in a

crowdsourcing application that seeks to reconcile multiple modalities of information

to derive better collective judgments. The following paragraphs contain the overview

of the dissertation and descriptions of the contents of each chapter.

Chapter 2 begins with notation and preliminary conventions used throughout the

dissertation. It provides a literature review on the aggregation frameworks, including

axiomatic distances, correlation coefficients, and voting rules. This discussion includes

an overview of the underlying axioms of some of these measures along with the re-

spective optimization models.

Chapter 3 introduces a correlation coefficient that is designed to deal with a
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variety of ranking formats including those containing non-strict (i.e., with-ties) and

incomplete (i.e., unknown) preferences. The new measure, which can be regarded as

a generalization of the seminal Kendall-τ correlation coefficient, is proven to satisfy

a set of metric-like axioms and to be equivalent to a recently developed ranking

distance function associated with Kemeny aggregation. In an effort to further unify

and enhance both robust ranking methodologies, this chapter proves the equivalence

of an additional distance and correlation-coefficient pairing in the space of non-strict

incomplete rankings. The bridging of these complementary theories reinforces the

singular suitability of the featured correlation coefficient to solve the general consensus

ranking problem.1

Chapter 4 introduces an exact binary programming formulation for the general-

ized Kemeny rank aggregation problem. The formulation can deal with complete and

incomplete rankings with and without ties, and it has a special connection with the

weak-order polytope. This formulation provides an exact optimal solution of Kemeny

rank aggregation problems with up to 210 alternatives within 10 minutes. As such,

it differentiates itself from the vast majority of existing rank aggregation approaches,

which focus on approximation algorithms and heuristics. To assess the practical im-

plications of the binary programming formulation, we conduct a set of computational

experiments on benchmark datasets as well as on instances drawn from probabilistic

distributions.

Chapter 5 derives a new social choice property for expediting the solution process

to Kemeny aggregation with ties, which we refer to as NXCC (Non-strict Extended

Condorcet Criterion). This property is leveraged to develop a structural decomposi-

tion algorithm that decomposes large-size problems into smaller subproblems, while

guaranteeing that the optimal solutions to the subproblems can be joined to provide
1An expanded version of Chapter 3 has been published in Yoo et al. (2020).
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the overall optimal solution. To test the effectiveness of NXCC, we compare the com-

puting time of solving non-decomposed (i.e., full) instances and decomposed instances

using the binary programming formulation introduced in Chapter 4.2

Chapter 6 applies the featured binary programming formulation and other compu-

tational social choice mechanisms in a novel context, namely a cognitive crowsourcing

task. In more detail, we develop a human subject study and implement it in a pop-

ular online crowdsourcing platform. In the experiment, we assess the capability of

various aggregation frameworks to recover an underlying ground truth, highlighting

the ability of the proposed methodologies to enhance the wisdom of crowds. We also

investigate whether multimodal input elicitation can cause an anchoring and other

cognitive biases, and whether these biases negatively affect the collective estimation

quality. Expressly, we discover that eliciting multimodal inputs interdependently (i.e.,

asking cardinal estimates based on the ordinal estimates) can create anchoring, which

negatively affects the collective estimation accuracy. This experiment also provides

insights that the multimodal aggregation models provide a better collective estimate

than traditional computational social choice mechanisms (e.g., median, mean, Borda

rule). Lastly, to improve from the equal-weighted multimodal aggregation approach,

we investigate the effect on the collective estimates of assigning different priority

weights to the cardinal and ordinal input modalities.3

2A modified version of Chapter 4 and 5 has been published in Yoo and Escobedo (2021).
3A shorter preliminary version of Chapter 6 has been published in Kemmer et al. (2020).
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Chapter 2

OVERVIEW OF AGGREGATION FRAMEWORKS

This chapter aims to provide the notation conventions to be used throughout the

proposal and an overview of aggregation frameworks.

2.1 Notation and Preliminary Conventions

V A set of alternatives (i.e., V = {v1, v2, v3, ..., vn}), where vi denotes an alternative

i and n is the number of alternatives

V k The k-th subset of alternatives, where V k ⊆ V , k ≥ 1

P(V ) A family of all possible partitions of V

(e.g., if {V 1, V 2} ∈ P(V ), then V 1 ∪ V 2 = V and V 1 ∩ V 2 = ∅)

L A set of judges

A A set of input rankings (ordinal-valued evaluations)

a` The ranking from judge ` (` = 1, 2, 3, .., |L|), where a` ∈ A

a`i Rank position of vi in the evaluation from judge `, where ` = 1, 2, 3, .., |L|

vi � vj vi is preferred over vj (i.e., ai < aj for some ranking a)

vi ≈ vj vi is tied with vj (i.e., ai = aj for some ranking a)

vi � vj vi is preferred over or tied with vj (i.e., ai ≤ aj for some ranking a)

pij The number of judges who prefer vi over vj (i.e., |
{
a` ∈ A : a`i < a`j

}
|)

tij The number of judges who tie vi and vj (i.e., |
{
a` ∈ A : a`i = a`j

}
|)

vi
m� vj A majority of judges prefers, rather than disprefers, vi over vj (i.e., pij > pji)

vi
m≈ vj No majority of judges prefers or disprefers vi over vj (i.e., pij = pji)

vi
M� vj A decisive majority of judges prefers vi over vj (i.e., pij > pji + tij)

vi
M≈ vj No decisive majority of judges prefers vi over vj , or vice versa (i.e., tij ≥ |pij−pji|)

Table 2.1: Symbols and Notations
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Denoting V = {v1, . . . , vn} as a set of alternatives, a judge’s ranking or ordinal

evaluation of V is characterized by a vector a of dimension of n, whose i-th element

denotes the ordinal position assigned to alternative vi. If ai < aj, a is said to prefer

vi to vj (or to disprefer vj to vi), and when ai = aj, a is said to tie vi and vj, where

1 ≤ i, j ≤ n and i 6= j. Additionally, when ai is assigned the null value “•”, vi is

said to be unranked within a; the alternatives explicitly ranked in a are denoted

by the subset Va ⊆ V (i.e., ai 6= • for vi ∈ Va). For example, in the 5-alternative

ranking a = (1, 2, 2, •, 4), v1 is preferred over v2, v3, and v5; v2 and v3 are tied for the

second position but both are preferred over v5; v4 is left unranked; and Va = V \{v4}.

The following definitions highlight the primary ranking spaces by which they can be

categorized.

Definition 1. Let Ω = {•, 1, . . . , n}n denote the broadest ranking space consist-

ing of all (i) strict, (ii) non-strict, (iii) complete, and (iv) incomplete rankings—

corresponding to rankings (i) without ties, (ii) with and without ties, (iii) full, and

(iv) partial and full, respectively. Since non-strict and incomplete rankings also en-

compass strict and complete rankings, respectively, Ω is denoted henceforth as the

space of non-strict incomplete rankings.

Definition 2. Let ΩC = {1, . . . , n}n denote the space of complete rankings over n

alternatives, which consists of all non-strict (and strict) rankings where every alter-

native is explicitly ranked (i.e., partial evaluations are disallowed).

Definition 3. Let ΩS = {•, 1, . . . , n}n denote the space of strict rankings over n

alternatives, which consists of all incomplete (and complete) rankings where no alter-

natives are tied.

From the above definitions, it is evident that ΩC ⊂ Ω, ΩS ⊂ Ω, and ΩC and ΩS are

incomparable.
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The principal focus of this work is on deterministic metric-based methods for

comparing and aggregating rankings, which are regarded as the most robust method-

ologies within Operation Research and Social Choice (Brandt et al., 2016). Among

them, distance-based and coefficient-based frameworks are the methodologies mainly

used in robust rank aggregation due to their mathematically rigorous (i.e., axiomatic)

foundations. The distance-based framework seeks a solution that minimizes the cu-

mulative disagreement with the input rankings, while the coefficient-based framework

seeks a solution that maximizes the cumulative agreement with the input rankings.

Accordingly, these methods are often referred to as consensus ranking aggregation

methods. Using these two frameworks, we can describe the rank aggregation prob-

lem. Letting d(·) : Ω2 → R1
+∪{0} denote an arbitrary ranking distance function, the

distance-based rank aggregation problem is stated formally as:

arg min
r∈ΩC

|L|∑
`=1

d(r,a`), (2.1)

where a` ∈ Ω for ` = 1, . . . , |L|.

Alternatively, let τ(·) : Ω2 → [−1, 1]1 denote an arbitrary ranking correlation

function. The correlation-based rank aggregation problem is stated formally as:

arg max
r∈ΩC

|L|∑
`=1

τ(r,a`), (2.2)

where a` ∈ Ω for ` = 1, . . . , |L|.

Expression (2.1) can be intuitively interpreted as the problem of finding a ranking

r that minimizes disagreement—quantified according to d—collectively with non-

strict incomplete rankings; Expression (2.2) can be intuitively interpreted as the

problem of finding a ranking r that maximizes agreement—quantified according to

τ—collectively with the same inputs. For certain distance and correlation-coefficient

pairings (see Equation (2.9), (3.9), (3.13)), the two respective optimization problems
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are equivalent. It is imperative to point out that, although the input rankings are

allowed to be incomplete to allow flexibility of preference expression, the consensus

ranking is required to lie in the space of complete rankings—that is, r ∈ ΩC is a

constraint of both problems.

2.2 Distance-based Models

A distance function is typically advocated as the most suitable for aggregating

inputs through a set of mathematical axioms it uniquely satisfies. Kemeny and Snell

(1962) introduced a first axiomatic distance for ranking in ΩC , which measures the dis-

agreement among people. The consensus ranking framework (i.e., finding the solution

that has minimum disagreement with the group) based on the Kemeny-Snell dis-

tance has competitive advantages over other aggregation frameworks. Known widely

as Kemeny aggregation, this framework is less vulnerable to manipulation than scor-

ing methods (Feld and Grofman, 1988; Favardin et al., 2002; Endriss et al., 2016).

The Kemeny-Snell distance, denoted as dKS, is defined as follows (note that sign(x)

returns 1 if x > 0, 0 if x = 0, and −1 if x < 0):

dKS(a, b) = 1
γ

n∑
i=1

n∑
j=1
|sign(ai − aj)− sign(bi − bj)| (2.3)

where a, b ∈ ΩC and γ is a constant associated with a chosen minimum positive

distance unit. In Kemeny and Snell (1962), γ = 2, corresponding to a minimum

distance unit of 1 (since each alternative pair is counted twice in the above expression).

Put simply, dKS(a, b) measures the number of pairwise rank reversals required to turn

a into b. They also argued that the distance should follow a set of intuitive metric-

based axioms.

KS-Axiom 1 (Nonnegativity). d(a, b) ≥ 0; and d(a, b) = 0 if and only if a and b

are the same ranking.
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KS-Axiom 2 (Commutativity). d(a, b) = d(b,a).

KS-Axiom 3 (Triangular Inequality). d(a, b) + d(b, c) ≥ d(a, c), and the equality

holds if and only if b is between a and c. Note that b is said to be between a and c if,

for each (vi, vj), the preference judgment of b either (i) agrees with a or (ii) agrees

with c or (iii) a prefers vi, c prefers vj, and b ties them.

KS-Axiom 4 (Anonymity). If a′ results from a by a permutation of the alternatives

in V , and b′ results from b by the same permutation, then d(a, b) = d(a′, b′).

KS-Axiom 5 (Extension). If two rankings a and b agree except for a set V ′ of k

elements, which is a segment of both, then d(a, b) may be computed as if these k

alternatives were the only alternatives being ranked.

KS-Axiom 6 (Scaling). The minimum positive unit is 1.

Distance dKS was extended to handle incomplete rankings in (Cook et al., 2007b;

Dwork et al., 2001). The corresponding distance function between a, b ∈ Ω is defined

as:

dPKS(a, b) = dKS(a|(Va

⋂
Vb), b|(Va

⋂
Vb)), (2.4)

where a|(Va

⋂
Vb), b|(Va

⋂
Vb) denote the projections of each ranking onto the subset of

alternatives evaluated in both rankings. In other words, dPKS enforces the intuitive

interpretation that ranking disagreements should be based only on the alternatives

ranked in common by a and b. However, Moreno-Centeno and Escobedo (2016) sug-

gests that utilizing dPKS may be undesirable for the group decision-making context

due to an associated systematic bias. They show that despite the aligned preferences

of a large majority, a few judges with opposing preferences can dominate the resulting

consensus ranking by simply evaluating more alternatives.
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The normalized projected Kemeny Snell distance, written here succinctly as dNPKS,

was developed in Moreno-Centeno and Escobedo (2016) to overcome the aforemen-

tioned drawback of dPKS. The dNPKS distance is equivalent to dKS when the inputs

are restricted to space ΩC , but it uniquely satisfies an intuitive set of axioms desired

of any distance defined in space Ω. The corresponding distance function between

a, b ∈ Ω is defined as:

dNPKS(a, b) =


dKS(a|(Va

⋂
Vb),b|(Va

⋂
Vb))

n̄(n̄−1)/2 if n̄ ≥ 2,

0 otherwise,
(2.5)

where n̄ := |Va
⋂
Vb|. Moreno-Centeno and Escobedo (2016) modified Kemeny and

Snell’s axioms to obtain a set of axioms appropriate for a distance between incomplete

rankings, which is given as follows:

KS’-Axiom 1 (Relevance). d(a, b) = d(a|(Va

⋂
Vb), b|(Va

⋂
Vb)).

KS’-Axiom 2 (Nonnegativity). d(a, b) ≥ 0; and d(a, b) = 0 if and only if a|(Va

⋂
Vb)

and b|(Va

⋂
Vb) are the same ranking.

KS’-Axiom 3 (Commutativity). d(a, b) = d(b,a).

KS’-Axiom 4 (Relaxed Triangular Inequality). d(a|(Va

⋂
Vb

⋂
Vc), b|(Va

⋂
Vb

⋂
Vc)) +

d(b|(Va

⋂
Vb

⋂
Vc), c|(Va

⋂
Vb

⋂
Vc)) ≥ d(a|(Va

⋂
Vb

⋂
Vc), c|(Va

⋂
Vb

⋂
Vc)) and the equality holds

if and only if b|(Va

⋂
Vb

⋂
Vc) is between a|(Va

⋂
Vb

⋂
Vc) and c|(Va

⋂
Vb

⋂
Vc).

KS’-Axiom 5 (Anonymity). If a′ results from a by a permutation of the alternatives

in V , and b′ results from b by the same permutation, then d(a, b) = d(a′, b′).

KS’-Axiom 6 (Extension). If two rankings a and b agree except for a set V ′ of

k elements, which is a segment of both, then d(a, b) may be computed as if these k

alternatives were the only alternatives being ranked.
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KS’-Axiom 7 (Normalization). d(a, b) ≤ 1; and d(a, b) = 1 if and only if b|(Va

⋂
Vb)

is the reverse ranking of a|(Va

⋂
Vb) (the latter must be a linear ordering).

These axioms are uniquely satisfied by dNPKS. Note that dPKS satisfies all the axioms

that dNPKS satisfies except the normalization axiom (KS’-Axiom 6); specifically, dPKS

satisfies KS-Axiom 6, where as dNPKS satisfies KS’-Axiom 6 (Moreno-Centeno and

Escobedo, 2016).

Another distance metric referenced in this work is the Kendall distance, which is

adapted from the Kendall-τ correlation coefficient (Kendall, 1938), defined as:

dτ (a, b) =
∑

1≤i<j≤n
1[(ai−aj)(bi−bj)<0].

This distance counts the number of the pairwise inversions between a and b and

is equivalent to dKS when the rankings are strict, although the distances are scaled

differently. Specifically, when one pair of items has (strict) opposing preferences, dKS

accrues a value of 2 (based on one of the Kemeny-Snell axioms), while dτ accrues a

distance a value of 1. Hence, the distances are related by the equation dKS(a, b) =

2dτ (a, b). Since the original Kendall-τ distance is defined only for strict rankings,

Brancotte et al. (2015) redesigned the Kendall-τ distance for non-strict rankings,

which is defined as follows:

dτ ′(a, b) =
∑

1≤i<j≤n
1((ai<aj)∩(bi>bj))∪((ai>aj)∩(bi<bj))∪((ai=aj)∩(bi 6=bj))∪((ai 6=aj)∩(bi=bj)).

The main difference between dKS and the Kendall-τ distance for non-strict rankings

is that when one ranking ties two specific alternatives and the other ranking does not,

the Kendall-τ distance for non-strict rankings returns the same distance as when the

two rankings have opposite strict preferences. Conversely, the dKS distance returns

half of the distance value in the former case relative to the latter case.

Moreover, there exists an aggregation framework for ratings (or intensity rank-

ings). Cook and Kress (1985) quantifies the distance between complete ratings by
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considering the intensity of the preferences. Given complete ratings a and b:

dCK(a, b) = 1
2

n∑
i=1

n∑
j=1
|(ai − aj)− (bi − bj)|

where ai and bi are the rating scores of alternatives vi and vj in ratings a and b,

respectively. Here are the set of axioms that dCK satisfies:

CK-Axiom 1 (Nonnegativity). d(a, b) ≥ 0.

CK-Axiom 2 (Commutativity). d(a, b) = d(b,a).

CK-Axiom 3 (Triangular Inequality). d(a, b) + d(b, c) ≥ d(a, c), and the equality

holds if and only if b is between a and c.

CK-Axiom 4 (Proportionality). The distance between any two adjacent ratings is

proportional to the degree of adjacency.

CK-Axiom 5 (Scaling). The minimum positive unit is 1.

Extended from dCK , the normalized projected Cook-Kress distance, denoted as

dNPCK is developed for incomplete rating aggregation (Fishbain and Moreno-Centeno,

2016). Given incomplete ratings a and b, dNPCK is defined as follows:

dNPCK(a, b) =


dCK(a|(Va

⋂
Vb),b|(Va

⋂
Vb))

4R·
⌈
|Va∩Vb|

2

⌉
·
⌊
|Va∩Vb|

2

⌋ if n̄ ≥ 2,

0 otherwise,
(2.6)

where n̄ := |Vc
⋂
Vd| and where R := U −L is the range of the ratings. The following

axioms are obtained by slightly modifying the axioms for a distance between complete

ratings.

CK’-Axiom 1 (Relevance). d(a, b) = d(a|(Va

⋂
Vb), b|(Va

⋂
Vb)).

CK’-Axiom 2 (Nonnegativity). d(a, b) ≥ 0.
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CK’-Axiom 3 (Commutativity). d(a, b) = d(b,a).

CK’-Axiom 4 (Relaxed Triangular Inequality). d(a|(Va

⋂
Vb

⋂
Vc), b|(Va

⋂
Vb

⋂
Vc)) +

d(b|(Va

⋂
Vb

⋂
Vc), c|(Va

⋂
Vb

⋂
Vc)) ≥ d(a|(Va

⋂
Vb

⋂
Vc), c|(Va

⋂
Vb

⋂
Vc)) and the equality holds

if and only if b|(Va

⋂
Vb

⋂
Vc) is between for incomplete ratings a|(Va

⋂
Vb

⋂
Vc) and c|(Va

⋂
Vb

⋂
Vc).

CK’-Axiom 5 (Proportionality). The distance between any two adjacent ratings is

proportional to the degree of adjacency.

CK’-Axiom 6 (Normalization). d(a, b) ≤ 1; and d(a, b) = 1 if and only if b|(Va

⋂
Vb)

and a|(Va

⋂
Vb) are opposite ratings.

Similar to dCK and dNPCK , the separation-deviation model (SD) can be used

where the input is given as pairwise comparison preferences of alternative and point-

wise score evaluation (Hochbaum, 2010). The two major components of this model

are: separation and deviation. The separation term takes into account both the differ-

ence between the pairwise comparison of two alternatives i and j in the aggregated

outcome and each participant’s evaluations (separation), which is equivalent to the

difference of intensities in ratings as in dCK , and the difference between the value of

alternative i in the aggregated outcome and in each participant’s evaluation (devia-

tion) (Hochbaum, 2010). Note that ri represents the rating value of alternative vi in

the aggregated outcome and a`i represents the rating value of alternative i in the `-th

judge’s evaluation.

minimize
r

|L|∑
`=1

(
n∑

i,j=1
s`ij((ri − rj)− (b`i − b`j))+

n∑
i=1

d`i(ri − b`i)) (2.7a)

subject to L ≤ ri ≤ U i = 1, ..., n (2.7b)

ri ∈ Z+
∪{0} i = 1, ..., n. (2.7c)

The function s`ij penalizes the difference between the separation gap of alternatives

i and j in the aggregated outcome and in `-th participant and the function d`i pe-
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nalizes the difference between the deviation gap in the aggregated outcome and in

`-th participant with respect to alternative i. Here, ri is constrained to be integer and

the upper and lower bounds of ri are max(a`i) and min(a`i), respectively. In order to

ensure that the model is solvable in polynomial time, the penalty functions s`ij and

d`i must be convex. For linear s`ij and d`i , because the constraint coefficient matrix is

totally unimodular, the resulting problem can be solved as a linear program and r is

guaranteed to be integral (Hochbaum, 2010; Escobedo et al., 2021).

2.3 Coefficient-based Models

Coefficient-based frameworks are another popular methodology in rank aggrega-

tion; while ranking distances measure disagreement, ranking correlation coefficients

measure similarity (i.e., agreement). They have been investigated primarily in statis-

tics literature—e.g., (Kendall, 1938; Ahlgren et al., 2003; Yilmaz et al., 2008). Kendall

(1938) developed a coefficient-based framework, which is closely linked to the Kemeny-

Snell distance. The original methodology called Kendall-τ is a non-parametric cor-

relation coefficient that measures the agreement among strict rankings, i.e., rankings

that do not allow ties; it was extended to handle non-strict rankings, i.e., rankings

that allow ties in Kendall (1948). Emond and Mason (2002) provided another version

of Kendall-τ correlation coefficient for non-strict rankings and demonstrated that the

Kendall-τ extended correlation coefficient, τx, returns the same optimal solutions as

the Kemeny aggregation framework, when the inputs are also complete. It is defined

as follows:

τx(a, b) =
∑n
i=1

∑n
j=1 aijbij

n(n− 1) ,
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where aij (and bij) is the (i, j)−element of the ranking-matrix of complete rankings

a (and b), [aij], given by:

aij =


1 if ai ≤ aj,

−1 if ai > aj,

0 if i = j.

(2.8)

While the original τ coefficient (and the corresponding representation for dKS) treats

a tie as an expression of indifference by assigning it a value of 0 (see Emond and

Mason (2002)), τx treats a tie as an expression of positive agreement by assigning

it a value of 1 in the ranking-matrix. There exists a formal connection between key

axiomatic-distance and correlation-coefficient. Emond and Mason (2002) prove that

τx is connected to dKS via the following equation:

τx(a, b) = 1− γ dKS(a, b)
n(n− 1) , (2.9)

where γ > 0 is the minimum dKS distance unit (see Equation (2.3)). The above

equation illustrates the connection between the measure of agreement (the correlation

coefficient) and the measure of disagreement (the distance). To recognize this, it is

important to explain that τx achieves values of 1 and -1 when there is complete

agreement and complete disagreement, respectively, between two rankings a and b.

Hence, it can be interpreted that the expression of τx(a, b) starts from a default

assumption of perfect agreement between a and b (i.e., a correlation value of 1), and

then it subtracts any disagreements between a and b from this perfect agreement,

as quantified by dKS(a, b). In the case when i and j are tied, dKS subtracts 0 (i.e.,

indifference), as expected; however, in doing so, τx keeps the default assumption of

agreement between i and j.

From this connection, the respective problems give equivalent optimal solutions,

that is,

arg min
r

|L|∑
`=1

dKS(a`, r) = arg max
r

|L|∑
`=1

τx(a`, r), (2.10)
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where r is a complete ranking and a` is the evaluation from judge ` ∈ L. This

connection also renders τx with a similar axiomatic foundation as dKS. At the same

time, it suggests that the inadequacies of the latter to handle incomplete rankings

(Moreno-Centeno and Escobedo, 2016) carry over to the former. Chapter 3 will explore

this premise.

We remark that alternative correlation coefficients have been defined for the space

of incomplete rankings using concepts from fuzzy set theory, which deals with the

representation of incomplete or vague information. In this context, missing ranking

values are expressed as an interval (Slowinski, 2012)—which serves to estimate the

missing or incomparable information. This treatment is useful in various contexts and

covered in various works (e.g., Grzegorzewski (2004, 2006, 2009); Grzegorzewski and

Ziembinska (2011)), but it does not conform with the neutral treatment highlighted in

the dissertation. Therefore, it is not considered for the remainder of the dissertation.

2.4 Other Models

This section introduces some relevant models for aggregation problem that are

motivated from other popular voting mechanisms but are neither based on ranking

distances nor ranking correlation coefficients.

Average

The aggregated rating r from the average method is:

r = (
∑|L|
`=1 b

`
1

|L(1)| ,
∑|L|
`=1 b

`
2

|L(2)| , ...,
∑|L|
`=1 b

`
n

|L(n)| )

where L(i) denotes the subset of participants who evaluated alternative (an image) i.
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Median

The median method finds the halfway point of the cardinal estimates after arranging

the estimates in order from least to greatest. Specifically, assuming |L| is even, the

aggregated rating r from the median method is:

r = (
b̄1 |L(1)|

2
+ b̄1 |L(1)|

2 +1

2 ,
b̄2 |L(2)|

2
+ b̄2 |L(2)|

2 +1

2 , ...,
b̄
n
|L(n)|

2
+ b̄

n
|L(n)|

2 +1

2 )

where b̄ij is the jth value in the list of arranged estimates of alternative i sorted from

least to greatest.

In the social choice theory, three rules mentioned below are generally called social

choice functions, which map multiple preference rankings and/or ratings into a single

winner from the set of candidates, because they select one single alternative rather

than the ranking of the set of alternatives (note that, as the distance and correlation

coefficient-based frameworks can return a full ranking of alternatives, they are classi-

fied as social welfare functions). To obtain a full ranking, each alternative is ordered

according to the score given by the rules.

Plurality Rule

The plurality rule selects an alternative with the most first-place votes. The function

for determining whether alternative i is in the first place in ranking evaluation from

participant ` is given by (Brandt et al., 2016):

f(a`i) =


1 if a`i = 1,

0 else.

The plurality rule assigns a score to each alternative, where a score of alternative i is

defined as:

plurality(i) =
|L|∑
`=1

f(a`i).
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The final ranking of the plurality rule can be obtained by ordering the alternatives

in descending order based on the score.

However, the plurality rule disregards the rank positions of alternatives which are

not in first place. In Table 2.2, v1 is selected as a plurality winner because it has the

most first-place votes. However, v1 is selected as the most dispreferred alternative

three times. Intuitively, v2 should have been selected as a winner because v2 retains

the top-2 position in all the input rankings.

Rankings
a1 a2 a3 a4 a5 a6 Plurality score

A
lt

er
na

ti
ve

s v1 1 5 1 5 1 5 3
v2 2 2 1 2 1 2 2
v3 3 4 4 1 3 3 1
v4 4 3 1 2 5 4 1
v5 5 1 5 4 4 1 2

Table 2.2: An Example Showing the Disadvantage of the Plurality Rule

Borda Rule

The Borda rule is a well-known method that assigns a score to each alternative in

a ballot according to how many alternatives it defeats and choose the alternative

with the highest score as a winner (Brandt et al., 2016). Mathematically, assuming

that there exist n alternatives and the highest score is n− 1 (because there can exist

maximum n−1 alternatives which are ranked lower than the first-placed alternative),

the Borda rule assigns a score to each alternative, where a score of alternative i is

defined as:

Borda(i) =
|L|∑
`=1

(n− a`i).

To determine a final ranking of the Borda rule, the alternatives are ordered in de-

scending order based on the score.
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This method can yield inconsistent outcomes due to the vulnerability (Dummett,

1998; Favardin et al., 2002), especially when the rankings are incomplete (Moreno-

Centeno and Escobedo, 2016). In the example in Table 2.3, the score of 4 is assigned to

the most preferred alternative and the Borda score of the least preferred alternative

is assigned accordingly, based on the definition of the Borda score. This example

shows that the most dispreferred alternative has the highest Borda score. Because it

is the most frequently evaluated alternative, it just receives more scores than others

regardless of the rank position.

Rankings
a1 a2 a3 a4 Borda score

A
lt

er
na

ti
ve

s v1 • 1 • 1 8
v2 1 2 • • 7
v3 2 • 1 • 7
v4 3 3 2 2 10

Table 2.3: An Example Showing the Disadvantage of the Borda Rule

Copeland Rule

The Copeland rule chooses the alternative with the highest number of pairwise wins

minus defeats as a winner, which is mathematically written as (Brandt et al., 2016):

Copeland(i) =
∑

j∈V,j 6=i

|L|∑
`=1

(|{a` : a`i < a`j}| − |{a` : a`i > a`j}|).

To determine a final ranking of the Copeland rule, the alternatives are ordered in

descending order based on the assigned score.

These models are more computationally efficient and frequently discussed in com-

putational social choice research (Galton, 1907; Mannes, 2009; Brandt et al., 2016;

Müller-Trede et al., 2018; Winkler et al., 2019; Da and Huang, 2020), but cannot fulfill

certain fundamental properties associated with voting fairness (e.g., the Condorcet
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criterion (Condorcet, 1785) and its extensions (Young and Levenglick, 1978; Young,

1988)).
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Chapter 3

A NEW CORRELATION COEFFICIENT FOR COMPARING AND

AGGREGATING NON-STRICT AND INCOMPLETE RANKINGS

To the best of our knowledge, there has not been a ranking correlation coefficient

explicitly tailored to the space of non-strict incomplete rankings, Ω, under a neutral

treatment of incompleteness. Therefore, Section 3.1 introduces the ranking correlation

coefficient τ̂x for non-strict incomplete rankings. Section 3.2 provides the properties

and axioms it satisfies. Finally, Section 3.3 establishes the equivalence of τ̂x with the

axiomatic distance dNPKS as well as the equivalence of τx with dPKS when the input

rankings lie in space Ω.

3.1 Derivation of the New Correlation Coefficient

To quantify the similarity between non-strict incomplete rankings via correlation

coefficients, a fundamental requirement is that the correlation between any pair of

rankings a, b ∈ Ω must lie within the interval [−1, 1]. The −1 and 1 values must be

achieved whenever a and b completely agree and completely disagree, respectively;

otherwise, a value from the interior of the interval should be commensurate with

the level of similarity. As explained in Chapter 2, τx cannot fulfill these essential

requirements. Hence, this subsection derives a new correlation coefficient that satisfies

these properties as well as a set of metric-like axioms tailored to space Ω. As a first

step, we define a new ranking-matrix [aij] representation for a ∈ Ω as:

aij =


1 if ai ≤ aj,

−1 if ai > aj,

0 if i = j, or ai = •, or aj = •
(3.1)
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where 1 ≤ i, j ≤ n. This ranking-matrix can be obtained by extending Equation (2.8)

to also assign aij = 0 whenever alternative i or j (or both) is unranked in a and,

thus, it is equivalent to the τx ranking-matrix when the input rankings are complete.

This extension was cursorily proposed in Emond and Mason (2002), although it was

neither explicitly defined nor implemented therein. It is chosen as the basis of the

new correlation coefficient because its treatment of ties is equivalent to the Kemeny

Snell “half-flip” metric, which assigns only half of a rank reversal between a and b

whenever one ties (vi, vj) but the other professes a strict preference for vi over vj, or

vice versa.

As a second step, consider ranking-matrices [aij] and [bij] respectively defined

according to Equation (3.1) and their associated matrix inner product:

n∑
i=1

n∑
j=1

aijbij.

When a and b rank every alternative, the number of non-zeros in each ranking-matrix

and the maximum matrix inner product are both equal to n(n− 1). The reasons are

that the ranking-matrix diagonal elements are all 0 and that aijbij = 1 for all i 6= j

when bij = aij. It is also straightforward to discern that a minimum matrix inner

product of −n(n− 1) can be achieved only if a does not contain ties and bij = −aij

for all i 6= j.

When a or b does not rank every alternative, for each vi such that either ai = •

or bi = •, the ith ranking-matrix row and column are set to zero, thereby decreasing

the maximum and increasing the minimum matrix inner products by 2(n − 1). Put

otherwise, such a matrix inner product may be calculated as if the ith row and column

of both ranking-matrices do not exist. Hence, the maximum and minimum inner

products of [aij] and [bij] are reduced to n̄(n̄− 1) and −n̄(n̄− 1), respectively, where

n̄ = |Va
⋂
Vb|. Accordingly, a new correlation function can be derived to achieve the
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full expected correlation interval [−1, 1]. It is named the scaled Kendall tau-extended

correlation coefficient, written succinctly as τ̂x, and is defined as:

τ̂x(a, b) =
∑n
i=1

∑n
j=1 aijbij

n̄(n̄− 1) , (3.2)

which may be rewritten in terms of τx via the equation:

τ̂x(a, b) = n(n− 1)
n̄(n̄− 1)τx(a, b). (3.3)

This alternative expression emphasizes that, by scaling τx(a, b) by the factor n(n−1)
n̄(n̄−1) ≥

1, τ̂x removes the impact of irrelevant pairwise preference comparisons—the pairs of

alternatives unranked by a or b—from their correlation. As a result, the extrema

correlation values −1 and 1 can be achieved when comparing two appropriate non-

strict incomplete rankings. Clearly, when Va
⋂
Vb = V , scaling factor in Equation

(3.3) equals 1, meaning τ̂x is equivalent to τx in space ΩC .

3.2 Axiomatic Foundation of the New Correlation Coefficient

This section presents a set of intuitive metric-like axioms that τ̂x satisfies and the

formal proofs.

KT-Axiom 1 (Relevance). The correlation discounts the unevaluated alternatives:

τ̂x(a, b) = τ̂x(a|(Va

⋂
Vb), b|(Va

⋂
Vb))

Proof. From the definition of τ̂x, the ranking-matrix elements for unevaluated al-

ternatives are assigned to be 0 and, thus, the corresponding numerator terms aijbij

become 0. Therefore, it is valid to calculate the correlation coefficient by focusing on

the mutually evaluated alternatives.

KT-Axiom 2 (Commutativity). The correlation value is independent of the order

in which a and b are compared:

τ̂x(a, b) = τ̂x(b,a).
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Proof. From the definition of τ̂x, we can write the following equations:

τ̂x(a, b) =
∑n
i=1

∑n
j=1 aijbij

n̄(n̄− 1)

=
∑n
i=1

∑n
j=1 bijaij

n̄(n̄− 1)

= τ̂x(b,a) �

KT-Axiom 3 (Neutrality). The correlation value is independent of the particular

labeling of the alternatives:

If a′ = π(a) and b′ = π(b), then τ̂x(a, b) = τ̂x(a′, b′), where π := {1, 2, ..., n} →

{1, 2, ..., n} is a permutation function.

Proof. Without loss of generality, assume that only two alternatives are permuted at

a time, namely the k-th and l-th alternatives, with k < l. Let A = [aij] and B = [bij]

be the pre-permutation ranking-matrices corresponding to ranking a and b, which

are illustrated as:

A =



a11 · · · a1k · · · a1l · · · a1n
... ... ... · · · ... · · · ...

ak1 · · · akk · · · akl · · · akn
... ... ... · · · ... · · · ...

al1 · · · alk · · · all · · · aln
... ... ... · · · ... · · · ...

an1 · · · ank · · · anl · · · ann



B =



b11 · · · b1k · · · b1l · · · b1n
... ... ... · · · ... · · · ...

bk1 · · · bkk · · · bkl · · · bkn
... ... ... · · · ... · · · ...

bl1 · · · blk · · · bll · · · bln
... ... ... · · · ... · · · ...

bn1 · · · bnk · · · bnl · · · bnn



.

Let a′ and b′ be the post-permutation rankings with corresponding ranking-matrices

34



A′ = [a′ij] and B′ = [b′ij], which are illustrated as:

A′ =



a11 · · · a1l · · · a1k · · · a1n
... ... ... · · · ... · · · ...

al1 · · · all · · · alk · · · aln
... ... ... · · · ... · · · ...

ak1 · · · akl · · · akk · · · akn
... ... ... · · · ... · · · ...

an1 · · · anl · · · ank · · · ann



B′ =



b11 · · · b1l · · · b1k · · · b1n
... ... ... · · · ... · · · ...

bl1 · · · bll · · · blk · · · bln
... ... ... · · · ... · · · ...

bk1 · · · bkl · · · bkk · · · bkn
... ... ... · · · ... · · · ...

bn1 · · · bnl · · · bnk · · · bnn



.

Note that unshaded elements in A′ and B′ remain the same after permutation (i.e.,

aij = a′ij for i, j 6= k, l). Since the k-th row (column) and l-th row (column) of A and

B are exchanged, the remaining entries are given by:

a′kk = all, a′ll = akk, a′ik = ail, a′il = aik, a′ki = ali, a′li = aki (3.4)

for every i 6= k, l (the new entries for b are defined similarly). The permutation will

affect only the numerator of τ̂x(a, b). In particular, by using Expression (3.4), the

following equations can be derived:
n∑
i=1

n∑
j=1

aijbij =
n∑

i 6=k,l

n∑
j 6=k,l

aijbij+
∑
j 6=k,l

(akjbkj+aljblj)+
∑
i 6=k,l

(aikbik+ailbil)+
∑
i=k,l

∑
j=k,l

aijbij

=
n∑

i 6=k,l

n∑
j 6=k,l

a′ijb
′
ij+

∑
j 6=k,l

(a′ljb′lj+a′kjb
′
kj)+

∑
i 6=k,l

(a′ilb′il+a′ikb
′
ik)+

∑
i=k,l

∑
j=k,l

a′jib
′
ji

=
n∑
i=1

n∑
j=1

a′ijb
′
ij .

Therefore, τ̂x(a, b) = τ̂x(a′, b′). Since any permutation can be described as a sequence

of permutations of two alternatives at a time, τ̂x(a, b) = τ̂x(a′, b′) holds for any

permutation π.

KT-Axiom 4 (Reduction). If a and b agree except for a set V ′ ⊆ V , then τ̂x(a, b)

may be computed by focusing only on the alternatives in V ′:

τ̂x(a, b) = 1 + 2τ̂x(a|V ′ , b|V ′).
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Proof. By definition of the ranking-matrix representation of τ̂x, if rankings a and

b have positive agreement for alternatives vi, vj (i.e., one prefers vi over vj and the

other also prefers vi over vj, or both tie vi and vj), the corresponding numerator

aijbij becomes 1. Otherwise, aijbij becomes -1. Let pc be the number of pairs in

concordance and pdc be the number of pairs in discordance. Then, n̄(n̄−1) = 2pc+2pdc

because there are two elements of ranking-matrix for vi and vj, aij and aji (bij and

bji, respectively). The calculation of τ̂x can be decomposed as follows:∑n
i=1

∑n
j=1 aijbij

n̄(n̄− 1) = 1
n̄(n̄− 1) × 2pc + −1

n̄(n̄− 1) × 2pdc.

By replacing 2pc with n̄(n̄− 1)− 2pdc,∑n
i=1

∑n
j=1 aijbij

n̄(n̄− 1) = 1
n̄(n̄− 1) × (n̄(n̄− 1)− 2pdc) + −1

n̄(n̄− 1) × 2pdc

= 1− 2
n̄(n̄− 1) × 2pdc

= 1 +
2∑n

i=1
∑n
j=1 a

′
ijb
′
ij

n̄(n̄− 1)

Hence, if a and b agree except for a set V ′ ⊆ V , then τ̂x can be calculated by focusing

on the alternatives where a and b disagree. That is,

τ̂x(a, b) = 1 + 2τ̂x(a′, b′) �

KT-Axiom 5 (Relaxed Triangle Inequality). Relationship among the three possible

paired comparisons from three incomplete rankings:

τ̂x(a|(Va

⋂
Vb

⋂
Vc), b|(Va

⋂
Vb

⋂
Vc)) + τ̂x(b|(Va

⋂
Vb

⋂
Vc), c|(Va

⋂
Vb

⋂
Vc))

≤ τ̂x(a|(Va

⋂
Vb

⋂
Vc), c|(Va

⋂
Vb

⋂
Vc)) + 1;

and equality holds if and only if b|(Va

⋂
Vb

⋂
Vc) is between the other two projected rank-

ings; here, Va,b,c := Va
⋂
Vb
⋂
Vc for concise representation.
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Proof. Let n̄ = |Va,b,c|. To investigate the relationship between τ̂x(a, b), τ̂x(b, c), and

τ̂x(a, c), begin by writing their corresponding definitions:

τ̂x(a, b) =

n∑
i=1

n∑
j=1

aijbij

n̄(n̄− 1) , τ̂x(b, c) =

n∑
i=1

n∑
j=1

bijcij

n̄(n̄− 1) , τ̂x(a, c) =

n∑
i=1

n∑
j=1

aijcij

n̄(n̄− 1) .

From these definitions, we can form the expression:

τ̂x(a, b) + τ̂x(b, c) =
∑n
i=1

∑n
j=1 bij(aij + cij)
n̄(n̄− 1) .

There are three possibilities for the sum and product of aij and cij:

1) aij = cij = 1 =⇒ aij + cij = 2, aijcij = 1

2) aij = 1, cij = −1, or aij = −1, cij = 1 =⇒ aij + cij = 0, aijcij = −1

3) aij = cij = −1 =⇒ aij + cij = −2, aijcij = 1

Now, when b|(Va

⋂
Vb

⋂
Vc) is between the other two projected rankings (i.e., bij is

equal to either aij or cij or both, or bij may also equal 1 when aij and bij disagree),

bij can be determined from the values of aij and cij as follows:

1) aij = cij = 1 =⇒ bij = 1

2) aij = 1, cij = −1, or aij = −1, cij = 1 =⇒ bij = 1 or − 1

3) aij = cij = −1 =⇒ bij = −1

Referencing the above cases, if b|(Va

⋂
Vb

⋂
Vc) is between the other two projected

rankings, the following equality always holds for each i, j:

bij(aij + cij) = aijcij + 1. (3.5)

Therefore, summing over all i, j yields the following inequality:

n∑
i=1

n∑
j=1

bij(aij + cij) =
n∑
i=1

n∑
j=1

aijcij + n̄(n̄− 1). (3.6)
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By a similar analysis, if b|(Va

⋂
Vb

⋂
Vc) is not between the other two projected rankings,

bij(aij + cij) < aijcij + 1, (3.7)

and summing over all i, j yields the following inequality:

n∑
i=1

n∑
j=1

bij(aij + cij) <
n∑
i=1

n∑
j=1

aijcij + n̄(n̄− 1). (3.8)

Combining equations (3.6) and (3.8) yields the inequality:

n∑
i=1

n∑
j=1

bij(aij + cij) ≤
n∑
i=1

n∑
j=1

aijcij + n̄(n̄− 1).

Therefore, dividing by n̄(n̄− 1), we obtain the desired expression.

KT-Axiom 6 (Scaling). The correlation range is between -1 and 1, inclusively:

−1 ≤ τ̂x(a, b) ≤ 1;

with τ̂x(a, b) = 1 if and only if a|(Va

⋂
Vb) = b|(Va

⋂
Vb) and τ̂x(a, b) = −1 if and only

if b|(Va

⋂
Vb) is the reverse ranking of a|(Va

⋂
Vb) (the latter must be a linear ordering).

Proof. (⇐) Assume a|(Va

⋂
Vb) and b|(Va

⋂
Vb) are the same ranking. Then,

τ̂x(a, b) =
∑n
i=1

∑n
j=1 aijbij

n̄(n̄− 1) =
∑n
i=1

∑n
j=1 aijaij

n̄(n̄− 1) = n̄(n̄− 1)
n̄(n̄− 1) = 1.

If b|(Va

⋂
Vb) is the reverse ranking of a|(Va

⋂
Vb) and b|(Va

⋂
Vb) and a|(Va

⋂
Vb) are linear

orderings, then bij always has the opposite value of aij. That is, bij = −aij, which

leads to the following inequality:

τ̂x(a, b) =
∑n
i=1

∑n
j=1 aijbij

n̄(n̄− 1) =
∑n
i=1

∑n
j=1 aij(−aij)

n̄(n̄− 1) = −n̄(n̄− 1)
n̄(n̄− 1) = −1.

(⇒) Let τ̂x(a, b) = 1. Then, ∑n
i=1

∑n
j=1 aijbij should be n̄(n̄−1), which means that

aijbij = 1 for every vi, vj ∈ Va ∩ Vb. That is, a and b agree on all their preferences.

On the other hand, to achieve τ̂x(a, b) = −1, ∑n
i=1

∑n
j=1 aijbij should equal −n̄(n̄ −
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1), which implies that aijbij = −1 for every vi, vj ∈ Va ∩ Vb and that a|(Va

⋂
Vb)

and b|(Va

⋂
Vb) are linear orderings. That is, a|(Va

⋂
Vb) and b|(Va

⋂
Vb) express opposing

strict preferences over all alternative pairs. Therefore, if τ̂x(a|(Va

⋂
Vb), b|(Va

⋂
Vb)) = 1,

a|(Va

⋂
Vb) and b|(Va

⋂
Vb) are the same ranking, and if τ̂x(a|(Va

⋂
Vb), b|(Va

⋂
Vb)) = −1,

b|(Va

⋂
Vb) is the reverse ranking of a|(Va

⋂
Vb) .

As suggested by Axiom 1, the τ̂x similarity between two incomplete rankings can

be equivalently calculated by simply dropping the alternatives unranked by either

ranking (i.e., by projecting them to the subset of alternatives evaluatded by both). It

brings the pragmatic benefit of eliminating the unenforceable/unrealistic requirement

of having to allocate an equal number of alternatives for each judge to evaluate,

which may be difficult to enforce due to differing expertise, disagreeing schedules,

unplanned exemptions, etc. (Hochbaum and Levin, 2010). Indeed, it is advisable to

avoid assigning fewer subjective evaluation tasks to mitigate cognitive errors (Basili

and Vannucci, 2015; Saaty and Ozdemir, 2003). While this may seem to remove the

incomplete data from the researcher’s view when comparing two incomplete rankings,

we emphasize that the consensus ranking problem (see Equation (2.1) or Equation

(2.2)) involves accruing the comparisons between the candidate solution (always a

complete ranking) and each input ranking (which may be incomplete or complete).

In this context, Axiom 1 ensures that each input incomplete ranking influences only

the consensus ranking elements corresponding to its ranked alternatives.

3.3 Key Pairings between Distances and Correlation Coefficients

This section establishes a formal connection between τ̂x and dNPKS as well as

between another key axiomatic-distance and correlation-coefficient pairing in space

Ω. Together these results fill a significant gap in the literature because although

Emond and Mason (2002) made a connection between distance and correlation-based
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methods for complete rankings (see Equation (2.9)), they conjectured that a parallel

connection could not be established for incomplete rankings. The statements and

proofs of the theorems and corollaries are in the following paragraphs.

Theorem 1 (Linear transformation between τ̂x and dNPKS). Let a and b be arbitrary

rankings over n = |V | alternatives drawn from the space of non-strict incomplete

rankings, Ω. Then, the τ̂x correlation coefficient and the dNPKS distance are connected

through the equation:

dNPKS(a, b) = 1
2 −

1
2 τ̂x(a, b). (3.9)

Proof. For succinctness, denote ā = a|(Va

⋂
Vb) and b̄ = b|(Va

⋂
Vb) as the rankings over

n̄ ≤ n alternatives obtained by projecting a and b onto the subset of alternatives

V̄ = Va
⋂
Vb ranked in common. Notice that ā and b̄ are complete rankings over the

same reduced universe of n̄ alternatives (i.e., they lie in space ΩC relative to V̄ ). As

such, using 1/2 as the minimum dKS distance unit, the corresponding τx and dKS

values for ā and b̄ are equated as follows (Emond and Mason, 2002):

τx(ā, b̄) = 1− 4 dKS(ā, b̄)
n̄(n̄− 1) ,

which expressed in terms of dKS yields the equivalent relationship:

dKS(ā, b̄) = n̄(n̄− 1)
4 − n̄(n̄− 1)τx(ā, b̄)

4 (3.10)

= n̄(n̄− 1)
4 −

n̄(n̄− 1)∑n̄
i=1

∑n̄
j=1 āij b̄ij

4n̄(n̄− 1) (3.11)

= n̄(n̄− 1)
4 −

∑n
i=1

∑n
j=1 aijbij

4 , (3.12)

where Equation (3.12) cancels a common factor in the second term and utilizes the

fact that unranked items in either ranking vector contribute nothing to the sum—that

is the matrix inner products are identical in the original and projected spaces. Now,

40



multiplying both sides of Equation (3.12) by [n̄(n̄− 1)/2]−1 gives:

dKS(ā, b̄)
n̄(n̄− 1)/2 = 1

2 −
∑n
i=1

∑n
j=1 aijbij

2n̄(n̄− 1)

⇒ dNPKS(a, b) = 1
2 −

1
2 τ̂x(a, b) �

Theorem 2 (Linear transformation between τx and dPKS). Let a and b be arbitrary

rankings of n = |V | alternatives from space Ω. Then, the τx correlation coefficient

and the dPKS distance are connected through the equation:

dPKS(a, b) = n̄(n̄− 1)
4 − n(n− 1)

4 τx(a, b), (3.13)

where n̄ = |V̄ | = |Va
⋂
Vb| (i.e., the number of alternatives explicitly ranked by both a

and b).

Proof. From Theorem 1, we have that:

dNPKS(a, b) = 1
2 −

1
2 τ̂x(a, b),

which can be expanded via Equations (2.5) and (3.2) as:

dKS(a|(Va

⋂
Vb), b|(Va

⋂
Vb))

n̄(n̄− 1)/2 = 1
2 −

∑n
i=1

∑n
j=1 aijbij

2n̄(n̄− 1) .

Thus, multiplying both sides by n̄(n̄− 1)/2 yields:

dPKS(a, b) = n̄(n̄− 1)
4 − 1

4

n∑
i=1

n∑
j=1

aijbij

= n̄(n̄− 1)
4 − n(n− 1)

4

[∑n
i=1

∑n
j=1 aijbij

n(n− 1)

]

which completes the proof since the bracketed expression matches the definition of

τx(a, b).

The following two corollaries are a direct result of these connections.
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Corollary 1. The rank aggregation optimization problems typified by τ̂x and dNPKS

are equivalent and, thus, provide identical consensus rankings. Similarly, the rank

aggregation optimization problems typified by τx and dPKS are equivalent.

Proof. The first part of corollary is established through the following series of equa-

tions:

arg min
r∈ΩC

|L|∑
`=1

dNPKS(r,a`) = arg max
r∈ΩC

|L|∑
`=1
−dNPKS(r,a`) (3.14)

= arg max
r∈ΩC

|L|∑
`=1
−
[1
2 −

1
2 τ̂x(r,a

`)
]

(3.15)

= arg max
r∈ΩC

|L|∑
`=1

τ̂x(r,a`), (3.16)

where the last equation results from the fact that scalars common to every term in

the sum and constant terms do not impact the optimal solution.

Similarly, the second part of the corollary can be proved via the following series

of equations:

arg min
r∈ΩC

|L|∑
`=1

dPKS(r,a`) (3.17)

= arg max
r∈ΩC

|L|∑
`=1
−dPKS(r,a`) (3.18)

= arg max
r∈ΩC

|L|∑
`=1
−
[(|Vr ∩ Va` |)(|Vr ∩ Va` | − 1)

4 − n(n− 1)
4 τx(r,a`)

]
(3.19)

= arg max
r∈ΩC

|L|∑
`=1

n(n− 1)
4 τx(r,a`)−

(|Va` |)(|Va` | − 1)
4 (3.20)

= arg max
r∈ΩC

|L|∑
`=1

τx(r,a`) (3.21)

where Equation (3.19) ensues from Theorem 2; where Equation (3.20) results from

the fact that, since r must be a complete ranking, |Vr ∩ Va` | = |Va` | for every `; and,

where Equation (3.21) results from the fact that scalars common to every term in the
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sum as well as constant terms (i.e, the second term in Equation (3.20) is independent

of any candidate solution) have no bearing on the optimal solution.

Corollary 2. The correlation-based non-strict incomplete rank aggregation problem

is NP-hard.

Proof. The distance-based non-strict incomplete rank aggregation problem was proven

to beNP-hard in Moreno-Centeno and Escobedo (2016). Since solving the correlation-

based rank aggregation problem is equivalent to solving the distance-based rank ag-

gregation problem by Corollary 1, the former problem is also NP-hard.

The distance-correlation connection provides mutual support for the usefulness

of the respective measures. In particular, τ , τx, and τ̂x are strengthened by the ro-

bust properties and social choice foundations of the Kemeny aggregation framework

(Brandt et al., 2016; Kemeny and Snell, 1962; Young and Levenglick, 1978; Young,

1988). Meanwhile, dKS, dPKS, and dNPKS benefit from the computational advantages

engendered by the linear transformation from correlation-based framework, which

allows sidestepping nonlinear terms in the definition of distance metrics. These ad-

vantages are bolstered by the optimization methodologies developed in Chapter 4.

3.4 Concluding Remarks

In this chapter, we make several contributions to the area of robust rank aggrega-

tion. Principally, it develops the τ̂x ranking correlation coefficient, which fulfills the

standard definitions of statistical correlation in the space of non-strict incomplete

rankings. This ranking measure is applicable to situations where no assumptions

should be made regarding individual preferences over unranked objects. Its formal

derivation and axiomatic foundation ensure that τ̂x assigns equitable voting power to

each input ranking in the aggregation process, irrespective of the number of objec-
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tives it ranks. By also connecting τ̂x with dNPKS, this work enhances distance and

correlation-based robust methodologies for rank aggregation including the develop-

ment of expedient optimization methodologies, which appears in the next ensuing

chapters.
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Chapter 4

MATHEMATICAL PROGRAMMING IN COMPUTATIONAL SOCIAL CHOICE

This chapter is organized as follows. In Section 4.1, the existing mathematical pro-

gramming formulations for rank aggregation are introduced. Section 4.2 and Section

4.3 introduce an integer programming formulation and a binary programming for-

mulation for the Kemeny rank aggregation with non-strict complete and incomplete

rankings. In Section 4.4, the performance of the binary programming formulation is

tested through a set of computational experiments.

4.1 Existing Mathematical Programming Formulations for Rank Aggregation

Cook et al. (2007a) developed a binary programming formulation for rank ag-

gregation problems related to the Kemeny-Snell distance, and Conitzer et al. (2006)

developed an integer programming formulation related to the Kendall-τ distance when

the input rankings are strict. Because these formulations do not deal with non-strict

rankings, Brancotte et al. (2015) provided a revised integer programming formulation

for the Kendall-τ distance, given as follows:

minimize
x

∑
{vi,vj}⊆V

(wj≤i ∗ xi<j + wi≤j ∗ xj<i + (wi<j + wj<i) ∗ xi=j) (4.1a)

subject to xi<j + xj<i + xi=j = 1, ∀vi, vj ∈ V (4.1b)

xi<k − xi<j − xj<k ≥ −1, ∀vi, vj, vk ∈ V (4.1c)

2xi<j + 2xj<i + 2xj<k + 2xk<j − xi<k − xk<i ≥ 0,∀vi, vj, vk ∈ V (4.1d)

xi<j, xj<i, xi=j ∈ B, ∀vi, vj ∈ V. (4.1e)

where wi≤j denotes the number of rankings with vi � vj and wi<j denotes the number
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of rankings with vi � vj. Constraint (4.1b) ensures that all pairs of alternatives

are assigned exactly one of the three possible relative ordinal positions: preferred,

dispreferred, or tied (the first two are strict and the third is non-strict). Constraints

(4.1c) and (4.1d) enforce transitivity of strict and non-strict ordinal relationships.

We note that this formulation’s objective function does not align with the definition

of dKS (see Equation (2.3)), based on the different treatment of ties of dτ ′ . Using

dKS, when there are two rankings, where one ties vi and vj and the other one does

not, this should return half the distance compared to when the ordinal relationships

strictly oppose each other. For example, with a1 = (1, 2),a2 = (1, 1),a3 = (2, 1), this

yields dKS(a1,a2) = 1, while dKS(a1,a3) = 2. To solve the Kemeny rank aggregation

problem using Brancotte et al. (2015)’s formulation, it is necessary to modify its

objective function to match the treatment of ties of dKS. This is done in the following

proposition.

Proposition 1. To adopt the treatment of ties of dKS, Brancotte et al. (2015)’s

formulation is modified as follows:

minimize
x

∑
{vi,vj}⊆V

(wj<i + 1
2wj=i)xi<j + (wi<j + 1

2wi=j)xj<i + 1
2(wi<j + wj<i)xi=j

subject to constraints (4.1b)− (4.1e).

This modified version is used throughout the experiments to allow for fair com-

parison.

4.2 Generalized Integer Programming Formulation for Rank Aggregation

In this section, we leverage the correlation coefficient interpretation of Kemeny

rank aggregation to derive a new integer programming formulation that is applicable

to non-strict complete and incomplete rankings. The key to this formulation relies

on devising a constraint set that ensures that the values of matrix induce a complete
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and consistent set of preferences, i.e., a complete and non-strict ranking. To this end,

we develop a graph-based representation of the ranking-matrix (see Equation (2.8))

of a non-strict complete ranking.

Definition 4. Let G = (V,E) be unweighted directed graph for representing a non-

strict complete ranking r as follows: V is the set of nodes (alternatives) and an each

pair of nodes is connected by one or two directed edges E ⊆ V × V according to the

preference relationship between each pair of alternatives. It includes the directed edge

(i, j) if ri < rj (i.e., vi � vj) and it includes the directed edges (i, j) and (j, i) if

ri = rj (i.e., vi ≈ vj).

From Definition 4, given a non-strict complete ranking, it is straightforward to

construct its digraph (or matrix) representation. However, not every unweighted di-

graph will correspond to a complete and consistent set of preferences, since certain

ones can induce preference cycles. For example, Figure (4.1a) can be represented

via the matrix in Figure (4.1b), but these representations do not yield a non-strict

complete ranking due to the preferential cycle (vi � vj, vj � vk, and vk � vi).

i

j k

(a) Example of an unweighted directed

graph


0 1 −1

−1 0 1

1 −1 0



(b) Matrix representation of the digraph

Figure 4.1: Not Every Unweighted Digraph (or Its Matrix Representation) Yields a
Complete and Consistent Set of Preferences

Hereafter, we define a ranking-matrix graph as an unweighted directed graph that

induces a non-strict complete ranking (i.e., it does not create any preferential cy-

cles). To identify a ranking-matrix graph structure, certain conditions are needed.
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For starters, since the solution must be a complete ranking, each pair of nodes in

G must be connected by at least one directed edge. The following theorem specifies

the remaining conditions for an arbitrary unweighted digraph to be a ranking-matrix

graph. To this end, a uni-cycle is defined as a simple path that starts and ends on

the same vertex in one direction but not in the reverse direction. A bi-cycle is defined

as a simple path that starts and ends on the same vertex and can be traversed in

both directions. According to these definitions, a bi-cycle and a uni-cycle are mutu-

ally exclusive. Additionally, it is not possible to have a uni-cycle of size 2 because, if

there exists a directed edge from i to j and a directed edge from j to i, this creates

a bi-cycle. The focus of the theorem and proof is to prevent graphs with uni-cycles

since such structures can be associated with inconsistent sets of preferences (i.e., non-

transitivity). To be more succinct and precise, we denote a graph without uni-cycles

as a uni-cycle-free graph and a graph with at least one uni-cycle as a unicyclic graph.

Figures 4.2 and 4.3 show the possible uni-cycle-free graphs and unicyclic graphs,

respectively, over three alternatives.

i

j k

(a) G′1

i

j k

(b) G′2

i

j k

(c) G′3

i

j k

(d) G′4

Figure 4.2: Unicycle-free Graphs

i

j k

(a) G′5

i

j k

(b) G′6

i

j k

(c) G′7

Figure 4.3: Unicyclic Graphs

Theorem 3. Let G = (V,E) be an unweighted directed graph for representing a non-
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strict complete ranking r as follows: V is the set of nodes (alternatives) and an each

pair of nodes is connected by one directed edge, that is, either (i, j) ∈ E or (j, i) ∈ E

if ri < rj (i.e., vi � vj) or two directed edges (i, j) and (j, i) if ri = rj (i.e., vi ≈ vj).

Graph G is a ranking-matrix graph if and only if it does not contain uni-cycles (i.e.,

it is a unicycle-free graph).

Proof. Let G′ = (V ′, E ′) be a subgraph of G, that is, V ′ ⊆ V , E ′ = (V ′×V ′)∩E. A bi-

cycle exists whenever, for every adjacent pair of nodes ik, ik+1 in a path i1, i2, i3, ..., ip,

we have (ik, ik+1) ∈ E ′ and (ik+1, ik) ∈ E ′, for 1 ≤ k ≤ p−1 < |V ′|. Clearly, when there

exists a bi-cycle in G′, it means every alternative included in the bi-cycle is tied. That

is, when there exist directed cycles i1, i2, ..., ip−1, ip, i1 and i1, ip, ip−1, ..., i2, i1 with

distinct nodes i1, i2, ..., ip−1, ip ∈ V ′, then i1 ≈ i2 ≈ ... ≈ ip. Hence, whenever a graph

of size 3 has a bi-cycle, it leads to a valid setting for the corresponding ranking-matrix

entries. Specifically, this gives that ai`,i`′ = 1, ai`′ ,i` = 1 for all i`, i`′ ∈ {i1, i2, ..., ip},

where i` 6= i`′ .

Recall that we can focus on a graph of length 3 or greater since a graph of size

2 cannot contain uni-cycle. Moreover, to check if these cycles exist in a digraph

having at least one directed edge between every pair of nodes, it is sufficient to

concentrate on finding unicyclic triads (i.e., uni-cycles of size 3), as a preference

graph without unicyclic triads cannot have any higher-order uni-cycles (Gass, 1998).

Hence, |V ′| = 3 from this point, without loss of generality. To continue, Figure 4.2 lists

distinct isomorphic classes of unicycle-free digraphs of size 3, while Figure 4.3 lists

distinct isomorphic classes of unicyclic digraphs of size 3. Even though more unicyclic

and unicycle-free graphs of size 3 are possible, it is only necessary to consider three

respective isomorphic classes given in Figures 4.2 and 4.3; all other graphs can be

represented by permuting the labels of the given graphs.
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Figure 4.4: Isomorphically Equivalent Digraphs of G′6

For Figure (4.3a), because vi � vj, vj � vk, and vk � vi, the preference relation

includes the cycle vi � vj � vk � vi, which does not yield a proper ranking of three

alternatives). For Figure (4.3b), because vi � vj, vj ≈ vk, and vk � vi, the preference

relation includes the cycle vi � vj ≈ vk � vi, which also does not yield a complete

and consistent set of preferences. For Figure (4.3c), because vi � vj, vj ≈ vk, and

vk ≈ vi, the preference relation vi � vj ≈ vk ≈ vi is not a consistent set of preferences.

Therefore, the graphs with a uni-cycle do not yield a complete and consistent set of

preferences, meaning they cannot correspond to a ranking. Using proof by exhaustion,

we have demonstrated that graph G is a ranking-matrix graph if and only if it is a

unicycle-free graph.

The results of this theorem and the following corollary will be used to derive a

new integer programming formulation for Kemeny aggregation.

Corollary 3. The ranking-matrix S ∈ Zn×n, along with corresponding auxiliary bi-

nary variables Y ∈ Bn×n, induces a complete and consistent set of preferences of

n alternatives (i.e., a non-strict complete ranking) if the following constraints are

satisfied for some setting of S and Y:

sij − skj − sik ≥ −1 i, j, k = 1, ..., n; i 6= j 6= k 6= i (4.2a)
sij + sji ≥ 0 i, j = 1, ..., n; i < j (4.2b)

sii = 0 i = 1, ..., n; (4.2c)
sij − 2yij = −1 i, j = 1, ..., n; i = j (4.2d)

sij ∈ {−1, 0, 1}, yij ∈ {0, 1} i, j = 1, ..., n. (4.2e)
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Proof. For ranking-matrix S = [sij] to represent a complete and consistent set of

preferences, the following conditions must be met—note that the definition of sij is

exactly the same as the definition of aij given by Equation (2.8). First, the diagonal

elements must be set to 0, that is, sii = 0, which is represented by constraint (4.2c).

The off-diagonal elements must be non-zero values, specifically, they must be equal

to 1 or -1. This is enforced via auxiliary binary variables yij in constraint (4.2d).

Moreover, sij and sji cannot both be negative. Hence, constraint (4.2b) restricts at

least one of sij and sji to be positive, when i 6= j. Constraint (4.2e) explicitly states

the respective domains of sij and yij.

i

j k

(a)

i

j k

(b)

i

j k

(c)

Figure 4.5: The Dotted Directed Edge Creates a Uni-cycle

The proof of Theorem 3 explains that to check whether a uni-cycle of any length

exists within a ranking-matrix digraph, it is sufficient to verify that no uni-cycles

of length 3 exist. The possible unicycle-free and unicyclic and digraphs over three

alternatives are shown in Figures 4.2 and 4.3. Each unicyclic graph of size 3 can be

obtained by adding a particular directed edge of one of the unicycle-free graphs shown

in Figure 4.2 or by replacing a particular directed edge with its reverse directed edge.

This is depicted Figure 4.5. Specifically, adding the dotted directed edge or replacing

the thick (blue) edge with the dotted directed edge creates a uni-cycle. For example,

replacing the thick (blue) edge with the dotted directed edge in Figure (4.5a) and

Figure (4.5b) yields Figure (4.3a) and Figure (4.3b), respectively. Also, adding the

dotted directed edge in Figure (4.5b) yields Figure (4.3c), which is also a unicyclic

graph.
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This implies that the unicyclic graphs can be avoided by eliminating these ad-

ditional or replacement edges from occurring. More specifically, as in Figures (4.5a)

and (4.5b), whenever there is a directed edge from i to j, but not one from j to i,

which gives that sij = 1, sji = −1, and a directed edge from j to k (with or without

one from k to j), which gives that sjk = 1 (here, the value of skj does not matter),

the edge between i and k should be directed from i to k (and not in the opposite

direction), which gives that ski = −1. This condition can be written as:

sji = −1, sjk = 1 =⇒ ski = −1. (4.3)

Moreover, as in Figure (4.5c), whenever there is a directed edge from j to i, but not

one from i to j, which gives that sji = 1, sij = −1, and a directed edge from k to j

(with or without one from j to k), which gives that skj = 1 (here, the value of sjk

does not matter), the edge between k and i should be directed from k to i (and not

in the opposite direction), which gives that sik = −1. This condition can be written

as:

sij = −1, skj = 1 =⇒ sik = −1. (4.4)

Conditions (4.3) and (4.4) can be equivalently satisfied via the following linear con-

straints:

sji − sjk ≥ ski − 1 (4.5)

sij − skj ≥ sik − 1. (4.6)

In fact, the formulation can be further reduced. By swapping labels i and j in con-

straint (4.6) (since it holds for any permutation of the labels), we can derive constraint

(4.5) (i.e., it is redundant). Therefore, constraints (4.2a)-(4.2e) provide the full set of

constraints.
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4.3 Generalized Binary Programming Formulation for Rank Aggregation

We develop the first exact integer programming formulation for generalized Ke-

meny aggregation, that is, for non-strict complete and incomplete rankings, which is

given by:
maximize

S

∑
i

∑
j

cijsij

subject to constraints (4.2a)-(4.2e)

where [cij] ∈ Zn×n is the cumulative ranking-matrix of the input rankings, defined

as cij = ∑|L|
`=1 a

`
ij, for i, j = 1, ..., n (see Equation (2.8)), when the rankings are com-

plete. When they are incomplete, the cumulative ranking-matrices defined by Yoo

et al. (2020) can be utilized, which correspond to the incomplete-ranking distances

introduced in Dwork et al. (2001) and Moreno-Centeno and Escobedo (2016). For the

former it is defined as cij = ∑|L|
l=1 = αl

ij

n(n−1) , where n is the total number of alternatives,

and for the latter it is defined as cij = ∑|L|
`=1

α`
ij

n`(n`−1) , where n` is the number of each

alternative evaluated by judge `. In effect, these expressions normalize the ranking-

matrix values of each judge according to the total number of alternatives or to the

number of alternatives evaluated by each judge. The formulation can be adapted for

other incomplete-ranking measures (distances or correlation coefficients) that can be

summarized via a respective ranking-matrix.

The Generalized Kemeny-aggregation Binary Programming formulation (GKBP)

is obtained by substituting for sij with (2yij − 1) in the integer programming formu-
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lation, which gives:

maximize
y

∑
i

∑
j

cij(2yij − 1) (4.7a)

subject to yij − ykj − yik ≥ −1 i, j, k = 1, ..., n; i 6= j 6= k 6= i (4.7b)

yij + yji ≥ 1 i, j = 1, ..., n; i < j (4.7c)

yii = 0 i = 1, ..., n; (4.7d)

yij ∈ {0, 1} i, j = 1, ..., n; i 6= j. (4.7e)

Combining Equation (4.2d) with the definition of ranking-matrix [sij] gives the im-

plicit definition of yij, which represents the ordinal relationship between alternatives

vi, vj. Upon inspection, GKBP has n2 variables while Brancotte et al. (2015)’s formu-

lation has 3
2n

2−2n variables; additionally, the new formulation has n(n−1)(n−2)/2

fewer constraints. Hence, GKBP has approximately O(n2)-fewer variables and O(n3)-

fewer constraints than Brancotte et al. (2015)’s formulation. Taking advantage of the

above binary programming formulation, Escobedo et al. (2021) derives an equivalent

mathematical programming formulation of Equation (6.2), which is further described

in Section 6.3.

On a more fundamental level, GKBP can be connected to the theory of order

polytopes. An order polytope Pn
O is the convex hull of vertices that represent the

possible members of a specific type of binary relation on n alternatives. Notable

examples are the linear order polytope Pn
LO—the convex hull of binary relations that

are total, irreflexive, and transitive—and the weak order polytope Pn
WO—the convex

hull of binary relations that are total, reflexive, and transitive—since their vertices

correspond to strict complete rankings and non-strict complete rankings, respectively.

Previous works formulated Kemeny aggregation for strict complete rankings as a

special case of the formulation of the linear ordering problem, whose aim is to find

a linear ordering that maximizes the sum of weights cij in a weighted directed graph

(Newman and Vempala, 2001; Mart́ı and Reinelt, 2011). The ensuing theorem makes
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an analogous connection between GKBP and the weak order polytope. To the best

of our knowledge, this is the first work to establish such a connection.

Theorem 4. The GKBP constraints provide a formulation for the weak-order poly-

tope.

Proof. Fiorini and Fishburn (2004) provides a binary programming formulation for

Pn
WO. For i, j ∈ {1...n}, the decision variable xij is defined as:

xij =


1 if j � i

0 otherwise,

which is equivalent to the definition of yji in GKBP. The constraints for Pn
WO are

given as:

xij ≤ 1 (4.8a)

xij + xji ≥ 1 (4.8b)

xik − xij − xjk ≥ −1. (4.8c)

By substituting xij with yji, the constraints become:

yji ≤ 1 (4.9a)

yji + yij ≥ 1 (4.9b)

yki − yji − ykj ≥ −1. (4.9c)

Notice that the combination of Equation (4.9a) and (4.9b) gives the domain of yij.

Equation (4.9b) matches with the constraint (4.7c) in GKBP. Furthermore, the above

constraints hold for any permutation of the labels; therefore, changing i to j, j to k,

and k to i yields:

yij − ykj − yik ≥ −1. (4.10)

Equation (4.10) is the same as constraint (4.7b) in GKBP. Therefore, the constraints

of GKBP provide a logically equivalent formulation of the weak-order polytope.
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From this theorem, the underpinnings of the GKBP formulation are strengthened

through their connection with the theory of order polytopes. In fact, the GKBP

constraints are equivalent to the basic family of facet-defining inequalities (see Fiorini

and Fishburn (2004)). This connection gives the formulation inherent computational

advantages since the facet-defining inequalities of Pn
WO could help obtain tighter lower

bounds for the Kemeny aggregation problem within the branch and bound algorithm,

thereby expediting solution times (Nemhauser and Wolsey, 1988).

4.4 Computational Experiments

The computational studies compare the performance of two formulations for rank

aggregation: GKBP (formulation (4.7)) and the modified version of Brancotte et al.

(2015) stated in Proposition 1. The test datasets consist of probabilistic instances

constructed based on the concept of Mallows distribution (see Section 4.4.1) and

benchmark instances from PrefLib, a library of preference data (Mattei and Walsh,

2013). Prior to describing the experiments, recall that GKBP finds a ranking that

maximizes agreement quantified according to the Kendall τ -extended correlation coef-

ficient and the modified Brancotte et al. (2015) model finds a ranking that minimizes

disagreement quantified according to dKS. Due to the connection of this distance-

correlation coefficient pairing (see Equation (2.10)), the two respective problems are

equivalent, which allows for a fair comparison of their performance.

The experiments were performed on machines equipped with 36GB of RAM mem-

ory shared by two Intel Xeon E5-2680 processors running at 2.40 GHz; code was writ-

ten in Python and the formulations were solved using CPLEX solver version 12.8.0

(IBM Knowledge Center, 2017).
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4.4.1 Instances from probabilistic distribution

The formulations are first tested on randomized instances constructed from rank-

ings sampled from a probabilistic distribution with an underlying ground truth and

an adjustable level of noise/error. This choice allows for the generation of instances

with differing levels of difficulty, thereby enabling a systematic comparison of the

formulations. Among the existing options for generating randomized rankings, the

Mallows-φ model (Mallows, 1957; Diaconis, 1988; Marden, 1996; Critchlow, 2012) is

the most popular and has been used similarly in other works—e.g., (Lu and Boutilier,

2014; Betzler et al., 2014; Asfaw et al., 2017; Crispino et al., 2019; Yoo et al., 2020).

The Mallows-φ model is a Kendall-τ distance-based model (i.e., the Kemeny-

Snell distance-based model when the rankings are strict and complete), which is

parameterized by a “ground truth” (or reference) ranking a and “dispersion” φ ∈

(0, 1]. These parameters are used to quantify the probability of obtaining a complete

ranking a as:

P (a) = P (a|a, φ) = φdKS(a,a)

Z
,

where ΩC is the space of complete rankings. When sampling from this distribution,

as φ gets closer to 0, the generated ranking converges to a; as φ gets closer to 1, any

complete ranking has equal probability of occurring (i.e., this becomes the uniform

distribution). Note that the Mallows’ model can be used to generate a set of noisy

rankings from a ground truth and a given dispersion parameter that is shared by all

of the rankings. On the other hand, Kemeny aggregation returns the maximum likeli-

hood estimator of a model in which each judge provides a noisy estimate of one ground

truth ranking with each judge possessing the same dispersion or noise parameter φ.

Hence, each process can be interpreted as being the inverse of the other. Prior works

have developed efficient algorithms for sampling rankings from the Mallows-φ model
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(Doignon et al., 2004; Ceberio et al., 2015; Irurozki et al., 2016). However, it is ineffi-

cient to sample rankings directly from the Mallows-φ model. Instead, we use a slightly

modified version of the repeated insertion model of Doignon et al. (2004), which was

originally designed for strict complete rankings. The next paragraph describes how

ties and incompleteness are added to the rankings generated by the repeated insertion

model so as to provide suitable instances for testing the featured formulations.

Algorithm 1 and 2 describe how non-strict complete and incomplete ranking in-

stances are constructed and guided based on the concept of Mallows distribution.

Before introducing the algorithms, we provide needed definitions. Let a–1 be an

alternative-ordering induced from rankings by sorting the alternatives from best to

worst, according to their ranks. For example, for a = (1, 5, 2, 4, 3), a–1 = (v1, v3, v5, v4, v2).

Extending this notation, a–1(i) specifies the ith-highest ranked alternative in a (Doignon

et al., 2004); in the aforementioned example, a–1(3) = v5. When a is a non-strict

ranking, the alternative-ordering is obtained by putting alternatives with the same

rank position into preference equivalence classes; for example, for a = (1, 3, 3, 1, 5),

a–1 = (〈v1, v4〉, 〈v2, v3〉, v5). Additionally, a−1|Va is an alternative ordering that is pro-

jected to the alternatives in Va, where Va is an alternative set which is evaluated by

a. Finally, UniDist(L,U) denotes the discrete uniform distribution, where L and U

are the minimum and maximum values of the distribution.

Algorithm 1 Generating non-strict complete rankings
Input: Dispersion: φ, reference alternative ordering: a−1

Output: A set of non-strict complete rankings
1: for i = 1, 2, ..., |V | do
2: for j = 1, 2, ..., i do
3: a−1(j)← a−1(i) with probability: pij = φi−j/(1 + φ+ · · ·+ φi−1)
4: while (the number of alternatives involved in ties) ≤ 0.5n do
5: u← UniDist(1, h− 1), where h is the worst (highest-ranked) position in a
6: v ← a−1(u+ 1), and then av ← u

To generate non-strict rankings, a random number u is repeatedly drawn from a
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discrete uniform distribution U(1, h− 1), where h is the highest-valued (worst) rank

position in the current ranking. The alternative in rank position u is tied with the

alternative in the next rank position higher than u. Ties are repeatedly inserted until

the number of tied alternatives reaches a specified threshold, which is set to 0.5n.

For example, let a = (1, 2, 3, 3, 5) and u = 3. The next rank position higher than u

is 5, and v5 is the alternative with this rank. Therefore, a becomes (1, 2, 3, 3, 3), and

the process stops because the number of tied alternatives reaches the threshold (i.e.,

3 > 0.5 · 5 = 2.5).

Algorithm 2 Generating non-strict incomplete rankings
Input: Dispersion: φ, alternative set for a: Va, projected reference alternative

ordering: a−1|Va

Output: A set of non-strict incomplete rankings
1: for i = 1, 2, ..., |Va| do
2: for j = 1, 2, ..., i do
3: a−1(j)← a−1(i)|Va with probability: pij = φi−j/(1 + φ+ · · ·+ φi−1)
4: for i = 1, 2, ..., |V | do
5: if vi ∈ Va then
6: ai ← rank position of vi in a−1

7: else
8: ai ← •
9: while (the number of alternatives involved in ties) ≤ 0.5n do

10: u← UniDist(1, h− 1), where h is the worst (highest-ranked) position in a
11: v ← a−1(u+ 1), and then av ← u

To generate incomplete rankings, the extended repeated insertion model is applied

on a subset V ′ ⊂ V and then marks the alternatives V \V ′ as unranked. Ties are

inserted to incomplete rankings using the same procedure as with complete rankings

but restricted to the alternatives in V ′.

Configurations of probabilistic distribution experiments

The first set of instances is constructed and guided based on the concept of Mal-

lows distribution; specifically, instances are obtained by sampling complete rankings
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from the Mallows-φ distribution and inserting ties and/or incompleteness, as de-

scribed in the preceding subsection. We first investigate the effect of varying the

dispersion parameter, φ ∈ {0.1, 0.2, ..., 0.9, 1.0}, and the number of alternatives,

n ∈ {30, 60, 90, ..., 210}; the number of judges is fixed to 50.

For each of the parameter configurations detailed above, in all upcoming exper-

iments, the computing times of each formulation are individually recorded for 10

corresponding instances, which are summarized via average (AVG) and standard de-

viation (SD) values (represented via error bars). When a formulation cannot return an

optimal solution within a 600-second (10-minute) time limit, the relative optimality

gap is recorded (a solution is considered as optimal when the relative optimality gap

is less than equal to 0.0001). Note that the relative optimality gap for a maximization

problem is defined as:

Relative optimality gap

= best relaxation bound− objective function value for best integer solution
objective function value for best integer solution+1e-10

For example, for an instance solved with one of the featured formulations, the ob-

jective function value of the current best integer solution was 0.312 and the relative

optimality gap was 0.842; this indicates that the objective function value of the opti-

mal solution could be as high as 0.575. As shown in Figure 4.6 and 4.7, the computing

times for some instances exceed 600 seconds; this occurs because CPLEX can be slow

to terminate when a new incumbent solution is found close to the time limit (IBM

Support, 2019).

As shown in Figure 4.6, for non-strict complete ranking instances, GKBP finds

the optimal solution in less time than Brancotte et al. (2015)’s formulation for most

values of n and φ. In general, for both formulations, computing times increase with

the value of φ and n. GKBP returns the optimal solution for all instances within the
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(b) Computing times via Brancotte et al.

(2015)
Figure 4.6: The Average Computing Time for Non-strict Complete Rankings (Note
That the Color of These Charts Denotes the Number of Alternatives in the Instances)

time limit, except for φ = 1.0 with n ≥ 90, while Brancotte et al. (2015) is not able

to solve some instances with φ = 0.7 with n = 150, φ = 0.8 with n = 210, and most

instances with φ ≥ 0.9. Despite the fact that GKBP found an optimal solution faster

than Brancotte’s model for most of the tested instances, when both reached the time

limit without an optimal solution, the optimality gaps of GKBP were at times larger.

For example, the average relative optimality gaps over the 10 instances with φ = 1.0

and n = 90 were 2.99 for GKBP and 1.00 for Brancotte et al. (2015)’s model.
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Figure 4.7: The Average Computing Time for Non-strict Incomplete Rankings (Note
That the Color of These Charts Denotes the Number of Alternatives in the Instances)

Figure 4.7 displays the computing times for non-strict incomplete ranking in-

stances. Before explaining the results, we note that Brancotte et al. (2015)’s model
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is not originally designed to handle incomplete rankings, while GKBP can handle in-

complete rankings using the cumulative ranking-matrices defined by Yoo et al. (2020).

To compare the models under the same treatment of incomplete rankings, we nor-

malize dτ ′ with the same normalization factor as dNPKS (see Section 4.3). Compared

to complete rankings, it takes longer to reach optimality for most values of n and

φ. Similar to the prior results, GKBP reaches optimality in a shorter amount of

time than Brancotte et al. (2015). GKBP attains the optimal solution except four

instances with φ = 0.9 and n = 180, 210 and most instances with φ = 1.0 and n ≥ 60,

while Brancotte et al. (2015) cannot solve most instances, except those for all φ with

n = 30, 60, 90, and 120. For example, for an instance with φ = 0.9 and n = 210, the

relative optimality gap of GKBP is 0.0001, which is considered as optimal, while that

of Brancotte et al. (2015) is 1.00. We remark that the performance of Brancotte et al.

(2015)’s model over these instances is worse without the inclusion of the normalization

factor.

4.4.2 Instances from Preflib benchmark dataset

The second set of instances is selected from the library of preference data Preflib

(Mattei and Walsh, 2013), specifically the “Order with Ties - Complete List (TOC)”

dataset. This benchmark dataset consists of 378 instances with differing numbers

of alternatives and rankings (i.e., judges) obtained from various domains, and they

include real-world data (e.g., figure skating competitions, cross-country skiing and ski

jump championship results). The instances include results from Formula One racing

and human computation activities, which tend to be relatively less subjective and

possess a higher level of collective similarity, as well as data from elections and pure

preferences (e.g., the Sushi data set), which tend to be more subjective and possess a

lower level of collective similarity. For instance, Milosz and Hamel (2018) estimated
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the Mallows dispersion parameter φ of the “Websearch” instance to be 0.0265, which is

a relatively low value. Although we do not have information on the specific dispersion

values apart from this single instance, Preflib instances encompass a wide range of

subjectivity, meaning the inputs are expected to have varying degrees of collective

similarity, as suggested by this discussion.
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Figure 4.8: The Number of Alternatives (n) of the Instances in the Preflib Dataset

Figure 4.8 summarizes the distribution of the instances according to ranges of n

(number of alternatives). As shown in the figure, most instances have n ≤ 65, but

there are a few instances with n ≥ 1000.
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Figure 4.9: The Computing Time of GKBP and Brancotte et al. (2015)’s Formula-
tion

For this experiment, only the instances with n < 300 are considered; many in-

stances with n > 300 resulted in termination likely due to insufficient memory. In all,

there are 302 instances with 3 ≤ n ≤ 170; for clarity, the instances are grouped by
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intervals of 30 over the range of n in Figure 4.9. GKBP is faster, on average, than

Brancotte et al. (2015)’s formulation over all instances with n ≤ 300. The longest com-

puting time for GKBP is 338.94 seconds when there are 170 alternatives, while the

time limit is reached with a relative optimality gap of 0.46, on average, for Brancotte

et al. (2015). From this analysis, it is evident that GKBP can also solve benchmark

problems noticeably faster.

4.5 Concluding Remarks

In this chapter, we developed a new binary programming formulation for robust

rank aggregation. The major benefit of the generalized Kemeny-aggregation binary

programming formulation is that it is applicable to a wide variety of ordinal pref-

erences including complete and incomplete rankings, with and without ties. Addi-

tionally, it has fewer variables and constraints compared to a closely related integer

programming formulation for the generalized Kendall-τ distance, leading to compu-

tational savings, as demonstrated by the featured set of experiments. The additional

benefit of the formulation is that it was leveraged to develop a joint ranking and rating

aggregation model by Escobedo et al. (2021). Moreover, the connection between the

facet-defining inequalities of the weak order polytope and the binary programming

formulation demonstrates the theoretical rigor of the proposed exact approach. Lastly,

the results of the featured experiments on randomized instances and benchmark data

show their substantial computational advantages.
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Chapter 5

A STRUCTURAL SOCIAL CHOICE PROPERTY

To further expedite the solution process of Kemeny rank aggregation, this chapter

will devise a structural social choice property, which allows a decomposition of a

large size problem into a partition of smaller subproblems. Section 5.1 introduces

the Condorcet criterion, which is the basis of our new social choice property that is

discussed in Section 5.2. Section 5.3 shows the decomposition algorithm for the new

property. In Section 5.4, we investigate the effectiveness of the social choice property.

Section 5.5 presents the final remarks and future work.

5.1 The Condorcet Criterion

Condorcet (1785) proposed a social choice property, named thereafter as the Con-

dorcet Criterion (CC), stating that if a majority of voters prefers one alternative

ahead of all other alternatives, that alternative should alone obtain the best position

in the voting outcome. Formally, recalling that pij is the number of judges who prefer

alternative vi over alternative vj, this property can be written as:

If ∃vi ∈ V, s.t. pij > pji (i.e., vi
m� vj) ∀vj ∈ V \{vi}

=⇒ v∗i � v∗j , or equivalently, r∗i < r∗j ,

where r∗ is the final aggregate ranking and v∗i � v∗j indicates that vi is ranked strictly

better than vj in r∗. At the preliminary screening stage of decision-making, keeping

a diverse and large set of candidates, rather than selecting few candidates, provides

decision-makers with broader options. For this reason, CC provides limited useful-

ness for decision-making since it can only identify one winning alternative (i.e., the
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Condorcet winner) or one losing alternative (i.e., the Condorcet loser), when it is

satisfied. An extended version of the Condorcet winner is the Smith set; the winning

(losing) Smith set is the smallest non-empty set of alternatives that defeats (is de-

feated by, resp.) every alternative outside the set in a pairwise election (Smith, 1973).

Truchon et al. (1998) provided another natural extension of CC, called the Extended

Condorcet Criterion (XCC). This property requires that if V can be organized into

a partition V := {V 1, ..., V K} ∈ P(V ), such that all alternatives in subset V k ∈ V

are pairwise preferred over all alternatives in subset V k′ ∈ V by a majority (i.e.,

V k m� V k′), where k < k′, then the alternatives in V k must be ranked strictly better

than all alternatives in V k′ in the optimal ranking. Formally, this property can be

written as:

If ∃V := {V 1, V 2, ..., V K} ∈ P(V ), s.t. V k m� V k′ , for 1 ≤ k < k′ ≤ K

=⇒ v∗i � v∗j , or equivalently, r∗i < r∗j , ∀vi ∈ V k, ∀vj ∈ V k′ .

Table 5.1 illustrates how XCC can be applied to the Kemeny aggregation problem.

In the example, since VXCC := {{v1, v2}, {v3}, {v4}} is a partition satisfying XCC,

the Kemeny optimal ranking is expected to place v1 and v2 ahead of v3 and v4,

and to place v3 ahead of v4 (the optimal ordering between v1 and v2 cannot be

determined from the application of this property alone). As shown in the table, the

Kemeny optimal rankings (three in this case) are all consistent with XCC. Note

that Kemeny rank aggregation (as well as other distance-based methods) may yield

more than one optimal solution (Young and Levenglick, 1978; Dwork et al., 2001).

Indeed, Muravyov (2014) explained that the number of optimal solutions in Kemeny

aggregation can at times be greater than the number of input rankings and that these

solution rankings may rank the alternatives in significantly different ways, which can

lead to ambiguity—this is called Paradox of Kemeny. This is explained to a great

extent by the fact that the Kemeny rank aggregation problem can be characterized
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as finding the median ranking among the given set of rankings. Medians do not need to

be unique and, therefore, Kemeny optimal rankings are not guaranteed to be unique

as well (Kemeny and Snell, 1962).

a1 a2 a3 a4 a5 a6 a7 a8
Kemeny

optimal rankings
v1 1 2 1 2 1 2 1 2 1 1 2
v2 2 1 2 1 2 1 2 1 1 2 1
v3 3 3 3 4 4 4 3 3 3 3 3
v4 4 4 4 3 3 3 4 4 4 4 4

Table 5.1: The Kemeny Optimal Solutions Are Consistent With XCC

Although both CC and XCC have been implemented to refine the complexity of

Kemeny aggregation (i.e., providing parameterized complexity with respect to the

number of subsets and the size of subsets in VXCC), they are not appropriate for

non-strict rankings. In the example showcased in Table 5.2, we have that p12 = 5,

p21 = 3, t12 = 1, p23 = 5, p32 = 3, t23 = 1, p13 = 3, p31 = 0 and t13 = 6. According

to the definition of XCC, the final optimal solution is expected to be (1, 2, 3), since

VXCC := {{v1}, {v2}, {v3}} is a partition satisfying XCC—that is, pij > pji for 1 ≤ i <

j ≤ 3. However, v1, v2, and v3 are tied in the aggregate ranking when optimizing with

the Kemeny-Snell distance and allowing ties. Effectively, this implies that Kemeny

aggregation for non-strict rankings is not consistent with XCC. In order to overcome

this inadequacy, we define a new social choice property in the ensuing subsection.

a1 a2 a3 a4 a5 a6 a7 a8 a9
Kemeny

optimal ranking
XCC

solution
v1 1 1 1 1 1 1 2 2 2 1 1
v2 1 3 3 3 2 2 1 1 1 1 2
v3 3 1 1 1 3 2 2 2 2 1 3

Table 5.2: The Optimal Solution Is Not Consistent With CC and XCC
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5.2 An Extended Condorcet Criterion with Ties

To introduce a substitute to XCC that is suitable for non-strict rankings, we first

define an important concept. We say that a decisive majority prefers an alternative

vi over an alternative vj, written as vi M� vj, if pij > pji + tij, that is, the number of

people who prefer vi over vj is greater than the number of people who prefer vj over

vi plus those who tie them. If neither vi M� vj nor vj M� vi, there is no decisive majority

that prefers vi over vj, and vice versa, written as vi M≈ vj. Similarly, we say that a

decisive majority prefers all alternatives in the partition V k over all alternatives in

the partition V k′ , written as V k M� V k′ , if pij > pji+tij, ∀vi ∈ V k,∀vj ∈ V k′ . If neither

V k M� V k′ nor V k′ M� V k, there is no decisive majority that prefers V k over V k′ , and

vice versa, written as V k M≈ V k′ .

Definition 5. Let V := {V 1, V 2, ...V K} s.t. V k M� V k′ for 1 ≤ k < k′ ≤ K. The Non-

strict Extended Condorcet Criterion (NXCC) requires that all vi ∈ V k must precede

all vj ∈ V k′ in the final ranking. That is,

If ∃V := {V 1, V 2, ..., V K} ∈ P(V ), s.t. V k M� V k′, for 1 ≤ k < k′ ≤ K

=⇒ v∗i � v∗j , or equivalently, r∗i < r∗j , ∀vi ∈ V k, ∀vj ∈ V k′ .

A basic implication of this property is that, the more subsets the partition has, the

smaller the sizes of the subproblems that need to be solved (since each subset will

tend to have fewer alternatives). Note that when all rankings are strict and complete,

NXCC is exactly XCC because tij = 0.

5.3 Decomposition Algorithm

To apply NXCC, it is necessary to determine the ordered partition of subsets of

alternatives—in which lower-indexed subsets are each preferred over higher-indexed

subsets by a decisive majority—from the data. This can be done via Algorithm 3,
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which has a worst-case complexity of O(n2), where n is the number of alternatives.

At iteration i−1, the algorithm inserts vi before, within, or after the existing subsets

in the working partition V = {V 1, V 2, ..., V κ(i)}, where κ(i) is the number of subsets

prior to the iteration. To determine its precise point of insertion, vi is compared at

most to the alternatives in all subsets from V 1 to V κ(i), which takes at most (i − 1)

comparisons, each of which is assumed to take constant time. This has to be done for

i = 2, . . . , n. Therefore, the algorithm requires at most n(n− 1)/2 such comparisons,

resulting in a worst-case complexity of O(n2).

Algorithm 3 Decomposition Algorithm
Input: {pij},{pji},{tij}
Output: An ordered partition of subsets V = {V 1, V 2, ..., V K}

1: V = {{v1}}
2: for i = 2, 3, ..., |V | do
3: if (∃vj ∈ V 1 s.t., tij ≥ |pij − pji|), or
4: (∃vj ∈ V 1 s.t., pij > pji+ tij and ∃vj′ ∈ V 1\{vj} s.t., pj′i > pij′+ tij′) then
5: Put vi in V 1 and k ← 2
6: else if ∀vj ∈ V 1 s.t., pij > pji + tij then
7: Insert vi before V 1, increment the index of subsets after V σ(i) by 1, and
k ← 3

8: else if ∀vj ∈ V 1 s.t., pji > pij + tij then
9: Insert vi after V 1, increment the index of subsets after V σ(i) by 1, and
k ← 3

10: while k ≤ |V| do
11: if (∃vj ∈ V k s.t., tij ≥ |pij − pji|), or
12: (∃vj ∈ V k s.t., pij > pji + tij and ∃vj′ ∈ V k\{vj} s.t., pj′i > pij′ + tij′)

then
13: Merge subsets from V σ(i) to V k

14: Decrease the index of subsets after V k by k − σ(i) and k ← σ(i) + 1
15: else if ∀vj ∈ V k s.t., pij > pji + tij then
16: k ← k + 1
17: else if ∀vj ∈ V k s.t., pji > pij + tij then
18: if |σ(i)− k| = 1 and |V σ(i)| = 1 then
19: Move V σ(i) after V k and increment the index of subsets after V σ(i)

by 1
20: else
21: Merge subsets from V σ(i) to V k

22: Decrease the index of subsets after V k by k−σ(i) and k ← σ(i) + 1

* σ(i) is the index of the subset containing vi.
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The main difference between NXCC and XCC is that ties are or are not considered,

respectively, to determine the majority’s strict pairwise preferences. Specifically, XCC

does not consider ties to be relevant to the conclusion that vi ∈ V k should be strictly

preferred over all vj ∈ V k. On the other hand, NXCC requires that to arrive at this

conclusion, the number of judges who strictly prefer vi over vj should be greater than

those who do not—which includes those who tie them or who strictly prefer vj over

vi. Table 5.2 illustrates that the outcome of XCC decomposition is not consistent

with Kemeny aggregation for non-strict rankings. Therein, since t13 > p13 − p31 (the

number of judges who tie v1 and v3 is greater than the net difference between the

number of judges who have a strict preference), it cannot be concluded that v1 should

be ahead of v3 in the final optimal ranking. Hence, these two alternatives and every

other alternative between them cannot be ordered a priori into separate subsets,

which is the outcome obtained when NXCC is applied to the example. The ensuing

paragraphs formally prove that the Kemeny optimal solution satisfies NXCC when

the rankings are non-strict and complete. This is done through Lemma 1 and Theorem

5. Beforehand, it is useful to introduce some additional notation.

Notation 1. The reduced instance associated with two subsets of alternatives V k,

V k′ ⊂ V , written as A[k∪k′] = A[V k∪V k′ ] is the submatrix induced by rows V k ∪ V k′

of A. Similarly, a`[k∪k′] = a`[V k∪V k′ ] and r∗[k∪k′] = r∗[V k∪V k′ ] are the reduced evaluation

from judge ` and the optimal reduced ranking with respect to V k ∪ V k′, respectively.

When exactly two alternatives are considered, this notation is modified as follows.

Notation 2. The reduced instance A{i,j} = A{vi,vj} is the submatrix induced by al-

ternatives vi and vj. Similarly, a`{i,j} = a`{vi,vj} and r∗{i,j} = r∗{vi,vj} are the reduced

evaluation from judge ` and the optimal reduced ranking with respect to vi and vj,

respectively.
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Furthermore, the above notation is combined to specify the ranking position of

single alternatives within a reduced problem space.

Notation 3. The ordinal position of vi in the reduced evaluation from judge a` with

respect to V k ∪ V k′ is denoted as a`i|[k∪k′].

Using this notation, the cumulative distance between {a`}|L|`=1 and r, accrued by

only alternatives vi and vj, can be written as ∑`∈L d(a`{i,j}, r{i,j}). Similarly, the dis-

tance between {a`}|L|`=1 and r, accrued by all alternatives in V k and all alternatives in

V k′ , can be written as ∑`∈L d(a`[k∪k′], r[k∪k′]).

Lemma 1. Let V 1, V 2 ⊂ V with V 1∩V 2 = ∅. Consider the reduced aggregation prob-

lem consisting of input rankings A[1∪2], that is, the part of the evaluations involving

only V 1 ∪ V 2. If V 1 M� V 2, every alternative vi ∈ V 1 should obtain a better position

than every alternative vj ∈ V 2 in the optimal solution to the reduced problem, that is,

r∗i|[1∪2] < r∗j|[1∪2], where r∗[1∪2] := arg min
r[1∪2]

∑
`∈L d(a`[1∪2], r[1∪2]).

Proof. We prove this by contradiction. Let r∗[1∪2] be a Kemeny optimal ranking to

the reduced problem involving only V 1 and V 2 and assume that r∗i|[1∪2] ≥ r∗j|[1∪2], for

at least one alternative pair vi, vj, where vi ∈ V 1, vj ∈ V 2—i.e., there exists at least

one alternative in V 1 which is tied or dispreferred over at least one alternative in V 2.

Additionally, denote the ranking where all alternatives in V 1 are preferred over all

alternatives in V 2 by r̄∗[1∪2].

Initially, choose an arbitrary alternative vi ∈ V 1. Then, the Kemeny-Snell distance

between vi and every alternative vj ∈ V 2 is calculated as:

∑
vj∈V 2

∑
`∈L

d(a`{i,j}|[1∪2], r
∗
{i,j}|[1∪2]) = 1

γ

∑
vj∈V 2

∑
`∈L
|sign(a`i|[1∪2] − a`j|[1∪2])− sign(r∗i|[1∪2] − r∗j|[1∪2])|

where γ is a positive constant associated with the minimum distance unit (see Equa-

tion (2.3)). Without loss of generality, γ can be ignored in the remainder of the proof
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because it is a constant term which only affects the objective-value scaling. Moreover,

since there are three possible ordinal relationships between vi and vj in r∗, we have

that,

∑
`∈L

d(a`{i,j}, r∗{i,j}) =



∑
`∈L
|sign(a`i − a`j)− (−1)| = 2pji + tij if r∗i < r∗j

∑
`∈L
|sign(a`i − a`j)− 0| = pij + pji if r∗i = r∗j

∑
`∈L
|sign(a`i − a`j)− 1| = 2pij + tij if r∗i > r∗j

0 otherwise.

Therefore, the distance between vi and all vj ∈ V 2 can be factored as,

∑
vj∈V 2

∑
`∈L

d(a`{i,j}|[1∪2], r
∗
{i,j}|[1∪2]) =

∑
vj∈V k′

s.t. r∗
i|[1∪2]>r

∗
j|[1∪2]

(2pij + tij) +
∑

vj∈V k′

s.t. r∗
i|[1∪2]=r

∗
j|[1∪2]

(pij + pji) +
∑

vj∈V k′

s.t. r∗
i|[1∪2]<r

∗
j|[1∪2]

(2pji + tij).

From the assumption that V 1 M� V 2 for all vi ∈ V 1 and vj ∈ V 2, because pij >

pji + tij, we can derive the following inequalities involving the second (r∗i = r∗j ) and

third (r∗i > r∗j ) cases above:

2pji + tij < pij + pji

2pji + tij < 2pij + tij,

which results in the following relationship:

∑
vj∈V k′

s.t. r∗
i|[1∪2]>r

∗
j|[1∪2]

(2pij + tij) +
∑

vj∈V k′

s.t. r∗
i|[1∪2]=r

∗
j|[1∪2]

(pij + pji) +
∑

vj∈V k′

s.t. r∗
i|[1∪2]<r

∗
j|[1∪2]

(2pji + tij) >
∑
vj∈V 2

(2pji + tij).

That is, ∑
vj∈V 2

∑
`∈L

d(a`{i,j}|[1∪2], r
∗
{i,j}|[1∪2]) >

∑
vj∈V 2

∑
`∈L

d(a`, r̄∗{i,j}|[1∪2])

which means the optimal ranking r∗ where vi is tied or dispreferred over some al-

ternatives in V 2 returns a longer cumulative distance than the ranking r̄∗ where vi
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is preferred over all vj ∈ V 2. This contradicts the assumption that r∗ is the opti-

mal ranking, since it does not return the shortest cumulative distance. Therefore, if

V 1 M� V 2, assigning vi with a better ranking position than all alternatives vj ∈ V 2

returns a strictly shorter distance than a ranking where alternative vi is tied with or

dispreferred over an arbitrary alternative vj, that is r∗i|[1∪2] < r∗j|[1∪2], ∀vj ∈ V 2. Since

vi was chosen arbitrarily, this holds for all alternatives in V 1. Hence, if V 1 M� V 2, every

alternative vi ∈ V 1 should obtain a better position than every alternative vj ∈ V 2 in

the optimal solution.

Theorem 5. Kemeny aggregation satisfies NXCC when the inputs are non-strict and

complete.

Proof. Define the partition V = {V 1, V 2, ..., V K}, where V k = {vk1 , vk2 , ..., vk|V k|} and

assume that V k M� V k′ for every k, k′, where 1 ≤ k < k′ ≤ K. Let r∗ be a Kemeny

optimal ranking. In order to prove that Kemeny aggregation satisfies NXCC when

rankings are non-strict and complete—which means that all elements in V k should

precede all elements in V k′ in r∗—the Kemeny-Snell distance between V k and V k′

can be calculated for all k < k′. To this end, the cumulative Kemeny-Snell distance

is expanded as follows:

∑
`∈L

d(a`, r∗) =
|V |−1∑
i=1

|V |∑
j=i+1

∑
`∈L

d(a`{i,j}, r∗{i,j})

=
K∑
k=1

K∑
k′=1

|V k|∑
i=1

|V k′ |∑
j=1

∑
`∈L

d(a`{i,j}, r∗{i,j})

=
K∑
k=1

|V k|−1∑
i=1

|V k|∑
j=i+1

∑
`∈L

d(a`{i,j}, r∗{i,j})︸ ︷︷ ︸
within subset V k (intrasubset distances)

+
K−1∑
k=1

K∑
k′=k+1

|V k|∑
i=1

|V k′ |∑
j=i

∑
`∈L

d(a`{i,j}, r∗{i,j})︸ ︷︷ ︸
between subsets V k and V k′ (intersubset distances)

.

If all vi ∈ V k can be proved to be strictly preferred or strictly dispreferred over all

vj ∈ V k′ in the optimal solution, for all k < k′, this guarantees an optimal ordered
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partition V = {V 1, V 2, ..., V K}, with V 1 � V 2 � ... � V K ; the ordering of the

alternatives within each subset (i.e., between vi, vi′ ∈ V k) can be performed in a

subsequent step and is ignored for the rest of the proof. We can derive the following

bound on the optimal cumulative intersubset distances:

min
r∗

K−1∑
k=1

K∑
k′=k+1

∑
`∈L

d(a`[k∪k′], r∗) ≥
K−1∑
k=1

K∑
k′=k+1

min
r∗[k∪k′]

∑
`∈L

d(a`[k∪k′], r∗[k∪k′]). (5.1)

The optimal solutions from the right-hand side of inequality (5.1) correspond to the

K(K − 1)/2 optimal reduced orderings of all subset pairs from {V 1, V 2, ..., V K} ∈ V ,

which can produce preference cycles (i.e., contradictions) when combined. For ex-

ample, assuming vi ∈ V 1, vj ∈ V 2, vk ∈ V 3, the optimal solutions to the reduced

problems can be r∗i|[1∪2] < r∗j|[1∪2], r∗j|[2∪3] < r∗k|[2∪3] and r∗k|[1∪3] < r∗i|[1∪3]. On the other

hand, the optimal solution from the left-hand side of inequality (5.1) gives a Kemeny

optimal ordering of the K subsets. In other words, the collection of right-hand side

two-subset subproblems can be interpreted as a relaxed version of the left-hand side

rank aggregation problem. The relaxed problem does not enforce the preference tran-

sitivity between all subsets orderings. However, when the optimal solutions to the

two-subset optimal reduced orderings yield a combined solution that is feasible to the

left-hand side problem, an optimal solution for the original rank aggregation problem

has been found, since the objective values will also be equal.

By Lemma 1, when V k M� V k′ , the optimal solution to the reduced problem induced

by each pair V k and V k′ places every alternative vi ∈ V k ahead of every alternative

vj ∈ V k′ , for all k < k′. Hence, the two-subset orderings can be combined into

a K-subset partial ordering V∗ = {V 1, V 2, ..., V K} with V 1 � V 2 � ... � V K ,

without contradictions or preferences cycles. In particular, the combined solution

to the reduced subproblems is feasible to the original problem and r∗i < r∗j , where

vi ∈ V k, vj ∈ V k′ , for all k < k′, giving an optimal partial ranking of all alternatives
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in V . Hence, Kemeny aggregation satisfies NXCC when the rankings are non-strict

and complete.

Besides offering significant potential computational advantages, NXCC brings var-

ious practical benefits for decision-making. This includes the ability to focus on the

most relevant alternatives. It is usually not known a priori which alternatives will

be the ones to occupy the top, middle, or bottom positions in the consensus rank-

ing; the exact positions are ultimately revealed through the aggregation process. One

exception by which it may be possible to know such information ahead of time is

through the application of the NXCC property developed in this work. In particular,

NXCC takes advantage of the pairwise comparison information to determine whether

there exist subsets of alternatives that will always be preferred over other subsets of

alternatives. By determining the NXCC partition, decision-makers can focus on the

exact ordering of the alternatives contained in just the top and/or bottom subsets.

That is, alternatives that belong to subsets in the middle of the partition can be

dropped from consideration while formally guaranteeing that the relative ordering

of the remaining alternatives will not be affected. An additional related benefit is

the ability to certifiably rule out certain outcomes even when the consensus ranking

is not unique. That is, even if an instance may have multiple alternative optimal

solutions but only one is obtained by the exact solution method, the NXCC decom-

position would guarantee that alternatives in higher-indexed subsets will never be

ranked ahead of alternatives in lower-indexed subsets. Put otherwise, it could help

determine that many alternatives will never occupy the top positions of any optimal

ranking.
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5.4 Computational Performance of NXCC

The purpose of this experiment is to provide an estimate of how NXCC could

improve the computing time of Kemeny aggregation via partitioning and bring about

other practical benefits. To highlight the practicality of the property, this work ex-

periments on the Preflib benchmark dataset consisting of 378 instances described in

Section 4.4.2. During the experiment, the following information is recorded: (1) the

existence of a Condorcet winner and loser, (2) whether the partition is non-trivial

after the decomposition (i.e., |V| ≥ 2, where |V| is the number of subsets in the

partition), and (3) the size of the winning Smith set and the losing Smith set (see

Section 5.1); Table 5.3 and Figure 5.1 display this information. Checking the exis-

tence of a Condorcet winner and the size of the winning and losing Smith set are

two indicators of the effectiveness of NXCC. In particular, a smaller winning Smith

set helps to narrow down the winners or most relevant candidates. Likewise, a larger

losing Smith set helps decision-makers rule out many irrelevant alternatives, since the

complement of the losing Smith set becomes smaller. In addition, practitioners are

often most interested in the alternatives that obtain the top positions. For instance, in

recommendation system, it is more important to suggest a set of items that is most

likely to be preferred (i.e., top alternative sets), rather than suggesting middle or

the least preferred items (Davidson et al., 2010). The following analysis helps better

understand and quantify the practical benefits of NXCC decomposition.

Key Instance Characteristics Proportion of Instances
Condorcet winner 191 out of 378 (50.53%)
Condorcet loser 62 out of 378 (16.40%)
Non-trivial partition (|V| ≥ 2) 230 out of 378 (60.85%)

Table 5.3: NXCC Helps Identify the Most Relevant Candidates in the Instances from
the Preflib Dataset

More detailed information about the Smith sets is visualized in Figure 5.1, which
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shows the cumulative distribution of the proportion of instances in the dataset with

respect to the percentage of alternatives in the winning Smith set and the losing Smith

set (note that the color legend of these charts serves to group the tested instances

according to the range of number of alternatives they consider). Specifically, each bar

graph represents the number of instances whose Smith set contains at most x% of the

total number of alternatives. For example, Figure (5.1a) shows that approximately

58% of instances have a small winning Smith set (i.e., at most .1n alternatives in the

winning Smith set); in particular, at most 10% of the alternatives (i.e., .1n alterna-

tives) are contained in the winning (top) Smith set for the majority of the instances

with more than 80 alternatives (colored in light blue in the graph). Moreover, Figure

(5.1b) shows that approximately 60% of the instances have a large losing Smith set;

in particular, more than 90% of the alternatives are contained in the losing (bottom)

Smith set for instances with more than 80 alternatives (colored in light blue in the

graph). From these observations, we conclude that NXCC yields small winning Smith

sets and large losing Smith sets for more than 50% of the instances, which means that

NXCC decomposition can significantly simplify the identification of relevant candi-

dates from these benchmark instances.
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Figure 5.1: NXCC Yields Small Winning Smith Sets and Large Losing Smith Sets
for More than 50% of the Instances
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Next, we test the computational benefits of the decomposition. To do so, this

study compares the computing times of solving the full (non-decomposed) instances

(see the computing time of solving these instances in Figure 4.9) and solving the

decomposed instances. The latter include the partitioning time and the time of solving

the subproblem for each subset in sequential manner. The experiment was conducted

on the PrefLib instances with a non-trivial partition (i.e., |V| ≥ 2) and n ≤ 300

(because CPLEX could not solve non-decomposed instances with more alternatives);

the number of instances that meet these conditions is 177. Table 5.4 shows the relative

improvement in computing time (i.e., reduction in computing time), which is defined

as follows:

(time to solve non-decomposed problem)−∑ (time to solve decomposed subproblems)
(time to solve full (non-decomposed) problems) × 100%

|V| 2 3 4 5-10 11-20 21-30

number of instances 72 33 20 21 12 19

relative improvement 25% 44% 72% 65% 67% 96%
Table 5.4: Applying GKBP for Each Subset after Partitioning Reduces the Com-
puting Time by at Least 25%

As shown in Table 5.4, the computing time is reduced when a higher number of

subsets is obtained after the decomposition. For example, when |V| = 4, the com-

puting time is reduced by 72%, on average, whereas the computing time is reduced

by 25% on average when |V| = 2. If each subset was solved by multiple processors

at the same time, the computing time could be further reduced. Hence, using dis-

tributed computing resources, the more finely decomposed V is, the faster that large

instances could be solved with the combination of GKBP and NXCC. It is pertinent

to point out, however, that most of the benchmark instances with less than 150 al-

ternatives can be solved within a minute using GKBP (without decomposition). To
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further assess the potential computational improvements of NXCC, we also apply the

decomposition algorithm to non-strict complete ranking instances generated using the

procedure described in Section 4.4.1. Here, we restrict n to larger values, specifically

n ∈ {90, 120, 150, 180, 210}, and generate 10 instances for each value. Moreover, we

fix φ = 0.8, since this is the setting after which certain instances cannot be solved

to optimality by GKBP within ten minutes (see Figure (4.6a)). In other words, such

instances are relatively difficult but they can still be solved by GKBP within a rea-

sonable amount of time.

Table 5.5 shows the (absolute) improvement in computing time, which is calculated

as the difference between the time to solve full (non-decomposed) problem and the

cumulative time to solve the decomposed subproblems (i.e., the numerator in the

relative improvement calculation).

n 90 120 150 180 210

(absolute) improvement (s) 12.12 47.31 125.84 269.35 560.42+

standard deviation (s) 0.50 3.60 29.60 72.41 207.23
Table 5.5: The Effectiveness of NXCC Is More Prominent on Larger, More Difficult
Instances

As shown in Table 5.5, after applying NXCC, computing times improve signifi-

cantly for every n; most strikingly, decomposed instances with 210 alternatives are

solved within few seconds after decomposition, but the original non-decomposed in-

stances were not solved within 600 seconds (note that non-decomposed instances with

210 alternatives are not solved within the time limit, meaning the absolute improve-

ment is at least what is shown on the table). We surmise that NXCC is more effective

in these instances because they are moderately difficult to solve.
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5.5 Concluding Remarks

This chapter introduced a computationally expedient social choice property, which

unlike the original Condorcet criterion and the extended Condorcet criterion, aligns

with the Kemeny-Snell distance when dealing with rankings with ties. Moreover, the

structural decomposition enabled by the novel social choice property has polynomial-

time computational complexity, which decomposes large-size problems into smaller

subproblems, while guaranteeing that the optimal solutions to the subproblems can be

joined to provide the overall optimal solution. Through the combination of the binary

programming formulation and the social choice property, certain instances that could

only be solved approximately can be solved exactly in a reasonable amount of time,

even when the input evaluations are relative non-cohesive and/or contain hundreds

of alternatives.
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Chapter 6

OVERCOMING ANCHORING EFFECTS IN MULTIMODAL INPUT

ELICITATION TO EXTRACT MORE ACCURATE CROWD ESTIMATES

“For the many, of whom each individual is but an ordinary person, when they meet

together may very likely be better than the few good, if regarded not individually but

collectively, just as a feast to which many contribute is better than a dinner provided

out of a single purse. Hence, the many are better judges than a single man of music

and poetry; for some understand one part, and some another, and among them they

understand the whole.” — Aristotle, Politics

6.1 Crowdsourcing

“Who wants to be a millionaire” is an internationally popular television quiz show.

A contestant wins a top prize of $1,000,000 by answering fifteen multiple-choice ques-

tions, each of which is worth a specific amount of money and is of increasing diffi-

culty. Contestants can request different types of assistance when they get stuck on a

question, including ‘Ask the Audience’ and ‘Ask the Expert’. For the ‘Ask the Au-

dience’ option, the audience is asked the question and a quick poll is elicited; its

historical accuracy is 91%. On the other hand, the ‘Ask the Expert’ option has a

historical accuracy of 65% (Economist, 2004). The show has evinced that it is better

to trust the opinion of crowds rather than a single expert, demonstrating the benefits

of crowdsourcing. Crowdsourcing is formally defined as an outsourcing of work to

a large group of people that were traditionally assigned to a single person (Quinn

and Bederson, 2011). This concept has been applied in various settings; for example,

prediction markets are popular crowd-based approaches for predicting future events
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which are unknown, such as presidential election outcomes and future product sales

(Rothschild, 2009; Atanasov et al., 2017). Specifically, market participants are buying

or selling contracts (or shares of stocks) based on their beliefs or predictions, and then

these collective predictions (i.e., market prices) naturally approach a static point (a

market equilibrium), which represents the probability of a future outcome. An on-

line user-generated review site is one of the crowd-based approaches where multiple

reviewers leave ratings and they are aggregated to provide people with useful infor-

mation (Lee et al., 2015). In transportation information systems, crowdsourcing has

been utilized to collect information, such as bike routes and traffic congestion, and to

solicit feedback on the quality of transit service (Misra et al., 2014). Crowdsourced

human inputs can be also used to collect data and to obtain labels for data samples in

data analytics (Xintong et al., 2014; Najafabadi et al., 2015; Zheng et al., 2018) and

to complement the computer’s ability within a human-computer system (Demartini

et al., 2017). As suggested above, crowdsourcing is primarily utilized in two ways: (1)

to collect diverse information and (2) to uncover an unknown ground truth by elicit-

ing and aggregating individual collective estimates. The second main purpose is the

focus of this chapter. As described in the aforementioned practical examples, eliciting

opinions from multiple people is beneficial for obtaining reliable judgments. Among

the options of eliciting quantitative evaluations over multiple items (i.e., objects, al-

ternatives) from crowds, cardinal inputs (ratings) and ordinal inputs (rankings) are

the most common forms. They are used in various applications such as online reviews

(Aral, 2014), academic paper competitions (Hochbaum and Levin, 2006b), informa-

tion retrieval (Farah and Vanderpooten, 2007; Yilmaz et al., 2008), and similarity

search (Fagin et al., 2003; Ye et al., 2016; Gao and Xu, 2019).

As mentioned earlier, there is a longstanding debate as to whether rankings or

ratings should be adopted for opinion elicitation. In this chapter, both ordinal and
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cardinal estimates are elicited, and they are aggregated via optimization-based aggre-

gation models and traditional aggregation/voting rules (more detailed explanations

are included in Section 6.3). Reflecting on the aforementioned discussion, this chapter

examines the following research questions:

1. What could be the best way to elicit individual opinions? Is ranking better than

rating, or vice versa?

2. Does multimodal information help achieve better collective estimates?

3. Can multimodal input elicitation cause anchoring effects?

4. Does prioritizing ranking over rating information (or vice versa) improve the

collective estimates from multimodal aggregation models?

To answer these research questions, we design a crowdsourcing experiment based on

an extended version of the dot estimation task, which is considered a benchmark

task in crowdsourced computation since it allows for an objective comparison of the

collective estimates to a known ground truth. The standard dot estimation task asks

participants to estimate the number of dots in different images (Horton, 2010); the

estimates are then aggregated to provide the collective estimate(s). Our work explores

the idea of combining cardinal and ordinal inputs to improve collective cardinal and

ordinal estimates. We note that the main differences from Kemmer et al. (2020) are

that (1) we use two user interfaces to test whether one interface is more convenient

than the other and whether one leads to more accurate collective estimates, and

(2) we prioritize the multimodal information by assigning priority weights on each

estimate in order to test the importance of each modality of information in multimodal

aggregation, which is discussed in Section 6.6.

We offer three main contributions. First, we provide empirical evidence on the
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effect of utilizing different elicitation methods and user interfaces on the quality of

elicited opinions. Second, we show that the anchoring effects encountered in the elic-

itation of multimodal estimates can counteract the benefit of the wisdom of crowds.

Third, we empirically justify that assigning asymmetric priority weights to the differ-

ent information elements can improve the quality of collective estimates.

The organization of the rest of the chapter is as follows. Section 6.2 reviews the

related literature and describes a set of hypotheses that will be tested. Section 6.3

introduces the featured aggregation methods. Section 6.4 includes a description of the

crowdsourcing experiment. Section 6.5 evaluates the effects of the different elicitation

methods and user interfaces tested in the experiment, and Section 6.6 evaluates the

impact of assigning asymmetric priority weights to multimodal information. Lastly,

Section 6.7 concludes with a discussion of the contributions and the practical impli-

cations of this work.

6.2 Hypothesis Development

6.2.1 Multimodality in decision-making

Multimodality is broadly defined and used differently across various applications—

e.g., image-text representation (Kruk et al., 2019), visual-acoustical features (Sun

et al., 2020). However, we mainly focus on different types of individual input pre-

dictions in decision-making throughout this chapter, specifically ranking and rating

estimates.

As mentioned in Section 1.2, rankings and ratings are often regarded as compet-

ing alternatives for eliciting preference data. Ratings enable the expression of pref-

erence intensity, however, rating scales are subjective and different from one person

to another (Ammar and Shah, 2012). Rankings circumvent the issue of inconsistent
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subjective scales by focusing on pairwise comparisons between items, but it is not

straightforward how to determine the quality of the evaluated items in the absolute

sense. As mentioned earlier, most previous works employ only one modality of deci-

sions. Based on a thorough and systematic literature review, this is the only work,

to the best of our knowledge, which discusses multimodality in the context of crowd-

sourcing.

We investigate not only the usefulness of ranking and rating measures respectively,

but also the effectiveness of utilizing multimodal information jointly (Section 6.5). For

this purpose, we define the following hypothesis:

Hypothesis 1. Aggregating multimodal estimates can improve crowd wisdom relative

to what is achieved from aggregating inputs from unimodal estimates.

Moreover, we hypothesize that assigning asymmetric priority weights in multi-

modal aggregation affects collective estimation (Section 6.6).

Hypothesis 2. Assigning asymmetric priority weights to different modalities can

improve crowd wisdom relative to what is achieved from assigning symmetric priority

weights.

6.2.2 Anchoring

As countless experiments have demonstrated, when people make a subsequent

numerical estimation, they tend to start with an implicit or explicit reference point

and adjust their estimates upwards or downwards based on their reference points—

a cognitive heuristic formally termed as an anchoring-and-adjustment (Tversky and

Kahneman, 1974). This heuristic generally creates an anchoring bias, which negatively

affects the quality of estimates especially when the initial reference point largely de-

viates from the true value and adjustments are insufficient. In crowdsourcing, Simoiu
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et al. (2019) examines the effect of showing the cumulative crowd response, the most

recent, and the most confident responses to participants, and it discovers that show-

ing the cumulative crowd response degrades the performance because participants

heavily rely on it. However, for the other two responses shown, participants appro-

priately ignore initial inaccuracies of the provided responses and, consequently, the

crowd performance is relatively unaffected.

Anchoring is also discussed in the field of managerial decision-making and be-

havioral operations management. For example, within an inventory management set-

ting, a manager needs to make a decision on the price and production quantity of

their products. Many studies show that decision-makers anchor on the mean demand

and/or the prior order quantity for the production quantity decision of the next pe-

riod (Schweitzer and Cachon, 2000; Benzion et al., 2008; Bolton and Katok, 2008;

Becker-Peth et al., 2013), which leads to the underordering/overordering behavior

(Long and Nasiry, 2015; Ramachandran et al., 2018). The anchoring effect is also ob-

served in the connection with consumer’s preferences and recommendation systems

(Adomavicius et al., 2013; Xiao and Benbasat, 2018). Specifically, a rating provided

by a recommendation system may serve as an anchor, biasing the consumers’ own

preference ratings. Because consumers’ preferences are used as an input of these sys-

tems, the biased preference ratings may be harmful to maintaining a good quality

of recommendations. As discussed in a wide array of research, the anchoring effect

plays a significant role in making a decision. In our research, we investigate whether

anchoring on the ordinal estimates influences the quality of the cardinal estimates.

The third hypothesis is as follows:

Hypothesis 3. Anchoring effects caused by eliciting cardinal estimates from self-

provided ordinal estimates can negatively affect the quality of collective estimates.
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6.3 Aggregation Methods

The collected individual estimates are integrated using a number of aggregation

methods described in this section. Beforehand, some notation conventions are de-

scribed. Let a` and b` denote the ordinal and cardinal estimate vectors, respectively,

gathered from participant `. The subset of alternatives (i.e., images) evaluated in a

(resp., b) is denoted as Va (resp., Vb)—this additional notation is needed because

participants are asked to evaluate only a subset of all images. Also, let a`i denote

the rank position of alternative i in the ordinal estimate from participant `. Ordinal

estimates are assumed to be strict (i.e., ties are not allowed).

We have used five traditional voting rule-based methods and four optimization-

based models. Specifically, the five traditional voting rule-based methods include av-

erage, median, plurality rule, Copeland rule, and Borda rule (see Section 2.1) and the

following optimization-based models are used.

Ordinal aggregation (ranking aggregation)

The Ordinal Aggregation (OA) model is a ranking-based aggregation model, which

minimizes dNPKS for incomplete rankings. The mathematical formulation for ordinal

aggregation is the Generalized Kemeny-aggregation Binary Programming formulation

(See Section 4.3).

Cardinal aggregation (rating aggregation)

The Cardinal Aggregation (CA) model is a rating-based aggregation model, which

minimizes dNPCK for incomplete ratings, and is mathematically written as follows:

min
r

|L|∑
`=1

dNPCK(b`, r).
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where r is the consensus rating. Escobedo et al. (2021) introduces the integer pro-

gramming formulation used to solve CA herein as follows:

maximize
r,t

|L|∑
`=1
−4C`

∑
(i,j)∈E`

t`ij (6.1a)

subject to t`ij − µ(ri − rj) ≥ −p`ij (i, j) ∈ E`, ` = 1, ..., |L| (6.1b)

t`ij + µ(ri − rj) ≥ p`ij (i, j) ∈ E`, ` = 1, ..., |L| (6.1c)

ri ≤
U − L
µ

i = 1, ..., n (6.1d)

ri ∈ Z+
∪{0} i = 1, ..., n. (6.1e)

Parameters C` inside the objective function denote the normalization, which is a

denominator in Equation (2.6) and defined as:

C` = (4R ·
⌈n`

2
⌉
·
⌊n`

2
⌋
)−1

(note that only the number of alternatives evaluated by a` is considered in this ex-

pression because r is always a complete rating). Auxiliary variables t`ij are introduced

to linearize the objective function and are defined as t`ij =
∣∣∣µ(ri − rj)− pkij

∣∣∣, where

p`ij = b`i − b`j, and they require additional constraints (Constraints (6.1b) and (6.1c)).

Recalling that the definition of edge set E in Section 6.4.3, parameter E` represents

an edge set comprised of the pairwise comparison of nodes provided by a participant

`. Additionally, parameter µ specifies the minimum separation gap in rating values

in the solution, which is 1 in our experiment. Lastly, ri represents the rating value

of alternative i in the aggregated outcome, which must be calibrated accordingly to

obtain its original scale (i.e., ri ← L+ µri).

Cardinal and ordinal aggregation

The Cardinal and Ordinal Aggregation (COA) model jointly aggregates a set of rating

and ranking information by utilizing dNPKS and dNPCK . This optimization model
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returns the optimal rating r, and the optimal ranking is induced by ordering the

values of r in nonincreasing order, written as rank(r). In other words, the rating-

ranking solution is perfectly correlated. Define λa and λb as the weights assigned

to the rating distance values and to the ranking distance values, respectively; these

parameters allow changing the relative importance of the two input modalities. The

COA optimization model is defined as follows:

min
r

|L|∑
`=1

λa dNPCK(b`, r) +
|L|∑
`=1

λb dNPKS(a`, rank(r)). (6.2)

Escobedo et al. (2021) derives the full mixed integer programming formulation used

to solve COA, which is written as follows (assume that λa and λb are equal to 1):

maximize
r,t,y

|L|∑
`=1
−4C`

∑
(i,j)∈E`

t`ij +
|L|∑
`=1

D`
∑

(i,j)∈E`

yij (6.3a)

subject to t`ij − µ(ri − rj) ≥ −p`ij (i, j) ∈ E `, ` = 1, ..., |L| (6.3b)

t`ij + µ(ri − rj) ≥ p`ij (i, j) ∈ E `, ` = 1, ..., |L| (6.3c)

ri − rj ≥M1yij − 1 i, j = 1, ..., n; i 6= j (6.3d)

− ri + rj ≥M2(1− yij) i, j = 1, ..., n; i 6= j (6.3e)

ri ≤
U − L
µ

i = 1, ..., n (6.3f)

ri ∈ Z+
∪{0} i = 1, ..., n (6.3g)

yij ∈ {0, 1} i, j = 1, ..., n. (6.3h)

Parameters D` inside the objective function denote the normalization constant, which

is a denominator in Equation (2.5) and is defined as:

D` = 1
2n`(n` − 1) .

Note that M1 and M2 are constants large enough so that constraint (6.3d) is always

satisfied when yij = 1 and constraint (6.3e) is always satisfied when yij = 0, for any

feasible setting of r.
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Separation-deviation model

The Separation-Deviation (SD) model is another multimodal model, which takes into

account both the difference between the pairwise comparison of two alternatives i

and j in the aggregated outcome and in each participant’s evaluations (separation)

and the difference between the value of alternative i in the aggregated outcome and

in each participant’s evaluation (deviation) (Hochbaum, 2010) (for the mathematical

formulation, see Section 2.2).

6.4 Experimental Design and Data Collection

6.4.1 Experimental settings

The experiment consists of an expanded dot estimation task. The task prompts

participants to first order a subset of images (i.e., ordinal estimates) based on the

number of dots each contains (order from the least number of dots to the greatest

number of dots), as shown in Figure (6.1a). Second, it prompts them to estimate the

number of dots (i.e., cardinal estimates) contained in each of the same images. There

are two possible ways to estimate the number of dots. One way is that the images are

shown together in the order that the participants provide the ordinal estimates, as

shown in Figure (6.1b)—in this input elicitation option, the ordinal estimates and the

cardinal estimates are associated, called Setting A throughout the paper. The other

way is that the images are shown individually in randomized order, as shown in Figure

(6.1c), which helps disassociate the cardinal estimates from the ordinal estimates,

called Setting B throughout the paper. Comparing two different user interfaces is

intended to test whether one of the two interfaces is more convenient for participants,

and whether one leads to more accurate collective estimates than the other.
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(a) Interface for Ordinal Estimation

(b) Interface for Cardinal Estimation in Setting A (c) Interface for Cardinal Es-

timation in Setting B
Figure 6.1: User Interface for Estimation Tasks

There are four problems of varying sizes, specifically 2-image, 3-image, 5-image,

and 6-image problems (the number indicates the size of the subset of images seen

by each participant in the ordinal estimation task), each with its own data set of 30

images ranging from 50 to 79 dots. Each participant only evaluates a subset of the 30

images. If a participant does not complete the task correctly, he or she is prompted

to try the same question again. Participants are able to modify their responses before

submitting them in case they make a mistake or change their minds. The experiment

was deployed on Amazon Mechanical Turk (Amazon MTurk), which is a crowdsourc-
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ing platform that provides a vast and diverse pool of workers. Hence, it is often

considered a representative of the population at large (Paolacci et al., 2010; Berinsky

et al., 2012; Stewart et al., 2015; Chandler and Shapiro, 2016; Mortensen and Hughes,

2018); importantly, this characteristic helps to satisfy the second required condition

(diversity) to achieve crowd wisdom.

6.4.2 Participants

A total of 600 participants (300 for each setting) were recruited through Amazon

MTurk. To obtain a diverse, yet reliable estimate, the experiment set a qualification for

the participants. Specifically, the participants should be located in the United States

and have a previous task approval Human Intelligence Tasks (HIT) rate of at least

90%. Participants who completed the experiment were paid $1.00 for approximately

five minutes of work. At the end of the study, participants were asked to fill out

a demographic survey. The demographic survey was completed by 273 of the 300

participants for setting A and by 286 of the 300 participants for setting B; the detailed

information for each setting is provided in Appendix A.

6.4.3 Data collection and processing

In each of the four problems of the experiment, there are 30 images to be evalu-

ated. However, each participant only evaluates a subset of the 30 images, according

to the problem size—2, 3, 5, and 6 images respectively. To ensure that all 30 images

of each problem are seen by the same number of people and that each individual eval-

uates a different random subset of the images, we developed a special task allocation

scheme, described as follows. First, the 30 images are randomly permuted and parti-

tioned into subsets according to problem size. For example, in the 6-image problem,

the 30 images are partitioned into 5 subsets, each containing six images (i.e., 30/5=6).
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Similarly, a permutation of the 30 images in the 2, 3, and 5-image problems result in

partitions with 15, 10 and 6 subsets, respectively. Each subset of images is seen by

one person. In other words, it takes 15, 10, 6, and 5 participants for all 30 images to

be seen exactly once in the 2, 3, 5 and 6-image problems, respectively. After all 30

images are allocated among the respective number of participants, a new permuta-

tion of the images is generated and the process is repeated. Applying this allocation

mechanism over 300 participants yields that each image is seen 20 (=300/15), 30

(=300/10), 50 (=300/6), and 60 (=300/5) times in the 2, 3, 5, and 6-image problems,

respectively. The permutation and allocation can be also mathematically written as

follows. Let Π = {π1,π2, ...,π300/(30/p)} be the set of permutations of 30 images

and πi = {πi1, πi2, ...πi30} be the ith permutation, for i = 1, .., 300/(30/x), where p is

the problem size. In this case, the set of permutations is Π = {π1,π2, ...,π50} and

its last permutation is π50 = {π50
1 , π

50
2 , ...π

50
30} for 5-image problem. To give a better

understanding of the task allocation scheme, Figure 6.2 shows a visual description for

task allocation scheme in the 5-image problem.

Figure 6.2: Depiction of Task Allocation among the 300 Participants for the 5-image
Problem

We characterize the goodness of each participant-to-image allocation based on the
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maximum number of hops (Hochbaum and Levin, 2006a) in the pairwise comparison

graph. The pairwise comparison graph G = (V,E) is undirected, with each node i ∈ V

representing one of the alternatives (i.e., images) and each edge (i, j) ∈ E representing

that the pair of alternatives was evaluated by at least one participant. The number of

hops between i, j ∈ V is the length of the shortest path between the two nodes, and

the maximum number of hops in G is the longest among all of the shortest paths. As

an example of these concepts, consider four images i, j, k, and `, and assume that

images i and j are evaluated by one participant, j and k are evaluated by a second

participant, k and ` are evaluated by a third participant, and no one evaluates pairs i

Number of times each image was seen

Problem

size
Statistics Setting 5 10 15 20 25 30 35 40 45 50 55 60

2-image

avg
A 2.31 1.74 1.60 1.50

B 2.29 1.75 1.60 1.51

max
A 4.00 3.00 2.25 2.00

B 4.00 3.00 2.75 2.00

3-image

avg
A 1.74 1.49 1.35 1.24 1.17 1.12

B 1.74 1.49 1.33 1.23 1.16 1.11

max
A 3.00 2.00 2.00 2.00 2.00 2.00

B 3.00 2.00 2.00 2.00 2.00 2.00

5-image

avg
A 1.49 1.24 1.12 1.06 1.03 1.01 1.01 1.00 1.00 1.00

B 1.48 1.23 1.12 1.06 1.03 1.01 1.01 1.00 1.00 1.00

max
A 2.00 2.00 2.00 2.00 2.00 2.00 1.92 1.64 1.30 1.00

B 2.00 2.00 2.00 2.00 2.00 2.00 1.93 1.71 1.40 1.00

6-image

avg
A 1.41 1.16 1.07 1.03 1.01 1.00 1.00 1.00 1.00 1.00 1.00 1.00

B 1.39 1.15 1.06 1.02 1.01 1.00 1.00 1.00 1.00 1.00 1.00 1.00

max
A 2.00 2.00 2.00 2.00 1.99 1.88 1.62 1.40 1.26 1.17 1.08 1.00

B 2.00 2.00 2.00 2.00 1.97 1.71 1.34 1.14 1.05 1.02 1.00 1.00
Table 6.1: Average Number of Hops in Pairwise Comparison Graphs Calculated for
Different Subsets of the Data
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and k, j and `, and i and `. Then, the number of hops between i and j, j and k, and

k and ` is 1. Additionally, the number of hops between i and k and j and ` is 2, and

the number of hops between i and ` is 3. To maintain the robustness and reliability

of the relative comparisons, it is recommended to have a maximum of 2 hops and no

more than 3 hops (Hochbaum and Levin, 2006a).

Table 6.1 shows the average and maximum number of hops for different subsets

of the datasets in the experiments (note that the minimum number of hops is always

1); the hops statistics for setting A and setting B are virtually identical. As expected,

the higher problem sizes have lower hops statistics (since more images are assigned

to participants).

6.5 Study 1. A/B Testing for Multimodal Information Elicitation

As is described in Section 6.4, the experiment asks participants to provide ordinal

estimates (i.e., the order of the subset of images) and cardinal estimates (i.e., the

number of dots in images). All participants provide ordinal estimates in the same

manner; however, participants provide cardinal estimates in one of two possible ways:

half of the participants provide estimates over one image at a time, shown in a ran-

domized order (not according to the self-provided ordinal estimate); and the other

half of the participants provides estimates over all images shown at the same time,

based on self-provided estimates in the ordinal estimation task (from the least to the

greatest number of dots). In effect, this experimental setting serves as an A/B test

(Kohavi and Longbotham, 2017) regarding the impact of two participant input elici-

tation choices. A/B testing is popularly used for e-commerce, mobile application, and

website optimization (Kaufmann et al., 2014; Huang et al., 2019). It seeks to compare

two user interfaces to determine via a two-sample hypothesis testing which is more

effective in terms of user engagement, satisfaction, or another metric of interest. In
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this study, we seek to determine if eliciting subsequent estimates based on previous

self-provided estimates is convenient for decision-makers and if it helps achieving bet-

ter collective estimates. To that end, we compare how the cardinal-input elicitation

choice affects estimation accuracy and how long it takes for participants to complete

each task.

6.5.1 Correlation between ordinal and cardinal estimates

Before evaluating the accuracy of collective estimates, we discuss how the indi-

vidual cardinal estimates (specifically, ordinal estimates induced from the cardinal

estimates) are discrepant from their corresponding ordinal estimates. To do so, the

association between the cardinal and ordinal estimates is calculated using the three

different correlation coefficients: original Kendall-τ , Spearmans’ ρ, and Pearson. These

three correlation coefficients have been frequently used in the literature (e.g., see Rus-

sell and Gray (1994); Bonett and Wright (2000); Bolboaca and Jäntschi (2006)), and

their domains are between -1 and 1.

As shown in Figure 6.3, the cardinal and ordinal estimates are more strongly cor-

related (although not perfectly) in Setting A and weakly correlated in Setting B. The

weak correlation observed in Setting B can be explained by the higher propensity

for self-contradictions between the two types of information provided by each partic-

ipant. Even though the instructions indicated that images are displayed in the order

in which the participants ranked them from those perceived to have the fewest to the

most number of dots (see Figure (6.1c)), contradictions in Setting A were also ob-

served, but they were significantly less frequent (we conjecture the majority of these

may be due to user error). Statistical analysis revealed that the mean of correlation

between the input ordinal and cardinal estimates of the two settings was significantly

different, with a p-value < 0.001. An additional insight from this analysis is that, as
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Figure 6.3: Correlation Between Ordinal and Cardinal Estimates for Each Setting

problem size increases, cardinal estimates and the ordinal estimates become less cor-

related. This could be due to an increase in the cognitive load and a higher possibility

for self-contradiction when more images are evaluated.

6.5.2 Task completion time

In addition to checking if different settings create a discrepancy between the indi-

vidual cardinal and ordinal estimates, we evaluate if one setting is more convenient

than the other for the participants. To test this, we compare the task completion time

for two different settings, under the assumption that the shorter the task completion

time is, the more convenient the setting is.
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Figure 6.4: Task Completion Time for Each Setting

The two-sample hypothesis testing revealed that the means of the cardinal estima-

tion task completion time for each setting are not statistically significantly different

with p-values of 0.24 and 0.39 for the 3-image and 6-image problems, respectively (p-

value for the 2-image and 5-image problem are less than 0.001 and 0.03, respectively).

Therefore, we cannot conclude that eliciting cardinal estimates on top of self-provided

ordinal estimates is relatively more convenient for participants. Similarly, we cannot

determine that one of the settings is more convenient than the other in the ordinal

estimation task because the computing time for one setting is not consistently better

than the other based on the prior observation.

Moreover, the completion times of cardinal estimation and ordinal estimation

are statistically different for Setting A and B, except for the 2-image problem with

p-values less than 0.05 for the 3-, 5-, and 6-image problems). Specifically, cardinal

estimation generally takes longer than ordinal estimation. This result implies that

providing the order of images is more convenient than providing the estimated number

of dots in images for participants, which is possibly because the ordinal estimation

only requires relative comparison between the images, as opposed to the absolute and

exact estimates.
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6.5.3 Accuracy of collective estimates

To evaluate the accuracy of collective estimates, the distance from the collective

estimates to the ground truth is calculated; specifically, the distance between the

collective ordinal estimate and the ground truth is quantified via dKS (see Equa-

tion (2.3)) and the distance between the collective cardinal estimate and the ground

truth is quantified via the Euclidean distance normalized by the range of the cardi-

nal estimates (i.e., maximum possible cardinal estimate - minimum possible cardinal

estimate).

Moreover, in the COA model, the weights from the cumulative ranking distance

(i.e., the sum involving dNPKS in Equation (2.5)) and from the cumulative rating

distance (i.e., sum involving dNPCK in Equation (2.6)) are set equal to each other

(i.e., symmetrically). Similarly, in the SD model, the weights from the separation and

from the deviation are set equal to each other (varying the priority weights will be

discussed in Section 6.6). We remark that the rating-based aggregation models and

the average and median methods only return a collective cardinal estimate r. The

collective ordinal estimate is induced by ordering the values of r in non-increasing

order.

The experiments were performed on machines equipped with 36GB of RAM mem-

ory shared by two Intel Xeon E5-2680 processors running at 2.40 GHz; code was writ-

ten in Python and the optimization-based models were solved using CPLEX solver

version 12.8.0. A time limit was set to 10 minutes for solving the optimization-based

aggregation models to return the collective estimates, and the optimality gap was

recorded (see Table B.1 and B.2 in Appendix B).
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Ordinal Estimation

By comparing the left column and right column of Figure 6.5, it is evident that more

accurate collective ordinal estimates are attained in Setting B, i.e., when a possible an-

choring effect is attenuated by eliciting ordinal and cardinal estimates independently.

Additionally, optimization-based aggregation models generally outperform traditional

aggregation/voting rules in this context. As shown in the left column of Figure 6.5,

COA provides a more accurate collective ordinal estimate than the other models

when individual ordinal estimates and cardinal estimates are independently elicited.

As shown in the right column of Figure 6.5, SD provides a more accurate collective

ordinal estimate than the other models when the individual cardinal estimates are

elicited dependent on the individual ordinal estimates. Both results indicate that mul-

timodal aggregation outperforms unimodal aggregation in deriving better collective

estimates, especially when fewer people are available to perform the crowdsourcing

task. This observation highlights the practical benefits of multimodal aggregation, as

recruiting enough participants to attain the benefits of crowd wisdom with traditional

methods can come at a high cost. Furthermore, as shown in the left column of Figure

6.5, the distance between the ground truth and the collective ordinal estimates de-

creases as the number of participants increases; that is, the accuracy of the collective

ordinal estimates improves as more people are included, which reflects the concept of

the wisdom of crowds. However, when the cardinal estimates are collected on top of

the self-provided ordinal estimates, some models return collective estimates that do

not align with the concept of the wisdom of crowds. These include model CA, the

averaging method, and model SD for the 5-image and 6-image problems.
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(a) 2-image Problem in Setting A
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(b) 2-image Problem in Setting B
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(c) 3-image Problem in Setting A
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(d) 3-image Problem in Setting B
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(e) 5-image Problem in Setting A
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(f) 5-image Problem in Setting B
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(g) 6-image Problem in Setting A
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(h) 6-image Problem in Setting B
Figure 6.5: Accuracy of Collective Ordinal Estimates
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Cardinal Estimation

Similar to the ordinal estimation task, more accurate collective cardinal estimates

are obtained in Setting B, where both multimodal aggregation models COA and SD

outperform all other aggregation techniques. However, a key difference from the ordi-

nal estimation task in this setting is that the size of the problem does not appear to

affect the accuracy of cardinal estimation. This seems to support that the elicitation

of cardinal estimates on one image at a time in Setting B helps participants to devote

similar efforts on each of these tasks. When cardinal estimates are elicited on top of

the self-provided ordinal estimates in Setting A so as to reduce cognitive load, the

collective estimates seem to improve less markedly as problem size increases. In fact,

unlike the average and median method results, the optimization model estimates of-

ten degrade when more participants are added in this setting (e.g., see Figures (6.6a),

(6.6c), (6.6e), and (6.6g)). One likely reason for this counterintuitive result is a com-

pounding effect of ordinal estimation errors on cardinal estimation, which effectively

makes the multimodal aggregation models vulnerable to the anchoring effect. This

will be further evaluated in the ensuing section when the ordinal and cardinal inputs

are given different priority weights in these models. We note that all aggregation mod-

els and traditional/voting rules were solved within the time limit, except for COA.

Although the COA model often reached the time limit before the optimal solution

could be found, its suboptimal collective estimates were often closer to the ground

truth than the optimal collective estimates returned by the other methods.
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(a) 2-image Problem in Setting A
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(b) 2-image Problem in Setting B
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(c) 3-image Problem in Setting A
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(d) 3-image Problem in Setting B

5 10 15 20 25 30 35 40 45 50
Number of times each image is evaluted

0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0
4.5
5.0
5.5

Eu
cli

de
an

(g
ro

un
d 

tru
th

, c
ol

le
ct

iv
e 

es
tim

at
es

)

AVG Median CA COA SD

(e) 5-image Problem in Setting A

5 10 15 20 25 30 35 40 45 50
Number of times each image is evaluted

0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0
4.5
5.0
5.5

Eu
cli

de
an

(g
ro

un
d 

tru
th

, c
ol

le
ct

iv
e 

es
tim

at
es

)

AVG Median CA COA SD

(f) 5-image Problem in Setting B
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(g) 6-image Problem in Setting A
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(h) 6-image Problem in Setting B
Figure 6.6: Accuracy of Collective Cardinal Estimates
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In conclusion, the experiment offers more insight about how multimodal informa-

tion can enhance the wisdom of crowd effect, but also how it may cause anchoring

effects and negatively impact the collective estimate quality, which confirms Hypoth-

esis 1 and 3.

6.6 Study 2. Weighted Multimodal Aggregation

As shown in the previous section, having both cardinal and ordinal estimates helps

attain better collective estimates compared to using only one input modality. This

is because ordinal and cardinal information can be used in complementary fashion.

Similarly, considering both separation and deviation components can improve collec-

tive estimation accuracy. Extending from this outcome, we test whether assigning

different priority weights on multimodal information affects the collective estimation.

To do so, first, we assign priority to the cardinal and ordinal estimates in COA model

by varying the weights on dNPCK and dNPKS, denoted as λa and λb, respectively (see

Equation (6.2)). The left and right coordinates in the x-axis represent the weight of

dNPCK and dNPKS, respectively (e.g., (5,1) indicates λa=5 and λb=1 in COA).

The first two figures in Figure 6.7 demonstrate that, when cardinal and ordinal

estimates are associated, having more weight on ordinal estimates leads to more

accurate collective estimates. This result matches our elicitation approach in Setting

A. When cardinal estimates are elicited on top of the self-provided ordinal estimates,

ordinal estimates play an important role. This outcome ultimately implies that the

initial decision largely affects the subsequent decision (i.e., anchoring), which seems

to confirm Hypothesis 3.

Contrary to the first two figures, the last two figures in Figure 6.7 demonstrate

that the collective cardinal estimates tend to improve when a higher relative weight is

assigned to the ordinal inputs; for example, the collective estimates from the 3-image
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(b) Collective Cardinal Estimation Accuracy

in Setting A
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(c) Collective Ordinal Estimation Accuracy

in Setting B
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(d) Collective Cardinal Estimation Accuracy

in Setting B
Figure 6.7: Accuracy of Collective Estimates from the Cardinal and Ordinal Aggre-
gation Model Obtained from Changing Priority Weights of the Input Modalities

cardinal estimation problem with weights (1,2) are closer to the ground truth than

the collective estimates from the problems with weights (2,1). Similarly, the collective

estimates from the 5-image cardinal estimation problem with weights (1,5) are closer

to the ground truth than the collective estimates from the problems with weights

(5,1). These results justify that multimodal information can be more intelligently

used to achieve even better collective estimates. However, there is no common set

of weights that returned the best collective estimates for all 2, 3, 5, and 6-image
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problems.

Moreover, SD is another multimodal aggregation model; it considers not only the

difference of intensities between two alternatives in the aggregated outcome and in

each participant’s evaluation, but also the difference between the point estimate of

alternative in the aggregated outcome and in each participant’s evaluation. We herein

assign asymmetric priority weights to the separation and deviation elements.
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(b) Collective Cardinal Estimation Accuracy

in Setting A
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(c) Collective Ordinal Estimation Accuracy

in Setting B
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(d) Collective Cardinal Estimation Accuracy

in Setting B
Figure 6.8: Accuracy of Collective Estimates from the Separation-deviation Model
According to the Priority Weights on Separation and Deviation

The first two figures show that providing a higher priority weight on separation in-

formation returns better collective estimates when the cardinal estimates are elicited
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on top of the self-provided ordinal estimates. However, the bottom two figures in Fig-

ure 6.8 demonstrate that, when the cardinal and ordinal estimates are disassociated in

elicitation, providing a higher priority weight on deviation information returns better

collective estimates.

6.7 General Discussion

6.7.1 Main contributions

This research makes various contributions to the broad understanding of multi-

modal information aggregation in crowdsourcing. First, it empirically shows that the

choices of elicitation methods and their implementation within the participant inter-

face affect the quality of elicited opinions. When participants are asked to provide

their cardinal estimates disassociated from their ordinal estimates, it was found that

individual cardinal estimates (more specifically, the induced ranking from them) and

ordinal estimates have a higher tendency to be contradictory than when the partic-

ipants are asked to provide cardinal estimates on top of their self-provided ordinal

estimates. This was quantified by comparing the two respective correlations. This

indicates that elicitation methods can affect individual decision-making. Addition-

ally, although cardinal and ordinal estimates had a higher tendency to be contra-

dictory when they were disassociated, the collective estimates were more accurate

than the collective estimates from the other elicitation interface, which had lower

self-contradictions. Our research explains this via the anchoring effect; to the best

of our knowledge, this is the first research that connects multimodal aggregation in

crowdsourcing with this cognitive bias. Once the anchor (ordinal estimate) has poor

quality, the subsequent decision (cardinal estimate) is likely to be poor as well. Be-

cause anchoring caused error to propagate from one elicited modality to another, this
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yielded a poor collective estimation, and it ultimately counteracted the benefit of the

wisdom of crowds. The diminished crowd wisdom could also connect to a violation

of the required conditions for the wisdom of crowds. There are four conditions to

have the wisdom of crowds: independence, diversity, decentralization, and aggrega-

tion. When the cardinal estimates are disassociated from the ordinal estimates, the

wisdom of crowds prevails. However, when cardinal estimates are associated with the

ordinal estimates, the cardinal estimates may no longer be considered independent,

which diminishes the wisdom of crowds.

Furthermore, we empirically justify that assigning asymmetric priority weights to

the different information elements (e.g., cardinal-ordinal, separation-deviation) can

improve the quality of collective estimates. While Kemmer et al. (2020) assign equal

weights to ordinal and cardinal estimates in the COA model and equal weights on

separation and deviation information to the SD model, the new experiment tries

to impose asymmetric weights to each modality of estimates to test whether this im-

proves or deteriorates the accuracy of collective estimates. We found that having more

weight on ordinal estimates returns a better collective cardinal estimate in the cardinal

and ordinal aggregation model and having more weight on the deviation component

returns a better collective estimate in the separation-deviation aggregation model.

These results support the importance and the effectiveness of mitigating potential

anchoring effects from multimodal estimate elicitation; specifically, the weighted car-

dinal and ordinal aggregation shows that the two types of modalities can be used

in complementary fashion to obtain a better collective estimate. Lastly, the optimal

priority weights for each input modality depends on the type of estimation activities

(e.g., ordinal estimation vs. cardinal estimation).
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6.7.2 Practical implications

Our findings have practical and essential implications for decision-makers who

handle ranking and rating information. First, we demonstrate that multimodal input

elicitation can improve the quality of recommendation systems and review systems.

Specifically, recommendation systems are designed to incorporate user-reported rat-

ings and provide a list of suggested items (e.g., movies, restaurants). However, user-

reported ratings can be biased or inconsistent due to the subjective scales or cognitive

bias (e.g., anchoring bias), which may provide a distorted view of user preferences

and ultimately contaminate inputs of recommendation systems, leading to decreased

quality of future recommendations and negatively influencing consumers’ decision

(Adomavicius et al., 2013). Therefore, eliciting both ranking and rating inputs enable

the collection of richer opinions and their aggregation could return more robust and

increased quality of recommendations.

Moreover, our research evinces that having multimodal information allows efficient

collective decision-making in terms of time and budget. Specifically, the results of our

experiment show that aggregating multimodal information yields a better collective

decision when recruiting people is not feasible. Consumers recently participate in

product development and marketing, which is considered a type of crowdsourcing

(Djelassi and Decoopman, 2013; Huang et al., 2014). However, collecting information

from consumers requires time and cost; therefore, obtaining a better decision from

fewer people is often considered an important practical benefit. Therefore, eliciting

both cardinal and ordinal inputs could allow for more effective decisions with fewer

users recruited, thereby providing benefits in terms of time and cost.

Lastly, our experiment provides practical guidance for decision-makers to deter-

mine which aggregation methods should be used. Specifically, optimization-based ag-
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gregation models are highly recommended when the quality of decisions is prioritized

over computing time. Although simple average and median can return a collective de-

cision in a shorter amount of time, the quality of the collective decision is inferior to

that of collective decision from multimodal optimization-based aggregation models.

Speed and accuracy are often in opposition in collective decision-making and their

trade-offs are considered important (Franks et al., 2003). Some applications prioritize

accuracy over speed, such as image annotation for disease diagnosis (Irshad et al.,

2014). However, other applications prioritize speed over accuracy, where real-time

decision-making is required, such as real-time transportation availability. Based on

the context of decision-making, aggregation models can be selected appropriately.
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Chapter 7

GENERAL DISCUSSION AND CONCLUSIONS

Rank aggregation is widely used in group decision-making and many other appli-

cations where it is of interest to consolidate heterogeneous ordered lists. As soci-

ety becomes more connected and technologically advanced, individual opinions take

different forms of expressions and people need to make decisions based on various

factors. This brings extra challenges in computational social choice and limits the

applicability of the existing aggregation frameworks. This dissertation introduces ro-

bust mathematical frameworks that resolve the existing challenges. In particular, it

develops the correlation coefficient that can be applied to various ranking formats,

including non-strict and incomplete rankings. The correlation coefficient is designed

to enforce a neutral treatment of incompleteness whereby no assumptions are made

about individual preferences involving unranked objects. Also, it satisfies key social

choice properties that have been shown to engender improved decisions.

Moreover, this work also introduces a binary programming formulation for aggre-

gating various types of rankings, including non-strict and incomplete rankings. The

binary programming formulation leverages the equivalence of two ranking aggregation

problems, namely that of minimizing the Kemeny-Snell distance and of maximizing

the Kendall-tau correlation, to compare the newly introduced binary programming

formulation to a modified version of an existing integer programming formulation as-

sociated with the Kendall-tau distance. The new formulation has fewer variables and

constraints, which leads to faster solution times, and it also has a special connection

with the weak-order polytope.

Additionally, to further expedite the solution process, this work develops a new
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social choice property, the Non-strict Extended Condorcet Criterion, which can be

regarded as a natural extension of the well-known Condorcet criterion and the Ex-

tended Condorcet criterion. Unlike its parent properties, the new property is adequate

for handling complete rankings with ties. This property allows us to develop a struc-

tural decomposition algorithm that can solve large instances of the NP-hard Kemeny

rank aggregation problem exactly within a practical amount of time. Its practicality

is formally tested using the instances constructed from a probabilistic distribution

and benchmark instances from a library of preference data.

Branching out from the theoretical computational social choice research, this work

applies the principled aggregation frameworks to the context of crowdsourcing. Specif-

ically, the crowdsourcing experiment demonstrates how the quality and efficiency of

crowdsourced collective estimates can be improved by aggregating multiple modalities

of input and how multimodal aggregation models can mitigate anchoring effects.

This dissertation opens a great possibility for future research. Future studies will

develop the social choice property that can be applied to non-strict incomplete rank-

ings. Specifically, the non-strict extended Condorcet criterion is only applicable to

complete rankings with ties. For example, when rankings include too much incomplete

information (i.e, many pairs of alternatives are not compared), it is not reasonable

to use the current definition of a decisive majority since, for it to be useful, it would

require one same preference relation to be made by more than half of judges for each

pair of items. If, for example, only two of ten judges evaluate two specific alternatives

and their preferences agree on these two alternatives, it is hard to say that there exists

a decisive majority because more than three-fourths of judges do not evaluate those

two alternatives. Thus, the extension of the non-strict extended Condorcet criterion

can yield a practical contribution to the field of computational social choice.

Moreover, future work will involve more computational experiments to enhance
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the computational speed of Kemeny aggregation, parallel programming and/or valid

inequalities (e.g., Doignon and Fiorini (2001); Escobedo and Yasmin (2021)) will be

further explored.

Furthermore, future crowdsourcing research will use a variety of methods to cope

with unreliable crowdsourcing workers. Although we have used the ad-hoc elimination

criteria to remove some outlying crowdsourcing workers according to its responses, it

is more analytical to filter out spammers in a more systematic way. Honeypot traps

are a popular method to rule out spammers. They work by placing an undemanding

question randomly (workers do not know which question is a honeypot trap) and

eliminating those workers who did not answer the question correctly. Using such a

method allows mitigating the occurring errors from insincere workers and ultimately

obtaining a better crowdsourcing outcome (Lee et al., 2010; Chittilappilly et al., 2016;

Mortensen et al., 2017).

Finally, future crowdsourcing tasks involve user-generated subjective data, which

does not have a ground truth and is more subjective than a typical wisdom of crowds

task such as estimating the number of dots. Because business applications often deal

with subjective data (e.g., consumer preferences), expanding the scope of the crowd-

sourcing task into these and other similar contexts could unveil additional practical

applications of our research.
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Charras, P., G. Brod and J. Lupiáñez, “Is 26+ 26 smaller than 24+ 28? estimat-
ing the approximate magnitude of repeated versus different numbers”, Attention,
Perception, & Psychophysics 74, 1, 163–173 (2012). 1.3

115



Chittilappilly, A. I., L. Chen and S. Amer-Yahia, “A survey of general-purpose crowd-
sourcing techniques”, IEEE Transactions on Knowledge and Data Engineering 28,
9, 2246–2266 (2016). 7

Cohen, D., P. Jeavons, C. Jefferson, K. E. Petrie and B. M. Smith, “Symmetry defi-
nitions for constraint satisfaction problems”, in “International Conference on Prin-
ciples and Practice of Constraint Programming”, pp. 17–31 (Springer, 2005). 1.1

Condorcet, M., “Marquis de (1785)”, Essai sur l’application de l’analyse à la proba-
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de Borda, J.-C., “Mémoire sur les élections au scrutin, histoire de l?académie royale
des sciences”, Paris, France (1781). 1

Demartini, G., D. E. Difallah, U. Gadiraju and M. Catasta, “An introduction to hy-
brid human-machine information systems”, Foundations and Trends in Web Science
7, 1, 1–87 (2017). 6.1

Desarkar, M. S., S. Sarkar and P. Mitra, “Preference relations based unsupervised
rank aggregation for metasearch”, Expert Systems with Applications 49, 86–98
(2016). 1.1

Diaconis, P., “Group representations in probability and statistics”, Lecture notes-
monograph series 11, i–192 (1988). 4.4.1

Djelassi, S. and I. Decoopman, “Customers’ participation in product development
through crowdsourcing: Issues and implications”, Industrial Marketing Manage-
ment 42, 5, 683–692 (2013). 6.7.2

Doignon, J.-P. and S. Fiorini, “Facets of the weak order polytope derived from the
induced partition projection”, SIAM journal on discrete mathematics 15, 1, 112–
121 (2001). 7

Doignon, J.-P., A. Pekeč and M. Regenwetter, “The repeated insertion model for
rankings: Missing link between two subset choice models”, Psychometrika 69, 1,
33–54 (2004). 4.4.1

Dummett, M., “The borda count and agenda manipulation”, Social Choice and Wel-
fare 15, 2, 289–296 (1998). 1, 2.4

Dwork, C., R. Kumar, M. Naor and D. Sivakumar, “Rank aggregation methods for
the web”, in “Proceedings of the 10th international conference on the World Wide
Web”, pp. 613–622 (ACM, New York, NY, USA, 2001). 1, 1.1, 2.2, 4.3, 5.1

Economist, T., “When the many know best”, URL https://www.economist.com/
books-and-arts/2004/05/27/when-the-many-know-best (2004). 6.1

Emond, E. J. and D. W. Mason, A new technique for high level decision support (De-
partment of National Defence Canada, Operational Research Division, Directorate
of Operational Research (Corporate, Air & Maritime), 2000). 1.1

Emond, E. J. and D. W. Mason, “A new rank correlation coefficient with application
to the consensus ranking problem”, Journal of Multi-Criteria Decision Analysis 11,
1, 17–28 (2002). 2.3, 2.3, 3.1, 3.3, 3.3

Endriss, U., S. Obraztsova, M. Polukarov and J. S. Rosenschein, “Strategic voting
with incomplete information”, (2016). 1, 2.2

Escobedo, A. R., E. Moreno-Centeno and R. Yasmin, “An axiomatic distance method-
ology for aggregating multimodal evaluations”, Optimization-Online preprint 8223
(2021). 1, 2.2, 4.3, 4.5, 6.3, 6.3

117

https://www.economist.com/books-and-arts/2004/05/27/when-the-many-know-best
https://www.economist.com/books-and-arts/2004/05/27/when-the-many-know-best


Escobedo, A. R. and R. Yasmin, “Derivations of large classes of facet-defining in-
equalities of the weak order polytope using ranking structures”, arXiv preprint
arXiv:2008.03799 (2021). 7

Fagin, R., R. Kumar, M. Mahdian, D. Sivakumar and E. Vee, “Comparing and aggre-
gating rankings with ties”, in “Proceedings of the twenty-third ACM SIGMOD-
SIGACT-SIGART symposium on Principles of database systems”, pp. 47–58
(2004). 1.1

Fagin, R., R. Kumar and D. Sivakumar, “Efficient similarity search and classification
via rank aggregation”, in “Proceedings of the 2003 ACM SIGMOD international
conference on Management of data”, pp. 301–312 (ACM, 2003). 1, 1.1, 6.1

Farah, M. and D. Vanderpooten, “An outranking approach for rank aggregation in in-
formation retrieval”, in “Proceedings of the 30th annual international ACM SIGIR
conference on Research and development in information retrieval”, pp. 591–598
(ACM, 2007). 1, 6.1

Favardin, P., D. Lepelley and J. Serais, “Borda rule, copeland method and strategic
manipulation”, Review of Economic Design 7, 2, 213–228 (2002). 1, 2.2, 2.4

Feld, S. L. and B. Grofman, “The borda count in n-dimensional issue space”, Public
Choice 59, 2, 167–176 (1988). 1, 2.2

Fields, E. B., G. E. Okudan and O. M. Ashour, “Rank aggregation methods com-
parison: A case for triage prioritization”, Expert Systems with Applications 40, 4,
1305–1311 (2013). 1

Fiorini, S. and P. C. Fishburn, “Weak order polytopes”, Discrete mathematics 275,
1-3, 111–127 (2004). 1, 4.3, 4.3

Fishbain, B. and E. Moreno-Centeno, “Self calibrated wireless distributed environ-
mental sensory networks”, Scientific reports 6, 24382 (2016). 2.2

Franks, N. R., A. Dornhaus, J. P. Fitzsimmons and M. Stevens, “Speed versus accu-
racy in collective decision making”, Proceedings of the Royal Society of London.
Series B: Biological Sciences 270, 1532, 2457–2463 (2003). 6.7.2

Galton, F., “Vox populi”, (1907). 1.3, 2.4

Gao, Y. and K. Xu, “prankaggreg: A fast clustering based partial rank aggregation”,
Information Sciences 478, 408–421 (2019). 1, 6.1

Gass, S., “Tournaments, transitivity and pairwise comparison matrices”, Journal of
the Operational Research Society 49, 6, 616–624 (1998). 4.2

Gebuis, T. and B. Reynvoet, “The role of visual information in numerosity estima-
tion”, PloS one 7, 5, e37426 (2012). 1.3

Goldstein, D. G., R. P. McAfee and S. Suri, “The wisdom of smaller, smarter crowds”,
in “Proceedings of the fifteenth ACM conference on Economics and computation”,
pp. 471–488 (2014). 1.3

118



Goldstone, R. L., “Feature distribution and biased estimation of visual displays.”,
Journal of Experimental Psychology: Human Perception and Performance 19, 3,
564 (1993). 1.3

Good, I., “The number of orderings of n candidates when ties are permitted”, Fib.
Quart 13, 11–18 (1975). 1.1

Gross, O. A., “Preferential arrangements”, The American Mathematical Monthly 69,
1, 4–8 (1962). 1.1

Grzegorzewski, P., “On measuring association between preference systems”, in “Fuzzy
Systems, 2004. Proceedings. 2004 IEEE International Conference on”, vol. 1, pp.
133–137 (IEEE, 2004). 2.3

Grzegorzewski, P., “The coefficient of concordance for vague data”, Computational
Statistics & Data Analysis 51, 1, 314–322 (2006). 2.3

Grzegorzewski, P., “Kendall’s correlation coefficient for vague preferences”, Soft Com-
puting 13, 11, 1055–1061 (2009). 2.3

Grzegorzewski, P. and P. Ziembinska, “Spearman’s rank correlation coefficient for
vague preferences”, in “International Conference on Flexible Query Answering Sys-
tems”, pp. 342–353 (Springer, 2011). 2.3

Heiser, W. J., “Geometric representation of association between categories”, Psy-
chometrika 69, 4, 513–545 (2004). 1

Helson, H., “Adaptation-level theory: an experimental and systematic approach to
behavior.”, (1964). 1.3

Hochbaum, D. S., “The separation, and separation-deviation methodology for group
decision making and aggregate ranking”, in “Risk and Optimization in an Uncertain
World”, pp. 116–141 (INFORMS, 2010). 2.2, 2.2, 6.3

Hochbaum, D. S. and A. Levin, “The k-allocation problem and its variants”, in
“International Workshop on Approximation and Online Algorithms”, pp. 253–264
(Springer, 2006a). 6.4.3

Hochbaum, D. S. and A. Levin, “Methodologies and algorithms for group-rankings
decision”, Management Science 52, 9, 1394–1408 (2006b). 1, 6.1

Hochbaum, D. S. and A. Levin, “How to allocate review tasks for robust ranking”,
Acta informatica 47, 5-6, 325–345 (2010). 3.2

Hollingsworth, W. H., J. P. Simmons, T. R. Coates and H. A. Cross, “Perceived
numerosity as a function of array number, speed of array development, and density
of array items”, Bulletin of the Psychonomic Society 29, 5, 448–450 (1991). 1.3

Horton, J. J., “The dot-guessing game: A ‘fruit fly’for human computation research”,
Available at SSRN 1600372 (2010). 6.1

119



Huang, N., G. Burtch, B. Gu, Y. Hong, C. Liang, K. Wang, D. Fu and B. Yang,
“Motivating user-generated content with performance feedback: Evidence from ran-
domized field experiments”, Management Science 65, 1, 327–345 (2019). 6.5

Huang, Y., P. Vir Singh and K. Srinivasan, “Crowdsourcing new product ideas under
consumer learning”, Management science 60, 9, 2138–2159 (2014). 6.7.2

IBM Knowledge Center, “Ibm ilog cplex optimization studio v12.8.0 documentation”,
(2017). 4.4

IBM Support, URL https://www.ibm.com/support/pages/apar/RS03137 (2019).
4.4.1

Irshad, H., L. Montaser-Kouhsari, G. Waltz, O. Bucur, J. Nowak, F. Dong, N. W.
Knoblauch and A. H. Beck, “Crowdsourcing image annotation for nucleus detec-
tion and segmentation in computational pathology: evaluating experts, automated
methods, and the crowd”, in “Pacific symposium on biocomputing Co-chairs”, pp.
294–305 (World Scientific, 2014). 6.7.2

Irurozki, E., B. Calvo, J. A. Lozano et al., “Permallows: An r package for mallows and
generalized mallows models”, Journal of Statistical Software 71, 12, 1–30 (2016).
4.4.1

Jayles, B. and R. H. Kurvers, “Debiasing the crowd: selectively exchanging social
information improves collective decision making”, arXiv preprint arXiv:2003.06863
(2020). 1.3

Kahneman, D., S. P. Slovic, P. Slovic and A. Tversky, Judgment under uncertainty:
Heuristics and biases (Cambridge university press, 1982). 1.3
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Marbach, D., J. C. Costello, R. Küffner, N. M. Vega, R. J. Prill, D. M. Camacho,
K. R. Allison, A. Aderhold, R. Bonneau, Y. Chen et al., “Wisdom of crowds for
robust gene network inference”, Nature methods 9, 8, 796 (2012). 1, 1.1

Marden, J. I., Analyzing and modeling rank data (CRC Press, 1996). 4.4.1

Mart́ı, R. and G. Reinelt, in “The Linear Ordering Problem”, (Springer, 2011). 1, 4.3

Mattei, N. and T. Walsh, “Preflib: A library for preferences http://www. preflib.
org”, in “International Conference on Algorithmic DecisionTheory”, pp. 259–270
(Springer, 2013). 4.4, 4.4.2

Miller, G. A., “The magical number seven, plus or minus two: Some limits on our
capacity for processing information”, Psychol. Rev. 63, 2, 81–97, URL http://
www.musanim.com/miller1956/ (1956). 1.1

Milosz, R. and S. Hamel, “Exploring the median of permutations problem”, Journal
of Discrete Algorithms 52, 92–111 (2018). 4.4.2

Misra, A., A. Gooze, K. Watkins, M. Asad and C. A. Le Dantec, “Crowdsourcing and
its application to transportation data collection and management”, Transportation
Research Record 2414, 1, 1–8 (2014). 6.1

Moreno-Centeno, E. and A. R. Escobedo, “Axiomatic aggregation of incomplete rank-
ings”, IIE Transactions 48, 6, 475–488 (2016). 1, 1.1, 2.2, 2.2, 2.2, 2.3, 2.4, 3.3,
4.3

Moreno-Centeno, E. and R. M. Karp, “The implicit hitting set approach to solve com-
binatorial optimization problems with an application to multigenome alignment”,
Operations Research 61, 2, 453–468 (2013). 1.1

Mortensen, K. and T. L. Hughes, “Comparing amazon’s mechanical turk platform to
conventional data collection methods in the health and medical research literature”,
Journal of General Internal Medicine 33, 4, 533–538 (2018). 6.4.1

122

http://www.musanim.com/miller1956/
http://www.musanim.com/miller1956/


Mortensen, M. L., G. P. Adam, T. A. Trikalinos, T. Kraska and B. C. Wallace, “An
exploration of crowdsourcing citation screening for systematic reviews”, Research
synthesis methods 8, 3, 366–386 (2017). 7

Müller-Trede, J., S. Choshen-Hillel, M. Barneron and I. Yaniv, “The wisdom of crowds
in matters of taste”, Management Science 64, 4, 1779–1803 (2018). 1.3, 2.4

Muravyov, S. V., “Dealing with chaotic results of kemeny ranking determination”,
Measurement 51, 328–334 (2014). 5.1

Najafabadi, M. M., F. Villanustre, T. M. Khoshgoftaar, N. Seliya, R. Wald and
E. Muharemagic, “Deep learning applications and challenges in big data analyt-
ics”, Journal of Big Data 2, 1, 1 (2015). 6.1

Navajas, J., T. Niella, G. Garbulsky, B. Bahrami and M. Sigman, “Aggregated knowl-
edge from a small number of debates outperforms the wisdom of large crowds”,
Nature Human Behaviour 2, 2, 126–132 (2018). 1.3

Nemhauser, G. L. and L. A. Wolsey, “Integer programming and combinatorial opti-
mization”, Wiley, Chichester. GL Nemhauser, MWP Savelsbergh, GS Sigismondi
(1992). Constraint Classification for Mixed Integer Programming Formulations.
COAL Bulletin 20, 8–12 (1988). 4.3

Newman, A. and S. Vempala, “Fences are futile: On relaxations for the linear ordering
problem”, in “International Conference on Integer Programming and Combinatorial
Optimization”, pp. 333–347 (Springer, 2001). 4.3

Paolacci, G., J. Chandler and P. G. Ipeirotis, “Running experiments on amazon me-
chanical turk”, Judgment and Decision making 5, 5, 411–419 (2010). 6.4.1

Quinn, A. J. and B. B. Bederson, “Human computation: a survey and taxonomy of
a growing field”, in “Proceedings of the SIGCHI conference on human factors in
computing systems”, pp. 1403–1412 (2011). 6.1
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APPENDIX A

DEMOGRAPHIC SURVEY RESULTS
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A B
Total 273 286
Gender
Female 78 28.57% 116 40.56%
Male 195 71.43% 168 58.74%
Other 0 0% 2 0.70%

Age
10-19 0 0.00% 2 0.70%
20-29 81 29.67% 95 33.22%
30-39 122 44.69% 89 31.12%
40-49 35 12.82% 54 18.88%
50-59 24 8.79% 35 12.24%
60-69 11 4.03% 9 3.15%
70-79 0 0.00% 2 0.70%

Education
2-year degree 12 4.40% 29 10.14%
4-year degree 177 64.84% 124 43.36%
College 22 8.06% 51 17.83%
Master’s 45 16.48% 32 11.19%
Professional (MD, KJD, etc) 2 0.73% 5 1.75%
Doctoral 0 0% 1 0.35%
High-school/GED 15 5.49% 43 15.03%
Less than high-school 0 0% 1 0.35%

Employment status
Employed 253 92.67% 234 81.82%
Unemployed 20 7.33% 52 18.18%

Native English Speaker
Native 271 99.27% 284 99.30%
Non-native 2 0.73% 2 0.70%

Table A.1: Demographic Survey Results
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APPENDIX B

OPTIMALITY GAP FOR THE CARDINAL AND ORDINAL AGGREGATION
MODEL
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Number of times each image was seen
Problem

size 5 10 15 20 25 30 35 40 45 50 55 60
2-image 0.30 0.27 0.23 0.21
3-image 0.27 0.25 0.24 0.22 0.21 0.21
5-image 0.41 0.40 0.37 0.36 0.35 0.34 0.32 0.32 0.31 0.32
6-image 0.37 0.37 0.32 0.30 0.28 0.26 0.25 0.23 0.28 0.18 0.25 0.15

Table B.1: Optimality Gaps for Setting A

Number of times each image was seen
Problem

size 5 10 15 20 25 30 35 40 45 50 55 60
2-image 0.00 0.00 0.00 0.00
3-image 0.00 0.00 0.00 0.00 0.01 0.00
5-image 0.04 0.00 0.02 0.02 0.00 0.01 0.00 0.00 0.00 0.00
6-image 0.00 0.03 0.02 0.02 0.00 0.01 0.00 0.00 0.01 0.00 0.00 0.00

Table B.2: Optimality Gaps for Setting B

129


	LIST OF TABLES
	LIST OF FIGURES
	1 
	1.1 Existing Challenges in Rank Aggregation
	1.2 Multimodal Judgments in Decision Making: Ranking and Rating
	1.3 The Wisdom of Crowds
	1.4 Contributions and Overview of the Dissertation

	2 
	2.1 Notation and Preliminary Conventions
	2.2 Distance-based Models
	2.3 Coefficient-based Models
	2.4 Other Models

	3 
	3.1 Derivation of the New Correlation Coefficient
	3.2 Axiomatic Foundation of the New Correlation Coefficient
	3.3 Key Pairings between Distances and Correlation Coefficients
	3.4 Concluding Remarks

	4 
	4.1 Existing Mathematical Programming Formulations for Rank Aggregation
	4.2 Generalized Integer Programming Formulation for Rank Aggregation
	4.3 Generalized Binary Programming Formulation for Rank Aggregation
	4.4 Computational Experiments
	4.4.1 Instances from probabilistic distribution
	4.4.2 Instances from Preflib benchmark dataset

	4.5 Concluding Remarks

	5 
	5.1 The Condorcet Criterion
	5.2 An Extended Condorcet Criterion with Ties
	5.3 Decomposition Algorithm
	5.4 Computational Performance of NXCC
	5.5 Concluding Remarks

	6 
	6.1 Crowdsourcing
	6.2 Hypothesis Development
	6.2.1 Multimodality in decision-making
	6.2.2 Anchoring

	6.3 Aggregation Methods
	6.4 Experimental Design and Data Collection
	6.4.1 Experimental settings
	6.4.2 Participants
	6.4.3 Data collection and processing

	6.5 Study 1. A/B Testing for Multimodal Information Elicitation
	6.5.1 Correlation between ordinal and cardinal estimates
	6.5.2 Task completion time
	6.5.3 Accuracy of collective estimates

	6.6 Study 2. Weighted Multimodal Aggregation
	6.7 General Discussion
	6.7.1 Main contributions
	6.7.2 Practical implications


	7 
	REFERENCES
	A 
	B 





