
Vision-guided Policy Learning for Complex Tasks

by

Xin Ye

A Dissertation Presented in Partial Fulfillment
of the Requirements for the Degree

Doctor of Philosophy

Approved July 2021 by the
Graduate Supervisory Committee:

Yezhou Yang, Chair
Yi Ren

Theodore Pavlic
Deliang Fan

Siddharth Srivastava

ARIZONA STATE UNIVERSITY

August 2021

ABSTRACT

The field of computer vision has achieved tremendous progress over recent years

with innovations in deep learning and neural networks. The advances have unprece-

dentedly enabled an intelligent agent to understand the world from its visual obser-

vations, such as recognizing an object, detecting the object’s position, and estimating

the distance to the object. It then comes to a question of how such visual understand-

ing can be used to support the agent’s decisions over its actions to perform a task.

This dissertation aims to study this question in which several methods are presented

to address the challenges in learning a desirable action policy from the agent’s visual

inputs for the agent to perform a task well. Specifically, this dissertation starts with

learning an action policy from high dimensional visual observations by improving

the sample efficiency. The improved sample efficiency is achieved through a denser

reward function defined upon the visual understanding of the task, and an efficient

exploration strategy equipped with a hierarchical policy. It further studies the gen-

eralizable action policy learning problem. The generalizability is achieved for both a

fully observable task with local environment dynamic captured by visual representa-

tions, and a partially observable task with global environment dynamic captured by a

novel graph representation. Finally, this dissertation explores learning from human-

provided priors, such as natural language instructions and demonstration videos for

better generalization ability.

i

To my loving parents,

for their constant support and encouragement.

ii

ACKNOWLEDGEMENTS

I would like to take this chance to thank my advisor Dr. Yezhou Yang, who guides

my research with great patience throughout my doctoral study. I still remember that I

even needed help to draw an arrow on an image five years ago, and I couldn’t imagine

how this dissertation would be possible without his continuous encouragement and

feedback. I am fortunate to work with him at Active Perception Group, where I have

the freedom to explore the research problems that are of my interest, and meanwhile,

I have been trained to improve my research, writing, and presentation skills greatly. I

also appreciate all the internship and collaboration opportunities he provided to me.

I would also like to thank my committee members, Dr. Yi Ren, Dr. Theodore

Pavlic, Dr. Deliang Fan, and Dr. Siddharth Srivastava for their service on my

committee and the valuable suggestions provided. Their insightful questions and

comments on my comprehensive exam and proposal defense have inspired me to

think more deeply and critically about my ongoing and future research work. I also

thank all my collaborators, Dr. Wenlong Zhang, Dr. Yiwei Wang, Dr. Zhe Lin, Dr.

Haoxiang Li, Dr. Joohyung Lee, and many others for their expertise to improve my

work.

I am grateful to have my friends Rui Zhang, Ze Gong, Ying Qin, Rui Shi, Zhaosong

Huang to share happiness during the stressful doctoral study. I also thank all my lab

mates, especially Mohammad Farhadi, Zhiyuan Fang, Shibin Zheng for their help in

my work and life, and I want to give my special thanks to Zhiyuan Fang for a lovely

cat he gave me that accompanies me through the difficult quarantine time.

Finally, thanks to my parents for their continuous care and love and thanks to

myself for never giving up.

iii

TABLE OF CONTENTS

Page

LIST OF TABLES . vii

LIST OF FIGURES . ix

CHAPTER

1 INTRODUCTION . 1

1.1 Problem Statement . 1

1.2 Related Work . 5

1.3 Contributions . 7

1.4 Dissertation Outline . 9

2 REWARD FUNCTIONS FROM VISUAL UNDERSTANDING 11

2.1 Introduction . 11

2.2 Related Work . 12

2.3 Our Approach . 13

2.3.1 Object Recognition Module with Target Object Given 14

2.3.2 Recognition-guided Action Policy Learning 16

2.4 Experiments . 18

2.4.1 Dataset . 19

2.4.2 Experimental Results and Discussion . 21

2.5 Conclusion . 24

3 EFFICIENT EXPLORATION WITH HIERARCHICAL POLICY 26

3.1 Introduction . 26

3.2 Related Work . 28

3.3 Our Approach . 30

3.3.1 Hierarchy of Policies . 31

3.3.2 Extrinsic and Intrinsic Rewards . 32

iv

CHAPTER Page

3.3.3 Model Formulation . 32

3.3.4 Network Architecture . 35

3.4 Experiments . 36

3.4.1 Dataset . 36

3.4.2 Experimental Setting . 37

3.4.3 Experimental Results and Discussion . 39

3.5 Conclusion . 42

4 GENERALIZABLE POLICY LEARNING FOR FULLY OBSERVABLE

TASK . 45

4.1 Introduction . 45

4.2 Related Work . 47

4.3 Our Approach . 49

4.3.1 Overview . 49

4.3.2 Semantic Segmentation and Depth Prediction 51

4.3.3 Approaching Policy Learning . 52

4.4 Experiments . 55

4.4.1 Dataset . 55

4.4.2 Semantic Segmentation and Depth Prediction 56

4.4.3 Approaching Policy Learning . 57

4.4.4 Real World Experiment . 63

4.4.5 Analysis and Discussion . 64

4.5 Conclusion . 66

5 GENERALIZABLE POLICY LEARNING FOR PARTIALLY OBSERV-

ABLE TASK . 68

v

CHAPTER Page

5.1 Introduction . 68

5.2 Related Work . 71

5.3 Hierarchical RL with GRG . 73

5.3.1 Overview . 73

5.3.2 Goals Relational Graph (GRG) . 74

5.3.3 Goal-driven High-level Network . 76

5.3.4 Termination-aware Low-level Network . 78

5.4 Experiments . 80

5.4.1 Grid-world Domain . 80

5.4.2 Robotic Object Search . 87

5.5 Conclusion . 92

6 TOWARDS LEARNING FROM HUMAN-PROVIDED PRIORS FOR

GENERALIZABILITY . 95

6.1 Environment Dynamics from Natural Language Instructions 95

6.2 Environment Dynamics from Human Demonstrations 100

7 CONCLUSION . 105

REFERENCES . 108

vi

LIST OF TABLES

Table Page

2.1 The Performance Metrics of All the Methods in the Simulation Plat-

form. (AL: Average Trajectory Length; SR: Success Rate) 22

2.2 The Performance Metrics for the Real World Experiments. (AL: Av-

erage Trajectory Length; SR: Success Rate) . 23

3.1 The Performance of All Methods for the Object Search Task. (SR:

Success Rate; AS / MS: Average Steps / Minimal Steps over All Suc-

cessful Cases; SPL: Success Weighted by Inverse Path Length; AR:

Average Discounted Cumulative Extrinsic Rewards.) 40

3.2 Average SPL Achieved by All Methods on 4 Random Environments. . . . 42

4.1 The Success Rate Drop from the Trained Objects to New Objects (Set-

ting 1): S1), and from the Trained Environments to New Environments

(Setting 2): S2). 61

4.2 Average Number of Steps Taken by All Methods on Two Settings. 62

4.3 Success Rate of Method b) Where the Target Object Channel Is Blocked

(with Predicted Inputs and Within 5X Minimal Steps). 62

4.4 Experimental Results of Our Method (Method e)) on AVD (Ammirato

et al., 2017). 63

5.1 The Performance of DQN vs DQN onehot and DQN full on the

Unseen Gird-word Maps. 81

5.2 Hyperparameters of all the methods for the grid-world domain. 83

5.3 The Performance of All Methods on the Unseen Gird-world Maps. 83

5.4 The Ablation Studies of Our Method on the Unseen Gird-world Maps. . 85

vii

Table Page

5.5 The Performance Improvement of Scene Priors (Yang et al., 2018)

(Top) and Our HRL-GRG (Bottom) over the Random Method in the

AI2-THOR (Kolve et al., 2017b) Environment for the Robotic Object

Search Task (Without Stop Action). 88

5.6 The Performance of All Methods in the House3D (Wu et al., 2018)

Environment for the Robotic Object Search Task. 89

5.7 Hyperparameters of all the methods for the robotic object search task. . 89

viii

LIST OF FIGURES

Figure Page

1.1 An Illustration of Our Policy Learning Problem Focused on This Dis-

sertation. 2

1.2 An Illustration of a Visual Navigation Task. 3

1.3 The Outline of the Dissertation. 10

2.1 An Illustration of Our Robotic Object Search Task. Red Dot: The

Random Initial Location; White Line and Error: The Generated Robot

Trajectory from Our Turtle-bot Experiment; Upper Left Image: The

Final View of the Robot with the Target Object Detection (the Target

Object in This Experiment Is “shear”). 13

2.2 The Architecture of the Object Recognition Network. 15

2.3 An Illustration of Our Vision-guided Reward Function. 18

2.4 The Deep Reinforcement Learning Architecture. 19

2.5 Sample Testing and Training Images From our Real World Dataset. . . 20

3.1 An Example of Our HIEM Framework. When Our High-level Policy

Proposes a Sub-goal, Our Proxy Low-level Policy Is Invoked with the

Probability of α to Explore the Environment by Optimizing Towards

the Sub-goal, and Our Low-level Policy Learned from the Exploration

Experience Is Invoked with the Probability of 1−α to Collaborate with

the High-level Policy to Better Achieve the Goal. 29

3.2 Network Architecture of Our Hierarchical Reinforcement Learning Model. 35

ix

Figure Page

3.3 Trajectories Generated by DQN (Mnih et al., 2015), h-DQN (Kulka-

rni et al., 2016) and Our Method HIEM-low and HIEM for Searching

the Target Object Music Player (Red Dots) from the Same Start-

ing Position (Green Triangle) Which Is 39 Steps Away. Our Method

HIEM Generates a More Concise and Interpretable Trajectory. 43

4.1 An Overview of Our GAPLE System. 49

4.2 An Illustration of the Adopted Model Based on DeepLabv3+ (Chen

et al., 2018) to Predict Semantic Segmentation and Depth Map from

a Single RGB Image. 51

4.3 The Architecture of Our Deep Reinforcement Learning Model for Ac-

tion Policy Training. 55

4.4 A Sample Environment from House3D and Some Target Object Can-

didates. 56

4.5 Some Qualitative Semantic Segmentations and Depth Predictions from

Our Feature Representation Module. 57

4.6 Successful Approaching Rates. Upper: Setting 1: Generalization Abil-

ity Across Target Objects (on Trained Objects and on New Objects).

Lower: Setting 2: Generalization Ability Across Environments (on

Trained Environments and on New Environments). 60

4.7 An Example of the Mobile Robot Approaches the Target Object “white-

board” Using the Method (d)). Upper View: RGB Input; Lower View:

Depth Map Generated. 64

4.8 Pair-wise Feature Distances W.R.T. Physical Distances. 66

x

Figure Page

5.1 Illustrations of the Grid-world Domain and the Robotic Object Search

Task (Left), and an Overview of Our Method (Right). 69

5.2 An Illustration of How Termination Helps. The Green Triangle De-

notes the Starting Position. The Stars and the Arrows with Different

Colors Represent Different Sub-goals and the Corresponding Sub-goal-

oriented Trajectories. Termination Helps to Express an Optimal Tra-

jectory with the Limited Sub-goal Space. 78

5.3 A Visualization of a GRG Learned on the Grid-world Domain (g16 Is

the Back-up “Random” Goal). 84

5.4 Trajectories Generated by Our Method on the Unseen Grid-world Maps

for Both the Seen Goals (a) (b) and the Unseen Goals (c) (d). The

Different Colors Represent Different Sub-goals and the Corresponding

Sub-goal-oriented Trajectories Where the Red One Denotes the Desig-

nated Final Goal. 86

5.5 Trajectories Generated by Our Method for the Robotic Object Search

Task on AI2-THOR (Kolve et al., 2017b). 90

5.6 The Object Relations Captured by Our GRG in the House3D (Wu

et al., 2018) Environment for the Robotic Object Search Task. Only

a Small Number of Objects as Nodes and the Edges with the Weight

≥ .5 Are Shown. 91

5.7 Trajectories Generated by Our Method for the Robotic Object Search

Task on House3D (Wu et al., 2018). 93

6.1 An Illustration of the Baseline VLN Model EnvDrop (Tan et al., 2019). 98

6.2 An Illustration of Our Proposed VLN Model. 99

xi

Figure Page

6.3 Action Representation. Top Two Rows Are Two Examples of Primitive

Actions. The Upper One Is from the 50 Salads (Stein and McKenna,

2013) Dataset and the Lower One Is from the MANIAC Dataset (Ak-

soy et al., 2017). Bottom Row Is an Abstract Representation of One

Example Primitive Action. 102

6.4 The GRG Learned on 50 Salads Dataset (Stein and McKenna, 2013). . . 103

xii

Chapter 1

INTRODUCTION

1.1 Problem Statement

Recent work equipped with deep learning technique has made tremendous progress

on computer vision tasks, such as object recognition (Krizhevsky et al., 2017), seman-

tic segmentation (Long et al., 2015) and depth estimation (Liu et al., 2015). These

advancements have unprecedentedly enabled an intelligent agent to understand the

world from its visual observations. However, how such visual understanding could be

used to support the agent’s decisions over its actions to perform a task has not been

efficiently explored. On the other hand, reinforcement learning has long been demon-

strated its power at enabling agents with autonomous behaviors (Arulkumaran et al.,

2017), such as navigating over an unknown environment (Mirowski et al., 2016; Zhu

et al., 2017), manipulating objects with robot’s end effectors (Gu et al., 2017; Popov

et al., 2017; Rajeswaran et al., 2017), and motion planning (Chen et al., 2017b; Ev-

erett et al., 2018). Equipped with deep neural networks, deep reinforcement learning

algorithms are able to directly take high dimensional sensory inputs as states to learn

action policies. While it is straightforward to take the agent’s visual observations

as the states, learning an effective action policy from them that is also interpretable,

generalizable and robust still remains a challenge. Here, in this dissertation, we study

the problem of learning action policies from the agent’s visual observations and we

approach it by understanding the visual observations in order to let the agent to

perform the task well.

Formally speaking, a task can be defined as a 10-tuple < S,A, T,G,R,Ω, O,Gd,

1

Φ, γ >, in which S is a set of valid states, A is a set of actions that can be performed by

the agent, T : S×A×S → [0, 1] is a state transition probability function describing an

environment dynamic, G ⊆ S is a set of goal states indicating the task is completed,

R : S × G → R is a reward function that gives feedback of how well the task is

performed. For complex tasks, the true state s ∈ S may not always be accessible,

thus requiring the agent to estimate it from the available observation o ∈ Ω. Ω

is a set of observations that are determined by conditional observation probability

O : S × Ω → [0, 1]. Similarly, the goal state g ∈ G may not be available either and

therefore a goal description gd ∈ Gd is instead used to convey the task goal. The goal

recognition function Φ : Ω × Gd → [0, 1] defines how likely a goal description gd is

satisfied by an observation o. In particular, g is the goal state of the corresponding

goal description gd iff Φ(argmaxΩ O(g, ω), gd) is larger than a pre-defined threshold

∆. γ ∈ (0, 1] is a discount factor. To perform the task well, the agent needs to

learn an optimal action policy π : Ω × Gd → A to select an action at at the state st

given the observation ot and the goal description gd so that the expected discounted

cumulative rewards E[
∑∞

t γtrt+1(st, at, st+1, g)|st, g] is maximized. An illustration is

shown in Figure 1.1.

Figure 1.1: An illustration of our policy learning problem focused on this dissertation.

Taking visual navigation as an example (see Figure 1.2), where an intelligent

2

Figure 1.2: An illustration of a visual navigation task.

agent (a.k.a. robot) is instructed to navigate towards a user-specified goal in an en-

vironment based on its first-person visual observations (typically the RGB images

captured by its on-board camera). The environment information, such as geomet-

ric/topological/occupancy/semantic map of the environment, is typically unavailable

even for training since collecting the ground-truth environment information is unar-

guably expensive and sometimes impractical for real-world applications. As a result,

the transition function T , together with agent’s states S and the goal states G defined

by the agent’s positions and the goal positions in the environment are not available

and can only be inferred from the agent’s visual observations Ω and the goal descrip-

tions Gd. The goals are usually described by labels (e.g. semantic labels of objects),

images (e.g. visual observations at goal locations) and natural language (e.g. naviga-

tion instruction). Typically, there should be goal recognition functions Φ determining

if the current visual observations satisfy the goal descriptions. For example, when

asking the agent to navigate to an object by specifying the navigation goal with the

object category, the object recognition function that describes how likely if the object

presents in the observations can be used as Φ. The objective of the visual navigation

3

task is to achieve the specified goal G as soon as possible, requiring a elaborate design

of the reward function R.

There are several challenges presented in learning the action policy π : Ω×Gd → A.

First, the observations Ω, especially the visual observations, together with the goal

descriptions Gd are always the high dimensional inputs to the policy function π.

Therefore, large amounts of parameters would be introduced in the function π that

require great quantities of data to learn. The collection of the large training data

needs either extensive feedbacks or efficient sampling process while both of them are

challenging: 1) Although prohibitively expensive human-labeled action policies are

not required for reinforcement learning algorithms, reward functions as feedbacks still

need to be well designed. However, unlike video games where the game scores are

the natural sources of the rewards, for most tasks, designing a good reward function

which is both correct (i.e. leads to the desired outcomes) and learnable (i.e. rewards

happen early and often enough) is extremely difficult (Abbeel and Ng, 2004). 2)

As a result of the 1), a task, especially a complex task, typically yields a sparse

reward setting. In consequence, the agent may completely fail to learn and improve

its sample efficiency as it is unlikely to encounter and sample the very few rewarding

states without a good exploration strategy.

Second, the observations Ω and/or goal descriptions Gd are often the high dimen-

sional projections of the true latent states, making the agent tend to capture spurious

features and overfit to the training tasks easily, which is not desirable. Ideally, the

learned policy should be robust to the observation variances and even be adaptive to

the environment dynamics so that we can generalize it towards unseen environments

and new goals rather than training a new policy for each single environment and goal.

To achieve this objective, we need to estimate the agent’s states from the observa-

tions and/or inferring the goal states from the goal descriptions, and the desired state

4

representations should be relevant to the underlying state transition functions and

reflect the environment dynamics. It is extremely challenging because 1) the obser-

vations and the goal descriptions as the policy inputs may only capture the partial

information of the environments; 2) the limited number of training tasks cannot well

represent the underlying task distributions.

1.2 Related Work

Visual Understanding

In the last few decades, deep learning based approaches have been extensively studied

and applied in the field of computer vision (Guo et al., 2016). Their state-of-the-

art performance make them promising in helping an agent to acquire various visual

understanding abilities. For example, the image classification approaches (Simonyan

and Zisserman, 2014; Szegedy et al., 2015; He et al., 2015; Krizhevsky et al., 2017)

which label input images with a probability over a set of pre-defined classes can tell

the agent what presents in its visual observations. The object detection algorithms

(Ren et al., 2016; Redmon et al., 2016) enable the agent to localize a target object

in its visual observations. Furthermore, even the pixel-level classes can be predicted

if with the advanced semantic segmentation methods (Long et al., 2015; Chen et al.,

2017a). Similarly, the pixel-level depth values can also be well estimated (Liu et al.,

2015; Fu et al., 2018). In addition, to achieve a better and deeper understanding of

the visual observations, there are a large amount work focus on the tasks that are at

the intersection of computer vision and natural language processing. For example,

the image captioning task that asks to automatically generate a natural language

description of an image (Yang et al., 2011; You et al., 2016; Rennie et al., 2017;

Aneja et al., 2018; Hossain et al., 2019), the natural language object retrieval task

5

that requires to localize the natural language specified objects in an image, and the

visual question answering tasks in which a free-form natural language question about

a given image is asked (Antol et al., 2015; Goyal et al., 2017; Yi et al., 2018). All of

these work have achieved superior performance and played significant roles in visual

understanding, yet they only work on static and fixed visual observations. In this

dissertation, we focus on the agent that can take actions to actively perceive and we

study the problem of how the visual understanding can help the agent act to perform

tasks.

Embodied AI Agents

To transform the agent from a passive observer to an active perceiver, the community

begins to show increased interest in embodied AI tasks in which an AI agent needs to

take actions in either physical or virtual environments to tackle the tasks. Embod-

ied AI tasks encompasses a variety of tasks including the visual navigation (Gupta

et al., 2017; Zhu et al., 2017; Yang et al., 2018; Ye and Yang, 2020), the object ma-

nipulation (Yang et al., 2015; Bütepage et al., 2019) and the natural language based

instructions following (Anderson et al., 2018b; Fu et al., 2019). Among all of these

tasks, the visual navigation task has drawn extensive attentions due to a number of

simulated platforms, such as AI2THOR (Kolve et al., 2017b), House3D (Wu et al.,

2018), and Matterport3D (Chang et al., 2017), have been developed that enable and

accelerate the learning process of the visual navigation system. Given different forms

of the goal descriptions, the visual navigation task can be further categorized into

point-goal navigation (Gupta et al., 2017), object-goal navigation (Yang et al., 2018),

image-goal navigation (Zhu et al., 2017) and natural language-goal navigation (Das

et al., 2018a; Anderson et al., 2018b) where the goals are described as the points

in a coordinate frame, the semantic labels of objects, the images taken at the goal

6

positions and the natural language questions or instructions respectively. To learn

an action policy to perform such tasks, most of the previous work assume the envi-

ronment information, such as the map information is available during the training

process. In such a case, they can generate additional supervisions, such as defining

the reward function with the distance between the robot’s current location and the

target location (a.k.a. reward shaping) (Wu et al., 2018; Mousavian et al., 2019),

adopting shortest path as the supervised signal for pre-training (Gupta et al., 2017;

Fried et al., 2018; Das et al., 2018a; Wang et al., 2019), and/or gradually increasing

the distance between robot’s starting location and the target location (a.k.a. curricu-

lum learning) (Das et al., 2018b; Kulhánek et al., 2019). However, such environment

information is available only in the simulated platforms and is very difficult to get in

the real world. As a result, they only have limited training environments and their

models are very likely to overfit to the training environments. Some methods entirely

bypass the explicit vision modules and directly map the agent’s visual observations

to actions with the underlying assumption that the visual understanding capabilities

can be automatically learned as needed (Zhu et al., 2017; Yang et al., 2018). Unlike

these methods, we study the embodied AI tasks in a more general and practical way

where we don’t assume any expensive or even unrealistic supervisions is available. In

addition, we study how the visual understanding capabilities from the explicit vision

modules can better help the agent to learn the action policy for the tasks.

1.3 Contributions

In this dissertation, we present several novel methods to address the challenges in

learning the action policy π : Ω×Gd → A for a visual task. First, to enable the policy

learning from the high dimensional inputs, we improve the data collection efficiency

in two ways, i.e. introducing additional supervisions/feedbacks and developing an ef-

7

ficient exploration strategy for the agent. Specifically, 1) we propose a denser reward

function by understanding the visual observations of the task. While previous work

typically designs or learns a reward function with ground-truth environment infor-

mation, human-labeled action policy or human expert demonstrations that require

significant effort and time, we here leverage advanced computer vision techniques to

reward the agent by performing visual prediction tasks. The visual prediction tasks

can be trained with dataset that either is available or requires less human labors. The

experimental results demonstrate that our reward function, though not accurate, does

help policy learning from visual observations. 2) We also propose a novel hierarchical

policy learning paradigm for efficient exploration in high dimensional state space. In-

stead of taking the high dimensional visual observations as the sub-goal space which

is extremely challenging to learn, we build a low dimensional sub-goal space by under-

standing the visual observations. The proposed hierarchical policy learning paradigm

is demonstrated to help the agent sample efficiently even in the sparse reward setting

and thereby learn to perform the task in a more optimal and interpretable way.

Second, to make the learned policy generalizable towards new task instances that

might have different visual observations, goal descriptions and even different envi-

ronment dynamics, we present novel methods learning the state representations that

unravels the underlying state transition functions. To be specific, 1) we extract task-

relevant visual representations from a vision module to learn a generalizable action

policy for fully observed task, i.e. task that goals are visible in visual observations.

The vision module is trained in a supervised way so that it can deal with the visual

variance more efficiently. In addition, our extracted visual representations are able to

capture the local environment dynamics, making the learned policy generalize bet-

ter for the fully observed task. 2) We present a two-layer hierarchical reinforcement

learning approach equipped with a Goals Relational Graph (GRG) for tackling the

8

partially observable task, i.e. task where goals are not always observable which is

very common as the environments typically can only be partially observed by the vi-

sual observations. Our GRG captures the underlying relations of all goals in the goal

space as a representation of the high-level environment dynamics that helps our high-

level network generalize. Our low-level network which focuses on the fully observable

task can utilize the our method introduced in 1) to generalize as well. As a result,

our overall system exhibits superior generalization performance on both unseen en-

vironments and new goals. 3) We propose a promising research direction which is to

learn from human-provided priors the high-level environment dynamics. While it is

impractical for human experts to provide the conventional detailed low-level environ-

ment dynamics, specifying the high-level one with natural language (Anderson et al.,

2018b; Qi et al., 2020) or demonstration videos (Ye et al., 2019b) is efficient. Mean-

while, inferring the high-level environment dynamics is also more tractable. With the

inferred environment dynamics, the action policy can be learned to be generalizable.

1.4 Dissertation Outline

The rest of the dissertation starts with a study in Chapter 2 on defining a denser

reward function by understanding the visual observation of the task (Ye et al., 2018).

It is then followed by a study in Chapter 3 on developing a hierarchical reinforcement

learning paradigm for efficient exploration (Ye and Yang, 2021a). After an action

policy can be well learned from visual observations for a training task, we further

present methods to make the learned policy generalizable towards new task instances.

In Chapter 4, we report the learning of generalizable policy for fully observable task

by capturing local environment dynamics (Ye et al., 2019a). In Chapter 5, we explore

the learning of generalizable policy for partially observable task by capturing global

environment dynamics (Ye and Yang, 2021b). Finally, we highlight the possibility of

9

Figure 1.3: The outline of the dissertation.

inferring environment dynamics from human-provided priors for generalizable policy

learning in Chapter 6. All the work are concluded in Chapter 7. Figure 1.3 depicts

the outline of this dissertation.

10

Chapter 2

REWARD FUNCTIONS FROM VISUAL UNDERSTANDING

2.1 Introduction

Reinforcement learning (RL) has demonstrated its power at enabling robots with

autonomous behaviors (Arulkumaran et al., 2017), such as navigating over an un-

known environment (Mirowski et al., 2016; Zhu et al., 2017), manipulating objects

with robot’s end effectors (Gu et al., 2017; Popov et al., 2017; Rajeswaran et al.,

2017), and motion planning (Chen et al., 2017b; Everett et al., 2018). Under the

RL setting, a robot learns the optimal behavioral policy by maximizing the expected

cumulative rewards given the samples collected from its physical and/or virtual in-

teractions with the environment. The rewards serve as the reinforcement signals for

the robot to update its policy. However, for most of the tasks, there is no natural

source for the reward signals. Instead, the reward signals need to be hand-crafted

and carefully designed to accurately represent the task. Typically, it is also necessary

to manually tweak the rewards until desired behavior is observed.

The difficulty of manually defining a reward function motivates many researchers

to extract the reward function automatically by observing a human expert perform-

ing the task (Abbeel and Ng, 2004; Arora and Doshi, 2018). Unlike these works

that leverage expert knowledge to convert a task description into a compact reward

function, we study how an agent can reward itself by understanding its visual obser-

vations. Specifically, we focus on robotic object search task in this chapter in which a

robot needs to locate a user-specified target object in indoor environments using only

visual observations. To facilitate the robot to perform the task, we propose an object

11

recognition module and build informative rewards upon the recognition results. With

our proposed reward function, the robot learns a better action policy.

2.2 Related Work

Deep reinforcement learning has been studied extensively for the target-driven vi-

sual navigation tasks (Ye and Yang, 2020). These tasks can be categorized in terms of

the description of the navigation target. Zhu et al. (2017) and Kulhánek et al. (2019)

specify the navigation target by the image taken at the target location. The robotic

object search task studied in Mousavian et al. (2019), Ye et al. (2019a), Yang et al.

(2018) and Druon et al. (2020), and the room navigation task introduced in Wu et al.

(2018) and Wu et al. (2019b) take the semantic label of the target object and room as

the navigation target. The Embodied Question Answering (Das et al., 2018a,b; Gor-

don et al., 2018) and the Vision-and-Language Navigation (Anderson et al., 2018b;

Wang et al., 2019) address the problem where the navigation target is provided with

an unconstrained natural language. Among all of these works, many of them adopt

a sparse reward function where a high reward is defined only at the goal state and at

all other intermediate states, the reward is either zero or a small negative value (Zhu

et al., 2017; Yang et al., 2018; Kulhánek et al., 2019). Other works usually define

the reward function with the distance between the agent’s current location and the

target location under the strict assumption that the full information of the environ-

ment is known (Mousavian et al., 2019; Wu et al., 2018; Wang et al., 2019). Here, we

introduce an informative reward function by adopting an object recognition module

on the agent’s visual inputs while we do not assume any environment information

available.

12

Figure 2.1: An illustration of our robotic object search task. Red dot: the random

initial location; White line and error: the generated robot trajectory from our turtle-

bot experiment; Upper left image: the final view of the robot with the target object

detection (the target object in this experiment is “shear”).

2.3 Our Approach

Our objective is to learn an action policy for the robot to locate a user-specified

target object in indoor environments using only visual inputs. Here, the environ-

ment information, such as the map of the environment or the location of the target

object is unknown. The robot makes action decisions only upon a single stream im-

age sequences from an on-board camera mounted in the robot and an RGB image

depicting the target object with no contextual information. As a result, the state

observations are the RGB images captured by the robot’s on-board camera, and the

goal descriptions are the images of the target objects. With the learned policy, when

the user provides the robot an image of a target object, the robot is expected to take

a relatively small number of steps to approach the target object from its random

13

starting position. Moreover, the robot is expected to return a bounding box of the

target object in its viewpoint (as shown in Fig 2.1). To learn the action policy, we

first propose an object recognition module to enable the robot to detect the given

object in its viewpoint. The recognition results are then used to reward the robot in

order to learn the policy with our recognition-guided action policy learning module.

We describe the two modules respectively in the following sections.

2.3.1 Object Recognition Module with Target Object Given

A standard object detection process typically consists of two steps: 1) detect the

candidate regions of objects in an image; and 2) predict a class label to each region

(a bounding box representation is typically used). However, under our setting, the

target object is given, and the object recognition module only needs to detect whether

the specific object exists in the current range of view at any time step. Following this

observation, we simply take the target object image as the first input to our detection

network, along with the whole image of robot’s current view as the second input, and

predicts the bounding box coordinates of the target object in the current view if there

is one. Fig. 2.2 shows an illustration of the proposed network architecture.

Network architecture: As shown in Fig. 2.2, the module takes both the current

view (full image frame) and the target object image and feed them into a shared,

ResNet-50 network (He et al., 2016) with a siemese-like architecture and extracts the

1024 dimensional features at the output of the res4f layer for both inputs. Here,

we take the pre-trained ResNet model (trained on ImageNet) and fix them during

our subsequent training and testing pipelines. A fully-connected layer is attached

after each of the 1024 dimensional feature inputs and projects them down into a

512 dimensional vector with a single fully connected layer. The two 512 dimensional

vectors are then concatenated and aggregated into a 512 dimensional joint vector by

14

Figure 2.2: The architecture of the object recognition network.

an additional fully-connected layer. Finally, we feed the 512 dimensional joint vector

into a classification layer and a regression layer, each of which includes another two

fully-connected layers. The classification layer is designed to predict whether the

target object appears in the input whole image or not, and the regression layer is

designed to predict the 4 parameters of the target object bounding box, i.e. the

center coordinate (x, y), the width w and the height h of the bounding box.

Loss function: Eq. 2.1 shows the loss function we designed for the object recog-

nition module.

L =
∑
i

−
[
p∗i log(pi) + (1− p∗i)log(1− pi)

]
+ λ

∑
i

1obji ‖bi − b∗i ‖2
2 (2.1)

The first term denotes the cross-entropy loss for binary classification, where p∗i is the

ground-truth label of the ith image and its value equals to 1 if the object appears in

the image, and 0 if it doesn’t. pi is the predicted probability of the object appears in

the image i that is the output from the previous classification layer. The second term

in the loss function is the L2 loss between ground truth bounding box coordinates b∗i

and that predicted coordinates bi, where bi = (xi, yi, wi, hi) (likewise for b∗i). 1
obj
i is an

15

indicator function indicates that if the object is in the image i. In this formulation,

the regression loss will only be activated when the target object is detected in the

current view. λ is the weight factor that balances between these two losses. In practice

we found a weight value of 0.5 works well, so we fix it throughout all our reported

experiments. The object detection network is trained by minimizing the overall loss

function with the standard stochastic gradient decent (SGD) optimization.

2.3.2 Recognition-guided Action Policy Learning

With the guidance from the object recognition module, we build upon a basic

deep reinforcement learning based framework to learn a mapping from the robot’s

visual observations to its action space as an action policy. Since the goal of the robot

is to find the image specified target object, we define goal states as those positions

where the robot’s visual observations contain a bounding box of the target object.

At the same time, the size of the bounding box needs to be larger than a predefined

threshold to determine a success. In practice, we found the size of the fifth largest

bounding box (among all the ground-truth bounding box instances) is a reasonable

threshold, and it yields 5 goal states (top 5 images with the largest target object

detected). To learn the action policy, we first define an informative reward function

in terms of the recognition results from the object recognition module. The reward

function guides the robot towards the goal states. We then approximate the robot’s

action policy with a deep neural network and learn it with the A3C algorithm (Mnih

et al., 2016).

Reward function: At each state, we apply our object recognition module on the

state observation and we define the reward as the one proportional to the size (the

area) of the detected bounding box that contains the target object, if there is one.

For all states where the robot cannot detect the object, we set the reward to zero.

16

Since there might exist many states where the robot can detect a bounding box with

a smaller-than-the-threshold size, the robot can easily stuck in these states, since

they all yield positive rewards. In order to encourage the robot to keep searching

states with possibly larger detected bounding boxes, we further set reward as zero to

a state, if at this state the robot do detect a bounding box but the size of it is smaller

than the bounding boxes that have been detected earlier in one training episode. In

other words, our proposed reward function keeps the records of the largest box size in

the current episode and accumulates discounted rewards in an incremental way with

respect to the records. Figure 2.3 shows an example.

More formally, let at be the size of the bounding box the robot detects at time step

t, the reward at this time step rt = kat if and only if at > at−1, at−2..., a0, otherwise

rt = 0. k is a constant. As a result, the discounted cumulative reward for one episode

will be γi1kai1+γ
i2kai2+...+γ

itkait , where γ is the discount factor for time penalty and

ai1 < ai2 < ... < ait(i1 < i2 < ... < it). The rationale supporting this design is that

this reward function encourages more exploration only around these aforementioned

and potential trapping states, instead of having a higher uniform exploration rate

across the whole state space, regardless of whether these states being worth exploring

or not. In this way, we can achieve both faster convergence and more meaningful

exploration paths at the same time.

Network architecture: Fig. 2.4 depicts the architecture of our proposed deep

reinforcement learning-based model for approximating the action policy. The model

shares the similar architecture with Zhu et al. (2017) and takes both the observed

visual view and the target object image as the inputs. Unlike Zhu et al. (2017),

our model does not share the weights between the two fully connected layers when

fusing the target and the observation images. One primary motivation for this is that

under our setting, the input image of the target object could come from very different

17

Figure 2.3: An illustration of our vision-guided reward function.

domains from the object observed from the scene image so that it can’t be projected

to the same embedding space as the observation image. In addition, we further feed

the object location information generated from the object recognition module into

the embedding fusion layer. Here, the object location information is encoded as a 5

by 5 binary image that specify the object’s location. The last scene-specific layer is

used to predict the action policy π(a|s, g) and the value V (s, g) for each scene. The

action policy π(a|s, g) is a 8 dimensional probabilities over 8 actions, namely {move

forward/backward/left/right, tilt up/down, turn left/right}.

Loss function: We adopt the A3C algorithm (Mnih et al., 2016) to update

the network and learn the action policy. A3C optimizes the policy outputs by min-

imizing the loss function Lp = −E[
∑T

t=1(Rt − V (st, g))logπ(at|st, g), where Rt =∑T−t
i=0 γ

irt+i + V (sT+1, g). The value output is updated by minimizing the loss Lv =

E[(Rt − V (st, g))2]. Finally, the overall loss is L = Lp + λLv where λ is a constant

coefficient and we set it as 0.5 in our experiments.

2.4 Experiments

We evaluate our framework in both simulation and real environments. In the

simulated environment, we set up a variety of experiments with multiple target objects

18

Figure 2.4: The deep reinforcement learning architecture.

in four indoor scenes. We further implement our framework on a real mobile robot

platform (a turtle-bot with a pan-tilt camera) and demonstrate it efficacy in a real

indoor scene (a conference room) in finding the target objects.

2.4.1 Dataset

Simulation platform is adopted from the THOR Challenge platform 1 . This

platform provides 30 photo-realistic indoor scenes from AI2-THOR dataset (Kolve

et al., 2017a) for training and validating autonomous robotic systems to navigate and

search for objects in these virtual environments. The platform serves as the testbed

for our system. More specifically, the 30 indoor scenes include 15 kitchens and 15

living rooms, where 20 of them are training scenes and the rest 10 are reserved for

1http://vuchallenge.org/thor.html

19

validation. The available actions for the robot are predefined as 8 discrete actions,

namely {move forward/backward/left/right, tilt up/down, turn left/right}. Following

the simulation setting, each virtual scene can be discretized into a set of images taken

from each robot state, and the whole set of images characterize the overall state space

of the robot. Moreover, the platform also provides a set of target images for each

scene. These target images contain only objects without any background, which can

well-support our experiments.

In order to train the object recognition module, we need to further augment the

data with annotated object bounding boxes. Without the loss of generality, we select

4 scenes randomly and for each scene we retrieve all images from every robot state.

We further select 4 objects that can be found in the scene and take their corresponding

target images as the input target images to our system. Finally, we manually labeled

the bounding box for each target object in each scene image, and treat them as the

ground-truth bounding boxes in training our object recognition module. We adopted

the standard cross-validation mechanism to mitigate the risk of over-fitting.

(a) Sample testing images and corresponding locations on

the map.

(b) Sample training images taken

from another room.

Figure 2.5: Sample testing and training images from our real world dataset.

20

Real world scenario: we equipped a turtle-bot with a pan/tilt camera to con-

duct the experiment. The action set available for the turtle-bot consists of, {move

forward/backward, rotate left/right, look up/down}. We discretized the scene space

(which is a conference room) into 27 locations. At each location, the robot takes 8

RGB images with its pan/tilt camera (turn left/right, look up/down). This leads

to a total of 216 RGB images for our experiment, representing all possible states of

the turtle-bot in this real world scenario. For the objects presented in the scene, we

collected another group of 150 images each for training the object recognition module.

Then, we train the deep neural networks in our framework with reinforcement learn-

ing. In testing, we set the turtle-bot at a random starting location in the conference

room, and search for a given object with the trained model. Fig. 2.5 shows a few

sample testing and training data.

2.4.2 Experimental Results and Discussion

Table 2.1 and Table 2.2 report the performance of all the methods in performing

the robotic object search task at the simulation platform and the real world respec-

tively. We designed four experiments as following.

1) Locate 1 object in 1 simulated scene. In order to test whether our proposed

framework can successfully find the target object or not in one scene, we first conduct

this experiment.

2) Locate 4 objects in 1 simulated scenes. To validate the generalization ability

of our method to multiple objects and avoid over-fitting to one specific target object,

we train one model to find any given one of 4 different objects.

3) Locate a total of 16 objects in 4 different simulated scenes. To verify that the

models have the generalization ability across different scenes, we trained one model

which has 4 scene-specific branches as shown in Fig. 2.4 to learn 4 action policies for

21

Table 2.1: The performance metrics of all the methods in the simulation platform.

(AL: Average trajectory Length; SR: Success Rate)

Methods

Experiment Scenarios

1 obj in 1 scene 4 objs in 1 scene 16 objs in 4 scenes

AL SR AL SR AL SR

Random Walk 2050.3 60.0% 1911.6 72.5% 2057.6 84.3%

Reward Func. 1 2880.2 50.0% ∼ ∼ ∼ ∼

Reward Func. 2 - 0.0% ∼ ∼ ∼ ∼

Our Reward Func.
1957.6 80.0% 1643.2 92.5% 1430.7 87.5%

(high exploration)

Our Reward Func.
52.9 100.0% 30.1 75.0% 593.0 75.0%

(low exploration)

4 scenes.

4) Turtle-bot experiment in a real world scenario. We conduct an experiment

using a turtle-bot to search for an object in a real world scene (a conference room)

to validate the real-world efficacy of our method.

For each experimental setting, we compare our method with the following baseline

and variants to demonstrate the superiority of our method. Note that we don’t

compare our method with the classical search algorithms, such as A∗, depth-first or

breadth-first search since we assume the global map of the environment is unknown.

The robot will simply remain on the current state if the action it takes cause collision.

This non-deterministic transition characteristic makes these deterministic algorithms

unusable.

22

Table 2.2: The performance metrics for the real world experiments. (AL: Average

trajectory Length; SR: Success Rate)

Experiment Scenario

Methods

Random Walk
Our Reward Func. Our Reward Func.

(high exploration) (low exploration)

AL SR AL SR AL SR

turtle-bot experiment 820.9 99.0% 176.8 100% 63.3 100%

1) Random walk. In this baseline method, the robot randomly takes an action

from its available action set at each state. We take this method as our baseline.

2) Reward function 1. We adopt our model architecture but with a reward function

different from the one defined in Zhu et al. (2017) in training. The reward function

is defined to give a positive reward (10) at goal states, and a small negative reward

(−0.01) for all the other states.

3) Reward function 2. We trained our model with another intuitive reward func-

tion. We define the reward as the one proportional to the area of the object’s bounding

box at each state, no matter if the size of the current bounding box is smaller than

the previous one. This means that if a0, a1, ..., as where ai(0 ≤ i ≤ s) ≥ 0 are the

areas of bounding boxes the robot have seen during one episode, the total reward for

this episode is ka0 + γka1 + ...+ γskas and γ is the discount factor.

4) Our reward function with high exploration rate. We use our reward function

defined in Sec. 2.3.2 to train our model, with a relatively high exploration rate.

5) Our reward function with a low exploration rate. We reduce the exploration

rate to train our model without any other change compared to method 4).

23

We report the performance of all methods with two metrics, namely the average

number of actions that need to be taken to find the target object (also known as

the average trajectory length), and the success rate of the robot finally finds the

target object. For a fair comparison, for each target object, we randomly initialize

the robot’s starting position and run each method for 10 episodes. An episode ends

when the robot finds the target object or it has already taken 5000 steps (and it

claims a failure). Only when the robot finds the target object successfully, we count

the episode as a successful trail, and the corresponding trajectory length will then

contribute to the average trajectory length metric. “-” indicates the model does not

converge or during testing the robot is trapped in sub-optimal states for good. Here

we want to mention a caveat: because both the reward function 1 and 2 do not

perform well even on the 1 object 1 scene scenario and due to the limited computing

resource we have, we did not test them for the other three scenarios (we use “∼” in

the table).

We observed that: 1) trained model based on our proposed reward function out-

performs other baseline methods with a significant margin (less steps to find the target

object with a higher success rate; 2) our experiments show that reward function 1 and

2’s performances are worse than random walk, or can not converge, which indicates

they are not suitable for the general robotic object search task; 3) model trained with

multiple objects and multiple scenes takes more steps to achieve higher success rates

with the high exploration rate, indicating that the model lacks of good generalization

ability.

2.5 Conclusion

In this chapter, we present a denser reward function building upon a vision module

that enables a robot to develop an action policy to perform the robotic object better.

24

Experiments conducted on both public AI2-THOR (Kolve et al., 2017a) platform

and a new indoor environment dataset (a conference room), in simulation and on a

physical robot executing the challenging object searching task validated the proposed

approach.

The study presented in this chapter also opens several avenues for future research.

First, some other visual prediction tasks that achieve state of the art performance

in the field of computer vision can also be adopted to define reward functions. For

example, in a dynamic environment, the robot can predict the movements of other

agents or human collaborators from its visual observations to avoid collisions with

them (Wang et al., 2017). Moreover, the visual prediction errors can also be taken

as indications of insufficient exploration of the environments to drive the robot to

explore more efficiently (Pathak et al., 2017).

25

Chapter 3

EFFICIENT EXPLORATION WITH HIERARCHICAL POLICY

3.1 Introduction

A pressing challenge to train an agent to perform complex tasks with reinforce-

ment learning (RL) methodology is the sparse reward issue. With well-designed

reward functions, such as the ones in Atari games (Mnih et al., 2015), the learned

policies are shown to achieve extremely promising performance. However, it is still a

challenge designing the reward function for the real-world applications (Abbeel and

Ng, 2004). Typically, for applications such as target-driven visual navigation, prior

research constructs the reward function in terms of the distance between the agent’s

current location and the target location under a strict assumption that the full infor-

mation of the environment is known (Mousavian et al., 2019; Wang et al., 2018, 2019).

For an unknown environment, a straightforward way is to set a high reward when the

agent reaches the final goal state while at all other intermediate states, the reward

is either zero or a small negative value (Zhu et al., 2017). In such a sparse reward

setting where the reward is only defined for a small subset of the states, the agent

struggles to learn a good action policy as it is unlikely to encounter and sample the

very few rewarding states without a well-designed goal-oriented exploration strategy,

especially dealing with complex environments.

Hierarchical RL (HRL) paradigm is thus formulated considering its efficient strat-

egy for exploration (Nachum et al., 2019) and superiority under the sparse reward

setting (Kulkarni et al., 2016; Le et al., 2018; Levy et al., 2018). HRL aims to learn

multiple layers of policies. The higher layer breaks down the task into several eas-

26

ier sub-tasks and proposes corresponding sub-goals for the lower layer to achieve.

Typically, the sub-goals are aliases to the states that mandates the lower layer to

reach, as defined in Le et al. (2018) and Nachum et al. (2018b) for tasks with low

dimensional state spaces. Unfortunately, these methods are not directly applicable

for the tasks where the underlying states are unknown and the state observations are

high dimensional RGB images. It is utterly difficult and seemingly impractical for

the higher layer to output homogeneous images as sub-goals. On the other hand,

reconstructing a concise low dimensional sub-goal space from the observation space

without compromising the optimality of the learned policy demands elaborate efforts

(Nachum et al., 2018a; Dwiel et al., 2019).

In this chapter, we put forward a novel two-layer hierarchical policy learning

paradigm for robotic object search task. The robotic object search task asks a robot

to search and approach an object in an unknown environment where the state obser-

vations are the RGB images captured by the robot’s on-board camera and the goal

descriptions are the semantic labels of the target objects. Our hierarchical policy

builds on a simple yet effective and interpretable low dimensional sub-goal space. To

obtain an optimal hierarchical policy given the small sub-goal space, we model the

task with both goal dependent extrinsic rewards and sub-goal dependent intrinsic re-

wards. To be specific, our high-level policy plans over the sub-goal space in order to

achieve the final goal by maximizing the extrinsic rewards. When a sub-goal is given

following the high-level policy, a proxy low-level policy is then invoked for the robot to

explore the environment. The proxy low-level policy maximizes the intrinsic rewards

in order to achieve the proposed sub-goal. Meanwhile, our low-level policy learns

from the exploration experience and optimizes towards the final goal. It is invoked

eventually to collaborate with our high-level policy to form an optimal hierarchical

object search sequence. Moreover, inspired by Bacon et al. (2017), the low-level policy

27

learns to terminate at valuable states that further improves our hierarchical object

search performance. We dub our framework as HIEM : Hierarchical policy learning

with Intrinsic-Extrinsic Modeling (see Fig. 3.1). We validate HIEM with extensive

sets of experiments on the House3D (Wu et al., 2018) simulation environment which

contains thousands of 3D houses with a diverse set of objects and natural layouts re-

sembling the real-world. The observed results demonstrate the efficiency and efficacy

of our system over other state-of-the-art ones.

3.2 Related Work

Previous work has studied hierarchical reinforcement learning in many different

ways. One is to come up with efficient methods to accelerate the learning process of

the general hierarchical reinforcement learning scheme. As in Nachum et al. (2018b),

the authors introduce an off-policy correction method. Levy et al. (2017b) and Levy

et al. (2018) propose to use Hindsight Experience Replay to facilitate learning at mul-

tiple time scales. Though these methods’ performance are impressive, they typically

assume the sub-goal space for the higher level policy is the state space. However, in

tasks like the object search task, the RL system takes the image as the state repre-

sentation, these methods are not directly applicable since the higher layer can hardly

propose an image as a sub-goal for the lower layer to achieve.

Other methods designate a separate sub-goal space for hierarchical reinforcement

learning. For example, Kulkarni et al. (2016) defines the sub-goal space in the space

of entities and relations, such as the “reach” relation they use for their Atari game

experiment. Sub-tasks and their relations are provided as inputs in Andreas et al.

(2017) and Sohn et al. (2018). Closer related to our work, Das et al. (2018b) adopts

{exit-room, find-room, find-object, answer} as the sub-goal space to learn a hierar-

chical policy for the Embodied Question Answering task. For the same task, Gordon

28

Figure 3.1: An example of our HIEM framework. When our high-level policy proposes

a sub-goal, our proxy low-level policy is invoked with the probability of α to explore

the environment by optimizing towards the sub-goal, and our low-level policy learned

from the exploration experience is invoked with the probability of 1−α to collaborate

with the high-level policy to better achieve the goal.

et al. (2018) chooses {navigate, scan, detect, manipulate, answer} as the possible

sub-tasks, while the reinforcement learning methods are mainly applied for learning

high-level policy, i.e. planning over the pre-trained or fixed sub-tasks.

On the other side, attempts have been made to learn a set of low-level skills

automatically to achieve the goal. These low-level skills are also referred to as tem-

29

poral abstractions. Bacon et al. (2017) proposes the option-critic framework to au-

tonomously discover the specified number of temporal abstractions. Osa et al. (2019)

learns the temporal abstractions through advantage-weighted information maximiza-

tion. Nachum et al. (2018a) addresses the sub-goal representation learning problem.

With the learned representation, their hierarchical policies are shown to approach the

optimal performance within a bounded error.

Motivated by aforementioned ones, we designate a simple yet effective sub-goal

space that makes the hierarchy better interpretable. Meanwhile, to make the optimal

policy expressible and learnable with the specified sub-goal space, we also leverage the

benefits from the automatic temporal abstraction learning methods, which ultimately

yields a hybrid system.

3.3 Our Approach

First, we define the robotic object search task. Formally speaking, when a target

object is specified and provided with a semantic label, the robot is asked to search

and approach the object from its random starting position. The RGB image from

the robot’s on-board camera is the only source of information for decision making.

None of the environment information, such as the map of the environment or the

location of the target object could be accessed. Once the area of the target object in

the robot’s viewpoint (the image captured by its camera) is larger than a predefined

threshold, the robot stops and we consider it as a success. In this chapter, we present

a novel two-layer hierarchical policy for the robot to perform the object search task,

motivated by how human beings typically conduct object search. In the following

sections, we first describe the hierarchy of policies. Then we introduce two kinds of

reward functions, i.e. extrinsic rewards and intrinsic rewards, and we make use of

these two reward functions to formulate the solution. Finally, we describe the network

30

architecture adopted for learning the two-layer hierarchical policy.

3.3.1 Hierarchy of Policies

Our hierarchical policy has two levels, a high-level policy πh and a low-level policy

πl. At time step t, the robot takes the image captured by its camera as the current

state st. Given a target object or goal g, the high-level layer proposes a sub-goal

sgt ∼ πh(sg|st, g) and the low-level layer takes over the control. The low-level layer

then draws an atomic action at ∼ πl(a|st, g, sgt) to perform. The robot will receive a

new image/state st+1. The low-level layer repeats Nt times till 1) the low-level layer

terminates itself following the termination signal term(st+Nt , g, sgt); 2) the low-level

layer achieves the sub-goal sgt. 3) the low-level layer has performed a predefined

maximum number of atomic actions. Either way, the low-level layer terminates at

state st+Nt , and then returns the control back to the high-level layer, and the high-

level layer proposes another sub-goal. This process repeats until 1) the goal g is

achieved, i.e. the robot finds the target object successfully; 2) a predefined maximum

number of atomic actions has been performed.

For the object search task, we define the sub-goal space as {approach obj|obj is

visible in the robot’s current view}. We argue three reasons for the sub-goal space

definition, a) approaching an object that shows in the robot’s view is a more general

and relatively trainable task shown by Ye et al. (2019a). It also aligns well with the

objective of the hierarchical reinforcement learning by breaking down the task into

several easier sub-tasks; b) approaching a related object may increase the probability

of seeing the target object. As soon as the target object is captured in the robot’s

current view, the task becomes an object approaching task; c) as also suggested by

Kulkarni et al. (2016), specifying sub-goals over entities and relations can provide

an efficient space for exploration in a complex environment. Moreover, in case there

31

is no object visible in the robot’s current view, we supplement a back-up “random”

sub-goal invoking a random low-level policy. The atomic action space for the low-

level layer is defined for navigation purpose, namely {move forward / backward / left

/ right, turn left / right}.

3.3.2 Extrinsic and Intrinsic Rewards

We define two kinds of reward functions. The extrinsic rewards re are defined

for our object search task, thus are goal dependent. Further, we also introduce the

intrinsic rewards ri for the low-level sub-tasks. The intrinsic rewards are hereby

sub-goal dependent. We specify the two reward functions respectively as follows.

Extrinsic rewards re. Without loss of generality, to encourage the robot to

finish the object search task, we provide a positive extrinsic reward (in practice, 1)

when the robot reaches the final goal state. At all other intermediate states, the

extrinsic rewards are set to 0. Formally, ret (st, g) = 1 if and only if st is a goal state

of the goal g, otherwise ret (st, g) = 0.

Intrinsic rewards ri. To facilitate the robot perform the sub-task, i.e. ap-

proaching the object specified in the proposed sub-goal sg which shows in the robot’s

current view, we adopt the similar binary rewards. To be specific, the intrinsic reward

rit(st, sg) = 1 if and only if st is a goal state of the sub-goal sg, otherwise rit(st, sg) = 0.

3.3.3 Model Formulation

We formulate the object search task in terms of the two rewards introduced in

Sec. 3.3.2. When the robot starts from an initial state s0, it proposes a sub-goal

sg0 aiming to achieve the final goal g (locating and approaching the target object).

To achieve the final goal, we can optimize the discounted cumulative extrinsic re-

wards, expected over all trajectories starting at state s0 and sub-goal sg0, which is

32

E[
∑∞

t=0 γ
tret+1|s0, g, sg0]. If and only if the robot takes minimal steps to the goal state,

the discounted cumulative extrinsic rewards are thus maximized.

The discounted cumulative extrinsic rewards is also known as the state action

value Qe
h (Sutton and Barto, 2018) for our high-level layer, i.e. E[

∑∞
t=0 γ

tret+1|s0 =

s, g = g, sg0 = sg] = Qe
h(s, g, sg). Following the option-critic framework (Bacon et al.,

2017), we unroll the Qe
h(s, g, sg) as,

Qe
h(s, g, sg) =

∑
a

πl(a|s, g, sg)E[
∞∑
t=0

γtret+1|s0 =s, g=g, sg0 =sg, a0 =a]

=
∑
a

πl(a|s, g, sg)Qe
l (s, g, sg, a),

(3.1)

where the state action value Qe
l (s, g, sg, a) for our low-level layer is the discounted

cumulative extrinsic rewards after taking action a under the state s, goal g and sub-

goal sg. Given the transition probability P (s′|s, a) which denotes the probability of

being state s′ after taking action a at state s, Qe
l (s, g, sg, a) can be further formulated

as,

Qe
l (s, g, sg, a) =

∑
s′

P (s′|s, a)[re(s′, g) + γU(g, sg, s′)],

U(g, sg, s′) = (1− term(s′, g, sg))Qe
h(s
′, g, sg) + term(s′, g, sg)V e

h (s′, g),

V e
h (s′, g) =

∑
sg′

πh(sg
′|s′, g)Qe

h(s
′, g, sg′).

(3.2)

We parameterize Qe
h(s, g, sg), Qe

l (s, g, sg, a) and term(s, g, sg) with θeh, θ
e
l and θt

respectively. Then the high-level policy πh(sg|s, g) = 1(sg = argmaxsgQ
e
h(s, g, sg)),

and the low-level policy πl(a|s, g, sg) = 1(a = argmaxaQ
e
l (s, g, sg, a)). We adopt

the DQN (Mnih et al., 2015) based method to learn Qe
h(s, g, sg) and Qe

l (s, g, sg, a)

in which we update both of the values towards the 1-step extrinsic return Re
1 =

re(s′, g) + γU(g, sg, s′), and consequently θeh and θel can be updated by Equation 3.3

and 3.4. In addition, θt can be updated by Equation 3.5 as demonstrated by Bacon

et al. (2017).

33

θeh ← θeh −∇θeh
[Re

1 −Qθeh
(s, g, sg)]2. (3.3)

θel ← θel −∇θel
[Re

1 −Qθel
(s, g, sg, a)]2. (3.4)

θt ← θt −∇θttermθt(s
′, g, sg)(Qe

h(s
′, g, sg)− V e

h (s′, g)). (3.5)

Since the robot may start at a position far away from the target object, it is

unlikely for the robot to encounter the sparse extrinsic rewarding states through the

ε-greedy (Mnih et al., 2015) exploration policy and collect the experience samples to

effectively train θeh, θ
e
l and θt. On the contrary, encountering the intrinsic rewarding

states is much more possibly as an object shows in the robot’s current view is usually

nearby. Therefore, training the robot to achieve a sub-goal is more accessible. Then,

by iteratively asking the robot to achieve suitable sub-goals, i.e. to approach related

objects, the robot is more likely to observe the target object and collect the valuable

experience samples to train θeh, θ
e
l and θt.

We hereby define a proxy low-level policy πpl (a|s, sg) aiming to achieve the pro-

posed sub-goal sg. Similarly, we learn the proxy low-level policy by optimizing the

discounted cumulative intrinsic rewards Qi
l(s, sg, a) = E[

∑∞
t=0 γ

trit+1|s0 = s, sg0 =

sg, a0 = a]. We adopt the DQN method (Mnih et al., 2015) to learn Qi
l(s, sg, a) by up-

dating its parameter θil with Equation 3.6, where Ri
1 = ri(s′, sg) +γmaxaQ

i
l(s
′, sg, a)

is the 1-step intrinsic return. As a result, πpl (a|s, sg) = 1(a = argmaxaQ
i
l(s, sg, a)).

θil ← θil −∇θil
[Ri

1 −Qθil
(s, sg, a)]2. (3.6)

For our low-level layer to balance between exploitation by achieving the goal g

with the policy πl(a|s, g, sg) and the exploration by achieving the sub-goal sg with the

proxy policy πpl (a|s, sg), we introduce a hyper-parameter α ∈ [0, 1] as the probability

that the low-level layer adopts the proxy policy πpl (a|s, sg) to explore the environment

34

and collect the experience samples. The experience samples are used to batch train

θeh, θ
e
l , θt and θil with Equation 3.3, 3.4, 3.5 and 3.6 respectively. In practice, α decays

from 1 to 0 across the training episodes to enable our low-level layer to act optimally

towards the goal with the policy πl(a|s, g, sg) eventually.

3.3.4 Network Architecture

Figure 3.2: Network architecture of our hierarchical reinforcement learning model.

Since the image captured by the robot’s on-board camera serves as the robot’s

current state, we adopt deep neural networks as θeh, θ
e
l , θt and θil to handle the high

dimensional inputs and approximate Qe
h(s, g, sg), Qe

l (s, g, sg, a), term(s, g, sg) and

Qi
l(s, sg, a).

Fig. 3.2 illustrates our network architecture. For the object search task, semantic

segmentation and depth map are necessary for the robot to detect the target object

and avoid collision during the navigation. Therefore, we first adopt the encoder-

decoder network (Ye et al., 2019a) to predict the semantic segmentation and the

depth map from the robot’s observation. We take the predicted results as the inputs

to our policy networks to avoid the need of visual domain adaption (Mousavian et al.,

35

2019). The predicted results of the 4 history observations are fed into our high-level

network θeh in addition to a one-hot vector representing the target object. The channel

size of the segmentation input is first reduced to 1 through a convolutional layer with

1 filter of kernel size 1 × 1, and then the three inputs are fed into three different

fully connected layers respectively and their outputs are further concatenated into a

joint vector before attaching another fully connected layer to generate an embedding

fusion. Our high-level network θeh feeds the embedding fusion into one additional fully

connected layer to approximate Qe
h(s, g, sg). To save the number of parameters, our

termination network θt shares most parameters with the high-level network θeh except

the last fully connected layer where it adopts a new one to approximate term(s, g, sg).

For the low-level network θel and θil , we take the sub-goal specified channel of the

predicted semantic segmentation and the predicted depth map as the inputs. The low-

level network θel takes the one-hot vector of the target object as an additional input.

Similar to our high-level network, each input of θel and θil is fed into a fully connected

layer before being concatenated together to generate an embedding fusion with a new

fully connected layer. The embedding fusion is further fed into an additional fully

connected layer to approximate Qe
l (s, g, sg, a) and Qi

l(s, sg, a).

We follow Equation 3.3, 3.4, 3.5 and 3.6 to learn Qe
h(s, g, sg), Qe

l (s, g, sg, a),

term(s, g, sg) and Qi
l(s, sg, a) respectively.

3.4 Experiments

3.4.1 Dataset

We validate our framework on the simulation platform House3D (Wu et al., 2018).

House3D consists of rich indoor environments with diverse layouts for a virtual robot

to navigate. In each indoor environment, a variety of objects are scattered at many

36

locations, such as television, sofa, desk. While navigating, the robot has a first-person

view RGB image as its observation. The simulator also provides the robot with the

ground truth semantic segmentation and depth map corresponding to the RGB image.

The RGB images, as well as the semantic segmentation and depth maps can be used

as the training data to learn the encoder-decoder network (Ye et al., 2019a) (shown in

Fig. 3.2 upper left) for semantic segmentation and depth prediction as we mentioned

in Sec. 3.3.4. In addition, the trained model, specifically the semantic segmentation

prediction, can be used as the robot’s detection system.

To validate our proposed method in learning hierarchical policy for object search,

we conduct the experiments in an indoor environment where the objects’ placements

are in accordance with the real-world scenario. For example, the television is placed

close to the sofa, and is likely occluded by the sofa at many viewpoints. In such

a way, to search the target object television, the robot could approach sofa first to

increase the likelihood of seeing the television.

We consider discrete actions for the robot to navigate in this environment. Specif-

ically, the robot moves forward / backward / left / right 0.2 meters, or rotates 90

degrees every time. We also discretize the environment into a certain number of

reachable locations, as shown in Fig. 3.3.

3.4.2 Experimental Setting

We compare the following methods and variants:

Oracle and Random. At each time step, the robot ignores its observation and

performs the optimal action and a random action respectively.

A3C (Mnih et al., 2016). The vanilla A3C implementation that has been wildly

adopted for the navigation task in the previous work (Zhu et al., 2017; Ye et al., 2018,

2019a; Yang et al., 2018; Druon et al., 2020). It learns the action policy π(a|s, g) and

37

the state value V e(s, g) with a similar network architecture as our high-level network

θeh.

DQN (Mnih et al., 2015). The vanilla DQN implementation that adopts a similar

network architecture as our high-level network θeh to predict the state action value

Qe(s, g, a).

OC (Bacon et al., 2017). The Option-Critic implementation that learns a hi-

erarchical policy autonomously by maximizing the discounted cumulative extrinsic

rewards where only the number of the options needs to be manually set. We set it as

4 in our experiments.

h-DQN (Kulkarni et al., 2016) with our proposed sub-goal space. It is equiva-

lent to our method when we set term(s, g, sg) = 0 and α = 1 to disable both the

termination network θt and the low-level network θel .

HIEM. Our method follows Sec 3.3. To further identify the role of each compo-

nent of our method, we conduct ablation studies by disabling one component at a

time. Specifically, HIEM-proxy sets α = 0 to disable the proxy low-level network

θil , HIEM-low sets α = 1 to disable the low-level network θel , and HIEM-term sets

term(s, g, sg) = 0 to disable the termination network θt.

For fair comparisons, all the methods share similar network architectures and

hyperparameters, and they all take the predicted semantic segmentation and the

depth map as the inputs. To be specific, we adopt the same encoder-decoder network

(Ye et al., 2019a) to predict the semantic segmentation and the depth map from the

raw RGB image of size 600 × 450. We further resize the both predictions to size

10× 10 and feed them to each method for policy learning. For DQN networks in the

method DQN, h-DQN and HIEM, we adopt the Double DQN (Van Hasselt et al.,

2015) technique where we train the main network every 100 time steps with a batch of

size 64 and we update the target network every 100, 000 time steps. The exploration

38

rate decreases from 1 to 0.1 over 10, 000 time steps. For the A3C network, we set

the weight of the entropy regularization term as 0.01 and we update the network for

every 10 time steps unrolled. We adopt RMSProp optimizer of learning rate 1× 10−4

to train each method to search 6 different target objects (78 in total) from random

starting positions in the environment. During testing time, we randomly sample 100

starting positions and the corresponding target objects. We set the maximum number

of atomic actions that all methods can take as 500, and for the method h-DQN and

HIEM, the maximum number of atomic actions that the low-level layer can take

at each time is 25. The robot stops either when it reaches the goal state (success

case) or when it runs out of 500 atomic action steps (failure case). We implement all

the methods using Tensorflow toolbox and conduct all the experiments with Nvidia

V100 GPUs and 16 Intel Xeon E5-2680 v4 CPU cores. In general, each training takes

around 2 days.

3.4.3 Experimental Results and Discussion

Since we formulate the object search problem as maximizing the discounted cumu-

lative extrinsic rewards, we take the Average discounted cumulative extrinsic Rewards

(AR) as one of the evaluation metrics, calculated by:

1

N

N∑
i=1

∞∑
t=0

γtret+1 =
1

N

N∑
i=1

1(success)γ#steps ∗ 1, (3.7)

where γ ∈ (0, 1] is the discount factor. From the perspective of the evaluation metric,

it can also be seen as a trade-off between the success rate metric and the average

steps metric. With the higher value of γ, the average steps metric weighs less, and

vice versa. In our experiments, we set γ = 0.99.

In addition, we also report the following widely used evaluation metrics. Success

Rate (SR). Average Steps over all successful cases compared to the Minimal Steps

39

Table 3.1: The performance of all methods for the object search task. (SR: Success

Rate; AS / MS: Average Steps / Minimal Steps over all successful cases; SPL: Suc-

cess weighted by inverse Path Length; AR: Average discounted cumulative extrinsic

Rewards.)

Method SR↑ AS / MS↓ SPL↑ AR↑

Oracle 1.00 25.63 / 25.63 1.00 0.79

Random 0.19 188.11 / 7.05 0.03 0.08

A3C 0.13 93.23 / 4.00 0.03 0.08

DQN 0.47 120.74 / 16.09 0.20 0.26

OC 0.14 99.29 / 5.14 0.06 0.09

h-DQN 0.74 182.15 / 23.62 0.17 0.23

Ours

HIEM-proxy 0.40 95.08 / 15.03 0.12 0.22

HIEM-low 0.99 76.81 / 25.55 0.47 0.56

HIEM-term 1.00 49.42 / 25.63 0.65 0.66

HIEM 1.00 41.18 / 25.63 0.72 0.70

40

over these cases (AS / MS). Success weighted by inverse Path Length (SPL) (Ander-

son et al., 2018a), which is calculated as 1
N

∑N
i=1 Si

li
max(li,pi)

. Here, Si is the binary

indicator of success in episode i, li and pi are the lengths of the shortest path and the

path actually taken by the robot. We adopt the number of the action steps as the

path length. As a result, SPL also trades-off success rate against average steps.

Table 3.1 shows comparisons of all the methods in performing the object search

task. It demonstrates the superiority of our method over all metrics, and also high-

lights the following observations.

The intrinsic rewards help to explore. Comparing to h-DQN and our meth-

ods (HIEM, HIEM-low, HIEM-term) which model the object search task with both

extrinsic and intrinsic rewards, all the other methods where no intrinsic rewards is in-

volved achieve unsatisfactory success rate. It indicates that under the sparse extrinsic

rewards setting, the robot struggles to reach the goal state even with the hierarchi-

cal policy OC or HIEM-proxy, while our intrinsic rewards effectively encourage the

robot to explore the environment and encounter the goal state. In fact, the intrinsic

rewards guide our proxy low-level network to approach a visible object, and only after

the proxy low-level network achieves good performance can it collaborate with our

high-level network to let the robot encounter the sparse goal state.

Our intrinsic-extrinsic modeling contributes to a more optimal policy.

Though our intrinsic rewards help to explore the environment and improve the success

rate, they are limited in improving the policy in terms of the optimality, as suggested

by the higher AS and lower SPL and AR that h-DQN and HIEM-low achieve in

comparison with HIEM. Different from h-DQN or HIEM-low that models the low-

level layer with the intrinsic rewards solely, our HIEM adopts the novel intrinsic-

extrinsic modeling and yields a more optimal policy, demonstrating the role of our

intrinsic-extrinsic modeling in learning an optimal policy.

41

Early termination to the non-optimal low-level policy is necessary. A

non-optimal low-level policy would drive the robot to an undesirable state that in

consequence hurts the object search performance. The issue is shown to be mitigated

by terminating the low-level policy at a valuable state in HIEM-low and HIEM when

comparing them with h-DQN and HIEM-term respectively. Furthermore, we also

observe that the termination function helps more to less optimal low-level policy as

more improvements are achieved from h-DQN to HIEM-low.

Table 3.2: Average SPL achieved by all methods on 4 random environments.

Method Random A3C DQN OC h-DQN HIEM

Avg SPL 0.03 0.03 0.35 0.03 0.11 0.54

We also report in Table 3.2 the average SPL achieved by all methods on 4 random

environments. It further validates the superiority of our HIEM on other environments

as well. We depict sample qualitative results in Fig. 3.3, which shows that our method

yields a more concise and interpretable trajectory compare to other methods for the

object search task.

3.5 Conclusion

In this chapter, we present a novel two-layer hierarchical policy learning frame-

work for the robotic object search task. The hierarchical policy builds on a simple yet

effective and interpretable low dimensional sub-goal space, and is learned with both

extrinsic and intrinsic rewards to perform the object search task in a more optimal

and interpretable way. When our high-level layer plans over the specified sub-goal

space, the low-level layer plans over the atomic actions to collaborate with the high-

level layer to better achieve the goal. This is efficiently learned with the experience

42

DQN (203 steps) h-DQN (146 steps)

HIEM-low (81 steps) HIEM (44 steps)

Figure 3.3: Trajectories generated by DQN (Mnih et al., 2015), h-DQN (Kulkarni

et al., 2016) and our method HIEM-low and HIEM for searching the target object

music player (red dots) from the same starting position (green triangle) which is 39

steps away. Our method HIEM generates a more concise and interpretable trajectory.

samples collected by our proxy low-level policy, a policy optimizes towards the pro-

posed sub-goals. Moreover, our low-level layer terminates at valuable states which

further approximates the optimal policy. The empirical and extensive experiments

together with the ablation studies on House3D platform demonstrate the efficacy and

efficiency of our presented framework.

We want to mention that the current work assumes the robot can access the

environment for training before being deployed in the same one for object search. In

43

other words, we do not aim for the generalization ability towards novel environments,

but our success sheds light on how to generalize well. Specifically, an optimal object

search policy in an environment is determined by the map of the environment. In

order to generalize a learned object search policy to a new environment where the

map is unknown and no extra exploration or training process is allowed, the robot

must be able to infer the map from its observation and/or from its external memory

or knowledge. While the large high-resolution map is extremely challenging to infer,

inferring a small part of it and a low-resolution object arrangement are still tractable,

which in consequence makes both of our low-level policy and high-level policy more

likely to generalize well. We explore it in Chapter 5.

44

Chapter 4

GENERALIZABLE POLICY LEARNING FOR FULLY OBSERVABLE TASK

4.1 Introduction

With the current surge of deep reinforcement learning (Mnih et al., 2015, 2013,

2016), a joint learning method of visual recognition and planning emerges as end-

to-end learning (Zhu et al., 2017; Ye et al., 2018). Specifically, the robot learns an

optimal action policy to reach a goal state by maximizing the reward it receives from

the environment. Under the robotic object search task, the goal state is typically the

location of the target object with a high reward assigned. Several recent work have

attempted to fulfill the challenge and achieved certain promising results. For example,

Zhu et al. (2017) adopted a target-driven deep reinforcement learning model to let

robot find a specific visual scene. Ye et al. (2018) also proposed a recognition-guided

deep reinforcement learning for robot to find a user-specified target object. Although

these deep reinforcement learning models can be trained to navigate a robot to find

a target scene or object in an environment, a time-consuming re-training process is

needed every time the target or the environment alters. In other words, these systems

suffer from an unsatisfiable generalization capability to transfer the previously learned

action policy to a brand new target or a novel environment. Such defect extremely

limits the applications of these methods in real-world scenarios as it is impractical to

conduct the inefficient training process every single time.

We argue that the limitation is deeply rooted in the task itself. As the state

observations typically come from the robot’s sensory inputs, they only capture the

local information of its surrounding environments. Consequently, the goal states may

45

not be observable, yielding partially observable tasks that ask the robot to explore

the environments and infer the whole state transition functions. To validate this

argument, in this chapter, we start with a fully observable task where the goals are

observable and we study generalizable policy learning for such a fully observable task.

For robotic object search task, while searching an object is indeed environment

and object dependent, approaching an object after seen once should be a general ca-

pability. The insight could also be explained while observing human beings searching

an object in a house. We first need to explore the house to locate the object once.

After the object is captured with one sight, we are able to approach the target object

with fairly few back and forth explorations. While the exploration policy varies a lot,

the optimal approaching policy is indispensable, and provide a critical last step for

a successful object search. Thus approaching policy is a much general capability of

human beings, and thus in this chapter, we focus on the approaching policy learning.

We define an approaching task as the robot is initialized in a state where the target

object can be seen, and the goal is to take the minimal number of steps to approach

the target object.

To tackle the challenge, we put forward a novel approach aiming at learning a

generalizable approaching policy. We first treat a deep neural network as the policy

approximator to map from visual signals to navigation actions, and adopt the deep

reinforcement learning paradigm for model training. The trained model is expected

to navigate the robot approaching a new target object in a new environment without

any extra training effort. To learn an optimal action policy that can lead to a shortest

path to approach the target object, previous methods typically attempts to map visual

signal to an optimal action directly, no matter the signal contains clues towards

reaching the goal state or not. In such a case, these methods inherently force the

policy network to encode the local map information of the environment, which is

46

specific towards a certain scene. Thus, re-training or fine-tuning is needed to update

the model parameters while facing a novel target object or a new environment.

Rather than learning a mapping from each visual signal directly to a navigation

action, which has a much higher chance of encoding environment-dependent features,

we present a method that first explicitly learns a general feature representations

(scene depth and semantic segmentation map) to capture the task-relevant features

solely from the visual signal. The representations serve as the input to the deep

reinforcement learning model for training the action policy. To validate our proposed

method’s ability to generalize the approaching behavior, empirical experiments are

conducted on both simulator (House3D) and in a real-world scenario. We report

the experimental results (a sharp increase of the generalization ability over baseline

method) in Section 4.4.

4.2 Related Work

Target-driven visual navigation. Among plenty of methods for target-driven

visual navigation, those ones with deep reinforcement learning are most relevant, as

we will not provide any human guidance or map related information to the learning

system. Recently, Mirowski et al. (2016) approached the target-driven deep reinforce-

ment learning problem by jointly conducting depth prediction with other classifica-

tion tasks. Zhu et al. (2017) proposed a target-driven framework to enable a robot

to reach an image-specified target scene. Ye et al. (2018) introduced a recognition-

guided paradigm for robot to find a target object in indoor environments. Both Das

et al. (2018a) and Gordon et al. (2018) aim to let robot navigate in an indoor en-

vironment and collect necessary information to answer a question. Although these

methods work well in their designed domain, the generalization ability towards new

object and new environment is questionable.

47

Generalization in deep reinforcement learning. While generalization ability

is a critical evaluation criteria in deep learning, it is less mentioned in the literature

of deep reinforcement learning, where most of work focus on improving the training

efficiency and the performance of the trained model in certain specific domains (Mnih

et al., 2013, 2015, 2016; Jaderberg et al., 2016; Wang et al., 2016; Ghosh et al., 2017;

Gu et al., 2017). The authors of Dosovitskiy and Koltun (2016) proposed to predict

the effect of different actions on future measurements, resulting in good generalization

ability across environments and targets. However, it is based on the condition of

training the model in the complex multi-texture environments. Pathak et al. (2017)

adopted the error in predicting the consequences of robot’s actions as curiosity to

encourage robot to explore the environment more efficiently. Yet it still needs a

fine-tuning process when deploying the trained policy in a new environment.

Semantic segmentation and depth prediction. Semantic segmentation and

depth prediction from a single image are two fundamental tasks in computer vision

and have been extensively studied. Recently, convolutional neural network and deep

learning based methods show dominating performance to both tasks (Liu et al., 2009;

Couprie et al., 2013; Laina et al., 2016; Chen et al., 2018; Fu et al., 2018). Instead

of addressing them separately, Wang et al. (2015) proposed a unified framework for

jointly predicting semantic and depth from a single image. Eigen and Fergus (2015)

also adopted a single neural network to do semantic labeling, depth prediction and

surface normal estimation. In work Jafari et al. (2017), the authors analyzed the

cross-modality influences between semantic segmentation and depth prediction and

then designed a network architecture to balance the cross-modality influences and

achieve improved results. Despite the good performance these methods achieved,

multi-step training process is still required, that leads to heavy computational load

in learning and using these models. In this chapter, we adopt a DeepLabv3+ (Chen

48

et al., 2018) based model with which we can perform end-to-end training without a

performance loss.

4.3 Our Approach

4.3.1 Overview

Figure 4.1: An overview of our GAPLE system.

We define the task as learning a generalizable action policy for a robot to approach

a user-specified target object with minimal steps. The target object is specified as its

semantic category. The robot’s on-board camera is the only sensor to capture RGB

images, which serve as the robot’s observations. The robot starts at the location

where the target object can be detected (fully observable task). With the current

observation, the robot makes a decision upon which action to take. Afterwards, the

robot receives a new observation and it repeats the decision process iteratively until it

reaches a close enough location to the target object. Moreover, once the action policy

is trained and deployed, the robot is expected to take reasonable number of steps to

approach the user-specified target object as soon as the robot sees it, even the target

49

object is from a new category or the environment changes. The ground-truth map

information for both training and testing environments is unknown.

Fig. 4.1 shows an overview of our system. Since the action decision depends on

the robot’s current observation, the RGB image is the input to the system. Besides,

to make the system be flexible to the appearance changes of the target object in the

same semantic category, we further include its semantic label as part of the input.

To generalize well across various environments, the feature representations from

the input image should be also general across all different environments, or so-

called environment-independent. Although the deep neural network is well-suited

for extracting task-relevant features (Donahue et al., 2014), it tends to capture the

environment-dependent features. For example, Zhu et al. (2017) also pointed out

that a scene-specific layer is needed to capture the special characteristics like the

room layouts. As a result, these models that integrally learns feature representation

and navigation policies, can be easily over-fitted towards specific environments. To

overcome this challenge, we propose to explicitly learn a more general feature repre-

sentations. Consider our object approaching task as an example, the robot needs to

capture the semantic information from its observation to identify the target object.

At the same time, the depth information is crucial for the robot to navigate and avoid

collisions. Thus, we adopt a feature representation module that captures both the

semantic and the depth information from the input image. We further pipeline the

outputs of our feature representation module as the inputs to our proposed navigation

policy learning module for action policy training. The following sections introduce the

feature representation module and the navigation policy learning module respectively.

50

4.3.2 Semantic Segmentation and Depth Prediction

We adopt the DeepLabv3+ (Chen et al., 2018) based model (as shown in Fig. 4.2)

to jointly predict the semantic segmentation and depth map from a single RGB image.

DeepLabv3+ employs an encoder-decoder structure, where the encoder utilizes the

spatial pyramid pooling to encode multi-scale contextual information. Specifically, it

applies multiple filters or pooling operations that with different rates on the feature

map computed by other pretrained models, such as ResNet-101 (He et al., 2016)

and Xception (Chollet, 2017). That allows the filters or the pooling operations to

be able to consider different field-of-views, so that they can capture rich semantic

information. During the decoding process, it gradually up-samples the encoder’s

output and recovers the spatial information to capture the sharp object boundaries,

which leads to better semantic segmentation results. We refer interested readers to

Chen et al. (2018) for more details.

Figure 4.2: An illustration of the adopted model based on DeepLabv3+ (Chen et al.,

2018) to predict semantic segmentation and depth map from a single RGB image.

For generating the depth map at the same time, we spawn another decoder branch.

The motivation is that the depth information and semantic segmentation are corre-

51

lated. Either one can be used as a guidance to help predicting the other one according

to Couprie et al. (2013) and Liu et al. (2009). Thus it is benefiting to jointly predict

both of them (Wang et al., 2015; Eigen and Fergus, 2015). Here, we adopt the exactly

same architecture as the one for semantic segmentation except for the output layer.

Rather than a classification layer that outputs labels for each corresponding pixel, we

utilize a regression layer instead to predict depth value for each pixel.

L =
1

N

N∑
i

(−pi
∗log(pi)) + λ

1

N

N∑
i

‖di − d∗i ‖2
2 (4.1)

Specifically, our system adopts the Xception-65 model (Chollet, 2017) pretrained

on ImageNet (Russakovsky et al., 2015) as initialization. We then define the loss

function (Eq. 4.1) to train our model in an end-to-end manner. The first term is

the cross entropy loss for semantic segmentation. pi
∗ is the one-hot encoded ground-

truth semantic label for pixel i. pi is the corresponding predicted probabilities over

all possible semantic labels. The second term is the mean-square error for depth

prediction, where d∗i denotes the ground truth depth value for pixel i and di represents

the corresponding predicted depth value. N denotes the total number of pixels in

the image and λ denotes a balancing factor. In practice, λ = 0.01 achieves good

performance empirically and we train our model by minimizing the loss function

through the stochastic gradient decent (SGD) optimization.

4.3.3 Approaching Policy Learning

With the semantic segmentation and the depth information computed as the repre-

sentations of the robot’s current observation, the robot is expected to make a decision

of which action to take to approach the target object. Consider the challenge that

the overall state space for robot is unknown and each state is of high dimension, we

apply the deep reinforcement learning method.

52

First, we design a deep neural network as an estimator of the policy function. The

policy network takes both semantic segmentation and depth information as inputs

and outputs a probability distribution over all valid actions (also known as action

policy). The robot picks a valid action either randomly or follows the distribution

predicted by the policy network. After performing the action, the robot receives a

reward signal as a measurement of how beneficial the performed action is towards

the goal. This one-step reward (or likewise the accumulated rewards after taking

multiple steps) serves as the weight factor of taking the performed action as the

ground truth action for training. We further introduce each part of our setting in

details here.

State space: Since we assume that the RGB image captured by robot’s camera is

the only source of information, and both of the robot’s position and the target object’s

location are unknown, the robot’s state can only be represented by the captured

RGB image as well as the semantic label of the target object. As mentioned before,

we represent the RGB image using semantic segmentation and depth map, and the

semantic segmentation together with the semantic label of the target object can be

further encoded as an attention mask. Afterwards, the attention mask and the depth

map together represent the robot’s state (see left side of Fig. 4.3). In addition, the

size of the attention field also encodes how close the robot to the target object. Thus,

we set a threshold and set the goal states as those with an attention field larger than

the threshold. In practice, we set it as the size of fifth largest attention field among

all ground truth attention masks to yield five goal states. All the possible states form

the state space.

Action space: To constrain the number of possible states, we only consider

discrete actions. Without loss of generality, we consider some basic actions for the

navigation purpose, namely “move forward”, “backward”, “left or right with a fixed

53

distance”, “rotate left or right with a constant angle”. In our experiments, we define

a fixed distance as 0.2 meters and a constant angle as 90 degrees.

Reward function: We adopt the reward function designed by Ye et al. (2018)

to avoid getting stuck in some suboptimal states. We define the reward as the one

proportional to the size of the attention field if and only if the attention field is larger

than all previous ones the robot has observed. Otherwise, the reward is set to be

zero. Formally, the cumulative reward = γi1kai1 + γi2kai2 + ... + γitkait , where k is

a constant, ai denotes the size of the attention field at time step i, γ is the discount

factor for time penalty and ai1 < ai2 < ... < ait(i1 < i2 < ... < it).

Policy network: Fig. 4.3 illustrates the overall policy learning architecture. The

learning module takes the semantic segmentation and depth map as inputs. The

semantic segmentation is then used to create an attention mask with the semantic

label of the target object. We further resize both the attention mask and the depth

map to the size of 10 by 10. For each input stream, we concatenate the features of

8 history frames. The two 800 dimensional vectors from two input streams are then

concatenated into a 1600 dimensional joint vector before attaching a fully connected

layer to generate a 512 dimensional embedding fusion. The embedding fusion is then

fed into two separate branches. For both branches, we first attach a fully connected

layer to project the 512 dimensional embedding fusion into a 20 dimensional vector.

In the first branch, we further project the 20 dimensional vector into 6 action policy

outputs (probability over actions) with an additional fully connected layer. In the

second branch, we project the 20 dimensional vector into a single state value output,

i.e. the expected cumulative reward the robot would receive at the current state.

We follow the training protocol from Zhu et al. (2017). It trains the model by run-

ning multiple threads in parallel with each thread takes one environment-target pair to

train, and all threads update their weights to a global shared network asynchronously.

54

Figure 4.3: The architecture of our deep reinforcement learning model for action

policy training.

In case certain environment-target pairs are much easier to train that may cause the

over-fitting problem, each thread chooses the less-trained environment-target pair be-

fore every training iteration to train all environment-target pairs equally (Chen et al.,

2007). We train the network with an RMSProp optimizer of learning rate 1× 10−4.

4.4 Experiments

4.4.1 Dataset

To train our model and test its generalization ability across different target objects

and environments, we need a data efficient platform that has a diverse set of objects

and environment types. Here, we adopt the publicly available simulation platform

House3D (Wu et al., 2018), and a renderer that builds on SUNCG dataset (Song et al.,

2013). Because House3D consists of a rich 3D indoor environments for a virtual robot

to interact with. During the interaction, the robot has access to the first-person view

RGB images, as well as the corresponding ground truth semantic segmentations and

depth maps, which makes it well suited to the feature representation learning task

55

and the approaching policy learning task. Fig. 4.4 (a) depicts an example data.

(a) A sample environment (b) Target object candidates

Figure 4.4: A sample environment from House3D and some target object candidates.

We constrain the robot to perform discrete actions in these virtual environments,

i.e. moving 0.2 meters or rotating 90 degrees every time. It also discretizes the

environment into a set of reachable locations. We select a total of 248 simulated

environments that are suitable for testing. Additionally, to avoid ambiguity, we select

the objects that only have one instance in an environment as the target objects for

robot to approach. Fig. 4.4 (b) lists example target objects used.

4.4.2 Semantic Segmentation and Depth Prediction

In order to train our feature representation module for semantic segmentation

and depth prediction, we collect RGB images, as well as their corresponding ground

truth captured at all discrete locations from 100 environments. We further delete the

images that has over 80% background and randomly sample a total of 55, 697 images

for training. For semantic segmentation, 77 semantic labels are of our interest, with

56

all the remaining ones being classified as “background”.

We take the popularly used metrics, a.k.a. mean Intersection Over Union (mean

IOU) and Root Mean Square Error (RMSE) to report the performance of our trained

models in doing semantic segmentation and depth prediction respectively. Our model

achieves 0.436 in mean IOU for semantic segmentation on validation dataset, and

0.0003 normalized RMSE for depth prediction. Fig. 4.5 shows several qualitative

results.

RGB Image Pred. Depth GT Depth Pred. Seg. GT Seg.

Figure 4.5: Some qualitative semantic segmentations and depth predictions from our

feature representation module.

4.4.3 Approaching Policy Learning

To demonstrate the generalization ability of our proposed method across both

target objects and environments, we compare our method with the following baselines

and variants. Again, the map of the environment is unknown to all methods, except

when calculating the minimal steps that robot needs to take to approach the target

object.

a) Random method. At each state, the robot randomly choose an action to

perform. Since the map is unknown, the action might yield collision. In that case,

57

the robot will simply stuck in the current state. The random method provides a

performance lower-limit, which could calibrate how “intelligent” the other trained

models are.

b) Method from Ye et al. (2018). It takes the output from the res4f layer of

ResNet-50 network that pre-trained on ImageNet as the feature representation from

both the target object and the robot’s current observation. The two channels of fea-

ture representations, as well as a binary attention mask that is generated using an

object recognition module form the inputs to the deep reinforcement learning model.

Here, we first use the ground truth attention mask to remove the influence of the

noisy object recognition module. Then we test the method with the attention mask

generated from our predicted semantic segmentation. Moreover, we adopt a single

scene-specific branch for all the target objects and environments, and the trained

model will be applied to unseen environments without extra training during the test-

ing time.

c) Our method with ground truth semantic segmentation and depth map. We take

the ground truth semantic segmentation and depth map as the inputs to our deep

reinforcement learning model as described in Sec. 4.3.3, for the purpose of testing the

performance upper-limit.

d) Our method with ground truth semantic segmentation and predicted depth

map. This method is used to compare with the method b) as they both adopt ground

truth semantic info to generate noise-free attention mask.

e) Our proposed method described in Sec. 4.3 that takes only an RGB image and

the semantic label of the target object as the inputs, and outputs navigation actions.

We train and evaluate all the methods under two settings for object-wise gen-

eralization and environment-wise generalization respectively. Setting 1): training

on 6 different target objects in 1 environment. The models trained on this setting

58

are then used to evaluate their generalization abilities across target objects. To be

specific, during the testing, we use the trained models to approach 5 unseen target

objects in the same environment and report their performances respectively. Setting

2): training on a total of 24 target objects in 4 different environments (6 each). We

then test the trained models’ performances in approaching another 24 target objects

in 4 novel and unseen environments. For both settings, the robot always starts at

the position where the target object can be detected for both the training and the

testing phases.

To conduct fair comparisons, for each testing environment-object pair, we ran-

domly select 100 starting positions where the target object can be detected. The

robot stops either it reaches close enough to the target object (a successful case) or

it reaches 1000 steps (a failure case). We take two metrics to compare these meth-

ods, namely the success rate in terms of how many steps (relative to the minimal

steps) are taken, and the average steps over the successful cases. Generally speak-

ing, a higher success rate or a smaller number of average steps indicates a better

approaching performance.

We trained each of these models with an Nvidia V100 (6 cards with 16g memory

each) machine. For setting 1, each model’s training takes about 20 hours. For setting

2, the training takes about 40 hours to converge.

Fig. 4.6, Table 4.1 and Table 4.2 report the achieved success rate, success rate

drop from trained objects/environments to new objects/environments, and average

steps of all methods on the two settings respectively. From Fig. 4.6 and Table 4.1,

the results indicate a clear generalization capability improvement of our method d)

comparing with the method b) that both take ground truth attention mask and our

method e) with the method b) that both take predicted attention mask. At the same

time, the results align well with our expectation that our method with the predicted

59

Figure 4.6: Successful approaching rates. Upper: Setting 1: generalization ability

across target objects (on trained objects and on new objects). Lower: Setting 2:

generalization ability across environments (on trained environments and on new en-

vironments).

semantic segmentation (method e)) performs worse than the method d), which also

happens for method b). The reason is due to the recognition errors introduced from

the predicted semantic segmentation that distracts the robot from approaching the

target object. More specifically, the reward generated upon the area of the target

object is not consistent due to the noisy detection. Moreover, the area of the robot’s

attention (focusing on the target object) also needs to encode the goal states. With

the noisy predicted semantic labels, the robot has a high likelihood to get stuck while

it struggles to identify the correct goal states.

From Fig. 4.6, we also observe that method b) that with ground truth or predicted

60

Table 4.1: The success rate drop from the trained objects to new objects (setting 1):

s1), and from the trained environments to new environments (setting 2): s2).

∆ success rate
1X minimal steps 3X minimal steps 5X minimal steps

s1 s2 s1 s2 s1 s2

Random a) 0.50% -1.70% 1.00% -3.30% 0.10% -5.00%

b) (gt. inputs) 25.20% 1.00% 51.80% 9.20% 44.80% 9.80%

Ours c) (gt. inputs) 30.70% 1.10% 33.10% 2.10% 23.10% 1.30%

Ours d) (gt. s. + pred. d.) 20.90% 0.10% 17.60% 1.20% 16.80% 1.40%

b) (pred. inputs) 24.00% 1.00% 25.90% 3.70% 21.70% 7.30%

Ours e) (pred. inputs) 19.40% -0.50% 5.50% 2.00% 0.60% 2.40%

attention mask achieves higher success rate than our method d) or e) respectively on

trained objects under Setting 1). However, on new objects under Setting 1) and

under Setting 2) where each model is trained with multiple different environments,

method b) performs worse than our method, indicating that method b) may capture

scene-specific features (pixel-based ResNet-50 features) and easily overfits to specific

environments and objects. To further validate the overfitting concern is not solely due

to the target object image input, we conduct experiments with blocking the target

object input channel of method b), and we report the results in Table 4.3. The results

indicate that the modified method b) remains to have concerns on generalizing well.

Moreover, comparing with our method c) that takes ground truth depth maps

as inputs, our method d) with predicted depth maps achieves lower success rate

especially under Setting 1). It is reasonable because the noisy depth maps may lead

the robot to collisions or miss optimal actions. Nevertheless, as the results under

Setting 2) indicate, such problem can be alleviated when the model is trained in

61

Table 4.2: Average number of steps taken by all methods on two settings.

methods
setting (1) setting (2)

trained obj. new obj. trained env. new env.

minimal 3.88 3.89 2.58 2.06

Random a) 213.71 202.15 166.62 109.85

Method b) gt. 5.88 7.85 4.34 3.64

Method b) pred. 4.70 5.82 6.15 5.94

Our method c) 5.85 13.99 6.14 5.14

Our method d) 8.45 13.43 7.96 5.96

Our method e) 10.31 16.44 3.77 4.22

Table 4.3: Success rate of method b) where the target object channel is blocked (with

predicted inputs and within 5X minimal steps).

trained obj. / env. new obj. / env. ∆ success rate

setting (1) 63.80% 25.40% 38.40%

setting (2) 42.36% 27.60% 14.76%

multiple environments.

Table 4.2 reports the average number of steps taken among all successful trails.

With the success rate reported in Fig. 4.6, it also matches our expectation that the

average number of steps from our methods are generally larger than the method b).

Here, the larger number of steps means that our methods also succeed in approaching

the target object which needs a larger number of steps, while the method b) fails

62

these cases and they don’t contribute to the average number of steps.

4.4.4 Real World Experiment

We train and test our method on Active Vision Dataset (AVD) (Ammirato et al.,

2017). AVD is a set of real environments where a virtual robot can navigate in through

discrete actions, i.e., move forward or backward, left or right 30 centimeters, rotate

left or right 30 degrees. We follow the settings as introduced in Sec.4.4.3 to train

and test our method (method e)), and report the quantitative results in Table 4.4.

The experimental results on AVD further validate that our method e) achieves high

generalization ability across both target objects and environments.

Table 4.4: Experimental results of our method (method e)) on AVD (Ammirato et al.,

2017).

metrics
setting (1) setting (2)

trained obj. new obj. trained env. new env.

success rate 68.00% 58.40% 72.60% 62.00%

average steps 37.86 45.23 33.19 44.39

To better visualize how our method performs, we also apply our method (method

d)) in a real-world scenario (on a public dataset from Ye et al. (2018)). Without

further fine-tuning the trained model, our trained model can still guide the robot to

approach the target object. For this real-world experiment, we use the trained model

from Laina et al. (2016) to predict the depth map and the ground truth bounding

box to generate the attention mask. Fig. 4.7 shows an example of how the robot

approaches the target object, which is a “whiteboard”.

63

Figure 4.7: An example of the mobile robot approaches the target object “white-

board” using the method (d)). Upper view: RGB input; Lower view: Depth map

generated.

4.4.5 Analysis and Discussion

To better understand why our proposed method achieves better generalization

ability, we further analyze from the feature representation perspective. Generally

speaking, the goal of the deep reinforcement learning is to learn a policy model π

that maps a state s to the most “beneficial” action a (or an action distribution from

which the most “beneficial” action can be drawn with a high probability), i.e. to

let π(s) = a. This most “beneficial” action a, unlike the ground truth label in a

general supervised learning problem, is acquired by the intelligent agent’s trial and

error interactions with the environment.

For the object approaching task, the most “beneficial” action a essentially depends

on the local map between the current location and the goal location. In order to let

64

π(s) = a, if the input s doesn’t provide any map information directly (such as the

setting from Ye et al. (2018)), then the model π has to capture such information

from the input s through learning. To avoid the over-fitting problem, it is necessary

to train the model π on a large enough and diverse enough training data where the

underlying distribution of the relations between the state s and the map information

can be captured. Though it is straightforward, the well-known sample-inefficient issue

lingering in the paradigm of deep reinforcement learning makes it fairly impracticable.

In this work, we first adopt a feature representation model f to learn the semantic

segmentation and depth map from the input state s, then we take the semantic

segmentation and the depth map as the inputs to the policy model π. In other words,

we aim to let π(f(s)) = a. Here, we hypothesize that the depth map as an input to

the policy network π encodes the local map well already. In such a way, the policy

model π is not the only source for capturing the local map information well. At the

same time, the feature representation model f directly learns the depth map from

the state s in a supervised manner, which is much more sample efficient.

For further validation, we examine the relationship between the distance in phys-

ical space and the one in the feature space. For each pair of the locations in an

environment, we calculate their Manhattan distance in terms of steps as the physical

distance. We adopt L1 distance between the normalized feature maps of the images

taken at the two locations with the same orientation as the feature distance. Fig. 4.8

shows the relations between the physical distance and the distance in both depth

feature space and ResNet-50 feature space.

From Fig. 4.8, it shows that within a small range of physical distances (1 to

9 steps), the distance in the depth feature space increases notably along with the

increment of the physical distance. While the physical distance is out of this range

(over 9 steps), the feature distance shows minor changes. This observation suggests

65

that the depth feature captures the differences between different locations within a

small region, which aligns well with our assumption. On the other hand, the distance

in ResNet-50 feature space grows almost independently w.r.t. the growing of the

physical distance. We speculate that this observation provides the actual reason why

methods (such as Ye et al. (2018)) fails to generalize well.

Figure 4.8: Pair-wise feature distances w.r.t. physical distances.

4.5 Conclusion

This chapter presents a generalizable policy learning for robotic object approach

task which is a fully observable task, through explicit depth estimation and semantic

segmentation. Empirical studies on the House3D platform and a real physical exper-

iment on a mobile robot validate that the new framework can yield a significantly

66

higher generalization capability towards new target objects and novel environments,

indicating a promising pathway for future research on achieving generalizable policy

learning for partially observable task, such as robotic object search on mobile robots.

67

Chapter 5

GENERALIZABLE POLICY LEARNING FOR PARTIALLY OBSERVABLE

TASK

5.1 Introduction

Classic RL methodology optimizes an agent’s decision-making action policy in

a given environment (Sutton and Barto, 2018). To make RL towards real-world

applicable, equipped with deep neural networks, Deep Reinforcement Learning (DRL)

(Mnih et al., 2015) algorithms are able to directly take the high dimensional sensory

inputs as states S and learn the optimal action policy that generalizes across various

states. However, the applicability of most advanced RL algorithms is still limited to

domains with fully observed state space S and/or fixed goal states G, which is not

the case in reality (Mnih et al., 2015, 2016; Lillicrap et al., 2015; Schulman et al.,

2017; Haarnoja et al., 2018).

For real-world applications like visual navigation, an agent’s sensory inputs cap-

ture the local information of its surrounding environments (a partially observable state

space). Additionally, the real-world applications could be subject to goal changes,

requiring a system to be goal-adaptive. Therefore, a real-world application can be

formulated as a partially observable goal-driven task, that is different from a fully

observable goal-driven task (Mnih et al., 2015, 2016; Haarnoja et al., 2018; Nasiriany

et al., 2019) or a partially observable task (Igl et al., 2018; Lee et al., 2019; Han et al.,

2019). It requires the agent to be capable of inferring its state in the augmented state

space S × G. Namely, the agent should take actions based on its current relative

states with respect to the goal states, which can only be estimated from its sensory

68

Figure 5.1: Illustrations of the grid-world domain and the robotic object search task

(left), and an overview of our method (right).

observations Ω and the goal descriptions Gd. This is challenging due to 1) the large

augmented partially observable state space, 2) the different modalities that the obser-

vations Ω and the goal descriptions Gd could have. For example, while RGB images

are usually taken as the observations, semantic labels are more efficient in describing

task goals (Batra et al., 2020).

To address the challenges, we present a novel Hierarchical Reinforcement Learning

approach with a Goals Relational Graph (HRL-GRG). Our HRL-GRG incorporates

a novel Goals Relational Graph (GRG), which is designed to learn goal relations from

the training data through a Dirichlet-categorical process (Tu, 2014) dynamically. In

such a way, our model estimates the agent’s states in terms of the learned relations

between sub-goals that are visible in the agent’s current observations and the desig-

nated final goal. Furthermore, our HRL-GRG decomposes the partially observable

goal-driven task into two sub-tasks: 1) a high-level sub-goal selection task, and 2) a

low-level fully observable goal-driven task. Specifically, the high-level layer selects a

69

sub-goal sg ∈ Gd that is observable in the current sensory input o, i.e. Φ(o, sg) > 0,

and could also contribute to achieving the designated final goal g ∈ Gd. The objec-

tive of the low-level layer is to achieve the observable sub-goal, yielding a well-studied

fully observable task (Mnih et al., 2015, 2016; Haarnoja et al., 2018).

Many prior DRL methods tackling partially observable tasks (Igl et al., 2018; Lee

et al., 2019; Han et al., 2019) are not designed for goal-driven tasks. Therefore, their

learned policies are not goal-adaptive. Adapting to new goals is critical for real-world

tasks, such as goal-driven visual navigation (Zhu et al., 2017), robotic object search

(Ye et al., 2018; Yang et al., 2018; Batra et al., 2020) and room navigation (Ye et al.,

2018). Current goal-driven visual navigation methods generally neglect the essential

role of estimating the agent’s state under the partially observable goal-driven settings

effectively, thus their performance still leaves much to be desired especially in terms

of generalization ability (in-depth discussion in Section 5.2). Here, we argue and show

our novel GRG modeling fills the gap.

Formally, we define GRG as a complete weighted directed graph < V,E,W >

in which V = Gd is a set of nodes representing the goals Gd, and E is the directed

edges connecting two nodes with the weights W . We incorporate GRG into HRL via

two aspects: 1) weighing each candidate sub-goal in the high-level layer by C(τ ∗),

the cost of the optimal plan τ ∗ from the sub-goal to the goal over the GRG; 2)

terminating the low-level layer referring to the optimal plan τ ∗ from the proposed

sub-goal to the goal over the GRG. To empirically validate the presented system,

we start with demonstrating the effectiveness of our method in a grid-world domain

where the environments are partially observable and a set of goals following a pre-

defined relation are specified as the task goals. The design follows the intuition in

real-world applications that certain relations hold in the goal space. For example,

in the robotic object search task, users arrange the household objects in accordance

70

with their functionalities. Another example is the indoor navigation task where room

layouts are not random. Furthermore, in addition to the grid-world experiment, we

also apply our method to tackle the robotic object search task in both the AI2-THOR

(Kolve et al., 2017b) and the House3D (Wu et al., 2018) benchmark environments.

We show HRL-GRG model exhibits superior performance in both experiments over

other baseline approaches, with extensive ablation analysis.

5.2 Related Work

Research works on partially observable goal-driven tasks are explored typically

under the visual navigation scenarios: an agent learns to navigate to user-specified

goals with its first-person view visual inputs. Previous works’ contributions lie in

representation learning of the agent’s underlying state and knowledge embedding for

goal state inference.

In Zhu et al. (2017), the authors present a target-driven DRL model to learn a

desired action policy conditioned on both visual inputs and target goals. With a tar-

get goal being specified as an image taken at the goal position, their model captures

the spatial configuration between the agent’s current position and the goal position

as the agent’s underlying state. However, when the goal position is far away, the

inputs of the model lack the information to infer the spatial configurations, and so

the model instead memorizes such spatial configurations. As a result, their model

relies on a scene-specific layer for every single environment. Similar issues also ex-

ist in Wu et al. (2019a). Savinov et al. (2018) represents the agent’s current state

with respect to the goal state through a semi-parametric topological memory while

it requires a pre-exploration stage to build a landmark graph. The authors of Gupta

et al. (2017) locate the goal position in their predicted top-down egocentric free space

map. However, the method struggles when the goal is not visible. With more detailed

71

information about the goals, the Vision-and-Language Navigation task has drawn re-

search attention in which a fine-grained language-based visuomotor instruction serves

as the goal description for the agent to follow and achieve (Anderson et al., 2018b;

Fried et al., 2018; Wang et al., 2019). Yet, specifying a goal with an image or a visuo-

motor instruction is inefficient and impractical for real-world applications. Instead,

taking a concise semantic concept as a goal description is more desirable (Mousavian

et al., 2019; Yang et al., 2018; Nguyen et al., 2019; Qiu et al., 2020; Batra et al., 2020;

Chaplot et al., 2020; Ye and Yang, 2021a). Semantic goals as model inputs, typically

come in the form of one-hot encoded vectors or word embeddings. Therefore, goal

inputs provide limited information for estimating the agent’s states relative to the

goal states.

Since it is non-trivial to incorporate complete information with a goal descrip-

tion as input, others embed task-specific prior knowledge to infer the goal states. In

Yang et al. (2018), Nguyen et al. (2019) and Qiu et al. (2020), the authors extract

object relations from the Visual Genome (Krishna et al., 2017) corpus and incorpo-

rate this prior into their models through Graph Convolutional Networks (Kipf and

Welling, 2016). The extracted object relations encode the co-occurrence of objects

based on human annotations from the Visual Genome dataset, which may not be

consistent with the target application environments and the agent’s understanding of

the world. More recently, the authors of Wu et al. (2019b) come up with the Bayesian

Relational Memory (BRM) architecture to capture the room layouts of the training

environments from the agent’s own experience for room navigation. The BRM further

serves as a planner to propose a sub-goal to the locomotion policy network. Since

the proposed sub-goal is still not observable, the authors of BRM train individual

locomotion polices for each sub-goal to respectively tackle one partially observable

task. In such manner, the BRM model’s low-level network is not goal-adaptive and

72

still brings about inefficiency and scaling concerns.

Apart from prior research efforts, we present a novel hierarchical reinforcement

learning approach equipped with a GRG formulation for the general partially observ-

able goal-driven task. Our GRG captures the underlying relations among all goals in

the goal space and enables our hierarchical model to achieve superior generalization

performance by decomposing the task into a high-level sub-goal selection task and

low-level fully observable goal-driven task.

5.3 Hierarchical RL with GRG

5.3.1 Overview

Our focus is the partially observable goal-driven task where the agent needs to

make a decision of which action to take to achieve a user-specified goal relying only on

its partial observations. Without loss of generality, we represent the observations Ω as

images, such as the local egocentric top-down maps in the grid-world domain and the

first-person view RGB images in the robotic object search task with no access to the

global environment information (see Figure 5.1 left). We specify the goal descriptions

Gd as categorical labels (goal indices in the grid-world domain and object categories

in the robotic object search task). To better illustrate our method, we take the grid-

world domain as an example. The agent is asked to move to a goal position indicated

by the goal index between obstacles. The agent can only observe a local map of

obstacles and goals. The objective is to learn an optimal policy for several goals and

instances of the grid-world domain which can generalize to new/unseen ones.

Figure 5.1 (right) depicts an overview of our method that is composed of a Goals

Relational Graph (GRG), a high-level network and a low-level network. At time step

t, the agent receives an observation ot ∈ Ω that is a local map of its surrounding

73

obstacles and a set of visible goals V G = {vg | vg ∈ Gd and Φ(ot, vg) > 0}. We

take these visible goals as the candidate sub-goals at the time step t, and our high-

level network learns a policy to select one from them to achieve the designated final

goal g ∈ Gd. In order to be goal-adaptive, the system weighs each candidate sub-

goal in V G by its relation to the designated final goal g, estimated from GRG. As

a result, our high-level network proposes a sub-goal sgt ∈ V G conditioning on both

the observation ot and the designated final goal g. After the sub-goal sgt is proposed,

our low-level network decides an action at conditioning on both the observation ot

and the sub-goal sgt for the agent to perform. Afterwards, the agent receives a new

observation ot+1, and our low-level network repeats Nt times to achieve the sub-goal

sgt until 1) the sub-goal sgt is achieved; 2) the low-level network terminates itself if

a better sub-goal appears in its current observation; 3) the low-level network runs

out of a pre-defined maximum number of steps N l
max . Either way, the low-level

network collects an Nt-step long trajectory and terminates at the observation ot+Nt .

The trajectory updates the GRG. Then, the high-level network takes the control back

to propose the next sub-goal. Overall, the process repeats until it either achieves the

designated final goal g or reaches a predefined maximum number of actions Nmax.

5.3.2 Goals Relational Graph (GRG)

GRG representation. We formulate GRG as a complete weighted directed

graph < V,E,W > on all goals in the goal space Gd (i.e. V = Gd). For any goal gi

and goal gj, we define the weight wij on the directed edge (gi, gj) as a measure of how

likely and quickly the goal gj would appear according to Φ if our low-level network

tries to achieve the goal gi. We set the weight wii = 1 and adopt a Dirichlet-categorical

model to learn wij for any i 6= j.

To be specific, we first assign a random variable Xij to denote what would happen

74

to the goal gj if our low-level network achieves the goal gi. Every time when the goal

gi is proposed by our high-level network, our low-level network generates a trajectory

that has at most N l
max steps to achieve the goal gi. It introduces the following N l

max+1

events that Xij may take:

• Event k (1 ≤ k ≤ N l
max): the goal gj appears when k steps are taken by our

low-level network. We quantify the event k as xij,k = γk−1 where γ ∈ (0, 1] is

the discount factor to denote how close the goal gj to the goal gi.

• Event N l
max + 1: the goal gj doesn’t appear. We quantify this event as xij,N l

max+1

= 0.

It is fair to assume that Xij ∼ Cat(θij) in which the parameter θij = (θij,1, θij,2, ...,

θij,N l
max+1) ∼ Dir(αij) is a learnable Dirichlet prior. αij = (αij,1, αij,2, ..., αij,N l

max+1)

is a concentration hyperparameter representing the pseudo-counts of all event occur-

rences. Thus, it can be empirically chosen. Lastly, the weight wij is set as E[Xij].

GRG update. Each time when the low-level network is invoked to achieve the

goal gi, we get a trajectory as a sample D to update the GRG. For any goal gj in

our goal space, we count the number of the occurrences of all events and denote it as

cij = (cij,1, cij,2, ..., cij,N l
max+1). Since the Dirichlet distribution is the conjugate prior

distribution of the categorical distribution, the posterior distribution of the parameter

θij , namely θij|D ∼ Dir(αij + cij) = Dir(αij,1 + cij,1, αij,2 + cij,2, ..., αij,N l
max+1 +

cij,N l
max+1). As a result, the posterior prediction distribution of a new observation

P (Xij = xij,k|D) can be estimated by Equation 5.1, and the weight wij = E(Xij|D) =∑
k xij,kP (Xij = xij,k|D). Here, the time complexity for updating our GRG is linear

to the number of the samples collected by our low-level network. In addition, since

the samples are also used for learning the high-level network and/or the low-level

network, our GRG doesn’t introduce any extra space complexity comparing to the

75

RL counterparts.

P (Xij = xij,k|D) = E[θij,k|D] =
αij,k + cij,k∑
k(αij,k + cij,k)

. (5.1)

GRG planning. With the GRG being learned and updated, we quantify the

relation of a goal gi to a goal gj by the cost C(τ ∗i,j) of the optimal plan τ ∗i,j searched

from gi to gj over the GRG. In particular, suppose τi,j = {τ1, τ2, ..., τM} is a plan

searched from gi to gj over the GRG in which gτm (1≤m≤M) is a goal from our goal space

G, τ1 = i and τM = j, we define the optimal plan τ ∗i,j = argmaxτi,j
∏M−1

m=1 wτmτm+1 . We

adopt the cost of the optimal plan τ ∗i,j, C(τ ∗i,j) = maxτi,j
∏M−1

m=1 wτmτm+1 as the measure

of the relation from the goal gi to the goal gj.

5.3.3 Goal-driven High-level Network

Model formulation. The high-level network selects a sub-goal sg aiming to

achieve the designated final goal g. We first introduce an extrinsic reward re. Here,

we adopt a binary reward as the extrinsic reward to encourage the agent to achieve

the final goal. Specifically, the agent receives a reward of 1 if it achieves the fi-

nal goal g, i.e. ret (st, g) = 1 iff the state st is the goal g’s state, and 0 otherwise.

Thus, the high-level task is formulated as maximizing the Q-value Qe
h(s, g, sg) =

E[
∑∞

t γtret+1|st = s, g = g, sgt = sg], which is the discounted cumulative extrin-

sic rewards expected over all trajectories starting at the state st and the sub-goal

sgt. To approximate Qe
h(s, g, sg), we adopt the Q-learning technique (Mnih et al.,

2015) to update the parameters of the high-level network θh by Equation 5.2, where

Re
1 = re(s, a, s′, g) + γmaxsg′ Q

e
h(s
′, g, sg′) is the 1-step extrinsic return. The sub-goal

sg is given by argmaxsgQ
e
h(s, g, sg) towards achieving the final goal g.

θh ← θh −∇θh(Re
1 −Qθh(s, g, sg))2. (5.2)

76

Network architecture. To approximate Qe
h(s, g, sg), we condition the high-

level network on the state s, goal g and the sub-goal sg. A widely adopted way is

by taking the state s and the goal g as the inputs, and output Q-values that each

of them corresponds to a candidate sub-goal sg. Here, since the state s is unknown,

we instead take the observation o as the input to our high-level network attempting

to estimate the state s simultaneously. To ensure the sub-goal that can be achieved

by the low-level network, the sub-goal space at the time t is set as the observable

goals within the observation ot.
1 As a consequence, the sub-goal space varies at

each time stamp and is typically much smaller than the goal space. Thus, it is not

efficient for the high-level network to calculate as many Q-values as the size of the

goal space. Instead, as the sub-goal space is self-contained in the observation ot, we

hereby extract the information of each candidate sub-goal sg from the observation

ot and feed it into the high-level network to output one single Q-value Qe
h(s, g, sg)

specifically for the sub-goal sg.

Last but not the least, although most prior methods directly take the goal descrip-

tion gd as an additional input to their networks, we notice that the goal description

gd, typically in the form of a one-hot vector or word embedding, does not directly

provide any information for either inferring the goal state or determining a quality

sub-goal. Therefore, we opt to correlate the goal g with each candidate sub-goal sg

by their relations. Here, our system plans over the GRG and gets the cost C(τ ∗sg,g)

of the optimal plan τ ∗sg,g from the sub-goal sg to the goal g as described in Sec-

tion 5.3.2. We multiply the cost C(τ ∗sg,g) to the sub-goal input sg elementwise before

feeding it into the high-level network to predict its Q-value Qe
h(s, g, sg). In such a

way, Qe
h(s, g, sg) = Qe

h(s, sg � C(τ ∗sg,g)) where the goal g is embedded with benefi-

1In practice, we supplement a back-up “random” sub-goal driving the low-level network to ran-
domly pick an action to perform in case no observable goals available.

77

cial information for the Q-value prediction and the sub-goal selection. As the inputs

and the outputs are specified, the remaining architecture of our high-level network is

flexible per application.

(a) optimal trajectory (b) trajectory w.o. termination (c) trajectory with termination

Figure 5.2: An illustration of how termination helps. The green triangle denotes the

starting position. The stars and the arrows with different colors represent different

sub-goals and the corresponding sub-goal-oriented trajectories. Termination helps to

express an optimal trajectory with the limited sub-goal space.

5.3.4 Termination-aware Low-level Network

Model formulation. The objective of the low-level network is to learn an op-

timal action policy to achieve the proposed sub-goal sg. Similar to the high-level

network, we adopt a binary intrinsic reward ri accordingly that rit(st, sg) = 1 iff our

low-level network achieves the sub-goal sg, and is otherwise 0. The optimal action pol-

icy can then be learned by maximizing the expected discounted cumulative intrinsic

rewards E[
∑∞

t γtrit+1|st, sgt, at]. Since the proposed sub-goal sgt is guaranteed to be

observable in the observation ot, we have a fully observable goal-driven task that can

be efficiently solved by the state-of-the-art reinforcement learning algorithms (Mnih

et al., 2015, 2016; Haarnoja et al., 2018).

78

Adopting a hierarchical model to decompose a complex task into a set of sub-

goal-driven simple tasks has been proven to be efficient and effective (Levy et al.,

2017a; Nachum et al., 2018b). Still, it is under the assumption that the goal/sub-goal

space is identical to the state space so that any optimal trajectory can be expressed

by a sequence of optimal sub-goal-oriented trajectories. In our work, we consider

a practical setting in which the goal/sub-goal space is much smaller than the state

space, as lots of intermediate states are not of interest in terms of solving the task.

Consequently, an optimal trajectory may not be expressed by the limited presented

sub-goals on the trajectory as Figure 5.2 (a) shows. Instead, following the set of

available sub-goals proposed could yield a less optimal trajectory as Figure 5.2 (b)

depicts.

To overcome this issue, we further allow the low-level network to terminate at a

valuable state before it achieves the proposed sub-goal. The intuition is that along its

way to the sub-goal, the agent may reach a state that is better poised for achieving the

final goal. Namely, a state where a better sub-goal appears (see Figure 5.2 (c)). Some

prior methods explore modeling a termination function in their formulations (Bacon

et al., 2017) or adding a special “stop” action in the action space for an optimal

stop policy (Yang et al., 2018). However, they unavoidably increase the exploration

difficulty and hurt the sample efficiency. Instead, we terminate our low-level network

under the supervision of GRG. Whenever a sub-goal sg is received, an optimal plan

τ ∗sg,g starting from the sub-goal sg to the goal g over the GRG is generated following

Section 5.3.2. In fact, any goal on the τ ∗sg,g other than sg is a better sub-goal for

achieving the final goal g, and once it appears, our low-level network terminates and

returns the control back to the high-level network.

Network architecture. We implement the termination mechanism in the low-

level policy using the GRG which is decoupled from low-level policy learning. There-

79

fore, the low-level network still addresses the standard fully observable goal-driven

task, i.e. predicting the optimal action policy from the current observation ot that

includes the information of the sub-goal sgt. This can be solved by methods like DQN

(Mnih et al., 2015) and A3C (Mnih et al., 2016), without special requirements on the

network architecture.

5.4 Experiments

Our experiments aim to seek the answers to the following research questions, 1)

Is GRG able to capture the underlying relations of all goals? 2) Is GRG able to

help solve the new, unseen partially observable goal-driven tasks, and if yes, how? 3)

How well does the proposed method work for the goal-driven visual navigation task?

To answer the first two questions, we conduct evaluation in an unbiased synthetic

grid-world domain. To answer the third question, we apply our system on both AI2-

THOR (Kolve et al., 2017b) and House3D (Wu et al., 2018) environments for the

robotic object search task.

5.4.1 Grid-world Domain

Grid-world generation. We generate a total of 120 grid-world maps of size

16 × 16 with randomly placed obstacles taking up around 35% of the space. We

arrange 16 goals in the free spaces of each map following a pre-defined pattern to

test if our proposed GRG can capture it. Specifically, we randomly place goal g0 and

goal g8 first. Then, for 0 < i < 16 and i 6= 8, we place goal gi at a random place

in the window of size 7 × 7 centered at goal gi−1. Figure 5.1 shows an instance of

a grid-world map. We take 100 grid-world maps and 12 goals for training, with the

remaining 20 grid-world maps and the corresponding 16 goals are kept for testing.

80

Table 5.1: The performance of DQN vs DQN onehot and DQN full on the

unseen gird-word maps.

Seen Goals Unseen Goals Overall

Method SR↑ SPL↑ SR↑ SPL↑ SR↑ SPL↑

DQN 0.20 0.13 0.20 0.15 0.32 0.23

DQN onehot 0.03 0.00 0.05 0.02 0.03 0.01

DQN full 0.01 0.00 0.05 0.03 0.05 0.03

Baseline methods. We assume the agent can only observe the window of

size 7 × 7 centered at its position, which is represented by an image including the

map of obstacles and any goal positions. The agent can take one action as moving

up/down/left/right, and would stay at the current position if the action leads to col-

lision. Success is defined as the agent reaches the position of the designated goal. For

this task, we adopt the DQN (Mnih et al., 2015) algorithm for our low-level network

to learn the optimal action policy to achieve the sub-goal proposed by our high-level

network, and we compare our method with the following baseline methods.

• Oracle and Random. The agent always takes the optimal action or a random

action respectively. The two methods are taken as performance upper/lower

bounds.

• DQN. The vanilla DQN implementation that directly maps the observation

to the optimal action. To make it goal-adaptive, the input observation image

contains a channel of the obstacle map and a channel of the designated goal

position if it presents. It is empirically shown to be better than embedding

the goal with a one-hot vector (DQN onehot) or full observations of all goal

81

positions (DQN full) (see Table 5.1).

• h-DQN. It is a widely adopted hierarchical method (Kulkarni et al., 2016)

modified for our partially observable goal-driven task where both the high-level

network and the low-level network adopt a vanilla DQN implementation. The

high-level network takes the whole observation as the input to propose a sub-

goal that is visible. To be goal-adaptive, the goal is embedded into the high-level

network in the form of a one-hot encoded vector. The low-level network is the

same as the method DQN (also with ours).

Training details. For all the networks, we adopt the Double DQN (Van Hasselt

et al., 2016) technique and we train all the methods on the 100 training grid-word

maps to achieve the 12 goals (g0, g1, g3, g4, g6, g7, g8, g9, g11, g12, g14 g15). We first

train the method DQN to achieve the goal from where the goal is observable and

we take the model as the pre-trained model for the DQN and the low-level networks

of both h-DQN and our method. For all the methods, we adopt the curriculum

training paradigm. To be specific, at episode i < 10000, we start the agent at a

position that is randomly selected from the top (i + 10)/100 % positions closest to

the goal position, and when i ≥ 10000, we start the agent at a random position. All

the hyperparameters are summarized in Table 5.2. We implement all the methods

using Tensorflow toolbox and conduct all the experiments with Nvidia V100 GPUs

and 16 Intel Xeon E5-2680 v4 CPU cores. In general, each training takes around 20

hours. We evaluate all the methods on the 20 testing grid-world maps over 5 different

random seeds, namely 1, 5, 13, 45 and 99.

Baseline comparisons. We specify the maximum number of actions that all

methods can take as 100, and for hierarchical methods, i.e. h-DQN and our method,

the maximum number of actions that the low-level network can take at each time is

10. We evaluate all methods in terms of the Success Rate (SR), the Average Steps

82

Table 5.2: Hyperparameters of all the methods for the grid-world domain.

Hyperparameter Description Value

γ Discount factor 0.99

lr Learning rate for all networks (high-level/low-level) 0.0001

main update Interval of updating all the main networks of Double DQN 10

target update Interval of updating all the target networks of Double DQN 10000

batch size Batch size for training all the networks 64

epsilon Initial exploration rate, anneal episodes, final exploration rate 1, 10000, 0.1

max episodes Maximum episodes to train each method 100000

N l
max The maximum steps that low-level network can take if applied 10

Nmax The maximum steps that each method can take 100

optimizer Optimizer for all the networks RMSProp

αij The hyperparameter of our GRG (αij,1, ..., αij,10, αi,j,11) (0, ..., 0, 1)

Table 5.3: The performance of all methods on the unseen gird-world maps.

Seen Goals Unseen Goals Overall

Method SR↑ / SPL↑ AS / MS↓ SR↑ / SPL↑ AS / MS↓ SR↑ / SPL↑ AS / MS↓

Oracle 1.00 / 1.00 11.81 / 11.81 1.00 / 1.00 11.28 / 11.28 1.00 / 1.00 10.38 / 10.38

Random 0.16 / 0.03 42.15 / 5.47 0.15 / 0.04 42.38 / 4.81 0.18 / 0.05 36.62 / 4.69

DQN 0.20 / 0.13 20.28 / 5.47 0.20 / 0.15 11.90 / 4.10 0.32 / 0.23 16.23 / 5.71

h-DQN 0.43 / 0.28 20.25 / 7.95 0.19 / 0.08 26.09 / 6.38 0.45 / 0.26 20.84 / 7.16

Ours 0.57 / 0.33 28.71 / 9.03 0.70 / 0.45 24.19 / 8.73 0.74 / 0.46 24.02 / 8.65

over all successful cases compared to the Minimal Steps over these cases (AS / MS),

and the Success weighted by inverse Path Length (SPL) following Anderson et al.

(2018a) and calculated as 1
N

∑N
i=1 Si

li
max(li,pi)

. Here Si is a binary indicator of success

in experiment i, li and pi are the minimal steps and the steps actually taken by the

agent. We randomly sample seen goals, unseen goals and all goals over the unseen

grid-world maps, each having 100 samples that yield 100 tasks respectively. We run

each method using 5 random seeds. Table 5.3 reports the results.

83

Figure 5.3: A visualization of a GRG learned on the grid-world domain (g16 is the

back-up “random” goal).

As is shown in Table 5.3, we can observe that our method outperforms all baseline

methods in terms of generalization ability on the unseen grid-world maps as expected.

On one hand, the performance of DQN leaves much to be desired for both seen goals

and unseen goals. Whereas h-DQN achieves comparable performance to our method

for seen goals, but it struggles to generalize towards unseen goals. On the other hand,

our proposed method generalizes well to both seen goals and unseen goals, since our

GRG captures the underlying relations of all goals, even if some of the goals are not

set as the designated goals in the training stage. Figure 5.3 shows a visualization of

84

Table 5.4: The ablation studies of our method on the unseen gird-world maps.

Seen Goals Unseen Goals Overall

Method SR↑ / SPL↑ AS / MS↓ SR↑ / SPL↑ AS / MS↓ SR↑ / SPL↑ AS / MS↓

Ours 0.57 / 0.33 28.71 / 9.03 0.70 / 0.45 24.19 / 8.73 0.74 / 0.46 24.02 / 8.65

-relation 0.26 / 0.10 33.20 / 6.16 0.35 / 0.14 31.93 / 6.84 0.40 / 0.18 29.39 / 6.14

-termination 0.55 / 0.27 31.36 / 8.81 0.58 / 0.32 27.91 / 8.11 0.64 / 0.37 25.56 / 7.88

-high-level 0.56 / 0.31 29.97 / 9.03 0.65 / 0.42 23.63 / 8.65 0.66 / 0.41 22.86 / 7.86

the learned GRG, which captures the goal relations well.

Ablation studies. To investigate how GRG helps to solve the partially observ-

able goal-driven task, we conduct ablation studies for each component. The GRG

has two roles: In the high-level network, it weighs each candidate sub-goal by its

relation to the final goal before calculating its Q-value. In the low-level network, it is

used for early termination. We disable each role and denote them as “-relation” and

“-termination” respectively. The results reported in Table 5.4 clearly show that both

of them contribute to the performance of our proposed method, whereas weighing the

candidate sub-goals by relations contributes more. Moreover, to show the necessity of

the high-level network, we present “-high-level” that removes the high-level network,

leaving only the GRG and the low-level network in place. In such a way, a sub-goal is

proposed purely based on the graph planning over GRG without taking the current

observation into consideration. The results in Table 5.4 show that it is slightly worse

than our proposed method; from which we can infer that 1) the high-level network

captures as much information as the GRG; 2) observations still matter since the graph

only captures the expected relations; and 3) the performance gap could be wider in

complex real-world environments.

Qualitative results. We show some qualitative results performed by our method

85

(a) (b)

(c) (d)

Figure 5.4: Trajectories generated by our method on the unseen grid-world maps for

both the seen goals (a) (b) and the unseen goals (c) (d). The different colors represent

different sub-goals and the corresponding sub-goal-oriented trajectories where the red

one denotes the designated final goal.

86

on the unseen grid-world maps to achieve both seen goals and unseen goals in Fig-

ure 5.4.

5.4.2 Robotic Object Search

Robotic object search is a challenging goal-driven visual navigation task (Yang

et al., 2018; Ye et al., 2018; Mousavian et al., 2019; Nguyen et al., 2019; Ye et al.,

2019a; Qiu et al., 2020; Batra et al., 2020). It requires an agent to search for and

navigate to an instance of a user-specified object category in indoor environments

with only its first-person view RGB image.

A previous method Scene Priors (Yang et al., 2018) also incorporates object

relations as scene priors to improve the robotic object search performance in the

AI2-THOR (Kolve et al., 2017b) environments. Unlike ours, it extracts the object

relations from the Visual Genome (Krishna et al., 2017) corpus and incorporates the

relations through Graph Convolutional Networks (Kipf and Welling, 2016). There-

fore, we compare our method with it in the AI2-THOR environments. AI2-THOR

consists of 120 single functional rooms, including kitchens, living rooms, bedrooms

and bathrooms, in which we take the first-person view semantic segmentation and

depth map as the agent’s pre-processed observation. As such, the goal position can

be represented by the corresponding channel of the semantic segmentation (a.k.a.

Φ). In addition, we adopt the A3C (Mnih et al., 2016) algorithm for our low-level

network and define the maximum steps it can take at each time as 10. We follow the

experimental setting in Yang et al. (2018) to implement both Scene Priors (Yang

et al., 2018) (without “stop” action) and our HRL-GRG. Unlike Scene Priors

(Yang et al., 2018), the first-person view semantic segmentation and the depth map

as our agent’s pre-processed observations are of window size 30 × 30 where we fur-

ther concatenate 4 history of them as the inputs to our HRL-GRG. In addition, we

87

adopt the Double DQN (Van Hasselt et al., 2016) technique for our high-level net-

work and we pre-train our low-level network to approach a visible object. We train

our method with the curriculum training paradigm we described in Section 5.4.1. All

hyperparameters are summarized in Table 5.7. Both the methods are implemented

with Tensorflow toolbox and experimented on Nvidia V100 GPUs and 16 Intel Xeon

E5-2680 v4 CPU cores where each training takes around 30 hours in general. We

report the results in Table 5.5 where we compare the two methods in terms of their

performance improvement over the Random method. Table 5.5 indicates an overfit-

ting issue of the Scene Priors method as reported in Yang et al. (2018) as well. At

the same time, we observe a superior generalization ability of our method especially

to the unseen goals.

Table 5.5: The performance improvement of Scene Priors (Yang et al., 2018) (top)

and our HRL-GRG (bottom) over the Random method in the AI2-THOR (Kolve

et al., 2017b) environment for the robotic object search task (without stop action).

Seen Goals Unseen Goals

SR↑ SPL↑ SR↑ SPL↑

Seen Env.
Yang et al. (2018) +0.25 +0.16 +0.08 +0.07

Ours +0.37 +0.24 +0.33 +0.23

Unseen Env.
Yang et al. (2018) +0.18 +0.11 +0.12 +0.06

Ours +0.33 +0.21 +0.38 +0.23

Figure 5.5 shows some examples of how our method searches for unseen objects

in unseen AI2-THOR (Kolve et al., 2017b) scenes.

To further demonstrate the efficacy of our method in more complex environments,

we conduct robotic object search on the House3D (Wu et al., 2018) platform. Different

88

Table 5.6: The performance of all methods in the House3D (Wu et al., 2018) envi-

ronment for the robotic object search task.

Single Environment Multiple Environments

Seen Goals Unseen Goals Seen Env. Unseen Env.

Method SR↑ SPL↑ SR↑ SPL↑ SR↑ SPL↑ SR↑ SPL↑

Random 0.20 0.05 0.23 0.04 0.39 0.03 0.60 0.05

DQN 0.58 0.27 0.18 0.05 0.42 0.06 0.39 0.04

A3C 0.53 0.18 0.27 0.09 0.48 0.03 0.47 0.03

Hrl 0.77 0.15 0.05 0.00 0.43 0.05 0.28 0.02

Ours 0.88 0.33 0.79 0.21 0.76 0.20 0.62 0.10

Table 5.7: Hyperparameters of all the methods for the robotic object search task.

Hyperparameter Description Value

γ Discount factor 0.99

lr Learning rate for all networks (high-level/low-level) 0.0001

main update Interval of updating all the main networks of Double DQN 100

target update Interval of updating all the target networks of Double DQN 100000

A3C update Interval of updating all the A3C networks 10

β The weight of the entropy regularization term in the A3C networks 0.01

batch size Batch size for training DQN networks 64

epsilon Initial exploration rate, anneal episodes, final exploration rate 1, 10000, 0.1

max episodes Maximum episodes to train each method 100000

N l
max Maximum steps that low-level network can take in AI2-THOR / House3D 10 / 50

Nmax Maximum steps that each method can take in AI2-THOR / House3D 200 / 1000

optimizer Optimizer for all the networks RMSProp

αij The hyperparameter of our GRG (αij,1, ..., αij,10, αi,j,11) (0, ..., 0, 1)

89

(a) kitchen (toaster)

(b) bathroom (towel)

Figure 5.5: Trajectories generated by our method for the robotic object search task

on AI2-THOR (Kolve et al., 2017b).

from AI2-THOR, each house environment in the House3D has multiple functional

rooms that are more likely to occlude the user-specified target object, thus stressing

upon the ability of inferring the target object’s location on the fly to perform the task

well.

90

We consider a total of 78 object categories in the House3D environment to form

our goal space. The agent moves forward / backward / left / right 0.2 meters, or

rotates 90 degrees for each action step. We adopt the encoder-decoder model from

Chen et al. (2018) to predict both the semantic segmentation and the depth map

from the first-person view RGB image of window size 600 × 450. We then resize

the both predictions to the size 10 × 10 and we take them as the agent’s partial

observation. Furthermore, we adopt the A3C (Mnih et al., 2016) algorithm for the

low-level network. We compare our method with the baseline methods introduced

in Section 5.4.1 while we also adopt the A3C algorithm for the low-level network

in h-DQN and hereby denoted as Hrl. In addition, we include the vanilla A3C

approach.

Figure 5.6: The object relations captured by our GRG in the House3D (Wu et al.,

2018) environment for the robotic object search task. Only a small number of objects

as nodes and the edges with the weight ≥ 0.5 are shown.

We adopt the Double DQN (Van Hasselt et al., 2016) technique for all the DQN

networks. We pre-train the method A3C to approach an object when the object

is observable and we take it as the pre-trained model for the low-level networks

of both Hrl and our method as well. For all the methods, we adopt the same

curriculum training paradigm as we described in Section 5.4.1 and we summarize the

hyperparameters in Table 5.7 . We set the maximum steps for all the aforementioned

91

methods to solve the object search task in the House3D environment as 1000, and

the maximum steps that the low-level networks of the hierarchical methods (Hrl and

ours) can take as 50. To better investigate each method’s properties, we first train

and evaluate in a single environment. The training is conducted on Nvidia V100

GPUs and 16 Intel Xeon E5-2680 v4 CPU cores where each training takes around

40 hours. Table 5.6 (left part) shows the results. Similar to the grid-world domain,

the baseline methods lack generalization ability towards achieving the unseen goals,

even though they perform fairly well for the seen ones. The placement of many

objects is subject to the users’ preference that may require the environment-specific

training process. Still, it is desirable for a method to generalize towards the objects in

the unseen environments where the placement of the objects is consistent with that

in the seen ones (e.g., the objects that are always placed in accordance with their

functionalities). We train all the methods in four different environments and test

the methods in four other unseen environments. Here, each training takes around 60

hours on the servers with the same configurations. The results presented in Table 5.6

(right part) show that all the baselines struggle with the object search task under

multiple environments even during the training stage. In comparison, our method

achieves far superior performance with the help of the object relations captured by

our GRG (samples shown in Figure 5.6).

Figure 5.7 shows some qualitative results of our method for the robotic object

search task on House3D (Wu et al., 2018). The agent can only access the first-person

view RGB images while the top-down 2D maps are placed for better visualization.

5.5 Conclusion

In this chapter, we present a novel hierarchical reinforcement learning approach

equipped with a GRG formulation for the partially observable goal-driven task. Our

92

(a) seen environment seen goal

(d) unseen environment unseen goal

Figure 5.7: Trajectories generated by our method for the robotic object search task

on House3D (Wu et al., 2018).

GRG captures the underlying relations among all goals in the goal space through

a Dirichlet-categorical model and thus enables graph-based planning. The planning

outputs are further incorporated into our two-layer hierarchical RL for proposing sub-

goals and early low-level layer termination. We validate our approach on both the

grid-world domain and the challenging robotic object search task. The results show

our approach is effective and is exceptional in generalizing to unseen environments

93

and new goals. We argue that the joint learning of GRG and HRL boosts the overall

performance on the tasks we perform in our experiments, and it may push forward

future research ventures in combining symbolic reasoning with DRL.

94

Chapter 6

TOWARDS LEARNING FROM HUMAN-PROVIDED PRIORS FOR

GENERALIZABILITY

6.1 Environment Dynamics from Natural Language Instructions

When asking human beings to perform a task in a completely new environment,

we may not succeed either if we are not familiar with the environment. It is because

the new environment information (e.g. the environment dynamics) can hardly be

inferred from our limited observations or past experiences, especially when the new

environment is unusual. For example, while a TV remote control is always placed on

the tea table in the living room, it could be left at a bedroom sometimes, requiring

an exploration of the environment to find it. In such a case, to perform the task

more efficiently, we typically ask other experienced people for instructions, such as

“finding the TV remote control in the bedroom”. The instructions transfer the high-

level environment dynamics that enable the policy to generalize towards the new

environments. In this chapter, we study Vision-and-Language Navigation (VLN) task

where we aim to infer the high-level environment dynamics from natural language

instructions for generalizable policy learning.

The VLN task requires an agent to navigate in a real-world environment following

natural language instructions (see Figure 6.1). The preliminary challenge of the VLN

task is the cross-modal grounding of the visual observations and natural language

instructions. With implicit supervisions, such as the desired navigation trajecto-

ries provided by the VLN benchmark dataset R2R (Anderson et al., 2018b), many

works make effort towards representation learning to better capture the visual-textual

95

correspondence. Wang et al. (2019) presented a novel cross-modal matching archi-

tecture to ground language instruction on both local visual observation and global

visual trajectory. Hong et al. (2020) proposed a novel language and visual entity re-

lationship graph modeling relations among scene, object and directional clues. Hong

et al. (2021) and Qi et al. (2021) equipped their VLN models with a pre-trained V&L

BERT (Vision and Language Bidirectional Encoder Representations from Transform-

ers) (Devlin et al., 2018). In Ma et al. (2019), Zhu et al. (2020) and Huang et al.

(2019), the authors proposed self-supervised auxiliary tasks to accelerate the learn-

ing of the effective feature representations. Both Ma et al. (2019) and Zhu et al.

(2020) estimated the navigation progress represented by either the distance towards

the goal location or the percentage of steps. Zhu et al. (2020) and Huang et al.

(2019) performed cross-modal alignment task, where Zhu et al. (2020) checked if the

the language feature matches the vision-language feature while Huang et al. (2019)

predicted if a given instruction-path fit each other. In addition, Zhu et al. (2020)

also proposed the trajectory retelling task to reconstruct the instruction words and

the angle prediction task to predict the ground-truth action angles considering the

available actions incorporate vision noises. Some methods augmented the training

data in order to acquire more robust feature representations so that they can achieve

better generalization ability. For instance, the Speaker-Follower models introduced in

Fried et al. (2018) augmented data by adopting its speaker model to create synthetic

instructions on sampled new routes. Tan et al. (2019) came up with the “environment

dropout” method to mimic unseen environments. Parvaneh et al. (2020) generated

counterfactual environments to account for unseen scenarios.

Unlike the previous work, we propose a high-level network to capture the envi-

ronment dynamics from the natural language instructions. Given the current visual

observations, the high-level network determines a sub-task/sub-goal that should be

96

done for the next step. The sub-task/sub-goal is represented by an attentive instruc-

tion feature, highlighting either a visual concept, such as an object (e.g. “table”,

“door”), or an action specification, like “go straight”, “turn left” in the instruction.

Our low-level network learns an action policy from the visual observations to perform

the proposed sub-task. Since the sub-task is provided as a simple concept, we decou-

ple the policy learning from the language understanding. As a result, our two-layer

hierarchical method is expected to be more robust.

Specifically, in VLN task, the goal description Gd is given by a natural language

instruction with L words, i.e. {w1, w2, ..., wL}. The visual observation ot at time

step t is a panoramic view that is discretized into 36 single views {ot,1, ot,2, ..., ot,36}

(12 horizontal by 3 vertical). Each view ot,i(1 ≤ i ≤ 36) is represented by an RGB

image vt,i and its orientation (θt,i, φt,i), where θt,i is the heading angle and φt,i is the

elevation angle. At each step t, there are Nt predefined navigable viewpoints for the

agent to select from, namely {lt,1, lt,2, ..., lt,Nt}. Similarly, lt,k(1 ≤ k ≤ Nt) is also rep-

resented by an RGB image vt,k and the orientation relative to the current orientation

(∆θt,k,∆φt,k). Here, vt,k ∈ {vt,1, vt,2, ..., vt,36}. Following the common practice (Fried

et al., 2018; Tan et al., 2019), we concatenate the ResNet (He et al., 2016) feature

of the RGB image and the orientation feature to represent both the observation ot,i

with ft,i and the candidate navigable viewpoint lt,k with at,k as Equation 6.1 shows.

ft,i = [ResNet(vt,i); (cosθt,i, sinθt,i, cosφt,i, cosφt,i)]

at,k = [ResNet(vt,k); (cos∆θt,k, sin∆θt,k, cos∆φt,k, cos∆φt,k)]

(6.1)

Figure 6.1 illustrates the baseline VLN model EnvDrop (Tan et al., 2019). It is an

encoder-decoder model. The encoder model is a bidirectional LSTM-RNN equipped

with an embedding layer encoding the natural language instruction as formulated in

Equation 6.2. The decoder is an attentive LSTM-RNN decoding the instruction at

97

Figure 6.1: An illustration of the baseline VLN model EnvDrop (Tan et al., 2019).

each step t given the visual feature ft and the previous action embedding ãt−1. The

formulation is shown in Equation 6.3 where WF , W and WU are learnable parameters.

Finally, the probability of moving to the navigable viewpoint lt,k can be calculated

by Equation 6.4 where WA is another learnable parameter. EnvDrop is trained with

both imitation learning and reinforcement learning methods.

u1, u2, ..., uL = Bi-LSTM(embedding(w1), ..., embedding(wL)) (6.2)

ht = LSTM([f̃t; ãt−1], h̃t−1)

f̃t =
∑
i

αt,ift,i, αt,i = softmaxi(f
T
t,iWF h̃t−1)

h̃t = tanh(W [ũt;ht])

ũt =
∑
j

βt,juj, βt,j = softmaxj(u
T
jWUht)

(6.3)

98

pt,k = softmaxk(a
T
t,kWAh̃t) (6.4)

Figure 6.2: An illustration of our proposed VLN model.

Instead of matching vision and language to determine a viewpoint to navigate

which is brittle as the instruction may not be informative for step-wise decision mak-

ing, we here propose to decouple the policy learning from the language understanding

with a two-layer hierarchical model as shown in Figure 6.2. Our high-level layer is

an attention network that generates an attentive instruction as a sub-goal (see Equa-

tion 6.5). The low-level layer is an LSTM-RNN learning an action policy to achieve

the proposed sub-goal. In order to be adaptive to various sub-goals, we learn the

action policy from the attentive visual features that is sub-goal aware. Equation 6.6

describes the formulation.

ũt =
∑
j

βt,juj, βt,j = softmaxj(u
T
jWUft,i) (6.5)

99

ht = LSTM([f̃t; ãt−1], ht−1)

f̃t =
∑
i

αt,ift,i, αt,i = softmaxi(f
T
t,iWF ũt)

pt,k = softmaxk(a
T
t,kWAht)

(6.6)

Our high-level and low-level layers can be trained jointly to perform the VLN

task with imitation learning and reinforcement learning methods as the EnvDrop.

Moreover, our low-level network can be trained with additional datasets. To be

specific, we take the semantic labels of the objects that are visible in the observations

as pseudo attentive instructions and we train our low-level network to approach the

designated visible objects. We define the object locations as the viewpoints that yield

largest observations of the objects. As a result, we can calculate the shortest paths

towards the object locations for imitation learning and/or define reward functions

upon their distances for reinforcement learning of the low-level policy. The additional

dataset supplements the VLN dataset with sub-goals that are of high variety and could

also be referred in natural language instructions, which in consequence help to learn

a more robust low-level policy.

6.2 Environment Dynamics from Human Demonstrations

For more complex tasks, such as object manipulation, it has shown to be efficient

to let a robot to learn from observing human demonstrators performing them (Argall

et al., 2009). Under this setting, the robot first visually observes the human perfor-

mance through its perception sensors. Then, the visual signals are parsed into middle

level representations. At the end, the representations are reversely interpreted into a

sequence of motor signals for the robot physically executing the learned task.

However, the natural disparity in action space between robots and humans makes

it difficult for a robot to imitate the human demonstrators step by step. To be specific,

100

the mechanical design of robots is not constrained by the phenomenon of evolution.

Industrial robots may be equipped with multiple heterogeneous end effectors. Even

for humanoid robots, the common phenomenon of handedness of human beings does

not apply to robots. But, among the publicly available video corpora of human beings

performing manipulation actions, such as MANIAC (Aksoy et al., 2017) or 50 Salads

dataset (Stein and McKenna, 2013), around 90% of the performers are right-handed.

Therefore, simply mimicking the action sequences of human demonstrators inevitably

constrains the robots with handedness.

Instead of learning an action policy from human demonstrations, we hereby pro-

pose to capture a middle level representation of human demonstrations as a high-level

environment dynamic to facilitate the robot learning of the generalizable action pol-

icy. We take the object manipulation task as an example and we assume a human

demonstration is provided as a video that depict human doing an activity step by

step. To capture a high-level environment dynamic, we first need perception mod-

ules to convert the sensory signals into semantic labels. Here, we model a primitive

action as a process which takes an object as an input and then updates the object’s

state, including the state of its appearance and physical position, to achieve an action

sub-goal. For instance, consider the salad making scenario, the primitive action “cut

cucumber” takes “cucumber” as an input and then updates its state from “whole” to

“chopped”. “Put on top” is another kind of primitive action that updates the posi-

tion state of the input object from one location to another location (see Fig. 6.3 for

examples). Following this way of modeling primitive manipulation action, we adopt

three perception modules: an object recognition module (Lei et al., 2012) recognizing

the object under the action with an object label o; an action detection module (Lea

et al., 2016) recognizing the action with an action label a, and an object state per-

ception module (Yang et al., 2013) recognizing the object state before and after the

101

Figure 6.3: Action representation. Top two rows are two examples of primitive ac-

tions. The upper one is from the 50 Salads (Stein and McKenna, 2013) dataset and

the lower one is from the MANIAC dataset (Aksoy et al., 2017). Bottom row is an

abstract representation of one example primitive action.

action is performed with label s and s′ respectively. We represent the object-centric

action as a quad (o, s, a, s′). As a result, a demonstration video can be represented as

a sequence of object-centric actions, i.e. (o1, s1, a1, s
′
1), (o2, s2, a2, s

′
2), ..., (ot, st, at, s

′
t).

Once an object-centric action (oi, si, ai, s
′
i) is recognized by the three perception

102

modules, the object oi and its state before the action happens si indicates the action’s

precondition, while the object state afterwards s′i represents the action’s consequence.

Following this protocol, we create a node v = ai. If the action’s precondition (oi, si)

is the consequence of the previous recognized actions (ok, s
′
k), we create a directed

edge e from the previous action nodes to the current action node e =< ak, ai >, to

represent the precedence relations between these action nodes. We build the high-

level environment dynamic as the directed acyclic graph (V,E) at the end, where V

= {v | action node v} and E = {e | directed edge e}, that captures the precedence

relations between all recognized actions. Figure 6.4 shows an example of the graph

learned on 50 Salads dataset (Stein and McKenna, 2013).

Figure 6.4: The GRG learned on 50 Salads dataset (Stein and McKenna, 2013).

With the learned precedence graph as the high-level environment dynamic, we

can adopt a hierarchical reinforcement learning approach similar as Chapter 5 to

learn a generalizable action policy performing the demonstrated task. Here, the high-

level network predicts a primitive action as a sub-goal given the state estimated by

the object state perception module. Equipped with the learned precedence graph,

our high-level network is expected to generalize well to new configurations of the

demonstrated task, such as making salads in a novel kitchen with all ingredients

103

placed in different positions. The objective of our low-level networks is to perform

the proposed primitive action. The primitive actions with different action labels can

be learned with different networks, and each network can be trained to perform the

specified action over various objects in order to achieve generalization ability.

104

Chapter 7

CONCLUSION

Throughout the dissertation, we present several methods to address the challenges

in learning an action policy from the agent’s visual observations for the agent to per-

form the task well. First, to enable the policy learning from the high dimensional

visual observations, we propose to improve the sample efficiency by introducing a

denser reward function in Chapter 2. The reward function is defined upon a vision

module that performs a prediction task over agent’s visual observations. The ex-

perimental results demonstrate that our proposed reward function enables a better

action policy for the robotic object search task on AI2-THOR (Kolve et al., 2017b)

simulation platform and a real indoor environment with a physical robot. To fur-

ther improve the sample efficiency and address the common sparse reward issue, we

propose a novel hierarchical policy learning paradigm in Chapter 3 for efficient explo-

ration in high dimensional state space. The hierarchical policy builds on a simple yet

effective and interpretable low dimensional sub-goal space, and is learned with both

extrinsic and intrinsic rewards to perform the object search task in a more optimal

and interpretable way. The empirical and extensive experiments together with the

ablation studies on House3D (Wu et al., 2018) platform where a sparse reward setting

is deployed demonstrate the efficacy and efficiency of our presented framework.

Following the methods that enable policy learning from visual observations for a

specific task, we explore the learning of generalizable action policies. In Chapter 4, we

present a generalizable policy learning for the robotic object approach task which is a

fully observable version of the robotic object search task, through task-relevant rep-

resentations, namely depth estimation and semantic segmentation. Empirical studies

105

on the House3D (Wu et al., 2018) platform and a real physical experiment on a mobile

robot validate that out method can yield a significantly higher generalization capa-

bility towards new target objects and novel environments. To learn a generalizable

policy for partially observable task which is more common, we present in Chapter 5 a

hierarchical reinforcement learning approach equipped with a Goals Relational Graph

(GRG) formulation. Our GRG captures the underlying relations of all goals in the

goal space as a representation of the high-level environment dynamics that helps our

high-level network generalize. At the same time, our low-level network also gener-

alizes well with the method introduced in Chapter 4. We validate our approach on

the grid-world domain, and both AI2-THOR (Kolve et al., 2017b) and House3D (Wu

et al., 2018) simulation platform for the robotic object search task. The results show

our approach is effective and is exceptional in generalizing to unseen environments

and new goals.

Finally, we explore in Chapter 6 the direction of inferring the high-level environ-

ment dynamics from human-provided priors, such as natural language based instruc-

tions and human demonstrations, for generalizable policy learning.

For future work, we believe it is worth studying the vision-guided policy learning

problem with the visual navigation task (Ye and Yang, 2020). The visual navigation

task is a challenging AI task that requires an agent to develop comprehensive capabil-

ities, including visual understanding, policy learning, language grounding, knowledge

representation, common-sense reasoning. While the task has drawn increased re-

search interest and been studied extensively, the performance still leaves much to be

desired, indicating a significant space we can further explore. Based on the visual

navigation task, we think it would be more promising to take a further look into the

following questions, 1) the definitions of a policy’s optimality and generalizability;

2) the relations between the optimality and the generalizability of a policy. Current

106

definitions of optimality and generalizability are ambiguous. For example, the con-

sensus of the optimal policy in the visual navigation task is the shortest path towards

the navigation goal which might not always be reasonable. In addition, some work

may require a generalizable policy to be optimal in any new environment while the

others may allow a few updates to the learned policy. In such a situation, more

clear definitions are urgently required. Moreover, while the optimality relies heavily

on the knowledge of the environments, the generalizability requires the policy to be

environment-independent. As a result, it is critical to achieving a balance between

them and we should benefit a lot from developing the relations between them like the

one built for the speed-accuracy trade-off. Finally, transfer learning would also be

an interesting avenue for future research, with which we can learn from other tasks

rather than taking each task as an independent task.

107

REFERENCES

Abbeel, P. and A. Y. Ng, “Apprenticeship learning via inverse reinforcement learn-
ing”, in “Proceedings of the twenty-first international conference on Machine learn-
ing”, p. 1 (2004).

Aksoy, E. E., A. Orhan and F. Wörgötter, “Semantic decomposition and recogni-
tion of long and complex manipulation action sequences”, International Journal of
Computer Vision 122, 1, 84–115 (2017).

Ammirato, P., P. Poirson, E. Park, J. Košecká and A. C. Berg, “A dataset for devel-
oping and benchmarking active vision”, in “2017 IEEE International Conference
on Robotics and Automation (ICRA)”, pp. 1378–1385 (IEEE, 2017).

Anderson, P., A. Chang, D. S. Chaplot, A. Dosovitskiy, S. Gupta, V. Koltun,
J. Kosecka, J. Malik, R. Mottaghi, M. Savva et al., “On evaluation of embodied
navigation agents”, arXiv preprint arXiv:1807.06757 (2018a).

Anderson, P., Q. Wu, D. Teney, J. Bruce, M. Johnson, N. Sünderhauf, I. Reid,
S. Gould and A. van den Hengel, “Vision-and-language navigation: Interpreting
visually-grounded navigation instructions in real environments”, in “Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition”, pp. 3674–
3683 (2018b).

Andreas, J., D. Klein and S. Levine, “Modular multitask reinforcement learning with
policy sketches”, in “Proceedings of the 34th International Conference on Machine
Learning-Volume 70”, pp. 166–175 (JMLR. org, 2017).

Aneja, J., A. Deshpande and A. G. Schwing, “Convolutional image captioning”, in
“Proceedings of the IEEE conference on computer vision and pattern recognition”,
pp. 5561–5570 (2018).

Antol, S., A. Agrawal, J. Lu, M. Mitchell, D. Batra, C. Lawrence Zitnick and
D. Parikh, “Vqa: Visual question answering”, in “Proceedings of the IEEE in-
ternational conference on computer vision”, pp. 2425–2433 (2015).

Argall, B. D., S. Chernova, M. Veloso and B. Browning, “A survey of robot learning
from demonstration”, Robotics and autonomous systems 57, 5, 469–483 (2009).

Arora, S. and P. Doshi, “A survey of inverse reinforcement learning: Challenges,
methods and progress”, arXiv preprint arXiv:1806.06877 (2018).

Arulkumaran, K., M. P. Deisenroth, M. Brundage and A. A. Bharath, “A brief survey
of deep reinforcement learning”, arXiv preprint arXiv:1708.05866 (2017).

Bacon, P.-L., J. Harb and D. Precup, “The option-critic architecture”, in “Thirty-
First AAAI Conference on Artificial Intelligence”, (2017).

108

Batra, D., A. Gokaslan, A. Kembhavi, O. Maksymets, R. Mottaghi, M. Savva, A. To-
shev and E. Wijmans, “Objectnav revisited: On evaluation of embodied agents
navigating to objects”, arXiv preprint arXiv:2006.13171 (2020).

Bütepage, J., S. Cruciani, M. Kokic, M. Welle and D. Kragic, “From visual under-
standing to complex object manipulation”, Annual Review of Control, Robotics,
and Autonomous Systems 2, 161–179 (2019).

Chang, A., A. Dai, T. Funkhouser, M. Halber, M. Niessner, M. Savva, S. Song,
A. Zeng and Y. Zhang, “Matterport3d: Learning from rgb-d data in indoor envi-
ronments”, arXiv preprint arXiv:1709.06158 (2017).

Chaplot, D. S., D. P. Gandhi, A. Gupta and R. R. Salakhutdinov, “Object goal nav-
igation using goal-oriented semantic exploration”, Advances in Neural Information
Processing Systems 33 (2020).

Chen, L.-C., G. Papandreou, I. Kokkinos, K. Murphy and A. L. Yuille, “Deeplab: Se-
mantic image segmentation with deep convolutional nets, atrous convolution, and
fully connected crfs”, IEEE transactions on pattern analysis and machine intelli-
gence 40, 4, 834–848 (2017a).

Chen, L.-C., Y. Zhu, G. Papandreou, F. Schroff and H. Adam, “Encoder-decoder with
atrous separable convolution for semantic image segmentation”, in “Proceedings of
the European conference on computer vision (ECCV)”, pp. 801–818 (2018).

Chen, S., P. B. Gibbons, M. Kozuch, V. Liaskovitis, A. Ailamaki, G. E. Blelloch,
B. Falsafi, L. Fix, N. Hardavellas, T. C. Mowry et al., “Scheduling threads for
constructive cache sharing on cmps”, in “Proceedings of the nineteenth annual
ACM symposium on Parallel algorithms and architectures”, pp. 105–115 (ACM,
2007).

Chen, Y. F., M. Everett, M. Liu and J. P. How, “Socially aware motion planning
with deep reinforcement learning”, in “2017 IEEE/RSJ International Conference
on Intelligent Robots and Systems (IROS)”, pp. 1343–1350 (IEEE, 2017b).

Chollet, F., “Xception: Deep learning with depthwise separable convolutions”, arXiv
preprint pp. 1610–02357 (2017).

Couprie, C., C. Farabet, L. Najman and Y. LeCun, “Indoor semantic segmentation
using depth information”, arXiv preprint arXiv:1301.3572 (2013).

Das, A., S. Datta, G. Gkioxari, S. Lee, D. Parikh and D. Batra, “Embodied ques-
tion answering”, in “Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition Workshops”, pp. 2054–2063 (2018a).

Das, A., G. Gkioxari, S. Lee, D. Parikh and D. Batra, “Neural modular control for
embodied question answering”, arXiv preprint arXiv:1810.11181 (2018b).

Devlin, J., M.-W. Chang, K. Lee and K. Toutanova, “Bert: Pre-training of
deep bidirectional transformers for language understanding”, arXiv preprint
arXiv:1810.04805 (2018).

109

Donahue, J., Y. Jia, O. Vinyals, J. Hoffman, N. Zhang, E. Tzeng and T. Darrell,
“Decaf: A deep convolutional activation feature for generic visual recognition”, in
“International conference on machine learning”, pp. 647–655 (2014).

Dosovitskiy, A. and V. Koltun, “Learning to act by predicting the future”, arXiv
preprint arXiv:1611.01779 (2016).

Druon, R., Y. Yoshiyasu, A. Kanezaki and A. Watt, “Visual object search by learning
spatial context”, IEEE Robotics and Automation Letters 5, 2, 1279–1286 (2020).

Dwiel, Z., M. Candadai, M. J. Phielipp and A. K. Bansal, “Hierarchical policy learning
is sensitive to goal space design”, arXiv preprint arXiv:1905.01537 (2019).

Eigen, D. and R. Fergus, “Predicting depth, surface normals and semantic labels with
a common multi-scale convolutional architecture”, in “Proceedings of the IEEE
International Conference on Computer Vision”, pp. 2650–2658 (2015).

Everett, M., Y. F. Chen and J. P. How, “Motion planning among dynamic, decision-
making agents with deep reinforcement learning”, in “2018 IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS)”, pp. 3052–3059 (IEEE,
2018).

Fried, D., R. Hu, V. Cirik, A. Rohrbach, J. Andreas, L.-P. Morency, T. Berg-
Kirkpatrick, K. Saenko, D. Klein and T. Darrell, “Speaker-follower models for
vision-and-language navigation”, Advances in Neural Information Processing Sys-
tems 31, 3314–3325 (2018).

Fu, H., M. Gong, C. Wang, K. Batmanghelich and D. Tao, “Deep ordinal regression
network for monocular depth estimation”, in “Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition”, pp. 2002–2011 (2018).

Fu, J., A. Korattikara, S. Levine and S. Guadarrama, “From language to goals: In-
verse reinforcement learning for vision-based instruction following”, arXiv preprint
arXiv:1902.07742 (2019).

Ghosh, D., A. Singh, A. Rajeswaran, V. Kumar and S. Levine, “Divide-and-conquer
reinforcement learning”, arXiv preprint arXiv:1711.09874 (2017).

Gordon, D., A. Kembhavi, M. Rastegari, J. Redmon, D. Fox and A. Farhadi, “Iqa:
Visual question answering in interactive environments”, in “Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition”, pp. 4089–4098
(2018).

Goyal, Y., T. Khot, D. Summers-Stay, D. Batra and D. Parikh, “Making the v in
vqa matter: Elevating the role of image understanding in visual question answer-
ing”, in “Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition”, pp. 6904–6913 (2017).

Gu, S., E. Holly, T. Lillicrap and S. Levine, “Deep reinforcement learning for robotic
manipulation with asynchronous off-policy updates”, in “2017 IEEE International
Conference on Robotics and Automation (ICRA)”, pp. 3389–3396 (IEEE, 2017).

110

Guo, Y., Y. Liu, A. Oerlemans, S. Lao, S. Wu and M. S. Lew, “Deep learning for
visual understanding: A review”, Neurocomputing 187, 27–48 (2016).

Gupta, S., J. Davidson, S. Levine, R. Sukthankar and J. Malik, “Cognitive mapping
and planning for visual navigation”, in “Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition”, pp. 2616–2625 (2017).

Haarnoja, T., A. Zhou, P. Abbeel and S. Levine, “Soft actor-critic: Off-policy maxi-
mum entropy deep reinforcement learning with a stochastic actor”, arXiv preprint
arXiv:1801.01290 (2018).

Han, D., K. Doya and J. Tani, “Variational recurrent models for solving partially
observable control tasks”, arXiv preprint arXiv:1912.10703 (2019).

He, K., X. Zhang, S. Ren and J. Sun, “Delving deep into rectifiers: Surpassing
human-level performance on imagenet classification”, in “Proceedings of the IEEE
international conference on computer vision”, pp. 1026–1034 (2015).

He, K., X. Zhang, S. Ren and J. Sun, “Deep residual learning for image recognition”,
in “Proceedings of the IEEE conference on computer vision and pattern recogni-
tion”, pp. 770–778 (2016).

Hong, Y., C. Rodriguez-Opazo, Y. Qi, Q. Wu and S. Gould, “Language and visual
entity relationship graph for agent navigation”, in “Advances in Neural Information
Processing Systems”, (2020).

Hong, Y., Q. Wu, Y. Qi, C. Rodriguez-Opazo and S. Gould, “Vln bert: A recur-
rent vision-and-language bert for navigation”, in “Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition”, pp. 1643–1653 (2021).

Hossain, M. Z., F. Sohel, M. F. Shiratuddin and H. Laga, “A comprehensive survey
of deep learning for image captioning”, ACM Computing Surveys (CSUR) 51, 6,
1–36 (2019).

Huang, H., V. Jain, H. Mehta, A. Ku, G. Magalhaes, J. Baldridge and E. Ie, “Trans-
ferable representation learning in vision-and-language navigation”, in “Proceedings
of the IEEE/CVF International Conference on Computer Vision”, (2019).

Igl, M., L. Zintgraf, T. A. Le, F. Wood and S. Whiteson, “Deep variational reinforce-
ment learning for pomdps”, arXiv preprint arXiv:1806.02426 (2018).

Jaderberg, M., V. Mnih, W. M. Czarnecki, T. Schaul, J. Z. Leibo, D. Silver and
K. Kavukcuoglu, “Reinforcement learning with unsupervised auxiliary tasks”,
arXiv preprint arXiv:1611.05397 (2016).

Jafari, O. H., O. Groth, A. Kirillov, M. Y. Yang and C. Rother, “Analyzing mod-
ular cnn architectures for joint depth prediction and semantic segmentation”, in
“Robotics and Automation (ICRA), 2017 IEEE International Conference on”, pp.
4620–4627 (IEEE, 2017).

111

Kipf, T. N. and M. Welling, “Semi-supervised classification with graph convolutional
networks”, arXiv preprint arXiv:1609.02907 (2016).

Kolve, E., R. Mottaghi, D. Gordon, Y. Zhu, A. Gupta and A. Farhadi, “AI2-THOR:
An Interactive 3D Environment for Visual AI”, arXiv (2017a).

Kolve, E., R. Mottaghi, W. Han, E. VanderBilt, L. Weihs, A. Herrasti, D. Gordon,
Y. Zhu, A. Gupta and A. Farhadi, “Ai2-thor: An interactive 3d environment for
visual ai”, arXiv preprint arXiv:1712.05474 (2017b).

Krishna, R., Y. Zhu, O. Groth, J. Johnson, K. Hata, J. Kravitz, S. Chen, Y. Kalan-
tidis, L.-J. Li, D. A. Shamma et al., “Visual genome: Connecting language and
vision using crowdsourced dense image annotations”, International Journal of Com-
puter Vision 123, 1, 32–73 (2017).

Krizhevsky, A., I. Sutskever and G. E. Hinton, “Imagenet classification with deep
convolutional neural networks”, Communications of the ACM 60, 6, 84–90 (2017).

Kulhánek, J., E. Derner, T. de Bruin and R. Babuška, “Vision-based navigation using
deep reinforcement learning”, in “2019 European Conference on Mobile Robots
(ECMR)”, pp. 1–8 (IEEE, 2019).

Kulkarni, T. D., K. Narasimhan, A. Saeedi and J. Tenenbaum, “Hierarchical deep
reinforcement learning: Integrating temporal abstraction and intrinsic motivation”,
in “Advances in neural information processing systems”, pp. 3675–3683 (2016).

Laina, I., C. Rupprecht, V. Belagiannis, F. Tombari and N. Navab, “Deeper depth
prediction with fully convolutional residual networks”, in “3D Vision (3DV), 2016
Fourth International Conference on”, pp. 239–248 (IEEE, 2016).

Le, H. M., N. Jiang, A. Agarwal, M. Dud́ık, Y. Yue and H. Daumé III, “Hierarchical
imitation and reinforcement learning”, arXiv preprint arXiv:1803.00590 (2018).

Lea, C., R. Vidal and G. D. Hager, “Learning convolutional action primitives for
fine-grained action recognition”, in “Robotics and Automation (ICRA), 2016 IEEE
International Conference on”, pp. 1642–1649 (IEEE, 2016).

Lee, A. X., A. Nagabandi, P. Abbeel and S. Levine, “Stochastic latent actor-
critic: Deep reinforcement learning with a latent variable model”, arXiv preprint
arXiv:1907.00953 (2019).

Lei, J., X. Ren and D. Fox, “Fine-grained kitchen activity recognition using rgb-
d”, in “Proceedings of the 2012 ACM Conference on Ubiquitous Computing”, pp.
208–211 (ACM, 2012).

Levy, A., G. Konidaris, R. Platt and K. Saenko, “Learning multi-level hierarchies
with hindsight”, arXiv preprint arXiv:1712.00948 (2017a).

Levy, A., R. Platt and K. Saenko, “Hierarchical actor-critic”, arXiv preprint
arXiv:1712.00948 (2017b).

112

Levy, A., R. Platt and K. Saenko, “Hierarchical reinforcement learning with hind-
sight”, arXiv preprint arXiv:1805.08180 (2018).

Lillicrap, T. P., J. J. Hunt, A. Pritzel, N. Heess, T. Erez, Y. Tassa, D. Silver and
D. Wierstra, “Continuous control with deep reinforcement learning”, arXiv preprint
arXiv:1509.02971 (2015).

Liu, C. et al., Beyond pixels: exploring new representations and applications for mo-
tion analysis, Ph.D. thesis, MIT (2009).

Liu, F., C. Shen and G. Lin, “Deep convolutional neural fields for depth estimation
from a single image”, in “Proceedings of the IEEE conference on computer vision
and pattern recognition”, pp. 5162–5170 (2015).

Long, J., E. Shelhamer and T. Darrell, “Fully convolutional networks for semantic
segmentation”, in “Proceedings of the IEEE conference on computer vision and
pattern recognition”, pp. 3431–3440 (2015).

Ma, C.-Y., J. Lu, Z. Wu, G. AlRegib, Z. Kira, R. Socher and C. Xiong, “Self-
monitoring navigation agent via auxiliary progress estimation”, in “International
Conference on Learning Representations (ICLR)”, (2019).

Mirowski, P., R. Pascanu, F. Viola, H. Soyer, A. J. Ballard, A. Banino, M. Denil,
R. Goroshin, L. Sifre, K. Kavukcuoglu et al., “Learning to navigate in complex
environments”, arXiv preprint arXiv:1611.03673 (2016).

Mnih, V., A. P. Badia, M. Mirza, A. Graves, T. Lillicrap, T. Harley, D. Silver and
K. Kavukcuoglu, “Asynchronous methods for deep reinforcement learning”, in “In-
ternational conference on machine learning”, pp. 1928–1937 (2016).

Mnih, V., K. Kavukcuoglu, D. Silver, A. Graves, I. Antonoglou, D. Wierstra and
M. Riedmiller, “Playing atari with deep reinforcement learning”, arXiv preprint
arXiv:1312.5602 (2013).

Mnih, V., K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G. Bellemare,
A. Graves, M. Riedmiller, A. K. Fidjeland, G. Ostrovski et al., “Human-level con-
trol through deep reinforcement learning”, Nature 518, 7540, 529 (2015).

Mousavian, A., A. Toshev, M. Fǐser, J. Košecká, A. Wahid and J. Davidson, “Vi-
sual representations for semantic target driven navigation”, in “2019 International
Conference on Robotics and Automation (ICRA)”, pp. 8846–8852 (IEEE, 2019).

Nachum, O., S. Gu, H. Lee and S. Levine, “Near-optimal representation learning for
hierarchical reinforcement learning”, arXiv preprint arXiv:1810.01257 (2018a).

Nachum, O., S. S. Gu, H. Lee and S. Levine, “Data-efficient hierarchical reinforcement
learning”, in “Advances in Neural Information Processing Systems”, pp. 3307–3317
(2018b).

113

Nachum, O., H. Tang, X. Lu, S. Gu, H. Lee and S. Levine, “Why does hierarchy (some-
times) work so well in reinforcement learning?”, arXiv preprint arXiv:1909.10618
(2019).

Nasiriany, S., V. Pong, S. Lin and S. Levine, “Planning with goal-conditioned poli-
cies”, in “Advances in Neural Information Processing Systems”, pp. 14843–14854
(2019).

Nguyen, T.-L., D.-V. Nguyen and T.-H. Le, “Reinforcement learning based navigation
with semantic knowledge of indoor environments”, in “2019 11th International
Conference on Knowledge and Systems Engineering (KSE)”, pp. 1–7 (IEEE, 2019).

Osa, T., V. Tangkaratt and M. Sugiyama, “Hierarchical reinforcement learning via
advantage-weighted information maximization”, arXiv preprint arXiv:1901.01365
(2019).

Parvaneh, A., E. Abbasnejad, D. Teney, Q. Shi and A. van den Hengel, “Counter-
factual vision-and-language navigation: Unravelling the unseen”, in “Advances in
Neural Information Processing Systems”, (2020).

Pathak, D., P. Agrawal, A. A. Efros and T. Darrell, “Curiosity-driven exploration
by self-supervised prediction”, in “International Conference on Machine Learning
(ICML)”, vol. 2017 (2017).

Popov, I., N. Heess, T. Lillicrap, R. Hafner, G. Barth-Maron, M. Vecerik, T. Lampe,
Y. Tassa, T. Erez and M. Riedmiller, “Data-efficient deep reinforcement learning
for dexterous manipulation”, arXiv preprint arXiv:1704.03073 (2017).

Qi, Y., Z. Pan, Y. Hong, M.-H. Yang, A. v. d. Hengel and Q. Wu, “Know what
and know where: An object-and-room informed sequential bert for indoor vision-
language navigation”, arXiv preprint arXiv:2104.04167 (2021).

Qi, Y., Q. Wu, P. Anderson, X. Wang, W. Y. Wang, C. Shen and A. v. d. Hen-
gel, “Reverie: Remote embodied visual referring expression in real indoor environ-
ments”, in “Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition”, pp. 9982–9991 (2020).

Qiu, Y., A. Pal and H. I. Christensen, “Target driven visual navigation exploiting
object relationships”, arXiv preprint arXiv:2003.06749 (2020).

Rajeswaran, A., V. Kumar, A. Gupta, G. Vezzani, J. Schulman, E. Todorov and
S. Levine, “Learning complex dexterous manipulation with deep reinforcement
learning and demonstrations”, arXiv preprint arXiv:1709.10087 (2017).

Redmon, J., S. Divvala, R. Girshick and A. Farhadi, “You only look once: Unified,
real-time object detection”, in “Proceedings of the IEEE conference on computer
vision and pattern recognition”, pp. 779–788 (2016).

Ren, S., K. He, R. Girshick and J. Sun, “Faster r-cnn: Towards real-time object
detection with region proposal networks”, IEEE transactions on pattern analysis
and machine intelligence 39, 6, 1137–1149 (2016).

114

Rennie, S. J., E. Marcheret, Y. Mroueh, J. Ross and V. Goel, “Self-critical sequence
training for image captioning”, in “Proceedings of the IEEE Conference on Com-
puter Vision and Pattern Recognition”, pp. 7008–7024 (2017).

Russakovsky, O., J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma, Z. Huang, A. Karpa-
thy, A. Khosla, M. Bernstein et al., “Imagenet large scale visual recognition chal-
lenge”, International Journal of Computer Vision 115, 3, 211–252 (2015).

Savinov, N., A. Dosovitskiy and V. Koltun, “Semi-parametric topological memory for
navigation”, arXiv preprint arXiv:1803.00653 (2018).

Schulman, J., F. Wolski, P. Dhariwal, A. Radford and O. Klimov, “Proximal policy
optimization algorithms”, arXiv preprint arXiv:1707.06347 (2017).

Simonyan, K. and A. Zisserman, “Very deep convolutional networks for large-scale
image recognition”, arXiv preprint arXiv:1409.1556 (2014).

Sohn, S., J. Oh and H. Lee, “Hierarchical reinforcement learning for zero-shot general-
ization with subtask dependencies”, in “Advances in Neural Information Processing
Systems”, pp. 7156–7166 (2018).

Song, D., N. Kyriazis, I. Oikonomidis, C. Papazov, A. Argyros, D. Burschka and
D. Kragic, “Predicting human intention in visual observations of hand/object in-
teractions”, in “Robotics and Automation (ICRA), 2013 IEEE International Con-
ference on”, pp. 1608–1615 (IEEE, 2013).

Stein, S. and S. J. McKenna, “Combining embedded accelerometers with computer
vision for recognizing food preparation activities”, in “Proceedings of the 2013 ACM
International Joint Conference on Pervasive and Ubiquitous Computing (UbiComp
2013), Zurich, Switzerland”, (ACM, 2013).

Sutton, R. S. and A. G. Barto, Reinforcement learning: An introduction (MIT press,
2018).

Szegedy, C., W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan, V. Van-
houcke and A. Rabinovich, “Going deeper with convolutions”, in “Proceedings of
the IEEE conference on computer vision and pattern recognition”, pp. 1–9 (2015).

Tan, H., L. Yu and M. Bansal, “Learning to navigate unseen environments: Back
translation with environmental dropout”, in “NAACL-HLT”, (2019).

Tu, S., “The dirichlet-multinomial and dirichlet-categorical models for bayesian in-
ference”, Computer Science Division, UC Berkeley (2014).

Van Hasselt, H., A. Guez and D. Silver, “Deep reinforcement learning with double
q-learning”, arXiv preprint arXiv:1509.06461 (2015).

Van Hasselt, H., A. Guez and D. Silver, “Deep reinforcement learning with double
q-learning”, in “Thirtieth AAAI conference on artificial intelligence”, (2016).

115

Wang, P., X. Shen, Z. Lin, S. Cohen, B. Price and A. L. Yuille, “Towards unified
depth and semantic prediction from a single image”, in “Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition”, pp. 2800–2809 (2015).

Wang, X., Q. Huang, A. Celikyilmaz, J. Gao, D. Shen, Y.-F. Wang, W. Y. Wang and
L. Zhang, “Reinforced cross-modal matching and self-supervised imitation learn-
ing for vision-language navigation”, in “Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition”, pp. 6629–6638 (2019).

Wang, X., W. Xiong, H. Wang and W. Yang Wang, “Look before you leap: Bridging
model-free and model-based reinforcement learning for planned-ahead vision-and-
language navigation”, in “Proceedings of the European Conference on Computer
Vision (ECCV)”, pp. 37–53 (2018).

Wang, Y., X. Ye, Y. Yang and W. Zhang, “Collision-free trajectory planning in
human-robot interaction through hand movement prediction from vision”, in “2017
IEEE-RAS 17th International Conference on Humanoid Robotics (Humanoids)”,
pp. 305–310 (IEEE, 2017).

Wang, Z., V. Bapst, N. Heess, V. Mnih, R. Munos, K. Kavukcuoglu and
N. de Freitas, “Sample efficient actor-critic with experience replay”, arXiv preprint
arXiv:1611.01224 (2016).

Wu, Y., Z. Rao, W. Zhang, S. Lu, W. Lu and Z.-J. Zha, “Exploring the task coop-
eration in multi-goal visual navigation”, in “Proceedings of the 28th International
Joint Conference on Artificial Intelligence”, pp. 609–615 (AAAI Press, 2019a).

Wu, Y., Y. Wu, G. Gkioxari and Y. Tian, “Building generalizable agents with a
realistic and rich 3d environment”, arXiv preprint arXiv:1801.02209 (2018).

Wu, Y., Y. Wu, A. Tamar, S. Russell, G. Gkioxari and Y. Tian, “Bayesian relational
memory for semantic visual navigation”, in “Proceedings of the IEEE International
Conference on Computer Vision”, pp. 2769–2779 (2019b).

Yang, W., X. Wang, A. Farhadi, A. Gupta and R. Mottaghi, “Visual semantic navi-
gation using scene priors”, arXiv preprint arXiv:1810.06543 (2018).

Yang, Y., C. Fermuller and Y. Aloimonos, “Detection of manipulation action conse-
quences (mac)”, in “Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition”, pp. 2563–2570 (2013).

Yang, Y., Y. Li, C. Fermuller and Y. Aloimonos, “Robot learning manipulation action
plans by” watching” unconstrained videos from the world wide web”, in “Twenty-
ninth AAAI conference on artificial intelligence”, (Citeseer, 2015).

Yang, Y., C. Teo, H. Daumé III and Y. Aloimonos, “Corpus-guided sentence gen-
eration of natural images”, in “Proceedings of the 2011 Conference on Empirical
Methods in Natural Language Processing”, pp. 444–454 (2011).

116

Ye, X., Z. Lin, J.-Y. Lee, J. Zhang, S. Zheng and Y. Yang, “Gaple: Generalizable
approaching policy learning for robotic object searching in indoor environment”,
IEEE Robotics and Automation Letters 4, 4, 4003–4010 (2019a).

Ye, X., Z. Lin, H. Li, S. Zheng and Y. Yang, “Active object perceiver: Recognition-
guided policy learning for object searching on mobile robots”, in “2018 IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS)”, pp. 6857–
6863 (IEEE, 2018).

Ye, X., Z. Lin and Y. Yang, “Robot learning of manipulation activities with overall
planning through precedence graph”, Robotics and Autonomous Systems 116, 126–
135 (2019b).

Ye, X. and Y. Yang, “From seeing to moving: A survey on learning for visual indoor
navigation (vin)”, arXiv preprint arXiv:2002.11310 (2020).

Ye, X. and Y. Yang, “Efficient robotic object search via hiem: Hierarchical policy
learning with intrinsic-extrinsic modeling”, IEEE Robotics and Automation Letters
6, 3, 4425–4432 (2021a).

Ye, X. and Y. Yang, “Hierarchical and partially observable goal-driven policy learning
with goals relational graph”, in “Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition”, (2021b).

Yi, K., J. Wu, C. Gan, A. Torralba, P. Kohli and J. Tenenbaum, “Neural-symbolic
vqa: Disentangling reasoning from vision and language understanding”, Advances
in neural information processing systems 31, 1031–1042 (2018).

You, Q., H. Jin, Z. Wang, C. Fang and J. Luo, “Image captioning with semantic
attention”, in “Proceedings of the IEEE conference on computer vision and pattern
recognition”, pp. 4651–4659 (2016).

Zhu, F., Y. Zhu, X. Chang and X. Liang, “Vision-language navigation with self-
supervised auxiliary reasoning tasks”, in “Proceedings of the IEEE/CVF Confer-
ence on Computer Vision and Pattern Recognition”, (2020).

Zhu, Y., R. Mottaghi, E. Kolve, J. J. Lim, A. Gupta, L. Fei-Fei and A. Farhadi,
“Target-driven visual navigation in indoor scenes using deep reinforcement learn-
ing”, in “2017 IEEE international conference on robotics and automation (ICRA)”,
pp. 3357–3364 (IEEE, 2017).

117

	LIST OF TABLES
	LIST OF FIGURES
	INTRODUCTION
	Problem Statement
	Related Work
	Contributions
	Dissertation Outline

	REWARD FUNCTIONS FROM VISUAL UNDERSTANDING
	Introduction
	Related Work
	Our Approach
	Object Recognition Module with Target Object Given
	Recognition-guided Action Policy Learning

	Experiments
	Dataset
	Experimental Results and Discussion

	Conclusion

	EFFICIENT EXPLORATION WITH HIERARCHICAL POLICY
	Introduction
	Related Work
	Our Approach
	Hierarchy of Policies
	Extrinsic and Intrinsic Rewards
	Model Formulation
	Network Architecture

	Experiments
	Dataset
	Experimental Setting
	Experimental Results and Discussion

	Conclusion

	GENERALIZABLE POLICY LEARNING FOR FULLY OBSERVABLE TASK
	Introduction
	Related Work
	Our Approach
	Overview
	Semantic Segmentation and Depth Prediction
	Approaching Policy Learning

	Experiments
	Dataset
	Semantic Segmentation and Depth Prediction
	Approaching Policy Learning
	Real World Experiment
	Analysis and Discussion

	Conclusion

	GENERALIZABLE POLICY LEARNING FOR PARTIALLY OBSERVABLE TASK
	Introduction
	Related Work
	Hierarchical RL with GRG
	Overview
	Goals Relational Graph (GRG)
	Goal-driven High-level Network
	Termination-aware Low-level Network

	Experiments
	Grid-world Domain
	Robotic Object Search

	Conclusion

	TOWARDS LEARNING FROM HUMAN-PROVIDED PRIORS FOR GENERALIZABILITY
	Environment Dynamics from Natural Language Instructions
	Environment Dynamics from Human Demonstrations

	CONCLUSION

	REFERENCES

