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ABSTRACT

Data-intensive systems such as big data and large machine learning (ML) systems

experience serious scalability challenges due to the ever-increasing data demand from

ML and analytics applications and the resource fragmentation caused by conventional

monolithic server architecture. Memory and storage disaggregation emerges as a

pivotal technology to address these challenges by decoupling memory and storage

resources from individual servers and managing and provisioning them to applications

as a shared resource pool. This dissertation investigates several important aspects

of memory and storage disaggregation and proposes novel solutions to support data-

intensive applications.

First, caching is a fundamental way to utilize disaggregated storage, but building

a large disaggregated cache is challenging because the commonly-used fix-sized cache

block allocation scheme is unable to provide good cache performance with low memory

overhead for diverse cloud workloads with vastly di↵erent I/O patterns. The disser-

tation proposes a novel adaptive cache block allocation approach that dynamically

adjusts cache block sizes based on changing I/O patterns. This approach significantly

improves I/O performance while reducing memory usage, outperforming traditional

fixed-size cache systems in diverse cloud workloads.

Second, large ML applications such as large language model (LLM) inference are

memory demanding, but to support them using disaggregated memory brings chal-

lenges to memory management since disaggregated memory has higher memory access

latency compared to local memory. The dissertation proposes latency-aware memory

aggregation which cautiously distributes memory accesses to minimize the latency

gap between local and disaggregated memory. It also proposes NUMA-aligned tensor

parallelism to further improve the computing e�ciency. With these optimizations,

LLM inference achieves substantial speedups.
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Finally, to address the cost, power consumption, and volatility of DRAM, the

dissertation proposes to incorporate flash memory into memory pools within the dis-

aggregation framework. By establishing a tiered memory architecture which combines

fast-tier local DRAM with slow-tier DRAM and flash memory in the memory pool

and e↵ectively migrates data based on hotness across memory tiers, this approach

not only reduces expenses but also maintains the overall performance and scalability

of data-intensive systems.
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Chapter 1

INTRODUCTION

1.1 Problem Statement

Data-intensive systems, including those used for big data analytics and machine

learning (ML), are currently facing significant scalability issues. These challenges

stem from two main sources. First, as ML and data analytics are rapidly adopted

by broader domains, so does the demand for substantial data processing capabili-

ties. These applications are characterized by their need to process and analyze vast

amounts of data quickly. The surge in data volume, coupled with the complexity of

processing tasks, places enormous stress on today’s computing infrastructures. The

challenge is not just managing this vast data but doing so in a manner that is both

time and resource-e�cient.

The second major challenge stems from the ine�ciencies of traditional monolithic

server architecture which tightly couples di↵erent types of resources in homogeneous

server enclosures and is increasingly becoming bottlenecks in the face of growing data

demands. This architecture, designed with a one-size-fits-all mindset, often leads to

resource fragmentation and wastage, as it is di�cult to simultaneously fully utilize all

the di↵erent types of resources including compute, memory, storage, and networking.

As data volume and complexity grow, these monolithic systems struggle to adapt,

unable to scale resources e↵ectively to meet demand. This architectural limitation

not only hurts application performance but also increases operational costs, making

it imperative to explore and adopt more innovative, flexible architectures capable of

scaling with the data-intensive computing.
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One promising approach to overcome these hurdles is memory and storage disag-

gregation. This innovative strategy involves separating memory and storage resources

from individual servers and pooling these resources across the network or interconnect.

Such a method allows for a more dynamic and e�cient allocation and management

of these critical resources. By decoupling memory and storage from specific servers,

resources can be made available to applications precisely when needed, facilitating a

more responsive and adaptable infrastructure. This dynamic allocation is instrumen-

tal in optimizing resource utilization, ensuring that memory and storage resources

are not left idle and are instead employed to their maximum potential.

Furthermore, this approach significantly enhances the flexibility and scalability of

data-intensive systems. By making resources centrally available and dynamically allo-

cated, systems can more e↵ectively meet the demands of advanced ML and analytics

workloads. The ability to scale resources on demand without the constraints of tra-

ditional server architectures allows improved e�ciency. This optimization of resource

utilization not only addresses current scalability challenges but also prepares data-

intensive systems to handle future increases in data volume and processing require-

ments. Consequently, memory and storage disaggregation emerges as a key enabler

for next-generation data processing, o↵ering a promising solution to the scalability

issues of modern data-intensive applications.

Considering these factors, this dissertation delves into the complexity of memory

and storage disaggregation, exploring its potential to solve the challenges in today’s

infrastructure of data-intensive systems. Through comprehensive analysis, it intro-

duces innovative solutions designed to leverage disaggregated storage and memory,

thereby significantly enhancing the e�ciency of data-intensive applications. By ad-

dressing the key challenges associated with traditional monolithic server architecture

and proposing novel strategies for resource management, this dissertation aims to

2



pave the way for more scalable, e�cient, and flexible data processing systems capable

of accommodating the evolving needs of ML and analytics applications.

1.1.1 Rack-scale Disaggregated Cache System

First, in public, private, and hybrid cloud environments, hard disk drive (HDD)

based block storage is essential for its fast, scalable, and reliable data access, yet it

doesn’t match the performance of directly attached NVMe SSD storage, prompting

the use of NVMe SSD caching to enhance access speeds for data-intensive applications.

The prevalent host-side caching mechanism faces challenges in uneven cache utiliza-

tion across servers due to the inflexibility of fixed-size cache blocks and the inability to

share caches among servers, limiting e�ciency. Rack-scale cache disaggregation o↵ers

a solution by enabling shared cache resources across servers, improving utilization and

system scalability. However, the traditional fixed-size cache block management strug-

gles to accommodate the dynamic nature of cloud workloads. Using smaller cache

blocks like 32KiB can achieve better I/O performance as it incurs smaller cache miss

penalty compared to larger cache block sizes. However, its metadata overhead for

managing the cache resource is higher, which causes larger memory footprint as the

metadata usually needs to be cached in memory for performance. Conversely, using

larger cache blocks such as 512KiB can improve the cache hit ratio by exploiting the

spatial locality within the requests and reduce the memory overhead associated with

metadata. Nevertheless, this comes at the cost of larger cache miss penalty, which

can significantly reduce I/O performance if the spatial locality is rare.

To solve the problems, we aim to design a rack-scale disaggregated cache solution

that provides good cache performance with low metadata overhead, regardless of the

cloud workloads. We propose AdaCache, a rack-scale disaggregated cache system

that employs variable-sized cache blocks to adapt to various cloud workloads. Ada-

3



Cache allocates cache blocks of di↵erent sizes based on the I/O request size. For

requests with large I/O sizes, large cache blocks are allocated to reduce the number

of allocated cache blocks, thus improving I/O performance and reducing metadata

memory overhead. For requests with smaller sizes, AdaCache assigns small cache

blocks to avoid read/write amplification between the cache system and backend stor-

age as well as cache pollution. In cases where requests are only partially cached,

AdaCache dynamically determines the optimal cache block sizes. It utilizes a greedy

allocation strategy, aiming to minimize both the number of cache blocks required and

I/O amplification by tracking every portion of the request not currently in the cache.

According to the evaluation results, AdaCache has demonstrated significant im-

provements in I/O performance compared to traditional fix-sized cache. Specifically,

it can improve read latency by 20% and write latency by 9% compared to 32KiB

block-sized cache in trace replay. AdaCache is also capable of saving up to 74% I/O

tra�c to cloud block storage and up to 63% I/O tra�c to the cache compared to

256KiB block-sized cache. Moreover, AdaCache has achieved up to 41% memory

savings compared to 32KiB block-sized cache. All of these improvements are ac-

complished with merely 2 microseconds of computation overhead at the cache layer

compared to a traditional fix-sized cache.

1.1.2 LLM Inference Framework for CPU

Second, existing Large Language Model (LLM) inference frameworks on CPUs

adopt multithreading and data parallelism as acceleration methods. We observe that

these two methods fail to improve inference performance. On one hand, we find

that o↵ering more computing resources with multithreading does not improve the

LLM inference performance e↵ectively. Based on our analysis, the performance im-

provement is constrained by the memory bottleneck. The elevated memory latency
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caused by memory throughput contention due to the increased computing cores has

impeded performance improvement and even led to a plateau of performance gains.

On the other hand, we argue that data parallelism is not suitable for large models,

which have high demands for computing power; replicating inference instances in

this context can rapidly use up available computing resources. Besides, the memory

throughput contention problem, as discussed above, becomes more severe with data

parallelism.

To address the above problems, we propose latency-aware memory aggregation

and NUMA-aligned tensor parallelization. In the first method, we introduce addi-

tional memory resources, such as CXL memory expanders, to alleviate the stress on

the local memory. The introduction of additional memory through CXL can poten-

tially increase the system memory latency due to its high memory latency, which

might adversely a↵ect performance. To tackle this issue, we optimize the distribution

of workloads across various memory types to achieve the lowest memory latency. In

the second method, we employ a “divide and conquer” strategy to improve comput-

ing e�ciency. In our second method, we adapt tensor parallelism, a technique that

divides large models into smaller sub-models to be processed in parallel. Our inno-

vative application of this technique on CPUs processes these sub-models with fewer

CPU and memory resources, thereby improving the utilization e�ciency of these re-

sources. We design NUMA-aligned tensor parallelization which binds CPU cores and

sub-NUMA nodes based on data locality to eliminate cross-NUMA memory accesses.

We implement a CPU-based inference framework incorporating the two optimiza-

tion approaches. The evaluation results show that our proposed memory aggregation

method can reduce the first token latency by 9%, the average token latency by 24%,

and the end-to-end latency by 22% for a 6.7b model inference when batch size is

1. Our proposed tensor parallelism method can reduce the first token latency by
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41%, the average token latency by 29%, and the end-to-end latency by 33% for a

66b model when the model is parallelized across four groups of CPUs and the batch

size is 8. When we combine both methods, we can achieve 61% improvement in first

token latency, 33% improvement in average token latency, and 43% improvement in

end-to-end latency for a 66b model when the model is parallelized across eight groups

of CPUs and the batch size is 8.

1.1.3 CXL-based Hybrid Memory Pool

Finally, the largest cost of the public cloud still comes from the memory itself.

Public providers, such as Azure, spend half the server cost on DRAMs and the cost

will continue to grow due to the growing demands of data-intensive applications.

Also, DRAMs use two to three times more power and cooling than SSDs do. At the

same time, NVMe SSDs are getting higher throughput while continuing to be more

power-e�cient and cost much less, nearly one fifth the cost of DRAM. To further

reduce the cost from DRAM, SSDs are good candidates for disaggregated memory

pools. They can be incorporated with DRAM to save even more cost. The addition

of fast SSDs to the memory pool forms another tiered memory architecture in the

existing two-tier memory pooling systems (local memory and remote memory) which

presents new challenges to memory disaggregation in both performance and cost.

To validate the potential of incorporating SSDs into the memory pool. We first

emulate the behavior of the CXL-based hybrid memory pool using software based

solutions in the absence of real hardware through cache-coherent NUMA architecture.

The tiered memory system uses local DRAM as the first tier with the lowest memory

access latency. The hybrid memory pool is the second tier with higher memory access

latency. Within the memory pool, there is a sub-tiered memory system with NUMA

node 2 as the first tier and NVMe SSD as the second tier. We then evaluate how the
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hybrid memory pool of both DRAM and SSDs a↵ects the applications performance

compared to DRAM-only memory pool in the cloud environment by changing di↵erent

compositions of DRAM and SSDs, or overcommit ratio, to quantize the performance

degradation. The overcommit ratio is defined as the ratio of required memory and

actually allocated memory. By doing the above steps, we shed some light in solving

the previously mentioned challenges of tiered memory disaggregation.

The evaluation results show that applying SSDs to the memory pool does reduce

cost while maintaining the same level of performance for these types of workloads.

On one hand, database and analytic workloads, such as TPC-C and TPC-H, which

have high requirements for memory latency and bandwidth, are severely a↵ected by

the hybrid memory pool. On the other hand, the performance of computing intensive

applications FFmpeg degrades slightly by 0.3% when the overcommit ratio increases

from 1 to 1.5. When we continue to increase the overcommit ratio, the performance

degradation does not get much worse, dropping by 11.9% for an overcommit ratio of

4. By using NVMe SSD, even with a mere addition of NVMe SSD at an overcommit

ratio 1.5, we can already save 32% of total cost of memory. What’s more, we can save

up to 72.5% of total cost of memory when the overcommit ratio is 4.

1.2 Contributions

The contributions detailed in this dissertation help enhance the application of

memory and storage disaggregation techniques. By refining and applying these de-

signs, the research significantly boosts the e�ciency, scalability, and cost e�ciency

of computing systems. This is particularly relevant in today’s surge in data volume

and complexity, a trend that is expected to continue into the future. This disser-

tation not only addresses the immediate challenges posed by today’s data-intensive

applications but also lays a robust foundation for future innovations. The result is
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a set of optimized systems that are well-equipped to handle the increasing demands

for data processing, thereby supporting the growth and evolution of next-generation

computing technologies.

1.3 Outline

The rest of this dissertation is organized as follows: Chapter 2 presents the rack-

scale disaggregated cache system with variable-sized cache blocks; Chapter 3 presents

the CPU-based LLM inference frameworks with latency-aware memory aggregation

and NUMA-aligned tensor parallelism; Chapter 4 presents the design of CXL-based

hybrid memory pool; and Chapter 5 concludes the dissertation with insights and

visions for resource disaggregation and data-intensive computing.
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Chapter 2

IMPROVING CACHE EFFICIENCY THROUGH DISAGGREGATION

2.1 Disaggregated Cache

2.1.1 Rack-Scale Cache Disaggregation

Cloud block storage has been widely adopted by today’s public, private, and

hybrid cloud infrastructure for primary data storage ebs (2023); ibm (2023); goo

(2023); cep (2023). With block storage, data is partitioned into fix-sized blocks and

stored on the underlying storage medium. These blocks can be directly accessed by

applications or through mounted file systems Liu et al. (2019a, 2020), allowing for

quick modification of specific blocks to e�ciently serve I/O requests.

NVMe SSDs are commonly used as a caching solution in large-scale cloud block

storage systems to improve I/O performance Zhou et al. (2020). Typically, caches

are deployed on computing hosts to mitigate the high network latency to the storage

clusters. However, cloud providers often encounter the challenge of load imbalance

where some cache devices are more heavily used than others, leading to overloaded,

under-loaded, or well-loaded cache devices on computing hosts Afzal and Kavitha

(2019). This results in unbalanced cache utilization and wasted cache resources.

Cache disaggregation presents a solution to the aforementioned issues by disaggre-

gating all the cache resources, enabling cache to be shared and managed as a whole.

It decouples SSD cache from the computing nodes and allows independent utilization

of cache resources regardless of where an application is placed. In this sense, the cache

resources are shared by all the applications and the cache load imbalance problem

is addressed. In cloud environments, this can be achieved at either cluster scale or
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Figure 2.1: Rack-Scale Cache Disaggregation

rack scale. Cluster-scale cache disaggregation o↵ers more pooled cache resources and

consequently can result in better cache utilization compared to rack-scale. However,

it su↵ers from higher network latency to access cache across the cluster which can

negatively impact I/O performance. Additionally, it requires complicated software

design and may inversely bring unacceptable software overhead and o↵set its bene-

fit. Conversely, rack-scale cache disaggregation can provide superior cache resource

utilization compared to the local cache and involve much lower network and software

overhead compared to cluster-scale. As such, it provides an optimal trade-o↵ between

cache resource utilization and I/O performance. Figure 2.1 illustrates an example of

rack-scale cache disaggregation.

Rack-scale cache disaggregation enables cache devices within the same group of

racks to share a cache server, providing computing servers of the same rack group

with a pool of shared cache resources. The fast data transfer between computing
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nodes and the cache server can be achieved with the adoption of NVMe over Fabrics

(NVMeoF) nvm (2023a) technology, which is a protocol designed to provide storage

to computing servers through the network using the NVMe protocol. It adds less than

10 microseconds of additional latency to locally attached NVMe devices nvm (2021),

making it an ideal choice for connecting the cache pool to the computing nodes.

According to a recent performance report nvm (2023b), NVMeoF using RDMA nvm

(2023a) has demonstrated impressive speed, achieving more than 11M 4K IOPS with

an average latency of 231 microseconds using 100 Gbps NICs. As network bandwidth

continues to double every few years, this performance is expected to improve even

further. With such high performance, a single cache server can e↵ectively serve

thousands of concurrent NVMeoF connections. Furthermore, a single cache server

can provide large storage capacities. For example, Samsung’s Poseidon reference

system ins (2021) can support up to 24 Samsung PM1733 NVMe SSDs with a total

capacity of up to 368TiB. This capacity is su�cient to support thousands of cache

clients for cloud block storage.

Figure 2.2 compares the I/O performance of di↵erent storage setup: local NVMe

SSDs (local), remote NVMeoF SSDs (nvmeof), and remote all-flash Ceph Rados Block

Devices (rbd) cep (2023). Local and nvmeof each consists of four Samsung PM9A3

NVMe SSDs that form a RAID0. Rbd consists of 12 Samsung PM9A3 NVMe SSDs

from a 3-node Ceph cluster that form a RAID0. We use local to demonstrate the

performance of the local cache, and nvmeof to demonstrate the performance of the

disaggregated cache. Rbd is an open-sourced cloud block storage system used to

demonstrate the performance of cloud block storage without NVMe SSD caching.

We ran the FIO fio (2023) benchmark issuing 30 minutes of asynchronous random

4K reads and writes with the same I/O queue depth to di↵erent storage setups. We

observe that local NVMe SSDs outperform cloud block storage by 60X. Remote SSDs
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Figure 2.2: IOPS Comparison of Local SSDs, NVMeoF SSDs, and All-Flash Ceph

RBD.

using NVMeoF have comparable performance to local NVMe SSDs with merely a 9%

drop in IOPS.

2.1.2 Rack-Scale Cache Management

A cache block is the minimum unit of cache that can be read from or written

to. The block size determines the size of an I/O operation that can be performed.

Common cache block sizes range from 512B to 64KiB Waldspurger et al. (2015);

Zhang et al. (2020); Li et al. (2016); Arteaga et al. (2016); Fu et al. (2018). The

choice of cache block size can impact the performance, endurance, and cost of a

storage solution by a↵ecting cache hit ratio, I/O volume, and in-memory metadata

overhead. Therefore, it’s important to select a cache block size that fits the workload

best. Smaller cache blocks often have better I/O performance due to the smaller I/O

volume, which comes from the smaller cache block allocation and smaller cache miss

penalty. However, they may have a lower cache hit ratio because they cannot fully

leverage the spatial locality within the application requests Hennessy and Patterson
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(2011).

For a rack-scale cache with hundreds of terabytes of cache space, the large memory

footprint for the metadata is another concern for small block sizes. For example,

assuming each cache block only requires 40 bytes of memory metadata to provide a

source address to cache address mapping (including source address, cache address, a

pointer for indexing, and two pointers for LRU) Arteaga et al. (2016); mem (2023),

a 368 TiB cache with 16 KiB cache block size would require 920 GiB of memory

footprint, which is di�cult to fit in memory, considering memory density grows 10

times slower than SSD density mem (2021).

Large cache blocks, on the other hand, can potentially improve hit ratio Hennessy

and Patterson (2011) due to better exploitation of spatial locality. Additionally, the

memory footprint reduces linearly with the increased size of the cache block. Take

the last example: a 368 TiB cache with 512 KiB cache block size would require merely

29 GiB of memory footprint. However, large cache blocks lead to large cache block

allocation and large cache miss penalty which can significantly harm I/O performance.

These reasons stop large cache blocks from being applied in reality. Section 4.2

presents a thorough comparison of I/O performance using cache of di↵erent cache

block sizes.

The cloud environment is dynamic and changes rapidly over time with varying

workloads. Some workloads involve small requests, such as those from transactional

databases, while others have large requests, such as those from multimedia systems.

We conducted an analysis of request size cumulative distribution functions (CDF)

from three real-world traces: Alibaba block I/O Traces (alibaba) Li et al. (2020), MSR

Cambridge Traces (msr) Narayanan et al. (2008), and Systor ’17 Traces (systor) Lee

et al. (2017) (detailed information about the traces is presented in Section 4.2). Fig-

ure 2.3 shows the results. We observe that the distribution of request sizes varies
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Figure 2.3: Request Size CDF of di↵erent traces

Figure 2.4: Disaggregated Cache Architecture

across the traces. For alibaba and systor, more than half of the requests are smaller

than or equal to 4KiB. For msr, more than half of the requests are larger than 32KiB.

Based on the above observations, a traditional fix-sized block cache is insu�cient

for today’s complex cloud environment. Instead, we design an adaptive cache that

can adapt the cache block size to di↵erent cloud workloads which is elaborated in

Section 2.2.
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Figure 2.5: Adaptive Cache Block Allocation

2.1.3 Implementation

AdaCache extends PoseidonOS poe (2023), a userspace software-defined storage

(SDS) solution providing high-throughput and low-latency flash storage virtualization

with capacity elasticity and data protection (RAID), to o↵er rack-scale disaggregated

cache service for cloud block storage. It is implemented as a virtual block device

(bdev) module bde (2023) using the SPDK framework. By using a virtual bdev

module, AdaCache can be seamlessly integrated with a wide range of cloud block

storage bdevs, enabling compatibility with existing storage systems.

Figure 2.4 illustrates the architecture of AdaCache. Each local NVMe SSD is rep-

resented by a cache bdev in the SPDK framework. All the cache bdevs are managed

by PoseidonOS to o↵er a large virtualized disaggregated cache space to AdaCache.

Each virtual drive in the cloud block storage is represented by a core bdev. AdaCache

claims the cache and core bdevs and redirects I/Os between them with no require-

ment for knowledge of the I/O and network protocol specifics of the underlying bdevs.

AdaCache uses GLib’s The GNOME Project (2023) hash table implementation for

the in-memory key-value stores.
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2.2 Adaptive Cache Block Size

2.2.1 Fix-sized Cache Allocation

Traditional fix-sized cache block allocation has three major steps: address align-

ment, address lookup, and cache block allocation. Address alignment aligns the o↵set

of the original I/O requests to the aligned o↵set based on cache block size. Assume

Ro is the request o↵set, B is the cache block size, and Ao is the aligned o↵set. Ao is

computed using the following Equation 2.1.

Ao = floor(Ro/B) ⇤B (2.1)

For example, a read request with o↵set 33KiB using 32KiB as cache block size aligns

to aligned o↵set 32KiB.

During address lookup, the aligned o↵set is used as the key to look up the cache

address in an in-memory key-value store. In case of a read cache hit, data is read

from the cache address directly. Otherwise, a new cache block is allocated and data

is read from the backend storage and cached to the newly allocated cache block.

In case of a write cache miss, data is first read from the backend storage and

cached to a newly allocated cache block. If the cache uses write-back policy, data

is written to the cache block and dirty cache blocks are written back to the back-

end storage periodically or when they are replaced from the cache. If the cache uses

write-through policy, data is written to the cache block and backend storage simul-

taneously to maintain data consistency. When the cache becomes full, a replacement

algorithm such as Least Recently Used (LRU) or Least Frequently Used (LFU) is

used to determine which data to replace before allocation happens.
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2.2.2 Variable-Sized Cache Allocation

Cloud workloads are dynamic in nature, and therefore, the cache system should

be able to adapt itself to di↵erent workloads that may have varying request sizes.

For small requests, small cache blocks are deemed su�cient while large cache blocks

may cache unnecessary data, resulting in cache pollution and increased I/O volumes.

Conversely, for large requests, large cache blocks can reduce the number of I/Os

between the cache and the cloud block storage, and can also reduce the metadata

memory overhead. AdaCache uses adaptive cache block allocation which allocates

di↵erent sizes of cache blocks based on the request size.

AdaCache first generates a list of missing intervals for all the parts of the request

that are missing in the cache. As shown in Figure 2.3, a request can be larger than

256KiB and cover multiple cache blocks. AdaCache determines the aligned range

of the request by aligning the request o↵set and end address (o↵set + length) to

the smallest block size and iterates through the request to find out all the missing

intervals.

Because the cache employs variable cache block sizes, it needs to check the in-

memory key-value store of every block size to find out if any part of the request is

cached under each block size. Figure 2.5 illustrates an example where a request at

o↵set 48KiB with length 184KiB on a cache that employs cache block sizes of 32KiB,

64KiB, 128KiB, and 256KiB. In this example, the latter part of the request (from

128KiB to 232KiB) is cached under the 128KiB block size. The aligned request range

is from 32KiB to 256KiB.

Within the request range, AdaCache starts the search from the smallest cache

block size (32KiB in the example), and checks if the current address is cached under

any of the cache block sizes. AdaCache first aligns the current address to di↵erent
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cache block sizes using Equation 2.1. For the example, the aligned o↵sets are 32KiB, 0,

0, and 0 for the cache block sizes of 32KiB, 64KiB, 128KiB, and 256KiB respectively.

It then uses these aligned o↵sets to search the in-memory key-value store of each cache

block size. If the result is all misses, then it knows that the current address with the

smallest cache block size (the interval between 32KiB and 64KiB in the example)

is not cached, and it adds the interval to the list of missing intervals. AdaCache

merges missing intervals if they are contiguous to allocate the largest possible cache

block for the intervals. AdaCache then moves on to the next address covered by the

request (64KiB in the example) and repeats the above process. After checking the

whole request, AdaCache gets a complete list of missing intervals. In the example,

the interval from 32KiB to 128KiB is missing in the cache. Algorithm 3 presents the

pseudo-code of the missing intervals generation.

For each missing interval in the list, AdaCache tries to allocate using the largest

possible cache block size. This greedy allocation ensures that AdaCache reduces the

number of allocated cache blocks and I/O counts. To determine if a block size is

suitable for the missing interval, AdaCache makes sure the cache block is within the

range of the missing intervals because the addresses that go beyond these intervals

may have been cached.

In the example, AdaCache first checks how to allocate for the interval from 32KiB

to 128KiB. The largest possible cache block for this interval is actually 32KiB, because

all the larger cache blocks start beyond this interval. For the remaining missing

interval from 64KiB to 128KiB, the largest possible cache block is 64KiB, because

the interval from 64KiB to 128KiB is within the range of the missing interval (64KiB

to 128KiB). Therefore, at the end of this greedy allocation process, AdaCache caches

two blocks that include one 32KiB cache block from 32KiB to 64KiB and one 64KiB

cache block from 64KiB to 128KiB. Algorithm 2 presents the pseudo-code of the
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Algorithm 1 Missing Intervals Generation

1: Remarks:

Bn, . . . B1: block size from large to small, HB: hash table for

block size B, AB(O): align o↵set O using block size B,

MAP (B,E): merge o↵set interval {B,E} to MissingIntervals
2: Inputs:

O: request o↵set in bytes, L: request length in bytes

3: Output:

MissingIntervals: a list of missing cache blocks

4: MissingIntervals {}, begin AB1(O), end AB1(O + L) + B1

5: while begin 6= end do

6: hit false

7: for B  B1, . . . Bn do

8: begin aligned = AB(begin)

9: if begin aligned 2 HB then

10: begin begin aligned+B

11: hit true

12: break

13: end if

14: end for

15: if hit 6= true then

16: MAP (begin, begin+B1)

17: begin begin+B1

18: end if

19: end while

20: return MissingIntervals
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Algorithm 2 Greedy Cache Block Allocation

1: Remarks:

B1, . . . Bn: block size from small to large

HB: hash table for block size B

AB(O): align o↵set O on block size B

BA(I): the begin address of interval I

EA(I): the end address of interval I
2: Inputs:

MissingIntervals: a list of cache blocks to allocate

3: for each I 2MissingIntervals do

4: begin BA(I)

5: end EA(I)

6: while begin 6= end do

7: for B  Bn, . . . B1 do

8: if begin 6= AB(begin) then

9: continue

10: end if

11: if B > end� begin then

12: continue

13: end if

14: HB  begin [HB . allocate cache block

15: begin begin+B

16: end for

17: end while

18: end for
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Figure 2.6: Group-Based Cache Organization

greedy cache block allocation.

Assuming N is the request length, M is the number of di↵erent cache block

sizes, and K is the total number of cache blocks in the cache, the algorithm’s time

complexity of fix-sized and adaptive cache block allocation have upper bounds of

O(K ⇤N) and O(K ⇤N ⇤M), respectively. In practice, M is set to a constant value,

such as 4 in Figure 2.5 where the time complexity can be approximated as O(K ⇤N),

which is equivalent to the fix-sized cache block allocation. The space complexity of

the algorithm is identical to the fix-sized cache block allocation, which is O(K).

2.2.3 Group-Based Cache Organization

Adaptive cache block allocation is an e↵ective technique that can leverage both

small and large blocks, making it suitable for dynamic cloud workloads. However, it

incurs fragmentation. When the cache becomes full and adaptive cache blocks get

allocated, the cache space is divided into non-contiguous variable-sized pieces. When

large requests come, the replacement of smaller blocks can generate many scattered

small holes and it is hard to fit a large cache block in.

To address the issue of fragmentation, AdaCache utilizes the concept of slab allo-
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cator Bonwick et al. (1994); mem (2023), which involves grouping cache blocks of the

same size together into identical-sized groups. Cache blocks belonging to the same

group are stored physically adjacent to each other in the cache. Consequently, when

the cache is full, a whole group is replaced, creating a contiguous piece of cache space

for cache block allocation.

AdaCache chooses the largest cache block size as the group size. In this way,

replacement of a whole group can free just enough cache space for the largest cache

block allocation. In the case of small block allocation, the replacement of a whole

group creates an open group that can be used to allocate many cache blocks of that

block size. Figure 2.6 illustrates an example of the group-based cache organization.

The cache block sizes are 32KiB, 64KiB, 128KiB, and 256KiB and the group size

is 256KiB. There are three open groups storing 32KiB, 64KiB, and 128KiB cache

blocks, respectively, and one full group storing a 256KiB cache block.

When allocating a cache block, AdaCache checks if the cache is full. If it is not,

the allocator examines if there is an open group with the same block size. If such

a group exists, the block is allocated from the open group. If there is no such open

group, AdaCache creates a new one and allocates the cache block from there. If the

cache is full, AdaCache replaces an entire group and follows the above procedure.

Assume M is the number of di↵erent cache block sizes, there are a maximum of M

open groups kept in the cache at any given time, and it does not waste significant

cache space. For example, in Figure 2.6, at most 4 256KiB open groups are kept in

the cache and used to allocate cache blocks for coming requests.

2.2.4 Two-Level Cache Replacement

Following group-based cache organization, AdaCache uses a group-based LRU

replacement policy that links all the groups together for cache replacement. When a
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cache block is accessed, the group that contains the cache block is promoted to the

head of the group-based LRU list. When the cache is full, AdaCache replaces the

group that is at the tail of the LRU list. Although each cache miss may trigger a

write-back I/O of the whole group to be evicted, the I/O volume is smaller than that

of using large fix-sized cache blocks. Every time a whole group is evicted, all of its

space is freed up at once in the cache and can be used to store a number of small

cache blocks from future requests.

One potential drawback of the group-based replacement policy is that it may re-

tain cold blocks that are in the same group as the frequently accessed hot blocks in

the cache, leading to cache pollution. To alleviate the problem, AdaCache incorpo-

rates a global cache block LRU replacement policy in addition to the group-based

replacement policy. Figure 2.6 illustrates the two-level LRU lists.

All the cache blocks are linked using a global LRU list. When AdaCache tries to

allocate a new cache block in case of a full cache, it first checks the tail of the global

LRU list. If the tail cache block has the same size as the new cache block, AdaCache

replaces it and promotes both the cache block and its group to the head of the LRU

lists. If the size mismatches, AdaCache uses group-based LRU replacement policy to

replace a whole group. The use of two-level cache replacement does not incur high lock

contention overhead when the cache is accessed in parallel as AdaCache leverages the

lockless design of modern high performance storage framework Corporation (2023).

2.3 Evaluation

We evaluate the performance of AdaCache using both the simulation and proto-

type following the design and implementation described in Section 2.2.

Testbed Setup. The testbed consists of three components which are the client,

the disaggregated cache server, and the cloud block storage cluster. The client is-
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Table 2.1: Specifications Of The Testbed.

Server CPU DRAM SSD OS Software

2x Intel

Client Platinum 384GB Ubuntu Replayer /

8260 DDR4 / 18.04 Simulator

96 cores

2x Intel 4x Samsung

Disaggregated Platinum 384GB PM9A3 Ubuntu Poseidon

Cache Server 8260 DDR4 PCIe Gen3 20.04 OS v0.11

96 cores 3.84TB

4x Samsung

3-node 2x AMD 512GB PM9A3 Ubuntu Ceph

Ceph RBD EPYC DDR4 PCIe Gen4 20.04 Quincy

7702 3.84TB

Table 2.2: Trace Segments Statistics.

alibaba msr systor

#Reads 24.5M 61M 40.7M

#Writes 25.5M 9M 19.3M

Read Tra�c GiB 607.3 2416.8 1109.2

Write Tra�c GiB 375.9 207.2 271.9

sues the I/O workloads to the disaggregated cache server through NVMeoF RDMA

using a 100Gbps NIC. The disaggregated cache server runs AdaCache and provides

the cloud block storage with NVMe SSD caching through the network using another

100Gbps NIC. The disaggregated cache server is configured as RAID0 using Posei-

donOS consisting of four NVMe SSDs. The cloud block storage is a three-node Ceph
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(a) Read Latency (b) Write Latency

Figure 2.7: I/O Latency for Alibaba Trace Replay

(a) Read Latency (b) Write Latency

Figure 2.8: I/O Latency for Msr Trace Replay

cluster with Ceph Rados Block Devices (RBDs). The specs for each component are

shown in Table 2.1.

Workloads. We considered the following three real-world block I/O traces to

provide a comprehensive evaluation:

• Alibaba block I/O Traces Li et al. (2020) (alibaba): alibaba is collected from an

elastic block service cluster of Alibaba Cloud and it contains I/Os from 1000

virtual disks. Among them, we picked 5 virtual disks (vd2, vd10, vd49, vd124,

and vd740) that have a large amount of I/O volumes for trace replay. We re-

played the first 10 million I/O requests issued to the 5 virtual disks concurrently.

Requests to vd2 and vd740 are write-dominant while I/Os to vd10 and vd124

are read-dominant. Vd49 has a similar amount of read and write I/Os.
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• MSR Cambridge Traces Narayanan et al. (2008) (msr): msr is block-level traces

collected from Microsoft Research enterprise data centers and it contains I/Os

from 13 servers. Among them, we picked traces from seven drives (prn 1, proj 1,

proj 2, src1 0, src1 1, usr 1, and usr 2) that have more than 10 million I/Os.

We replayed the first 10 million I/Os issued to the 7 servers concurrently. All

the msr traces are read-dominant.

• Systor ’17 Traces Lee et al. (2017) (systor): systor is collected from an enterprise

Virtual Desktop Infrastructure (VDI) which contains I/Os from 300 VMs. All

these VMs share 6 storage logical unit numbers (LUN). We replayed the first

10 million I/Os issued to the 6 LUNs concurrently. All the systor traces are

read-dominant.

For trace segments replay, the cache employs a write-back policy and we can

leverage related work Koller et al. (2013) to ensure cache consistency. Trace segments

are replayed using pread() and pwrite() to issue direct I/Os to di↵erent target devices

in parallel according to the trace. Each target device consists of 1 TiB Ceph RBD

as the backend storage and 10% of each trace’s total working set size (WSS) as the

cache size. Table 2.2 shows the statistics of the trace segments that we use for replay.

We also replay the entire traces using a simulator with the same implementation as

the AdaCache prototype to show metrics from the whole trace simulation. In the

evaluation, the cache block sizes used by AdaCache are 32KiB, 64KiB, 128KiB, and

256KiB. We compare AdaCache to fix-sized disaggregated caches with these four cache

block sizes. Each experiment is repeated three times and we show the average results

here. Due to the space limit, we only show evaluation results that are representative

of all results.
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(a) Alibaba Trace Replay (b) Systor Trace Replay

Figure 2.9: Request Processing Latency

2.3.1 I/O performance

I/O Latency. Figure 2.7 shows the average read and write latency from alibaba

trace replay. Results reveal that AdaCache has the best overall read and write la-

tency compared to fix-sized caches with di↵erent trace segments. For read latency,

AdaCache improves it by 19% for trace segment vd740 compared to 32KiB cache and

63% compared to 256KiB cache. For write, AdaCache has an improvement of 9%

for trace segment vd10 compared to 64KiB cache and 50% for vd124 compared to

256KiB cache. Figure 2.8 shows the read and write latency from msr trace replay.

AdaCache also improves the read latency by 7% compared to 32KiB cache for usr 1

and 44% compared to 256KiB cache for proj 2. For write latency, AdaCache can

improve it by 9% compared to 32KiB cache for proj 1 and 39% compared to 256KiB

cache for prn 1.

Comparing the two traces’ latency results from fix-sized caches, alibaba mostly has

the best read and write performance when using a 64KiB cache. Msr has the best

read performance when using a 32KiB cache. For write, di↵erent cache block sizes

perform di↵erently for di↵erent trace segments. For example, trace segment prn 1 has

the best write performance using 32KiB cache while trace segment proj 1 performs

the best using 128KiB cache. This also proves that a fix-sized cache cannot provide
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(a) Alibaba Trace Replay (b) Msr Trace Replay

Figure 2.10: I/O volumes

optimal performance for di↵erent cloud workloads. Of the two traces, AdaCache

outperforms all the fix-sized caches in both read and write. Although AdaCache has

similar I/O volumes as 32KiB cache (discussed later in Section 2.3.2), it is achieving

better performance because of the adaptiveness of AdaCache which allocates large

cache blocks for large requests. These large cache blocks have reduced the number of

I/Os and can therefore improve the performance.

Average Request Processing Latency. Figure 2.9 shows the average request

processing latency from trace replay. This latency is captured from when an I/O re-

quest is received by the cache to when a processed I/O request is sent to the storage

devices. It includes the latency for the cache block allocation as described in Sec-

tion 2.2.1 and 2.2.2. This illustrates the cache block allocation overhead of AdaCache

compared to fix-sized caches. Figure 2.9a shows the request processing latency from

alibaba trace replay. For fix-sized caches, large cache blocks can reduce the number

of cache block allocations and therefore reduce the request processing latency. We

also observe that AdaCache outperforms 32KiB cache in request processing latency

by 25% for vd124. There are two reasons behind this. First, AdaCache uses large

cache blocks for large requests which can help reduce the average request processing

latency. Second, the high hit ratio for alibaba trace segment (around 70% for read and
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(a) Read Hit Ratio (b) Write Hit Ratio

Figure 2.11: Whole Trace simulation results

90% for write) has amortized the extra overhead of adaptive cache block allocation.

Figure 2.9b shows the results from systor trace replay. We observe that AdaCache

has larger average request process latency than fix-sized caches by 29% compared to

32KiB cache for LUN1. Systor trace segment has around 60% read hit ratio and

because it is read dominant, the low hit ratio fails to amortize the overhead. Although

AdaCache brings extra process overhead from adaptive cache block allocation, the

overhead is merely a few microseconds and does not hurt the I/O performance as we

have seen previously from the I/O latency results.

2.3.2 I/O Volumes

Figure 2.10 shows the total I/O volumes from alibaba trace replay and msr trace

replay. The I/O volume consists of writes to the cloud block storage (write-to-core),

reads from the cloud block storage (read-from-core), writes to the cache (write-to-

cache), and reads from the cache (reads-from-cache). Due to the space limit, we only

show 32KiB cache and 256KiB cache I/O volumes which have the smallest and the

largest amount of I/O volumes, respectively. As discussed in Section 2.1, using large

cache blocks may cache unnecessary data and lead to cache pollution and high cache

miss penalty. We also observe that AdaCache has a similar amount of I/O volumes as
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Figure 2.12: Memory Usage For Alibaba Trace Replay

(a) Alibaba Trace Replay (b) Msr Trace Replay (c) Systor Trace Replay

Figure 2.13: Average Request Size v.s Average Cache Block Size

the 32KiB cache. This is because although it uses large cache blocks, it caches only

necessary data based on the request size. It does not su↵er from the large cache miss

penalty as the 256KiB cache does. Of the four types of I/O volumes, I/Os to cloud

block storage has much larger overhead than I/Os to cache. Compared to 256KiB

cache, AdaCache can save 74% I/Os to cloud block storage and 63% I/Os to cache

for vd49 from alibaba.

2.3.3 Memory Usage

Figure 2.12 compares the average metadata memory usage of AdaCache to fix-

sized caches during the trace replay of alibaba. For larger cache blocks, the number

of cache blocks used is smaller which leads to smaller metadata memory usage. Ada-
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Cache saves 41% memory usage compared to 32KiB cache for vd740. From the request

size analysis in Section 2.1, alibaba mostly consists of small requests. For workloads

that have larger requests, AdaCache tends to allocate larger cache blocks and can

potentially save more memory.

2.3.4 Hit Ratio

Figure 2.11 shows the read and write hit ratio from the whole trace simulation

of alibaba, msr, and systor. As discussed in Section 2.1, larger cache blocks can

benefit from the potential spatial locality within the requests and can achieve better

hit ratio compared to smaller cache blocks. We also observe similar behavior when

replaying the trace segments. For the whole trace simulation, compared to 256KiB

cache, AdaCache has up to 39% drop in read hit ratio and up to 38% drop in write hit

ratio from msr. For trace replay, AdaCache has up to 60% drop in read hit ratio and

up to 59% drop in write hit ratio from msr compared to 256KiB cache. Although

the hit ratio is much lower for AdaCache, it has up to 39% improvement in write

performance and 40% improvement in read performance in trace replay compared to

256KiB cache. This shows that compared to the hit ratio and memory usage, I/O

volumes play a more significant role in a↵ecting the cache performance.

2.3.5 E↵ectiveness of Adaptive Cache Block Allocation

Figure 2.13 validates the e↵ectiveness of AdaCache block allocation algorithms.

It shows two metrics: the average request size for all the missed requests v.s. the

average cache block size that AdaCache allocates when a cache miss occurs during

trace replay. The core design idea of AdaCache is to adaptively allocate variable-sized

cache blocks based on the request size. The di↵erences between these two metrics tell

us how well AdaCache follows the design idea. We observe that AdaCache follows the
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trend of the request size to allocate cache blocks. With larger requests, the average

cache block size also gets larger. For small requests which are mostly seen from alibaba

and systor, the average cache block size of AdaCache is bounded by the smallest cache

block size 32KiB. For the best case, AdaCache achieves merely a 1% di↵erence in msr

trace replay of trace segment proj 1.

2.4 Related Works

Flash Caching. Flash caching Luo et al. (2013); Koller et al. (2015); Fu et al.

(2020b,a) has been extensively studied to improve the I/O performance for slow pri-

mary storage systems. Solutions have been proposed to solve the capacity and en-

durance Li et al. (2016, 2014a), multi-tenancy Arteaga et al. (2016); Waldspurger et al.

(2015); Zhang et al. (2020); Meng et al. (2014); Fu et al. (2020a) and multi-tier Yadgar

et al. (2007); Ou et al. (2005); Li et al. (2005) problems of flash caching. For exam-

ple, CloudCache Arteaga et al. (2016) presents an on-demand cache management

solution that meets the performance requirements of each tenant by introducing the

Reuse Working Set (RWS) cache demand model. SHARDS Waldspurger et al. (2015)

is an Miss Ratio Curve (MRC) approximation algorithm that focuses on improving

MRC e�ciency for online cache reassignment by employing uniform randomized spa-

tial sampling. These orthogonal works can be integrated with AdaCache to improve

the cache utilization in a disaggregated cloud environment. Nitro Li et al. (2014a)

is a host-side flash cache solution that performs deduplication and compression on

the data blocks, after which the compressed variable-sized data chunks are stored in

the cache as fixed-size Write-Evict Units (WEUs). Nitro uses LRU at the granularity

of WEU for cache replacement. Besides the coarse-grained cache replacement policy

employed by both Nitro and AdaCache, AdaCache also uses the fine-grained cache

block replacement policy to further improve the cache hit ratio by replacing cold
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cache blocks inside each group as discussed Section 2.2.

Flash Disaggregation. Storage disaggregation cep (2023); Amar et al. (2004);

Callaghan (2002); ebs (2023); contributors (2021); Amazon Web Services (2021) is

common practice in production environment. High-performance flash disaggregation

is also an active research area Guz et al. (2017); Nanavati et al. (2017). Since modern

NVMe SSDs are significantly faster than SATA SSDs and hard drives, the software

overhead becomes nonnegligible. Guz et al. Guz et al. (2017) evaluated the overhead

of NVMe SSD storage disaggregation through NVMeoF nvm (2023a) and concluded

that the overhead of remote access is negligible compared to local NVMe SSDs. Deci-

bel Nanavati et al. (2017) is a solution for flash storage disaggregation at the rack

scale, which follows a design of sharing-nothing and provides virtualized storage with

low latency by minimizing the software overhead through the integration of network

and storage layers.

In-Memory Caching. In-memory caching systems mem (2023); Carlson (2013);

Bulkowski and Srinivasan (2013) are widely used in modern software architecture

to improve application performance and scalability. For example, Memcached mem

(2023) is a lightweight DRAM key-value store that stores key-value pairs of the same

value size in slabs of the same slab class. Unlike AdaCache which does global cache

block groups replacement, Memcached does time-consuming slab reassignment Byrne

et al. (2019); Berger et al. (2018); Hu et al. (2015) across slab classes due to the

high concurrency. Data structure optimization Fan et al. (2013); Li et al. (2014b);

Chen et al. (2017) to save the metadata memory overhead has also been studied.

For example, MemC3 Fan et al. (2013) reduces the metadata memory footprint by

up to 30% for Memcached by using concurrent Cuckoo hashing and CLOCK LRU-

approximation cache replacement. These data structure optimization techniques are

complementary to AdaCache and can be leveraged to further reduce the metadata
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memory overhead.

Adaptive Cache Block Sizes. The performance impact of varying cache block

sizes for both memory and storage cache has been thoroughly studied in litera-

ture Dubnicki and LeBlanc (1992); Smith (1987); Przybylski (1990); Loh and Hill

(2011); Prybylski et al. (1988); Agarwal et al. (1989). However, few have studied the

benefits and drawbacks of a cache system with adaptive cache block sizes. Jeremic

et al. Jeremic et al. (2021) proposed a two-size cache block allocation mechanism

that employs a small-block and a large-block SSD cache. The source address space

is divided into segments of contiguous source blocks where either the small or the

large cache block size can be used. The assignment relationship between segments

and cache block sizes is adjusted in the background based on the measurement of

I/O latency. AdaCache di↵ers from the related work including but not limited to 1)

AdaCache supports di↵erent numbers of cache block sizes to cater to the workloads’

characteristics without delay, 2) AdaCache adapts the cache block size based on the

request size which is more e�cient and e↵ective than monitoring I/O latency of the

system. To our best knowledge, AdaCache is the first practical storage cache solution

using adaptive cache block sizes.
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Chapter 3

IMPROVING LARGE LANGUAGE MODEL INFERENCE ON CPUS

THROUGH CXL MEMORY EXPANSION

3.1 Background

In this section, we introduce transformer-based LLM and analyze the rationale of

LLM inference on CPUs.

3.1.1 Transformer-based LLM

Transformer-based Vaswani et al. (2017) LLMs have revolutionized the field of nat-

ural language processing (NLP), due to their superior performance in a wide range

of NLP tasks, including language translation, question answering, and text genera-

tion. Its ability to capture long-range dependencies in text allows it to understand

and generate more coherent and contextually relevant text compared to previous ar-

chitectures like Recurrent Neural Networks (RNN) and Long Short-Term Memory

(LSTM) Vaswani et al. (2017). Transformer-based LLMs can be categorized into

encoder-only models, decoder-only models, and encoder-decoder models. In this pa-

per, we focus on the decoder-only models as they are the most frequently used models

in today’s generative artificial intelligence (AI) applications such as AI chatbots cha

(2023); bar (2023); cla (2023).

LLM inference requires a lot of memory due to its large model size Chowdhery

et al. (2023); Brown et al. (2020); Zhang et al. (2022) and Key-Value (KV) cache. KV-

cache is a commonly used technique which stores the computed key and value vectors

in memory during inference. These vectors are derived from the input tokens (the

processing units in LLMs) to represent the relevance across tokens. KV-cache allows

35



for the reuse of these vectors in subsequent token generations, significantly improving

inference e�ciency by reducing redundant computations. However, this e�ciency

comes with a trade-o↵ in terms of memory usage. As the size and complexity of

LLMs grow, so does the size of the cache needed to store these pairs. For example,

for a 66b model Facebook and Huggingface (2023c) using BF16, the model weights

require 126GB of memory and the KV-cache requires 4.5GB for one single inference

request Kwon et al. (2023). GPUs, even the most advanced, equipped with as much

as 80GB of memory, can quickly be overwhelmed by the memory demands.

The inference process of decoder-only LLM is auto-regressive, making it less

compute-bound. During inference, LLM usually takes a sequence of input tokens

and generates one output token at a time, and the output token is further fed into

the model as the new input. This step repeats until an End-Of-Sentence (EOS) sign

or the maximum output token length is met. Because the inference process gener-

ates only one output token at a time, it requires much fewer computational resources

compared to the training process which processes the maximum sequence length in

parallel, making GPUs less e�cient for latency-sensitive inference tasks Nvidia (2023).

3.1.2 LLM Inference on CPUs

In practice, there is a significant number of deep-learning computations, especially

model inference, taking place on the general-purpose CPUs due to their high availabil-

ity and cost e�ciency Liu et al. (2019b); Xiang and Kim (2019). For LLM training as

well as o✏ine inference with large batch sizes, GPUs are generally preferred since they

are e�cient for high throughput tasks. In comparison, online inference typically uses

a small batch size due to its strict latency requirement in interactive and streaming

applications like interactive chatbots, voice assistants, and online recommendation

systems. As a result, the e�ciency of GPUs, which are optimized for large batch pro-
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cessing is diminished for online inference Liu et al. (2019c). The substantial memory

capacity of CPUs o↵ers an additional advantage, particularly useful for storing large

model weights and KV-cache associated with LLMs. This factor, combined with the

low computing requirements for online inference, positions CPUs as a more suitable

and cost-e↵ective solution for LLM inference tasks.

Meanwhile, modern CPUs have evolved to improve the performance of tasks, such

as LLM inference. These improvements include a substantial increase in computing

cores and the development of AI-specific Instruction Set Architecture (ISA) exten-

sions. Processors like the Intel Xeon Scalable series Chernykh et al. (2019) and AMD

EPYC Velten et al. (2022) feature extremely high core counts, with some models

having over 64 cores and premium models surpassing 100 cores. AI-specific ISA

extensions enhance CPUs’ computing e�ciency, particularly for tasks like matrix op-

erations. Notable examples include Intel’s Advanced Matrix Extensions (AMX) Intel

(2023a) for boosting matrix multiplication e�ciency.

Existing LLM frameworks for CPU inference MegEngine (2023); OpenMNT (2023a)

utilize two methods to improve inference performance: multithreading and data par-

allelism. Multithreading utilizes multiple CPU cores to do inference parallelly. It is

usually implemented through parallel programming libraries like OpenMP Womack

et al. (2023) to achieve parallelism. Data parallelism replicates inference instances

or tasks Wu et al. (2015); Jin et al. (2018); Xiang and Kim (2019); Kogan (2023)

to handle di↵erent data inputs simultaneously, which enhances the throughput of

inference.

3.1.3 CXL Memory Expansion

Inference tasks, as previously introduced, tend to be less computing-intensive and

are more likely to be memory-bound Kwon et al. (2023). This is particularly rel-
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Table 3.1: Resource Comparison Between CPUs and GPUs.

Computing Memory Memory

Power (BF16) Capacity Bandwidth

NVIDIA A100 312 TFLOPS 80GB 2039GB/s

NVIDIA L40 181 TFLOPS 48GB 864GB/s

Intel SPR 218 TFLOPS ¿1TB 600GB/s

evant when considering the much lower CPU memory bandwidth compared to the

GPU. To enhance CPU performance, especially in the context of LLM inference, one

can utilize the Compute Express Link (CXL) CXL (2023), a cache-coherent intercon-

nect based on PCIe, which can expand a system’s memory capacity and bandwidth,

providing expansion to memory devices such as DRAM and persistent memory with

memory semantics Yang et al. (2022a). CXL-based memory expansion has the poten-

tial to address challenges like memory throughput contention for LLM inference, but

adding CXL-based memory expansion presents several challenges: first, the added

memory has higher memory latency than local memory which can a↵ect the over-

all performance. Second, integrating CXL memory requires sophisticated memory

management strategies to e↵ectively utilize both the local and expanded memory.

Table 3.1 shows the resource comparison between state-of-the-art CPUs and GPUs.

The computing power is computed using the BF16 input type. In theory, Intel SPR

(dual sockets) with the latest AMX extension can achieve comparable computing

performance to high-end GPUs such as NVIDIA A100 and L40. To understand the

performance improvement of AMX, we ran matrix multiplication of di↵erent sizes on

CPUs with and without AMX enabled. Figure ?? shows the results. In general, AMX

can improve the matrix multiplication performance by 40%. When the matrix gets

larger, the performance is even better with up to 60% improvement. This confirms
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the potential of CPU in LLM inference with its much-improved computing power.

3.2 Analysis of LLM Inference on CPUs

In this section, we present the analysis of existing performance bottlenecks for

LLM inference on CPUs.
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3.2.1 More Computing Resources is not Better

Following the multithreading method used by existing CPU frameworks, we in-

crease the number of CPU cores for LLM inference task. We use a single Intel Sapphire

Rapids (SPR) processor with 48 cores and 8 channels of DDR5 4800MHz memory in

this set of evaluation. The specifics of our test configuration and software used are

elaborated in Sections 3.3.3 and 3.4. Figure 3.1 presents the single batch inference

end-to-end latency of di↵erent LLMs (opt-350m Facebook and Huggingface (2023b),

opt-6.7b Facebook and Huggingface (2023d) and opt-13b facebook (2023)) as we in-

crease the number of CPU cores from 1 to 48, which reveals a sublinear improvement

of inference speed across all models.

We observe three phases from Figure 3.1: at the beginning, we see that the end-

to-end inference latency (measured in seconds per request) improves linearly as more

cores are added. This upward trend quickly tapers o↵ in the second phase. Although

inference latency still improves, it does so at a much slower pace with the addition

of more cores. Finally, the inference latency reaches a minimum, after which the

performance levels o↵ and does not further improve with additional cores. From

the observations, we have the insight that the inference performance does not scale

with more computing resources, indicating that existing solutions cannot achieve

e↵ective parallelism utilizing CPUs. The memory system emerges as the bottleneck

that impedes the speedup, as elaborated in the subsequent section.

3.2.2 Memory Bottleneck

The auto-regressive inference process reduces the arithmetic intensity which de-

fines the computation needed per memory access. Table 3.2 shows the arithmetic

intensity of di↵erent models’ Multilayer Perception operation (MLP) for training and

inference. With low arithmetic intensity for inference, the CPU cores often complete
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computation quickly and wait for the next batch of data to be loaded from memory.

This makes memory the bottleneck of overall performance. Low arithmetic intensity

also makes techniques used by CPUs to hide memory latency like out-of-order exe-

cution Mutlu et al. (2003) and stream prefetching Jain et al. (2023a) less e↵ective

because of the frequent memory stalls.

In the initial phase of Figure 3.1, the inference process is compute-bound due to a

shortage of CPU cores, making the processor’s computational capability the primary

bottleneck. In the later stages, where there are a su�cient number of CPU cores,

the inference bottleneck transits to memory. To understand how memory latency and

throughput change in the second and third phases, we conduct additional experiments

focusing on system memory. For this purpose, we use Intel VTune Profiler Intel

(2023e) to capture the memory throughput of LLM inference. The results, depicted

in Figure 3.2, illustrate how memory throughput changes with an increasing number

of computing cores. As shown in the figure, the memory throughput first increases

substantially as more cores are added. This is because when computing cores keep

increasing, the compute operations are accelerated, thereby reducing the compute

time. Consequently, the processor’s capability to process data surpasses its ability to

access new data, leading to a demand for greater memory throughput.

In the second experiment, we employ the Intel Memory Latency Checker (MLC) In-

tel (2023c) to issue continuous memory requests to investigate the relationship be-

tween memory throughput and latency of local Non-UniformMemory Access (NUMA)

node and CXL memory expander. We also enable Intel’s Sub-NUMACluster (SNC) In-

tel (2023f) feature to create four sub-NUMA nodes out of the original local NUMA

node so that each sub-NUMA node has the same number of memory channels as the

CXL memory expander so they are comparable. Figure 3.3 presents the result where

local � numa is the result of one sub-NUMA node and local � numa� intensive is
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the result of doubling the number of cores used to issue memory requests.

Our observations indicate that the increase in memory throughput leads to an

exponential rise in memory latency. This finding addresses a critical aspect of our

analysis. In the second phase, as the computing becomes faster, the inference begins

to shift from being compute-bound to memory-bound. At the same time, with the

reduction in compute time, there’s a continuous increase in memory throughput and,

correspondingly, in memory latency. This memory throughput contention emerges as

the primary bottleneck, impeding further speedup in inference performance. Then in

the third phase, the acceleration brought by additional CPU cores is subtle enough to

be hidden from the elevated memory latency. As a result, even though the number of

computing cores continues to grow, both the memory throughput and latency remain

relatively constant. This phenomenon accounts for the observed plateau in Figure 3.1

and 3.2.

This analysis shows that with the ever-increasing computing power, the perfor-

mance bottleneck for LLM inference is indeed on the memory system. The memory

system is struggling to match the pace of the computing performance, and optimizing

the memory system is essential to prevent it from impeding the overall performance.

Some advanced memory devices such as High Bandwidth Memory (HBM) and Mul-

tiplexer Combined Ranks (MCR) ServeTheHome (2023) provide significantly higher

memory bandwidth compared to DRAM and can mitigate this problem. However,

they are inadequate as a standalone solution for LLM workloads on CPUs, due to

either their limited capacity or their lack of maturity.

3.2.3 Parallelism for LLM Inference

As introduced in Section 3.1.2, data parallelism is another common method to

improve the throughput for inference tasks on CPUs. However, this approach is more
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Table 3.2: Arithmetic Intensity for LLM Training and Inference When Batch Size is

1.

Inference Training

350m 0.99878 585.1

6.7b 0.99969 1260.3

13b 0.99975 1365.3

useful for small models compared to large models for a couple of reasons. First,

LLMs demand extensive computing resources for a single instance, and replicating

the instances could exhaust the computing resources easily. Second, LLM inference

already has high memory throughput contention compared to small models, and

further replication could potentially result in even higher memory overhead caused by

throughput contention. Given the memory bottleneck, the performance improvement

for LLMs will not be as significant as it is for smaller models, or it can even decay.

However, considering the e↵ectiveness of data parallelism in the inference of small

models, dividing a large model into smaller sub-models and processing them in parallel

with fewer computing and memory resources is still feasible.

To validate the e↵ectiveness of this concept, we evaluate the performance of Gen-

eral Matrix Multiplication (GEMM) across di↵erent scales with varying CPU and

memory resources. We designate 48 CPU cores and 4 sub-NUMA nodes as one unit

of resource and run the MLP layer of opt-30b Facebook and Huggingface (2023a)

as one unit of computation. Figure 3.4 presents the result. Ideally, if the floating

point operations’ performance was to scale linearly with the resources, scaling both

would result in similar performance. However, the computing e�ciency diminishes

with an increase in scale which can be attributed to several factors: first, the sub-
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optimal parallelization of GEMM operations; second, the overhead resulting from

synchronization in a multithreaded environment; and third, the inability to speed up

the sequential part of the operation as dictated by Amdahl’s Law. Such a trend,

favoring better resource e�ciency with a smaller amount of resources, inspires us to

adopt tensor parallelism for large models to mitigate the above issues, as elaborated

in Section 3.3.2.

3.2.4 Memory Allocation Pattern of LLM Inference

The memory allocation pattern of LLM inference workloads is deterministic. Fig-

ure 3.5 shows the number of memory pages allocated during model loading (0-70s) and

two consecutive LLM inferences (70-160s). Figure 3.6 shows the memory throughput

used at the same time. In the figures, we use opt-30b Facebook and Huggingface

(2023a) model with batch size equal to 1, input token length equal to 64, and output

token length equal to 128. We also vary input and output token lengths, as well as

hyperparameters like models and batch sizes, and observe the same pattern which

indicates that over 99% of anonymous pages are allocated during the model loading

phase and the allocation pattern is deterministic. Also, L1 and LLC cache miss ratios,

as reported by Linux perf Linux (2023), remain consistent across various following

inference tasks.

The above observations suggest that LLM inferences with di↵erent hyperparam-

eters have consistent memory allocation patterns. Although memory throughput

contention happens during inference, it is the model loading phase that determines

the memory allocation pattern. Given that memory pages remain static once allo-

cated, a static memory allocation policy can identify the optimal configuration via

o✏ine profiling and configure the memory allocation during the model loading phase,

eliminating the need for online monitoring and the associated consumption of sys-
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tem resources. This motivates our static memory allocation policy introduced in

Section 3.3.1.

3.3 Optimization of LLM Inference on CPUs

Based on the analysis in Section 3.2, we can conclude that existing LLM inference

solutions fail to achieve e�cient parallelism from multithreading or data parallelism.

We thus identify two key directions for optimization: reducing memory throughput

contention to improve multithreading performance and utilizing tensor parallelism to

improve the computing e�ciency for large models. In the following sections, we will

introduce each optimization method in detail.

3.3.1 Latency-aware Memory Aggregation

To mitigate memory throughput contention, our approach involves enhancing the

memory resources by incorporating additional memory devices such as CXL memory

expansion, persistent memory, and HBM. The aggregated memories are allocated

and accessed as a whole and data does not migrate across memories. This strategy

allows for a portion of the memory pages allocated to the added memory, reducing the
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amount of memory requests directed to the local memory. Consequently, the reduced

memory throughput contention can result in a reduction in memory latency. In this

paper, we use fast and slow memory to distinguish local memory and additional

memory. With the help of the additional bandwidth from the slow memory, the

latency of the fast memory can be improved, resulting an overall improvement in

both latency and throughput. Note that the proposed aggregated memory system

di↵ers from a typical tiered memory system Maruf et al. (2023); num (2023); hot

(2023). In a tiered memory system, data moves frequently between tiers based on

the hotness of data. This behavior is harmful for latency-sensitive tasks as the data

movement occupies additional memory bandwidth and increases memory latency Sun

et al. (2023).

A critical challenge in this method is ensuring that the memory latencies of both

the fast and slow memory are close to identical. High memory latency in either type of

memory device can significantly hurt the performance, as computing may stall waiting

on the slowest memory access. This necessitates that the latency gap between fast

and slow memory must be small. However, as shown in Figure 3.3, CXL-expanded

memory exhibits significantly higher memory latency compared to the local NUMA

for the same amount of memory requests. Additionally, local NUMA experiences

higher memory latency with more intensive workloads. This implies that we can tune

the workload intensity which can be controlled by the percentage of memory pages

allocated on the memory devices to adjust the memory latency. Simple memory

allocation policies that are based on memory bandwidth or capacity of fast and slow

memories, i.e., allocating memory pages based on the memory bandwidth or capacity

ratio of fast and slow memories, fail to bring optimal performance as they neglect

the impact of memory latency and di↵erent LLM inference hyperparameters. This is

further confirmed by the evaluation results in Section 4.2.
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To address the challenge, We propose a two-stage inference framework that is

inspired by the observed static memory allocation pattern (Section 3.2.4) of LLM in-

ference workloads: a warm-up stage followed by a serving stage. During the warm-up

stage, the framework profiles the entire system using inference workloads to quickly

determine the optimal percentages of memory pages to be distributed across the ag-

gregated memories. Once the optimal memory configuration is established, it remains

static and the serving stage starts, where actual inference tasks are performed with

memory pages allocated according to the percentages determined in the warm-up

stage. Note that di↵erent LLM hyperparameters and system configurations can af-

fect the memory configuration while di↵erent input and output token length do not

a↵ect the configuration as shown later in Section 4.2.

A dynamic page allocation policy Sun et al. (2023) which monitors fast memory

performance counters to make page allocation decisions does not work well for LLM

inference workloads. First, this policy predicts application performance using a linear

model trained on the performance counters from both the model-loading and inference

phases which is inaccurate in predicting the model-loading phase (Figure 3.3). We

simulate the policy with a 30b model and it only allocates 31% of memory pages

locally which is sub-optimal as shown in Section 4.2. On the other hand, training

the linear model with performance counters from the model-loading phase leads to

allocation dependent on models only, disregarding other hyperparameters like batch

size and system configuration which is also sub-optimal as shown in Section 4.2.

Moreover, the policy that utilizes only fast memory performance counters fails to

monitor slow memory’s performance. Given the performance di↵erence between local

and added memory, distributing memory pages to added memory can enhance local

memory performance but deteriorate the performance of slow memory, ultimately

leading to a decline in the system’s overall performance. Finally, continuous moni-
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Figure 3.7: Fast and Slow Memory Latency Based on Di↵erent Workloads on Fast

Memory

toring of memory performance requires extra system resources, which can hinder the

performance of LLM inference. Consequently, this method fails to optimally utilize

additional memory resources to alleviate memory throughput contention.

During the warm-up stage of our proposed framework, we need to find out the

percentages of memory pages to allocate to the fast and slow memories to achieve the

best performance. We formulate the issue into an optimization problem. Considering

all the memory pages required by the LLM inference workload, we distribute x%

to the fast memory and the remaining (100 � x)% to the slow memory. Based on

Figure 3.3, we can construct Figure 3.7, where the x–axis represents the percentage

of memory pages (x) allocated to the fast memory and y–axis represents the memory

latency of the fast and slow memory when x percentage of memory pages are allocated

to the fast memory. As x increases, fast memory latency rises, while that of the slow

memory falls.

By interleaving the memory pages across the fast and slow memories, the aggre-

gated memory latency (L(x)) is modeled by the maximum memory latency of fast
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and slow memory, which can be expressed as:

L(x) = max(f(x), g(x))

Here, f(x) and g(x) are the memory latency functions for fast and slow memory,

respectively as shown in Figure 3.7. The objective is to identify the value of x that

minimizes L(x). Based on Figure 3.7, L(x) can be visualized as the top portion of

f(x) and g(x) in yellow. As per this graphical representation, L(x) first decreases

monotonically, after reaching a minimum point, it increases monotonically. It exhibits

a single minimum value xopt at the intersection point of f(x) and g(x), indicating

the optimal memory configuration for the inference. This further substantiates the

necessity that the latency gap between fast and slow memory needs to be small so

that they have an intersection point in terms of memory latency.

Constructing an exact function for L(x) is challenging, so a straightforward method

to identify the best configuration would be to employ a linear search, iterating through

all possible allocations to determine which one o↵ers the best inference performance.

Nevertheless, the theoretical shape of L(x) allows for the use of binary search because,

at any point in the sequence, we can determine which direction to move to find the

minimum, which brings down the search time compared to linear search.

We thus propose the binary search algorithm as follows: we first define the initial

low and high bounds for x and then calculate the midpoint m of the current range

(low, high). By using m : 100 �m memory configuration, we measure the inference

performance p(m). We then slightly move to the right of m at a step size and

compare p(m) and p(m + step). If p(m) is less than p(m + step), then the high

bound is updated to m. Otherwise, the low bound is updated to m+step. Repeating

the iterative process until the low and high bounds meet, which indicates that the

optimal point is the current low bound x. We can then distribute the percentage of

49



memory pages as x : 100 � x between fast and slow memories. If we have multiple

fast memory devices and/or multiple slow memory devices, the workload is evenly

distributed across the fast/slow memory devices. Algorithm 3 presents the pseudo-

code of the whole process.

Algorithm 3 Search Optimal Memory Allocation

1: Remarks:

p(x): get inference performance with x% workload on fast

memory

l: the low boundary

h: the high boundary

step: the granularity of workload adjustment
2: Output:

the percentage of workloads on fast memory

3: l  0

4: h 100

5: while l 6= h do

6: m (l + h)/2

7: if p(m) > p(m+ step) then:

8: l  m+ step

9: else:

10: h m

11: end if

12: return l

13: end while
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3.3.2 NUMA-aligned Tensor Parallelism

As discussed in Section 3.2, tensor parallelism is preferred for large models. Tensor

parallelism has been commonly used in GPU-based LLM frameworks vll (2023); Open-

MNT (2023b); microsoft (2023); HuggingFace (2023) to distribute model weights, ac-

tivations, and KV-cache that are too large for the memory capacity of a single GPU

across multiple GPUs Huggingface (2023); AWS (2023). This technique itself is not

new; however, it has been overlooked by existing LLM inference frameworks tailored

for CPU backends OpenMNT (2023a); MegEngine (2023), partly due to the ample

memory capacity of CPUs. Contrary to GPUs, the advantage of applying tensor par-

allelism to CPUs is not derived from employing extra resources. Rather, it primarily

originates from segmenting large models to leverage a smaller number of comput-

ing cores and memory resources for each sub-model, thereby enhancing computing

e�ciency.

Tensor parallelism on CPUs involves two stages: first, distributing di↵erent com-

ponents of the model such as weights and activations across CPU cores. Each group

of CPU cores is responsible for a sub-model’s operations. For example, a large matrix

multiplication within a layer is divided into smaller matrices, with each segment being

processed by a subset of CPU cores. Second, performing an all-reduce operation to

enable the exchange and combination of results from all the CPU cores. The tradeo↵

between the improved computing time and the additional communication overhead

is critical to the overall performance improvement.

During computing, a significant overhead comes from the slow cross-socket mem-

ory access caused by the inter-processor interconnect Intel (2023d); AMD (2023).

Moreover, modern CPUs divide NUMA nodes into smaller, more e�cient clusters to

enhance memory performance, causing the memory access latency across the sub-
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NUMA nodes to be increased. To reduce this overhead, we minimize cross-NUMA

memory access by aligning CPU cores with the closest sub-NUMA node(s) to form

a group. By forcing each sub-model to only use the resources from this group, it

eliminates all the cross-NUMA and cross-socket memory accesses during computing.

Following the above optimization, tensor parallelization is performed in four steps:

first, the CPU cores and the sub-NUMA nodes are divided based on the parallel degree,

i.e., the number of sub-models into which the model is split for processing. Parallel

degree is determined by the available CPU cores and the model size. Given su�cient

CPU cores, larger models can benefit more from a higher parallel degree. Second,

we bind CPU cores and sub-NUMA nodes into groups based on data locality. Third,

we split the large model into sub-models and each sub-model is allocated to a group.

Fourth, activations from sub-models are combined and aggregated through all-reduce

operation.

3.3.3 Implementation

We developed a CPU-based inference framework, incorporating all elements de-

scribed in Section 3.3. To implement memory aggregation, we modified the page

allocation mechanism within the Linux kernel (v6.3.2) to get more precise control

over resource allocation. This includes three main modifications. First, we support

the m:n:k... interleave policy to distribute memory pages across di↵erent NUMA

nodes and memory devices following the m:n:k... ratio. Second, we support CPU

cores and sub-NUMA nodes binding where the specified CPU cores can only allocate

memory pages to the bound sub-NUMA nodes for tensor parallelism. Third, we in-

troduce a /proc entry to the system to simplify the configuration of these settings.

In the userspace, we implement binary search following Algorithm 3. To expedite

the search, we assume local memory is fast memory and initiate the lower bound at
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50%. We also set the step size to 2% to converge faster to the minimum latency.

Our framework is integrated with LLM inference APIs (v4.31.0) from the transform-

ers package Face (2023) and employs the Intel Extension for PyTorch (v2.1.0) Intel

(2023b) to accelerate LLM inference on CPUs. NUMA-aligned tensor parallelism is

implemented using the inference APIs from the DeepSpeed library (v0.12.1) Microsoft

(2023) where we add sub-NUMA alignment support to each sub-model.

is that both the local memory tier and remote memory tier’s memory latency

should be at a similar minimum level. A slow memory latency, no matter in local

or remote memory tiers, can largely hurt the performance as computing would stall

waiting for the slowest memory request.

Reducing the memory latency can bring two benefits: first, the speedup will ap-

proach that of the theoretical speedup. Second, since the amount of memory requests

for an inference workload is constant, reducing the memory latency can inversely

improve the memory bandwidth to improve inference performance 1.

Improving computing e�ciency also has two benefits: first, using the same amount

of computing cores but can get better speedup. Second, LLM inference can use fewer

cores to achieve the same computing e�ciency and this can in turn reduce memory

latency and further improve speedup.

From the analysis, two key conclusions emerge regarding the inference of LLMs.

Firstly, when adding additional memory resources, it becomes crucial to pinpoint an

optimal allocation point that harmoniously balances both computing and memory re-

sources for e�ciency. Secondly, LLM inference tends to achieve better computational

speedup when employing a smaller amount of computing resources. This suggests

that a smaller allocation of resources can be more e�cient.
1Note that in Figure 3.3, MLC generates continuous memory requests, so the memory latency

and memory bandwidth is positively correlated.
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To address the challenge of memory latency, which is a significant bottleneck, the

addition of extra memory is recommended. Alongside this, both computing and mem-

ory resources should be allocated in a manner that minimizes memory latency and

maximizes memory bandwidth. In aligning with Amdahl’s Law, a common strategy

to maximize computing speedup is the ”divide and conquer” approach. This involves

dividing large models into smaller, more manageable units, allowing them to leverage

the fullest extent of available computational speedup. The following section will delve

into these two improvement strategies in greater detail.

as piecewise functions each consisting of two linear functions (Figure 3.7):

f(x) =

8
><

>:

a1x+ b1, if x  x1

a2x+ b2, if x > x1

(3.1)

g(x) =

8
><

>:

�c1x+ d1, if x  x2

�c2x+ d2, if x > x2

(3.2)

where a1, a2, c1, c2 are positive, with c1 > c2, a1 < a2 and x2 < x1.

3.4 Evaluation

3.4.1 Methodology

Our experiment server, as shown in Table 3.3, is equipped with dual Intel Xeon

8456C CPUs (SPR) with AMX, 2TB of 4800MHz DDR5 memory, 3.84 TB of SSDs,

and a pair of A1000 CXL memory expanders from Astera Labs with a total of 512GB

memory. During the evaluation, hyperthreading is disabled to avoid the GEMM

operations’ contention among logical cores. To achieve more precise control over

resource allocation, we enable the sub-NUMA cluster (SNC) feature, which results in

the creation of four sub-NUMA nodes within each NUMA node.
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Table 3.3: Hardware Specifics of the Experimenting Server.

CPU Dual socket Intel Xeon 8456C CPU

Each socket has 48 Computing cores

Memory 2 * 8 channels

Each channel has 128GB 4800MHz DDR5

Storage 2 * 1.92TB SSDs

CXL 2 * A1000 Gen5 x16 ASIC memory expanders

Each CXL has 2 channels

Each channel has 128GB 4800MHz DDR5
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Figure 3.8: LLM Inference Performance Improvement With Aggregated Memories

When Batch Size is 1.

Since transformer-based LLMs follow similar architecture OpenAI (2023); Tou-

vron et al. (2023); Chowdhery et al. (2023), we choose to use the open-sourced mod-

els from the Meta Open Pretrained Transformers (opt) suite Zhang et al. (2022).

We evaluate models of di↵erent sizes including opt-6.7b Facebook and Huggingface

(2023d), opt-13b facebook (2023), opt-30b Facebook and Huggingface (2023a), and

opt-66b Facebook and Huggingface (2023c). During the inference, the input token

length is set to 64 and the output token length is set to 128 with multinomial sam-

pling. The data format is set to BF16. We use two batch sizes 1 and 8 to study
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Figure 3.9: LLM Inference Performance Improvement With Aggregated Memories

When Batch Size is 8.

the impact of di↵erent batch sizes. Our initial analysis indicates that for both batch

sizes, the performance bottleneck identified in Section 3.2 persists, and neither batch

size shifts the inference workload to being compute-bound. Each inference test is

conducted 40 times, with the first 20 iterations serving as warm-up.

To illustrate inference latency, we use the below three metrics to show the respon-

siveness and e�ciency of an application: first token latency, average token latency,

and end-to-end latency. First token latency dictates how quickly the users begin to

observe the generated output. In real-time interactive applications, it is crucial to

have a low latency for the initial token. Average token latency is the average time

taken to generate each subsequent token after the first one. It indicates the overall

speed and fluidity of the inference task. End-to-end latency is the total time taken

from the moment an input is given to the model until the completion of the entire

output sequence. It is a comprehensive measure of the model’s overall performance

and e�ciency.

3.4.2 Memory Aggregation

We tailor computing and memory resources to each model’s size. For the 6.7b

model, we use 12 CPU cores, one SNC sub-NUMA node for fast memory, and one
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Figure 3.10: LLM Inference Performance Improvement With Tensor Parallelism With

Batch Size 1. (Tp means the parallel degree.)

tp=1
tp=2
tp=4
tp=8

Fi
rs

t T
ok

en
 L

at
en

cy
 b

s=
8 

(s
)

0

10

20

30

LLM Models
13b 30b 66b

(a) First Token Latency

tp=1
tp=2
tp=4
tp=8

Av
er

ag
e 

To
ke

n 
La

te
nc

y 
bs

=8
 (s

)

0

0.2

0.4

LLM Models
13b 30b 66b

(b) Average Token Latency

tp=1
tp=2
tp=4
tp=8

En
d-

to
-E

nd
 L

at
en

cy
 b

s=
8 

(s
)

0

20

40

60

80

100

LLM Models
13b 30b 66b

(c) End-to-end Latency

Figure 3.11: LLM Inference Performance Improvement With Tensor Parallelism With

Batch Size 8. (Tp means the parallel degree.)

CXL memory expander for slow memory. The 13b model gets doubled resources:

24 cores, two SNC sub-NUMA nodes, and two CXL memory expanders. The 30b

model scales up to 48 cores and four sub-NUMA nodes but keeps two CXL memory

expanders. All these models operate within a single socket. The 66b model, spanning

two sockets, employs 96 CPU cores, eight sub-NUMA nodes, and two CXL memory

expanders, with one CXL expander per socket.

In this set of experiments, we compare LLM inference performance using aggre-

gated memories to that using local memory only. Figures 3.8 and 3.9 illustrate the

improvement in inference performance using aggregated memories for batch sizes of

1 and 8, respectively. The result indicates a notable performance boost with aggre-
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gated memories. For example, the 6.7b model, with a batch size of 1, achieves a

9% improvement in first token latency, 24% in average token latency, and 22% in

end-to-end latency; the 13b model shows improvements of 16%, 19%, and 18% in the

first token, average token, and end-to-end latency, respectively, with a batch size of

8.

Due to the limited quantity of CXL memory expanders in our testbed, for larger

models, the performance improvement is less significant. This is because large models

have more memory resources in the fast memory, necessitating more memory resources

in the slow memory to achieve comparable memory latency. With a lack of memory

resources in the slow memory, most memory pages are allocated locally, leading to

poorer performance improvement than for smaller models. For example, for the 30b

model at batch size 8, although it uses the same CXL memory resources as the 13b

model, the performance gains are less pronounced: first token latency improves by

3%, average token latency improves by 12%, and end-to-end latency improves by 9%.

For the 66b model, the improvement is even less significant, with 4%, 7%, and 7%

respectively for first token latency, average token latency, and end-to-end latency at

batch size 1. Given more memory resources in the slow memory, we expect to see a

better performance improvement.

Of all the performance metrics, first token latency has the least significant per-

formance improvement. For example, for the 6.7b model at batch size 1, the first

token latency only improves by 8% while the other two metrics improve by more

than 22%. This is because generating the first token involves processing the entire

input prompt which has higher arithmetic intensity than generating subsequent to-

kens, resulting in the first token generation being more computing-intensive. When

we add memory resources, it helps more in memory-bound workloads, such as gener-

ating subsequent tokens. The end-to-end latency is a combination of both first token
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Figure 3.12: The Percentage of Communication Latency Relative to End-to-end La-

tency During Inference.
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Figure 3.13: LLM Inference Performance Improvement With Both Optimizations

When Batch Size is 1. (Tp is tensor parallelism.)

latency and average token latency, so it has an improvement in the middle. Simi-

larly, when comparing di↵erent batch sizes’ performance results, a larger batch size

is more computing-intensive and a↵ects first token latency more. For example, when

batch size is increased from 1 to 8, the average token latency only increases slightly

within 5%. However, the first token latency increases substantially by 44X for the

66b model.
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Figure 3.14: LLM Inference Performance Improvement With Both Optimizations

When Batch Size is 8. (Tp is tensor parallelism.)

3.4.3 Tensor Parallelization

Next, we evaluate the NUMA-aligned tensor parallelization method for CPUs.

We use various parallel degrees to evaluate the performance improvement compared

to no model splitting where all resources are used for the monolithic model (parallel

degree is 1), representing existing LLM CPU-based inference frameworks OpenMNT

(2023a); MegEngine (2023). For all the models, we still follow the same CPU and

memory configurations described in Section 3.4.2, but we use only the fast memory.

Additionally, we evaluate tensor parallelism only on the three larger models since

6.7b model uses only 12 cores and already shows good computing e�ciency. For 13b,

30b, and 66b models, we experiment with parallel degrees of 1, 2, and 4. For the 66b

model, we also experiment with the parallel degree of 8. Figure 3.10 and 3.11 depict

the performance improvement with tensor parallelism when batch size is 1 and 8.

Based on the results, we can see that tensor parallelism can improve inference

performance. For the 66b model, first token latency improves by 31%, average token

latency improves by 27%, and end-to-end latency improves by 27% when the parallel

degree is 8 and batch size is 1. The improvement is achieved by the improved com-

puting e�ciency and reduced cross-NUMA memory accesses. When the batch size is
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8, the performance improvement is better, with first token latency improving by 61%,

average token latency improving by 33%, and end-to-end latency improving by 43%.

This is because when batch size increases, the inference gets more computing-intensive

and can benefit more from tensor parallelism.

For smaller models, the improvement is less significant. For example, for the

13b model, first token latency improves by 17%, average token latency improves

by 6%, and end-to-end latency improves by 5% when the parallel degree is 4 and

batch size is 1. In contrast to larger models, smaller models utilize fewer CPU cores

and have better computing e�ciency. Consequently, they do not see as significant

a performance enhancement from tensor parallelism as larger models do. Of all the

performance metrics, first token latency has the best improvement. For example,

for the 30b model, first token latency can be improved by 21% when the parallel

degree is 4 and batch size is 1, while average token latency and end-to-end latency

improvements are both 8%. As discussed in Section 3.4.2, generating the first token

is more computing-intensive, and by using tensor parallelism, it can achieve better

speedup.

Across all the models, the inference performance improves as the parallel degree

increases. For example, when the parallel degree increases from 2 to 8 for the 66b

model when batch size is 8, first token latency improves by 21%, while average token

latency and end-to-end latency improve by 17%. Increasing the parallel degree splits

the model into smaller sub-models and each sub-model can benefit more from the

improved computing e�ciency thus achieving a better performance boost. Based on

the above observations, we can expect a better performance improvement with higher

degrees of tensor parallelism for larger models.

We also compare the computing part (without considering all-reduce) of NUMA-

aligned tensor parallelism with simple tensor parallelism that depends on the Linux
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kernel’s memory allocation strategy to allocate memory pages based on data locality.

For the 30b model, adopting NUMA-aligned tensor parallelism results in a 4% im-

provement when the parallelism degree is set to 4 and the batch size is 1. This modest

increase is due to a couple of factors: first, LLM inference is the only running work-

load, thus ensuring e↵ective Linux memory page allocation based on data locality.

Second, the 30b model involves cross-sub-NUMA memory accesses with only small

overhead, as they are located within the same socket. Nonetheless, with our NUMA-

aligned tensor parallelism, we successfully eliminate all cross-NUMA overhead during

the computing stage.

In the next evaluation, we show the communication overhead during the all-reduce

operation using the percentage of communication latency relative to end-to-end la-

tency. From Figure 3.12, we can see that the communication overhead remains low.

For 13b and 30b, the communication overhead is up to 4.2%. For 66b, the overhead

is a little higher, capped at 9.4% when the batch size is 1. This is because 66b uses

NUMA nodes from both sockets. Since all-reduce requires the exchange and combi-

nation of results from all the CPU cores, resulting in cross-socket memory accesses,

which have higher memory latency than that within the same socket. We also observe

that with a larger batch size, the communication overhead is reduced. For example,

the communication overhead reduces to 5.9% for 66b when the batch size is 8. This is

due to the increased computation time caused by the large batch size, coupled with a

modest increase in the amount of data communicated, which reduces the percentage

of communication overhead.

3.4.4 Putting Everything Together

Based on our previous evaluation results, we show that memory aggregation and

NUMA-aligned tensor parallelization can help reduce memory contention and improve
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computing e�ciency. We now combine these two optimization methods and see how

the performance gets improved. Since the 6.7b model does not use tensor parallelism,

we show 13b, 30b, and 66b model results here. Figure 3.13 and 3.14 illustrate the

performance results. Of di↵erent parallel degrees, we only show the one that achieves

the best performance improvement in the figures.

When batch size is 1, for the 13b model, first token latency improves by 26%,

average token latency improves by 27% and end-to-end latency improves by 25%. For

the 66b model, all three latency metrics improve by 32%. When the batch size is 8,

30b model has 55% improvement in first token latency, 17% improvement in average

token latency, and 21% improvement in end-to-end latency. For 66b model, the

optimal memory configuration uses only the fast memory (explained in Section 3.4.5)

thus the performance improvement is the same as that with tensor parallelization

only, with first token latency improving by 61%, average token latency improving by

33%, and end-to-end latency improving by 43%.
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3.4.5 Static Memory Allocation

Figure 3.15 shows the optimal memory configuration for di↵erent inferences using

the percentage of workload allocated to the fast memory. On average, it takes four

search cycles and tens of minutes to determine the best configuration. However,

this warm-up stage time becomes less significant considering the system’s serving

time, which spans weeks or even months. From the figure, we can see that the

memory allocation is di↵erent across various models, batch sizes, and parallel degrees,

illustrating that a di↵erent inference hyperparameter requires separate profiling. Note

that for a batch size of 8, the 66b model achieves optimal performance when most

or all of the workloads are allocated locally. This is because the 66b model utilizes

eight sub-NUMA nodes for fast memory, which significantly outperforms the two CXL

memory expanders. We expect the system to allocate more pages to slow memory

with more CXL memory expanders.

Other allocation strategies, such as those based on bandwidth or capacity ratio

of fast and slow memories, i.e., allocating memory pages based on the memory band-

width or capacity ratio of fast and slow memories, fail to deliver peak performance.

In our test setup, the memory bandwidth ratio between a sub-NUMA node and a

CXL memory expander is measured to be 53:47, while the memory capacity ratio is

50:50. As depicted in Figure 3.15, the ideal allocation percentage deviates from these

ratios. For instance, for the 13b model inference under a bandwidth-oriented alloca-

tion, 53% of memory is allocated to fast memory, leading to a performance reduction

of 10%, and under a capacity-oriented approach, it is 50%, the performance decrease

can be as much as 14%. This is because basing the memory configuration solely on

memory hardware specifications, without considering the memory latency and any

LLM hyperparameters, does not yield the optimal allocation.

64



Additionally, we show inference results with various combinations of input and

output tokens using 13b model as an example with batch size equal to 1. The results

are found to overlap, and as depicted in Figure 3.16, there are merely two distin-

guishable lines. We confirm that the optimal configuration remains constant across

di↵erent inputs and outputs. Also, as the percentage of memory pages allocated to

fast memory varies, we notice that the performance changes adhere to the pattern as

we proposed in Figure 3.7 of Section 3.3. This consistency reinforces the e�cacy of

our solution in determining the optimal memory allocation.

3.5 Related Works

Optimizing deep learning inference on CPUs. Improving the deep learn-

ing inference performance on CPUs can be done through operator fusion Ning et al.

(2020), model quantization Shen et al. (2023a), operation optimization Dice and Ko-

gan (2021), self-attention mechanism optimization Wang et al. (2020); Dao et al.

(2022), sparsity Shen et al. (2023b); SJTU-IPADS (2023) and a mixture of the

above Jiang et al. (2023); Liu et al. (2019d). Shen et al. Shen et al. (2023a) used

INT4 quantization and highly-optimized kernel to boost LLM inference performance

on modern Intel CPUs. Jiang et al. Jiang et al. (2023) leveraged data parallelism to

improve the usage of CPU cores. Similarly, Kogan Kogan (2023) used data parallelism

with fine-grained resource control for each ML inference instance to improve perfor-

mance. As we discussed in Section 3.2, data parallelism is not practical for LLMs due

to its extensive demand for computing resources and its overhead in memory latency.

Jain et al. Jain et al. (2023b) utilized software prefetching to reduce cache misses

caused by irregular accesses to the embedding table and hyperthreading to reduce

CPU stalls caused by memory access for CPU-based recommendation model infer-

ence. Given that LLM inference also uses an embedding table, software prefetching
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is complementary to our solution. However, the impact is limited as the embedding

table constitutes only a small fraction of the overall model size, e.g., 3% for GPT3-

6.7B Brown et al. (2020). Moreover, hyperthreading is believed to be harmful to

GEMM-dominated LLM workloads as logical threads compete for computing units

that are already heavily utilized PyTorch (2023).

NeoCPU Liu et al. (2019d) improves inference performance for CNN models

through tensor-level and graph-level joint optimization which reduces memory ac-

cess overhead without relying on single operator optimization. These techniques are

complementary to our solution which focuses on solving the memory throughput con-

tention and computing e�ciency problem specific to CPUs, where neither area has

been well explored in prior research.

Breaking memory bottleneck for LLM. Many studies focus on solving the mem-

ory capacity bottleneck for GPU-based training and inference systems. PagedAtten-

tion Kwon et al. (2023) solves the GPU memory fragmentation problem caused by

fixed-length KV-cache through paging, which shares the same idea as in today’s op-

erating systems. FlexGen Sheng et al. (2023) enables running LLM inference on a

single GPU by aggregating memory from GPU, CPU, and storage. ZeRO Rajbhan-

dari et al. (2020, 2021) reduces the GPU memory usage by e�ciently distributing the

model’s parameters, gradients, and optimizer states across multiple GPUs, enabling

the training of much larger LLMs.

Leveraging CXL memory expansion. CXL has been proposed for memory ex-

pansion in a single-machine Sun et al. (2023) or disaggregated memory pools Li et al.

(2023); Yang et al. (2022b). Mempolicy M : N interleave Maruf (2023) is a memory

allocation policy for memory systems, allowing the allocation of M : N memory pages

to fast memory and slow memory, enabling fine-grained control over memory tra�c

distribution. Our solution automatically searches and applies the optimal distribution
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of memory pages across di↵erent memory devices to mitigate the memory contention

problem of LLM inference on CPUs. Caption Sun et al. (2023) dynamically adjusts

the page allocation percentage between main memory and CXL memory expanders

by monitoring memory-relevant performance counters. As discussed in Section 3.3,

dynamic page allocation policies such as Caption are not suitable for LLM inference

workloads. Hotness-based page migration Maruf et al. (2023); num (2023); hot (2023)

is commonly used for tiered memory systems. As discussed in Section 3.3, data migra-

tion introduces extra memory tra�c and can worsen memory throughput contention

which further degrades the inference performance.
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Chapter 4

IMPROVING MEMORY COST THROUGH CXL-ENABLED HYBRID MEMORY

POOL

4.1 Methodology

(a) CXL-enabled Memory Pool (b) Simulated testbed

Figure 4.1: Architecture Overview

4.1.1 Testbed Architecture

Figure 4.1a shows a common way to implement CXL-enabled memory pool hard-

ware https://www.businesswire.com/news/home/20220303006046/en/Tanzanite-Silicon-

Solutions-Demonstrates-IndustryNext-Generation-Composable-Data-Centers (2022);

Li et al. (2022). CXL supports a variety of use cases via three protocols: CXL.io,

CXL.cache, and CXL.memory. Among them, CXL.memory allows the host to ac-

cess attached memory using load/store commands. The memory pool has multiple
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CXL.memory endpoints that can be directly connected to the host CPUs, through

which the host CPUs can access the memory pool using load/store commands. How-

ever, the hardware and software management of the memory pool is done by the

memory pool itself and is transparent to the host CPUs.

As there is no real CXL-enabled memory pool at this time, we simulate the mem-

ory pool by leveraging the cache coherent NUMA architecture that is widely available

on today’s multi-socket systems. There are two reasons to choose NUMA architec-

ture. First, NUMA architecture is cache coherent and uses load/store commands

as CXL. Second, from the host CPUs’ point of view, the memory provided by the

attached memory pool has similar memory access latency compared to memory from

the remote NUMA nodes CXL (2023). Even with SSDs added to the memory pool,

an intelligent memory migration algorithm can help amortize the memory access la-

tency. Figure 4.1b shows an example of the architecture of the simulated testbed.

We are using only 2 NUMA nodes here for simplicity but in reality, the architecture

can be expanded to a group of NUMA nodes.

NUMA node 1 serves as the local memory for the VMs running on socket 1’s

CPUs. NUMA node 2 and NVMe SSD form the tiered hybrid memory pool. In case

of page allocation, pages are preferably allocated on NUMA node 1. When NUMA

node 1 is under pressure, pages are then allocated in the hybrid memory pool. Inside

the memory pool, most frequently used pages are cached in NUMA node 2. A page

will be evicted from the NUMA node 2 to the NMVe SSD when NUMA node 2 is

under pressure. Pages can migrate between NUMA node 1 and memory pool with

the support of the hypervisor aut (2012). In this way, a tiered memory system is

formed. NUMA node 1 is the first tier with the lowest memory access latency. The

hybrid memory pool is the second tier with higher memory access latency. Within

the memory pool, there is a sub-tiered memory system with NUMA node 2 as the
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first tier and NVMe SSD as the second tier.

4.1.2 Software Simulation

To control how much memory should be allocated from the memory pool to guest

VMs which run the applications, we modified the Linux cgroups cgr (2023) to al-

low separate memory control policy for each memory tier. In the simulation, the

application has di↵erent cgroups memory limits for NUMA node 1 (first tier) and

hybrid memory pool (second tier). Within the hybrid memory pool, another set of

cgroups memory limits is set for NUMA node 2 (first tier) and NVMe SSD (second

tier) respectively. In this way, we are able to simulate the tiered memory system.

Considering the large latency gap between DRAM and SSD, we use Linux swap

to simulate page migration between NUMA node 2 and the NVMe SSD as the data

access latency overwhelms the page fault handling overhead. Swap happens when

NUMA node 2 runs out of memory. If a guest VM accesses the pages that have been

swapped out by the hypervisor, page faults caused by Extended Page Table (EPT)

violation are generated. Note that using real CXL hardware can potentially achieve

better application performance since in the simulation, page fault handling is removed

from the guest VM but still happens on the host side.

NUMA node 1 only migrates memory pages with NUMA node 2. To ensure that

no pages on NUMA node 1 are swapped out to NVMe SSD, we pin the memory pages

of a VM that are allocated to NUMA node 1 in DRAM. This action prevents the pages

allocated to NUMA node 1 from getting evicted. Our simulator also extends swap to

provide an interface so that di↵erent prefetching and cache replacement algorithms

can be easily supported in the hybrid memory pool as a separate kernel module.
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4.2 Evaluation

We choose four workloads that cover a large portion of today’s cloud application

categories including video processing, database, data analytic and deep learning train-

ing. Each workload runs inside a VM provisioned by QEMU with KVM acceleration

enabled on a dual socket Linux server (Table 4.1). We run the workloads on physical

machine to get the memory usage, and then set the VM memory size accordingly.

Overcommit ratio is set to help us understand the performance and cost impact

by adopting NVMe SSDs and altering the composition of DRAM and SSDs in the

hybrid memory pool. Equation 4.1 shows how the DRAM memory usage is computed

with overcommit ratio. In the equation, we use R to represent the overcommit ratio,

actual m to represent the actual memory usage from DRAM, req m to represent the

required memory usage of the application.

actual m =
req m

R
(4.1)

With overcommit ratio set as 1, no NVMe SSD is used and all the memory of a

VM will be allocated on DRAM. When overcommit ratio is increased, the percentage

of NVMe SSD used is increased. We allocate 50% of the DRAM memory space on

the local NUMA node (first tier), and the rest on the remote NUMA nodes (second

tier). For example, with a 32GB VM memory size and the overcommit ratio set to

2, at most 16GB of memory space will be allocated on DRAM and the rest 16GB of

memory space is allocated using NVMe SSD. Of the 16GB of DRAM memory space,

8GB is allocated on local NUMA node and the rest is on remote NUMA nodes. In

our evaluation, we use one local NUMA node and one remote NUMA node.

For each workload, we set the overcommit ratio to be 1, 1.5, 2, 3 and 4. In the

evaluation, the video encoding VM is configured to use 4GB of memory and 2 virtual
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Table 4.1: Specifications of the testbed.

CPU DRAM SSD GPU QEMU OS Kernel

2x Intel 2x Samsung 8x Ubuntu

Platinum 384GB PM983 NVIDIA 4.2.1 20.04 5.15.37

8268 DDR4 3.5TB V100 focal

cores, while the other three workloads VMs are configured to use 64GB of memory

and 32 virtual cores. To understand the baseline performance of the hybrid memory

pool, we use the Linux default prefetcher for the evaluation.

In the following evaluation, we will evaluate the performance and cost tradeo↵

of the four workloads using hybrid memory pool (overcommit ratio bigger than 1)

compared to using DRAM-only memory pool (overcommit ratio equal to 1). Each

workload runs three times and the mean values are presented.

(a) Frame Per Second (FPS) (b) Page Fault

Figure 4.2: FFmpeg Evaluation Results
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4.2.1 H.264 Video Encoding

H.264 is a video coding format for full High Definition (FHD) video and au-

dio. FFmpeg is a suite of programs and libraries for video encoding, decoding and

transcoding. We used FFmpeg 4.2.1 to encode a 1080P 10-minute long video to H.264

format using libx264. We use Frames Per Second (FPS) to measure FFmpeg’s per-

formance. Figure 4.2a and Figure 4.2b show the FFmpeg evaluation results. From

the figures, when overcommit ratio increases from 1 to 1.5, the performance degrades

slightly by 0.3%. When we continue to increase the overcommit ratio, the perfor-

mance degradation does not get much worse, drops by 11.9% for overcommit ratio of

4. The performance degradation is unified with the increase of the page fault. Note

that although the number of page faults increases a lot for overcommit ratio of 4,

the performance degradation is not much. This is because FFmpeg is computation-

bounded workloads and the increase in I/Os does not become the bottleneck of the

overall performance.

(a) Transaction Per Min (tpmC) (b) Page Fault

Figure 4.3: TPC-C Evaluation Results
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4.2.2 TPC-C

TPC Benchmark C (TPC-C) is an on-line transaction processing (OLTP) bench-

mark. It is measured in transactions per minute (tpmC). We used MySQL 8.0.29

as the database. Figure 4.3a and Figure 4.3b show the TPC-C evaluation results of

1000 warehouses. When overcommit ratio increases from 1 to 1.5, the performance de-

grades abruptly by 55.8%. This degradation is in accordance with the abrupt increase

in the number of page faults. For overcommit ratio 4, the performance degradation

is the worst, drops by 78.5%.

(a) Query Runtime (b) Page Fault

Figure 4.4: TPC-H Evaluation Results

4.2.3 TPC-H

TPC Benchmark H (TPC-H) is a decision support benchmark. It includes a suite

of 22 business ad-hoc queries and concurrent data modifications. We used Greenplum

6.20.3 gre (2023), a Postgresql compatible Database Management System (DBMS) for

data analytics, as the database deployed on a single VM. Figure 4.4a and Figure 4.4b

show the TPC-H evaluation results of scale factor 30. We use the accumulated runtime
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of the 22 queries to measure its performance. When overcommit ratio increases from 1

to 1.5, the performance degrades a lot by 1.13X. With the increase of the overcommit

ratio, the performance continues to degrade by 5.32X at last. The number of page

faults increases following similar pattern.

(a) Training Time (b) Page Fault

Figure 4.5: ResNet50 Evaluation Results

4.2.4 ResNet50

ImageNet is an dataset organized according to the WordNet hierarchy for im-

age classification. We used ImageNet https://www.image-net.org/ (2022) to train

ResNet50 He et al. (2016) using Pytorch 1.11.0 with 8 GPUs. We used training time

of 15 epochs to measure the performance. All runs use the same training seed to

provide consistent results. Figure 4.5a and Figure 4.5b show the ResNet50 evaluation

results. When overcommit ratio increases from 1 to 1.5, the performance degrades

only by 1%. With the increase of the overcommit ratio, the performance continues

to degrade by 17.9% with overcommit ratio of 4. This is related to the large increase

in the number of page fault.
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Figure 4.6: Normalized Performance Degradation of Four Workloads with Varying

Overcommit Ratio

4.2.5 Analysis

Figure 4.6 shows the performance degradation for all four workloads. From the

above evaluation, we find that the hybrid memory pool involving SSDs does a↵ect the

applications performance. However, the performance degradation is largely dependent

on the application. For computation-intensive workloads, like video processing and

deep learning training (FFmpeg has almost 100% CPU utilization and ResNet50 has

74% GPU utilization on average), the degradation is marginal. Since the performance

bottleneck depends mostly on the computation instead of the addition of memory

access latency introduced by slower media. Applying SSDs to the memory pool

does reduce cost while maintaining the same level of performance for these type of

workloads. On the other hand, for database and analytic workloads, such as TPC-C

and TPC-H, which have high requirement to memory latency and bandwidth, are

severely a↵ected by the hybrid memory pool.

4.2.6 Total Cost of Memory (TCM)

We compute the TCM using Equation 4.2. Based on Equation 4.1, we use mem p

to represent the unit price of DRAM and SSD p to represent the unit price of NVMe
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SSD.

TCM = mem p ⇤ req m

R
+ SSD p ⇤ (req m� req m

R
) (4.2)

We computed the unit price of the DRAM and NVMe SSD in Table 4.1 as $4.875 mem

(2022) and $0.16 ssd (2022) per GB, respectively. Based on our configuration, Fig-

ure 4.7 shows the saved TCM percentage at di↵erent overcommit ratio compared to

the original TCM with overcommit ratio 1. By using NVMe SSD, even with a mere

addition of NVMe SSD at an overcommit ratio 1.5, we can already save 32% of TCM.

What’s more, we can save up to 72.5% of TCM when overcommit ratio is 4.

Figure 4.7: Total Cost of Memory (TCM) Reduction Percentage with Varying Over-

commit Ratio
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Chapter 5

CONCLUSIONS

This comprehensive study has successfully navigated the complexities of data-intensive

systems and proposed solutions through memory and storage disaggregation. Through

the presentation of three interconnected works, we have addressed some of the most

pressing challenges in modern computing environments.

In the realm of cloud storage, “AdaCache” marks a shift by introducing an adap-

tive, disaggregated caching system. Its ability to dynamically allocate cache blocks

based on request size not only optimizes I/O performance but also minimizes mem-

ory overhead. This approach represents a significant advancement over traditional

caching methods, particularly in its adaptability to diverse cloud workloads. With

AdaCache, storage resources are utilized more e↵ectively, reducing wasted space and

lowering costs for cloud service providers and their customers.

The optimization of CPU-based systems for LLM inference tackles the challenges

of processing large language models e�ciently. By introducing innovative methods

such as latency-aware memory aggregation and NUMA-aligned tensor parallelism,

this contribution has not only improved latency and resource utilization but also

positioned CPUs as viable platforms for complex LLM inference tasks.

Finally, the exploration of memory disaggregation through the integration of

NVMe SSDs into memory pools addresses critical issues like the high cost and power

consumption of DRAM in cloud environments. This work’s insight into creating a

more cost-e↵ective and power-e�cient tiered memory architecture highlights the po-

tential of hybrid memory systems in enhancing cloud infrastructure performance.

In conclusion, each of these works contributes significantly to advancing the field
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of data storage and processing, addressing key challenges with inventive and e↵ective

solutions. Their collective insights and advancements not only enhance current prac-

tices but also pave the way for future innovations in edge computing, cloud storage,

and large-scale data processing. This dissertation stands as a testament to the poten-

tial of focused, innovative e↵orts in overcoming the hurdles of modern-day computing

and setting new benchmarks for e�ciency, scalability, and cost-e↵ectiveness in the

digital age.
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