
Enabling Deep Learning at Edge:

From Efficient and Dynamic Inference to On-Device Learning

by

Li Yang

A Dissertation Presented in Partial Fulfillment
of the Requirements for the Degree

Doctor of Philosophy

Approved June 2023 by the
Graduate Supervisory Committee:

Deliang Fan, Chair
Jae-sun Seo

Junshan Zhang
Yu Cao

ARIZONA STATE UNIVERSITY

August 2023

©2023 Li Yang

All Rights Reserved

ABSTRACT

In recent years, Artificial Intelligence (AI) (e.g., Deep Neural Networks (DNNs),

Transformer) has shown great success in real-world applications due to its superior

performance in various cognitive tasks. The impressive performance achieved by AI

models normally accompanies the cost of enormous model size and high computational

complexity, which significantly hampers their implementation on resource-limited

Cyber-Physical Systems (CPS), Internet-of-Things (IoT), or Edge systems due to

their tightly constrained energy, computing, size, and memory budget. Thus, the

urgent demand for enhancing the Efficiency of DNN has drawn significant research

interests across various communities. Motivated by the aforementioned concerns, this

doctoral research has been mainly focusing on Enabling Deep Learning at Edge:

From Efficient and Dynamic Inference to On-Device Learning.

Specifically, from the inference perspective, this dissertation begins by investigating

a hardware-friendly model compression method that effectively reduces the size of

AI model while simultaneously achieving improved speed on edge devices. Addition-

ally, due to the fact that diverse resource constraints of different edge devices, this

dissertation further explores dynamic inference, which allows for real-time tuning of

inference model size, computation, and latency to accommodate the limitations of

each edge device. Regarding efficient on-device learning, this dissertation starts by

analyzing memory usage during transfer learning training. Based on this analysis,

a novel framework called “Reprogramming Network” (Rep-Net) is introduced that

offers a fresh perspective on the on-device transfer learning problem. The Rep-Net

enables on-device transfer learning by directly learning to reprogram the intermediate

features of a pre-trained model. Lastly, this dissertation studies an efficient continual

learning algorithm that facilitates learning multiple tasks without the risk of forgetting

i

previously acquired knowledge. In practice, through the exploration of the task corre-

lation, an interesting phenomenon is observed that the intermediate features are highly

correlated between tasks with the self-supervised pre-trained model. Building upon

this observation, a novel approach called progressive task-correlated layer freezing is

proposed to gradually freeze a subset of layers with the highest correlation ratios for

each task leading to training efficiency.

ii

DEDICATION

This thesis is dedicated to my father & mother.

iii

ACKNOWLEDGMENTS

I would like to express my sincere gratitude to my advisor Dr. Deliang Fan at

Arizona State University for its high-quality advising and mentoring. I am grateful

for his invaluable suggestions and ideas, which helped form my research structure

and directions. I would commend his patience and help me develop as a researcher

through continuous encouragement and appreciation. In addition, I sincerely thank the

graduate advisory committee Dr. Jae-sun Seo, Dr.Junshan Zhang, and Dr. Yu (Kevin)

Cao, for their support and valuable suggestions. Also, thanks to all of my co-workers

and their contributions to forming this thesis. I want to thank Zhezhi, Adnan, and my

other colleagues who have given their valuable expertise and suggestions in helping

me throughout my Ph.D.

This Ph.D. work is supported in part by the National Science Foundation under

Grant No.2003749, No.1931871, and No. 2144751

iv

TABLE OF CONTENTS

Page

LIST OF TABLES . x

LIST OF FIGURES . xiii

CHAPTER

1 INTRODUCTION . 1

1.1 Overview . 1

1.2 Statement of the Main Problems . 3

1.3 Contributions . 5

1.3.1 Contribution 1: Hardware-friendly Deep Neural Network

Compression . 6

1.3.2 Contribution 2: Dynamic Inference with Run-Time Tuning

of Model Size, Computation and Latency 8

1.3.3 Contribution 3: On-Device Learning for Task Adaption 9

1.3.4 Contribution 4: Efficient Continual Learning via Progressive

Layer Freezing . 10

1.4 Dissertation Structure . 12

2 HARDWARE-FRIENDLY MODEL COMPRESSION AND ACCELER-

ATION . 14

2.1 Basics of Model Compression . 15

2.1.1 Weight Quantization . 15

2.1.2 Pruning. 16

2.2 Proposed Model Compression Method . 19

2.2.1 Problem Formalization . 19

2.2.2 Weight Penalty Clipping with Self-adapting Threshold 20

v

CHAPTER Page

2.2.3 PE-wise Structured Pruning . 22

2.3 Experiments . 24

2.3.1 Experiment Setup . 24

2.3.1.1 Dataset and Network Structure . 24

2.3.1.2 Experiment Platform . 25

2.3.1.3 Compression Rate . 25

2.3.2 Experimental Results . 26

2.3.2.1 CIFAR-10 Experiment . 26

2.3.2.2 ImageNet Experiment . 27

2.4 Ablation Study and Discussion . 29

2.4.1 Evolution of Clipping Threshold . 30

2.4.2 PE Capacity vs. Structured Sparsity Ratio 30

2.4.3 Relation to the Norm-based Criterion . 31

2.4.4 FPGA Implementation . 32

2.5 Summary . 32

3 DYNAMIC DEEP NEURAL NETWORK WITH RUN-TIME TUNING

OF ACCURACY AND LATENCY . 34

3.1 Bascis of Sparse Training . 35

3.1.1 In-training Sparsification . 35

3.2 What is Dynamic Inference . 38

3.3 Sparse Train More at Once . 39

3.3.1 Rationale of Alternating Sparse Training (AST) 40

3.3.2 AST with Gradient Correction . 41

3.3.3 Sparse Sub-net Training . 43

vi

CHAPTER Page

3.4 Experiments . 46

3.4.1 Experimental Setup . 46

3.4.2 Experimental Results . 47

3.4.2.1 CIFAR-10/100 . 47

3.4.2.2 ImageNet . 48

3.4.2.3 Extend to Structured Fine-grained Sparsity 49

3.5 Ablation Study and Discussion . 50

3.5.1 AST-GC with More Sub-nets . 50

3.5.2 AST Sub-nets with Different Sparsity Differences 51

3.5.3 Extended AST Training Efforts . 52

3.6 Summary . 53

4 ON-DEVICE LEARNING FOR TASK ADAPTION 54

4.1 Preliminaries . 54

4.1.1 Memory Efficient Learning . 54

4.1.2 Transfer Learning . 56

4.1.2.1 Transfer Learning via Fine-tuning. 56

4.1.2.2 Transfer Learning via Input Reprogramming 57

4.2 Training Memory Analysis . 58

4.2.1 Fine-tuning and Adaptor-based Methods 58

4.2.2 Mask-based Learning Method . 59

4.2.3 Training Memory Usage Analysis. 60

4.3 On-device Learning via Feature Reprogramming 64

4.3.1 Architecture Overview . 64

4.3.2 Activation Connector . 66

vii

CHAPTER Page

4.3.3 Reprogramming Step . 67

4.3.4 Design Intuition . 67

4.3.4.1 Design Intuition 1 . 68

4.3.4.2 Design Intuition 2 . 68

4.3.4.3 Design Intuition 3 . 70

4.4 Experiments . 73

4.4.1 Experimental Setup . 73

4.4.1.1 Datasets and Networks. 73

4.4.1.2 Training details . 73

4.4.1.3 Evaluation Metric . 73

4.4.2 Main Results . 74

4.4.2.1 Comparison with Input Reprogramming Methods 74

4.4.2.2 Comparison with State-of-the-art Methods 75

4.5 Ablation Study and Discussion . 75

4.5.1 Does Rep-Net Transfer Better by Using Better ImageNet

Models? . 75

4.5.2 Can Rep-Net Combine with Other Transfer Learning Meth-

ods for Efficient Inference? . 77

4.6 Summary . 78

5 EFFICIENT CONTINUAL LEARNING VIA TASK-CORRELATED

PROGRESSIVE LAYER FREEZING . 79

5.1 Related Works and Background . 80

5.1.1 Self-supervised Learning . 80

5.1.2 Continual Learning . 82

viii

CHAPTER Page

5.1.3 Layer Freezing . 84

5.2 Efficient Self-supervised Continual Learning . 84

5.2.1 Problem Formulation . 84

5.2.2 Progressive Task-correlated Layer Freezing 85

5.2.2.1 Overview . 85

5.2.2.2 Layer Freezing via Task Correlation 86

5.2.3 Subspace Construction via Memory Replay Data. 88

5.2.3.1 Progressive Task-correlated Freezing 89

5.3 Experimental Results . 91

5.3.1 Experimental Setup . 91

5.3.2 Main Results . 93

5.4 Ablation Study and Discussion . 96

5.4.1 Task-correlated Layer Freezing vs. Ascending Order Layer

Freezing . 96

5.4.2 Self-supervised Layer Decision . 97

5.5 Summary . 98

6 CONCLUSION AND OUTLOOK . 99

REFERENCES . 101

ix

LIST OF TABLES

Table Page

1. Inference Accuracy (%) of Resnets on Cifar-10. 26

2. Simulation Result of Structured Pruning for Alexnet on Imagenet Dataset.

FP. Indicates Full-precision (32-bit Floating-point) and Tern. Indicates

Ternary Weights. Note That, Acc. And Comp. Are the Abbreviation of

Accuracy and Compression. 27

3. Ablation Study on CIFAR-10 . 28

4. Inference Accuracy (%) of ResNet18 on ImageNet . 28

5. Ablation Study of ResNet-18 [41] on ImageNet. 30

6. PE Capacity Versus Structured Sparsity Ratio of ResNet-20 Trained on

CIFAR-10 Dataset. 31

7. Convolutional Layer Implementation Setup and Speed Up on FPGA 32

8. Different Relationships Between Three Subnets Gi, Gj , and Gk: Completely

Subset (CS) and Non-disjoint (ND). 43

9. Averaged Accuracy and Standard Deviations Between Different AST Train-

ing Schemes on CIFAR-10 Dataset (Three Times Experiments Each). 44

10. CIFAR-10/100 Accuracy and Training Cost Comparison with SoTA Works

on Wide ResNet-32. 47

11. ImageNet Accuracy and Training Cost Comparison with SoTA Works on

ResNet-50. 49

12. Inference Acceleration and Negligible Accuracy Drop of the Proposed AST

Algorithm with Structured Fine-grained Sparsity on ResNet-18 Model. 49

13. AST with Extended Training Effort on CIFAR-10 with Wide ResNet-32 [127]. 51

x

Table Page

14. ResNet-18 Training Results of AST (160 Epochs) with Various Sparsity

Values and Numbers of Sub-nets for CIFAR-10 Dataset. 51

15. ImageNet Accuracy with Different Sparsity Combinations on ResNet-50. . . . 52

16. Summary of The Parameters and Activation Memory Consumption of

Different Layers. 61

17. The Ablation Study to Validate the Four Design Choices. ‘adv Rep + Last’ Is

the Adversarial Reprogramming Combining with Re-training Last Classifier.

The 6Th Row Shows the Results for Proposed Rep-Net. The Last Row (7Th)

Shows the Result for Using Dual Connector at All the Convolution Layer for

the Backbone Model. We Use the Imagenet Pre-trained Proxylessnas-mobile

as the Backbone Model. 69

18. Comparison with Input Reprogramming Works. ‘adv. Rep’ Is the Original

Adversarial Reprogramming Work; ‘adv Rep + Last’ Is the Improved

Adversarial Reprogramming Work That Further Re-train the Last Classifier. 72

19. Comparison with Previous State-of-the-art (Sota) Transfer Learning Meth-

ods Using Different Backbone Neural Networks, Where‘i-v3’ Is Inception-v3;

‘n-a’ Is Nasnet-a Mobile; ‘m2-1.4’ Is Mobilenetv2-1.4; ‘r-50’ Is Resnet-50;

‘pm’ Is Proxylessnas-mobile. In This Table, We Show Our Improvements in

Comparison to Best Existing Transfer Learning Scheme Tinytl. 74

20. Combining the Rep-Net with Learnable Binary Mask-based Method for

Efficient Inference. ‘tinytl-last’ Means Only Re-training the Last Classifier

on the Tinytl Imagenet Pre-trained Model. The Inference Flops Is Reported

on Flowers Dataset. 74

xi

Table Page

21. Accuracy and Forgetting of the Learned Representations on Split Cifar-10,

Split CIFAR-100, and Split Tiny-imagenet on Resnet-18 Architecture with

KNN Classifier. All the Values Are Measured by Computing Mean and

Standard Deviation Across Three Trials. Note That, We Use the Layer

Freezing Ratio As 0.4 by Default for All Our Results. 94

22. Training Time (Measured Time in Nvidia A4000 GPU), Memory Cost, And

Computation Flops of the Learned Representations on Split CIFAR-10,

Split Cifar-100 and Split Tiny-imagenet. 95

23. Accuracy, Forgetting, Training Time, and Training Memory Cost of the

Learned Representations on Imagenet-100 with Linear Evaluation by Using

Barlowtwin and Mocov2 Respectively. 95

24. The Ablation Study on the Proposed Method in Comparison to Layer

Freezing in Ascending Layer Index (I.E., “Top Layer”) Order on Both Split

Cifar-10 and Cifar-100 Datasets by Using Barlowtwin as Backbone Method. 96

xii

LIST OF FIGURES

Figure Page

1. General Flow of Enabling Deep Learning at The Edge. 2

2. The Development Trend of The Deep Learning Models. 3

3. Hardware Resources of Various Devices. 4

4. Running Times of Same Model on Various Android Phones. 5

5. Stitched Ternarized Kernel (Each Kernel Is in 3× 3) of the First Layer of

Resnet-20 on Cifar-10, with (Left) Non-structured and (Right) Structured

Pruning. Patterns in {White,Grey,Black} Denotes {-1,0,+1} Respectively. . . 17

6. Sample Weight Distribution of Resnet-20 Layer under Different Training

Configurations, with Mean (µ) and Standard Deviation (σ). Baseline:

Full-precision Model Without Compression; Group-lasso Prune: Structured

Weight Pruning Utilizing Group Lasso Technique; Weight Tern.: Weight

Ternarization; Naive Combine: Naively Combining the Aforementioned

Pruning and Ternarization; This Work: Combining Pruning and Ternariza-

tion with Proposed Weight Penalty Clipping Technique. 19

7. The Overview of Weight Penalty Clipping with Self-adapting Threshold. . . 21

8. PE-wise Pruning. 22

9. Evolution of Clipping Threshold and Sparsity . 29

10. Norm-based Criterion on ResNet20 for CIFAR-10 dataset. (Left) Is the

Conv8 Layer and (Right) Is Conv15 Layer. 31

11. Alternating Sparse Training (AST): The Subset Network (Sub-net) are

Iteratively Activated Throughout the Training. The Model Only Learns

the Active Connections of Each Sub-net, Leading to the One-time-Trained

Multiple Sub-nets. 39

xiii

Figure Page

12. The Overview of the AST Process With Gradient Correction on Consecutive

Inner-group Sub-nets (AST-GC) . 41

13. The Ratio of Negative and Positive Inner Product of Two Sub-nets During

the AST Process on CIFAR-10 by Using Wide ResNet-32. 42

14. Layer-wise Sparsity and the Connection Dissimilarity Between Two ResNet-

32 Sub-nets Trained by the Non-disjoint (ND) AST Scheme. 45

15. An Example of Adapting ResNet50 (Pre-trained on ImageNet dataset) to

Flower Dataset. Top: Model Parameters and Activation Memory of Three

Different Methods. Bottom: Training Time of One Epoch on Two Different

Platforms: One Powerful GPU (Quadro RTX 5000) and One Edge GPU

(Jetson Nano) . 60

16. The Workflow of Adversarial Reprogramming (a) and the Rep-Net (b).

Adversarial Reprogramming Reprograms the Input by Introducing An

Additive Learnable Parameter. Differently, Rep-Net Takes the Input Data

Directly and Learns to Reprogram the Intermediate Activation Features. . . 63

17. The Overview of Reprogramming Network (Rep-Net). The Proposed Rep-

Net Model Learns Directly From the Input. The input Image is Directly Ded

Into Both Rep-Net and the Backbone Model Parallelly. In Addition, Rep-

Net Consists of A Small Number of Layers Positioned at Specific Locations

Where the Backbone Model Observes a Feature Resolution Reduction. 65

18. Design Choices for Feature Exchange Operation in Activation Connector. . . 70

19. The Test Accuracy Vs Learning Epochs under Four Difference Design Choices. 71

20. The Accuracy Comparison Between Pre-trained Imagenet and Transfer to

CIFAR10, CUB, Aircraft and Flowers on Four Different Models. 76

xiv

Figure Page

21. The Overview of Our Proposed Method Which Progressively Freezes Partial

Layers During the Whole Training Process for Each Task. 86

22. The Final Selection of Updated Layer for Each Task. The Freezing Ratios

Are 0.3 And 0.5 Respectively. Note That, Each Blue Point Means the Index

of the Updated Layer. For Split CIFAR-100 20 Tasks Setup, We Show the

First Five Tasks for Simplification.. 96

xv

Chapter 1

INTRODUCTION

1.1 Overview

In the last decades, Artificial intelligence (AI), especially deep learning, has

shown great success in various applications, such as Image classification, object detec-

tion/tracking, machine translation, and the recent popular ChatGPT, etc. Moreover,

the development of edge devices pushes AI to the edge. Nowadays, the number of

edge devices is growing rapidly which has the market size in billions. They receive

and then process massive amounts of new data in our daily life. Thus the need for

intelligent, personalized experiences powered by AI is ever-growing, for example, the

AI applications on smartphones, smart cities, smart homes, and autonomous vehicles.

In the current market, there are probably less than 100 million cold servers in the

world. But there are already 3 billion mobile phones, 12 billion IoT devices and 150

billion micro-controllers. In the long term, these small, low-power devices will consume

the most deep-learning applications.

Generally, the overflow of enabling deep learning at edge mainly can be divided

into three steps as shown in Figure 1:

1. Offline training: given a dataset, the initial deep learning model (e.g., ViT,

DNN) will be trained on cloud-based systems, for example by using powerful

GPU servers.

2. On-device inference: after this offline training, the well-trained model will be

1

1

Dataset Model

Offline training

Private dataset

LearningLearning

Deploy

Inference Inference
Make prediction without

changing the model

On-device inference:

Updating the model for
adapting to new dataset

On-device learning:

Figure 1. General Flow of Enabling Deep Learning at The Edge.

deployed on various edge devices to perform inference. Inference means that the

well-trained model will be used to make predictions on edge devices without any

modification to the model.

3. On-device learning: the users usually will collect their own data. They will

further learn the model in order to transfer the pre-trained model to their own

dataset.

Such edge AI/deep learning is becoming increasingly essential. Firstly, it can enable

real-time decision-making, which is critical in applications such as autonomous vehicles.

Compared to could computing, it has low latency and can avoid bandwidth competition.

Second, as the data generated by different devices continues to grow, it is becoming

impractical and inefficient to transmit all of the data to centralized cloud-based

systems. Such edge deep learning can achieve data decentralization which allows for

the processing of data closer to the source, reducing communication and improving

response time. Lastly, edge deep learning can also enhance the privacy of data and

deep learning models by collecting and processing the locally. This is particularly

2

Figure 2. The Development Trend of The Deep Learning Models.

important in the applications such as healthcare and finance, where data privacy is of

the utmost importance. However, there remains a huge gap between powerful deep

learning models and edge devices.

1.2 Statement of the Main Problems

Deep learning models are quite expensive. Figure 2 shows the trends of the deep

learning models. If looking over the years, the amount of parameters in deep learning

models has increased exponentially. If this trend keeps up, we will have around 100

trillion parameters that reach the number of synapses in human brains. But the

energy consumption of the human brain is 100,000 × more efficient1. Thus we could

see that AI is powered by the explosive growth of deep learning models. A more

powerful model with higher accuracy implies a larger model size, higher computing,

and memory workload.

1Source from Qualcomm Technologies Inc.

3

Figure 3. Hardware Resources of Various Devices.

In contrast, edge devices are diverse and resource-limited. Specifically, as shown in

Figure 3, it’s clear that different devices have diverse hardware resources. In addition,

compared to cloud GPU, edge devices are memory, computation, and energy limited.

For example, comparing microcontrollers to could GPUs, the memory size is 150,000×

smaller, the computation capacity is 5000× and the power consumption is 50× smaller.

In addition, Figure 4 shows the running time of the deep learning application (i.e.,

MobileNet V1 model [49] for ImageNet classification dataset) on various Android

phones. It’s clear to see that different phones have diverse running times for the same

deep learning models2. Moreover, even for one single phone, there are many other

factors that will affect running time, such as low battery, overheating, and heavy

storage usage.

In summary, such a huge gap leads to several challenges in enabling deep learning

at the edge as shown below:

2Source from AI-Benchmark

4

Figure 4. Running Times of Same Model on Various Android Phones.

• Edge devices suffer from large computing and memory costs, which make it

difficult to be deployed on edge devices directly.

• Different devices have different hardware resources. Furthermore, even for one

single device, it usually will be used on dynamic environments, which have

different hardware resource constraints.

• For the on-device learning, updating the pre-trained model on their own dataset

will make it forget prior learned knowledge on the cloud.

1.3 Contributions

To tackle the issues, the main objective of the Ph.D. study is to enable deep

learning at edge: from efficient and dynamic inference to on-device learning..

In practice, the contributions of this dissertation can be summarized into four major

parts: i) Hardware-friendly model compression to compress the model size for efficient

inference [110, 85]; ii) Considering the dynamic hardware resource and environment,

the run-time dynamic inference is further explored [117, 121, 115]; iii) compute and

5

memory-efficient algorithms to enable on-device learning [113, 120, 112]; iv) efficient

continual learning methods to continually learn multiple tasks without forgetting prior

learnd knowledge [116, 67, 65].

1.3.1 Contribution 1: Hardware-friendly Deep Neural Network Compression

In recent years, Deep Neural Networks (DNNs) have evolved into more complex

model structures, characterized by deeper layers, and larger model sizes. Despite

these advancements, the deployment of DNNs on lightweight hardware remains a

challenge due to the substantial costs associated with computation and storage. A

notable example is VGG-16 [103] from ImageNet (ILSVRC 2014), which necessitates

552MB parameters and 30.8 GFLOP per image, making it impractical to implement

on mobile systems with limited resources. Many recent works have put forth various

techniques to compress large DNNs, which mainly encompass network quantization

[50], low-rank approximation [21], weight pruning [38] and knowledge distillation [46].

Weight pruning is a technique that reduces the size of a model by setting certain

weights to zero. Previous research on weight pruning can be broadly categorized

into two groups: non-structured pruning [38, 37] and structured pruning [58, 69,

108]. The primary difference between these two approaches lies in the regularity

of the sparse weight patterns achieved after pruning. Non-structured pruning aims

to generate highly irregular sparse weight patterns, striving for the highest possible

sparsity. However, this irregularity poses challenges in efficiently encoding sparse

weights due to sparse indexing. While non-structured pruning generally exhibits

minimal degradation in compression accuracy due to its higher pruning flexibility,

its effectiveness in hardware deployment is limited. In contrast, structured pruning

6

introduces weight sparsification in a regular manner, such as on a kernel-wise or

channel-wise basis [108], making it more compatible with hardware deployment.

Moreover, weight quantization involves discretizing the weights of a DNN into

multiple discrete levels, typically represented by limited-bit-width binary strings.

Unlike weight pruning, which requires specialized hardware for efficient DNN inference,

weight quantization is comparatively straightforward and easier to implement. In

this study, we adopt a ternary value quantization scheme (−1, 0,+1) to simplify the

complexity of convolution computations from multiply-accumulate (MAC) operations

to only additions and subtractions, thereby reducing the model size. Previous research

[37] has explored the combination of pruning and quantization, demonstrating minimal

accuracy degradation when using moderate compression rates (e.g., 8-bit quantization

bit-width) on highly redundant DNN architectures like AlexNet. However, these

previous works do not provide detailed insights for more aggressive compression

methods applied to state-of-the-art DNN architectures.

To tackle these challenges, our goal is to combine structured weight pruning and

ternarization techniques to enhance DNN inference performance on hardware platforms

while minimizing accuracy loss. To address various technical concerns and ensure the

effectiveness of our approach, we adopt a hardware/software co-design methodology.

This allows us to thoroughly address and optimize various aspects of the system,

taking into account both hardware and software considerations.

7

1.3.2 Contribution 2: Dynamic Inference with Run-Time Tuning of Model Size,

Computation and Latency

As mentioned in Section 1.3.1, the model compression methods [49, 100, 37, 50,

21, 108, 46, 110] can effectively reduce the model size to achieve efficient inference.

However, different hardware platforms have varying available resources, necessitating

different levels of compression while maintaining similar latency requirements. Fur-

thermore, even within a specific hardware platform, real-world scenarios introduce

dynamic variations. For instance, smartphones may experience overheating or low

battery, resulting in varying allocated computing resources for DNN computations and

consequently affecting throughput and latency. In such cases, retraining and reloading

DNN models to accommodate different or dynamic requirements can be prohibitively

expensive or even impractical. This situation presents a new challenge: How can we

develop an adaptive DNN model that can dynamically adjust its computing complexity,

model size, and accuracy on-the-fly to meet the changing application requirements and

workload without the need for reloading new models?

To overcome this challenge, our approach involves constructing a dynamic DNN

structure composed of multiple subnets using a novel sub-network sampling method

based on non-uniform channel selection. This method is inspired by the observation

that different layers in parametric DNNs (such as convolution or fully-connected layers)

have varying sensitivity to capacity reduction, as demonstrated in model pruning

[64, 88, 108] and NAS (Neural Architecture Search) works [136, 70, 71]. This new

dynamic DNN can adjust the number of involved convolution channels (i.e., model

size and computing load) at runtime during the inference stage without the need for

retraining. This allows for dynamic trade-offs between computing complexity (power

8

and speed) and accuracy. Unlike previous approaches with uniform structures, our

dynamic DNN, referred to as a supernet model, comprises multiple subnets, each

possessing a non-uniform structure to achieve optimal efficiency.

1.3.3 Contribution 3: On-Device Learning for Task Adaption

The proliferation of IoT devices has led to a significant increase in their utilization,

with around 250 billion microcontrollers being deployed worldwide today3. These

devices collect vast amounts of data across various domains and tasks, sparking

researchers’ interest in on-device AI capabilities. In addition to performing inference,

there is a growing focus on enabling on-device training or transferring pre-trained

models to new data. This learning paradigm aligns with the concept of transfer

learning [13], where well-trained deep learning models are transferred from a primary

source task to a new task, giving rise to the emerging field of on-device transfer

learning. Compared to the conventional approach of training deep learning models in

the cloud and performing inference on devices, on-device transfer learning offers several

advantages. It eliminates the need for communication between cloud and edge devices,

addressing concerns related to data privacy. Moreover, on-device learning enables

real-time adaptation to changing conditions and data, enhancing the autonomy and

responsiveness of IoT/edge devices. However, the memory requirements of the training

process pose a significant challenge for memory-constrained IoT/edge devices. Recent

studies on memory-efficient learning [15, 11, 111] have revealed that the storage of

intermediate activations, rather than parameters, is the main bottleneck in training

memory consumption. Therefore, reducing the memory footprint during training,

3https://venturebeat.com/2020/01/11/why-tinyml-is-a-giant-opportunity/

9

particularly the storage of activation data from pre-trained models, becomes crucial

for enabling on-device transfer learning. Unfortunately, existing transfer learning

methods either suffer from high training memory consumption or have limited transfer

capacity, hindering their practicality and effectiveness in on-device scenarios.

To address the limitations and challenges of previous approaches, we introduce

a novel framework called “Reprogramming Network“ (Rep-Net) that offers a fresh

perspective on the on-device transfer learning problem. In Rep-Net, we focus on

the concept of “intermediate feature reprogramming” to facilitate on-device transfer

learning. The principle working mechanism of this design is to reprogram the fixed

backbone model from the input data via the proposed activation connector that enables

feature exchange between the backbone and Rep-Net at regular intervals. Such feature

exchange uses an additive operation that not only helps both the backbone model

and Rep-Net model to update and improve their features.

1.3.4 Contribution 4: Efficient Continual Learning via Progressive Layer Freezing

As described in Contribution 3, on-device learning aims directly train deep learning

models on edge devices directly. A further step is to continually learn multiple tasks

instead of a single one. Building upon the achievements of Self-supervised learning

(SSL) in extracting visual representations from unlabeled data, researchers have

explored its application in the realm of continual learning (CL). In CL, multiple tasks

are learned sequentially, leading to the emergence of a new paradigm known as self-

supervised continual learning (SSCL). SSCL has demonstrated superior performance

compared to supervised continual learning (SCL) because the learned representations

are more informative and resistant to catastrophic forgetting.

10

However, it is important to design SSCL approaches intelligently, as the training

complexity can become excessively high due to the inherent cost of SSL. SSL typi-

cally requires additional computational resources and time compared to traditional

supervised learning, as it involves the generation of pseudo-labels or pretext tasks to

train models on unlabeled data. Thus, while SSCL holds great promise, it is crucial

to develop efficient and scalable methods that strike a balance between the benefits

of self-supervised learning and the practical constraints of training complexity. By

addressing these challenges, SSCL can become a powerful framework for continual

learning, enabling models to learn from and adapt to new tasks while preserving

previously acquired knowledge.

To address the challenge of high training costs and catastrophic forgetting in self-

supervised continual learning (SSCL), we propose a novel method called progressive

task-correlated layer freezing (PTLF). Our approach leverages an analysis of task

correlations based on gradient projection in SSCL, revealing that the intermediate

representations learned through self-supervised learning exhibit high correlation and

variability among tasks, in contrast to supervised continual learning (SCL). Motivated

by this finding, we introduce PTLF as a means to reduce training time and memory

costs in SSCL. The key idea is to selectively freeze layers during training based on the

task correlations. To accomplish this, we first define a metric called the task correlation

ratio, which quantifies the correlation between the current task and prior tasks using

the gradient projection norm. Next, we progressively freeze the top-ranked layers

with higher task correlation ratios among tasks during the self-supervised continual

learning process for each task. By applying PTLF, we exploit the inherent correlations

among tasks to prioritize the freezing of layers that have higher redundancy and lower

task-specific information. This selective freezing strategy reduces computational and

11

memory requirements by effectively leveraging the shared representations learned

through self-supervised learning.

1.4 Dissertation Structure

The dissertation structure is organized as follows:

• Chapter 2 presents a novel hardware-friendly model compression method

for efficient inference. It contains materials from “Harmonious coexistence of

structured weight pruning and ternarization for deep neural networks” published

at AAAI 2020 [110]. The dissertation author is the first author of the paper.

• Chapter 3 presents a family of run-time dynamic inference methods. It contains

materials from “Get More at Once: Alternating Sparse Training with Gradient

Correction” published at NeurPS 2022 [117], “Non-uniform dnn structured

subnets sampling for dynamic inference” published at DAC 2020 [121], and “A

progressive subnetwork searching framework for dynamic inference” published

at TNNLS 2022 [115]. The dissertation author is the first author of the papers.

• Chapter 3 presents a memory-efficient algorithm to enable on-device learning

for task adaption. It contains materials from “DA3: Dynamic Additive Attention

Adaption for Memory-Efficient On-Device Multi-Domain Learning” published at

CVPR-ECV 2022 [112] and “Rep-net: Efficient on-device learning via feature

reprogramming” published at CVPR 2022 [113]. The dissertation author is the

first author of the papers.

• Chapter 4 presents an efficient continual learning algorithm via progressive

layer freezing. It contains materials from “Efficient Self-supervised Continual

12

Learning with Progressive Task-correlated Layer Freezing”. The dissertation

author is the first author of the papers.

13

Chapter 2

HARDWARE-FRIENDLY MODEL COMPRESSION AND ACCELERATION

Deep convolutional neural networks (DNNs) have achieved remarkable success

and are extensively employed in various computer vision tasks. However, their large

model size and high computational complexity hinder their deployment in resource-

limited embedded systems like FPGAs and mobile GPUs. Weight pruning and

quantization are the two most widely used techniques for compressing DNN models.

Weight pruning introduces weight sparsity by forcing certain weights to zero, while

quantization reduces the bit-width of weights by representing them with limited

precision values. Although there have been attempts to combine weight pruning and

quantization, a lack of harmony between the two techniques persists, particularly

when more aggressive compression schemes, such as structured pruning and low bit-

width quantization, are employed. We propose a novel approach named PE-wise

structured pruning, which incorporates the architecture of the Processing Elements

(PE) to introduce weight sparsity. Additionally, we integrate this approach with

an optimized weight ternarization technique, which quantizes weights into ternary

values (−1, 0,+1). By doing so, we convert the dominant convolution operations in

the DNN from multiplication-and-accumulation (MAC) to addition-only, significantly

reducing computational complexity. Moreover, this compression scheme compresses

the original model from 32-bit floating point to a 2-bit ternary representation, achieving

a compression ratio of at least 16 times. Furthermore, we address the coexistence

issue between PE-wise structured pruning and ternarization by proposing a technique

Weight Penalty Clipping (WPC) with a self-adapting threshold. This technique

14

effectively manages the trade-off between pruning and quantization, ensuring the

compatibility and optimal performance of both approaches

2.1 Basics of Model Compression

2.1.1 Weight Quantization

Weight quantization had become a must-done step for deep learning models to

be deployed on the hardware. The primary concept of weight quantization is to

decrease the bit-width of the weight representation format, such as reducing from

32-bit floating-point to 8-bit integer [37]. Extensive research has been dedicated

to this area, with the aim of compressing DNNs to lower bit-width (resulting in

higher compression rates) while minimizing accuracy degradation compared to the

full-precision baseline. Several research endeavors [62, 45] have focused on achieving

this objective by optimizing weight quantization techniques.

We adopt the weight ternarization method proposed in [45] as our low bit-width

quantization baseline. This method can be summarized as follows. For the weights

Wl in the l-th layer of the DNN, the weight ternarization function can be formulated

as:

ŵl,i = Tern(wl,i,∆l) = αl ·

+1 wl,i > ∆l

0 −∆l ≤ wl,i ≤ ∆l

−1 wl,i < −∆l

(2.1)

αl = E(|{wl,i}|), ∀{i
∣∣|Wl,i| > ∆l} (2.2)

where ŵl,i is the i-th ternarized weight element in l-th layer. αl is the layer-wise scaling

factor (i.e., quantized value). The threshold ∆l = 0.05 · max(|Wl|). Similar to other

15

quantization techniques, we employ the Straight-Through Estimator (STE) method

[4] to address the non-differentiability issue associated with the staircase quantization

function defined in Equation (2.1). Therefore, considering a vectorized input x and

target t, the optimization process for the ternarized DNN can be expressed as:

min
{Wl}Ll=1

L(f(x; {Ŵl}Ll=1), t)

s.t. {Ŵ }Ll=1 = Tern({W }Ll=1)

(2.3)

where this equation uses identical notations.

2.1.2 Pruning

Pruning is another well-known technique for compressing neural networks, which

removes partial weights or connections for reducing the model size and simplifying

computations [38]. Depending on the sparsity pattern of the pruned weights, prun-

ing techniques can be broadly categorized into two branches: non-structured and

structured pruning [64, 77, 58, 108, 3, 44]. As shown in Figure 5, structured pruning

methods lead to sparsity patterns (indicated by grey colors) with highly regular shapes.

The classification of pruning methods into non-structured and structured categories is

primarily driven by hardware considerations. Hardware accelerators for DNN infer-

ence, such as GPUs or FPGAs, can benefit more from the regular sparsity patterns

generated by structured pruning methods (as shown on the right side of Figure 5),

rather than the random sparse patterns produced by non-structured pruning methods

(as shown on the left side of Figure 5). Therefore, structured pruning provides a more

viable solution for hardware inference acceleration, as it enables efficient utilization

of the regular sparsity patterns, resulting in improved computational efficiency and

better hardware deployment.

16

Figure 5. Stitched Ternarized Kernel (Each Kernel Is in 3× 3) of the First Layer of
Resnet-20 on Cifar-10, with (Left) Non-structured and (Right) Structured Pruning.
Patterns in {White,Grey,Black} Denotes {-1,0,+1} Respectively.

Non-structured Pruning The study of non-structured pruning originated from

the concepts of optimal brain damage and optimal brain surgeon [59, 39]. Han et

al. further explored this technique in the context of deep neural networks (DNNs)

[38, 37]. In their work [38, 37], Han et al. adopted a simple pruning strategy where

weights below a predefined threshold are iteratively removed (i.e., set to zero), followed

by fine-tuning to recover accuracy. Srinivas et al. proposed a data-free pruning

algorithm in [102], which iteratively removes redundant neurons by connecting similar

neurons together. The technique of variational dropout is utilized in [88] for pruning

redundant weights in DNNs. In [79], Louizos et al. introduced a method where

DNNs learn their sparse weights through L0-norm regularization based on a stochastic

gate. These studies represent different approaches and techniques within the realm of

non-structured pruning, each with its own focus and methodology for reducing the

redundancy in DNNs.

Structured Pruning In structured pruning, various sparsity patterns have been

explored, including channel, kernel, and customized group patterns, in different studies

[64, 77, 58, 108, 3, 44]. In [64], the authors directly prune unimportant filters based

on their L1-norm. They identify filters with small L1-norms as less significant and

remove them from the model. Liu et al. [77] introduce L1 regularization on the

17

scaling coefficients of batch normalization layers as a penalty term. This regularization

penalizes channels with small scaling coefficients, leading to their removal. On the

other hand, the structured pruning methods proposed in [58, 108, 3, 44]share a

common core technique: group Lasso. Group Lasso extends the concept of Lasso

regularization to groups of weights or channels, promoting sparsity at the group

level. These different approaches to structured pruning offer flexibility in choosing the

sparsity pattern based on the specific requirements of the task or the characteristics

of the neural network model.

Group Lasso was initially introduced in [128], and Wen et al. [108] incorporated

it as an additional term in the loss function during the training of DNNs using

back-propagation. The loss function can be formulated as:

L̂ = L
(
f(x;W ll = 1L), t

)
+ λ

L∑
l=1

Gl∑
i=1

P(Wl,i) (2.4)

In this equation, f(x;W ll = 1L) computes the outputs of the DNN with param-

eters W ll = 1L given the input x. L(·, ·) represents the objective function of the

DNN, such as the cross-entropy loss. P(W l, i) = ||W l, i||2 calculates the Euclidean

norm of the indexed weight group W l, i. The second term in Equation (2.4) is the

L1-norm of P(Wl,i), known as group Lasso [128]. It acts as a group-wise weight

penalty, promoting group-wise sparsity during optimization. Gl represents the number

of groups in the l-th layer, and λ is a hyperparameter that needs to be tuned based

on the dataset. By incorporating group Lasso into the loss function, Wen et al. aim

to encourage group-wise sparsity, leading to structured sparse weight patterns in the

DNNs. This technique facilitates efficient hardware deployment and computation due

to the structured nature of the sparsity.

18

0.5 0.0 0.5
0

500

1000

1500 = 0.0
= 0.07

Baseline

0.5 0.0 0.5

= 0.0
= 0.02

Group-Lasso prune

0.5 0.0 0.5

= 0.0
= 0.07

weight tern.

0.5 0.0 0.5

= 0.0
= 0.04

Naive combine

0.5 0.0 0.5

= 0.0
= 0.08

This work

Figure 6. Sample Weight Distribution of Resnet-20 Layer under Different Training
Configurations, with Mean (µ) and Standard Deviation (σ). Baseline: Full-precision
Model Without Compression; Group-lasso Prune: Structured Weight Pruning
Utilizing Group Lasso Technique; Weight Tern.: Weight Ternarization; Naive
Combine: Naively Combining the Aforementioned Pruning and Ternarization; This
Work: Combining Pruning and Ternarization with Proposed Weight Penalty Clipping
Technique.

2.2 Proposed Model Compression Method

2.2.1 Problem Formalization

As discussed above, both group-lasso based structured pruning and weight ternar-

ization have demonstrated impressive performance in compressing DNN models while

preserving inference accuracy compared to the full-precision baseline. To maximize

the model compression rate and leverage the advantages of both techniques, we ini-

tially combine them in a straightforward manner. The DNN training process can be

formulated as minimizing the following loss function:

L̂ = L(f(x;Tern{Wl}Ll=1), t) + λ

L∑
l=1

Gl∑
i=1

P(Wl,i) (2.5)

Nevertheless, such naive combination leads to severe accuracy degradation without

significantly improving the compression rate.

To investigate the problem further, we analyze the weight distribution of different

training configurations. The histograms of these weight distributions are depicted in

Figure 6. The results reveal that the group Lasso-based structured pruning acts as

19

a regularization term, causing the weights to shift towards smaller values, indicated

by a small standard deviation (σ) and a mean (µ) close to zero, compared to the

full-precision baseline. On the other hand, weight ternarization has a negligible effect

on the standard deviation compared to the baseline. Interestingly, when we naively

combine the structured pruning and ternarization methods, we observe that the

standard deviation converges to a value between that of the group Lasso and weight

ternarization counterparts. This observation inspires us to investigate the potential

cause of accuracy degradation when these two methods are combined.

• Is that applying the group Lasso (i.e., weight penalty) upon entire weights

contradictory to the weight ternarization method?

• Whether maintaining the weight distribution close to the original ternary coun-

terpart helpful to mitigate the accuracy degradation?

Building upon these insights, we introduce a novel technique called Weight Penalty

Clipping (WPC) with a self-adapting threshold to address the coexistence issue between

group Lasso-based structured pruning and ternarization. The WPC technique is

outlined in the following subsection.

2.2.2 Weight Penalty Clipping with Self-adapting Threshold

To address the issue discussed above, we make further adjustments to the intra-

group L2-norm term in Eq.2.4. As a result, the Eq.2.5 can be reformulated as:

L̂ = L(f(x;Tern{Wl}Ll=1), t) + λ

L∑
l=1

Gl∑
i=1

min
(
||Wl,i||2; δl

)︸ ︷︷ ︸
Weight Penalty Clipping

(2.6)

20

Intra-Group
𝐿2 − 𝑛𝑜𝑟𝑚

𝑊 2
< 𝛿 ?

No

Yes

ℒ መℒ

𝛿
𝑊

Forward

Forward and backward

𝑊 2

Weight
Tensor

WPC

Inter-Group
𝐿1 − 𝑛𝑜𝑟𝑚

Figure 7. The Overview of Weight Penalty Clipping with Self-adapting Threshold.

δl = a · 1

Gl

Gl∑
i=1

||Wl,i||2 (2.7)

where δl represents the layer-wise self-adapting clipping threshold. It is employed to

limit the penalty of the intra-group L2-norm term on large weights. The parameter a

is a scaling coefficient. It is important to note that when the intra-group L2-norm

penalty of W l, i is clipped, the inter-group L1-norm penalty is also clipped accordingly.

We refer to this technique as Weight Penalty Clipping (WPC). Figure 7 provides an

overview of the WPC process. In each training iteration, the updated weights are

utilized in the loss function, as shown in Eq.2.7. Subsequently, after calculating the

intra-group L2-norm, WPC compares it with the threshold δl to determine whether

the corresponding ||W l, i||2 will be used in the loss function and contribute to the

backward propagation. Considering two cases:

• When ||W l, i||2 ≥ δl, it indicates that the weights in W l, i are relatively large

and important, and they should not be pruned by the group Lasso term in

Eq.2.6. In this case, weight penalty clipping is performed, where the weight

penalty term of ||W l, i||2 in L̂ is replaced with δl. It is important to note that

δl is treated as a constant and its calculation is excluded from the backward

computation graph.

21

Filter pruning Channel pruning PE-wise pruning

Reshape

Compute Engine

PE

PE

PE

𝐶 × 𝐾h × 𝐾𝑤

𝑁
PE

PE

Figure 8. PE-wise Pruning.

• When ||Wl,i||2 < δl, we retain the weight penalty term of ||W l, i||2 in its original

value. This allows the group Lasso term to continue affecting W l, i and prune

the weights in a group-wise fashion.

2.2.3 PE-wise Structured Pruning

The performance, such as accuracy, of a DNN pruned using a group Lasso-based

method heavily relies on the defined group shape. Various group shapes, such as

channel, filter, and depth, have been explored in [108]. However, using a large group

capacity (i.e., a high number of weights per group) often leads to either low group

sparsity or low inference accuracy. On the other hand, using a small group capacity

can be beneficial for both group sparsity and accuracy. However, it may be challenging

to accelerate the pruned DNN on target hardware due to the irregular sparsity pattern.

To strike a balance between DNN performance after structured pruning and

inference efficiency on target hardware, we propose making the group shape identical

to the Processing Element (PE) of the target hardware. The PE represents the basic

computing unit in modern DNN accelerators, such as FPGAs, ASICs, or GPUs. By

22

aligning the group shape with the PE architecture, the DNN accelerator can efficiently

utilize the PE-wise sparsity pattern, resulting in improved speed-up, as demonstrated

in our later experiments.

Due to limited hardware resources, achieving fully parallelized computation is

challenging. To address this issue, we propose a PE-wise structured pruning approach

where the group size is defined to be equal to the capacity of one PE. In a standard

convolution layer, the weights are stored in a 4D tensor W ∈ RN×C×Kh×Kw , where N ,

C, Kh, and Kw denote the output channel, input channel, kernel height, and kernel

width in the current layer, respectively. As illustrated in Figure 8, the size of the

PE-wise pruning falls between filter (C ×Kh ×Kw) pruning and channel (N) pruning.

Furthermore, in terms of hardware deployment, the high-dimensional convolution

operation is often reduced to matrix multiplication. This involves reshaping the 4D

weight tensor into a 2D matrix with a size of (N,C ×Kh ×Kw). As a result, defining

structured sparsity groups in terms of channels (C) and shape (Kh ×Kw) does not

align well with practical hardware implementation. To address this mismatch, we

choose the capacity of a PE as the group size for performing group-wise pruning,

with a size of Cg ×Kh ×Kw. Here, Cg is a multiple of C. With this approach, one

PE can perform computations between one group of weights and the corresponding

partial feature map vector with a size of Cg ×H ×W . This aligns with the hardware

architecture and allows for efficient computation within the PE-wise pruning scheme.

23

2.3 Experiments

2.3.1 Experiment Setup

2.3.1.1 Dataset and Network Structure

To evaluate the performance of our proposed technique, we conducted experiments

on a classic image classification task. We used two datasets in this work: CIFAR-10

[57] and ImageNet [19]. CIFAR-10 consists of 50,000 training samples and 10,000

test samples, with each image having a size of 32 × 32 pixels. For CIFAR-10, we

employed the ResNet-20/32/44/56 architecture [41]. The network was trained using

the momentum SGD optimizer, with an initial learning rate of 0.1. The learning rate

was scaled by a factor of 0.1 at epochs 80 and 120. Data augmentation techniques

were applied following the configuration described in [41].

For the ImageNet dataset, it consists of 1.2 million training images and 50,000

validation images, with a total of 1,000 categories. We followed the data preprocessing

scheme adopted by ResNet [41]. We employed the ResNet-18 and AlexNet architectures

for our experiments on ImageNet. The networks were trained using the Adam optimizer,

with an initial learning rate of 0.0001. The learning rate was scaled by a factor of

0.2 at epochs 30, 40, and 45. Similar to other quantization works such as [68, 45,

96], we kept the first and last layers in full precision, i.e., 32-bit float, while applying

quantization to the intermediate layers.

24

2.3.1.2 Experiment Platform

The algorithm was implemented using the PyTorch deep learning framework4

and executed on a system equipped with 4 NVIDIA Titan XP GPUs. To evaluate

the performance of PE-wise structured pruning, we designed a FPGA-based DNN

accelerator. The FPGA platform used was the Xilinx PYNQ-Z1 board, which is

supported by the PYNQ open-source framework. The board features a Xilinx Zynq-

7000 SoC, which includes an XC7Z020 FPGA and an embedded ARM Cortex-A9

processor. This FPGA-based accelerator provides hardware acceleration for DNN

computations, enabling efficient execution of the pruned models.

2.3.1.3 Compression Rate

To fully leverage structured pruning from a hardware perspective, we can utilize a

binary indexer to indicate which PE groups contain all zero values. With this approach,

we only need to store the weight groups that have non-zero values in memory. The size

of the binary indexer is negligible compared to the size of the weights. Consequently,

we can formulate the compression rate C of the weights as follows:

C =
32

(1−Gs) · n
(2.8)

where Gs represents the group sparsity, which is the fraction of the number of groups

with all zero values over the total number of groups across layers. The term n denotes

the bit-width of the model, which is set to 2 in this case as we encode the weights

in binary format. The value 32 corresponds to the bit-width of full precision. It

4https://pytorch.org/

25

Table 1. Inference Accuracy (%) of Resnets on Cifar-10.
ResNet-20 ResNet-32 ResNet-44 ResNet-56

FP 91.7 92.36 92.47 92.68
Ours 90.89 91.62 91.76 92.05
Gap -0.81 -0.74 -0.71 -0.63

should be noted that when calculating the compression rate, we only consider the

group sparsity since it is the matrix that can be realized in hardware implementation.

Furthermore, all the compression rates of our method, as shown below, are defined

using Eq.2.8.

2.3.2 Experimental Results

2.3.2.1 CIFAR-10 Experiment

The proposed method was evaluated on ResNet-20/32/44/56 architectures. The

size of the PE group was set to 16 × 3 × 3 for all layers in all network types. The

results of the inference accuracy, as shown in Table.1, indicate that all four ResNet

models achieved less than 1% accuracy loss compared to the floating-point baseline.

It is worth noting that more compact neural networks, such as ResNet-20, are more

susceptible to accuracy loss due to the aggressive compression of the model, which

hampers the network’s capacity.

26

Table 2. Simulation Result of Structured Pruning for Alexnet on Imagenet Dataset.
FP. Indicates Full-precision (32-bit Floating-point) and Tern. Indicates Ternary
Weights. Note That, Acc. And Comp. Are the Abbreviation of Accuracy and
Compression.

Method Weight
format

Top-1 Acc.
gap (%)

Sparsity
metrics

Layer index Comp. rate

Conv1 Conv2 Conv3 Conv4 Conv5 Conv2-5

SSL
[108]

Floating-
point

(32-bit)
2.06

Column (%) 0.0 63.2 76.9 84.7 80.7 -
∼ 6.4×Row (%) 9.4 12.9 40.6 46.9 0.36

Layer (%) 9.4 68.8 86.3 91.9 80.8 84.4

This
work

Ternary
(2-bit) 3.23

Group (%) 24.3 36.5 47.3 45.0 24.2 35.46
In-group (%) 13.2 59.5 48.6 41.7 36.1 ∼ 24.7×Layer (%) 34.3 80.2 72.9 67.9 51.6 68.2

2.3.2.2 ImageNet Experiment

The proposed method was evaluated on ResNet-18 and AlexNet architectures. The

size of the PE group was set to 64× 3× 3 for all convolutional layers in both networks.

For the AlexNet architecture, we conducted comparisons with both non-structured

ternarization and related structured pruning methods, specifically the work by Wen

et al. [108]. However, due to the differences in baseline accuracy (61.78% for our

method and 57.4% for [108]), we reported the accuracy loss in Table 2 to provide a

fair comparison. We evaluated various types of sparsity, including column sparsity

(filter-wise), row sparsity (shape-wise), and layer sparsity. Additionally, we introduced

PE-wise sparsity, which is based on the computation capacity of a single PE. The

simulation results in Table 2 demonstrate a 1.17% accuracy degradation and a 16.2%

sparsity reduction compared to [108] while achieving a much higher compression rate.

For the ResNet architecture, we compared our method with existing non-structured

weight quantization works, specifically those using binarization and ternarization

techniques. The inference accuracy results are shown in Table 4. When compared to

ABC-Net, which utilizes multiple binarization approximation techniques, our method

achieves almost the same accuracy with a much higher compression rate. Furthermore,

27

Table 3. Ablation Study on CIFAR-10
Tern Pruning Naive combine Ours

ResNet-20 91.62 91.1 90.01 90.89
Overall sparsity 49 61 70 50
Group sparsity - 44 18 25

Comp. rate ∼ 16× ∼ 1.78 ∼ 19.5× ∼ 21.5
ResNet-32 92.48 91.88 90.68 91.64

Overall sparsity 48 40 74 58
Group sparsity - 34 28 43

Comp. rate ∼ 16× ∼ 1.5 ∼ 22.2× ∼ 28.1
ResNet-44 92.71 92.29 91.15 91.98

Overall sparsity 55 58 80 64
Group sparsity - 46 21 44

Comp. rate ∼ 16× ∼ 1.85 ∼ 20.2× ∼ 28.6
ResNet-56 93.1 92.86 92.01 92.85

Overall sparsity 52 67 82 67
Group sparsity - 28 42 55

Comp. rate ∼ 16× ∼ 1.39 ∼ 27.6× ∼ 35.6

Table 4. Inference Accuracy (%) of ResNet18 on ImageNet
Quan First Last Accuracy Comp.

scheme layer layer (top1/top/5) rate

Baseline - FP FP 69.75/89.07 1×

BWN[96] Bin. FP FP 60.8/83.0 ∼ 32×
ABC-Net[68] Bin. FP FP 68.3/87.9 ∼ 6.4×
ADMM[62] Bin. FP FP 64.8/86.2 ∼ 32×

TWN[62, 63] Tern. FP FP 61.8/84.2 ∼ 16×
TTN[135] Tern. FP FP 66.6/87.2 ∼ 16×
ADMM[62] Tern. FP FP 67.0/87.5 ∼ 16×

[45] Tern. FP FP 67.95/88.0 ∼ 16×

Ours Tern. FP FP 68.01/88.13 ∼ 21.3×

when compared to [45], which employs the same non-structured ternarization method

as our work, we achieve a 1.35x compression rate with a slight accuracy enhancement.

28

0 50 100 150 200
Epoch

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Ov
er

al
l S

pa
ris

ty
 (%

)

ResNet20 Cifar10
conv1
conv2
conv3
conv4
conv5
conv6
conv7
conv8
conv9
conv10
conv11
conv12
conv13
conv14
conv15
conv16
conv17

0 50 100 150 200
Epoch

0.2

0.4

0.6

0.8

1.0

Th
re

sh
ol

d
of

 w
ei

gh
t p

en
al

ty
 c

lip
pi

ng ResNet20 Cifar10
conv1
conv2
conv3
conv4
conv5
conv6
conv7
conv8
conv9
conv10
conv11
conv12
conv13
conv14
conv15
conv16
conv17

Figure 9. Evolution of Clipping Threshold and Sparsity

2.4 Ablation Study and Discussion

To evaluate the effectiveness of our proposed method, we compared it with three

different cases: weight ternarization, Group-Lasso pruning, and directly combining

these two techniques (naive combine) on both the CIFAR-10 and ImageNet datasets.

The results are presented in Table 3 and Table 5. In these tables, overall sparsity

refers to the ratio of individual zero values within the entire weight tensors, while

group sparsity represents the ratio of PE-wise groups that are all zeros.

Comparing our method with the naive combine, we observed that our method

achieves smaller overall sparsity but larger useful group sparsity. This result demon-

strates the effectiveness of the proposed weight penalty clipping with self-adapting

threshold. By utilizing this technique, only the weight groups with smaller norm values

are regularized, while the rest of the weight groups remain unchanged. This approach

focuses on pruning unimportant weight groups while preserving the important ones,

leading to improved compression efficiency.

29

2.4.1 Evolution of Clipping Threshold

The clipping threshold and sparsity are two important dynamic factors during the

training process. Figure 9 illustrates the dynamics of sparsity and clipping threshold

during training. It can be observed that the sparsity increases significantly in the first

80 epochs and then reaches a stable state. Similarly, the clipping threshold follows

a similar pattern, with its value becoming smaller over time. This behavior can be

attributed to the large initial learning rate, which amplifies the effect of the Group

Lasso regularizer on the weights. Additionally, we observe that the later layers tend

to have larger sparsity compared to the front layers. This could be due to the fact

that the later layers capture higher-level features and are thus more likely to contain

redundant or less important weights.

Table 5. Ablation Study of ResNet-18 [41] on ImageNet.
Acc Overall sparsity Group sparsity Comp. rate

FP 69.75 - - 1.0
Pruning 68.0 43 38 ∼ 1.6×

Tern 67.95 60 - ∼ 16×
Naive combine 65.12 75 18 ∼ 19.5×

Ours 68.01 70 25 ∼ 21.3×

2.4.2 PE Capacity vs. Structured Sparsity Ratio

To evaluate the effectiveness of different PE-group sizes, we conducted experiments

using ResNet-20 with 5 different PE sizes (e.g., PE-8 denotes a PE-group size of

8×Kh ×Kw). All models were trained using the same hyper-parameter settings. The

results are shown in Table 6. It can be observed that smaller PE-group sizes are more

easily regularized, resulting in larger sparsity and greater accuracy loss compared to

30

0.0 0.1 0.2 0.3
Value of Norm

0

5

10
Nu

m
be

r o
f g

ro
up

s

Our
Group Lasso

0.0 0.1 0.2 0.3
Value of Norm

0

10

20

Nu
m

be
r o

f g
ro

up
s

Our
Group Lasso

Figure 10. Norm-based Criterion on ResNet20 for CIFAR-10 dataset. (Left) Is the
Conv8 Layer and (Right) Is Conv15 Layer.

models with larger PE-group sizes under the same hyper-parameter settings. This

indicates that the choice of PE-group size can have an impact on the trade-off between

sparsity and accuracy in the compressed model.

Table 6. PE Capacity Versus Structured Sparsity Ratio of ResNet-20 Trained on
CIFAR-10 Dataset.

PE-16 PE-8 PE-4 PE-2 PE-1
Accuracy (%) 90.89 90.56 90.29 89.93 89.66

Overall sparsity (%) 50 70.75 78.65 81.97 84.95
Group sparsity (%) 25 35.6 42.8 50.07 63.18

2.4.3 Relation to the Norm-based Criterion

In [43], two requirements are mentioned for pruning: 1) the norm deviation of

the filters should be large, and 2) the minimum norm of the filters should be small.

Figure 10 shows the norm distribution of our method compared to the naive combine

approach. It can be observed that our method has a larger norm deviation, indicating

that the norm distribution becomes more suitable for pruning during the training

process. This suggests that it becomes easier to distinguish between important and

unimportant weight groups based on the absolute value of the norm in our method.

31

Table 7. Convolutional Layer Implementation Setup and Speed Up on FPGA
Layer Weight PE Non-sparsity Speedup

size size groups
Stage 1 (16, 16, 3, 3) 16× 3× 3 9 1.56×
Stage 2 (32, 32, 3, 3) 16× 3× 3 33 1.69×
Stage 3 (64, 64, 3, 3) 16× 3× 3 119 1.73×

2.4.4 FPGA Implementation

To evaluate the performance of our proposed method on real-world inference hard-

ware accelerators, we deployed three representative convolutional layers of ResNet20

on an FPGA board. We compared our method with a weight-ternarization-only

approach, which also replaces MAC operations with add/sub operations but does not

include PE-wise pruning. To ensure a fair comparison, we used a fixed-point number

representation with a bit-width of 16 bits for both methods. The detailed setup and

speedup results are presented in Table.table:hardware. It is evident that our proposed

PE-wise structured ternary network achieves significant speedup compared to the

non-structured ternary network in real FPGA hardware implementation.

2.5 Summary

In this section, our main objective is to leverage the benefits of Group Lasso based

pruning and ternarization to optimize the efficiency of DNN hardware deployment. We

introduce the concept of PE-wise sparsity and observe the disharmony between these

two methods. To address this issue, we propose a novel approach called weight penalty

clipping with a self-adjustable threshold. By utilizing this method, we can achieve

a more balanced and efficient combination of pruning and ternarization techniques.

32

Furthermore, when compared with existing works in weight pruning and ternarization,

our proposed method demonstrates superior performance in terms of accuracy while

achieving significantly higher compression rates. This highlights the effectiveness and

competitiveness of our approach in the field of DNN model compression and hardware

deployment.

33

Chapter 3

DYNAMIC DEEP NEURAL NETWORK WITH RUN-TIME TUNING OF

ACCURACY AND LATENCY

Recently, there has been a growing interest in exploring training sparsity as a

means to improve both training and inference efficiency. However, existing approaches

focus on obtaining a single sparse model with a fixed sparsity ratio, which limits

their flexibility in adapting to varying hardware resource availability. To address this

limitation, the concept of dynamic inference or training-once-for-all has been proposed,

where a single network is trained to include multiple sub-networks that can perform

the same inference function with different computational complexity.

In this chapter, we introduce a novel approach called Alternating Sparse Training

(AST) to enable dynamic inference without incurring extra training costs compared

to training a single sparse model. Our approach involves training multiple sparse

sub-networks alternately, allowing for efficient adaptation of computation complexity

at runtime. To mitigate interference in weight updates among sub-networks and

ensure optimal generalization, we propose gradient correction within the inner-group

iterations. This correction mechanism helps to reduce interference while preserving

the effectiveness of the optimization process. By employing the AST scheme, we

enable efficient dynamic inference with the ability to adjust computational complexity

based on available hardware resources. This approach provides a more flexible and

practical solution compared to traditional dynamic inference methods that involve

joint training and multi-objective optimization, which often suffer from significant

training overhead.

34

3.1 Bascis of Sparse Training

As summarized in the survey paper by Hoefler et al. [47], the existing works

on sparse training can be broadly classified into three categories based on when the

sparsity is applied during the training process.

The first category is post-training sparsification, where sparsity is introduced

by fine-tuning a pre-trained model. This approach involves removing weights or

connections from the model after the initial training phase. Examples of post-training

sparsification methods include Dettmers et al. [22], Evci et al. [25], Jayakumar et

al. [51], Peste et al. [94], and Liu et al. [74]. The second category is before-training

sparsification, where a sparse model is obtained before the main training procedure

begins. This approach aims to initialize the model with sparsity, which can be achieved

through various techniques such as magnitude-based pruning or weight picking. Lee et

al. [60] and Wang et al. [106] are examples of before-training sparsification methods.

The third category is in-training sparsification, where sparsity is introduced and

optimized during the training process itself. This category includes methods that

gradually remove weights or connections from the model as the training progresses.

Examples of in-training sparsification methods are Liu et al. [74], Yuan et al. [127],

Evci et al. [25], and Dettmers et al. [22].

3.1.1 In-training Sparsification

Unlike post-training and before-training sparsification approaches, incorporating

sparsity during training eliminates the need for separate training processes. The

pruning of the model occurs concurrently with weight optimization, allowing the

35

pruning topology to be refined and improved iteratively. By pruning the model

during training, the algorithms have access to the gradients, which provides valuable

information for making informed pruning decisions. This visibility into the gradients

enables the algorithms to adjust and refine the pruning process based on the gradient

information, resulting in improved accuracy compared to post-training sparsification

methods.

Motivated by this, the prune-and-regrow technique [22] is introduced, which

involves periodically removing unimportant non-zero weights from the sparse model

and regrowing certain pruned weights during each mini-batch iteration of the training

process. This iterative process allows for the refinement and optimization of the sparse

model’s connectivity pattern over time.

As a representative work, RigL [25] introduces a pruning technique where a certain

ratio r of weights is pruned based on their magnitude. This is done by selecting the

top s−r proportion of weights with the highest magnitudes using the TopK operation,

as defined by:

w′ = TopK(|w|, s− r), (3.1)

where |w| represents the magnitude of weights and s is the targeted sparsity ratio.

This initial pruning step reduces the number of non-zero weights in the model. After

pruning a certain ratio r of weights using Equation 3.1, the next step in RigL is to

regenerate the pruned connections. This is done by introducing new connections based

on the gradient magnitude during the same mini-batch iteration. Specifically, the top

s+ r proportion of gradients, excluding the previously pruned weights w′, are selected

using the TopK operation, and added back to the pruned weights as follows:

w = w′ + TopK(gi ̸=w′ , s+ r), (3.2)

36

where g represents the gradients of the weights and i ≠ w′ indicates excluding

the previously pruned weights from the selection. This regeneration step helps to

recover some of the pruned connections based on their importance as indicated by the

gradients.

By employing the prune-and-regrow scheme, the sparse connection is optimized

with a fixed sparsity ratio r throughout the entire training process. Recent works

have explored different weight importance criteria to perform prune-and-regrow. For

example, SNFS [22] uses the momentum magnitude of weights for pruning, while

MEST [127] considers the sum of weight and gradient magnitude as an indication

of weight importance. Additionally, GraNet [74] follows a similar rule as RigL but

initializes the sparsity at a lower value (e.g., 0.5) and gradually increases it to the

target sparsity (e.g., 0.8, 0.9) using a cosine decay schedule. Furthermore, there are

works such as [94, 87] that propose to alternately train a dense model and one of

its sparse variants (sub-net) to obtain both an accurate dense model and a sparse

sub-net. However, the underlying rationale for this approach is not clearly described.

The objective of this section is to obtain multiple sparse sub-networks with the

same training effort as individual network sparsification. Additionally, based on

the in-training sparsification mechanism, [73] proposes a dynamic sparse training

ensemble method to independently generate multiple sparse sub-nets for ensemble.

This approach is orthogonal to our work and could be combined to further improve

accuracy.

37

3.2 What is Dynamic Inference

Dynamic inference methods aim to train a single network composed of multiple

subnets that can independently perform inference. These subnets share some weights,

allowing for runtime switching and enabling dynamic trade-offs between accuracy

and computational complexity. Notable examples include Slimmable Neural Network

(S-NN)[124], Universally Slimmable Networks (US-NN)[122], BigNAS [123], Once-for-

All [9], and Progressive Neural Architecture Search [114]. The concept of dynamic

neural networks was first introduced by Slimmable Neural Network (S-Net)[124], which

enables a single neural network to be executed at different channel widths. Building

upon this idea, Once-for-All (OFA)[9] and BigNAS[123] further extend the concept

by constructing dynamic DNNs that encompass a larger number of subnets across

multiple dimensions, including depth, width, kernel size, and resolution. Note that, as

discussed in [9], to enable sub-net switching without compromising individual inference

accuracy, the structures of sub-nets are defined using a subset rule, where the smaller

sub-net is a complete subset of the larger sub-net. Specifically, these works train a

network in a joint training fashion, which can be expressed as:

min EW

(∑N
i=1 L(f(X, {Wi});Y),

)
(3.3)

where X is the mini-batch of inputs with corresponding targets Y , and N is the number

of sub-nets. L(·; ·) calculates the cross-entropy loss of the DNN output and the target.

f(X,Wi) computes the output of the sub-net parameterized by Wi. However, this

method requires a longer training time compared to training a single individual model,

as all sub-nets have to perform forward and backward passes in each mini-batch

iteration, as shown in Eq. 3.3.

38

Sub-Net 1 Sub-Net 2 Sub-Net 3 Sub-Net 1
𝒕 𝒕 + 𝟏 𝒕 + 𝟐 𝒕 + 𝟑 Iterations

Switch Switch Switch

Initialization

Disabled connection Active connection

Losst Losst+1 Losst+2 Losst+3

Figure 11. Alternating Sparse Training (AST): The Subset Network (Sub-net) are
Iteratively Activated Throughout the Training. The Model Only Learns the Active
Connections of Each Sub-net, Leading to the One-time-Trained Multiple Sub-nets.

3.3 Sparse Train More at Once

Different from joint training methods for dynamic inference, such as S-Net [124]

and US-Net [122], where all sub-nets are updated in each mini-batch iteration, we

propose the alternating sparse training (AST) scheme, which trains multiple

sub-nets in an alternating fashion over time. Each iteration focuses on training a

single sub-net.

In AST, each sub-net is defined as a subset of weights in the network that can

perform inference independently. All the sub-nets are partially shared with each other

within a single network. As illustrated in Figure 11, assuming we have three sub-nets

with different sparsity ratios (e.g., sub-net 1 < sub-net 2 < sub-net 3), the training

scheme starts by training sub-net 1 in the first iteration, followed by the training

of sub-net 2 and sub-net 3 in the second and third iterations, respectively. During

training, only the active connections (non-pruned weights) are updated, while the

disabled weights (pruned for the current sparse sub-net) are ignored. This alternating

process of updating sub-nets continues in a cyclical manner, repeatedly switching

sub-nets every few consecutive iterations until the training process is completed.

39

3.3.1 Rationale of Alternating Sparse Training (AST)

The motivation behind AST is inspired by the insights from Reptile [91], a meta-

learning algorithm originally designed to learn task-specific initializations for fast

adaptation to new tasks. Reptile has shown that mini-batch stochastic gradient descent

(SGD) implicitly regularizes the model by maximizing the dot product of consecutive

mini-batches. We adopt this finding to our case. Considering the alternating training

of two sub-nets, sub-net 1 and sub-net 2, with two consecutive mini-batches B1 and

B2, respectively, we can express the gradient of sub-net 2, g2, calculated by SGD using

the Taylor Series expansion:

g2 = L′
(w2) = L′

(w1) + L′′
(w1)(w2 − w1) +O(||w2 − w1||2)

= L′
(w1) +H1(w2 − w1) +O(α2)

= L′
(w1)− αH1g2 +O(α2) (using w2 − w1 = αg2)

Where H1 is Hessian of the sub-net 1 and α is the current learning rate. Similar

to Reptile, the term αH1g2 serves to maximize the dot-product of the consecutive

sub-nets, where the expectation can be expressed as:

E1,2[αH1g2] = E1,2[αH2g1]

=
1

2
E1,2[αH1g2 + αH2g1]

=
1

2
E1,2[

∂

∂w1

(g1 · g2)]

We can observe that the term −αH1g2 aims to maximize the inner product of two

consecutive mini-batches. This indicates that the proposed AST scheme has an implicit

regularization effect that aligns the weight updates between sub-nets.

40

Switch Switch

Grad Correction

Switch Switch

Grad Correction

Sub-Net 1 Sub-Net 2 Sub-Net 3 Sub-Net 1
𝒕𝒕 + 𝟏𝟏 𝒕𝒕 + 𝟐𝟐 𝒕𝒕 + 𝟑𝟑 IterationsInitialization 𝒕𝒕

Sub-Net 2
𝒕𝒕 + 𝟒𝟒

Sub-Net 3
𝒕𝒕 + 𝟓𝟓

Inner group Inner group

Switch

Inter group

Figure 12. The Overview of the AST Process With Gradient Correction on
Consecutive Inner-group Sub-nets (AST-GC)

.

3.3.2 AST with Gradient Correction

Although the implicit regularization of mini-batch SGD helps maximize the inner

product of gradients between consecutive sub-nets, as discussed in Section ??, we have

observed that there can still be a partial number of negative inner products during

training. This results in conflicting directions of weight updates among sub-nets, as

shown in Figure 13. However, it is worth noting that in the context of optimizing

a network using mini-batch SGD, the noise introduced by these conflicting gradient

directions can actually be beneficial. It helps the optimization process escape from

saddle points or local minima and can improve the generalization of the network [30,

6].

Due to these observations, we draw inspiration from the gradient projection

method, which has been successfully applied in multi-task learning [125] and continual

learning [66], and propose a gradient correction technique to mitigate the conflicting

gradients within the inner-group iterations during training while still allowing negative

gradients between inter-group sub-nets. As depicted in Figure 12, the inner-group

iterations refer to the consecutive sub-nets within N mini-batch iterations, where N is

the total number of sub-nets (e.g., N == 3 as shown in Figure 12). On the other hand,

41

0 20 40 60 80 100 120 140 160
Epochs

0.0

0.2

0.4

0.6

0.8

1.0

In
ne

r p
ro

du
ct

 ra
tio

 (%
)

Negtive
Positive

Figure 13. The Ratio of Negative and Positive Inner Product of Two Sub-nets
During the AST Process on CIFAR-10 by Using Wide ResNet-32.

.

inter-group indicates the relationship between inner-group iterations. Specifically,

the gradient correction employs a simple procedure within the inner-group sub-nets:

if the gradients between two consecutive sub-nets are in conflict (i.e., their cosine

similarity is negative), we project the gradient of the current sub-net onto the normal

plane of the gradient of its prior sub-net. Otherwise, the original gradient remains

unchanged. Considering two sub-nets in inner-group iterations with the gradients gi

and gj respectively, the technique can be mathematically illustrated as:

gi =

gi − gi·gj

||gj ||2 gj, if gi · gj < 0

gi, otherwise
(3.4)

Where g̃i represents the corrected gradient for sub-net i. By applying this gradient

correction technique, we ensure that the gradients within the inner-group iterations

are aligned and the conflicting gradients are corrected, while still allowing for negative

gradients between inter-group sub-nets. This helps improve the optimization process

and maintain the effectiveness of the alternating sparse training scheme.

42

𝐆𝐆𝒌𝒌 𝐆𝐆𝐣𝐣 𝐆𝐆𝐢𝐢

Completely Subset (CS)

𝐆𝐆𝐢𝐢
𝐆𝐆𝐣𝐣

𝐆𝐆𝐤𝐤

Non-disjoint (ND)

(a) (b)
Table 8. Different Relationships Between Three Subnets Gi, Gj, and Gk: Completely
Subset (CS) and Non-disjoint (ND).

3.3.3 Sparse Sub-net Training

Another important aspect of our AST scheme is to generate and train “sparse”

sub-nets. Following most sparse training works, we adopt the “prune-and-regrow”

scheme from GraNet [74] as the backbone technique. Specifically, AST starts from a

randomly initialized sparse model and then applies the prune-and-regrow mechanism

as described in Eq.3.1 and Eq.3.2 for each training iteration with the sub-net-specific

sparsity ratio. Given the fact that the alternating training scheme switches the sub-net

per iteration, the following questions arise:

1. What is the optimal architectural relationship between sub-nets?

2. How should pruning be scheduled for each sub-net?

Observation 1: Enabling the freedom of exploring unique architectures of each

sub-net elevates the learning capacity of AST over the S-Net.

43

Table 9. Averaged Accuracy and Standard Deviations Between Different AST
Training Schemes on CIFAR-10 Dataset (Three Times Experiments Each).

Dataset CIFAR-10

ResNet-32 Dense Model Acc. = 94.88

Pruning Ratio 70% 95% 98%

Completely Subnet (CS) 93.69± 0.12 93.43± 0.03 92.49± 0.17

Non Disjoint (ND) 94.47± 0.10 93.78± 0.09 92.76± 0.21

To validate this observation, we generalize the sub-net relations into the following

two categories:

• Completely subset (CS): As proposed by S-Net [124], the high-sparsity

models are fully contained in the low-sparsity models (Figure 8(a)). Under

the context of prune-and-regrow, the regrowing process is only performed in

the lowest sparsity model, while the rest of the sub-nets rigorously extend the

sparsity from the previous low-sparsity model by using magnitude-based pruning

only. The one-time regrow guarantees the fully-subset relationships among

different sub-nets.

• Non disjoint (ND): Each sparse sub-net performs prune-and-regrow individ-

ually to optimize the overall pruning decision during training. As depicted in

Figure 8(b), sub-nets can freely exploit their own architectures while the inter-

sections remain non-empty. Compared to the CS scheme, the non-disjoint AST

empowers the subset networks with more architecture freedom. Figure 14 shows

the layer-wise sparsity gap and non-overlap between two ND-trained sub-nets

that target different final sparsity values (sf). The non-overlap is computed by

XORing the binary sparse masks between sub-nets, the percentages of “1” in the

resultant tensor represent the level of non-overlap. Apparently, the distinction of

44

connections is larger than the sparsity difference, which implies the existence of

the unique connections generated by the ND prune-and-regrow in each sub-net.

Figure 14. Layer-wise Sparsity and the Connection Dissimilarity Between Two
ResNet-32 Sub-nets Trained by the Non-disjoint (ND) AST Scheme.

With the ND scheme, we observe that the small amount of architecture freedom

shown in Figure 14 can lead to improved overall performance: Table 9 summarizes the

accuracy of the wide ResNet-32 [127] trained by different AST schemes on CIFAR-10

dataset. Assisted by the comprehensive architecture exploration, the non-disjoint AST

scheme achieves higher accuracy compared to the conservative completely-subset (CS)

training. Thus, in this work, we use ND-scheme for all experiments.

Observation 2: Intermittent sparsity increment among sub-nets stabilizes

AST process. The sparsity of the in-training sparsification method is periodically

updated (e.g., 1,000 iterations) based on a pre-defined sparsity schedule [74]. Regarding

the AST scheme, the sub-net model architectures are consecutively switched and

trained, but the successive architecture switching does not imply the necessity of

consecutive sparsity updates of each sub-net. On the contrary, the intensive sparsity

increment of all sub-nets could destabilize the training. In this work, the sparsity

of each sub-net increases periodically, but the sparsity increment of each sub-net is

45

intermittently performed with the adjustment period ∆τ . In the meantime, sub-nets

are still consecutively switched during the ∆τ .

3.4 Experiments

3.4.1 Experimental Setup

The proposed AST method is extensively evaluated on multiple datasets, including

CIFAR-10, CIFAR-100, and ImageNet. We adopt a similar training scheme to previous

works such as Liu et al.[74] and Yuan et al.[127], where the models are trained for

160 epochs on CIFAR-10/100 and 100 epochs on ImageNet. The multiple sparse

sub-nets are trained from scratch and pruned using the AST algorithm. For the CIFAR

datasets, we utilize a cosine annealing learning rate schedule with an initial learning

rate of 0.1. As for the ImageNet dataset, we include an additional warmup period of

5 epochs before applying the cosine annealing schedule. The pruning candidates are

selected globally, while the first layer is kept dense. During the regrowing process, the

percentage of regrow candidates gradually decreases from 0.5 to 0.0 following a cosine

annealing schedule. Moreover, the extended adjustment period between sub-nets is set

to 100 epochs for CIFAR experiments and 400 epochs for ImageNet experiments. While

we acknowledge that more fine-grained hyperparameter tuning could potentially lead

to better accuracy, we have chosen the above scheme for simplicity and reproducibility.

The reported sub-net accuracy values are obtained from a single background model

checkpoint. In all experiments, we report the average accuracy along with its variation

across 3 runs to ensure the reliability of the results.

46

Table 10. CIFAR-10/100 Accuracy and Training Cost Comparison with SoTA Works
on Wide ResNet-32.

Dataset CIFAR-10 Acc. (%) CIFAR-100 Acc. (%)
Train.
Cost

ResNet-32 Dense Model Acc. = 94.88 Dense Model Acc. = 74.94

Pruning Ratio 90% 95% 98% 90% 95% 98%
Individual Training

Lottery Ticket [28] 92.31 91.06 88.78 68.99 65.02 57.37 3×
SNIP [60] 92.59 91.01 87.51 68.89 65.22 54.81 3×
DSR [89] 92.97 91.61 88.46 69.63 68.20 61.24 3×

GraNet [74](si = 0%) 94.12 94.02 92.98 73.18 72.56 69.89 3×
MEST [127](si = 90%) 92.12± 0.13 90.86± 0.11 88.78± 0.26 69.35± 0.36 67.85± 0.23 62.58± 0.31 3×

MEST+EM[127](si = 90%) 92.56± 0.07 91.15± 0.29 89.22± 0.11 70.44± 0.26 68.43± 0.32 64.59± 0.27 3×
MEST+EMS[127](si = 90%) 93.27± 0.14 92.44± 0.13 90.51± 0.11 71.30± 0.31 70.36± 0.05 67.16± 0.25 3×

Training once for all
Jointly-Trained [124](si = 0%) 92.59± 0.21 92.58± 0.25 92.48± 0.24 70.40± 0.14 69.32± 0.84 66.85± 0.59 3×

AST(si = 0%) 93.51± 0.06 93.44± 0.08 92.44± 0.04 73.12± 0.10 72.39± 0.14 68.06± 0.21 1×
AST(si = 90%) 92.32± 0.06 92.19± 0.11 91.34± 0.04 69.82± 0.12 69.22± 0.07 66.37± 0.15 1×

AST+GC(si = 0%) 93.88± 0.19 93.70± 0.28 92.69± 0.09 73.41± 0.04 72.57± 0.15 68.42± 0.15 1×
AST+GC(si = 90%) 92.90± 0.13 92.88± 0.10 91.97± 0.18 70.11± 0.39 70.01± 0.54 67.15± 0.31 1×

3.4.2 Experimental Results

3.4.2.1 CIFAR-10/100

Table 10 presents the CIFAR-10/100 accuracy results achieved by the proposed

AST algorithm using the wide ResNet-32 model, as utilized in [127]. Consistent with

previous works reporting high sparsity results, we train three sub-nets simultaneously

with sparsity ratios of 90%, 95%, and 98%. The training is conducted from scratch for

all sub-nets, following the same number of epochs as in previous studies. To explore

the benefits of high initial sparsity in terms of memory savings during the training

process, we report the results for both dense (si = 0%) and highly sparse (si = 90%)

initial models.

Compared to the state-of-the-art individually-trained models reported in prior

works [74, 127], the proposed AST+GC algorithm achieves three highly sparse models

through a single training process with negligible accuracy degradation. This results

47

in a significant reduction in the total training cost, providing benefits in terms of

power consumption and latency. In contrast, the joint training scheme [124] requires

multiple forward passes in each iteration, leading to increased computational cost

and resulting in average performance. In addition to the reduced training cost, the

proposed AST method outperforms the joint-training scheme [124] by up to 1.3%

and 2.9% in terms of inference accuracy on the CIFAR-10 and CIFAR-100 datasets,

respectively. Furthermore, the AST method achieves up to 2.63× reduction in training

cost compared to the joint-training scheme. We also conduct experiments to verify the

effectiveness of the AST scheme with a larger number of sub-nets and larger sparsity

gaps.

3.4.2.2 ImageNet

We conducted further evaluation of the proposed method using ResNet-50 on

the ImageNet dataset, as shown in Table 11. We observed that the 0.5× and 0.25×

models of the jointly-trained S-Net [124], which correspond to weight sparsity of

72.98% and 92.23% respectively, resulted in an averaged overall sparsity of 82.6%,

which is lower than our targeted sparsity of 85%. In comparison, the proposed AST

training scheme outperforms the joint-training scheme by 7.5% in terms of inference

accuracy when using 80% highly sparse initial models. Furthermore, the proposed

AST scheme achieves comparable or even better performance than SNIP [60] and

SET [86], while reducing the total training cost by up to 2.38×. Additionally, the

inclusion of gradient correction (GC) in AST further improves accuracy by 0.6% and

0.8% respectively.

48

Table 11. ImageNet Accuracy and Training Cost Comparison with SoTA Works on
ResNet-50.

Method ImageNet-2012

ResNet-50 Dense model Acc. = 76.8

Prune Ratio 80% 90%

Individual Training

Top-1 Acc. (%) Training Cost Top-1 Acc. (%) Training Cost (×e18)

SNIP [60] 69.7 1.67 62.0 0.91
SET [86] 72.9 0.74 69.6 0.32
DSR [89] 73.3 1.28 71.6 0.96
RigL [25] 74.6 0.74 72.0 0.39

MEST + EM [127] 75.8 0.74 73.6 0.39
GraNet [74] 76.0 1.18 74.5 0.80

Training once for all

Jointly-Trained [124](si = 50%) 71.90.5× 1.19 65.00.25× 1.19
AST (si = 50%) 72.6 0.59 72.3 0.41

AST + GC (si = 50%) 73.2 0.59 73.1 0.41
AST + GC (si = 80%) 72.6 0.37 72.5 0.13

Table 12. Inference Acceleration and Negligible Accuracy Drop of the Proposed AST
Algorithm with Structured Fine-grained Sparsity on ResNet-18 Model.

Dataset CIFAR-10 Acc. (%) Training Cost
N:M Sparse Pattern Dense Model 2:4 3:4 7:8 15:16

Individually Trained (SR-STE) [134] 95.07 94.89 94.47 94.25 93.92 2.33e+16 (3.95×)
AST + GC - 94.63 94.26 94.31 93.79 5.91e+15 (1×)

Inference Time / 10K images (sec) 1.40 1.01 0.67 0.66 0.63 -

3.4.2.3 Extend to Structured Fine-grained Sparsity

The effectiveness of pruning algorithms can be demonstrated by showcasing the

sparsity-induced speedup on GPUs. The Nvidia Ampere architecture features Sparse

Tensor Cores, which accelerate neural network computations with N :M structured

fine-grained sparsity. By varying the group size M and the number of sparse elements

N , different overall sparsity values can be achieved. Building upon this, we extend

the proposed AST algorithm to train multiple sub-nets with different N :M sparsity

patterns simultaneously. The prune-and-regrow process is performed based on the

group-wise summed weight or gradient magnitude.

49

With the assistance of the open-source Nvidia-ASP library5, convolution computa-

tions can be accelerated when the sparse weight group size M is divisible by 4 (e.g., 4,

8, 16). In our proposed AST algorithm, we collectively train four ResNet-18 sub-nets

with 2:4, 3:4, 7:8, and 15:16 sparse patterns, resulting in overall sparsity levels of 50%,

75%, 87.5%, and 93.75% respectively. Starting from scratch, the percentage of N :M

sparse groups is gradually increased from 0% to 100% within each sub-net. Compared

to individually trained dense models, our proposed AST scheme achieves up to a 2.3×

inference speedup on GPUs with 4× less training efforts and negligible accuracy loss,

as shown in Table 12. This demonstrates the effectiveness of the AST algorithm in

achieving both sparsity-induced speedup and maintaining inference accuracy. The

inference time is measured on a Nvidia 3090 GPU with FP32 data precision.

3.5 Ablation Study and Discussion

3.5.1 AST-GC with More Sub-nets

The effectiveness of the proposed AST scheme is verified by training different
numbers of subset networks. Table 14 presents the CIFAR-10 performance of AST when
training 2, 3, 4, and 5 sparse sub-networks collectively using ResNet-18. Comparing
this approach to the individually-trained baseline sparse model, we observe that
training more sub-nets with AST reduces the total training effort, albeit with a slight
decline in accuracy, particularly in high sparsity models (e.g., 98% sparsity). However,
these marginal accuracy reductions are outweighed by the significant advantage of
reduced training cost. Notably, the tradeoff between accuracy and total training cost
indicates that training three sub-nets achieves the best overall performance.

5https://github.com/NVIDIA/apex/tree/master/apex/contrib/sparsity

50

Table 13. AST with Extended Training Effort on CIFAR-10 with Wide
ResNet-32 [127].

Table 14. ResNet-18 Training Results of AST (160 Epochs) with Various Sparsity
Values and Numbers of Sub-nets for CIFAR-10 Dataset.

Dataset CIFAR-10 Acc. (%)

Sparsity Indiv.
trained

2
sub-nets

3
sub-nets

4
sub-nets

5
sub-nets

70% 95.11 94.88 94.75 94.79 94.81
80% 94.94 - - 94.81 94.73
90% 94.93 - - - 94.85
95% 94.88 - 94.67 94.63 94.47
98% 94.50 94.76 94.26 94.22 94.18

3.5.2 AST Sub-nets with Different Sparsity Differences

In addition to collectively training highly sparse models, learning subset architec-

tures with large sparsity gaps is also essential. As shown in Table 14 and Table 15,

the proposed AST algorithm effectively optimizes model performance even with large

sparsity gaps, such as 50% vs. 95%. This demonstrates the robustness and adaptability

51

Table 15. ImageNet Accuracy with Different Sparsity Combinations on ResNet-50.
Method ImageNet-2012

ResNet-50 Dense Model Acc. = 76.8

Prune Ratio 50% 90% 50% 95% 80% 90%

AST+GC (s = 0%) 74.68 73.26 - - - -

AST+GC (s = 0%) - - 74.21 71.07 - -

AST+GC (s = 50%) - - - - 73.2 73.1

AST+GC (s = 80%) - - - - 72.6 72.5

of AST in handling diverse subset architectures, enabling efficient resource utilization

across different power budgets.

3.5.3 Extended AST Training Efforts

In Figure 11, AST iteratively selects different sub-nets for each mini-batch iteration.

Despite employing batch shuffling during training, each sub-net cannot be fully trained

using the entire training set within each epoch. One straightforward solution to

address this is to extend the total training efforts (i.e., increase the number of epochs).

Assuming the unit training cost is 160 epochs (1×), we evaluate the performance of

AST with three wide ResNet-32 [127] sub-nets that have different training efforts,

as shown in Figure 13. Compared to the individually trained GraNet [74] baseline

(total=3×), AST achieves the same accuracy in all three sparse models with only

approximately 2× the average total training effort. This demonstrates the efficiency

and effectiveness of the AST algorithm in achieving comparable performance to

individual training while reducing the overall training time.

52

3.6 Summary

In this chapter, we present the Alternating Sparse Training (AST) scheme, which

allows the simultaneous training of multiple sparse neural networks. We also in-

troduce gradient correction (GC) as a complementary technique to improve the

performance of AST. Unlike previous approaches that involve repeated or ensembled

training steps, AST achieves high accuracy and training efficiency. Building upon the

prune-and-regrow scheme, the proposed AST-GC scheme leverages multiple sparse

sub-nets simultaneously and achieves comparable or even higher accuracy compared to

individually-trained state-of-the-art methods. The use of AST provides practical bene-

fits for energy-efficient hardware computation while maintaining superior performance

in terms of accuracy.

53

Chapter 4

ON-DEVICE LEARNING FOR TASK ADAPTION

Transfer learning plays a crucial role in on-device machine learning, allowing

well-trained deep learning models to be applied to new tasks. However, the limited

memory capacity of IoT/edge devices poses challenges for memory-efficient learning.

While many existing approaches focus on reducing trainable parameters, this does not

directly address the memory bottleneck, which is often caused by activations rather

than parameters. To tackle the issue of memory-efficient on-device transfer learning,

we propose a novel concept called intermediate feature reprogramming. In this work,

we introduce the Reprogramming Network (Rep-Net), a lightweight model that is

trained directly from the new task input data while keeping the backbone model frozen.

The Rep-Net model exchanges feature with the backbone model using an activation

connector at regular intervals, benefiting both models in a mutually beneficial manner.

Through extensive experiments, we validate the design specifications of the proposed

Rep-Net model, demonstrating its effectiveness in achieving highly memory-efficient

on-device reprogramming.

4.1 Preliminaries

4.1.1 Memory Efficient Learning

In recent years, several approaches have been proposed to address the issue of

training memory consumption. These methods can be broadly categorized into

54

activation re-computation and activation compression techniques. Activation re-

computation techniques, such as those proposed in [15] and [32], aim to reduce memory

usage by eliminating the storage of partial or full activations. Instead, activations are

re-computed as needed during the backward pass. While this approach helps save

memory, it comes at the cost of additional computation. On the other hand, activation

compression methods, as presented in [72], focus on reducing the size of activations

through pruning techniques. By removing unimportant or redundant activation values,

the memory footprint can be reduced. Another approach, introduced in [24], leverages

image compression algorithms to compress activations and then decompress them

when needed during training. It is important to note that our method is orthogonal

to activation compression techniques and offers a different solution to the problem of

training memory consumption.

More recently, studies conducted by [10] and [111] have delved deeper into the

analysis of memory utilization during training and have emphasized that activations,

rather than the size of parameters, dominate the training memory consumption. To

gain a better understanding of training memory consumption, let’s consider a linear

layer with the forward process modeled as ai+1 = ai ·W + b. The backpropagation

process of this linear layer can be expressed as follows:

∂L
∂W

= ai
∂L

∂ai+1

,
∂L
∂b

=
∂L

∂ai+1
(4.1)

Where a represents the activation feature, W represents the learnable weights,

and b represents the bias term. Equation 4.4 highlights that memory-intensive

activations need to be stored for backward propagation during training when they have

a multiplicative relationship with the learned parameters (i.e., weights). Conversely,

activations with an additive relationship (e.g., bias) do not require additional memory

for storage [111]. In this chapter, the Rep-Net is designed to have a purely additive

55

relationship with the fixed pre-trained model, resulting in improved training memory

efficiency.

4.1.2 Transfer Learning

4.1.2.1 Transfer Learning via Fine-tuning

Currently, fine-tuning a deep neural network that has been pre-trained on large-

scale datasets such as ImageNet [19] is the standard method for knowledge transfer [31,

55, 13, 133, 90, 18, 29, 36]. There are two main approaches to fine-tuning.

The first approach treats the pre-trained model as a fixed feature extractor and

only fine-tunes the last classification layer [13, 133]. This method is memory-efficient

as it eliminates the need to store intermediate activations of the pre-trained model.

However, it has been demonstrated that this method has limited transfer capacity

in previous works [55]. The second approach involves fine-tuning the full or partial

pre-trained model [36, 55, 90, 18]. This method can achieve better accuracy. For

example, [31] fine-tunes the entire model on domain-specific data to improve object

detection accuracy. [18] proposes to update only the batch normalization layers.

Additionally, [36] automatically determines the optimal set of layers to fine-tune on

a new task. However, all of these methods involve updating the pre-trained model,

resulting in a significant memory footprint for activations. Therefore, they are not

suitable for on-device learning scenarios.

56

4.1.2.2 Transfer Learning via Input Reprogramming

The concept of reprogramming was initially introduced in the context of adversarial

input reprogramming [23]. This approach trains additive features to modify the input

data and transfer a model’s knowledge to a new domain or dataset. The inspiration

for this idea comes from adversarial example attacks [81], which showed that even

small additive perturbations to the input can completely change the behavior of a

target model.

Let’s consider an input batch to a neural network as x ∈ Rk×k×c, where it is

sampled from a dataset with an input dimension of k × k × c. Now, suppose we want

to apply a pre-trained network with a forward function hθ to this new domain data

x without modifying the inference function h(·) or the parameter θ. One possible

solution would be to introduce a new set of learnable additive parameters to the input,

denoted as p:

x̂ = x+ p (4.2)

The objective of reprogramming is to minimize the loss function LR for the correct

label y by updating the input parameter p:

min
{p}

EX

(
LR(hθ(x̂),y)

)
(4.3)

The above process can be extended to the entire dataset (X,Y) of the new domain

by training a single bias vector p. The concept of input reprogramming is simple and

does not require any modifications to the backbone model architecture or parameters.

Building upon this idea, [54] proposes to improve the transfer capacity by resizing the

input during reprogramming and retraining the last classification layer. Additionally,

[104] extends input reprogramming to black-box transfer learning, where only the

57

input-output model responses are observable. However, these input reprogramming

methods have some limitations. First, the learning capability of solely adding an

input bias is limited, even after applying non-linear transformations (e.g., Hard Tanh)

before addition [23]. Second, the addition of k × k × c learnable parameters can

be substantial, especially when dealing with large-scale datasets (e.g., in ImageNet

models, 224× 224× 3 corresponds to approximately 150k parameters). Third, the

performance of input reprogramming is often inferior and fails to achieve satisfactory

results on simple tasks like MNIST [20]. To overcome these challenges, we propose to

train a lightweight side network using the input data from the new task and reprogram

the intermediate activation features.

4.2 Training Memory Analysis

In this section, we begin by examining the training memory usage of various multi-

domain learning methods. We then proceed to perform a quantitative analysis of the

memory usage for each layer of the DNN model. This analysis will provide insights

and guide us towards exploring potential solutions for achieving memory-efficient

on-device learning methods.

4.2.1 Fine-tuning and Adaptor-based Methods

Both fine-tuning and adaptor-based training schemes are widely used in the field

of multi-domain learning. Fine-tuning involves adjusting all or a subset of parameters

in the pre-trained model to adapt it to the target dataset domain. On the other hand,

adaptor-based methods employ additional convolution layers and modify the original

58

batch normalization (BN) layers during the fine-tuning process. This approach allows

for more flexibility and customization in adapting the model to the target domain.

To understand the training memory consumption, let’s assume a linear layer whose

forward process be modeled as: ai+1 = ai × W + b, then its back-propagation process

is
∂L
∂ai

=
∂L

∂ai+1

∂ai+1

∂ai
=

∂L
∂ai+1

WT ,

∂L
∂W

= ai
∂L

∂ai+1

,
∂L
∂b

=
∂L

∂ai+1

(4.4)

Eq. 4.4 highlights the memory requirements in conventional backpropagation-

based training, where both model weights (W), gradients, and activations (ai) need

to be stored for computation, resulting in significant memory usage. However, an

interesting observation is that when updating only the bias term, which has an additive

relationship with the activation (ai), there is no need to store the previous activation

since it is not involved in the backward computation. This same phenomenon can

also be observed in both convolutional (Conv) and batch normalization (BN) layers.

4.2.2 Mask-based Learning Method

For the mask-based learning method, let’s consider a linear layer with the following

forward process: ai+1 = ai(W × M) + b, where M is the mask to be learned, and W

represents the fixed weights. In this case, we only train the mask M while keeping the

weights W fixed. The backward process can be described as follows:

∂L
∂M

= ai
∂L

∂ai+1

× W,
∂L
∂b

=
∂L

∂ai+1
(4.5)

Eq.4.5 shows that learning mask needs to store not only activation-ai, but also the

mask-W and weights-W during training. In terms of computation, comparing Eq.4.5

59

Training time (s)

Parameter Activation

Powerful GPU Edge GPU

Fine-tuning

Piggyback(mask)

Ours 𝐷𝐴3100

200

300

5

10

15

300

600

900

Training memory usage (MB)

Almost no difference Large difference

Para. Adaptor

Figure 15. An Example of Adapting ResNet50 (Pre-trained on ImageNet dataset) to
Flower Dataset. Top: Model Parameters and Activation Memory of Three Different
Methods. Bottom: Training Time of One Epoch on Two Different Platforms: One
Powerful GPU (Quadro RTX 5000) and One Edge GPU (Jetson Nano)

with Eq.4.4, such method also needs additional multiplication computation in both

forward and backward pass. These observations explain why Piggyback has the

largest training time in edge GPU as shown in Fig.15. Other mask-based methods [84,

119] even need more computation cost than Piggyback, since they involve additional

reparameterization techniques. In addition, similar to fine-tuning and adaptor-based

methods, training bias does not involve activation storage.

4.2.3 Training Memory Usage Analysis.

To evaluate the training cost of on-device multi-domain learning, we conducted

experiments using three representative methods in three different directions. These

60

methods were tested on both powerful GPUs (such as Nvidia RTX5000 used in desktop

or cloud server training) and edge GPUs (such as Nvidia Jetson Nano GPU used in

edge device training). The training memory usage and training time were measured

and are shown in Figure 15.

Observation 1: The training process is memory-intensive, with the bottleneck

being the intermediate activation buffering in memory during back-propagation. This

bottleneck is at least 3 times larger than the model itself, as shown in Figure 15. This

memory limitation significantly impacts the speed of on-device learning.

During training, the memory usage for activation storage, which we refer to as

“activation memory,” is approximately three times larger than the model itself. This

large training memory is not an issue in powerful GPUs with sufficient memory capacity

and training time. However, it becomes a bottleneck for memory-limited edge GPUs

commonly used in edge device training. As a result, different training methods for the

same network and dataset exhibit significantly different training speeds, as shown in

Figure 15. Most prior domain adaptation schemes focus solely on improving accuracy

with minimal parameter updates, while neglecting the computational and memory-

intensive nature of their methods. This lack of efficiency hinders their deployment

on resource-limited edge-based training devices, such as mobile phones, embedded

systems, and IoT devices.

Table 16. Summary of The Parameters and Activation Memory Consumption of
Different Layers.

Layer Type Trainable Param. (p) Activation (a)
Conv cin × cout × kh× kw n× cin × h× w
FC cin × cout + cout n× cin × h× w
BN 2× cout n× cin × h× w

ReLU 0 n× cin × h× w
Sigmoid 0 n× cin × h× w

61

Moreover, we introduce the concept of training memory usage, which will be used

throughout the paper. In Table 16, we observe that the memory usage during training

is proportional to the number of parameters. We can categorize the parameters into

two main groups: i) the number of trainable parameters (p), which includes weights

and biases, and the corresponding gradients; ii) activation memory, which consists

of the feature maps stored for updating the parameters of previous layers using the

chain rule. In Table 16, we only list the number of trainable parameters (p).

In most convolutional layers, the kernel height and width are typically much smaller

than the activation channel height and width (i.e., kh ≪ h; kw ≪ w). As a result,

for a moderate batch size (e.g., n = 64/128/256), the memory size required to store

the activations (a) is much larger than that of the trainable parameters (p). What’s

interesting is that even though batch normalization (BN) and sigmoid functions have

a negligible number of trainable parameters (p), both functions produce activation

outputs (a) of the same size as a convolutional or fully connected layer.

From the analysis above, it is evident that the storage of activation feature maps,

rather than the model parameters themselves, dominates DNN training memory usage.

Therefore, optimizing the memory usage of activation feature maps becomes crucial for

achieving memory-efficient learning. Existing multi-domain learning methods, such as

mask-based and fine-tuning methods, entail significant memory consumption during

backward propagation, involving the storage of weights, gradients, and activation

maps. Moreover, the mask-based method requires additional memory for storing masks.

Interestingly, it is worth noting that if it is feasible to update only the bias during

multi-domain learning, the predominant memory usage component - activation storage

- becomes unnecessary. This is because bias exhibits an additive-only relationship

62

Pooling

Input

Rep-Net

Pre-trained backbone
model

Activation
Connector

Input

Pre-trained backbone
model

Classifier

Classifier

Adv Rep. params

Learnable Fixed

(a)

(b)

Figure 16. The Workflow of Adversarial Reprogramming (a) and the Rep-Net (b).
Adversarial Reprogramming Reprograms the Input by Introducing An Additive
Learnable Parameter. Differently, Rep-Net Takes the Input Data Directly and Learns
to Reprogram the Intermediate Activation Features.

with input activation, enabling independent backward propagation. Based on above

analysis, we summarize the underlying reason as the observation-2 below.

Observation 2. The complete activation map needs to be stored for backward

propagation during training if it has the multiplicative relationship with learned pa-

rameter (i.e., weight, mask), while the additive relationship (e.g., bias) is activation

free.

63

4.3 On-device Learning via Feature Reprogramming

In order to address the limitations of existing domain adaptation methods and

enable efficient on-device transfer learning, we propose the Reprogramming Network

(Rep-Net) approach. This novel approach takes a new perspective on the problem by

focusing on the reprogramming of intermediate features.

As illustrated in Figure 16(b), the Rep-Net serves as a lightweight side-network that

runs in parallel with the pre-trained backbone model. The key idea is to reprogram

the fixed backbone model using the input data through an “activation connector”

mechanism. This activation connector facilitates the exchange of features between

the backbone model and the Rep-Net at regular intervals. The feature exchange

process is based on an additive operation, which allows both the backbone model and

the Rep-Net model to update and improve their respective features. This approach

inherits the memory-efficiency property from adversarial input reprogramming. To

enable on-device transfer learning, we only train the Rep-Net model and a task-specific

last classification layer for the new task, while keeping the backbone model frozen.

This ensures that the transfer learning process is efficient in terms of memory usage

on resource-limited devices.

4.3.1 Architecture Overview

In this section, we propose a lightweight Reprogramming Network (Rep-Net) that

is specifically designed for on-device learning. The Rep-Net learns to reprogram the

activation features of the backbone model directly from the input data, as illustrated in

Figure 16. The working mechanism of the Rep-Net involves inter-exchanging features

64

Block 1 Block 2 Block 5

H

W
3

Pooling
H/2

W/2 3

Block N

Module 1 Module 2 Module QW/4

H/4
C1 W/8

H/8

C2

Input

W/4

H/4
C1 W/8

H/8

C2

Fixed pre-trained model

Rep-Net

Saved activation Learnable module Fixed block

Classifier

Activation connector

Figure 17. The Overview of Reprogramming Network (Rep-Net). The Proposed
Rep-Net Model Learns Directly From the Input. The input Image is Directly Ded
Into Both Rep-Net and the Backbone Model Parallelly. In Addition, Rep-Net
Consists of A Small Number of Layers Positioned at Specific Locations Where the
Backbone Model Observes a Feature Resolution Reduction.

with the backbone model at regular intervals. This feature exchange operation is

performed using an additive operation, which allows both the backbone model and

the Rep-Net to improve their respective features. During the reprogramming process,

we only train the Rep-Net and a task-specific last classification layer for the new task,

while keeping the backbone model frozen.

The proposed Rep-Net has several characteristics that make it suitable for on-

device learning. Firstly, during training, the features from the Rep-Net help adapt the

backbone model features to the new task, even though the backbone model is frozen.

Secondly, the pre-trained backbone model provides valuable features to the Rep-Net,

aiding its learning process for the new task. Thirdly, we optimize the positioning of the

feature exchange operation based on observations from prior pruning works, ensuring

that the Rep-Net requires only a few blocks or layers to learn the new task. This

results in a lightweight network with minimal memory overhead. Lastly, we ensure

that the feature exchange operations follow an additive rule, which contributes to

memory-efficient on-device learning. As discussed in Section 4.1.1, the additive nature

65

of the learnable parameters eliminates the need to store intermediate activations

in memory during back-propagation. In the following section, we provide detailed

design specifications of the Rep-Net and validate each aspect through relevant ablation

studies.

4.3.2 Activation Connector

In our design, the Rep-Net model exchanges its intermediate activation features

with the backbone model using an activation connector. Let’s consider a deep neural

network with N layers as the backbone model, and our proposed Rep-Net model

has Q layers (Q ≤ N). In this case, the Rep-Net will exchange its features with

the backbone model Q times at the activation connectors. We set the number of

activation connectors to be equal to the number of layers in the Rep-Net (i.e., Q)

(Reason: refer to design intuition 3). When the backbone model sends features xi to

the activation connector at the ith layer, and the Rep-Net model sends features pi to

the same connector (where (i = 1, 2, 3, ..., Q)), the forward path operation inside the

activation connector performs feature reprogramming as follows:

x̂i = p̂i = xi + pi (4.6)

The activation connector then sends the reprogrammed features x̂i and p̂i to the

backbone and Rep-Net models, respectively. This operation enhances the quality of

features for both the backbone and Rep-Net models during training (Evidence: refer

to design intuition 2).

66

4.3.3 Reprogramming Step

To reprogram the backbone model, which has an inference function hθ parameter-

ized by θ, we omit θ from our optimization step. Instead, we only train the Rep-Net

model function gβ parameterized by β and a shared last classification layer with pa-

rameters α. We represent the combined function of the backbone and Rep-Net models

as fθ,β,α. For a given input and target pair (x,y), the reprogramming optimization

step can be summarized as follows:

min
{β,α}

EX

(
L(fθ,β,α(x),y)

)
(4.7)

where L(.) is the cross-entropy loss function, which is minimized by updating the

parameter set β, α. Now that we have summarized the design and training steps of

the Rep-Net, we will introduce the design intuitions for optimizing the Rep-Net model

to achieve an efficient on-device learning scheme while improving performance at the

same time.

4.3.4 Design Intuition

Our proposed Rep-Net architecture has numerous design choices which could

impact the eventual performance and efficiency of the reprogramming scheme. To

validate our adopted design specs, we discuss three key questions:

1. How to design the activation connector? (Refer to Design Intuition-1)

2. Is it necessary to reprogram both the features (i.e., x̂i & p̂i)? What if we only

reprogram either x or p? (Refer to Design Intuition-2)

67

3. How many activation connector in Rep-Net is sufficient? or How many layers

the Rep-Net model should have? (Refer to Design Intuition-3)

Next, we present three design intuitions with relevant ablation study to validate

our design choices by discussing those three questions.

4.3.4.1 Design Intuition 1

Typically, the feature exchange operation of the activation connector has two main

choices: multiplication or addition. However, considering the memory efficiency during

training as discussed in Section 4.1.1, we choose the addition operation for the feature

exchange. This is because the additive relationship between the features allows us to

avoid storing the complete activation of the pre-trained model during training, which

significantly improves training memory efficiency.

4.3.4.2 Design Intuition 2

Following the Design Intuition 1, we consider different designs for the feature

exchange operation in the activation connector. We present four alternative designs

in Figure 18 to evaluate their effectiveness.

First, in Figure 18(a), we have the “no-connection“ design where there is no

exchange of intermediate features between the Rep-Net and backbone model. In this

case, the Rep-Net model only interacts with the backbone model just before the last

classification layer using an additive operation. In Figure 18(b), we have the “down

connect” case where only the backbone model features are modified using Rep-Net

features (i.e., x + p), while keeping the Rep-Net features unchanged. This design

68

Table 17. The Ablation Study to Validate the Four Design Choices. ‘adv Rep + Last’
Is the Adversarial Reprogramming Combining with Re-training Last Classifier. The
6Th Row Shows the Results for Proposed Rep-Net. The Last Row (7Th) Shows the
Result for Using Dual Connector at All the Convolution Layer for the Backbone
Model. We Use the Imagenet Pre-trained Proxylessnas-mobile as the Backbone
Model.

Method Train. mem Flowers Cars CUB Pets Aircraft

Adv Rep + Last 36MB 91.1 56.0 66.1 88.2 44.4

No connect (a) 34MB 93.3 51.1 65.5 88.0 36.9
Down connect (b) 34MB 91.8 73.4 67.8 89.6 56.3
Up connect (c) 34MB 95.2 76.8 71.4 90.7 59.3

Dual connect (d) (proposed Rep-Net) 34MB (↑ 2-3MB) 96.1 85.8 77.1 91.8 77.4

Dual connect - all layers 37MB 96.0 85.8 76.8 91.2 78.7

highlights the importance of the proposed Rep-Net model features in reprogramming

the backbone model. In Figure 18(c), we have the “up connect“ case where only

the Rep-Net features are modified while keeping the intermediate backbone features

unchanged. This design evaluates the importance of backbone model features in

training the Rep-Net model on the new task. Finally, in Figure 18(d), we present

the “dual connection” case where both models mutually benefit by interchanging

features between them. To validate the effectiveness of these designs, we conducted

an ablation study summarized in Table 17. The study was performed on five datasets,

and the results show that the dual connection design outperforms all the other cases.

Additionally, it is observed that the “up connection” design outperforms the “down

connection” design. This is because the Rep-Net model, being a smaller network,

benefits from the pre-trained features of the backbone model to improve its learning

capability. Furthermore, Figure 19 provides additional validation of the feature

exchange operation, showing that the model converges faster when using the dual

connection design. Overall, these results demonstrate the effectiveness of the dual

connection design in enabling mutual benefit and faster convergence during on-device

transfer learning.

69

Res-Net
module

Main
branch
block

Res-Net
module

Main
branch
block

(a) No connect

Res-Net
module

Main
branch
block

Res-Net
module

Main
branch
block

(b) Down connect

Res-Net
module

Main
branch
block

Res-Net
module

Main
branch
block

(c) Up connect

Res-Net
module

Main
branch
block

Res-Net
module

Main
branch
block

(d) Dual connect

p p

x x+px

p x+p

x x

p

x+p

Figure 18. Design Choices for Feature Exchange Operation in Activation Connector.

4.3.4.3 Design Intuition 3

We adopt the following strategy to determine the number of activation connectors

and number of layers in Rep-Net:

Strategy: The number of activation connectors in the Rep-Net is determined by

the number of down-sampling operations in the pre-trained backbone model. Each

down-sampling operation, such as a pooling layer or a convolutional block with a

stride of 2, corresponds to one activation connector in the Rep-Net. The purpose of

these activation connectors is to connect the features from the Rep-Net module with

70

0 10 20 30 40 50
Learning epochs

45

50

55

60

65

70

75
Te

st
 a

cc
ur

ac
y

(%
)

No
Up
Down
Dual

Figure 19. The Test Accuracy Vs Learning Epochs under Four Difference Design
Choices.

the output activation feature of the corresponding down-sampling layer or block in the

backbone model. By doing so, the Rep-Net features can be effectively exchanged and

integrated with the backbone model features, enabling efficient feature reprogramming

during on-device transfer learning.

The design strategy of using activation connectors at the down-sampling layers

in the Rep-Net is motivated by the observation from model pruning works, such

as [76] and [121]. These works have found that down-sampling operations in the

backbone model can lead to a reduction in the resolution of the activation feature

maps. To compensate for this resolution degradation, more channels are needed to

carry the same amount of information. In our Rep-Net design, we address this issue

by exchanging and updating features with the Rep-Net model through the activation

connectors.

To validate the effectiveness of this design strategy, we compare it with a more

71

Table 18. Comparison with Input Reprogramming Works. ‘adv. Rep’ Is the Original
Adversarial Reprogramming Work; ‘adv Rep + Last’ Is the Improved Adversarial
Reprogramming Work That Further Re-train the Last Classifier.

Method Net Train. Mem. MNIST CIFAR10 Flower CUB Aircraft

Adv. Rep[23]

ResNet50 98MB 94.3 62.8 - - -
MobileNetV2 53MB 93.1 58.3 - - -
MobileNetV3 42MB 93.5 59.4 - - -

Adv. Rep + Last[54]
ResNet50 99MB - 92.8 91.1 66.9 55.8

MobileNetV2 54MB - 85.1 91.8 66.8 52.2
MobileNetV3 46MB - 92.0 92.6 62.3 54.2

Ours
ResNet50 119MB - 96.4 (↑ 3.6 %) 96.7 80.3 85.9

MobileNetV2 51MB - 95.0 (↑ 9.9 %) 95.0 76.9 81.6
MobileNetV3 43MB - 95.3 (↑ 3.3 %) 95.1 77.5 78.9

complex version of the Rep-Net model, where connector modules are added to all

convolutional blocks. The results shown in Table 17 demonstrate that having connector

modules only at the down-sampling layers (6th row) can achieve better performance

compared to the Rep-Net model with connector modules at all layers (7th/last row).

This suggests that the strategic placement of activation connectors at the down-

sampling layers is sufficient to effectively exchange and update features, without the

need for connectors at every layer.

Another advantage of using activation connectors at the down-sampling layers

is that there are typically fewer of these layers compared to the total number of

layers/blocks in modern model architectures. This means that the Rep-Net only needs

a small number of modules, resulting in improved inference memory and computing

efficiency. For instance, in the case of ResNet-50 architecture, the Rep-Net consists

of only 6 modules. As highlighted in Table 17, using only 6 modules in the Rep-Net

leads to a memory saving of approximately 3MB, while achieving identical accuracy

compared to the Rep-Net with connectors at all layers. This demonstrates the

efficiency and effectiveness of the Rep-Net design, as it requires fewer resources while

still achieving comparable performance.

72

4.4 Experiments

4.4.1 Experimental Setup

4.4.1.1 Datasets and Networks.

In our experiments, we adopt the standard practice in previous transfer learning

methods [55, 18, 90, 10] and use the ImageNet dataset [19] as the pre-training dataset

for all the models. We then transfer these pre-trained models to 8 downstream object

classification tasks, including Cars [56], Flowers [92], Aircraft [82], CUB [105], Pets [93],

Food [5], CIFAR10 [57], and CIFAR100 [57].

4.4.1.2 Training details

We follow the setting in [10] and fine-tune the models for 50 epochs using the

Adam optimizer [52] with a batch size of 8 on a single GPU. The initial learning rate

is tuned for each dataset, and we adopt a cosine schedule [78] for learning rate decay.

4.4.1.3 Evaluation Metric

In our experiments, we evaluate the transfer accuracy of each dataset to measure

the performance of our approach. Additionally, we assess the training efficiency by

measuring the training memory consumption, which includes the parameter size and

the activation memory storage during training. These metrics provide insights into

the effectiveness and efficiency of our proposed method.

73

Table 19. Comparison with Previous State-of-the-art (Sota) Transfer Learning
Methods Using Different Backbone Neural Networks, Where‘i-v3’ Is Inception-v3;
‘n-a’ Is Nasnet-a Mobile; ‘m2-1.4’ Is Mobilenetv2-1.4; ‘r-50’ Is Resnet-50; ‘pm’ Is
Proxylessnas-mobile. In This Table, We Show Our Improvements in Comparison to
Best Existing Transfer Learning Scheme Tinytl.

Method Net Train.
mem

Reduce
Ratio Flowers Cars CUB Food Pets Aircraft CIFAR10 CIFAR100

I-V3[90] 850MB 1.0× 96.3 91.3 82.8 88.7 - 85.5 - -
R-50[55] 802MB 1.1× 97.5 91.7 - 87.8 92.5 86.6 96.8 84.5

M2-1.4[55] 644MB 1.3× 97.5 91.8 - 87.7 91.0 86.8 96.1 82.5FT-Full

N-A[55] 566MB 1.5× 96.8 88.5 - 85.5 89.4 72.8 96.8 83.9

FT-Last I-V3 [90] 94MB 9.0× 84.5 55.0 - - - 45.9 - -

TinyTL-Random[11] PM 37MB 22.9× 88.0 82.4 72.9 79.3 84.3 73.6 95.7 81.4
TinyTL[11] PM 37MB 22.9× 95.5 85.0 77.1 79.7 91.8 75.4 95.9 81.4

Ours PM 34MB (↓ 3) 25× 96.1 85.8 77.8 80.5 91.8 77.4(↑2%) 95.9 81.9
TinyTL[11] PM@320 65MB 13.1× 96.8 88.8 81.0 82.9 92.9 82.3 96.1 81.5

Ours PM@320 61MB (↓ 4) 13.9× 97.1 89.0 82.3(↑1.3%) 83.3 92.5 82.4 96.6 82.3

Table 20. Combining the Rep-Net with Learnable Binary Mask-based Method for
Efficient Inference. ‘tinytl-last’ Means Only Re-training the Last Classifier on the
Tinytl Imagenet Pre-trained Model. The Inference Flops Is Reported on Flowers
Dataset.

Method Inference
Flops

Flowers Cars CUB Food Pets Aircraft CIFAR10 CIFAR100
Acc Sparsity Acc Sparsity Acc Sparsity Acc Sparsity Acc Sparsity Acc Sparsity Acc Sparsity Acc Sparsity

TinyTL-Last [10] 394.6 90.1 - 50.9 - 73.3 - 68.7 - 91.3 - 44.9 - 85.9 - 68.8 -
Ours 346.8 96.1 - 85.8 - 77.8 - 80.5 - 91.8 - 77.4 - 95.9 - 81.9 -

Ours+Bin. Mask 280.9 96.3 19.3 85 30.3 79.2 19.4 83.7 33.8 92.2 5.9 82.5 21.4 96.2 30.3 82.7 31.8

4.4.2 Main Results

4.4.2.1 Comparison with Input Reprogramming Methods

As shown in Table 18, we compare the performance of the proposed Rep-Net

with previous adversarial reprogramming methods [23, 54] using ResNet50 [41], Mo-

bileNetv2 [100], and MobileNetv3 [48] as backbone pre-trained models. First, we

evaluate the performance on the CIFAR10 dataset, which is suitable for adversarial

reprogramming methods due to its small image resolution. The results show that

Rep-Net achieves a significant improvement in accuracy by more than ∼30% compared

to previous methods. Furthermore, compared to the improved adversarial reprogram-

ming method that includes re-training the final classifier, Rep-Net achieves accuracy

improvements of 3.6%, 9.9%, and 3.3% on ResNet50, MobileNetv2, and MobileNetv3,

74

respectively. In addition, Rep-Net outperforms the accuracy of adversarial reprogram-

ming [54] on the CUB and Aircraft datasets by more than ∼10%. In terms of memory,

Rep-Net requires reduced training memory overhead for the MobileNet architecture,

while slightly higher training memory is needed for the ResNet-50 backbone model.

4.4.2.2 Comparison with State-of-the-art Methods

In Table 19, we compare our method with state-of-the-art transfer learning tech-

niques, including the recent technique TinyTL [10]. However, we want to highlight

a crucial distinction between our method and TinyTL. By default, TinyTL uses

pre-trained weights on the pre-training dataset to initialize their additional residual

modules, giving them an advantage over our Rep-Net, which is trained from scratch

with random initialization. Nevertheless, even without the advantage of pre-trained

weights, our proposed Rep-Net achieves comparable or better accuracy than TinyTL

on all seven transfer datasets. Additionally, Rep-Net requires approximately 3-4 MB

less training memory compared to TinyTL. To provide a fair comparison, we also re-

port the results of TinyTL with random initialization, which demonstrate significantly

inferior performance compared to Rep-Net.

4.5 Ablation Study and Discussion

4.5.1 Does Rep-Net Transfer Better by Using Better ImageNet Models?

In [55], it is shown that there is a strong correlation between the pre-trained

ImageNet accuracy and its corresponding transfer learning performance. This finding

75

70
Te

st
 a

cc
ur

ac
y

(%
)

75

Te
st

 a
cc

ur
ac

y
(%

)

Imagenet

95

Te
st

 a
cc

ur
ac

y
(%

)

CIFAR10

CUB

80

Te
st

 a
cc

ur
ac

y
(%

)

Aircraft

ResNet50 ProxylessNAS
MobileNetV3 MobileNetV2

Flowers

96

Te
st

 a
cc

ur
ac

y(
%

)

Figure 20. The Accuracy Comparison Between Pre-trained Imagenet and Transfer to
CIFAR10, CUB, Aircraft and Flowers on Four Different Models.

prompted us to investigate if our proposed Rep-Net follows the same phenomenon.

The results are summarized in Figure 20, which shows that Rep-Net also exhibits

a similar trend. The pre-trained ImageNet model accuracy is predictive of the fine-

tuning performance order on datasets such as Flowers, CUB, and CIFAR10. However,

76

ImageNet pretraining does not necessarily improve accuracy on the Aircraft dataset,

as its data distribution differs significantly from that of ImageNet.

Interestingly, our proposed Rep-Net outperforms TinyTL [11] by a substantial

2% margin in terms of accuracy on the Aircraft dataset, as shown in Table 19. This

highlights the effectiveness of Rep-Net in improving transfer learning performance

even in challenging domains that are dissimilar to the ImageNet dataset.

4.5.2 Can Rep-Net Combine with Other Transfer Learning Methods for Efficient

Inference?

In addition to reducing training memory, another advantage of Rep-Net is its

compatibility with inference-efficient methods. In this subsection, we explore the

combination of Rep-Net with learnable binary masks [83, 119] applied to the fixed main

branch model. This combination aims to reduce the computational cost during infer-

ence. The results in Table 20 show that our method, referred to as “Ours+Bin. Mask,”

achieves improved accuracy while achieving an average sparsity of approximately 25%

across all datasets.

In summary, Rep-Net can be incorporated into existing transfer learning schemes

that involve modifying or training additional components (e.g., masks) of the backbone

model. This combination not only reduces training memory but also enhances inference

efficiency.

77

4.6 Summary

In this chapter, we have introduced a novel approach to transfer learning called

feature reprogramming. Our proposed Rep-Net architecture enables on-device transfer

learning by directly learning to reprogram the intermediate features of a pre-trained

model. Through dedicated activation connectors, we facilitate the exchange of features

between the backbone model and the Rep-Net model. Extensive experiments have

demonstrated the effectiveness and memory efficiency of Rep-Net in the context of

transfer learning. Our work represents a new perspective and a valuable contribution

to the field of on-device transfer learning.

78

Chapter 5

EFFICIENT CONTINUAL LEARNING VIA TASK-CORRELATED

PROGRESSIVE LAYER FREEZING

In recent years, self-supervised learning (SSL) has emerged as a powerful technique

for learning visual representations from unlabeled data. SSL involves training a model

to predict certain properties of the data without relying on explicit labels. This

approach has shown great promise in various computer vision tasks.

Continual learning (CL) is another important area of research where the goal

is to sequentially learn multiple tasks without forgetting previously learned ones.

Traditional CL methods face challenges in dealing with catastrophic forgetting, where

the model loses knowledge of previous tasks when learning new ones. This limitation

has motivated researchers to explore SSL in the context of CL, giving rise to self-

supervised continual learning (SSCL).

In SSCL, SSL is employed to learn representations that are more informative and

resistant to catastrophic forgetting. This leads to better performance compared to

supervised continual learning (SCL) methods. However, the training complexity of

SSCL can be high due to the computational cost of SSL.

In this chapter, we focus on analyzing the task correlations within the SSCL setup.

We make an interesting observation that the intermediate features of the SSL-learned

background model exhibit high correlations across different tasks. Leveraging this

observation, we propose a novel SSCL method called layer-wise freezing. The idea

behind layer-wise freezing is to progressively freeze a portion of the network layers

based on their correlation ratios for each task. This means that as the model learns

79

new tasks, we selectively freeze certain layers that are less correlated with the current

task, while allowing other layers to continue learning. By doing so, we aim to improve

training computation efficiency and memory efficiency while still benefiting from the

SSL-learned representations. In the following sections, we will delve into the details of

the layer-wise freezing method and present experimental results to demonstrate its

effectiveness in SSCL. Our approach represents a new direction in leveraging SSL for

continual learning while addressing the computational challenges associated with it.

5.1 Related Works and Background

5.1.1 Self-supervised Learning

Self-supervised learning has gained significant attention in recent years as a promis-

ing approach to learning visual representations without the need for expensive data

labeling. Various state-of-the-art methods, such as Momentum Contrast [42], Sim-

CLR [16], Bootstrap Your Own Latent (BYOL)[34], Barlow Twins[129], and SwAV [12],

have demonstrated that self-supervised learning can achieve comparable or even supe-

rior performance to supervised representation learning.

The common strategy employed by these methods is to learn representations

that are invariant under different data augmentations. This is typically achieved by

maximizing the similarity between augmented views of the same image and minimizing

the similarity with views of other images. Contrastive loss optimization is commonly

used to achieve this objective.

One limitation of these approaches is that they often require large-sized batches

and a sufficient number of negative samples. Large batch sizes are used to increase the

80

diversity of negative samples, which can improve the quality of learned representations.

However, using large batch sizes may not be feasible in certain computational settings

or when working with limited resources. Additionally, the requirement for negative

samples can also increase the computational cost and memory requirements during

training. Overcoming these limitations and making self-supervised learning more

accessible and efficient is an active area of research. Recent advancements have explored

alternative methods such as small-batch self-supervised learning [17], which aims to

achieve comparable performance with smaller batch sizes. Specifically, SimSiam [17]

addresses this issue by utilizing the stop-gradient technique to prevent the collapsing

of Siamese networks. The Siamese network consists of an encoder network f and a

prediction MLP h, where the encoder includes a backbone model (e.g., ResNet [41])

and a projection MLP. Given two randomly augmented views of x1 and x2 from an

input image x, Simsiam aims to minimize the negative cosine similarity between the

predictor output p1 (p1 = f(h(x1))) and the projector output z2 (z2 = f(x2)) with a

symmetrized loss as:

LSSL =
1

2
D(p1, stopgrad(z2)) +

1

2
D(p2, stopgrad(z1)) (5.1)

where D is a negative cosine similarity function. Given the distorted versions of an

instance, BarlowTwin [129] minimizes the redundancy between their embedding vector

components while conserving the maximum information. This can be achieved by

making the cross-correlation matrix, computed between the outputs of two identical

networks, closer to the identity matrix, through the minimization of the following loss:

LSSL =
∑
i

(1− Cii)
2 + λ

∑
i

∑
j ̸=i

Cij. (5.2)

Here λ is a positive constant scaling factor and C is the cross-correlation matrix

computed between the outputs of the two identical networks along the batch dimension.

81

Since SimSiam and BarlowTwim have no requirements for large batch size and negative

samples, in this work, we adopt these two works as base learning methods for self-

supervised continual learning.

5.1.2 Continual Learning

Numerous continual learning methods have been developed in the context of

supervised learning, which can generally be categorized into three main groups.

Regularization-based methods (e.g., [2, 61, 53]) aim to preserve the knowledge of

previous tasks by incorporating an additional regularization term into the loss function.

This regularization term helps constrain the weight updates during the learning of

new tasks. For instance, Elastic Weight Consolidation (EWC) [53] determines the

importance of weights using the Fisher Information matrix and imposes regularization

on these important weights.

Structure-based methods (e.g., [101, 118]) focus on adapting different model pa-

rameters or architectures over the course of sequential tasks. These methods leverage

task-specific adjustments to improve performance on each task while maintaining

knowledge from previous tasks.

Memory-based methods can be further categorized into two subgroups: memory-

replay methods and orthogonal-projection based methods. Memory-replay methods

(e.g., [97, 35, 14]) store and replay data from previous tasks during the learning of new

tasks. This helps the model retain and utilize knowledge gained from past experiences.

On the other hand, orthogonal-projection based methods (e.g., [130, 26, 99, 67, 65])

update the model for each new task in a direction orthogonal to the subspace spanned

82

by the inputs of previous tasks. This approach minimizes interference between tasks

and facilitates efficient learning of new tasks.

In recent years, several works have emerged to address the challenge of self-

supervised continual learning, where the goal is to learn representations in a continual

learning setting without the need for explicit task labels. These approaches have shown

promising results in mitigating catastrophic forgetting and learning more generalized

representations compared to supervised continual learning methods.

For instance, Rao et al. [95] proposed a method that learns task-specific representa-

tions on shared parameters. However, this approach is limited to simple low-resolution

tasks and does not scale well to standard continual learning benchmark datasets. On

the other hand, CaSSLe [27] and PFR [33] introduce a temporal projection module

that ensures the newly learned feature space preserves information from previous

tasks. These methods aim to maintain the representational fidelity across tasks to

alleviate catastrophic forgetting.

Another approach, LUMP [80], leverages the Mixup technique [132] to interpolate

data between the current task and instances from previous tasks:

x̃t,i = λ · xt,i + (1− λ) · xM,l, (5.3)

where xM,l denotes the old task data selected using uniform sampling from replay

buffer M and λ is randomly sampled from a Beta distribution. However, these works

directly combine the existing self-supervised with continual learning techniques (e.g,

knowledge distillation, mixup, memory replay, etc,.) that still suffer from large training

costs, and the forgetting issue remains as well.

83

5.1.3 Layer Freezing

There have been several works that aim to accelerate the training of deep neural

networks for a single task by utilizing layer freezing techniques [75, 40, 107, 1, 126].

These approaches are based on the observation that earlier layers in the network tend

to extract more general features of the raw data, while deeper layers capture more

task-specific and complex features. For instance, Liu et al.[75] propose an automatic

layer freezing method that determines which layers to freeze based on the parameter

gradients. Wang et al.[107] utilize knowledge distillation to guide the layer freezing

schedule. Yuan et al. [126] apply layer freezing in the context of sparse training.

However, these methods focus solely on a single task and typically follow a fixed order

of progressively freezing layers in descending layer index. In contrast to these previous

works, we argue that layer freezing in self-supervised continual learning (SSCL) needs

to consider task correlations.

5.2 Efficient Self-supervised Continual Learning

5.2.1 Problem Formulation

In supervised continual learning, a model learns continuously from a sequential

data stream, where new tasks (i.e., classification tasks with new classes) are introduced

over time. Formally, we have a sequence of tasks 1, 2, ..., T , where the task at time t is

associated with training data Dt = xt,i,yt,i
Nt
i=1. Each task t can consist of a series of

classes. We use the function f(·) to represent the feature extractor operation and h(·)

to represent the classifier model. The main objective is to optimize the parameter w

84

of both the feature extractor and the classifier:

minwf ,wh

T∑
t=1

Nt∑
i=1

Lt(h(f(xt,i)),yt,i) (5.4)

where Lt(·) is cross entropy loss function in general.

In contrast, self-supervised continual learning does not rely on labeled data during

training. The goal is to learn a general representation that remains invariant under

different augmentations for all tasks. Mathematically, this objective can be formulated

as follows:

minwf

T∑
t=1

Nt∑
i=1

Lt(f(x
1
t,i,x

2
t,i)) (5.5)

In self-supervised continual learning, the augmented images x1
t,i and x2

t,i are generated

from the original image xt,i. The choice of the feature extractor and the loss function

depends on the specific self-supervised learning method being used, such as SimSiam

and BarlowTwin. Once the feature extractor is trained on all tasks, we can evaluate

its performance using a K-nearest neighbor (KNN) classifier or linear classification,

as suggested by Madaan et al. (2021). In this chapter, we focus on self-supervised

continual learning in the context of task-incremental learning, where the model has a

single classifier and task identifiers are provided during inference.

5.2.2 Progressive Task-correlated Layer Freezing

5.2.2.1 Overview

In our approach, the training of the model for the first task follows the standard

self-supervised learning method without any modifications [95, 27, 33, 80]. However,

for the subsequent tasks that are learned sequentially, we employ a memory replay-

based method inspired by [8]. Specifically, we uniformly store the data of each task in

85

Figure 21. The Overview of Our Proposed Method Which Progressively Freezes
Partial Layers During the Whole Training Process for Each Task.

a fixed-size buffer (e.g., 256) and utilize the mixup technique from LUMP [80]. To

improve training efficiency, memory efficiency, and mitigate catastrophic forgetting, we

introduce the concept of progressive freezing. During the training process for each task,

we progressively freeze certain layers of the model based on task correlations. The

specific layers to be frozen are determined by considering the inter-task correlations.

In the following sections, we will provide a detailed explanation of our progressive

freezing method and how it is employed in self-supervised continual learning.

5.2.2.2 Layer Freezing via Task Correlation

The training efficiency of self-supervised continual learning (SSCL) is a critical

concern due to the high training cost associated with self-supervised learning (SSL)

models, especially when new tasks arrive continuously. Improving the training efficiency

of SSCL is essential for practical applications and the advancement of SSCL methods.

Previous works have demonstrated that the representations learned through SSCL are

more general and robust to catastrophic forgetting compared to supervised continual

learning (SCL).

86

A key observation is that the intermediate features learned for each layer between

the current task and prior tasks in SSCL are highly correlated. This suggests that

if a new task has strong similarities with old tasks in certain layers, freezing those

layers and not updating them during training may not significantly affect the learning

performance on the new task. Based on this insight, we pose the question: “Can we

leverage the generality of the learned representations from SSL and freeze the highly

correlated layers during training for each task to improve training efficiency?”

By selectively freezing highly correlated layers, we can potentially reduce the

computational and memory costs associated with updating those layers during training.

This approach takes advantage of the transferability of the representations learned

through SSL, allowing us to focus computational resources on updating the task-

specific layers that contribute the most to the new task. This strategy aims to

improve the training efficiency of SSCL while preserving the benefits of SSL in terms

of generalization and resistance to catastrophic forgetting.

To answer this question, motivated by prior gradient orthogonal-projection based

methods [67, 65] on SCL, we first investigate the correlation of tasks according to

gradient projection. Specifically, to formally characterize the correlation between the

current task and prior tasks, we define the task correlation ratio in layer-wise as:

rl =
∥Sl

t
(∇Lt(w

l
t−1))∥2

∥∇Lt(wl
t−1))∥2

(5.6)

where Sl
t

denotes the projection on the input subspace Sl
t of prior tasks (1, 2, ..., t− 1)

on lth layer, and wl
t−1 represents the lth layer weight in the model before learning

task t. Here S(A) = AB(B)′ for some matrix A and B is the bases for S. Due to the

fact that the gradient lies in the span of the input [99], if the task correlation ratio

rl ∈ (0, 1) has a large value, it implies that the current task t and prior tasks may

87

have sufficient common bases in lth layer between their input subspaces and hence

are strongly correlated. To quantitatively evaluate the task correlation on SSCL, we

conduct the experiments on three settings (i.e., Split CIFAR-10, Split CIFAR-100,

Split TinyImageNet) by using prior representative work LUMP [80]. As shown in

effig:corr, we observe that:

Observations: 1) the variance of the task correlation ratio in SSCL is smaller

than the counterparts in SCL; 2) the correlation ratios of SSCL are larger than the

counterparts in SCL for most layers; 3) the correlation ratios of SCL consistently

follow an ascending order, while the counterparts in SSCL are more varied that are

usually higher for top and middle layers.

The first two observations help to further explain that the learned representations

of SSCL are more general than SCL. Moreover, the third observation indicates that

following ascending order to freeze layer in supervised learning is a good choice [7, 75,

126] since the correlation ratios of the top layers are always larger than the later ones.

However, for the SSCL, layer freezing needs to consider task correlations between

tasks.

5.2.3 Subspace Construction via Memory Replay Data.

Prior orthogonal-projection-based methods (e.g., [99, 67]) target task-incremental

learning, which calculates and then stores the bases of the input subspace of each prior

task individually for orthogonal gradient descent. Such subspace storage consumes

large memory costs, especially for the large models of self-supervised learning. For

example, ResNet18 requires 116MB on CIFAR-10 dataset. Benefiting from utilizing

data replay mechanism, we can construct the subspace of prior tasks on-the-fly instead

88

of storing the corresponding bases. In practice, before training the current task, we

calculate the bases of the subspace for the data in the replay buffer using Singular Value

Decomposition (SVD) on the representations. Specifically, given the model wt−1 before

learning task t, we construct a representation matrix Rl
t = [xl

r,1, ...,x
l
r,n] ∈ Rm×n with

n samples from memory replay buffer, where each xl
r,i ∈ Rm, is the representation at

layer l by forwarding the sample xr,i through the network. Then, we apply SVD to the

matrix Rl
t, i.e., Rl

t = U l
tΣ

l
1(V

l
t)

′, where U l
t = [ul

t,1, ...,u
l
t,m] ∈ Rm×m is an orthogonal

matrix with left singular vector ul
t,i ∈ Rm, V l

t = [vl
t,1, ...,v

l
t,n] ∈ Rn×n is an orthogonal

matrix with right singular vector vl
t,i ∈ Rn, and Σl

t ∈ Rm×n is a rectangular diagonal

matrix with non-negative singular values {σl
t,i}

min{m,n}
i=1 on the diagonal in a descending

order. To obtain the bases for subspace Sl
t, we use kl

t-rank matrix approximation

to pick the first kl
t left singular vectors in U l

t , such that the following condition is

satisfied for a threshold ηlth ∈ (0, 1):

∥(Rl
t)klt∥

2
F ≥ ϵlth∥Rl

t∥2F (5.7)

where (Rl
t)klt =

∑klt
i=1 σ

l
t,iu

l
t,i(v

l
t,i)

′ is a kl
t-rank (kl

t ≤ r) approximation of the represen-

tation matrix Rl
t with rank r ≤ min{m,n}, and ∥ · ∥F is the Frobenius norm. Then

the bases for subspace Sl
t can be constructed as Bl

t = [ul
t,1, ...,u

l
t,klt

].

5.2.3.1 Progressive Task-correlated Freezing

Based on the proposed task-correlation metric, we further propose progressive

task-correlated freezing in SSCL to progressively freeze partial layers with the

highest correlation ratios during training for each task, in order to enhance the training

computation and memory efficiency. Specifically, define the initial freeze ratio as ki

and final freeze ratio as kf , which denote the ratio of the number of frozen layers to

89

the number of layers in the neural network. The total number of training epochs is

N and the current training epoch is n. We adopt cosine annealing to progressively

increase the freeze ratio in epoch-wise:

kn = ki +
1

2
(kf − ki)(1 + cos(

n

N
π)) (5.8)

where kn is the freeze ratio for the current epoch. In our experiments, we set the

initial and final freeze ratios as 0 and 0.4 for all tasks by default.

Following that, once getting the freeze ratio for the current epoch, we adopt the

following strategies to progressively and accumulately freeze the layers: 1) the layers

with the highest task-correlation ratio under the current freeze ratio kn will be frozen;

2) the frozen layers of prior epochs will be unchanged, and we will gradually increase

the number of frozen layers according to the freeze ratio difference (kn − kn−1). This

can be achieved by using a TopK function according to the layer-wise task correlation

to select the layers to freeze:

Fn = {l|rln ∈ TopK(Rn, kn − kn−1)} (5.9)

where Rn denotes a set of task correlations across all unfrozen layers in current epoch

n and rln is the task-correlation ratio for lth layer as defined in 5.6. By doing so, we

could generate a set of indexes of new frozen layers Fn for each task. Importantly,

One practical reason that we choose layer-wise freezing is that layer-wise freezing

could enable actual training speedup in GPU by using general deep learning frameworks

(e.g, Tensorflow, Pytorch). In addition, we find that if applying the proposed layer-

wise weight freezing in supervised continual learning (SCL) setup, it will cause clear

accuracy degradation, which also advocates that the representation learned by SSCL

is more general and robust.

90

5.3 Experimental Results

5.3.1 Experimental Setup

Previous research on self-supervised continual learning (SSCL) [95, 27, 33, 80] has

demonstrated the superior performance of SSCL methods compared to single-task

supervised continual learning (SCL) approaches in class incremental learning. In this

study, we conduct a comprehensive comparison with various self-supervised continual

learning baselines, encompassing different categories of continual learning methods.

Firstly, we primarily compare our method to the state-of-the-art self-supervised

continual learning techniques, namely CassLe [33] and LUMP [80]. It is important to

note that we reproduce the reported results of CassLe using the same experimental

setup as LUMP to ensure a fair comparison.

Secondly, following the approach in [80], we also present results for several self-

supervised variants of SCL methods. Specifically, we evaluate the performance of

FINETUNE, which is a vanilla supervised learning method trained on a sequence

of tasks without regularization or episodic memory, as well as MULTITASK, which

optimizes the model using complete data.

Additionally, we compare our method against previous SCL methods in a self-

supervised learning setting. Specifically, we assess the effectiveness of SI [131] for

regularization-based CL methods, PNN [98] for architecture-based methods, and

DER [8] for memory replay methods, which adapt knowledge distillation through

memory replay to align the network logits sampled during the optimization trajectory

in continual learning.

Dataset We evaluate the performance of SSCL on various continual learning

91

benchmarks using the single-head ResNet-18 architecture proposed by He et al.[41].

The benchmarks we utilize include Split CIFAR-10[57], where each task involves two

randomly selected classes from the ten available classes. For Split CIFAR-100 [57], each

task comprises five random classes chosen from the 100 classes. Split Tiny-ImageNet

is a modified version of the ImageNet dataset [19], with each task containing five

random classes selected from the 100 classes, and the images are resized to 64 × 64

pixels. In Split ImageNet-100, each task encompasses 20 randomly chosen classes

from the 100 classes. It is important to note that ImageNet-100 is a subset of the

ILSVRC2012 dataset, which consists of approximately 130,000 high-resolution images

resized to 224x224 pixels.

Experimental setup. We adopt the training and evaluation setup outlined in the

work of Madaan et al.[80] for all the SSCL representation learning strategies applied

to the Split CIFAR-10, CIFAR-100, and Split Tiny-ImageNet datasets. The learned

representations are assessed using the K-nearest neighbors (KNN) classifier[109],

with evaluations conducted across three independent runs for robustness. During

training, we train all the SSCL methods for 200 epochs and subsequently evaluate

their performance using the KNN classifier [109]. For the experiments, we set the

memory buffer size to 256, and the models are optimized using the SGD optimizer

with a base learning rate of 0.03, employing a batch size of 256. Moreover, in line with

the methodology presented in Fini et al. [27] for the ImageNet-100 dataset, we employ

the LARS optimizer for model training. For testing, we conduct linear evaluation.

Metrics. Following [80], two metrics are used to evaluate the performance:

Accuracy, the average final accuracy over all tasks, and Forgetting, which measures the

forgetting of each task between its maximum accuracy and accuracy at the completion

92

of training. Accuracy and Forgetting are defined as:

Accuracy =
1

T

∑T

i=1
AT,i (5.10)

Forgetting =
1

T − 1

∑T−1

i=1
maxt(AT,i −Ai,i) (5.11)

where T is the number of tasks, AT,i is the accuracy of the model on i-th task after

learning the T -th task sequentially. Furthermore, we utilize three metrics to measure

training efficiency: Training time, we report the training time ratio compared to

LUMP baseline which is measured on NVIDIA RTX A4000 GPU; memory, which

includes model parameter size, training activation storage, and memory replay buffer

size; Flops, which calculate the number of computational operations during backward.

5.3.2 Main Results

As presented in Table 21 and Table 22, we assess the performance of various SSCL

methods utilizing the SimSiam [16] and BarlowTwin [129] SSL frameworks on the

Split CIFAR-10, Split CIFAR-100, and Split Tiny-ImageNet datasets.

It is worth noting that the training memory cost comprises model parameters,

memory replay data, and activations of each layer for backward propagation. When

using the SimSiam framework, our method achieves notable reductions in training

time, memory usage, and backward FLOPs across the three datasets. Specifically,

we achieve a 12%, 14%, and 12% reduction in training time, a 23%, 26%, and 24%

reduction in memory, and a 33%, 33%, and 32% reduction in backward FLOPs,

respectively. Similarly, when employing the BarlowTwin framework, our method

demonstrates significant improvements. We achieve a 13%, 12%, and 12% reduction in

training time, a 22%, 21%, and 22% reduction in memory, and a 35%, 34%, and 33%

reduction in backward FLOPs across the three datasets, respectively. Importantly,

93

with respect to the forgetting issue, our method effectively mitigates this problem

compared to all prior methods. For instance, when comparing our method to LUMP on

the Split CIFAR-100 and Split Tiny-ImageNet datasets using the SimSiam framework,

we achieve reductions in forgetting by 1.31%, 1.98%, and 1.21%, respectively, while

maintaining similar levels of accuracy.

Table 21. Accuracy and Forgetting of the Learned Representations on Split Cifar-10,
Split CIFAR-100, and Split Tiny-imagenet on Resnet-18 Architecture with KNN
Classifier. All the Values Are Measured by Computing Mean and Standard Deviation
Across Three Trials. Note That, We Use the Layer Freezing Ratio As 0.4 by Default
for All Our Results.

Method SPLIT CIFAR-10 SPLIT CIFAR-100 SPLIT TINY-IMAGENET

Accuracy Forgetting Accuracy Forgetting Accuracy Forgetting

Si
m

si
am

Finetune 90.11 (±0.12) 5.43 (±0.08) 75.42 (±0.78) 10.19 (±0.78) 71.07 (±0.20) 9.48 (±0.56)

PNN [98] 90.93 (±0.22) - 66.58 (±1.0) - 62.15 (±1.35) -
SI [131] 92.75 (±0.06) 1.81 (±0.21) 80.08 (±1.3) 5.54 (±01.3) 72.34 (±0.42) 8.26 (±0.64)
DER [8] 91.22 (±0.3) 4.63 (±0.26) 77.27 (±0.30) 9.31 (±0.09) 71.90 (±1.44) 8.36 (±2.06)

CassLe [33] 91.04 (±0.24) 2.24 (±0.23) 81.58 (±0.84) 5.02 (±1.12) 75.77 (±1.74) 4.42 (±1.24)
LUMP [80] 91.00 (±0.40) 2.92 (±0.53) 82.30 (±1.35) 4.71 (±1.52) 76.66 (±2.39) 3.54 (±1.04)

Ours 91.03 (±0.44) 1.61 (±0.23) 82.24 (±1.24) 2.73(±1.13) 76.68 (±2.51) 2.33(±1.14)

Multitask 95.76 (±0.08) - 86.31 (±0.38) - 82.89 (±0.49) -

B
ar

lo
w

T
w

in

Finetune 87.72 (±0.32) 4.08 (±0.56) 71.97 (±0.54) 9.45 (±1.01) 66.28 (±1.23) 8.89 (±0.66)

PNN [98] 87.52 (±0.33) - 57.93 (±2.98) - 48.70 (±2.59) -
SI [131] 90.21 (±0.08) 2.03 (±0.22) 75.04 (±0.63) 7.43 (±0.67) 56.96 (±1.48) 17.04 (±0.89)
DER [8] 88.67 (±0.30) 2.41 (±0.26) 73.48 (±0.53) 7.98 (±0.29) 68.56 (±1.47) 7.87 (±0.44)

Cassle [33] 89.04 (±0.34) 1.89 (±0.14) 77.05 (±0.75) 2.47 (±0.44) 71.76 (±0.65) 2.88 (±0.45)
LUMP [80] 89.72 (±0.30) 1.13 (±0.18) 80.24 (±1.04) 3.53 (±0.83) 72.17 (±0.89) 2.43 (±1.00)

Ours 89.73 (±0.41) 0.92 (±0.23) 80.54 (±0.88) 2.24 (±0.84) 73.56 (±1.02) 1.74 (±0.62)

Multitask 95.48 (±0.14) - 87.16 (±0.52) - 82.42 (±0.74) -

Furthermore, we extend our experiments to the more demanding ImageNet-100

dataset. In particular, we apply our proposed method to the BarlowTwin and

MoCoV2+ frameworks, following the same experimental setup as CassLe. The

results, as presented in Table 23, consistently demonstrate the effectiveness of our

method in enhancing training efficiency and mitigating catastrophic forgetting while

achieving comparable accuracy levels. By incorporating our proposed method into

the BarlowTwin and MoCoV2+ frameworks, we observe significant improvements in

training efficiency and alleviation of catastrophic forgetting, all while maintaining

94

Table 22. Training Time (Measured Time in Nvidia A4000 GPU), Memory Cost, And
Computation Flops of the Learned Representations on Split CIFAR-10, Split
Cifar-100 and Split Tiny-imagenet.

Method SPLIT CIFAR-10 SPLIT CIFAR-100 SPLIT TINY-IMAGENET

Time Memory FLOPs Time Memory FLOPs Time Memory FLOPs

Si
m

si
am

PNN [98] 1.35x 1.35x 1.35x 1.35x 1.35x 1.35x 1.35x 1.35x 1.35x
SI [131] 1.2x 1.2x 1.2x 1.2x 1.2x 1.2x 1.2x 1.2x 1.2x
DER [8] 1x 1x 1x 1x 1x 1x 1x 1x 1x

LUMP [80] 1x 1x 1x 1x 1x 1x 1x 1x 1x
CassLe [33] 1.3x 1.3x 1.3x 1.3x 1.3x 1.3x 1.3 1.3x 1.3x

Ours 0.88x 0.77x 0.68x 0.86x 0.74x 0.67x 0.88x 0.76x 0.68x

B
ar

lo
w

T
w

in

PNN [98] 1.35x 1.35x 1.35x 1.35x 1.35x 1.35x 1.35x 1.35x 1.35x
SI [131] 1.2x 1.2x 1.2x 1.2x 1.2x 1.2x 1.2x 1.2x 1.2x
DER [8] 1x 1x 1x 1x 1x 1x 1x 1x 1x

LUMP [80] 1x 1x 1x 1x 1x 1x 1x 1x 1x
Cassle [33] 1.3x 1.3x 1.3x 1.3x 1.3x 1.3x 1.3x 1.3x 1.3x

Ours 0.87x 0.78x 0.65x 0.88x 0.79x 0.66x 0.88x 0.75x 0.67x

similar accuracy to the baseline methods. These findings highlight the robustness and

versatility of our approach across different SSL frameworks and challenging datasets

like ImageNet-100.

Table 23. Accuracy, Forgetting, Training Time, and Training Memory Cost of the
Learned Representations on Imagenet-100 with Linear Evaluation by Using
Barlowtwin and Mocov2 Respectively.

Setting ImageNet-100
Accuracy Forgeting Time Memory

BarlowTwin CassLe 68.2 1.3 1x 1x
Ours 68.5 0.7 0.88x 0.78x

MoCoV2 CassLe 68.0 2.2 1x 1x
Ours 67.9 1.4 0.89x 0.79x

95

0 5 10 15 20
Layer index

0

1

2

3

4

5

Ta
sk

 ID

CIFAR-10 with freezing ratio 0.3

5 10 15 20
Layer index

0

1

2

3

4

5

Ta
sk

 ID

CIFAR-100 with freezing ratio 0.3

7.5 10.0 12.5 15.0 17.5 20.0
Layer index

0

1

2

3

4

5

Ta
sk

 ID

CIFAR-10 with freezing ratio 0.5

7.5 10.0 12.5 15.0 17.5 20.0
Layer index

0

1

2

3

4

5

Ta
sk

 ID

CIFAR-100 with freezing ratio 0.5

Figure 22. The Final Selection of Updated Layer for Each Task. The Freezing Ratios
Are 0.3 And 0.5 Respectively. Note That, Each Blue Point Means the Index of the
Updated Layer. For Split CIFAR-100 20 Tasks Setup, We Show the First Five Tasks
for Simplification..

Table 24. The Ablation Study on the Proposed Method in Comparison to Layer
Freezing in Ascending Layer Index (I.E., “Top Layer”) Order on Both Split Cifar-10
and Cifar-100 Datasets by Using Barlowtwin as Backbone Method.

Setting Split CIFAR-10 Split CIFAR-100
Forgetting Accuracy Forgetting Accuracy

Top layers. 0.96 89.24 2.57 78.87
Ours 0.92 90.03 2.24 80.54

5.4 Ablation Study and Discussion

5.4.1 Task-correlated Layer Freezing vs. Ascending Order Layer Freezing

In order to assess the efficacy of the proposed progressive layer freezing technique

using task correlation, we compare it to the commonly employed ascending order layer

freezing approach typically used in supervised learning settings to enhance training

efficiency for a single task. To ensure a fair comparison, we also utilize the same cosine

annealing strategy to progressively freeze layers, employing an equivalent freezing

ratio of 0.4.

As presented in Table 24, our proposed method consistently achieves higher

accuracy while maintaining similar levels of forgetting when compared to Naive

Selection. These results underscore the importance of considering task correlation in

the context of SSCL. The findings highlight that task correlation between different tasks

96

should be taken into account when designing SSCL methods, as it can significantly

impact the overall performance and ability to mitigate forgetting.

5.4.2 Self-supervised Layer Decision

To analyze the layer freezing decision, we experiment with a freezing ratio of 0.4

for each task on the Split CIFAR-10 and Split CIFAR-100 datasets. In Figure 22, we

make the following observations:

Inter-tasks: The freezing decisions for different tasks exhibit a high degree of

similarity. This indicates that the layers selected for freezing in the first task remain

unchanged throughout the subsequent tasks. This finding suggests that the learned

representations through SSCL are general and robust, as the frozen layers consistently

capture task-agnostic information.

Intra-task: Interestingly, we observe that the first layer and a significant number

of last layers are updated during training. We propose a conjecture to explain this

observation. The last layers are responsible for learning high-level features that are

sensitive to the specific input. Therefore, it is expected that they need to be updated

to adapt to the new task. Additionally, although the first layer learns general low-level

features, SSCL applies strong augmentation techniques (e.g., color jittering, grayscale

conversion, Gaussian blurring, solarization) to the input. Consequently, it is reasonable

for the first layer to be updated as well to accommodate the transformed input.

These findings shed light on the layer freezing decision in SSCL. They highlight

the importance of considering both inter-task and intra-task dynamics, as well as the

role of different layers in learning and adapting representations for continual learning

tasks.

97

5.5 Summary

In this chapter, we first explore the task correlation in SSCL and observe a strong

correlation among intermediate features across different tasks. Building upon this

observation, we propose a novel approach called progressive task-correlated layer

freezing. This method involves gradually freezing a subset of layers with the highest

correlation ratios for each task.

Through extensive experiments conducted on multiple datasets, our findings

demonstrate the effectiveness of our proposed method. Specifically, our approach

significantly enhances training computation and memory efficiency while effectively

mitigating catastrophic forgetting. These results establish our method as a state-of-

the-art (SoTA) solution in the field of SSCL.

By leveraging the task correlation to guide the layer freezing process, we achieve

notable improvements over existing SSCL methods. Our approach offers a promising

avenue for improving both the efficiency and robustness of SSCL, contributing to

advancements in continual learning research.

98

Chapter 6

CONCLUSION AND OUTLOOK

This dissertation has discussed our research on enabling deep learning at edge,

from efficient and dynamic inference to on-device learning. From the inference

perspective, deep learning models suffer from large memory and computation cost

which is inefficient or even impractical to be deployed on edge devices. To tackle

the challenge, a hardware-friendly model compression method is proposed, which

combines weight ternerization and structured pruning to maximize inference efficiency.

Moreover, the conventional model compression methods usually lead to a fixed/static

compressed model which can not meet the requirement of dynamic hardware resources

and environment, such as varied power budget, dynamic workload, different resource

allocation, and so on. To address this issue, we further explore dynamic inference which

consists of multiple sub-networks with different model sizes to enable the run-time

adjustment of model size, computation, and latency. From learning perspective, to

achieve on-device learning, we first find that the training process is memory-intensive

and the intermediate activation memory during training is the bottleneck. Following

this rule, a memory-efficient transfer learning method (i.e., Rep-net) is proposed

which is a feature reprograming side-network that significantly reduces the training

memory cost while improving knowledge transfer capacity without forgetting prior

learned knowledge. Furthermore, we explore efficient continual learning method via

progressive task-correlated layer freezing which aims to continually learn multiple

tasks without forgetting prior learned knowledge.

In the future, I plan to further explore full-stack efficient AI in the following

99

three aspects: 1) the efficient and continual on-device learning algorithm, model, and

system; 2) label- and data-efficient learning algorithm; 3) efficient and trustworthy AI

in Cyber-Physical System.

100

REFERENCES

[1] Gustavo Aguilar et al. “Knowledge distillation from internal representations”.
In: Proceedings of the AAAI Conference on Artificial Intelligence. Vol. 34. 05.
2020, pp. 7350–7357.

[2] Rahaf Aljundi et al. “Memory aware synapses: Learning what (not) to forget”.
In: Proceedings of the European Conference on Computer Vision (ECCV). 2018,
pp. 139–154.

[3] Jose M Alvarez and Mathieu Salzmann. “Learning the number of neurons in
deep networks”. In: Advances in Neural Information Processing Systems. 2016,
pp. 2270–2278.

[4] Yoshua Bengio, Nicholas Léonard, and Aaron Courville. “Estimating or propa-
gating gradients through stochastic neurons for conditional computation”. In:
arXiv preprint arXiv:1308.3432 (2013).

[5] Lukas Bossard, Matthieu Guillaumin, and Luc Van Gool. “Food-101–mining
discriminative components with random forests”. In: European conference on
computer vision. Springer. 2014, pp. 446–461.

[6] Léon Bottou. “Large-scale machine learning with stochastic gradient descent”.
In: International Conference Computational Statistics. 2010, pp. 177–186.

[7] Andrew Brock et al. “Freezeout: Accelerate training by progressively freezing
layers”. In: arXiv preprint arXiv:1706.04983 (2017).

[8] Pietro Buzzega et al. “Dark experience for general continual learning: a strong,
simple baseline”. In: Advances in neural information processing systems 33
(2020), pp. 15920–15930.

[9] Han Cai et al. “m”. In: International Conference on Learning Representations.
2019.

[10] Han Cai et al. “Tiny Transfer Learning: Towards Memory-Efficient On-Device
Learning”. In: arXiv preprint arXiv:2007.11622 (2020).

[11] Han Cai et al. “Tinytl: Reduce memory, not parameters for efficient on-device
learning”. In: arXiv preprint arXiv:2007.11622 (2020).

101

[12] Mathilde Caron et al. “Emerging properties in self-supervised vision transform-
ers”. In: Proceedings of the IEEE/CVF International Conference on Computer
Vision. 2021, pp. 9650–9660.

[13] Ken Chatfield et al. “Return of the devil in the details: Delving deep into
convolutional nets”. In: arXiv preprint arXiv:1405.3531 (2014).

[14] Arslan Chaudhry et al. “Efficient lifelong learning with a-gem”. In: arXiv
preprint arXiv:1812.00420 (2018).

[15] Tianqi Chen et al. “Training deep nets with sublinear memory cost”. In: arXiv
preprint arXiv:1604.06174 (2016).

[16] Ting Chen et al. “A simple framework for contrastive learning of visual repre-
sentations”. In: International conference on machine learning. PMLR. 2020,
pp. 1597–1607.

[17] Xinlei Chen and Kaiming He. “Exploring simple siamese representation learn-
ing”. In: Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition. 2021, pp. 15750–15758.

[18] Yin Cui et al. “Large scale fine-grained categorization and domain-specific
transfer learning”. In: Proceedings of the IEEE conference on computer vision
and pattern recognition. 2018, pp. 4109–4118.

[19] Jia Deng et al. “Imagenet: A large-scale hierarchical image database”. In:
2009 IEEE conference on computer vision and pattern recognition. Ieee. 2009,
pp. 248–255.

[20] Li Deng. “The mnist database of handwritten digit images for machine learning
research”. In: IEEE Signal Processing Magazine 29.6 (2012), pp. 141–142.

[21] Emily L Denton et al. “Exploiting linear structure within convolutional networks
for efficient evaluation”. In: NIPS. 2014, pp. 1269–1277.

[22] Tim Dettmers and Luke Zettlemoyer. “Sparse networks from scratch: Faster
training without losing performance”. In: arXiv preprint arXiv:1907.04840
(2019).

[23] Gamaleldin F Elsayed, Ian Goodfellow, and Jascha Sohl-Dickstein. “Adversar-
ial reprogramming of neural networks”. In: arXiv preprint arXiv:1806.11146
(2018).

102

[24] R David Evans, Lufei Liu, and Tor M Aamodt. “Jpeg-act: accelerating deep
learning via transform-based lossy compression”. In: 2020 ACM/IEEE 47th
Annual International Symposium on Computer Architecture (ISCA). IEEE.
2020, pp. 860–873.

[25] Utku Evci et al. “Rigging the lottery: Making all tickets winners”. In: Interna-
tional Conference on Machine Learning. PMLR. 2020, pp. 2943–2952.

[26] Mehrdad Farajtabar et al. “Orthogonal gradient descent for continual learning”.
In: International Conference on Artificial Intelligence and Statistics. PMLR.
2020, pp. 3762–3773.

[27] Enrico Fini et al. “Self-supervised models are continual learners”. In: Proceedings
of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.
2022, pp. 9621–9630.

[28] Jonathan Frankle and Michael Carbin. “The Lottery Ticket Hypothesis: Finding
Sparse, Trainable Neural Networks”. In: International Conference on Learning
Representations. 2018.

[29] Jonathan Frankle, David J Schwab, and Ari S Morcos. “Training batchnorm
and only batchnorm: On the expressive power of random features in cnns”. In:
arXiv preprint arXiv:2003.00152 (2020).

[30] Rong Ge et al. “Escaping from saddle points—online stochastic gradient for
tensor decomposition”. In: Conference on Learning Theory. 2015.

[31] Ross Girshick et al. “Rich feature hierarchies for accurate object detection and
semantic segmentation”. In: Proceedings of the IEEE conference on computer
vision and pattern recognition. 2014, pp. 580–587.

[32] Aidan N Gomez et al. “The reversible residual network: Backpropagation
without storing activations”. In: Advances in neural information processing
systems. 2017, pp. 2214–2224.

[33] Alex Gomez-Villa et al. “Continually Learning Self-Supervised Representations
with Projected Functional Regularization”. In: Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition. 2022, pp. 3867–3877.

[34] Jean-Bastien Grill et al. “Bootstrap your own latent-a new approach to self-
supervised learning”. In: Advances in neural information processing systems 33
(2020), pp. 21271–21284.

103

[35] Yunhui Guo et al. “Improved schemes for episodic memory-based lifelong
learning”. In: Advances in Neural Information Processing Systems 33 (2020),
pp. 1023–1035.

[36] Yunhui Guo et al. “Spottune: transfer learning through adaptive fine-tuning”.
In: Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition. 2019, pp. 4805–4814.

[37] Song Han, Huizi Mao, and William J Dally. “Deep Compression: Compressing
Deep Neural Networks with Pruning, Trained Quantization and Huffman
Coding”. In: International Conference on Learning Representations (ICLR)
(2016).

[38] Song Han et al. “Learning both weights and connections for efficient neural
network”. In: Advances in neural information processing systems. 2015, pp. 1135–
1143.

[39] Babak Hassibi and David G Stork. “Second order derivatives for network
pruning: Optimal brain surgeon”. In: Advances in neural information processing
systems. 1993, pp. 164–171.

[40] Chaoyang He et al. “Pipetransformer: Automated elastic pipelining for dis-
tributed training of transformers”. In: arXiv preprint arXiv:2102.03161 (2021).

[41] Kaiming He et al. “Deep residual learning for image recognition”. In: Proceedings
of the IEEE conference on computer vision and pattern recognition. 2016,
pp. 770–778.

[42] Kaiming He et al. “Momentum contrast for unsupervised visual representation
learning”. In: Proceedings of the IEEE/CVF conference on computer vision and
pattern recognition. 2020, pp. 9729–9738.

[43] Yang He et al. “Filter pruning via geometric median for deep convolutional
neural networks acceleration”. In: Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition. 2019, pp. 4340–4349.

[44] Yihui He, Xiangyu Zhang, and Jian Sun. “Channel pruning for accelerating very
deep neural networks”. In: Proceedings of the IEEE International Conference
on Computer Vision. 2017, pp. 1389–1397.

[45] Zhezhi He, Boqing Gong, and Deliang Fan. “Optimize deep convolutional
neural network with ternarized weights and high accuracy”. In: 2019 IEEE

104

Winter Conference on Applications of Computer Vision (WACV). IEEE. 2019,
pp. 913–921.

[46] Geoffrey Hinton et al. “Distilling the knowledge in a neural network”. In: arXiv
preprint arXiv:1503.02531 (2015).

[47] Torsten Hoefler et al. “Sparsity in Deep Learning: Pruning and growth for
efficient inference and training in neural networks”. In: Journal of Machine
Learning Research 22.241 (2021), pp. 1–124.

[48] Andrew Howard et al. “Searching for mobilenetv3”. In: Proceedings of the
IEEE/CVF International Conference on Computer Vision. 2019, pp. 1314–
1324.

[49] Andrew G Howard et al. “Mobilenets: Efficient convolutional neural networks
for mobile vision applications”. In: arXiv preprint arXiv:1704.04861 (2017).

[50] Itay Hubara et al. “Quantized neural networks: Training neural networks with
low precision weights and activations”. In: The Journal of Machine Learning
Research 18.1 (2017), pp. 6869–6898.

[51] Siddhant Jayakumar et al. “Top-KAST: Top-K always sparse training”. In:
Advances in Neural Information Processing Systems. 2020.

[52] Diederik P Kingma and Jimmy Ba. “Adam: A method for stochastic optimiza-
tion”. In: arXiv preprint arXiv:1412.6980 (2014).

[53] James Kirkpatrick et al. “Overcoming catastrophic forgetting in neural net-
works”. In: vol. 114. 13. National Acad Sciences, 2017, pp. 3521–3526.

[54] Eliska Kloberdanz, Jin Tian, and Wei Le. “An Improved (Adversarial) Repro-
gramming Technique for Neural Networks”. In: International Conference on
Artificial Neural Networks. Springer. 2021, pp. 3–15.

[55] Simon Kornblith, Jonathon Shlens, and Quoc V Le. “Do better imagenet models
transfer better?” In: Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition. 2019, pp. 2661–2671.

[56] Jonathan Krause et al. “3d object representations for fine-grained categoriza-
tion”. In: Proceedings of the IEEE international conference on computer vision
workshops. 2013, pp. 554–561.

[57] Alex Krizhevsky, Geoffrey Hinton, et al. “Learning multiple layers of features
from tiny images”. In: (2009).

105

[58] Vadim Lebedev and Victor Lempitsky. “Fast convnets using group-wise brain
damage”. In: Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition. 2016, pp. 2554–2564.

[59] Yann LeCun, John S Denker, and Sara A Solla. “Optimal brain damage”. In:
Advances in neural information processing systems. 1990, pp. 598–605.

[60] Namhoon Lee, Thalaiyasingam Ajanthan, and Philip Torr. “SNIP: SINGLE-
SHOT NETWORK PRUNING BASED ON CONNECTION SENSITIVITY”.
In: International Conference on Learning Representations. 2018.

[61] Sang-Woo Lee et al. “Overcoming catastrophic forgetting by incremental mo-
ment matching”. In: Advances in neural information processing systems 30
(2017).

[62] Cong Leng et al. “Extremely low bit neural network: Squeeze the last bit out
with admm”. In: Thirty-Second AAAI Conference on Artificial Intelligence.
2018.

[63] Fengfu Li, Bo Zhang, and Bin Liu. “Ternary weight networks”. In: arXiv preprint
arXiv:1605.04711 (2016).

[64] Hao Li et al. “Pruning filters for efficient convnets”. In: arXiv preprint
arXiv:1608.08710 (2016).

[65] Sen Lin et al. “Beyond not-forgetting: Continual learning with backward
knowledge transfer”. In: Advances in Neural Information Processing Systems
35 (2022), pp. 16165–16177.

[66] Sen Lin et al. “TRGP: Trust Region Gradient Projection for Continual Learn-
ing”. In: International Conference on Learning Representations. 2021.

[67] Sen Lin et al. “TRGP: Trust Region Gradient Projection for Continual Learn-
ing”. In: arXiv preprint arXiv:2202.02931 (2022).

[68] Xiaofan Lin, Cong Zhao, and Wei Pan. “Towards accurate binary convolutional
neural network”. In: Advances in Neural Information Processing Systems. 2017,
pp. 345–353.

[69] Baoyuan Liu et al. “Sparse convolutional neural networks”. In: Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition. 2015,
pp. 806–814.

106

[70] Chenxi Liu et al. “Progressive neural architecture search”. In: Proceedings of
the European Conference on Computer Vision (ECCV). 2018, pp. 19–34.

[71] Hanxiao Liu, Karen Simonyan, and Yiming Yang. “Darts: Differentiable archi-
tecture search”. In: arXiv preprint arXiv:1806.09055 (2018).

[72] Liu Liu et al. “Dynamic sparse graph for efficient deep learning”. In: arXiv
preprint arXiv:1810.00859 (2018).

[73] Shiwei Liu et al. “Deep ensembling with no overhead for either training
or testing: The all-round blessings of dynamic sparsity”. In: arXiv preprint
arXiv:2106.14568 (2021).

[74] Shiwei Liu et al. “Sparse training via boosting pruning plasticity with neurore-
generation”. In: Advances in Neural Information Processing Systems. 2021.

[75] Yuhan Liu, Saurabh Agarwal, and Shivaram Venkataraman. “Autofreeze: Au-
tomatically freezing model blocks to accelerate fine-tuning”. In: arXiv preprint
arXiv:2102.01386 (2021).

[76] Zechun Liu et al. “Metapruning: Meta learning for automatic neural network
channel pruning”. In: Proceedings of the IEEE/CVF International Conference
on Computer Vision. 2019, pp. 3296–3305.

[77] Zhuang Liu et al. “Learning efficient convolutional networks through network
slimming”. In: Proceedings of the IEEE International Conference on Computer
Vision. 2017, pp. 2736–2744.

[78] Ilya Loshchilov and Frank Hutter. “Sgdr: Stochastic gradient descent with
warm restarts”. In: arXiv preprint arXiv:1608.03983 (2016).

[79] Christos Louizos, Max Welling, and Diederik P Kingma. “Learning Sparse Neu-
ral Networks through L_0 Regularization”. In: arXiv preprint arXiv:1712.01312
(2017).

[80] Divyam Madaan et al. “Representational continuity for unsupervised continual
learning”. In: International Conference on Learning Representations. 2021.

[81] Aleksander Madry et al. “Towards Deep Learning Models Resistant to Ad-
versarial Attacks”. In: International Conference on Learning Representations.
2018. url: https://openreview.net/forum?id=rJzIBfZAb.

[82] Subhransu Maji et al. “Fine-grained visual classification of aircraft”. In: arXiv
preprint arXiv:1306.5151 (2013).

107

https://openreview.net/forum?id=rJzIBfZAb

[83] Arun Mallya, Dillon Davis, and Svetlana Lazebnik. “Piggyback: Adapting a
single network to multiple tasks by learning to mask weights”. In: Proceedings
of the European Conference on Computer Vision (ECCV). 2018, pp. 67–82.

[84] Massimiliano Mancini et al. “Adding new tasks to a single network with
weight transformations using binary masks”. In: Proceedings of the European
Conference on Computer Vision (ECCV) Workshops. 2018, pp. 0–0.

[85] Jian Meng et al. “Contrastive dual gating: Learning sparse features with con-
trastive learning”. In: Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition. 2022, pp. 12257–12265.

[86] Decebal Constantin Mocanu et al. “Scalable training of artificial neural networks
with adaptive sparse connectivity inspired by network science”. In: Nature
Communications 9.1 (2018), pp. 1–12.

[87] Amirkeivan Mohtashami, Martin Jaggi, and Sebastian U Stich. “Masked Train-
ing of Neural Networks with Partial Gradients”. In: Proceedings of Machine
Learning Research (2022).

[88] Dmitry Molchanov, Arsenii Ashukha, and Dmitry Vetrov. “Variational dropout
sparsifies deep neural networks”. In: Proceedings of the 34th International
Conference on Machine Learning-Volume 70. JMLR. org. 2017, pp. 2498–2507.

[89] Hesham Mostafa and Xin Wang. “Parameter efficient training of deep convolu-
tional neural networks by dynamic sparse reparameterization”. In: International
Conference on Machine Learning. 2019.

[90] Pramod Kaushik Mudrakarta et al. “K for the price of 1: Parameter-efficient
multi-task and transfer learning”. In: arXiv preprint arXiv:1810.10703 (2018).

[91] Alex Nichol, Joshua Achiam, and John Schulman. “On first-order meta-learning
algorithms”. In: arXiv preprint arXiv:1803.02999 (2018).

[92] Maria-Elena Nilsback and Andrew Zisserman. “Automated flower classification
over a large number of classes”. In: 2008 Sixth Indian Conference on Computer
Vision, Graphics & Image Processing. IEEE. 2008, pp. 722–729.

[93] Omkar M Parkhi et al. “Cats and dogs”. In: 2012 IEEE conference on computer
vision and pattern recognition. IEEE. 2012, pp. 3498–3505.

108

[94] Alexandra Peste et al. “AC/DC: Alternating compressed/decompressed training
of deep neural networks”. In: Advances in Neural Information Processing
Systems. 2021.

[95] Dushyant Rao et al. “Continual unsupervised representation learning”. In:
Advances in Neural Information Processing Systems 32 (2019).

[96] Mohammad Rastegari et al. “Xnor-net: Imagenet classification using binary
convolutional neural networks”. In: European Conference on Computer Vision.
Springer. 2016, pp. 525–542.

[97] Matthew Riemer et al. “Learning to learn without forgetting by maximizing
transfer and minimizing interference”. In: arXiv preprint arXiv:1810.11910
(2018).

[98] Andrei A Rusu et al. “Progressive neural networks”. In: arXiv preprint
arXiv:1606.04671 (2016).

[99] Gobinda Saha, Isha Garg, and Kaushik Roy. “Gradient projection memory for
continual learning”. In: arXiv preprint arXiv:2103.09762 (2021).

[100] Mark Sandler et al. “Mobilenetv2: Inverted residuals and linear bottlenecks”.
In: Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition. 2018, pp. 4510–4520.

[101] Joan Serra et al. “Overcoming catastrophic forgetting with hard attention to
the task”. In: International Conference on Machine Learning. PMLR. 2018,
pp. 4548–4557.

[102] Suraj Srinivas and R Venkatesh Babu. “Data-free parameter pruning for deep
neural networks”. In: arXiv preprint arXiv:1507.06149 (2015).

[103] Wonyong Sung, Sungho Shin, and Kyuyeon Hwang. “Resiliency of deep neural
networks under quantization”. In: arXiv preprint arXiv:1511.06488 (2015).

[104] Yun-Yun Tsai, Pin-Yu Chen, and Tsung-Yi Ho. “Transfer learning without
knowing: Reprogramming black-box machine learning models with scarce data
and limited resources”. In: International Conference on Machine Learning.
PMLR. 2020, pp. 9614–9624.

[105] Catherine Wah et al. “The caltech-ucsd birds-200-2011 dataset”. In: (2011).

109

[106] Chaoqi Wang, Guodong Zhang, and Roger Grosse. “Picking Winning Tickets
Before Training by Preserving Gradient Flow”. In: International Conference on
Learning Representations. 2019.

[107] Yiding Wang et al. “Efficient dnn training with knowledge-guided layer freezing”.
In: arXiv preprint arXiv:2201.06227 (2022).

[108] Wei Wen et al. “Learning structured sparsity in deep neural networks”. In:
Advances in neural information processing systems. 2016, pp. 2074–2082.

[109] Zhirong Wu et al. “Unsupervised feature learning via non-parametric instance
discrimination”. In: Proceedings of the IEEE conference on computer vision
and pattern recognition. 2018, pp. 3733–3742.

[110] Li Yang, Zhezhi He, and Deliang Fan. “Harmonious coexistence of structured
weight pruning and ternarization for deep neural networks”. In: Proceedings
of the AAAI Conference on Artificial Intelligence. Vol. 34. 04. 2020, pp. 6623–
6630.

[111] Li Yang, Adnan Siraj Rakin, and Deliang Fan. “DAΘ3: Deep Additive Attention
Adaption for Memory-Efficient On-Device Multi-Domain Learning”. In: arXiv
preprint arXiv:2012.01362 (2020).

[112] Li Yang, Adnan Siraj Rakin, and Deliang Fan. “DA3: Dynamic Additive
Attention Adaption for Memory-Efficient On-Device Multi-Domain Learning”.
In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition. 2022, pp. 2619–2627.

[113] Li Yang, Adnan Siraj Rakin, and Deliang Fan. “Rep-net: Efficient on-device
learning via feature reprogramming”. In: Proceedings of the IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition. 2022, pp. 12277–12286.

[114] Li Yang et al. “A Progressive Sub-Network Searching Framework for Dynamic
Inference”. In: arXiv preprint arXiv:2009.05681 (2020).

[115] Li Yang et al. “A progressive subnetwork searching framework for dynamic
inference”. In: IEEE Transactions on Neural Networks and Learning Systems
(2022).

[116] Li Yang et al. “Efficient Self-supervised Continual Learning with Progressive
Task-correlated Layer Freezing”. In: arXiv preprint arXiv:2303.07477 (2023).

110

[117] Li Yang et al. “Get More at Once: Alternating Sparse Training with Gradient
Correction”. In: Advances in Neural Information Processing Systems 35 (2022),
pp. 30840–30850.

[118] Li Yang et al. “GROWN: GRow Only When Necessary for Continual Learning”.
In: arXiv preprint arXiv:2110.00908 (2021).

[119] Li Yang et al. “KSM: Fast Multiple Task Adaption via Kernel-wise Soft Mask
Learning”. In: arXiv preprint arXiv:2009.05668 (2020).

[120] Li Yang et al. “Ksm: Fast multiple task adaption via kernel-wise soft mask
learning”. In: Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition. 2021, pp. 13845–13853.

[121] Li Yang et al. “Non-uniform dnn structured subnets sampling for dynamic
inference”. In: 2020 57th ACM/IEEE Design Automation Conference (DAC).
IEEE. 2020, pp. 1–6.

[122] Jiahui Yu and Thomas Huang. “Universally slimmable networks and improved
training techniques”. In: arXiv preprint arXiv:1903.05134 (2019).

[123] Jiahui Yu et al. “BigNAS: Scaling up neural architecture search with big
single-stage models”. In: European Conference on Computer Vision. 2020.

[124] Jiahui Yu et al. “Slimmable Neural Networks”. In: International Conference on
Learning Representations. 2018.

[125] Tianhe Yu et al. “Gradient surgery for multi-task learning”. In: Advances in
Neural Information Processing Systems. 2020.

[126] Geng Yuan et al. “Layer Freezing & Data Sieving: Missing Pieces of a Generic
Framework for Sparse Training”. In: arXiv preprint arXiv:2209.11204 (2022).

[127] Geng Yuan et al. “MEST: Accurate and Fast Memory-Economic Sparse Training
Framework on the Edge”. In: Advances in Neural Information Processing
Systems. 2021.

[128] Ming Yuan and Yi Lin. “Model selection and estimation in regression with
grouped variables”. In: Journal of the Royal Statistical Society: Series B (Sta-
tistical Methodology) 68.1 (2006), pp. 49–67.

[129] Jure Zbontar et al. “Barlow twins: Self-supervised learning via redundancy
reduction”. In: International Conference on Machine Learning. PMLR. 2021,
pp. 12310–12320.

111

[130] Guanxiong Zeng et al. “Continual learning of context-dependent processing in
neural networks”. In: Nature Machine Intelligence 1.8 (2019), pp. 364–372.

[131] Friedemann Zenke, Ben Poole, and Surya Ganguli. “Continual learning through
synaptic intelligence”. In: International Conference on Machine Learning.
PMLR. 2017, pp. 3987–3995.

[132] Hongyi Zhang et al. “mixup: Beyond empirical risk minimization”. In: arXiv
preprint arXiv:1710.09412 (2017).

[133] Guoqiang Zhong et al. “Reducing and stretching deep convolutional activation
features for accurate image classification”. In: Cognitive Computation 10.1
(2018), pp. 179–186.

[134] Aojun Zhou et al. “Learning N: M Fine-grained Structured Sparse Neural Net-
works From Scratch”. In: International Conference on Learning Representations.
2020.

[135] Chenzhuo Zhu et al. “Trained ternary quantization”. In: arXiv preprint
arXiv:1612.01064 (2016).

[136] Barret Zoph and Quoc V Le. “Neural architecture search with reinforcement
learning”. In: arXiv preprint arXiv:1611.01578 (2016).

112

	Table of Contents
	List of Tables
	List of Figures
	Chapter
	1 Introduction
	2 Hardware-friendly Model Compression and Acceleration
	3 Dynamic Deep Neural Network with Run-Time Tuning of Accuracy and Latency
	4 On-device Learning for Task Adaption
	5 Efficient Continual Learning via Task-correlated Progressive Layer Freezing
	6 Conclusion and outlook

	References

