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ABSTRACT

It is hypothesized that changes in brain tissue microstructure, particularly degra-

dation of neurites (i.e,. axons and dendrites) and synapses, are early drivers of

Alzheimer’s disease (AD) pathogenesis. Quantitative magnetic resonance imaging

(MRI) tools like diffusion tensor imaging (DTI) have long been used to study AD

pathogenesis. Using DTI metrics, structural insights of neuro tissue can be inferred

but not directly measured. DTI has proven to be an effective tool indicating fractional

anisotrophy (FA) differences between groups of varying AD risk factor, but it does

not explicitly quantify pathophysiologically-relevant features like neurite density and

complexity. This study aims to develop and validate an advanced diffusion MRI

acquisition and biophysical modeling platform that can be used to explicitly quantify

changes to brain tissue microstructure, specifically neurite density and complexity.

Ultimately, this platform will be used to study the pathogenic mechanisms that drive

AD in the pre-clinical and clinical setting.
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Chapter 1

INTRODUCTION

Nurodegenerative diseases such as Alzheimer’s disease (AD) are found in 1 of 9

adults over the age of 65 and account for over 60% of all dementia cases affecting

over 6.5 million individuals in the United States (Alzheimer’s Association. 2023).

This amounts to a heavy burden on the health providers and caregivers. Due to the

nuanced symptoms of cognitive decline, diagnosis is a non-trivial task often relying on

behavior assessments performed typically by primary care physicians who often feel

under-prepared to make such diagnoses. It has been reported that as many as 50% of

patients do not receive a clinical diagnosis, leaving millions without treatment options

(Bernstein et al., 2019). Because the onset of measurable cognitive symptoms occurs

long after changes to neural structure begin (Agosta et al., 2011) there is a distinct

need to investigate the early pathogenesis of AD so that strong quantitative diagnostic

tests may be established. Furthermore, as new AD drugs enter the market there is a

need for tools that enable the study of early treatment efficacy and, eventually, enable

earlier intervention. Towards these ends, we seek to develop neuroimaging tools to

study early AD-associated changes to the microstructure of neural tissue. These tools

will aid in research into the early pathogenic mechanisms thought to drive AD and

the development of earlier diagnostic tools and drug discovery.

Neuroimaging has proven invaluable in studying neurodegenerative diseases, owing

to its non-invasive nature. High-resolution magnetic resonance imaging (MRI) scans

have revealed widespread brain atrophy in AD patients, while positron emission

tomography (PET) is adept at tagging tau neurofibrillary tangles and beta-amyloid
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plaques, common markers associated with AD (Whitwell et al., 2008; Rowley et al.,

2020). However, despite their diagnostic prowess, these techniques have limitations

when it comes to unraveling the intricacies of brain microstructure. Specifically,

the measurement of structural elements of synapses remains elusive. Parameters

such as synapse density, angular complexity, and cell body radius have traditionally

only been accessible through histological investigations. Recognizing this gap, we

advocate for the development of advanced imaging tools that can quantify brain tissue

microstructure, promising a deeper understanding of the neurological underpinnings

of diseases like AD. By bridging this gap, these innovative imaging tools hold the

potential to deepen our comprehension of neurodegenerative disorders.

Diffusion magnetic resonance imaging (dMRI) is a promising tool for non-invasively

and longitudinally investigating the AD-associated earliest microstructural changes to

the brain. There is a long history of using dMRI to study the aging brain. Researchers

have employed methods such as Diffusion Tensor Imaging (DTI) which provide

insights into water molecule diffusion-driven displacement and directionality within a

voxel. This approach has been instrumental in suggesting that AD patients have a

decrease in white matter (WM) tract integrity (Salminen et al., 2013). WM tracts

are bundles of myelinated axons that serve as vital communication pathways within

the central nervous system. A notable example is the corpus callosum, responsible

for inter-hemispheric signal transmission. A significant advantage of DTI is that it is

approved for clinical use; thus, human data are readily acquirable on most clinical MRI

scanners or made publicly available via digital repositories. DTI, like other biomarker

investigation tools, has a limitation: it does not provide biophysical estimates of tissue

structure. Using DTI metrics, structural insights can be inferred but not directly

measured. In more recent publications, the use of advanced biophysical modeling
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of neural microstructure using dMRI data has been successful in measuring the

intricate microstructure of neuronal tissue. Metrics such as neurite density, orientation

dispersion/complexity, soma radius, and axon diameter have been estimated in both

WM and grey matter (GM) using models. Building upon these advancements, we

aim to develop a robust preclinical dMRI protocol that can be used with existing

advanced biophysical models such as NODDI (Zhang et al., 2012), SANDI (Palombo

et al., 2020), and NEXI (Jelescu et al., 2021) and applied to AD, and ultimately, to

longitudinally investigate the pathogenesis of AD using such methods.

Here, we present two studies to illustrate the effectiveness of dMRI in investigating

AD. In chapter 2, We utilize DTI to highlight differences in WM tracts between

cognitively normal groups possessing a gene associated with increased AD risk. In

chapter 3 we demonstrate a powerful dMRI acquisition sequence which can be applied

across multiple models and used as the foundation of studies for AD pathogenesis.
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Chapter 2

DTI AND A CLINICAL RESEARCH APPLICATION

2.0.1 Introduction

Diffusion Tensor Imaging (DTI) is a subset of MRI imaging that takes advantage

of random motion of water molecules and its sensitivity to tissue microstructure

(e.g., cell membranes, myelin sheaths, etc.) to determine the apparent diffusivity

and microstructure-guided directionality of water diffusion (summarized as in the

so-called fractional anisotropy – FA - term in each voxel). A higher FA value indicates

stronger “directionality” (anisotropy) of diffusion of the water molecules inside the voxel;

conversely, a low FA value indicates that the diffusion has a more spherical (isotropic)

shape. DTI is predominantly applied in the identification and characterization of

WM tracts in the brain, which are comprised of bundles of myelinated axons. Since

the long axis of the axons are oriented in parallel and axonal water is bound by

the myelin sheath, water molecules will appear to preferentially diffuse “along” the

axis of the tract; i.e., WM tracts can be expected to exhibit high DTI-calculated

FA values. However, it is critical to note that the self-diffusivity of water molecules

is unchanging and that this appearance of directionality is actually a reflection of

the boundary-driven, highly restricted displacement of water molecules in the radial

direction of the tract. Other estimates of DTI imaging are Mean Diffusivity (MD),

Radial Diffusivity (RD), and Axial Diffusivity (AxD). MD is a measurement of the

average diffusion of water in a voxel which we would expect to be higher in WM tracts

that are less “intact” due to a loss of structure of the neurons which subsequently
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implies that water diffusion is “less restricted.” RD represents the diffusion radial

(perpendicular) to the axon and is used to suggest the level of myelination (Chang

et al., 2017). AxD quantifies diffusion along the axis along the white matter tract.

Qualitatively, as RD and AxD diverge, FA increases. By including these measurements,

we expect to extract further nuances about the WM tract microstructure.

It is thought that biological change that causes WM tract diffusion to become

more isotropic is a decrease in myelination of axons (Aung et al., 2013). This lowers

the expected FA values in WM tracts of patients diagnosed with AD. DTI does not

tell us anything about why or how the microstructure of the tissue is changing, it

only tells that the diffusion of the water molecules is more or less isotropic. Thus

inferences must be made as to what are the biological driving forces behind this results.

It is expected that neural microstructure begins to change and is detectable using

DTI before measurable cognitive impairment (Agosta et al., 2011). We examined a

cohort consisting of cognitively normal adults who are carriers of the: (i) APOE-e4

allele, which increases risk of AD development; (ii) APOE-e3 allele, associated with no

increased risk; and (iii) the APOE-e2 allele, which reduces the risk of AD development

(Reiman et al., 2020). To investigate neural tissue in aging adults we used DTI imaging

to determine if APOE-e2, e3, and e4 groups show differences in FA values, possibly

indicating that higher-risk groups have lower WM tract integrity prior to the onset of

cognitive symptoms.

2.0.2 Methods

We studied scans from a cohort of 281 adults divided into five distinct groups based

on the presence of specific APOE alleles 1. These groups included individuals with
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e4/4 (n=54), e3/4 (n=66), e2/4 (n=17), e2/3 (n=46), and e3/3 (n=98) genotypes.

Mean education was recorded and consistent across all groups. All participants

were evaluated and found to be cognitively normal. Homozygous APOE-e2/2 group

comparisons were not included due to low numbers of participants n=7. Participants

were imaged at the Banner Alzheimer’s Institute Phoenix. Images were carried out

using a GE Discovery 750 at 3T equipped with a 32-channel head coil. The acquisition

protocol consisted of a TR = 9050 ms, TE = 57.2 ms and Resolution = 1.37x1.37x2.7

mm. The DTI sequence parameters included b-values of 0 and 1000 sampling 48

directions.

Preprocessing was performed using DTIPrep (Oguz et al., 2014), a software package

designed for the preprocessing and quality assessment of DTI data by detecting and

correcting artifacts, thereby improving the reliability and accuracy of subsequent

scan analyses. DTI parameters were calculated using weighted-linear fitting with

FSL-FDT (Behrens et al., 2003). Voxel wise comparisons of the genetic groups were

carried out using Tract-Based Spatial Statistics (TBSS) (Smith et al., 2006) which

projects all subjects’ FA data onto a mean FA tract skeleton before applying voxel

wise cross-subject comparison.

Genotype n Mean Age (range) Mean Education (years) %Female

44 54 64.00 ± 7.76 (47-78) 16.59 ± 1.97 78%
34 66 68.18 ± 8.78 (52-84) 16.32 ± 2.04 76%
24 17 68.71 ± 5.62 (59-78) 16.53 ± 2.87 59%
23 46 71.11 ± 8.40 (51-88) 17.33 ± 1.61 65%
33 98 67.39 ± 8.32 (50-82) 16.46 ± 2.55 77%

Table 1. Summary of Participants’ Information.
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2.0.3 Results

Shown in Figure 1 and Table 2 the results of the 8 TBSS comparisons of FA are

as follows: APOE-e2/3 > APOE-e3/3, APOE-e2/3 > APOE-e3/4, APOE-e2/3 >

APOE-e4/4, APOE-e2/4 > APOEe 3/3, APOE-e2/4 > APOE-e3/4, APOE-e2/4 >

APOE-e4/4, APOE-e3/3 > APOE-e4/4, and APOE-e3/4 > APOE-e4/4. We noted

that widespread lower FA values were found in APOE-e4 carrier comparisons. In

addition, the results showed higher FA values in carriers of APOE-e2 allele relative to

non APOE-e2 carriers. All group comparisons resulted in a p < 0.05 before correcting

for multiple comparisons. After correction, APOE-e2/3 (n=48) > APOE-e4/4 (n=54)

remained significant.
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Figure 1. TBSS Comparisons: red/yellow areas indicate voxels where there is a
significant FA difference between the compared groups
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APOE Group TBSS Comparison of FA Values

APOE e2/3 > APOE e3/3
APOE e2/3 > APOE e3/4
APOE e2/3 > APOE e4/4
APOE e2/4 > APOE e3/3
APOE e2/4 > APOE e3/4
APOE e2/4 > APOE e4/4
APOE e3/3 > APOE e4/4
APOE e3/4 > APOE e4/4

Table 2. Each comparison indicates which APOE group had overall higher FA values
on the TBSS tract skeleton. After adjusting for multiple-comparison correction
APOE e2/3 > APOE e4/4 remained significant.

2.0.4 Discussion

Our results suggest that the presence of APOE-e4 allele in cognitively normal

adults may have a detrimental effect on WM microstructure, which is consistent with

previous studies (Salminen et al., 2013). Supported by other studies, our findings

also suggest that the presence of the APOE-e2 allele (Reiman et al., 2020; Chiang

et al., 2012) may confer a protective effect on tract integrity, as evidenced by higher

FA values found in the APOE-e2/3 cohort when compared to both the APOE-E4/4

and e3/3 groups. Previously, this relationship has only been documented using more

advanced models such as NODDI (NIR et al., 2021) which require a much more

robust acquisition sequence as input, and not with basic DTI analysis. Additionally,

future evaluations of DTI measures such as the mean, radial, and axial diffusivity,

as well as T1/T2 ratio with an increased number of scan subjects may strengthen

the relationship of the effect of APOE on WM tracts of the brain. Additionally, with

a larger cohort, whether or not APOE-e2 has a dose-dependent effect may also be

established.
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We have demonstrated the value of DTI as a clinical research tool, especially in

studies of pre-symptomatic AD. However, it is important to note that while DTI

provides estimates related to the displacement of water molecules in complex biological

structures, it falls short in offering precise structural information. Questions about

specific structural changes remain unanswered: Is the myelin sheath thinning? Have

the dimensions of axons or soma changed? Is there an increase in diffusion between

intra and extracellular spaces? Moreover, does the angular dispersion of neurons

exhibit high or low variability? DTI, unfortunately, lacks the direct ability to address

these critical questions. To advance our understanding of AD pathology, especially

in the pre-symptomatic stage, it is imperative to non-invasively and longitudinally

obtain these answers. To achieve this, we propose a pre-clinical AD rat model study

and a considerably more advanced dMRI sequence and biophysical modeling scheme

(to be discussed in Chapter 3). We hypothesize that these more advanced methods

hold the potential to answer the questions mentioned above. Indeed, we aim to shed

light on the temporal development of the intricate microstructural changes that are

believed to occur in the earliest stages of AD pathogenesis.
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Chapter 3

TOWARDS PRECLINICAL VALIDATION OF BIOPHYSICAL MODELS

3.0.1 Introduction

Traditional MRI scans are predominantly utilized for capturing high-resolution

images that facilitate visual examinations by radiologists. While these scans offer

excellent tissue contrast throughout the body, they represent just one facet of this

versatile technology. The field of biophysical modeling powered by dMRI sequences has

gained significant traction in the past decade, as articulated by (Novikov et al., 2018).

However, more advanced application of dMRI and biophysical modeling in clinical

settings has been limited, primarily due to the extended acquisition times required and

lack of ground-truth validation of more sophisticated biophysical models of diffusion

in tissue. However, innovations such as parallel imaging and compressed sensing has

improved the speed of dMRI data acquisition and thus made these methods far more

accessible to clinical research and care.

The so-called “Standard Model” of diffusion in brain tissue can be conceptualized

as a collection of one-dimensional impermeable sticks, which represent the axons

of neurons with no water exchange across the cell membrane. In the context of

dMRI, this model is designed to optimize unidirectional diffusion along these sticks,

mimicking diffusion in neuronal axons, while also accounting for isotropic diffusion

in the extracellular spaces (areas not occupied by the sticks). This means that

water molecules diffuse freely in all directions outside of the neurite structures. The

following three models are all variations on the standard model: 1. Neurite Orientation
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Dispersion and Density Imaging (NODDI) (Zhang et al., 2012). NODDI generates

two important estimates: the Orientation Dispersion Index (ODI), which indicates

the angular variation of neuronal orientation in each voxel, and the Neurite Density

Index (NDI). NODDI’s strength lies in its ability to identify WM tracts as you would

expect low ODI and high NDI in this tissue type. This is a simple model with only

sticks and fixed diffusivity values allowing for it to be driven by smaller data sets

thus making it more feasible to acquire in a clinical setting. 2. Soma and Neurite

Density Imaging (SANDI) (Palombo et al., 2020). SANDI enhances the standard

model by incorporating a spherical ball to account for intracellular diffusion within

the soma. This makes SANDI a powerful tool for examining GM tissue where somas

are larger and more abundant. From SANDI, empirical biophysical estimates such

as Soma Density and Soma Radius are generated, offering valuable insights into

GM tissue. 3. Neurite Exchange Imaging (NEXI) (Jelescu et al., 2021). NEXI,

like SANDI, is designed to explore GM regions of the brain. It is a departure from

the standard model—it does not assume that the sticks (representing axons) are

impenetrable and thus requires an estimate of the water exchange rate across cell

membranes. To calculate this potentially relevant exchange rate constant between

intra- and extracellular compartments, NEXI must consider dMRI data from multiple

diffusion times. Consequently, it requires a significantly longer acquisition time, as it

must sample multiple directions, b-values, and diffusion times to capture the intricate

dynamics of exchange.

Identifying a single “perfect” biophysical model is impossible given that acquired

data are finite and noise is prominent in any dMRI data set. Instead of aiming for one

model to “rule them all”, our efforts focus on a crucial objective: gathering high-quality

data compatible with multiple models that might suit different experimental scenarios.
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This approach allows us to analyze common model estimates like density and explore

potential connections between unique model outputs. Such analyses are vital for

informing future model selection and optimization of dMRI acquisition sequences.

Our other aim is to utilize the biophysical parameter estimates from advanced

biophysical models to investigate the early pathogenesis of AD through longitudinal

preclinical rodent studies. Using AD-predisposed rodents as our scan subjects, we

will periodically collect high-quality dMRI data that satisfy the needs of all models

described above. This longitudinal approach enables us to study brain density and

complexity metrics over time, in both WM and GM, in a model-agnostic manner,

and with histology as ground truth verification. By observing these changes as the

rodents age, we aim to gain valuable insights into the pathogenesis and progression of

AD, utilizing a diverse set of biophysical models and high-quality data to enhance our

understanding of this complex neurodegenerative condition.

3.0.2 Methods

A model-agnostic echo-planer imaging (EPI) multi-shot multi-b-value, multi-

diffusion-time sequence was developed to accommodate standard DTI calculations

as well as fitting of the NODDI, SANDI, and NEXI biophysical models. dMRI data

were collected at b-shells of 0.25, 0.5, 0.75, 1, 2, 3, 4, 5, 6, 7, and 8 (ms/µm2) with

6, 30, 30, 34, 35, 37, 39, 42, 46, 52, and 60 directions for each corresponding b-shell

with a total of 412 directions. The number of directions was systematically increased

as a function of b-value because: (i) the weighting of the “directionality” of diffusion

is expected to increase as b-value increases (i.e., the signal becomes more sensitive

to highly restricted protons in structures like WM tracts) and (ii) the signal-to-noise
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values at higher b-values is expected to be low. Thus, directions per b-values are

increased to strengthen data density at the higher b-values. Low number of directions

were sampled at b = 0 and 0.25 since limited sensitivity to directionality of diffusion

is expected at this b value range. To accommodate NEXI which, includes parameters

intended to quantify exchange time constants across cell membranes, multiple diffusion

times must also be sampled. In this sequence we test diffusion times = 20 ms, 30 ms,

40 ms and 50 ms. To maximize the SNR of each scan, different TE values were chosen

for each diffusion time: 50 ms, 50 ms, 54 ms, and 64 ms. TR: 1500 ms, small delta: 4

ms. 3 slices with thickness: 0.5mm. The data was collected using MRS DRYMAG

9.4T preclinical scanner.

To ensure consistent sampling across all shells, directions for our sequence were

generated using qspace (Caruyer et al., 2012) which generates uniform gradient

directions for each shell Figure 2. Total ex-vivo acquisition time was 25 hours, with

6.25 hours for each diffusion time. Signal-to-noise ratio (SNR) was measured by

dividing the average signal from a region of interest (ROI) inside the sample by the

standard deviation from an ROI outside of the sample as shown in Figure 3. Our

scan was performed at room temperature on a fixed rat brain placed in a 15mL

falcon tube in a Phosphate-Buffered Saline (PBS.) The sample was removed from cold

storage 2 hours before the start of scanning to bring the sample temperature to room

temperature (21°C).

The data underwent preprocessing using MRTRIX’s dwidenoise (Tournier et al.,

2019). Since DTI necessitates a smaller input data set, our scan was truncated to

retain only b = 0 and the 34 volumes at 1 ms/µm2. The application of both NODDI

and SANDI utilized full dMRI dataset the AMICO implementation (Daducci et al.,

2015) was used due to its rapid processing capabilities. For NEXI, an extra step was

14



Figure 2. Spherical sampling scheme of directions for 12 shells. Note: Directions
associated with b = 0, b = .25 and b = .5 ms/µm2

are not included.

taken: a noisemap was generated using dwidenoise from a low b-values scan where b

< 2 ms/µm2. To confirm our findings, we compared the estimates from our model

with the values reported in existing literature.
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3.1 Results

The signal-to-noise ratio (SNR) of the acquired data, characterized by b =

8ms/µm2, exhibited values ranging from 22 to 34, as outlined in Table 3. These

results are considered acceptable even under the ’worst case scenario’ conditions (i.e.,

b = 8ms/µm2) Figure 3. In Figure 4, the FA map and orientation dispersion index

(ODI) map, generated through the NODDI techniques, effectively delineate white

matter (WM) tracts bordering the left and right sides of the corpus callosum. As

anticipated, these regions exhibit high FA values, indicative of anisotropic diffusion

within WM tracts. Conversely, ODI values in the same tracts were lower, suggesting

minimal orientation dispersion within individual voxels. This finding reflects a higher

degree of angular coherence among neurons within these regions (Figure 4), aligning

with our existing understanding of the brain’s microstructure. Within the region of

interest (ROI) corresponding to WM, the average ODI intensity was measured at

0.63±0.2, deviating significantly from the expected values of 0.24±0.04. Additionally,

the mean ODI signal intensity from the gray matter (GM) ROI was 0.79 ± 0.03,

compared to the anticipated 0.59± 0.02 (McCunn et al., 2018) (Figure 5). The FA

values in these regions were 0.56± 0.03.

Table 3. Signal to noise ratio from last volume of b = 8 ms/µm2 of each diffusion
time sequence.

Diffusion Time TE (ms) Inside Signal Outside SD SNR

20ms 50 406.79 13.54 30.03
30ms 50 317.47 13.88 22.88
40ms 54 458.03 13.33 34.37
50ms 64 397.07 15.94 24.92
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Figure 3. SNR of for each diffusion times measured at b = 8 ms/µm2.
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Figure 4. Top: Denoised b0 image; Middle: FA map; Bottom: NODDI ODI map.
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Figure 5. WM ROI we find a average intensity of 0.63 ± 0.2 compared to values of
0.24 ± 0.04. GM ROI was measured at 0.79 ± 0.03 compared to the expected 0.59 ±
0.02 (McCunn et al., 2018). 19



3.1.1 Discussion

By utilizing our new model-agnostic sequence, we have obtained the necessary

data required to perform analysis on the microstructure of both WM and GM regions.

We note that SANDI requires specific tuning of model parameters to match input

dMRI data. These specific parameters include diffusion time, TE (echo time), and the

expected diffusivity of water, which varies significantly due to sample temperature.

It’s important to highlight that in this study, we did not implement preprocessing

corrections for motion. These additional processing steps were deemed unnecessary

because our sample was ex vivo, making it immune to movement-related artifacts.

Concerning NEXI, there is no consensus on the expected exchange rates in a fixed

rodent brain; some studies have indicated pre-exchange lifetimes as low as 2-3 ms or

as high as 750 ms (Yang et al., 2018). It important to note that it is theorized that

the chemical changes that occur in the preservation process alter the structure in a

way that reduce inter-compartment exchange and there’s evidence suggesting that

variations in preservation protocol can influence measured diffusion times (Shepherd

et al., 2009). This is all to say that quantification and relevance of exchange in ex

vivo scans is the subject of ongoing and future investigation.

Discrepancies observed between the measured ODI values and the expected values

(McCunn et al., 2019) can be attributed to several factors. First, our use of a 64 by 64

matrix size might have induced a partial volume effect where voxels may contain signal

from both GM and WM tissue thus increasing the overall average ODI. To explore this

phenomenon thoroughly, we plan to replicate the experiment using a higher resolution,

specifically a 128 by 128 matrix, as referenced in previous studies. This step will aid

in assessing the extent of the partial volume effect. Second, our decision to employ
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the AMICO implementation of NODDI was driven by its exceptional computational

speed. However, its suitability for analyzing ex-vivo samples remains untested. Our

measured FA values were 25% higher than those documented in existing literature.

While prior literature indicates that formalin fixation does not substantially impact

FA values (Shatil et al., 2018), it is possible that the age and temperature of the

sample had an effect. Anticipating further precision as we refine our sequences and

extend our analysis to in-vivo scans, we expect our estimates to align more closely

with the anticipated values.

We also propose that the logical next step is to refine our sequence such that it

can be performed in under 3 hours while maintaining appropriate SNR and sufficient

directional sampling. To accomplish this we will examine using smaller data sets

i.e reducing b-values and directions as well as other changes to the sequence that

will reduce to total scan time such as reducing the number of shots from 16 to

8. We believe that this sequence will be a powerful tool to for pre-clinical rodent

studies. By gathering longitudinal estimates from multiple models we expect to reveal

changes in neurite density, complexity, and soma radius that occur before the detection

of traditional biomarkers. This will allow for insights into understanding the AD

pathology genesis and disease progression.
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Chapter 4

CONCLUSION

We have demonstrated that dMRI may be a powerful investigative tool for studying

changes in neural microstructure associated with pre-symptomatic AD. Specifically,

our study showcased the ability of DTI to detect differences in WM tract integrity

in cognitively normal adults carrying APOE alleles linked to an increased risk of

developing AD. Although DTI is available in clinical settings and can identify changes

in generalized water diffusion, it lacks the ability to directly quantify the intricate

details of neuronal microstructure and their connections. This limitation highlights

the significance of employing advanced biophysical models like NODDI, SANDI, and

NEXI. These models offer nuanced metrics that provide powerful insights into neural

tissue architecture.

Shown in this study is a robust multi-shell, multi-diffusion time sequence that

can be acquired and used to support multiple biophysical models. By applying our

sequence and using NEXI, NODDI, and SANDI we believe that we can create a

strong tool to non-invasively acquire biophysical information about the microstructure

of multiple tissue types in the brain. These efforts will aid future research towards

drug discovery and elucidation of pathogenic mechanisms of neural degeneration.

Additionally, these tools can be applied non-invasively and longitudinally to any

research that concerns changes to neural microstructure.

Important questions pertaining to AD progression can be explored with the tools

developed in our study. For instance, in preclinical rodent models of AD we can

investigate when microstructural estimates begin to diverge significantly from controls
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and whether these metrics exhibit differences from birth. Additionally, these models

allow us to analyze whether structural estimates in AD subjects follow linear or non-

linear patterns. These inquiries are critical in understanding the disease’s development.

Furthermore, if these estimates prove accurate and are validated through histology

in AD subjects, they can serve as a foundation for exploring the impact of drugs on

disease outcomes. For example, recent studies suggest that drugs such as ketamine and

psilocybin may influence dendritic spine growth (Shao et al., 2021) and potentially new

synapse formation. Exploring the effects of these drugs on the brain using non-invasive

and quantitative metrics like neurite density, complexity, and soma radius offers an

exciting prospect, potentially shedding light on therapeutic mechanisms in the context

of neural microstructure.

In summary, our research has delved deep into the intricate realm of Alzheimer’s

Disease, leveraging the support of dMRI to shed light on microstructural alterations

within the brain. Through analysis and the application of established techniques such

as DTI, we have discerned distinctive patterns in the anisotropic diffusion of water

within the white matter tracts. Genetic risk factors, as evidenced by our findings,

influence these diffusion patterns. Remarkably, our study has not only confirmed

decreased anisotropic diffusion in WM tracts among individuals at genetic risk, but has

also suggested increased anisotropic diffusion in those possessing genes that mitigate

the risk of AD development. These revelations underscore the subtle yet potentially

pivotal alterations occurring at the microstructural level and offer insights into the

early stages of Alzheimer’s Disease.

Central to our contributions is the development of a robust dMRI acquisition

sequence, tailored for compatibility with multiple biophysical models. This sequence

serves as a gateway to a multitude of biophysical estimates, unraveling the complexities
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of both WM and GM microstructure. The development and validation of these tools

will mark an important milestone in the capabilities of non-invasive neuroimaging

as it relates to the study of neurodegeneration. Looking forward, our focus is on a

longitudinal study, where the application of these advanced imaging techniques will

illuminate early brain microstructural changes using a transgenic rat model of AD.

In conclusion, our findings underscore the pivotal role of dMRI in unraveling the

complexities of Alzheimer’s Disease. As we move forward, armed with robust method-

ologies, we are positioned to make significant strides in deciphering the intricacies of

this debilitating condition. With each discovery, we strengthen the foundation upon

which future research and therapeutic interventions will be built, ultimately offering

tangible progress in the fight against Alzheimer’s Disease.

24



 25 

REFFERENCES 
 

 
 
Alzheimer's Association. (2023). 2023 Alzheimer's disease facts and figures. Alzheimer's & Dementia, 
19(4), 1598-1695. doi:10.1002/alz.13016 
 
Bernstein, A., Rogers, K. M., Possin, K. L., Steele, N. Z. R., Ritchie, C. S., Kramer, J. H., ... 
Rankin, K. P. (2019). Dementia assessment and management in primary care settings: a survey 
of current provider practices in the United States. BMC Health Services Research, 19(1), 919. 
doi:10.1186/s12913-019-4603-2 
 
Agosta, F., Pievani, M., Sala, S., Geroldi, C., Galluzzi, S., Frisoni, G. B., & Filippi, M. (2011). 
White Matter Damage in Alzheimer Disease and Its Relationship to Gray Matter Atrophy. 
Radiology, 258(3), 853-863. doi:10.1148/radiol.10101284 
 
Whitwell, J. L., Shiung, M. M., Przybelski, S. A., Weigand, S. D., Knopman, D. S., Boeve, B. 
F., ... Jack, C. R. (2008). MRI patterns of atrophy associated with progression to AD in 
amnestic mild cognitive impairment. Neurology, 70(7), 512-520. 
doi:10.1212/01.wnl.0000280575.77437.a2 
 
Rowley, P. A., Samsonov, A. A., Betthauser, T. J., Pirasteh, A., Johnson, S. C., & Eisenmenger, 
L. B. (2020). Amyloid and Tau PET Imaging of Alzheimer Disease and Other 
Neurodegenerative Conditions. Seminars in Ultrasound, CT and MRI, 41(6), 572-583. 
doi:10.1053/j.sult.2020.08.011 
 
Salminen, L. E., Schofield, P. R., Lane, E. M., Heaps, J. M., Pierce, K. D., Cabeen, R., ... Paul, 
R. H. (2013). Neuronal fiber bundle lengths in healthy adult carriers of the ApoE4 allele: a 
quantitative tractography DTI study. Brain Imaging and Behavior, 7(3), 274-281. 
doi:10.1007/S11682-013-9225-4 
 
Zhang, H., Schneider, T., Wheeler-Kingshott, C. A., & Alexander, D. C. (2012). NODDI: 
Practical in vivo neurite orientation dispersion and density imaging of the human brain. 
NeuroImage, 61(4), 1000-1016. doi:10.1016/j.neuroimage.2012.03.072 
 
Jelescu, I. O., de Skowronski, A., Geffroy, F., Palombo, M., & Novikov, D. S. (2022). Neurite 
Exchange Imaging (NEXI): A minimal model of diffusion in gray matter with inter-
compartment water exchange. NeuroImage, 256, 119277. 
doi:10.1016/J.NEUROIMAGE.2022.119277 
 
Palombo, M., Ianus, A., Guerreri, M., Nunes, D., Alexander, D. C., Shemesh, N., & Zhang, 
H. (2020). SANDI: A compartment-based model for non-invasive apparent soma and neurite 
imaging by diffusion MRI. NeuroImage, 215, 116835. doi:10.1016/j.neuroimage.2020.116835 
 
Chang, E. H., Argyelan, M., Aggarwal, M., Chandon, T. S., Karlsgodt, K. H., Mori, S., & 
Malhotra, A. K. (2017). The role of myelination in measures of white matter integrity: 
Combination of diffusion tensor imaging and two-photon microscopy of CLARITY intact 
brains. NeuroImage, 147, 253-261. doi:10.1016/j.neuroimage.2016.11.068 



 26 

Aung, W. Y., Mar, S., & Benzinger, T. L. S. (2013). Diffusion tensor MRI as a biomarker in 
axonal and myelin damage. Imaging in Medicine, 5(5), 427-440. doi:10.2217/iim.13.49 
 
Reiman, E. M., Arboleda-Velasquez, J. F., Quiroz, Y. T., Huentelman, M. J., Beach, T. G., 
Caselli, R. J., ... Zhao, Y. (2020). Exceptionally low likelihood of Alzheimer’s dementia in 
APOE2 homozygotes from a 5,000-person neuropathological study. Nature Communications, 
11(1), 667. doi:10.1038/s41467-019-14279-8 
 
Oguz, I., Farzinfar, M., Matsui, J., Budin, F., Liu, Z., Gerig, G., ... Styner, M. (2014). DTIPrep: 
quality control of diffusion-weighted images. Frontiers in Neuroinformatics, 8, 4. 
doi:10.3389/fninf.2014.00004 
 
Behrens, T. E. J., Woolrich, M. W., Jenkinson, M., Johansen-Berg, H., Nunes, R. G., Clare, 
S., ... Smith, S. M. (2003). Characterization and propagation of uncertainty in diffusion-
weighted MR imaging. Magnetic Resonance in Medicine, 50(5), 1077-1088. 
doi:10.1002/mrm.10609 
 
Smith, S. M., Jenkinson, M., Johansen-Berg, H., Rueckert, D., Nichols, T. E., Mackay, C. E., ... 
Behrens, T. E. J. (2006). Tract-based spatial statistics: Voxelwise analysis of multi-subject 
diffusion data. NeuroImage, 31(4), 1487-1505. doi:10.1016/j.neuroimage.2006.02.024 
 
Chiang, G. C., Zhan, W., Schuff, N., & Weiner, M. W. (2012). White matter alterations in 
cognitively normal apoE ε2 carriers: insight into Alzheimer resistance? AJNR. American Journal 
of Neuroradiology, 33(8), 1392-1397. doi:10.3174/ajnr.A2984 
 
Nir, T. M., Nabulsi, L., Lawrence, K. E., Villalon-Reina, J. E., Abaryan, Z., Ba Gari, I., ... 
Jahanshad, N. (2021). Effect of APOE4 and APOE2 genotype on white matter microstructure. 
Alzheimer's & Dementia, 17(S4). doi:10.1002/alz.053061 
 
Novikov, D. S. (2018). On modeling. Magnetic Resonance in Medicine, 79(6), 3172-3193. 
doi:10.1002/mrm.27101 
 
Caruyer, E., Lenglet, C., Sapiro, G., & Deriche, R. (2013). Design of multishell sampling 
schemes with uniform coverage in diffusion MRI. Magnetic Resonance in Medicine, 69(6), 1534-
1540. doi:10.1002/mrm.24736 
 
Tournier, J. D., Smith, R., Raffelt, D., Tabbara, R., Dhollander, T., Pietsch, M., ... Connelly, A. 
(2019). MRtrix3: A fast, flexible and open software framework for medical image processing 
and visualisation. NeuroImage, 202, 116137. doi:10.1016/j.neuroimage.2019.116137 
 
Daducci, A., Canales-Rodríguez, E. J., Zhang, H., Dyrby, T. B., Alexander, D. C., & Thiran, J. 
P. (2015). Accelerated Microstructure Imaging via Convex Optimization (AMICO) from 
diffusion MRI data. NeuroImage, 105, 32-44. doi: 10.1016/j.neuroimage.2014.10.026 
 
McCunn, P., Gilbert, K. M., Zeman, P., Li, A. X., Strong, M. J., Khan, A. R., & Bartha, R. 
(2019). Reproducibility of Neurite Orientation Dispersion and Density Imaging (NODDI) in 
rats at 9.4 Tesla. PLOS ONE, 14(4), e0215974. doi:10.1371/journal.pone.0215974 



 27 

Yang, D. M., Huettner, J. E., Bretthorst, G. L., Neil, J. J., Garbow, J. R., & Ackerman, J. J. H. 
(2018). Intracellular water preexchange lifetime in neurons and astrocytes. Magnetic Resonance in 
Medicine, 79(3), 1616-1627. doi:10.1002/mrm.26781 
 
Shepherd, T. M., Thelwall, P. E., Stanisz, G. J., & Blackband, S. J. (2009). Aldehyde fixative 
solutions alter the water relaxation and diffusion properties of nervous tissue. Magnetic 
Resonance in Medicine, 62(1), 26-34. doi:10.1002/mrm.21977 
 
Shatil, A. S., Uddin, M. N., Matsuda, K. M., & Figley, C. R. (2018). Quantitative Ex Vivo MRI 
Changes due to Progressive Formalin Fixation in Whole Human Brain Specimens: 
Longitudinal Characterization of Diffusion, Relaxometry, and Myelin Water Fraction 
Measurements at 3T. Frontiers in Medicine, 5, 31. doi:10.3389/fmed.2018.00031 
 
Shao, L. X., Liao, C., Gregg, I., Davoudian, P. A., Savalia, N. K., Delagarza, K., & Kwan, A. 
C. (2021). Psilocybin induces rapid and persistent growth of dendritic spines in frontal cortex 
in vivo. Neuron, 109(16), 2535-2544.e4. doi:10.1016/j.neuron.2021.06.008 
 


	Table of Contents
	List of Tables
	List of Figures
	Chapter
	1 Introduction
	2 DTI AND A CLINICAL RESEARCH APPLICATION
	3 TOWARDS PRECLINICAL VALIDATION OF BIOPHYSICAL MODELS
	4 Conclusion

	References



