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ABSTRACT

Autonomous systems should satisfy a set of requirements that guarantee their safety,

efficiency, and reliability when working under uncertain circumstances. These requirements

can have financial, or legal implications or they can describe what is assigned to autonomous

systems. As a result, the system controller needs to be designed in order to comply with

these -potentially complicated- requirements, and the closed-loop system needs to be tested

and verified against these requirements. However, when the complexity of the system and

its requirements increases, designing a requirement-based controller for the system and

analyzing the closed-loop system against the requirement becomes very challenging. In this

case, existing design and test methodologies based on trial-and-error would fail, and hence

disciplined scientific approaches should be considered.

To address some of these challenges, in this dissertation, I present different methods

that facilitate efficient testing, and control design based on requirements:

1. Gradient-based methods for improved optimization-based testing,

2. Requirement-based learning for the design of neural-network controllers,

3. Methods based on barrier functions for designing control inputs that ensure the sat-

isfaction of safety constraints.
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highlights my contributions there toward the design and analysis of safe Cyber Physical
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Cyber-Physical Systems.

In Chapter 2, I provide methods to accelerate falsification (finding an undesired system

behavior w.r.t a given requirement) using local optimization for different classes of systems

and under different assumptions.

In Chapter 3, I present methods for control synthesis that facilitate real-time computa-

tion. In Sections 3.1, and 3.2 I present two different methods for training neural network

controllers: one based on general temporal logic formulas, and the other one which is more

efficient based on reach-avoid specifications. In Section 3.3, I study the risk-bounded reach-

avoid problem for stochastic systems and derive conditions that facilitate designing less
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Chapter 1

INTRODUCTION & MOTIVATION

Autonomous Mobile Systems (AMS), industrial and medical robots, drones and smart

grids are all examples of complex control systems that are getting more and more au-

tonomous everyday. The virtues of autonomous systems are that they can expand upon

human capabilities in terms of strength and speed, precision. Autonomous mobile systems

for instance can go into places and situations where humans cannot [112]. Autonomous

vehicles, on the other hand, can make mobility safe, secure, affordable, sustainable and

accessible for all [18]. All such systems have strict performance and safety requirements.

These requirements can have financial or legal implications, or they can describe a task the

system should accomplish. Reach-avoid specifications are an example of such tasks that

naturally arise in many applications, such as AMS motion planning, multi-agent coordi-

nation, and spacecraft autonomy. These specifications require completing a start-to-goal

motion while complying with the safety constraints. Other systems, however, may need

to comply with more complicated system requirements demanding to reason about nested

logical, temporal, and spatial properties.

Control systems used in industrial domains are in general known as Cyber-Physical Sys-

tems (CPS). These systems are characterized by both continuous and discrete dynamics,

with numerous subsystems interacting with each other in complex ways to enable their

autonomy. This complexity makes the requirement-based design, construction, and veri-

fication of CPS a challenging problem that needs to be addressed by a cross-disciplinary

community of researchers and educators.

There are mainly two ways to proceed with the system design based on requirements

[20]:

1. Design/Analysis: An initial design is made based on experience, knowledge, or ob-
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servations from a limited amount of data, etc. Then, the system is analyzed to deter-

mine whether the system satisfies the design requirements. The analysis is performed

either 1) formally using mathematical proofs or 2) by testing the system against the

requirements to see if there is any adverse condition that does not meet the design

requirement with respect to which the design needs to improve.

2. Synthesis: The design method in this case is rigorous, and it automatically or semi-

automatically constructs the system based on the design requirement, as well as the

system’s physical and input constraints to achieve a correct-by-construction design.

The main advantage of the latter approach is that after the design is completed the

system is guaranteed to meet the requirements. However, such methods are not known

for many real-world applications and, hence, the design/analysis cycle is usually used in

industrial settings. The formal verification of the analysis cycle is a challenging problem for

most CPS. Exhaustive verification methods either work on small problem instances or on

restricted classes of systems, e.g, linear systems (see [79] for an overview of some of these

challenges). Hence, semi-formal verification using testing is primarily used in the industry

to increase the system’s reliability with respect to given requirements of interest.

To address some of the challenges of the requirement-based design, in this thesis we

focus on the following problems:

1. Optimal automatic test generation to reveal system adversaries as soon as possible,

2. Control synthesis for some classes of systems and requirements.

1.1 Literature Review, Contributions & Thesis Overview

As reflected in the previous section, the problems of testing, verification, and synthesis of

autonomous systems are challenging and of utmost importance at the same time. Reported

accidents [90, 54, 128] and recalls [25, 115] in recent years shows that there is a need for

better testing, verification, and synthesis of CPS. Simply relying on a trial-error approach in

2



the design of these systems requires extensive time and high costs. The environments these

systems operate in and the systems them-self involve many uncertainties despite which the

system should behave properly. For instance, an autonomous vehicle is estimated to need

billions of miles of test-driving so that its catastrophic failure rates becomes less than one

per hour [58, 84].

To simplify the synthesis and analysis of CPS, Model-Based Design (MBD) is used for

CPS prototypes. Using models, we can simplify the design, focus on the critical components

of the system, and simulate the system to verify properties or find bugs as soon as possible.

Hence, in order to make it possible to design the system and apply formal or semi-formal

verification methods on the MBD, one needs to use mathematical formalization to specify

the physical models. The mathematical model may be a non-stochastic model, such as a

nonlinear dynamical model [80], a switched system model [95], or a hybrid system model

[11], or it may be a non-deterministic system that accounts for possible uncertainties with

stochastic nature such as a nonlinear stochastic system [87], or a stochastic hybrid system

[106]. A dynamical model is represented by a system of ordinary differential equations

(ODE) that in general may be nonlinear. Switched and hybrid systems model both the

continuous and discrete states of the system and describe the evolution of the continuous

states, as well as the changes that happen in the discrete components of the system [17]. The

discrete components may represent different stages of computation or different modes of the

system. To model these systems, one can use hybrid automata [124, 12]. On the other hand,

stochastic systems can be modeled using Stochastic Differential Equations (SDE) [104, 106].

Stochastic differential equations consider disturbances and uncertainties with stochastic

characteristics in the system’s behaviors to represent uncertainties in the environment and

possible errors in the modeling.

The physical models that we consider in this thesis for semi-formal verification (test-

ing) are deterministic hybrid automata and nonlinear ODEs. The models we consider for

requirement-based synthesis are deterministic nonlinear differential equations, and Stochas-

3



tic Differential Equations (SDE).

1.1.1 Automatic Generation of Test Cases using Trajectory Optimization

Several different tools [53, 27, 72, 59, 56, 83] have targeted verification of linear, nonlinear

and hybrid systems. Despite recent advances in these verification tools, verification remains

a challenging problem [66, 79] for general classes of models. In fact, verification tools

are still limited in terms of the complexity of the models or the type of external inputs

they can handle. Many of these tools suffer from exponential growth of complexity when

system’s dimension increases [51, Section 4.2]. Hence, semi-formal verification using testing

is primarily used in the industry to increase the system’s reliability w.r.t given requirements

of interest. The problem of finding the system behaviors that violate given requirements

is called a falsification problem. In a falsification problem, the system is tested against

possible uncertainties that are applied to it, e.g., uncertainties in its initial condition, or

exogenous inputs like wind gusts or user inputs, e.g., gas pedal. In Section 2.1 we will

review some of the related works on the falsification problem.

The requirements of an autonomous system may include safety, reachability, or stability

properties, but they can also be more general than that and include nested logical, spatial,

and temporal specifications. To evaluate the system-level behavior of CPS w.r.t general

complicated requirements, these requirements need to be specified in a logical formalism,

e.g. Metric Temporal Logic (MTL) [99], or Signal Temporal Logic (STL) [85]. Notably,

MTL and STL (collectively abbreviated as TL) are equivalent under simple assumptions (see

[20, 32] for more information) and they are both very powerful for specifying complicated

properties on real-valued signals.

Robustness of TL [50, 38] assigns a real value to signals based on how well they satisfy or

falsify the TL requirement. A positive sign of this real value shows the satisfaction of the TL

requirement and a negative sign of it shows violation. The absolute value of the robustness

value shows how close or far the signal is to satisfying or violating the requirement. In this

thesis, when it is necessary to formalize system requirements, we use STL semantics since

4



they’re easier to analyze and differentiate.

Due to the properties of the TL robustness function, assuming that a falsifier (violating

behavior) exists, a falsification problem can be solved by considering the TL robustness of

a system trajectory/behavior as the objective function and solving the minimization prob-

lem by searching over the space of possible system trajectories as a result of uncertainties

applied to the system. Several tools such as [16, 36, 146] exist that perform testing using

optimization-guided falsification. S-TaLiRo for instance includes various global optimiza-

tion methods such as Simulated Annealing (SA) [102], genetic algorithm [15], and stochastic

optimization with adaptive restarts [101]. Due to the complexity and unclear semantics of

simulators such as Matlab and Simulink [31], all these tools treat the system as a black-box

and just observe the input/output behavior of the system via simulations. Consequently,

these methods neglect some of the advantages that can be taken from the – partial – knowl-

edge of the system model. Despite previous methods, there are works such as [7, 1, 134]

that take this information into consideration.

The optimization-guided falsification problem is inherently difficult to solve, since:

1. Robustness of TL is, in general, a non-convex, non-differentiable function.

2. The robustness function is a function of the test inputs through the system model and,

hence, it is arduous to predict how changing the test inputs would affect the value of

the robustness function. This becomes even more challenging if we have partial to no

information about the system model.

3. The system may need to be tested against exogenous inputs which are time-varying

signals. In this case, the search space is an infinite-dimensional function space that

many existing optimization methods cannot handle.

Despite the aforementioned challenges, it is desired to improve the testing stage perfor-

mance to decrease the necessary time and cost of the testing phase and find any undesired

behaviors as fast as possible and with the least number of system inquiries (since these
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inquiries may be time-consuming). Hence, an automated framework with an optimized

search algorithm that gets help from efficient optimization strategies is necessary. In this

thesis, we address some of these challenges and work on some efficient methods for solving

the optimization-guided falsification problem.

In [1], the first steps were taken towards addressing the problem of reducing the number

of simulations for the TL falsification problem. This work deals with nonlinear systems

without exogenous inputs where the search space is only the set of initial conditions of

the system. In [3], authors extend their work to nonlinear systems with exogenous inputs

where the search space was the set of piece-wise constant input signals (whose switching

times were constant and given). In both of these works the system model is considered to

be fully known and directions along which TL robustness is reduced – descent directions –

are computed.

In this thesis, we extend the previous works in the following directions.

• In [134], we consider a gray-box model of the nonlinear system rather than a white-box

model.

• In [135], we deal with a white-box hybrid automaton that models CPS.

• In [136], we extend the class of exogenous input signals from piece-wise constant to

piece-wise constant with varying switching times.

• In [137], we work with the exogenous input signal without parametrizing them, and

we directly search the infinite-dimensional search space of the functions.

In all the above works, descent changes in the initial conditions and exogenous inputs

are computed to locally search for conditions with lower robustness values. The local search

can be combined with global search algorithms or coverage-based algorithms [39] to provide

asymptotic convergence or coverage.
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1.1.2 Requirement-based Control Synthesis

In this thesis, we focus on control synthesis for deterministic and stochastic system

models, with either general TL requirements or reach-avoid requirements.

Control synthesis w.r.t TL requirements: Designing controllers that enforce the

closed-loop system to satisfy given TL requirements has been studied before [86]. The afore-

mentioned tools, S-TaLiRo, and Breach can be used offline to design open-loop controllers

that satisfy given requirements when the robustness maximization problem is solved instead

of the robustness minimization problem. Other works study designing strategies that satisfy

TL requirements based on Model Predictive Controllers (MPC) using Mixed Integer Linear

Programs (MILP) as in [109]. Designing open-loop strategies using randomized tree search

has also been considered in [127].

In order to be used online, open-loop controllers need to be designed and stored in

advance, and MPC controllers need to be computed at the run-time. However, computing

MPC controllers for high-order systems include solving large optimization problems at each

step [67], so in general, they do not scale to higher-order systems since their run-time

computation is challenging. On the other hand, storing the results of the offline computation

of open-loop or MPC controllers (e.g., as a lookup table) requires too much memory [78], so

alternative approaches like using Neural networks (NN) to approximate controllers [113, 77],

and learn optimal policies offline [61] has been considered.

Recently, Reinforcement Learning methods that make policy learning w.r.t TL specifi-

cations possible have also been studied, see e.g., [57, 94]. Despite the recent advances using

Reinforcement Learning methods, designing a reward function that represent the require-

ments is still an ongoing research topic [8, 93]. Furthermore, providing guarantees for the

behavior of the systems trained using them is challenging. This is due to the complicated

behavior of the Neural Networks which are used in these systems as function approximators.

Due to the aforementioned challenges in designing optimization-based controllers online

and reinforcement learning methods that enforce TL requirements, in [139], we study the
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problem of designing feedback Neural Network (NN) controllers for deterministic nonlinear

systems that are trained directly with the TL robustness function as the objective function

to be maximized. To further improve and robustify the design, the closed-loop system is

tested to find adversarial examples (falsifying behaviors) and the NN is retrained according

to these examples (see Fig. 3.2 for an overview of the framework).

Control synthesis w.r.t reach-avoid requirements: Reach-avoid specifications nat-

urally arise in many applications, such as autonomous and assisted driving, multi-agents

coordination, and autopilot aircraft. These specifications require completing a start-to-goal

motion while complying with the safety constraints. The problem has been studied for

linear, nonlinear, as well as stochastic models using different methods [70, 49]. In many

applications, the problem is approached by computing forward reachable sets [55, 9, 100].

Despite the efforts for finding more efficient methods for their computation [81], reachable

sets are still difficult to compute in real-time.

Inspired by Lyapunov functions [80], Control Barrier Functions (CBF) have been used

recently for the synthesis of safety-critical systems without the need for the difficult task

of computing the system’s reachable sets [133]. They have enabled the design of provable

safe feedback controllers for several different systems such as adaptive cruise control [14],

bipedal robot walking and long term autonomy [13], merging control in a traffic network

[132], and finite-time convergence in a multi-agent system [122].

The CBF separates the safe and unsafe set of states, and computes constraints based

on its derivatives to control its evolution and prevent entering the unsafe states. These

constraints along with constraints based on the Control Lyapunov Functions (CLF) are

typically part of a constrained Quadratic Program (QP) whose solution computes sub-

optimal control inputs that consider other performance objectives such as reachability.

If the relative degree of the CBF w.r.t the control inputs (the number of times we need

to differentiate from the CBF until the control input appears) is higher than one, High

Order CBFs (HOCBF) can be used [131] to compute safe controllers. In the presence
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of “actuation errors” with hard bounds on their magnitude, input-to-state safety using

CBFs has been studied in [82]. In this thesis (Section 3.4), we consider a more general

class of external inputs (that can represent measurement, or actuation errors as well as

environmental inputs like wind gusts and water currents) and compute constraints on the

control input to reject the worst-case disturbance and guarantee safety [140]. The nonlinear

programs that compute control inputs that achieve the reach-avoid specification may not be

solvable in real-time. Hence, to accelerate control computation, we use imitation learning

to train a NN to approximate the solutions of the nonlinear program. The idea of training

a NN using supervised reinforcement learning to approximate Model Predictive Controllers

(MPC) is used in [144] and [26], too.

When the disturbance has stochastic characteristics, barrier functions should be consid-

ered in a stochastic setting. Stochastic Barrier Functions (SBF) have been used in [107, 74]

for verification of safety and temporal logic properties of stochastic systems. The authors

in [116] use SBFs for finite-time stochastic system verification and feedback control design

through solving sum-of-squares programs. However, finding such a closed-loop controller

for more complicated systems and environments, and when uncertainty is higher, is not

possible. Instead, one can solve QPs with constraints based on SBFs to compute control

inputs in real-time. Using QPs to design real-time control inputs for stochastic systems

that maximize the probability of invariance of a set C has been studied in [28] using CBFs

for complete and incomplete information and in [117] using high-relative degree SBFs. The

derived conditions in these works may not be feasible in many applications, and in others,

they may result in very conservative control actions. The reason is that the conditions are

designed to zero out the probability of eventually entering an unsafe set as t→∞ which is

very conservative for many applications. To overcome this problem, in this thesis (Section

3.4.1), we derive certificates on the control inputs based on SBFs to bound the probability

of “a failure in finite-time” to the desired value. This will allow for designing less con-

servative control inputs while managing the risk. We use these constraints in addition to
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Figure 1.1: Thesis Overview

Lyapunov-based constraints in a quadratic program to solve the reach-avoid problem while

“bounding the risk”.

1.2 Thesis Statement

As mentioned in the previous section, in the interest of having reliable safe autonomous

systems, in this thesis, we address some of the challenges related to the problems of 1) falsifi-

cation of TL requirements of autonomous systems, 2) Requirement-based control synthesis.

An overview of the thesis and its topics is represented in Fig. 1.1.

In Chapter 2, we propose methods based on trajectory optimization to solve the optimization-

guided falsification problem more efficiently. We consider the problem under different as-

sumptions about the system model, and the search space. In summary, we extend previous

works in the following directons:

• In [134], we work with a gray-box model of the nonlinear system rather than a white-

box model.

• In [135], we deal with a white-box hybrid automaton that models CPS.

• In [136] we extend the class of exogenous input signals from piece-wise constant to
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piece-wise constant with varying switching times.

• In [137], we deal with the exogenous input signal without parametrization. In this

work we directly search the infinite-dimensional search space of the functions.

In Chapter 3, we address some of the challenges in the control synthesis problem w.r.t

general TL or reach-avoid requirements for deterministic or stochastic system models:

• In [139], we provide a framework for training NN controllers with TL rewards. NNs

can compute control actions quickly and they are very efficient for use in real-time.

• In [140], we train NNs using a more efficient training method based on imitation

learning for reach-avoid specifications using CBFs. We also consider uncertainties

with hard bounds on their magnitude in the system and come up with certificates

that reject them.

• In [141], we consider stochastic systems and compute certificates that guarantee the

probability of an imminent unsafe behavior is bounded to a given desired value. This

allows for computing less conservative control inputs while managing the risk.

1.3 Summary of Current Contributions

My contributions to the safety analysis and synthesis problems of CPS are summarized

below:

Automatic Generation of Test Cases using Trajectory Optimization

What follows summarizes some of my contributions related to the first topic:

• Shakiba Yaghoubi and Georgios Fainekos, “Hybrid approximate gradient and stochas-

tic descent for falsification of nonlinear systems,” in American Control Conference

(ACC), 2017 [134].
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In this paper, we provide an alternative method for locally minimizing the robustness

value using approximate descent directions that do not require structural informa-

tion about the system’s model. This gray-box falsification method uses the linearized

model of the system computed along system trajectories to approximate descent di-

rections. These linearized models can be readily computed in most MBD tools like

Simulink [31]. Later, we prove that this approximation can get arbitrarily close to

the analytically computed descent directions. Finally, the search using the gradient

descent method is combined with SA to bring together the advantages of both meth-

ods, and using experimental results we show the effectiveness of the proposed method.

• Shakiba Yaghoubi and Georgios Fainekos, “Local descent for temporal logic falsi-

fication of cyber-physical systems,” in Seventh Workshop on Design, Modeling, and

Evaluation of Cyber-Physical Systems, 2017 [135].

The main contribution in this paper is the extension of the results of [3] to comput-

ing local descent directions for falsification of TL specifications for hybrid systems.

The extension is nontrivial since as discussed in the paper, the sensitivity analysis is

challenging in the case of hybrid systems. To represent hybrid systems we use hy-

brid automata [124, 10] with non-linear dynamics in each mode and external inputs.

Several examples of hybrid automata for which such a descent direction for TL spec-

ifications can be computed are presented. And finally, since the computed descent

directions can only point toward local reduction of TL robustness, descent direction

computations are combined with a stochastic optimization engine to improve the over-

all system falsification rate.

• Shakiba Yaghoubi and Georgios Fainekos, “Falsification of temporal logic require-

ments using gradient based local search in space and time,” IFAC-PapersOnLine [136]

The main contribution of this paper is that we provide a space-time parameterization
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for the time-varying exogenous inputs to the system, and use gradient descent (GD)

to adaptively change the amplitude and the switch time of the signal to find optimal

cases to be tested against the system specifications. Because of the complexities that

arise in the sensitivity calculation for hybrid systems [135], and to avoid unnecessary

technicalities, the method is developed assuming that the system dynamics are smooth

and nonlinear. However, the extension of the results in this paper to hybrid systems

is easily achievable with the analysis in [135], and one of the studied benchmarks in

the paper is also a hybrid system.

• Shakiba Yaghoubi and Georgios Fainekos, ”Gray-box adversarial testing for control

systems with machine learning components,” in Proceedings of the 22Nd ACM Inter-

national Conference on Hybrid Systems: Computation and Control (HSCC), 2019

[137]

Unlike our previous works [134, 136] in which the exogenous input signal is parame-

terized using a finite number of parameters, in this work the input signal is calculated

using an optimal-control approach which searches directly in the infinite search space

of the input functions. As an application, the method is used for adversarial test gen-

eration (falsification) for control systems with Recurrent NNs in the loop. It is shown

experimentally that the framework vastly outperforms black-box system testing meth-

ods. Namely, in our case study, the proposed framework always returns falsifications

when the black-box methods fail to do so.

Requirement-based Control Synthesis

What follows summarizes my contribution related to the second topic:

• Shakiba Yaghoubi and Georgios Fainekos, “Worst-case satisfaction of STL specifica-

tions using feed-forward neural network controllers: a Lagrange multipliers approach,”

in ACM Transactions on Embedded Computing Systems (TECS), 2019. [139]
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In this work, a state/output feedback NN controller is designed to satisfy system

properties specified in STL. To improve the performance of the NN, we test the

closed-loop system (including the NN) against the STL requirements. Any discovered

adversarial examples in the testing phase are added into the training set and used to

retrain the NN. This will allow efficient retraining using rare and important samples

which may not be captured even with a dense sampling. The NN is trained using a

gradient-based improvement formulation based on a state-based Lagrange multipliers

approach.

• Shakiba Yaghoubi, Georgios Fainekos, and Sriram Sankaranarayanan, “Training

neural network controllers using control barrier functions in the presence of distur-

bances” in IEEE 23rd International Conference on Intelligent Transportation Systems

(ITSC), 2020. [140]

In this work, we first derive conditions on a barrier function that keep the system

safe despite worst-case disturbances. We combine these constraints with constraints

based on Lyapunov functions in a nonlinear program to compute control inputs that

guide the system to a goal set while preserving safety. We argue that these nonlinear

programs may be difficult to solve in real-time. Hence, we propose a framework to

train state/output feedback NN controllers using imitation learning and the results of

the nonlinear programs as expert demonstrations to satisfy reach-avoid specifications.

The proposed framework is illustrated using an example of a water vehicle subject to

water currents.

• Shakiba Yaghoubi, et al. “Risk-bounded Control using Stochastic Barrier Func-

tions”, in IEEE Control Systems Letters, 2020. [141]

In this work, we design real-time controllers that react to uncertainties with stochastic

characteristics and bound the probability of a failure in finite time to a given desired

value. SCBFs are used to derive sufficient conditions on the control input that bound

the probability that the states of the system enter an unsafe region within a finite
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time. These conditions are combined with reachability conditions and used in an

optimization problem to find the required control actions that lead the system to

a goal set. We illustrate our theoretical development using a simulation of a lane-

changing scenario in a highway with dense traffic.

Other Contributions

In this section, we summarize my other works related to the automatic generation of test

cases for finding falsifying system behaviors which we will not be presented in detail in this

thesis.

• Cumhur Erkan Tuncali, Shakiba Yaghoubi, Theodore P. Pavlic, and Georgios

Fainekos, “Functional Gradient Descent Optimization for Automatic Test Case Gener-

ation for Vehicle Controllers”, IEEE International Conference on Automation Science

and Engineering (CASE), 2017 [126].

In this paper, we use the results from [3, 134] to design a hierarchical test genera-

tion framework that uses analytical functional gradient computations to optimize a

system performance function. Starting from a random location, a descent direction

is computed on a simplified model of the system dynamics, on which the gradients

can be analytically computed. Then, the bisection technique is used to search for a

minimal performance on the simulations of a high-fidelity model of the system. The

system performance evaluations from the simulation outputs are used to guide the

search by changing the bisection step size. Once a minimal performance is found with

the bisection technique, the whole process is restarted at another random location

which is selected by low-discrepancy sampling. A full-range adaptive cruise control

from literature has been implemented as a case study to evaluate the results of this

work.

• Adel Dokhanchi, Shakiba Yaghoubi, Bardh Hoxha, and Georgios Fainekos, “Vacu-
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ity aware falsification for MTL request-response specifications,” in IEEE Conference

on Automation Science and Engineering (CASE), 2017 [34].

This paper improves the search for falsifying system behaviors by focusing on vacu-

ous signals. Vacuous signals cause the system testers to have a false sense of system

correctness. Therefore, it is dangerous for CPS verifiers to not identify vacuous sig-

nals during testing. On the other hand, Request-Response requirements are typically

used in CPS requirements. Falsification of Request-Response requirements is more

challenging than other types of requirements. This is because Request-Response re-

quirements have “if-then-else” components and if a signal does not satisfy the “if”

part of the requirements, it will vacuously satisfy the “if-then-else” specification. In

this paper, S-TaLiRo testing framework was modified so that it first satisfies the

“if” statement and then, falsify the “if-then-else” specification. It was shown that the

proposed solution can drastically improve the falsification framework for some of the

benchmarks

• Logan Mathesen, Shakiba Yaghoubi, Giulia Pedrielli, and Georgios Fainekos, “Falsi-

fication of cyber-physical systems with robustness uncertainty quantification through

stochastic optimization with adaptive restart,” in International Conference on Au-

tomation Science and Engineering (CASE) 2019, [101].

In this paper, an instance of the Stochastic Optimization with Adaptive Restart

(SOAR) framework is implemented in the S-TaLiRo tool [16] for falsification of sys-

tem requirements. The application of SOAR for falsification not only shows better

falsification rates than existing benchmarking techniques but also provides confidence

intervals over the predicted minimum system robustness when the system is unable

to be observably falsified. This is the first time a falsification method provides un-

certainty quantification on the minimum predicted robustness. This is an important

benefit for practitioners since they can now decide whether further testing is needed.
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• Mohammad Hekmatnejad, Shakiba Yaghoubi, Adel Dokhanchi, Heni Ben Amor,

Aviral Shrivastava, Lina Karam, and Georgios Fainekos, “Encoding and monitoring

responsibility sensitive safety rules for automated vehicles in signal temporal logic,”

in International Conference on Formal Methods and Models for System Design, 2019,

[65].

The work in [119] provides an extensive study on the formalization of rules for a

safe-driver model referred to as Responsibility-Sensitive Safety (RSS) model. In this

paper, it is demonstrated that the RSS model can be encoded in assume-guarantee

STL requirements. Due to space limitations, only two RSS scenarios are presented

in detail, but the rest of the scenarios can be similarly encoded in STL. To motivate

how the resulting STL requirements could be used in practice, multiple real driving

data scenarios were monitored offline over some of the RSS rules written in STL.

Interestingly, it is observed that the RSS rules are not frequently violated by human

drivers assuming fast reaction times. The code for the case study is distributed with

S-TaLiRo.

• In the following four works, we have presented the results of friendly competitions

for solving challenging benchmarks in the falsification of dynamical systems’ require-

ments.

– A. Dokhanchi, S. Yaghoubi, B. Hoxha, and G. E. Fainekos, “Arch-comp17

category report: Preliminary results on the falsification benchmarks.” in ARCH@

CPSWeek, 2017. [33]

– Adel Dokhanchi, S. Yaghoubi, B. Hoxha, G. Fainekos, G. Ernst, Z. Zhang, P.

Arcaini, I. Hasuo, and S. Sedwards, “Arch-comp18 category report: Results on

the falsification benchmarks,” 2018. [35]
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– G. Ernst, P. Arcaini, A. Donze, G. Fainekos, L. Mathesen, G. Pedrielli, S.

Yaghoubi, Y. Yamagata, and Z. Zhang, “Arch-comp 2019 category report: Fal-

sification,” EPiC Series in Computing, 2019. [47]

– G. Ernst, P. Arcaini, I. Bennani, A. Donze, G. Fainekos, G. Frehse, L. Mathesen,

C. Menghi, G. Pedrinelli, M. Pouzet, and S. Yaghoubi. “ARCH-COMP 2020

Category Report: Falsification,” EPiC Series in Computing, 2020. [46]
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Chapter 2

AUTOMATIC TEST GENERATION FOR TESTING USING OPTIMAL CONTROL

BASED METHODS

2.1 Introduction

Simulation-guided strategies for testing system properties are devised based on the no-

tion of falsification. Several different methods for solving the simulation-guided falsification

based on optimization [16, 36, 146, 24], classification and coverage [5], tree search [48], and

learning [7, 120] exist. All these methods try to intelligently create test instances that reveal

undesirable system behaviors with respect to a system requirement. For example S-TaLiRo

([16]) and Breach ([36]) are Matlab/C++ toolboxes that use global optimization solvers to

search for counterexamples to system requirements expressed as TL formulas. To search

over space of the varying time inputs to the system, the tools require a parameterization

representation of the input signal. And they search the space of the uncertain parameters

to find trajectories with minimal robustness values with respect to the given requirement.

Different results show that testing can benefit from combining global search methods with

local search hence works presented in this Chapter as well as works presented in [30, 88]

focus on efficient strategies for local search and its combination with global search.

The first steps toward model-based falsification through local search using derivatives

of the robustness function and system model were taken in [1, 3] in which the system is

assumed to be a white-box nonlinear system, and possible exogenous inputs are considered

to be piece-wise constant. In [92], authors use the well-known results in optimal control

theory for nonlinear systems to search the input’s function space of the system and locally

minimize a cost function described in the form of standard optimal control cost functionals.

Another related work that studies the search-based falsification of Hybrid systems is the

multiple-shooting optimization technique [146].

19



In the rest of this Chapter we present our contributions related to to problem of falsifi-

cation with the help of local optimization.

2.2 Preliminaries

2.2.1 System Models

Autonomous Continuous Nonlinear Systems with Exogenous Inputs

An autonomous nonlinear dynamical system with exogenous inputs can be described as:

Σ : ẋ(t) = f(x(t), w(t)), (2.1)

x(0) = x0 ∈ X0

where t denotes the time, x(t) ∈ Rnx is the system state at time t, w : R+ → W is

the exogenous input function that given a point in time t, returns a value w(t) in the set

W ⊂ Rnw , and x0 is the system’s initial condition which is assumed to be in X0 ⊂ Rnx . The

function f : Rnx ×Rnw → Rnx is the system flow, which is assumed to be at least one-time

differentiable.

In most of the cases, we cannot find a closed form solution for the system Σ. However,

assuming that the simulation time T is bounded, given an initial condition x0, and an input

w, we can find a numerical solution to the system Σ, which we denote with x(x0, w) in

order to emphasize its dependency on the initial condition and input. Note that x(x0, w)

is a sequence of tuples {
(
t, x(t)

)
} where ‘t values’ are chosen by the numerical solver. We

show the value of the trajectory at time t with x(x0, w, t), i.e, x(x0, w, t) is the value x(t)

that states take at time t emphasizing the fact that the system has been initiated from x0

and the input w was applied to it. If it’s clear from the context, we may drop (x0, w) from

x(x0, w) for the sake of brevity and write x for short.
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Autonomous Hybrid Systems with Exogenous Inputs

Hybrid automaton (HA) is a model that facilitates specification and verification of hybrid

systems. A hybrid automaton is specified using a tuple

H = (L,X,W, Inv, E ,Σ) (2.2)

where L ⊂ N is the set of discrete states or locations that the system switches through (each

location attributes different continuous dynamics to the system), X ⊆ Rnx is the continuous

state space of the system, W ⊆ Rnw is the space of system’s exogenous input signals, and

Inv : L → 2X×R
+

assigns an invariant set to each location. Also, E is a set of tuples

(E,Guard,Reset) that determine transitions between locations. Here, E ⊆ L × L is the

set of control switches, Guard : E → 2X×R
+

is the guard condition that enables a control

switch (i.e, the system switches from li to lj when (x(t), t) ∈ X×R+ satisfies Guard((li, lj)))

and, Reset : E ×X → L ×X is a reset map that given a transition e = (li, lj) ∈ E and a

point x for which Guard(e) is satisfied, maps x to a point in the invariant set of the next

location Inv(lj). Finally, Σ defines the continuous dynamics in each location l ∈ L:

Σ(l) : ˙x(t) = fl(x(t), w(t)), x(t) ∈ X,w(t) ∈W (2.3)

For more information about Hybrid systems please refer to [124], [11], [12]. We let

H = L×X denote the hybrid state space of the hybrid automaton H. H0 ⊆ H will denote

a set of intial conditions of the system.

Assuming that the initial location l0 is fixed, the numerical solution to H starting from a

point h0 = (l0, x0) ∈ H0 and under the input w(t) ∈ W is denoted with a hybrid trajectory

η(x0, w) = (l(x0, w),x(x0, w)). At each point in time t, this trajectory points to a pair

(control location, state vector): η(x0, w, t) = (l(x0, w, t),x(x0, w, t)), where l(x0, w, t) is the

location at time t, and x(x0, w, t) is the continuous state at time t.

We can write the dynamical equations for the continuous system trajectory as:

x(x0, w, 0) = x0
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while (x(x0, w, t), t) ∈ Inv(l):

ẋ(x0, w, t) = fl(x(x0, w, t), w(t)) (2.4)

if x(x0, w, t
−) ∈ Guard((li, lj)) and (x(x0, w, t

+), t) ∈ Inv(lj):

x(x0, w, t
+) = Re((li, lj),x(x,w, t−)) (2.5)

The time in which the location l and consequently the right-hand side of the equation (2.4)

changes, are called transition times. In order to avoid unnecessary technicalities, in the

above equations, transition times are demonstrated as t− and t+, where t− is the time right

before the transition and t+ is the time right after that. When we consider the trajectory in

a compact time interval [0, T ] and η is not Zeno 1, the sequence of transition times is finite,

and the numerical trajectory η(x0, w) can be found using numerical solvers. We assume our

system does not exhibit Zeno behaviors.

2.2.2 Temporal logic requirements and robustness

Signal Temporal Logic is a logical formalism that allows efficient and unambiguous

specifications of a wide variety of desired system properties beyond basic properties like

stability and reachability. An STL formula is a composition of temporal and Boolean

operations over predicates over signals. A predicate pk represents a set of states defined

using a real-valued function µ : X → R as Pk = {x ∈ X |µ(x) > 0}. Let P = {p1, ...pL}

be the set of all predicate expressions of interest for an STL formula and I ⊂ R+ be any

non-empty interval. The set of all well-formed STL formulas ϕ is inductively defined as

ϕ := > | p | ¬ϕ | ϕ ∧ ψ | ϕUIψ,

where p ∈ P , and >, ¬ and ∧ are Boolean true, negation and and operations, and U is the

until temporal operator, which requires ψ to be satisfied at some time in I and until then,

1η is Zeno if it does an infinite number of jumps in a finite amount of time. A hybrid system is Zeno if

at least one of its trajectories is Zeno.
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ϕ needs to be satisfied. The validity of a formula ϕ with respect to a signal x at time t is

defined inductively as follows:

(x, t) |= pk ⇔ µk(xt) > 0

(x, t) |= ¬ϕ⇔ ¬((x, t) |= ϕ)

(x, t) |= ϕ ∧ ψ ⇔(x, t) |= ϕ ∧ (x, t) |= ψ

(x, t) |= ϕUIψ ⇔ ∃t′ ∈ (t+ I) s.t. (x, t′) |= ψ ∧ ∀t′′ ∈ [t, t′), (x, t′′) |= ϕ

where xt is the value of signal x at time t and (t+ I) = {t+ c | c ∈ I}. Other operators like

Disjunction (∨), Always (2) and Eventually (3) can be defined using the above operators

(see [21]). The trajectory x satisfies ϕ if (x, 0) |= ϕ. An STL formula is bounded-time if all

its temporal intervals are bounded.

Definition 1. The maximum trajectory length N required to decide satisfiability of an STL

formula is called the formula horizon. The formula horizon is the maximum over the sums

of all the nested upper bounds on the temporal operators.

For instance the horizon of the formula 2[0,t1](3[0,t2]p) is equal to t1 + t2. In this paper,

we consider bounded time STL formulas.

The degree of satisfaction of an STL formula [38] which we call the robustness value,

can be calculated using a real-valued function ρϕ of a trajectory x, and t such that (x, t) |=

ϕ ≡ ρϕ(x, t) > 0. The semantics of ρϕ can be defined as follows:

ρpk(x, t) =µk(xt)

ρ¬ϕ(x, t) = −ρϕ(x, t)

ρϕ∧ψ(x, t) = min(ρϕ(x, t), ρψ(x, t))

ρϕUIψ(x, t) = max
t′∈(t+I)

(
min

(
ρφ(x, t′), min

t′′∈[t,t′)
ρϕ(x, t′′)

))
Temporal operators like Always and Eventually, can be treated as conjunctions and

disjunctions along the time axis. I would like to highlight that while I choose to work with

STL as it is easier to analyze and differentiate, STL interpretation of robustness can differ
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from the MTL robustness as defined in [50] for general functions of the form µk(x) > 0.

Using the interpretation in [50], the robustness w.r.t a predicate pk is the signed distance

(see [50] for more information) of x from the predicate set Pk = {x ∈ X|µk(x) > 0}.

However in [38], the robustness w.r.t this predicate is simply defined as µk(x) which fails

to define a robustness tube around the signal within which all the trajectories satisfy the

property. Nevertheless, for both semantics, positive sign of the robustness implies Boolean

satisfaction and negative sign implies falsification.

In this section, the partial derivative of a function f(x1, x2, ..., xn) with respect to its

ith argument is denoted with ∂if ; if the function includes only one argument we show its

derivative with respect to that argument with ∂f .

2.3 Problem Formulation

In this section, we focus on solving the falsification problem by the automated generation

of optimal test cases. In other words, the purpose is to find a system’s violating behavior

with respect to some TL formula, as fast as possible. Consider the following problem:

Problem 2.3.1 (Falsification Problem). Assume that the dynamical system Σ as defined in

Eq. (2.1) or the hybrid system H as in Eq. (2.2) needs to comply with the STL specification

ϕ whose formula horizon is T for all the initial conditions x0 ∈ X0, and exogenous inputs

w (w(t) ∈ Rxw) which are admissible with respect to some input constraints. Find an initial

condition x0 ∈ X0 and an admissible input w such that the system trajectory x(x0, w) does

not satisfy ϕ, i.e, ρϕ(x(x0, w)) < 0.

Recall that the positive robustness values indicate satisfaction, while negative robustness

values show a violation of the specification, and the absolute value of the robustness function

indicates how robustly the specification is satisfied or violated. As a result, falsification of

an STL property ϕ can be achieved through minimization of the robustness function ρϕ

and the Falsification Problem 2.3.1 can be altered as follows:
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Problem 2.3.2 (Minimization of the Robustness Function). Find the optimal initial con-

dition x∗0 ∈ X0 and the optimal admissible input w∗ such that the corresponding state

trajectory x(x∗0, w
∗) of the dynamical system Σ as defined in Eq. (2.1) or the hybrid system

H as in Eq. (2.2): minimizes the robustness function ρϕ, i.e, ρϕ(x(x∗0, w
∗)) ≤ ρϕ(x(x0, w))

for all x0 ∈ X0 and admissible inputs w.

Solving Problem 2.3.2 is extremely challenging due to the inherent non-differentiability

and non-convexity of the cost function ρϕ and its convoluted dependency on x0 and w

through the system dynamics.

In order to deal with the non-differentiability of the cost function, in [3], a differentiable

function is introduced that can approximate the robustness function locally. The approx-

imation is based on the fact that the robustness value for the trajectory x corresponds to

the value of the trajectory at some critical time t∗, and a critical predicate p∗ ∈ P , which

corresponds to the set P∗ = {x | µ∗(x) > 0}2. In this case, the robustness value is the value

that the function µ∗ takes at x(t∗), i.e, ρϕ(x) = µ∗(x(t∗)). The variables p∗ and t∗ can be

calculated using tools such as S-TaLiRo while evaluating the robustness.

Assume that ti∗, p
i
∗ are the critical time and predicate corresponding to the initial con-

dition xi0, and the input wi. The robustness of the trajectories x(x0, w) with x0 ∈ N (xi0, ε),

and w ∈ N (wi, ε) is approximated with the following cost function:

J i(x0, w) = µi∗(x(x0, w, t
i
∗)) (2.6)

where µi∗ is the function corresponding to pi∗. The index i shows that this cost function

approximates the robustness function locally in a neighboring of xi0, w
i. Note that the use

of the superscript i will be motivated soon. Hence Problem 2.3.2 is changed to the following

problem in [3]:

Problem 2.3.3 (Sequential Minimization of J i). Find descent directions δxi0, and δwi and

2To avoid technicalities, we assume that in the case of the hybrid systems the critical predicate lies in a

single location
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the step size h such that the sequence {(xi0, wi)}, i = 1, ...,M , where xi+1
0 = xi0 + hδxi0,

wi+1 = wi + hδwi satisfies the following conditions:

1. Initial conditions xi are in X0 and inputs wi are admissible,

2. J i(xi+1
0 , wi+1) < J i(xi0, w

i),

3. 0 < h < h̄ and for all 0 < h′ < h̄, J i(xi0 + h′δxi0, w
i + h′δwi) < J i(xi0, w

i)

4. JM (xM0 , wM ) ≤ 0

2.4 Solution Approach and Experimental Results

Assuming that the input w ∈ W is piece-wise constant (or linear) with given fixed

switching times (between consecutive pieces) τk, and parameters σk, k = 1, ..., d such that

w(t) = σk, t ∈ [τk−1, τk) the problem is solved in [3] for the dynamical system (2.1), by

computing the sensitivity matrices sx0 and skσ as follows:

ṡx0(t) = ∂1f(x(t), w(t)).sx0(t), sx0(0) = Inx

ṡkσ(t) = ∂1f(x(t), w(t)).skσ(t) + δk.∂2f(x(t), w(t)), t ∈ [τk−1, T ], (2.7)

skσ(t) = 0, t ∈ [0, τk−1]

where δk is equal to one if t ∈ [τk−1, τk] and zero, otherwise. Then the directions

δxi0, δσ
k,i can be computed as follows:

δxi0 = −∂µi∗
∣∣>
x(xi0,w

i,ti∗)
sx0(ti∗)

δσk,i = −∂µi∗
∣∣>
x(xi0,w

i,ti∗)
skσ(ti∗) (2.8)

where sensitivity matrices are computed for the trajectory x(xi0, w
i). The step size h is

chosen such that xi0 + hδxi0 ∈ X0 and wi + hδwi ∈ W , where δwi = δσk,i for t ∈ [τk−1, τk].

In this thesis, we consider the Problem 2.3.3 under the following assumptions:

• Section 2.4.1 presents the results of [134] which studies the problem under the as-

sumption that the system is nonlinear but we only have partial knowledge about it and
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available uncertainties in the system is in terms of initial conditions and parameters

of piece-wise constant exogenous inputs.

• Section 2.4.2 presents the results of [136] which studies the problem of the falsification

of a nonlinear system and extends the results for the class of exogenous input signals

from piece-wise constant with fixed switch times to piece-wise constant signals with

varying switching times.

• Section 2.4.3 presents the results of [137] which studies the problem under the as-

sumption that the system is nonlinear and extends the results to non-parametrized

exogenous input signals and directly searches the infinite-dimensional search space of

the input functions.

• Section 2.4.4 presents the results of [135] which studies the falsification problem of

white-box hybrid automata that models CPS, assuming that exogenous inputs are

piece-wise constant. The results of this paper can be extended to the case of piece-

wise constant signals with varying switching times.

2.4.1 Gradient-based Gray-box Falsification of Nonlinear Systems

In order to remove the need for the full knowledge of f to compute Eq. (2.7), lineariza-

tions of the system -that can be provided using MBD tools like Simulink- are computed in

sample points x(xi0, w
i, ts) along the system trajectory x(xi0, w

i). The linearization in each

sample point is used instead of ∂1f(x(t), w(t)) and ∂2f(x(t), w(t)) in Eq. (2.7) until new

information about the linearized system is achieved in the next sample point on the trajec-

tory. It has been shown in [134] that as the number of samples in which linearized system

is computed increases, the directions computed using this method get arbitrarily close to

directions in Eq. (2.8). The reason is that the error in computing sensitivity matrices (2.7)

can get arbitrarily small with an increased number of samples.

Also, since descent directions with a proper step size h only guarantee convergence

to local minimums, in order to explore the search space, Alg. 1 that combines the local
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Algorithm 1 Simulated annealing combined by gradient descent algorithm

Data: The system Σ in Eq. (2.1) or its Simulink model, set of initial conditions X0, input

range W , system specification ϕ, total number of iterations N , step size h, maximum

number of iterations k1 and k2.

Set i = 1, and randomly select (x0, w) considering X0,W .

r∗ ← simulate Σ from (x0, w), and find robustness value with respect to ϕ.

while i <= N do

for j = 1,...,k1 do

(x′0, w
′) ← Get new sample by SA(x0, u,X0,W ).

r ← simulate find robustval(x′0, w
′,Σ, ϕ).

Bool← Accept?(r, r∗, i), i ← i+ 1

if Bool = 1 then

(x0, w) ← (x′0, w
′)

if r < r∗ then

(x∗0, w
∗, r∗)←(x′0, w

′, r)

end

end

end

(δx0, δw) ← compute descent(x0, w,Σ), h′ ← h

for j = 1,...,k2 do

(x′0, w
′) ← apply descent(δx0, δw, x0, w, h

′, X0,W )

r ← simulate find robustval(x′0, w
′,Σ, ϕ)

if r < r∗ then

(x∗0, w
∗, r∗)← (x′0, w

′, r)

else

h′ ← h′/2

end

end

end

return optimal initial condition x∗0, optimal input w∗ and the related optimal robustness

value r∗.
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search using descent directions with Simulated Annealing (SA) optimization algorithm is

presented. The algorithm is compared with the pure SA algorithm on multiple benchmark

examples to show that using local search can help to find unsafe behaviors faster.

2.4.2 Falsification Using Gradient-based Local Search in Space and Time

As piece-wise constant input signals with fixed switching times may not be a general

enough parametrization method, in [136], we proposed piece-wise constant input signals

with varying switching times. We indicate a piece-wise constant input w consisting of d

pieces with a sequence (σ1, τ1, σ2, τ2, ..., τd−1, σd) where 0 < τ1 < ... < τd−1 < τd = T and

σ1, ..., σd ∈W . This input is described below and it is shown in Fig. 2.1.

w(t) = σk, for t ∈ [τk−1, τk], k = 1, ..., d (2.9)

In this case, the desired change in the system input wi (δwi) is computed by computing

δσk,i and δτk,i. For presentation purposes, we’ll drop the superscript i in the sensitivity

analysis, as the analysis can be performed for all the iterations similarly. In order to

compute δτk the sensitivity skτ (t) to switching times τk need to be computed. Assuming

δτk > 0,∀k = 1, ..., d − 1, for any t < τk, s
k
τ (t) = 0. Since δτk is assumed to be small in

value, for any t ∈ [τk, τk + δτk], δskτ (t) = f(x, σk) − f(x, σk+1)δτk. So, as pictured in Fig

2.2, the sensitivity to switch times can be computed as:

skτ (t) = 0, t ∈ [0, τk]

skτ (t) = f(x, σk)−f(x, σk+1), t = τk (2.10)

ṡkτ (t) = ∂1f(x(t), w(t)).skτ (t), t ∈ [0, τk]

Then δτk,i can be computed as follows:

δτk,i = −∂µi∗
∣∣>
x(xi0,w

i,ti∗)
sk,iτ (ti∗) (2.11)

where sensitivity matrices sk,iτ are computed for the trajectory x(xi0, w
i). Computing

δxi0, δσ
k,i using the Eq. (2.8), the step size h is chosen such that xi0 + hδxi0 ∈ X0 and
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Figure 2.2: HA for Calculating the Sensitivity to the Input Switch Times

wi+1 ∈ W , where wi+1 is computed by applying the perturbations δσk,i and δτk,i to the

parameters σk,i and τk,i corresponding to wi.

Remark 1. This analysis can be performed similarly when the system has more than one

exogenous input signal.

This input parametrization is appealing as it allows bounding the value of the exogenous

inputs to the set W = [W,W ], and at the same time, it allows revealing system behaviors

that are related to frequency properties of w. The step size h can be further tuned to find

the largest step in the descent direction that reduces the cost J i (or the robustness value).

Furthermore, Alg. 1 can be used to combine a global search method like SA with the local

search using gradient descent.

Two case studies are used in [136] to evaluate the performance of the space-time gradient

descent in testing system requirements.

Powertrain system: This benchmark is introduced as the third model in [76]. Some

preliminary results on the original model are presented in [33]. These results reveal some

of the challenges of this model. The model we study in this paper is the stiff polynomial

approximation of the original model. It is a closed-loop model of an engine under an
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air/fuel controller. The closed-loop system consists of 5 states and takes two exogenous

inputs: the throttle angle θin and, the engine speed ω. We test the system in the “Normal”

operation mode w.r.t the following requirement: “The air/fuel (A/F) ratio remain in the

invariant set [14.56, 14.84] from t = 3 to the end of the simulation time T=50.” During

the test, the engine speed is supposed to remain constant but it can attain different values

in [900π/30, 1100π/30]. The throttle input however is a time-varying input as a result

of possibly different behaviors by the driver, but it is assumed to be bounded in the set

[0, 81.2]. We used 1 parameter to describe ω and 21 parameters (11 for signal values and 10

for switch times) to describe θin. Starting from a trajectory with the robustness of 0.129,

we find a falsifying trajectory with robustness -0.003 using GD in 4 iterations. The initial

and final trajectories and the inputs are shown in Fig. 2.3.

Note that some properties for this model have been verified/falsified in [52], but they

only test the system under time invariant uncertainties and assume that the driver behaviors

(that affect θin) are limited to two specific behaviors. However, here, we test the system

over different driver behaviors.

Maneuvering object : This benchmark is a hybrid model also used in [135]. The

maneuvering object has a pair of off-centered thrusters as the control input. The location-

based (hybrid) dynamics of the vehicle is as follows:

ẋi

ẋ4

ẋ5

ẋ6


=



xi+3

0.1x4+Σi=1,2si(l)(x1−αi)+F1cos(x5)−F2sin(x5)

0.1x5+Σi=1,2si(l)(x2−βi)+F1sin(x5)−F2cos(x5)

−bF1/I + aF2/I


(2.12)

where i = 1, 2, 3 and (x1, x2) is the positions along the x and y axis. The hybrid model

consists of 3 locations: the first to third locations are specified using the sets {x |x1 < 4},

{x | 4 ≤ x1 ≤ 8}, and {x |x1 > 8}, respectively. At the first, second and third locations, we

have s1 = s2 = 0,s1 = −1, s2 = 0, and s1 = 0, s2 = −2, respectively. Also, (α1, β1) and

(α2, β2) are the centers of the unsafe sets U1 and U2, respectively. We consider a = b = I = 1.
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Figure 2.3: Top: GD Increases the Air/Flow Ratio over and Undershoots Causing It to Find

a Falsifying Trajectory. Bottom Two: Initial and Falsifying Engine Speed and Throttle

Input.

The system is required to satisfy this requirement: “Always avoid U1 = [5.5, 6.5] ×

[2.5, 3.5] and U2 = [9.5, 10.5]× [1.5, 3.5], and eventually reach the goal set A = [11, 13]× [3, 5]

within T=10 seconds.” The search is over the time and the amplitude of the piecewise

constant inputs F1 ∈ [0, 0.3][0,T ], F2 ∈ [−.2.2][0,T ] and also initial conditions for x1 ∈ [0, 1]

and x2 ∈ [0.4, 0.8]. We parametrize F1 and F2 using 19 parameters each (10 parameters for

signal values and 9 for switch times), so the search is over a 40 dimensional space. Using

gradient descent on the negation of the requirement formula, we find inputs F1 and F2 that

satisfy the requirement. The initial trajectory has robustness 3.3483 w.r.t the negation of

the requirement (so it does not satisfy the requirement) and gradient descent decreases the
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robustness to -0.12462 in 4 iterations and finds a trajectory that satisfies the requirement.

The system trajectories and their corresponding inputs in these 4 iterations are shown in

Fig. 2.4. We show the signals with a darker marker as the iteration number increases.

Experimental results: To globally search for the minimizer of the robustness func-

tion, we use Alg. 1. We performed two statistical studies on the “Maneuvering object”

and the “Powertrain” benchmarks to determine the effectiveness of applying GD. In both
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Table 2.1: Experimental Results for the Space-Time Parametrization

Maneuvering object Power-train

Optim. method SA SA+GD SA SA+GD

Num. of falsification 6/40 24/40 0/50 11/50

Avg. min robustness value 4.4435 3.2116 0.0725 0.0573

max min robustness value 10.1442 10.1301 0.1376 0.1382

min min robustness value -0.5313 -0.6104 0.0162 -0.0436

experiments, we ran SA and SA+GD 50 times starting from the same initial conditions and

with an equal total number of samples N=100. The results are presented in Table 2.1.

In both cases, the falsification rate has improved significantly with the help of GD. In the

case of the ”Maneuvering object” benchmark it achieves one order of magnitude improve-

ment. In the case of the Powertrain benchmark, while SA+GD falsifies the requirement in

11 out of 50 runs, SA has not been able to find any falsifying input.

2.4.3 Falsification by Direct Search in the Function Spaces

While depending on the context, input parametrization may be useful and required to

represent exogenous inputs of a given class, if the purpose is to find any exogenous inputs

- constrained only by their magnitudes - that violate the system requirement, we need to

search the infinite dimensional function spaces directly. In order to find δw : t → W , that

satisfies the condition in Problem 2.3.3, for a general (non-parametrized) exogenous input

w, in [137], we used a method based on optimal control. Using the co-state method, we

alter J i as follows:

J̄ i = J i +

∫ ti∗

0
λ>
(
f(x,w)− dx

dt

)
dt

Forming the Hamiltonian as H(x,w) = λ>f(x,w), J̄ i can be written as:

J̄ i = µi∗(x(ti∗)) + λ(0)>x(0)− λ(ti∗)
>x(ti∗) +

∫ ti∗

0
(H(x,w) +

dλ

dt

>
x
)
dt
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As a result, the gradient of the cost function J̄ i is:

δJ̄ i =
(dµi∗(xi(ti∗))

dx
− λ>(ti∗)

)
δx(ti∗) + λ>(0)δx(0) +

∫ ti∗

0

((∂H
∂x

+ λ̇>
)
δx+

∂H

∂w
δw
)
dt

By updating the co-states λ backward in time with the following final value ODE,

λ̇(t) = −∂f
∂x

∣∣>
x(xi0,w

i,t)
λ(t)

λ(ti∗) =
dJ i

dx

>

= ∂µi∗
∣∣>
x(xi0,w

i,ti∗)
(2.13)

δJ̄ i is reduced to δJ̄ i = λ>(0)δx(0) +
∫ ti∗

0
∂H
∂w δw dt. Hence, the following choices of δxi0 and

δwi with a small enough positive step size h will result in a negative δJ̄ i and as a result a

decrease in J̄ i:

δxi0 = −λ(0) (2.14)

δwi(t) =− ∂f

∂w

∣∣>
x(xi0,w

i,t)
λ(t)

where λ is computed for the trajectory x(xi0, w
i).

It has also been shown that in order to relax the need for a white-box model, the system’s

linearization information along the trajectory can be used for computing the co-states in

Eq. 2.13 approximately, as it was used in [134] for approximating the sensitivity matrices.

Algorithm 2 describes the process of finding inputs and initial conditions with reduced

robustness value using the descent directions computed above. We can stop the algorithm

based on different criteria. The algorithm can be stopped if:

• A maximum number of iterations is reached.

• The change in the robustness is less than a minimum value.

• The changes in the initial conditions and inputs are less than a minimum value.

To combine the local search using Alg. 2 with a “sampling method for coverage” or a

“stochastic global optimization” approach, one can use the approach pictured in Fig. 2.5,

2δxip(0) is the non NN part of δxi(0)
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Algorithm 2 Optimal input and initial condition for falsification

Data: The system Σ in Eq. (2.1) or its Simulink model, TL formula ϕ, x1
0, w1(t), X0, W ,

step size h0, and constant c > 1.

Initialize r∗ =∞, (x′0, w
′) = (x1

0, w
1)

(r∗, t∗) ← simulate find robustval(x0, w,Σ, ϕ).

while the stop condition is not active do

i← 1, h← h0

3 if r′ < r∗, then

(r∗, t∗)← r′, (x0, w)← (x′0, w
′)

else

i← i+ 1

h = h/2

(x′0, w
′)←Fit In Box(x0, w, δx0, δw(t), X0,W, h)

(r′, t∗) ← simulate find robustval(x′0, w
′,Σ, ϕ)

if i < K then
return to 3

else

break

end

end

if r < 0 then

Break

end

Linearize the system around sample times taken in [0, t∗] and evaluate δx0 and δw(t)

using equations (2.14)

end

return local optimal initial condition x, local optimal input w, and r∗.

36



Use UR or SA to 
choose next 𝒙𝒑 and 𝒘

Best samples 
so far?

Yes  

No

𝒄 = 𝒄 + 𝟏𝒄 ≥ 𝒄𝒎𝒂𝒙
No

Use Alg. 1 to choose 
next 𝒙𝒑 and 𝒘 values,

Return accordingly

Yes

Counter-
example?

No

Return

Yes

𝒄 = 𝟎Start

Figure 2.5: The Falsification Framework. UR Stands for Uniform Sampling.

Figure 2.6: Simulink Model for Steam Condenser with Feedback RNN Controller

where c = 0 in the beginning and cmax is a design choice. Note that since the exogenous

input will not conform with parametrization methods after it is perturbed along δw(t), the

local and global search cannot be intertwined as in previous approaches.

The method has been used for falsifying properties of Simulink models of a nonlinear

system that includes feed-forward NN in the loop, in addition to a model of a Steam

Condenser under a Recurrent NN controller which we will present next.

Steam Condenser with RNN Controller: We considered a dynamic model of a

steam condenser with 5 continuous states based on energy balance and cooling water mass

balance under an RNN controller with 6 discrete states and tangent-sigmoid activation

functions. The Simulink model for the system is shown in Fig. 2.6. The steam flow

rate w(t) (Input 1 in Fig. 2.6) is allowed to vary in the set [3.99, 4.01] and the system is

tested for T = 35 seconds against the specification 2[30,35] p(t) ∈ [87, 87.5]. Starting from
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Figure 2.7: The System Robustness Is Reduced From .20633 Using a Constant Input w(T ) =

4 To .00030222 Using the Local Optimal Input Shown in the Bottom Picture.

a constant valued signal w(t) = 4 that results in a robustness value equal to 0.20633, the

above approach finds a falsifying trajectory with robustness 0.00030222. The initial and

final trajectories and inputs are shown in Fig. (2.7). While the local search reduces the

robustness values significantly, no falsifying behavior is found. The importance of combining

this local search with a global sampler/optimizer becomes more clear in the following where

the combination of the local search with uniform random sampling or Simulated Annealing

method finds adversarial examples.

Note that, while the utilized NNs have a fairly small number of layers (since they were

found to perform well enough during the training phase), the scalability of the proposed

approach was tested on the systems of Sec. 5.1 and 5.2 including NN controllers with

a larger number of layers (20 to 100) too. These experiments showed that the proposed

approach scales well. Theoretically increasing the number of layers/neurons in FNNs or

the number of non-recurrent layers (with no delay/memory) in RNNs will just increase the
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Table 2.2: Falsification Results of Steam Condenser System with RNN Controller Using

Different Search Methods.

UR SA UR+GD SA+GD

# falsifications 0/50 0/50 50/50 50/50

Avg min robustness 0.0843 0.0503 -0.0018 -0.0016

Avg execution time > 60 > 60 15.7812 13.0688

Avg # simulations 600 600 87.48 62.26

number of blocks in the Simulink model linearly. Since MATLAB analytical linearization

is computed block-by-block, increasing the number of these kinds of layers (l) increases

the linearization complexity by O(l × r) where r is the maximum number of neurons in

layers. However, increasing the size of state-space or the number of layers of the RNN with

memory increases the linearization complexity faster. Specifically, the size of linearized

matrices grows quadratically with the number of state-space plus RNN states. However, in

practice, we observed a much less increase in the computation time of the overall algorithm

when increasing the size of the NN states.

Experimental Results: We used Uniform the Random Sampling (UR) and Simulated

Annealing (SA) implementations of S-TaLiRo unaided and aided by the optimal local

search (UR+GD and SA+GD, respectively). For sampling using SA and UR, inputs were

(initially3) considered to be piece-wise constant signals with 12 control points with varying

sample times (total of 24 variables).

In the UR+GD implementation, local optimal search is performed when the sampler

cannot find a sample with a less robustness value 50 times in a row, and in the SA+GD

implementation, it is applied when the optimizer cannot find a less robust sample 30 times

in a row. We run the experiments 50 times, and in each run, the maximum execution

time is limited to 60 seconds4. The search is initialized with the same seed for all the

3when aided by the optimal local search, arbitrary perturbations were applied to inputs
4The next sample is taken only if the execution time so far is less than 60 seconds. The algorithm returns
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experiments. The above search methods are compared against the number of falsifications

found, average minimum robustness found, average execution time, and the average total

number of simulations before returning. The improvement in the results from left to right

in Table 2.2 is evident and it motivates the use of the proposed local search. While SA and

UR were not able to find any counterexamples in 50 runs, their combination with gradient-

based descent found an adversarial example in all the runs within a short amount of time

and with less than 90 simulations on average. In fact, in a study that has been conducted

in [47], multiple other falsification methods failed to find a falsifying behavior.

2.4.4 Falsification of Hybrid Systems

Sensitivity matrices and co-states can be computed using Eq. (2.7) and (2.13) only if we

are dealing with a nonlinear system of the form (2.1) in which f is smooth and differentiable.

So, to be able to solve Problem 2.3.3 for hybrid systems as defined in Eq. (2.2), the discussion

has been extended in [135]. In order to solve Problem 2.3.3 by computation of sensitivity

matrices and descent directions, we should impose further assumptions on our system stated

below:

1. The system of Eq. (2.2) is observable, i.e., we have access to all the system states, or

we have a state estimator which can estimate them.

2. In the local search stage, we are always able to find a neighboring tube around each

trajectory such that none of the trajectories inside that tube hit the guard tangentially.

This ensures that trajectories of the system H starting close enough to x0 and under

neighboring inputs of u undergo similar transitions/switches. This is guaranteed if

we can find an auto-bisimulation function of a trajectory and the trajectories starting

from its neighboring initial conditions and under neighboring inputs [130].

3. The system is deterministic and the transitions are taken as soon as possible. To

have a deterministic system, if two transitions happen from the same location, their

faster in case of finding a counter/adversarial example.
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Figure 2.8: Trajectories B, A and C Improve Locally by Descending Toward the Unsafe Set,

Guard g43 and Guard g23 Respectively.

Guards should be mutually exclusive.

4. Guards are of the form g(x, t) = 0 and Reset maps are functions of the form x′ = h(x),

where g and h are C1 functions. For all the states that satisfy a Guard condition the

corresponding Reset map should satisfy ∂h
∂x

∣∣
x
6= 0.

5. The trajectory η(h0, u(t), t) returned by the first stage, from which we descend, enters

the location of the unsafe set.

The last assumption is made so that our problem be well-defined (note that the robust-

ness will have finite value only if the trajectory enters an unsafe location). The task of

finding such an initial condition h0 is delegated to the higher-level stochastic search algo-

rithm. If finding such a trajectory for the higher-level stochastic algorithm is hard, we can

still improve our trajectories locally by descending toward the guards as pictured in Fig.

2.8.

Extending sensitivity analysis to the hybrid case is not straightforward and even in the

case that there is no reset in transitions and the state stays continuous, a discontinuity

often appears in the sensitivity function that needs to be evaluated [37].

Consider piece-wise constant exogenous inputs are applied to the system, and without

loss of generality, assume that the hybrid trajectory undergoes a single transition from

the location of the initial condition l0 to the location of the critical predicate lU at time τ .
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Figure 2.9: Assuming τX0 < τX′0 , Trajectories Are under Different Dynamics for All the

Times t ∈ [τX0 , τX′0 ], Where τX0 and τX′0 Are Transition Times for x̃i(X0, .) and x̃i(X
′
0, .)

Respectively.

Assuming that x(xi0, w
i) is the continuous part of the hybrid trajectory of the system, inside

each of these locations, sensitivity matrices can be computed using the following ODEs:

ṡx0(t) = ∂1f(x(t), w(t)).sx0(t),

ṡkσ(t) = ∂1f(x(t), w(t)).skσ(t) + δk.∂2f(x(t), w(t)), t ∈ [τk−1, T ], (2.15)

where δk is equal to one if t ∈ [τk−1, τk] and zero, otherwise. The initial and boundary

conditions of the ODEs are as follows:

sx0(0) = Inx , sx0(τ+) = rx0

skσ(t) = 0, t ∈ [0, τk−1], skσ(τ+) = rkw, if τ+ ≥ τk−1 (2.16)

where τ+ is the right hand side limit of the transition time τ that satisfies (x(x0, w(τ),

τ), τ) ∈ Gu((l0, lU )). We will calculate rx0 and rkw, shortly. Consider that even if there is

no reset, this jump happens in the state triggered transitions since neighboring trajectories

have different transition times and as a result they are under different dynamics during the

time between their transition times (see Fig. 2.9).

Assume that g(x(x0, w(t), t), t) = 0 activates the guard condition between l0 and lu

and causes a transition, and Re(x, (l1, l2)) = h(x). Denote the transition time by τ(x0, w).
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Then, rx0 and rkw can be computed as:

rx0 =
∂h

∂x
(sx0(τ−) + (

∂h

∂x
f− − f+)∂1τ)

rkw =
∂h

∂x
(skσ(τ−) + (

∂h

∂x
f− − f+)∂2τ

T ) (2.17)

where ∂h
∂x = ∂h

∂x

∣∣
x(x0,w(τ−),τ−)

, and f− and f+ are equal to fl0(x(x0, w(τ−), τ−), w(τ−), τ−)

and flU (x(x0, w(τ+), τ+), w(τ+)), τ+) respectively, and:

∂1τ = − ∂1g
T .sx0(τ−)

∂1gT .f− + ∂2g
, ∂2τ = − ∂1g

T .skσ(τ−)

∂1gT .f− + ∂2g
(2.18)

Hence, one can compute δxi0 and δσk,i as:

δxi0 = −∂µi∗
∣∣>
x(xi0,w

i,ti∗)
sx0(ti∗)

δσk,i = −∂µi∗
∣∣>
x(xi0,w

i,ti∗)
skσ(ti∗) (2.19)

in which sx0(ti∗), s
k
σ(ti∗) are the values that sensitivity matrices of the hybrid system take at

the critical time ti∗.

Consider the maneuvering object example modelled in Eq. (2.12) and its requirement.

Using Eq. (2.19) or its negative we can reduce/increase J i and consequently the robustness

function until a falsifying/satisfying behavior is found (see the top figure in Fig. 2.10) or to

get the trajectory closer to the location of the critical/unsafe predicate (see bottom figure

in Fig. 2.10). Our search is over the initial positions in [0, 1]× [0.5, 1], and the input signals

F1(t), F2(t) ∈ [−1, 1]; other states are zero initially. We used piece-wise constant inputs with

11 variables for each F1(t) and F2(t). So the overall search is over 24 dimensions. Starting

from a trajectory that satisfies the requirement with the robustness value equal to 0.2950,

our method improves the robustness value to 0.8599. The projection of the trajectories into

the x1 − x2 plane is shown in Fig. 2.10, where light gray trajectories are refined to dark

gray ones. In the bottom figure, one can see that even if the trajectory from which we want

to descend does not enter the goal set location, we are still able to improve the trajectory

by descending toward the adjacent guard with the least distance from that set.
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To determine the effect of applying GD local search method to global search methods

like Simulated Annealing (SA), we performed a statistical study in which we compare the

combination of SA and GD (SA+GD) with SA only. To combine SA and GD, we apply

GD algorithm whenever the samples picked by SA return a robustness value less than some

threshold value rT .h In our experiment we ran SA and SA+GD for 150 times with equal total

number of samples N = 100 and rT = 2.5 to automatically search for initial conditions and

inputs that satisfy the specification with U1 = [5.5, 6.5]×[2.5, 3.5], U2 = [9.5, 10.5]×[1.5, 4.5],

G = [12.5, 13] × [4.5, 5]. In order to satisfy the requirement, we try to falsify its negation.

The results are shown in Table (2.3). The improvement in finding falsifying trajectories is

clear from the total number of falsifications in the first row. Also, since GD gets a chance

to improve the performance only if SA finds a robustness value less than rT , we added the

second row which shows in how many percent of the cases falsification is achieved if SA

finds a robustness value less than rT . While the average of the best robustness value for

all the tests is better for SA+GD algorithm, it is slightly better for SA if we only consider

non-falsified cases. We can conclude that even if SA finds small robustness values, it is

hardly able to further decrease it. As the constant budget in the comparison is “equal

total number of simulations”, we can claim that SA+GD can help improve the results if

Table 2.3: Comparing SA and SA+GD Results for the Maneuvering Object Example

Optim. method SA SA+GD

num. of total falsification 4/150 16/150

% of falsification if SA finds r ≤ rT 13.33% 39.02%

Avg. min-Rob. (all the cases) 9.1828 8.4818

Avg. min-Rob. (not falsified cases) 9.4278 9.4968

min. min-Rob. (not falsified cases) 0.0080 0.0059

max. min-Rob. (not falsified cases) 13.1424 13.0880
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simulations/experiments are costly. Choosing different design parameters might lead to

even better experimental results.

All the above methodologies for local-optimization-guided falsification have been imple-

mented and are available as part of S-TaLiRo [114].

2.5 Conclusions and Future Work

In this section, we presented methods based on sensitivity analysis and optimal control

that help to solve the optimization-based falsification problem under different assumptions

about the system model and external inputs. The experimental results demonstrated that

guided by a local search based on our proposed methods, we can find falsifications that

previous tools cannot, furthermore, falsifications can be found faster.

Due to the complexity of the robustness function, optimization-based falsification can

be further improved with more advanced optimization techniques. Hence, future work can

include research on more efficient ways for optimizing the robustness function. Different

stochastic and analytic methods for falsification can be explored. Momentum-based meth-

ods (including the conjugate method), as an example, compute the search direction as a

weighted sum of the negative gradient direction and the search direction in previous steps.

These methods have the potential to help the local search as they reduce the risk of getting

stuck in a local minimum and speed up the convergence considerably in cases where the

process would otherwise zig-zag heavily [108].

Future work can also include the convergence properties of the presented algorithms and

the conditions under which the results based upon the local approximation of the robustness

function in Eq. (2.6) can be extended to the robustness function itself.
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Chapter 3

REQUIREMENT-BASED CONTROL SYNTHESIS

3.1 Introduction

Designing controllers for satisfying system properties specified in STL has been studied

before [86]. In [109], a method for designing open-loop controllers for STL specifications

based on MPC using Mixed Integer Linear Program (MILP) solvers is introduced. Authors

design open-loop strategies that satisfy STL specifications using randomized tree search in

[127]. The work in [105] introduces a smooth approximation to the robustness function of the

STL formula, which allows using gradient-based optimizers to design robust controllers for

the satisfaction of STL formulas. In general, open-loop controllers need to be designed and

stored in advance, and MPC controllers need to be computed at the run-time. Computing

MPC controllers for high-order systems include solving large optimization problems at each

step [67], so in general, they do not scale to higher-order systems since their run-time

computation is challenging. On the other hand, storing the results of the offline computation

of open-loop or MPC controllers (e.g., as a lookup table) requires too much memory [78],

so using Neural networks (NN) to approximate controllers [113, 77], learn optimal policies

offline [61], or to improve baseline controllers [145] is very common. The application of NNs

in high assurance systems has been studied in [118].

Model-based Reinforcement Learning methods are also another line of work close to

our work [129, 143, 91]. Recently, Reinforcement Learning methods have been developed

that make policy learning w.r.t temporal logic specifications possible, see e.g., [57, 94].

Despite the recent advances using Reinforcement Learning methods, providing guarantees

for the behavior of systems trained using them is challenging. This is due to the complicated

behavior of the Neural Networks which are used in these systems as function approximators.

These systems sometimes have safety-critical roles, and as a result, the problem of testing
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and system-level verification is of utmost importance.

The application of NN to control dynamical systems has a long history [71, 62, 118].

More recently, due to computational advances and available data, there has been a renewed

interest in the utilization of NN in control systems. As discussed before, because of the

limitations that verification approaches usually have in the application, testing methods are

used to find falsifying system behaviors. For instance, the problem of testing autonomous

vehicles equipped with NNs for perception, guided by system-level requirements is studied

in [2, 125, 40]. The falsifying/adversarial samples that are found during the testing process

can be used for retraining the NNs in order to improve their accuracy. Adversarial training

is used in [41, 42] for improving the performance of the NNs used in an autonomous vehicle

for perception.

The work in [44] is also related to our work wherein Neural network controllers are de-

signed to satisfy reachability and region stability properties. In section 3.2, Using a smooth

approximation of the STL robustness function, we will design controllers for general STL

formulas. Another difference is that to guarantee safe worst-case performance, our neural

networks are trained to maximize the worst-case robustness values over the space of pos-

sible initial conditions. Besides, in a post-training procedure, our algorithm searches for

adversarial samples and retrain the NN using them. On the other hand, in section 3.3,

we focus on training NN controllers for achieving reach-avoid specifications. The reason

for focusing on a more limited class of requirements is that to achieve these types of re-

quirements, at each state that the system visits there exist nonlinear/quadratic programs

constrained by a set of inequalities linear in the control input that if solved can guarantee

safety while guiding the system to the goal set [13]. Hence, we can use the solutions to these

programs as expert demonstrations of good behavior to create data sets for training the NN.

Consequently, the training can be achieved much more efficiently using imitation learning

[111]. The constraints that enable safety in the aforementioned programs are related to the

evolution of a function that creates a barrier around the unsafe set of states. This function
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is called a Barrier Function. In this thesis, we extend the results based on the BFs to assure

safety in presence of external inputs and disturbances.

The BF theory has been instrumental in developing safety-critical controllers for non-

linear systems. Control Barrier Functions (CBF) have enabled the design of provable safe

feedback controllers for several different systems such as adaptive cruise control [14], bipedal

robot walking and long-term autonomy [13].

While the results presented in section 3.3 verify safety in the worst-case in the presence

of uncertainty with hard bounds on its magnitude, when the disturbance has stochastic

characteristics, we need to consider BFs in a stochastic setting. In [97], authors design BFs

for nonholonomic systems in unknown environments modeled using stochastic semantic

maps. Stochastic Barrier Functions (SBF) have been used in [107, 74] for verification of

safety and temporal logic properties of stochastic systems. The authors in [116] use SBFs for

finite-time stochastic system verification and feedback control design through solving sum-

of-squares programs. However, finding such a closed-loop controller for more complicated

systems and environments, and when uncertainty is higher, is not possible. To handle these

cases, researchers consider the real-time computation of control inputs based on SBFs and

using optimization methods. For instance, using QPs to design real-time control inputs for

stochastic systems that maximize the probability of invariance of a set C has been studied

in [28] using CBFs for complete and incomplete information and in [117] using high-relative

degree SBFs. However, these works derive conditions that phase out the probability of

eventually entering the unsafe set. Such a control input, if it exists, may be very conservative

in many applications. Hence, in this section 3.4, we consider the real-time design of control

inputs that bound the probability of a finite-time failure.

In motion planning, an Autonomous Mobile System (AMS) is required to move from a

start location to a goal location while avoiding collisions with other agents, dynamic and

static. In this work, we provide a method for control synthesis to solve this start-to-goal

motion problem while bounding “the probability of a collision in finite-time (risk)”. We
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utilize a Barrier Function (BF) candidate whose level set of value one contains the unsafe

set of the AMS and other agents’ states [107]. The probabilistic nature of the behavior of

agents is modeled using Stochastic Differential Equations (SDEs) [104]. Conditions on the

BF candidate that bound its expected value over a finite-time horizon are derived based on

the model of the AMS and the stochastic model of other agents. These conditions can be

used to compute an upper bound on the risk [89, 116]. The upper bounds depend on the

state of the system and the parameters used in the conditions that control the evolution of

the expected value of the BF candidate. As a result, in a given state, we can bound the

risk to the desired threshold by constraining the aforementioned parameters. We use these

constraints to choose the values of the parameters and the control input. To lead the AMS

to a goal location, our method unifies the conditions imposed by the BF for bounding the

risk, with the conditions imposed by a Lyapunov function in a Quadratic Program (QP)

which can be solved in real-time. The obtained sub-optimal control input will lead the AMS

to the goal set while bounding the probability of entering the unsafe set in a finite time. We

first develop the theoretical framework for the composition of conditions that control the

finite-time growth of BFs with risk-bounds to derive sufficient conditions for risk-bounded

control. The advantage of the risk-based formulation of the conditions is that it allows for a

less conservative control design framework. Then we combine the aforementioned conditions

with Lyapunov conditions in a QP whose on-the-fly solution solves the risk-bounded start-

to-goal problem. Finally, we demonstrated the application on a lane-changing scenario on

a highway with dense traffic.

3.2 Training Feedback Neural-network Controllers for TL Requirements

3.2.1 Preliminaries

We consider the discrete time nonlinear dynamical systems described below:

Σ :

 xt+1 = f(xt, ut)

yt = g(xt)
(3.1)
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where xt ∈ X ⊂ Rnx is the system state, yt ∈ Rny is the system output, ut ∈ U ⊂ Rnu

is the control input, f : X × U → X is a differentiable function of its arguments, and

x0 ∈ X0 ⊂ X is the initial state. Given an initial state x0 ∈ X0 and a control sequence

uN = u0, u1, ...uN , s.t, ∀t : ut ∈ U , the bounded time solution of the system is denoted as

x(x0, u
N ) = x0, x1, ...xN , where ∀t : xt ∈ X and xt+1 = f(xt, ut).

Smooth approximation of STL robustness function: The robustness function

as introduced in section 2.2.2 is a non-differentiable function of its inputs as it consists of

composition of max and min functions. As a result, in order to be able to use optimizers that

require differentiability, we also introduce the smooth approximation [105] of the robustness

function ρ̃ϕ which replaces the min and max functions with soft min (min) and soft max

(max) functions:

min(x, α) = − 1

α
ln(ΣN

i=1e
−αxi) (3.2)

max(x, α) = −min(−x, α) (3.3)

where xi is the ith argument of x. This function approaches the min function as α → ∞.

It’s been shown in [105] that an ε can be computed such that |ρϕ − ρ̃ϕ| < ε. As a result,

ρ̃ϕ > ε guarantees satisfaction of ϕ.

Feedforward Neural Networks (FNN) are static or memory-less networks. The

most general FNN is Multi-Layer Perceptron (MLP), which can approximate any nonlinear

function. We can define FNNs using the number of their inputs nI , outputs no, layers nl,

and weights (Wi, bi)
nl
i=1 which connect the ith layer to the i+ 1th layer or the outputs. The

ith layer applies the following function to its inputs Ui ∈ IRmi :

Ui+1 = φi(W
T
i Ui + bi) i ∈ {1, 2..., l} (3.4)

where φi is an activation function chosen to be one of the continuous nonlinear functions:

ReLU, tanh, arctan, logistic or sigmoid.

The weight matrices Wi and the bias vectors bi should be adjusted during NN training.

The function N formed by the decomposition of the neurons in Eq. (3.4), calculates the
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Figure 3.1: The Closed-loop System with Its NN Controller to Satisfy an STL Formula ϕ

final output of the FNN given the inputs and (Wi, bi)
nl
i=1. The weights Wi and the bias

vectors bi are collectively denoted as W .

3.2.2 Problem Formulation

Consider h : Rny → U to be a differentiable function. The controller ut = h(yt)

should be designed in order to maximize the robustness value. Since the function spaces

are infinite-dimensional, the function h needs to be parameterized. As neural networks

are known to be universal function approximators [69], we consider h to be a Feedforward

Neural Network (FNN) parameterized using its weights W . We write the output of the NN

as ut = N (yt,W ). As a result, the closed loop system (shown in Fig. 3.1) can be described

as:  xt+1 = f(xt,N (yt,W ))

yt = g(xt)
(3.5)

Given an initial condition x0 ∈ X0, the bounded time solution of the closed loop system

(3.5) is x(x0,W ) = x0, x1, ...xN , where ∀t : xt ∈ X, yt = g(xt), and xt+1 = f(xt,N (yt,W )).

In order for the NN to satisfy the constraints on the input, the NN output is saturated.

Consider the dynamical system S = (Σ, X0, U), where Σ is described in Eq. (3.1), X0

is a set of initial conditions, and U is the set of admissible control inputs. We would like to

design a NN controller N for the system S that satisfies the input constraint such that the

minimum robustness value over the set of initial conditions X0 is maximized. The problem

is formally defined as follows:

Problem 3.2.1. Given the dynamical system S, an STL formula ϕ whose horizon is N
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(see Def. 1), and a fixed architecture for N , solve the following optimization problem for

training the NN:

W ∗ = argmax
W

min
x0∈X0

ρϕ(x(x0, u
N )) (3.6)

s.t



xt+1 = f(xt, ut)

yt = g(xt)

ut = N (yt,W )

x(x0, u
N ) = x0, x1, ..., xN

3.2.3 Solution Approach

To accomplish both exploration and exploitation in the space of NN parameters, in this

work, we use an evolution-based method for optimization with a large enough population

size called CMA-ES and combine it with the exploitation power of gradient-based methods.

The NN weights W have a complex chained effect in the cost function of Prob. 3.2.1

through the sequence of states. Based on our experiments, direct policy search variants of

reinforcement learning approaches based on evolution strategies [64], like covariance matrix

adaptation evolution strategy (CMA-ES) algorithm, were not able to find a good set of

parameters (W ) without additional support. Nonetheless, their exploration power is usually

able to bring the parameters close to their optimal value. On the other hand, with a good

initialization, gradient-based approaches were found to be very effective in training neural

networks using backpropagation approaches [22].

In this section, we use the best of two worlds: the exploration power of the evolution-

based methods with a large enough population size, and the exploitation power of gradient-

based methods. An overview of the solution approach is depicted in Fig. 3.2.

Neural Network Controller Architecture: We assume a given neural network ar-

chitecture N for the controller with nI = ny, no = nu, which satisfies the input constraint.

In other words, N is a function with a range equal to U (N : Rny → U). To satisfy the

input constraints, the output layer can apply a scaled Hyperbolic tangent sigmoid transfer
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Figure 3.2: Training Framework

function (see Fig. 3.3) to its inputs. Assuming u and u to be the upper and lower bounds on

U respectively, using the following activation function ensures the satisfaction of the input

constraint.

tansig(x, U) = u+
u− u

2
(tansig(x) + 1) (3.7)

Remark 2. If an output feedback control law exists that satisfies the STL formula ∀x0 ∈

X0, then provided enough data, and using an appropriate neural network architecture, the

optimal weights W can be found such that the system of Eq. (3.5) satisfies ϕ for all x0 ∈ X0.

Note however that, in general, for satisfying the temporal and reactive properties of STL

formulas, more features than systems’ current states/outputs or a controller with memory

may be required.

𝑦 = 𝑡𝑎𝑛𝑠𝑖𝑔(𝑥)

𝑥

+1

−1

Figure 3.3: Tangent Sigmoid Function

NN Weights Initialization Using Global Optimization: In this step of the train-

ing, we look for a set of parameters that on average maximizes ρϕ for a set of randomly

selected initial states x0 ∈ X0 which is represented as Xs
0 . We denote the number of samples

in this set with |Xs
0 |. Starting from a set of randomized weights and bias values W , our
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global optimizer, minimizes the following loss (cost) function

C(W ) =
∑
x0∈Xs

0

cϕ(x(x0,W ))

where cϕ = −ρϕ. In this stage, the above cost function can be minimized using any

method for global optimization. In this work, we use the CMA-ES algorithm [64], which is

a derivative-free, evolution-based numerical optimization method. CMA-ES is primarily a

local optimization approach, but it also has been reported to be reliable and highly com-

petitive for global optimization when using larger population sizes [63]. In our experiments,

we use the following relation1 to choose the population size

population size = 10× (4 + round(3× ln(|W |))) (3.8)

where ln is the natural logarithm function and |W | is the number of NN weights and bias

parameters.

Note that the minimizer of the above cost function W ∗G does not necessarily maximize

the worst-case robustness value as required in Prob. 3.2.1. The reason is that, firstly, a finite

number of randomly selected initial conditions are considered in the cost formulation, and

secondly, W ∗G is trained on the average performance rather than the worst-case performance.

Specifically, using N (yt,W
∗
G) as the controller:

1. There may exist x0 ∈ X0 −Xs
0 such that the solution to the closed-loop system (3.5)

does not satisfy the specification, since the training is done using a finite set of initial

states.

2. Or there may exist adversarial samples x0 ∈ Xs
0 , as the cost formulation is over the

average robustness value.

As a result, in this work, we design a two-player game that uses adversarial examples to

improve the weights of the neural network.

NN Weight Update Using Lagrange Multipliers for Incremental Robustness

1This is suggested in the Matlab’s implementation of CMA-ES
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In the model-based Reinforcement Learning, backpropagation of the desired change of

the objective function to the weights of the NN is used for policy improvement [29].

In what follows, we derive a weight update law based on an optimal control approach

to incrementally improve the robustness value. As gradient-based approaches require dif-

ferentiability of the objective function, we alter the optimization problem of Eq. (3.6) in

Prob. 3.2.1, as follows:

max
W

min
x0∈Xs

0

ρ̃ϕ(x(x0, u
N )) (3.9)

s.t

 xt+1 = f(xt,N (g(xt),W ))

x(x0, u
N ) = x0, x1, ..., xN

Consider the following objective function for one of the trajectories starting from x0 ∈

Xs
0 and subject to the dynamical constraints: Jx0(W ) = ρ̃ϕ(x0, x1, ..., xN ),

xt+1 = f(xt,N (g(xt),W ))

using the Lagrange multipliers associated with the state equations which are called co-states,

the dynamical constraints can be incorporated into the objective function, as follows:

J̄x0(W ) = ρ̃ϕ(x0, x1, ..., xN ) +

N−1∑
t=0

λ>t+1

(
f(xt,N (g(xt),W )))− xt+1

)
= ρ̃ϕ(x0, x1, ..., xN ) +H0 − λ>NxN +

N−1∑
t=1

(
Ht(xt,W )− λ>t xt

)
(3.10)

where λts are the co-states, and Ht = λ>t+1f(xt,N (g(xt),W )) is the Hamiltonian. Thus, we

have:

δJ̄x0(W ) =
N−1∑
t=1

(∂Ht

∂xt
+

∂ρ̃ϕ
∂xt

− λ>t
)
δxt + (

∂ρ̃ϕ
∂xN

− λ>N )δxN +

N−1∑
t=0

∂Ht

∂W
δW (3.11)
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The following equations enforce δJ̄x0(W ) > 0:

λ>N =
∂ρ̃ϕ
∂xN

, (3.12)

λ>t =
∂Ht

∂xt
+
∂ρ̃ϕ
∂xt

= λ>t+1(
∂f

∂xt
+
∂f

∂ut

dN
dxt

) +
∂ρ̃ϕ
∂xt

, (3.13)

δW =
N−1∑
t=0

∂Ht

∂W
=

N−1∑
t=0

λt+1
∂f

∂ut

∂N
∂W

(3.14)

where ∂f
∂xt

= ∂f
∂xt

∣∣
(xt,ut)

, is the Jacobian matrix of the open loop system, ∂f
∂ut

= ∂f
∂ut

∣∣
(xt,ut)

is

the derivative of the open loop system w.r.t its inputs,
∂ρ̃ϕ
∂xt

is the derivative of the smooth

robustness function to its tth argument, dN
dxt

= ∂N
∂yt

∂g
∂xt

is the derivative of the NN to its

inputs multiplied by their derivative to the states, and ∂N
∂W is the derivative of the NN

w.r.t its weights which is usually readily available. Equations (3.12) and (3.13) provide the

terminal condition and the backward dynamics for the co-states, respectively. Equation

(3.14) provides the desired change in the weights of the neural network in order to increase

the objective function Jx0(W ). As a result, changing the weights of the NN in the direction

δW using a small enough step size will increase the robustness function ρϕ for a single

trajectory starting from x0 -assuming α is large enough. To emphasize the dependency of

the desired change in the weights on the initial condition x0, we will denote it as δWx0 . As

a result, in order to improve the objective function in Eq. (3.9) which depends on all the

samples in Xs
0 rather than just one sample, the weights of the NN should be changed in the

following direction:

∆W =
∑
x0∈Xs

0

kx0(i)δWx0 (3.15)

where kx0 is a vector of length |Xs
0 | whose ith element is proportional to the effect of

the smooth robustness value ρ̃ϕ(x(x0,W )) in the value of the overall objective function

J = min
x0∈Xs

0

ρ̃ϕ(x(x0, u
N )). We write these robustness values collectively as rx0 , as a result:

kx0 =
∂min(rx0)

∂x
(3.16)

where ∂min
∂x is the derivative of the soft min function in Eq. (3.2). Note that changing W

in the direction δWx0 , where x0 corresponds to the minimum robustness value in Xs
0 , may
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result in a decrease in the worst-case robustness value. The reason is that the change in the

robustness value for the other samples in X0 are not considered and there could exist some

x0 ∈ X0, x0 6= x0 which may worsen the minimum robustness value. Considering only the

worst sample in the weight update law breaks the completeness of the method, and may

cause oscillations between improving the policy for two x0 ∈ Xs
0 . However, using Eq. (3.15)

for updating the weights ensures an improvement in the worst-case behavior in Xs
0 under

mild assumptions, as it considers the effect of the weight perturbation in all the samples.

In practice, in order to reduce the computational complexity, one can remove the terms for

which kx0(i) << max(kx0) in Eq. (3.15) and avoid calculating δWx0 for them.

Proposition 1. There exists a small enough step size h̄w > 0 such that for all 0 < hw ≤ h̄w:

min
x0∈Xs

0

ρ̃ϕ(x(x0,W + hw∆W ) > min
x0∈Xs

0

ρ̃ϕ(x(x0,W ))

Proof. This is a direct result of the design choice since by design, ∆W is a descent direction

of the cost function in Eq. (3.9).

Choosing the step size Theoretically, the ideal step size for updating W is the upper-

bound for all the h̄w values that satisfy the condition in Prop. 1. In practice, however,

finding such an ideal step size is not possible. Choosing a proper step size hw is important

for convergence of the gradient-based policy search methods. Choosing very large step sizes

can result in passing better level sets and local extremes, and choosing very small step sizes

will cause insignificant and slow improvements. As a result, in gradient-based optimization,

the step size is usually changed adaptively.

In this work, we choose step sizes proportional to the norm of the weight matrix |W |,

hw = k|W |. At the first iteration, we pick k = k0 << 1 and change it adaptively as

described in Alg. 3 afterward. The value returned from Alg. 3 in one iteration is used as

the initial step size in the next iteration.
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Algorithm 3 step size adaptive update

Data: The dynamical system S, W , ∆W , initial step size k, maximum number of iterations

Im, increase and decrease rates α and α, and the specification ϕ

Result: The final step size k, and the improved weights W ∗ if W is not a local optima,

and a local optima flag ’LO’ o.w

dec flag ← false, inc flag ← false, LO ← false

hw = k|W |, W ′ = W + hw∆W , J∗ = min
x0∈Xs

0

ρ̃ϕ(x(x0,W ))

for i = 1, ..., Im do

∆J = min
x0∈Xs

0

ρ̃ϕ(x(x0,W
′)− J∗

if ∆J > 0 then

J∗ = min
x0∈Xs

0

ρ̃ϕ(x(x0,W
′))

if dec flag then

return k,W ∗

break

end

k ← αk, W ∗ ←W ′, hw = k|W |, W ′ = W + hw∆W , inc flag ← true

else

if inc flag then

return k,W ∗

break

end

k ← αk hw = k|W |, W ′ = W + hw∆W , dec flag ← true

end

end

LO ← true return k,W , LO

Training on Xs
0: To find a controller that maximizes the worst-case robustness value in

the set of randomly selected initial conditions Xs
0 ⊂ X0, we use a global optimizer to explore

the search space and find a set of weights W that optimize the average robustness value on

XS
0 . Given the limited power of randomized search methods, the resulting weights from the
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previous stage are used to initialize the gradient-based local search described in Sec. 3.2.3

which is used later to improve the worst-case performance in Xs
0

2. This is described in Alg.

4. F If the purpose is to only satisfy the requirement, then the while loop can be exited as

soon as the worst-case robustness value on Xs
0 becomes positive.

Adversarial guided Training: As described earlier, finding a set of weights which

maximally satisfies the specification ϕ on the set Xs
0 , does not guarantee the worst case

optimality for all x0 ∈ X0, nor does it guarantee the satisfaction of the formula in X0. As

a result, after training the weights on Xs
0 , we use a falsification paradigm in order to find

worst case adversarial samples for which ρϕ < 0 and |ρϕ| is maximized. Given the NN

controller and its weights W , a falsification method, aims to solve the following problem

[137, 136]:

argmin
x0∈X0

ρϕ(x(x0,W )) (3.17)

s.t

 xt+1 = f(xt,N (g(xt),W ))

x(x0,W ) = x0, x1, ..., xN

If an adversarial sample xa0 was found, we will add the sample to Xs
0 , and backpropagate

the robustness ascent direction into the NN weights W until no more progress can be

achieved (Alg. 4 without the initial global training), once a set of weights W was found

that maximally satisfies ϕ on the updated set Xs
0 , we look for another adversarial sample

(See Alg. 5). If we were not able to satisfy ϕ for xa0 the algorithm returns failure. The

reason for a failure can be one of the followings:

• ϕ is not satisfiable on X0.

• A state feedback controller is not enough for decision making. More information/features

or dynamic controllers might be required.

2The solution to the Problem (3.9) can be negative: there may exist x0 ∈ Xs
0 for which the specification

is not satisfied even with the best set of weights, either since ϕ is hard or since the controller choice is not

suitable
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• The NN architecture is not suitable.

• There is no suitable policy neighboring W .

Figure 3.2 shows the overall learning framework.

If the falsification method provides testing coverage guarantees (e.g, see [5]), once no

more adversarial samples were found, ϕ is satisfied on X0 almost surely. One can also try

to verify the property ϕ over the set X0 using a verification method for dynamical systems

including neural networks [44, 73, 43].

Algorithm 4 Training on Xs
0

Data: The dynamical system S, the Specification ϕ, the randomly selected set of initial

conditions Xs
0 , and the NN architecture N

Result: Set of the optimal parameters W

W ← Use a global optimizer to find the set of weights W that optimizes the average

robustness on XS
0 (Sec. 3.2.3)

LO ← false

while ¬LO do

∆W ← Use Eq. (3.15) to find the ascent direction for W

(W,LO)← Use Alg. 3 to change W in the ∆W direction

end

return W

3.2.4 Experimental Results

The following experimental results were done in MATLAB 2018b. We use the Matlab

implementation of CMA-ES [64] for global optimization. S-TaLiRo toolbox [16] is used to

test the closed-loop system against the specification ϕ. The tool has different optimization

algorithms. Specifically, in this work, we use the Simulated Annealing (SA) optimization

method for finding the adversarial samples.

Vehicle Navigation: In this example, in order to evaluate the performance of the

Lagrange multipliers approach, we use it without the help of the global search for updating
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Algorithm 5 Retraining using adversarial samples

Data: The dynamical system S, the Specification ϕ, and the randomly selected set of initial

conditions Xs
0 , the NN architecture N and its parameters W

Result: Set of the optimal parameters W

while true do

xa0 ← Use a falsification method to solve problem 3.17

if ρϕ(x(xa0,W )) < 0 then

Xs
0 ← Xs

0 ∪ xa0 LO ← false

while ¬LO do

∆W ← Use Eq. (3.15) to find the desired direction

(W,LO)← Use Alg. 3 to update W

end

if ρϕ(x(xa0,W )) < 0 then

return failure

break

end

else

return W

break

end

end

the weights of a NN which is used to guide a vehicle to accomplish a mission written in

STL. The vehicle navigates in a 2D environment according to the following dynamics

ẋ =


ṗx

ṗy

θ̇

 =


vcos(θ)

vsin(θ)

v
L tan(γ)

 (3.18)

where (px, py) is the x-y position of the center of the vehicle and θ is the angle that the

vehicle’s heading has with the x-axis. The inputs v, γ are the forward driving speed and the

steering angle of the front wheels. The inputs are limited to the sets [0, 5] and [−π/4, π/4],
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respectively. We assume that initially the car is at (px0 , py0) = (6, 8), but the heading angle

can vary in the set θ0 ∈ [−3π/4, θ̄]. We choose θ̄ = −5π/8 once and θ̄ = −π/2 later. The

system is simulated using a discretized step size ∆t = 0.05 for 40 steps. The vehicle needs

to visit goals 1 and then 2 in this specific order while avoiding an obstacle [94]. This can

be expressed in STL using the following nested formula

ϕ = 3[1,40]

(
Goal1 ∧3Goal2

)
∧2[1,40]¬Unsafe

where the Unsafe, Goal1 andGoal2 sets are 2D sets: [1, 4]×[2, 5], [3, 4]×[0, 1] and [5, 6]×[3, 4],

respectively. These sets are shown in the left plot of Fig. 3.4. We design a NN with 3

inputs (system states), 2 hidden layers each with 5 neurons, and 2 outputs that are applied

to the system as the control inputs v, γ. The NN has tangent Sigmoid activation functions

and the input constraints are enforced by using scaled tangent Sigmoid functions in the

outputs. Since the weight update law leads to local improvements in the weights, good

weight initialization is important. In order to initialize the weights, we picked the weights

randomly between -1 and 1 for 20 times and kept the one that maximizes the minimum

robustness for samples θ0 = −3π/4,−5π/8,−π/2.

The initial set was chosen as Xs
0 = {−3π/4, θ̄, (θ̄ − 3π/4)/2}. The soft min and max

function’s constant was picked as α = 100. The initial step size is set to k = 0.05. For

θ̄ = −5π/8, system trajectories starting from initial conditions x0 ∈ Xs
0 using the initial

NN weights are shown with dashed blue lines in Fig. 3.4 a). For θ̄ = −π/2, they are shown

with dashed blue lines as well, in Fig. 3.4 b). When θ̄ = −5π/8, a set of weights that

could satisfy ϕ in the worst case, was found using only 8 iterations of the while loop in

Alg. 4. Interestingly, when the initial condition set grows larger by choosing θ̄ = −π/2, the

objective function (worst-case robustness value) increases in the ascent direction only with

much smaller step sizes hw, and the satisfying set of weights is found after 576 iterations of

the while loop in Alg. 4. After training over the sample set Xs
0 , using Alg. 5, no adversarial

examples were found in the initial condition set for θ̄ = −5π/8. However, for θ̄ = −π/2,

adversarial samples were found 2 times, and the weights were updated accordingly using
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Figure 3.4: Vehicle Navigation: The Vehicle Should Visit Goals 1 and 2 in This Order While

Avoiding the Unsafe Set Starting from a Set of Different Steering Angles.

Alg. 5. Satisfying trajectories starting from x0 ∈ Xs
0 are shown with solid black lines in

Fig. 3.4.

Quadrotor Mission In this case study, we consider a 6 dimensional model of a quadro-

tor which is affine in control, as follows [73]:

ẋ =



ṗx

ṗy

ṗz

v̇x

v̇y

v̇z


=



vx

vy

vz

g tan(θ)

−g tan(φ)

τ − g


(3.19)

where (px, py, pz) and (vx, vy, vz) are the quadrotor’s position and velocity along x, y, z axis,

θ, φ, τ are the control inputs (for pitch, roll and thrust), and g = 9.81 is the gravity. The

inputs constraints are θ, φ ∈ [−0.1, 0.1] and τ ∈ [7.81, 11.81]. We assume that initially
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the quadrotor is still, (vx0 , vy0 , vz0) = (0, 0, 0), and in zero altitude xz0 = 0. The initial

x-y position of the quadrotor can vary in (px0 , py0) ∈ [0.02, 0.05] × [0, 0.05]. The system is

simulated using a discretized step size ∆t = 0.05 for N steps, where N is the STL formula

horizon. The quadrotor should visit a Goal set which is blocked by a tall wall (the ‘Unsafe’

set) during a short amount of time while avoiding the wall. Formally, it needs to satisfy the

following formula:

ϕ = 2[1,35]¬Unsafe ∧3[32,35]Goal

where the time intervals correspond to the discrete time steps. The projection of the Unsafe

and Goal sets into the quadrotor’s position states are [−∞, 0.17]× [0.2, 0.35]× [0, 1.2] and

[0.05, 0.1]× [0.5, 0.58]× [0.5, 0.7], respectively. These sets are shown in Fig 3.5 with red and

green boxes respectively. The set of initial positions is shown in grey.

We pick a NN with 6 inputs (the states of the quadrotor), 3 outputs (the control inputs

of the NN), 3 hidden layers with 6, 10, and 6 neurons. The NN has tangent Sigmoid

activation functions and a scaled tangent Sigmoid in the output to enforce the control

input constraints. Initially, we pick the corners and the center of the initial set to create

Xs
0 . In the initial training phase, the weights of the NN are picked to minimize a cost

function that depends on the average distance of the quadrotor’s trajectories from a motion

plan that satisfies the specification. This distance is measured using a simplified dynamic

time warping metric. The motion plan is a simple piece-wise constant trajectory that the

quadrotor is not able to perfectly follow given its dynamics. This plan is shown in Fig. 3.5.

A final cost based on whether the trajectory reaches to goal set in time or not is added to

the cost function. 100 iterations of the CMA-ES with a population size of 200 were used

for initial training of the neural network. This phase took about 3× 104 seconds (about 8

hours) on our machine3. The trajectories of Xs
0 after the initial training phase are shown in

the top of Fig. 3.6. As it’s clear from the figure, one of the trajectories (in purple) does not

satisfy ϕ. As a result, we improve the set of NN weights W , using the Lagrange multiplier

3We did not use GPUs to reduce the training time.
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Figure 3.5: Quadrotor Needs to Avoid the Unsafe Set and Reach the Goal Set During a

Short Interval of Time. The Mission Is Shown in Blue.

weight update law (see Alg. 4). We pick α = 1000 and an initial step size of k = 0.1. The

trajectories after this step are shown in Fig. 3.6(c). In the adversarial training phase (see

Alg. 5), 3 adversarial examples were found using S-TaLiRo’s “SA” optimization, they were

added to the samples set Xs
0 , and the NN weights were adjusted using our weight update

law accordingly until no further adversary was found. The NN weight update using the

Lagrange multipliers approach - on the initial set plus its integration with the adversarial

samples - took about 103 seconds. An interesting observation was that while the NN was

not designed to output discretized values, after the training phase, the weights were tuned

such that the NN outputs were almost always equal to the minimum or maximum allowed

values of the control inputs. In other words, the output layer activation function was always

saturated. This is interesting since as described in [73], the optimal policy is a bang-bang

strategy.

The results from the above Lagrange Multipliers (LM) approach were compared with

the results using a pure CMA-ES method as described in the following:

1. The initial set Xs
0 is selected as before.

66



Figure 3.6: Sample Trajectories in xs0, Top Left: After the Global Training, Top Right:

Projection of Top Left Plot into the x-y Plane Bottom: Trajectories after Improving the

NN Weights Using Back-propagation

2. CMA-ES is used to maximize the minimum robustness value on Xs
0 with a maximum

of 100 iterations and it returns whenever the set of weights satisfies ϕ on Xs
0 in the

worst case.

3. A falsification approach is used. If an adversarial sample is found, it will be added to

Xs
0 , and the algorithm goes back to step (2), otherwise, the algorithm returns.

Table 3.1: Comparison of Training Using the Proposed Approach (LM) and CMA-ES

LM CMA-ES

time of training 3× 104 + 103 8.6× 104

num. of falsifications found 3 6
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Comparison results on the training time and the number of adversarial samples found

before the algorithm returns can be found in Table 3.1. The training time for our approach

is less than half the training time for the CMA-ES approach (training using the CMA-ES

approach took about a day). In order to compare the quality of the resulting controller using

these approaches, we finely grid the set of initial conditions and evaluated the corresponding

robustness values. The resulting surfaces for the two approaches are shown in Fig. 3.7 which

shows a better worst case performance using the LM approach. Note that, in both cases, a

few samples with negative robustness values were found since the falsification approach that

we have used here does not have coverage guarantees. These negative robustness values are

much smaller in amplitude when using the controller designed by the LM approach while

the training time was also much less. Based on the Goal set dimension, the upper bound to

-0.06

-0.04

-0.02

0.04

ro
bu

st
ne

ss 0

0.02

LM

0.05

py

0.02 0.04

px

0.030 0.02

-0.06

-0.04

-0.02

0.04

ro
bu

st
ne

ss 0

0.05

CMA-ES

0.02

py

0.02 0.04

px

0.03
0 0.02

Figure 3.7: Robustness Surfaces Using the Controllers Trained with LM and CMA-ES

Approach.

68



the robustness value is 0.1−0.05
2 = 0.025 which requires that the trajectory visits the center

of the Goal set within the specified time interval.

3.3 Feedback Neural-network Controllers for Reach-avoid Specifications using CBFs

The results from the previous section showed training a NN controller based on incre-

ments of a loss function defined using the robustness of STL can improve the performance.

However, it seems that while maximizing the STL robustness as the final reward helps to

achieve the required system-level performance, it is difficult to train a robust closed-loop

controller using this sole reward. Hence, in this section, we focus on a fragment of TL

specification called ‘Reach-Avoid ’ specifications and propose using a more efficient training

approach based on imitation learning. A reach-avoid specifications can be formalized as

‘2 safe ∧ 3 Goal’ .

3.3.1 Preliminaries

Consider a nonlinear control system without disturbances and with affine control inputs:

ẋ = f(x) + g(x)u, (3.20)

where x ∈ X ⊂ Rn is the system state, u ∈ U ⊂ Rl is the control input, and f : Rn → Rn

and g : Rn → Rm are locally Lipschitz functions. Given an initial condition x(0), we denote

the solution of the system at time t with x(t). A function α : R → R is said to be an

extended class K function iff α is strictly increasing and α(0) = 0 [13].

Definition 3.3.1 (Set Invariance [23]). A set C ⊆ Rn is forward invariant w.r.t the system

(3.20) iff for every x(0) ∈ C, its solution satisfies x(t) ∈ C for all t ≥ 0.

Definition 3.3.2 (Barrier Function). Let h : X → R be a continuously differentiable

function, C = {x ∈ X|h(x) ≥ 0}, and α be a locally Lipschitz extended class K function.

h is a barrier function iff for all x ∈ C

ḣ(x) ≥ −α(h(x)) (3.21)
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Lemma 3.3.1 ([60]). If h is a barrier function for C, and α is as defined in Def. 3.3.2

then C is a forward invariant set.

Definition 3.3.3 (Control Barrier Function [13]). A continuous, differentiable function

h(x) is a Control Barrier Function (CBF) for the system (3.20), if there exist a class K

function α such that for all x ∈ C :

Lfh(x) + Lgh(x)u+ α(h(x)) ≥ 0 (3.22)

where Lfh(x) = ∂h
∂x

>
f(x), Lgh(x) = ∂h

∂x

>
g(x) are the first order Lie derivatives of the sys-

tem.

Any Lipschitz continuous controller u ∈ Kcbf (x) = {u ∈ U | Lfh(x) + Lgh(x)u +

α(h(x)) ≥ 0} results in a forward invariant set C for the system of Eq. (3.20).

Definition 3.3.4 (Control Input Relative Degree of a Function). A continuously differen-

tiable function h has a control input relative degree m w.r.t the system (3.20), if the first

time that the control u appears in the derivatives of h along the system dynamics is in its

mth derivative.

If the function h has a relative degree m > 1, Lgh(x) = Lm−1
g h(x) = 0. As a result Eq.

(3.22) cannot be directly used for choosing safe controllers u ∈ Kcbf (x). Motivated by the

use of input-output linearization in Lyapunov functions [80], high Order Control Barrier

Functions (HOCBF) were introduced in [103], and [131] to derive necessary conditions for

guaranteeing set invariance in this case. Assuming that the function h has a relative degree

m w.r.t the system (3.20), define the series of functions ψi : Rn → R, i = 0, 1, · · · ,m and

the corresponding sets C1, · · · , Cm as follows:

ψ0(x) = h(x)

ψ1(x) = ψ̇0(x) + α1(ψ0(x)) C1 = {x | ψ0(x) ≥ 0}

ψ2(x) = ψ̇1(x) + α2(ψ1(x)) C2 = {x | ψ1(x) ≥ 0} (3.23)
...

...

ψm(x) = ψ̇m91(x) + αm(ψm91(x)) Cm = {x | ψm91(x) ≥ 0}
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where α1, α2 · · · , αm are class K functions of their arguments.

Definition 3.3.5 (High Order Barrier Functions). A function h : Rn → R with a control

input relative degree m is a High Order Barrier Function (HOBF) for system (3.20), if there

exist differentiable class K functions α1, α2 · · · , αm such that for all x ∈ C1 ∩C2 ∩ · · · ∩Cm,

we have: ψm(x) ≥ 0. Under this condition, the set C1 ∩C2 ∩ · · · ∩Cm is forward invariant.

Definition 3.3.6 (High Order Control Barrier Functions [131]). A function h : Rn → R

with a relative degree m is a High Order Control Barrier Function (HOCBF) for system

(3.20), if there exist differentiable class K functions α1, α2 · · · , αm such that for all x ∈

C1 ∩ C2 ∩ · · · ∩ Cm:

ψm(x) = Lmf h(x) + LgL
m−1
f h(x)u+O(h(x)) + αm(ψm−1(x)) ≥ 0 (3.24)

where O(.) denotes the remaining Lie derivatives along f with degree less than or equal to

m− 1.

Any Lipschitz controller u ∈ Khocbf (x) = {u ∈ U | Lmf h(x) +LgL
m−1
f h(x)u+O(h(x)) +

αm(ψm−1(x)) ≥ 0} renders the system safe, and the set C1∩C2∩· · ·∩Cm forward invariant.

3.3.2 Control Barrier Functions in presence of Disturbance

In this paper, the nonlinear control system (3.20) is considered in presence of distur-

bances as in the following:

Σ : ẋ = f(x) + g(x)u+Mw, x(0) ∈ X0 (3.25)

where x, u, f, g are defined as for the system of Eq. (3.20), X0 is the set of initial conditions,

and w ∈ W ⊂ Rl is the disturbance input. Each dimension of W which we denote by Wi

defines an interval [wi, wi] that the ith element of w belongs to, M is a n× l zero-one matrix

with at most one non-zero element in each row.

When a disturbance is present, in order to guarantee the forward invariance of the set

C, which we call the safe set, the condition in inequality (3.21) needs to be satisfied for all

w ∈W , including its worst case where it minimizes the left-hand side of the inequality.
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Definition 3.3.7. The continuously differentiable function h with control input relative

degree one is a CBF in presence of Disturbance (CBFD) for the system of Eq. (3.25), if

there exist a class K function α such that for all x ∈ C and w ∈W , the following inequality

is satisfied

Lfh(x) + Lgh(x)u+ LMh(x)w + α(h(x)) ≥ 0 (3.26)

where LMh(x) = ∂h
∂x

>
M . Equivalently for all x ∈ C the following inequality needs to hold:

Lfh(x) + Lgh(x)u+ α(h(x)) ≥ F ∗LM
(x) (3.27)

where F ∗LM
(x) = max

w∈W
(−LMh(x)w)

Definition 3.3.8 (Disturbance Relative Degree of a Function). A continuously differen-

tiable function h has a disturbance relative degree q w.r.t the system (3.20), if the first time

that the disturbance w appears in the derivatives of h along the system dynamics is in its

qth derivative.

If the disturbance relative degree of h is greater than 1, LMh(x) = 0 and a CBF is a

CBFD too. Otherwise, since LMh(x)w is linear in w, and w ∈W imposes linear constraints

on w, the program maxw∈W (−LMh(x)w) is a linear program for each x ∈ C whose solution

can be found and replaced in inequality (3.27) to define the set of control values that satisfy

the following inequality:

Kcbfd(x) = {u ∈ U | Lfh(x) + Lgh(x)u+ α(h(x)) ≥ F ∗LM
(x)} (3.28)

Theorem 1. Given a CBFD h from Def. (3.3.7), any Lipschitz continuous controller

u ∈ Kcbfd(x) renders the set C forward invariant.

Proof. The proof can be directly derived from Lemma 3.3.1. To be explicit, if for all x ∈ C

and w ∈ W , ḣ(x) = Lfh(x) + Lgh(x)u + LMh(x)w ≥ −α(h(x)), then the solutions to

system (3.25) with x(0) ∈ C, satisfy h(x(t)) ≥ 0. So based on Def. 3.3.1, C is forward

invariant.
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If the function h has a control input relative degree higher than one, the multiplier of u

in Eq. (3.27), Lgh(x) is equal to zero, so the choice of u will not affect the satisfaction of

inequality (3.27). In the following section we will study HOCBFs in presence of disturbance.

3.3.3 High order Control Barrier Functions in Presence of Disturbance

Assume that the continously differentiable function h : Rn → R has control input

relative degree m and consider the series of functions ψi : Rn → R, i = 0, ...,m and their

corresponding sets C1, . . . , Cm as defined in Eq. (3.23).

Definition 3.3.9. The function h is a High Order Barrier Function in presence of distur-

bance (HOBFD) for system (3.25), if there exist differentiable class K functions α1, α2, . . . , αm

that define the functions ψ1, · · · , ψm, such that for all x ∈ C1 ∩ C2 ∩ · · · ∩ Cm, we have:

ψm(x) ≥ 0

Definition 3.3.10. The function h is a High Order Control Barrier Function in presence

of disturbance (HOCBFD) for system (3.25), if there exist differentiable class K functions

α1, ..., αm that define the functions ψ1, ..., ψm, s.t for all x ∈ C1 ∩C2 ∩ ...∩Cm and w ∈W :

ψm(x) =Lmf h(x) + LgL
m−1
f h(x)u+ P (x,w) +O(h(x)) + αm(ψm−1(x)) ≥ 0 (3.29)

where P (x,w) is a function of x and w that separates all the terms including w in ψm(x)

from the rest, O(.) denotes the remaining Lie derivatives along f with degree less than or

equal to m−1. Since equation (3.29) needs to be satisfied for all w ∈W , we can equivalently

write it as:

Lmf h(x) + LgL
m−1
f h(x)u+O(h(x)) + αm(ψm−1(x)) ≥ F ∗P (x) (3.30)

where F ∗P (x) = max
w∈W

(−P (x,w))

If the disturbance relative degree of h is greater than m, P (x,w) = 0 and any HOCBF

is a HOCBFD, else if the disturbance relative degree is m, P (x,w) = LML
m−1
f h(x)w and

max
w∈W

(−P (x,w)) is a linear program. Otherwise P (x,w) is a nonlinear function of w in
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general, and the solution to the nonlinear program F ∗P (x) = max
w∈W

(−P (x,w)) can be used

to find the set of control inputs that satisfy inequality (3.30):

Khocbfd(x) = {u ∈ U | Lmf h(x) + LgL
m−1
f h(x)u+O(h(x)) + αm(ψm−1(x)) ≥ F ∗P (x)}

Theorem 2. Given a HOCBFD h from Def. (3.3.10), any Lipschitz continuous controller

u ∈ Khocbfd(x) renders the set C1 ∩ C2 ∩ · · · ∩ Cm forward invariant.

Proof. Any controller u ∈ Khocbfd(x) enforces ψm(x) ≥ 0 or equivalently ψ̇m−1(x) ≥

−αm(ψm−1(x)) irrespective of the value of w ∈W . Assuming that x(0) ∈ C1∩C2∩· · ·∩Cm,

and hence x(0) ∈ Cm, we have ψm−1(x(0)) ≥ 0 which based on lemma 3.3.1, leads

to ψm−1(x) ≥ 0 (x ∈ Cm) or equivalently ψ̇m−2(x) ≥ −αm−1(ψm−2(x)), again since

x(0) ∈ Cm−1 this results in ψm−2(x) ≥ 0 (x ∈ Cm−1). Continuing this reasoning, we

can prove that C1 ∩ C2 ∩ · · · ∩ Cm is forward invariant.

Remark 3. The functions F ∗LM
, F ∗P (x) are Lipschitz and hence, it is possible to find Lip-

schitz continuous controllers u ∈ Kcbfd(x) or u ∈ Khocbfd(x). In the following we prove

Lipschitz continuity of , F ∗P (x). Lipschitz continuity of F ∗LM
(x) will follow.

||F ∗
P (x2)− F ∗

P (x1)|| = ||max
w

(−P (x2, w))−max
w

(−P (x1, w))||

= ||max
w

(−P (x2, w) + P (x1, w)− P (x1, w))−max
w

(−P (x1, w))||

≤ ||max
w

(P (x1, w)− P (x2, w)) + max
w

(−P (x1, w))−max
w

(−P (x1, w))||

= ||max
w

(P (x1, w)− P (x2, w))|| ≤ Lp||x2 − x1||

The first inequality is true since max(f + g)(w) ≤ max f(w) + max g(w), and the second

inequality is true since for all w including the one that maximizes (P (x1, w) − P (x2, w)),

we have ||(P (x2, w)− P (x1, w))|| ≤ Lp||x2 − x1|| where Lp is the Lipschitz constant for P .

Remark 4. In order to use HOCBFDs to prove that all the trajectories of the system

3.25 starting from X0 will never exit C1, the sets C1, C2, · · · , Cm should have a nonempty

interior, and the set of initial conditions of the system, X0, should be a subset of C1 ∩C2 ∩

· · · ∩ Cm. Note that if X0 ⊂ C1 (h(x(0)) ≥ 0) except for special cases (see [131]) which we

do not consider here, we can always choose α1, α2 · · · , αm such that x0 ∈ C2 ∩ · · · ∩ Cm.
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Note that the problem max
w∈W

(−P (x,w)), is in general a nonlinear program and finding

its optimal - or even suboptimal - solution can be time consuming. A special case of

the problem is if we consider the linear class K functions α1, · · · , αm−1 which will form

Exponential Control Barrier Functions [13]. This makes P (x,w) a polynomial function of

degree at most m in w. In case of polynomial functions α1, · · · , αm, P (x,w) will be a

polynomial function of w - potentially of higher degree than m.

A special case is when m = 2, and α1, · · · , αm are linear functions. In this case P (x,w)

is a quadratic function of w, and max
w∈W

(−P (x,w)) is a QP for each x ∈ X that can be solved

efficiently.

Example 1. Consider the system ẋ1 = x2 + w, ẋ2 = u with w ∈ [w,w]. The control

input should be designed such that the function h(x) = x2
1 − 1 is a HOCBFD. We consider

αi(y) = y, i = 1, 2, so we have α′i(y) = ∂αi
∂y = 1, and as a result:

ψ2(x) = ḧ(x) + α′1(h(x))ḣ(x) + α2(ḣ(x) + α1(h(x)))

= 2x1u+ (4x2 + 4x1)w + 2w2︸ ︷︷ ︸
P (x,w)

+2x2
2 + 4x1x2 + x2

1 − 1

observing that wopt = arg max
w<w<w

(−2w2 − (4x2 + 4x1)w) is a quadratic program that can be

solved at each x, any Lipschitz controller in the set Khocbfd(x) = {2x1u+2x2
2 +4x1x2 +x2

1−

1 ≥ −2w2
opt−(4x2+4x1)wopt} will make the set C1∩C2 = {x | h(x) ≥ 0}∩{x | ḣ(x)+h(x) ≥

0} forward invariant, hence any trajectory starting from this set will never exit the set even

in presence of the worst case disturbance. When w = −0.1, w = 0.1, this set is shown in

Fig. 3.8.
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Figure 3.8: The Invariant Sets of Example 1 for the Worst-case Disturbance w ∈ [−0.1, 0.1].

3.3.4 Control Optimization Problem with CBF constraints

In order to find safe sub-optimal controllers, many recent works [96, 131, 14, 142],

formulate optimization problems with quadratic costs in the control input u subject to CLF

and CBF constraints (each CBF constraints corresponds to an unsafe set) which are linear

in u. These QPs are solved every time new information about the states x is received, and

the resulting control value u is used in the time period before new information is received.

In presence of disturbances, in order to formulate the QPs with constraints of type (3.27)

or (3.30), wopt should be computed as a prerequisite. To compute wopt one need to solve

max
w∈W

(−LMh(x)w) or max
w∈W

(−P (x,w)) - depending on the relative degree m - for each

barrier function or unsafe set. After computing wopt it can be used in the following QP to

find the semi-optimal CBFD-based control input:

min
u∈U

uTQu

s.t. Eq (8) if m = 1 or Eq. (11) if m > 1

As a result, formulating the quadratic program and solving it for evaluating the control

input u may not be possible at run-time. In the following section, we present a paradigm
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for training NN controllers that predict the value of the control input resulting from the

quadratic programs.

3.3.5 Learning NN Controllers from Control Barrier Functions Using the DAGGER

Algorithm

Imitation learning methods, which use expert demonstrations of good behavior to learn

controllers, have proven to be very useful in practice [68, 4, 19, 110, 121]. While a typical

method to imitation learning is to train a classifier/regressor to predict an expert’s behavior

given data from the encountered observations and expert’s actions in them, it’s been shown

in [111] that using this framework, small errors made by the learner can lead to large errors

over time. The reason is that in this scenario, the learner can encounter completely different

observations than those it has been trained with, leading to error accumulation. Motivated

by this, [111] presents an algorithm called DAGGER (Dataset Aggregation) that iteratively

updates the training dataset with new observations encountered by the learner and their

corresponding expert’s actions and retrains the learner.

As described in Section 3.3.4, formulating and solving the required quadratic programs

may not be feasible at run-time. As a result, we use an algorithm inspired by the DAGGER

algorithm to train NN controllers that predict the outcome of the quadratic program. In

this regard, the QP acts as an expert that a NN imitates. An NN controller that has been

trained offline can be used in a feedback loop to produce the desired control values online.

The NN training algorithm is described in Alg. 6 in which it is assumed that π∗(x,Σ, U,W )

is an expert that given the system Σ,W , and U performs the QP routine at x to output

the desired control value.
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Algorithm 6 Data set Aggregation for training NN using Quadratic Programs

Data: The dynamical system (3.25), the set of admissible control inputs U , the set of

external inputs W , the set of initial conditions X0, the constant 0 < p < 1, maximum

number of iterations N

Randomly choose the set Xs
0 by sampling from X0

Sample trajectories of the system (3.25) with initial conditions in Xs
0 and input π0 =

π∗(x,Σ, U,W )

Initialize D with the pairs of visited states and corresponding control inputs: D =

(x, π∗(x,Σ, U,W ))

Train NN controller π̂1 on D

for i = 1, ..., N do

β = pi

Sample trajectories of the system (3.25) with x(0) ∈ Xs
0 and input πi =

βπ∗(x,Σ, U,W ) + (1− β)π̂i(x)

Get dataset Di = (x, π∗(x,Σ, U,W )) of visited states and corresponding control inputs

Aggregate datasets: D ← D ∪Di

Train NN controller π̂i on D

end

return the best π̂i on validation

3.3.6 Reach Avoid Problem of a Water Vehicle Model

Consider the model of a surface water vehicle subject to wind gusts and water currents:

ẋ =


ẋ1

ẋ2

θ̇

 =


v cos(θ)

v sin(θ)

0

+


0

0

1

u+


1

1

0

w, x(0) ∈ X0 (3.31)

where the state x ∈ R3 consists of vehicle location (x1, x2) and the heading angle θ. The

control input u ∈ R is the vehicle’s steering angle. The velocity v is assumed to be constant
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(v = 1) as it has a different relative degree from the steering angle u4. The external

disturbance is w ∈ [−0.1, 0.1]. System trajectories starting from the set X0 = [8, 9] ×

[5, 11]× [−π, π] should avoid the unsafe sets Ui, i = 1, ..., 5 and reach the goal set G:

Ui ={x : (x1 − pi(1))2 + (x2 − pi(2))2 < ri},

G ={x : (x1 − xg,1)2 + (x2 − xg,2))2 < 0.3}

where p1 = (4, 2.5), r1 = 0.7, p2 = (5, 6.5), r2 = 0.5, p3 = (7, 4.75), r3 = 0.4, p4 =

(2.5, 5), r4 = 0.3, p5 = (7.5, 2.5), r5 = 0.5, and xg,1 = xg,2 = 1.

In order to reach the goal set, instead of using CLF based constraints, we formulate

the stabilizing condition in the objective function. The desired heading angle is θref (x) =

arctan(
xg,2−x2
xg,1−x1 ), and the desired input u to force θ to follow θref is uref (x) = K(θref (x)−θ)

where K is a positive constant, here we choose K = 1. The barrier function corresponding

to the unsafe set Uj is hj(x) = (x1 − pj(1))2 + (x2 − pj(2))2 − rj which has relative degree

2 w.r.t to the steering angle u. We consider α1(y) = α2(y) = 2y. The function ψ̇2,j

corresponding to each hj can be computed based on Eq. (3.23) using Matlab’s Symbolic

toolbox, for example:

ψ̇2,1 = −(2 sin(θ)(x1 − 4)− 2 cos(θ)(x2 − 2.5))u︸ ︷︷ ︸
LgLfh1(x)u

+ 4w2 + 4(cos(θ) + sin(θ) + 2((x1 − 4) + (x2 − 2.5)))w︸ ︷︷ ︸
P1(x,w)

+ 4(x1 − 4)2 + 4(x2 − 2.5)2 + 4(cos(θ))(2x1 − 8) + 4(sin(θ))(2x2 − 5)− 0.8

The functions Pj(x,w) corresponding to each unsafe set are quadratic in w. Let’s call the

portion of ψ̇2,j that only depends on x, Ψj . Note that Ψj(x) = L2
fhj(x) + O(hj(x)) +

α2(ψ1,j(x)). As a result, in order to reach the goal set while avoiding the unsafe sets, first

4Considering v as an input will make CBF constraints nonlinear in v, and the resulting problem will not

be a quadratic program anymore. While this nonlinear program can be solved offline in this framework, in

this paper we assume v is constant for simplicity.
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Figure 3.9: Trajectories Initiated From xs0 As Guided by (a) the Qps As Expert When

w = 0 and (B) the Trained Nn Controller When Random Disturbance Is Applied to System

F ∗P,j(x) = max
−0.1<w<0.1

(−Pj(x,w)) needs to be computed and then the following quadratic

program needs to be solved:

min
u

(u− uref (x))2 (3.32)

s.t LgLfhj(x)u+ Ψj(x) ≥ F ∗P,j(x) ∀j = 1, ..., 5

This QP is solved at each state visited by the vehicle under the controller πi until reaching

the goal set G as described in Alg. 6, to train NN controllers that can predict the expert’s

action online. Figure 3.9.(a) shows the trajectories of the system (3.31) guided by the

solutions to QPs in Eq. (3.32) when w = 0. The NN controller successfully imitates

the QPs at the 11th iteration of the for loop in Alg. 6. Figure 3.9.(b) shows the system
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trajectories guided by the trained NN controller when randomized disturbance is applied to

the system. As it is clear from the figures the controller is robust to disturbances as it has

been trained with controllers that are able to compensate for the disturbance in the worst-

case. It is worth mentioning that the inputs to the NN are the location states (x1, x2) in

addition to (sin(θ), cos(θ)) - instead of the state θ itself. This data processing helps remove

the discontinuities that happen when mapping θ to [−π, π] and helps NN understand that

−π and π are indeed equivalent. Also, even-though input constraints are not enforced in

this example, they can be added to problem (3.32) as linear constraints and considered in

the NN architecture by adding a saturation function in the output.

3.4 Stochastic Barrier Functions for risk bounding

In this section, we derive certificates for a stochastic system that bound the probability

of a failure in a finite time and use these certificates for designing low-risk control inputs

that achieve reach-avoid specifications.

3.4.1 Problem Formulation

Consider a deterministic nonlinear affine control system as described in the following

ordinary differential equation

ẋr(t) = fr(xr(t)) + gr(xr(t))u(t), (3.33)

where xr(t) ∈ Xr ⊆ Rnr is the system state, u(t) ∈ U ⊆ Rl is the control input, and

fr : Rnr → Rnr and gr : Rnr → Rnr×l are locally Lipschitz continuous functions.

Also, consider a probability space (Ω,F , P ), and a standard Wiener process w(t) defined

on this space. A stochastic system is defined using the following Stochastic Differential

Equation (SDE):

dxo(t) = fo(xo(t), t)dt+ go(xo(t), t)dw(t), (3.34)

where xo(t) ∈ Xo ⊆ Rno is a stochastic process, and fo and go are locally Lipschitz continu-

ous functions of appropriate dimensions. Since in general the process xo(t) is not guaranteed

81



to always lie inside the set Xo. the stopped process corresponding to xo(t) and Xo is defined

as follows:

Definition 2 (Stopped Process [89]). Assume that τ is the first time that xo(t) exits the

interior of the set Xo. Then the stopped process x̃o(t) is defined as

x̃o(t) =


xo(t) if t < τ

xo(τ) if t ≥ τ
(3.35)

Remark 5. The subscripts r, and o are used in the paper to indicate the quantities corre-

sponding to the deterministic system, and the stochastic system, respectively.

Assume that ζ : Xr → R+ is a function that defines the goal set of the system (2.1), as

follows:

Xg = {xr ∈ Xr |ζ(xr) ≤ 0}. (3.36)

Also, let us define the stopped process x̃(t) = [xr(t), x̃o(t)]
> corresponding to the augmented

state x(t) = [xr(t), xo(t)]
>, and an unsafe region on the augmented space Xr × Xo. We

denote this unsafe region with Xu ⊂ Xr×Xo and define it using a function h : Xr×Xo → R+

as follows:

Xu =: {x̃ ∈ Xr ×Xo | h(x̃) ≤ 0}. (3.37)

Given the state of the system at time t, x̃(t) = [xr(t), x̃o(t)]
>, and a planning time horizon

T , we define pu as the probability that the process enters the unsafe set during this planning

horizon, namely,

pu = P{x̃(τ) ∈ Xu for some t ≤ τ ≤ t+ T | x̃(t) ∈ Xr ×Xo}. (3.38)

Here, we use the term “risk” informally to refer to this event’s probability (pu) (see [98] for

a more formal discussion about risk metrics).

A desired control input signal u steers the trajectory of the system (3.33) to Xg while

bounding pu for all t ≥ 0 to a given desired threshold p̄. Hence the problem we need to

address is formalized as follows:
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Problem 3.4.1. Find a control input signal u : R+ → U for the system (3.33), s.t. 1)

there exists some time tg > 0 for which ζ(xr(tg)) ≤ 0, and 2) at any time t which satisfies

0 ≤ t ≤ tg, given xr(t) of system (3.33) and xo(t) of system (3.34), the control input u(t)

bounds the risk pu by the desired upper threshold p̄, i.e., pu ≤ p̄.

3.4.2 Stochastic Control Barrier Functions

In this section, we first review some background information about stochastic systems

and processes, and then derive conditions on a BF candidate to bound the risk.

The evolution of a function of a deterministic system’s state can be characterized using

Lie derivatives. The stochastic analog of the Lie derivatives are infinitesimal generators

that characterize the evolution of the expectation of functions of the stochastic system’s

state xo(t) [107]:

Definition 3 (Infinitesimal generator). The infinitesimal generator A of a stochastic process

xo(t) on Rno is defined by

AB(x0) = lim
t→0

E[B(xo(t)) | xo(0)=x0]−B(x0)
t ,

for all the functions B : Rno → R for which the above limit exists for all x0 [104].

Let xo(t) be a stochastic process satisfying Eq. (3.34). The generator A of a twice

differentiable function B : Rno → R is given by [104]

AB(xo) =
∂B

∂xo
fo(xo, t) +

1

2
tr
(
go(xo, t)

> ∂
2B

∂xo2
go(xo, t)

)
.

where tr(.) computes the trace of a square matrix.

The stopped process x̃o(t) in Eq. (3.35) inherits the right continuity and strong Marko-

vian property of xo(t). It also shares the same infinitesimal generator corresponding to xo(t)

on Xo.
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3.4.3 Bounded Risk Using Stochastic Control Barrier Functions

In the following, we derive the conditions on the control input s.t. the risk is bounded

from above by the desired upper threshold. We build upon the idea of [107] to define a BF

whose level set of value one contains Xu so that the evolution of the BF’s expected value

can be used to compute upper bounds on pu. These bounds have been proved to exist in

[89] and are collected in [116] for finite-time stochastic system verification and feedback

control design. We use the computed upper bounds to establish conditions on the evolution

of the BF s.t. pu is bounded to p̄, and choose control actions according to these conditions

in real-time.

Definition 4. A twice differentiable function B : Xr × Xo → R+ is a Barrier Function

(BF) candidate w.r.t the sets Xr, Xo, Xu, if

B(x) ≥ 0 ∀x ∈ Xr ×Xo, and (3.39)

B(x) ≥ 1 ∀x ∈ Xu. (3.40)

Example 2. If h is a differentiable function, B(x) = e−γh(x) is a BF candidate for γ > 0

w.r.t Xu as defined in (3.37).

In what follows we assume that solutions to Eq. (3.33) are guaranteed to exist until at

least tg. As an example, a locally Lipschitz continuous state feedback control u(t) = u(x)

or a piecewise continuous time-varying control u(t) can guarantee the existence of solutions

to Eq (3.33) [80].

Definition 5. Consider the system of Eq. (3.33) with a control input u(t) = u(x) , aug-

mented with the stochastic system in Eq. (3.34). A BF candidate B is a Stochastic Barrier

Function (SBF) for this augmented system, if there exist a ≥ 0, b ≥ 0 s.t. the following

condition on the infinitesimal generator of B is satisfied ∀x ∈ Xr ×Xo,

∂B

∂x
Fcl(x) +

1

2
tr(go(xo, t)

> ∂2B
∂xo2

go(xo, t)) ≤ −aB(x) + b,

where Fcl(x) = [fr(xr) + gr(xr)u(x)), fo(xo, t)]
>.
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Given the current state of the defined augmented system x(t), an SBF provides a bound

on pu (probability of entering the unsafe set during the planning horizon T ):

Theorem 3. Consider the stopped process x̃(t) w.r.t the augmented system state x(t), define

B0 = B(x(t)), and pB = P
{

sup
t≤τ≤t+T

B(x̃(τ)) ≥ 1 | x̃(t) ∈ Xr ×Xo

}
. Then:

If a = 0 : pu ≤ pB ≤ B0 + bT. (3.41)

If a > 0, b ≤ a : pu ≤ pB ≤ 1− (1−B0)e−bT . (3.42)

If a > 0, a ≤ b : pu ≤ pB ≤
B0+(ebT−1) b

a

ebT
. (3.43)

Proof. The bounds are immediate corollaries of [89, Ch. 3, Thrm. 1, and Cor. 1-1].

Remark 6. Note that for B(x̃(t)) = B0 6= 0, and T = 0, the right hand side of inequalities

in Theorem. 3 do not reduce to zero. The reason is that the method of proof for finding

the bounds in [89] does not distinguish between the fixed/deterministic initial conditions for

B(x̃) and initial conditions which are random variables with expected value B(x̃(t)). Hence,

the results remain valid for the case of nonanticipative initial conditions with mean B(x̃(t)).

The definition of an SBF is more suitable for verifying stochastic safety properties of a

system with a closed-form state feedback control u(x). When solving a control synthesis

problem, additional conditions on a BF candidate should depend on the choice of the control

input:

Definition 6. A BF candidate B is a Stochastic Control Barrier Function (SCBF) for the

augmented system of Eq. (3.33), and (3.34), if there exist a control input u ∈ U s.t. for all

x ∈ Xr ×Xo the following condition is satisfied for some a ≥ 0, b ≥ 0.

∂B

∂x
(Fol(x) + ergr(xr)u) +

1

2
tr(go(xo, t)

> ∂2B
∂xo2

go(xo, t)) ≤ −aB(x) + b, (3.44)

where Fol(x) = [fr(xr), fo(xo, t)]
>, and er = [Inr , 0nr×no ]>, in which In is an n×n identity

matrix, and 0n×m is an n×m zero matrix.

While Theorem. 3 provides us with bounds on the risk as functions of a, b, B0, T , we still

need to provide conditions on a, b (B0 given x̃(t), and T are fixed) and the control input u
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to guarantee that the risk is always bounded by p̄. We derive these conditions using SCBFs

below:

Theorem 4. Suppose that there exists a SCBF B for the augmented system of Eq. (3.33),

and (3.34). If at each visited state x̃(t), the control input u ∈ U satisfies the conditions of

Def. 6 for some a ≥ 0, b ≥ 0 s.t. one of the conditions

a = 0, b ≤ (p̄−B0)/T, (3.45)

a > 0, b ≤ min(a,− 1
T ln 1−p̄

1−B0
), or (3.46)

a > 0, b(e
bT−1)

p̄ebT−B0
≤ a ≤ b (3.47)

hold, then for all t ≥ 0, pu ≤ p̄ holds.

Proof. Based on the assumptions, the function B becomes a SBF for the system in Eq.

(3.33) in closed loop with a control input u that satisfies the conditions of Thrm. (4), hence

the bounds in (3.41)-(3.43) are valid. Since the extra conditions on a, b in inequalities (3.45)-

(3.46) based on which the control is chosen bound the right hand sides of (3.41)-(3.43) to

p̄, we have pu ≤ p̄, and the proof is complete.

3.4.4 Risk Bounded Optimization-Based Control Design

In this section, we use the properties of SCBFs for synthesizing risk-based control inputs.

We use the constraint in Eq. (3.44) combined with the constraints on a, b in Eq. (3.41),

(3.42), or (3.43) in an optimization problem with a quadratic cost in u to find an optimal

control input that bounds the risk. Such an optimization problem has an objective function:

J(u) = (u− ud)TQ(u− ud), (3.48)

where ud is a desired value which is set to zero if input minimization is desired, and Q is

a diagonal matrix with non-negative elements. Hence, given p̄, the following optimization

problem can be solved each time new information about the states xr, xo is received, and the

obtained control value u∗ can be used to bound the risk until new information is received
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and a new control value is computed.

min
u∈U,a,b

J(u) (3.49)

s.t.


Ineq. (3.44)

Ineq. (3.45), or (3.46), or (3.47)

.

Note that in the above program the objective function and the first constraint are

respectively quadratic and linear in the search parameters u, a, b. However, the second

constraint imposed by Eq. (3.46), or (3.47) are nonlinear in either a or b. Hence, to

transform the program (3.49) to a quadratic program (QP) for which efficient solvers exist,

one can fix a in (3.45) or b in (3.46) to positive values, and find the other parameter to

satisfy the second constraint along with an optimal control u that bounds the risk to p̄.

Also, in order to minimize the risk when possible, parameters a and b can be included in

the objective function with negative and positive multipliers respectively (note the inverse

relationship of the upper bound in Eq. (3.43) with a and the direct relationship of the

upper bounds in equations (3.41)-(3.43) with b).

3.4.5 Goal Set Reachability

Recall that a solution to Prob. 3.4.1 should lead the states of the system (3.33) to a

goal set while bounding the risk. An advantage of using BF methods for safety is that they

can be combined with methods that seek other objectives like reachability. In this section,

we derive the conditions under which the control input of the system (3.33) lead the states

xr to a goal set Xg as in Eq. (3.36).

Definition 7 (Control Lyapunov like Function (CLF)). A differentiable function V : Xr →
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R is a Control Lyapunov like5 function (CLF), if it satisfies the following conditions

V (xr) > 0 ∀xr ∈ Xr/Xg, (3.50)

V (xr) ≤ 0 ∀xr ∈ Xg, (3.51)

∀xr ∈ Xr, ∃u ∈ U s.t: ∂V
∂xr

(fr(xr) + gr(xr)u) ≤ 0. (3.52)

If the control input u satisfies Ineq. (3.52) for all xr ∈ Xr, then V (x) decreases in value

until eventually V (x) ≤ 0 and hence the goal set Xg is reached. Hence, the reachability

objective can be unified with safety objectives by considering the program (3.49) with an

additional constraint imposed by a CLF V (x) as defined in Def. 7, as follows

min
u∈U,a,b,δ

J(u) + kδ (3.53)

s.t.



Ineq. (3.44)

Ineq. (3.45), or (3.46), or (3.47)

∂V
∂xr

(fr(xr) + gr(xr)u) ≤ δ

.

where k is a positive constant. A candidate for the function V (x) when ζ is a differentiable

function is V (x) = ζ(x) (see the definition of Xg in Eq. (3.36)).

As in [14], in the above program, the CLF constraint (3.52) is relaxed through δ. By

adding δ to the objective function, we allow for control inputs that minimally violate the

Lyapunov constraint (3.52) when instantaneous improvement toward the goal set contradicts

safety conditions. Since δ is considered in the objective function when safety and reachability

constraints do not conflict, they will be satisfied at the same time and Prob. 3.4.1 can be

solved by iteratively solving the program (3.53).

Program (3.53) can also be transformed into a QP by fixing either a or b. Also, these

parameters can be included in the objective function to scale down the risk when possible,

and to increase the chance of finding an admissible control u that satisfies the constraints

at a later time. Whereas, if the inequality constraints are always satisfied with equality, the

5Despite conventional Lyapunov functions the positive definiteness of V (x) is not neccessary since reach-

ability (and not stability) is the objective.
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chance of not finding an effective reaction to the stochastic process xo through an admissible

control u ∈ U increases in the next iterations. But also note that the hard constraint on a

or b prevents choosing riskier actions that possibly decrease the total objective function by

an immediate movement toward the goal set or by reducing the control cost J(u).

3.4.6 Control Design in the Presence of Multiple Unsafe regions

When designing a real-time control input for the system (3.33) by iteratively solving

an optimization problem, it may be required to consider safety w.r.t a varying number of

stochastic processes at each iteration. Furthermore, different bounds may be needed on

their associated risks. For instance, the system (3.33) can describe the model of a vehicle

that needs to be driven/controlled in presence of a varying number of other vehicles with

stochastic characteristics, and the risk bounds corresponding to larger, or emergency agent

vehicles may need to be set to smaller values too. In this case, the control action should

satisfy a varying number of safety constraints related to the agents.

Assume that in an specific iteration, M stochastic processes xo,i, i = 1, 2, ...,M defined

using SDEs of the form (3.34) - with fo = fo,i, go = go,i, w = wi - need to be considered in

the control design. We denote the corresponding unsafe sets with Xu,is. Each of these sets is

defined on the space of the augmented state x̃i = [xr, x̃o,i]
> using a relation over a function

hi(x̃i), like in Eq. (3.37). In order to bound pu,1, ..., pu,M (the probabilities of entering

the unsafe sets Xu,i within a given time-horizon) to p̄1, ..., p̄M , we need to consider M BF

candidates Bi for each unsafe set Xu,i based on the Def. 4. Note that one can consider a

smaller value for p̄i, if entering the unsafe set Xu,i has a more severe impact on the system.

The BFs then can be used to find a series of M conditions formed based on Thrm. 4. These

conditions can be added to program (3.53) to find a sub-optimal control input that bounds

the risks pu,i while reaching the goal set. Note that even with our framework that allows

for designing less conservative controllers, when multiple safety constraints are present or

U 6= Rl, the feasibility of the program (3.53) cannot be assured. Such a framework needs to

be considered as part of a larger architecture wherein a backup controller is implemented if
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no feasible solution to the program (3.53) is found.

3.4.7 Application to Nonholonomic Systems

The deterministic system (3.33) can describe a unicycle model that can be considered as

a simplified model of an AMS, i.e xr = [pxr , p
y
r , θr]

>, u = [u1, u2]>, where pxr , p
y
r , θr describe

the x and y position of the robot and its heading angle respectively, and u1, u2 are the linear

and angular velocities of the robot. Also fr = [0, 0, 0]>, and

ẋr(t) = gr(xr(t))u(t) =


cos(θr) 0

sin(θr) 0

0 1


u1

u2

. (3.54)

In this case, the projection of Xr into its first and second dimensions represents the

AMS’s workspace, i.e, the environment in which it is moving, and its projection into its

third dimension is [−π, π]. The goal set of the AMS can describe a set of position states in

R2:

Xg =: {xr ∈ Xr | ([pxr , pyr ]− xg)2 − r2
g ≤ 0}, (3.55)

where xg is the center and rg is radius of the goal set.

There are M agents around the AMS whose stochastic behavior can be modelled using

SDEs of the form (3.34). Assuming that each agent i ∈ 1, ...,M is moving in direct line

with slope γi, it can be modelled as

dxo,i(t) = [vc,i γivc,i]
>dt+ ci[1 γi]

>dwi, (3.56)

where ci is a constant, xo,i = [pxo,i, p
y
o,i]
> is the agent i’s position, vi = vc,i + wi is its

velocity where vc,i is a constant value and wi is a stochastic Wiener process representing

the stochastic changes in agent i’s velocity.

AMS’s collisions with moving agents are undesirable, hence one can define the unsafe

sets as

Xu,i =: {x̃i ∈ Xr ×Xo,i | ([pxr , p
y
r ]− [pxo,i, p

y
o,i])

2 − r2
i ≤ 0}, (3.57)

where x̃i = [xr, x̃o,i] is the stopped process corresponding to the augmentation of the AMS’s

state and the obstacle i’s state, xi = [xr, xo,i], and ri depends on the width/length/radius
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of the AMS and the agent i.

To find a control input u that leads the AMS to the goal set while bounding the proba-

bilities of collisions with agents 1, ...,M in finite-time T to p̄1, ..., p̄M , program (3.53) with

conditions based on BFs w.r.t Xu,is can be solved.

3.4.8 SCBFs and CLFs for Nonholonomic Systems

For the non-holonomic system of Eq. (3.54), with an unsafe set of the form (3.57) which

represents a set of position states of the system, the control inputs u1 and u2 (the linear and

angular velocities) have different relative degrees w.r.t the BF candidate Bi(xi) = e−γihi(xi).

The consequence is that while u1 appears on the right-hand side of the Ineq. (3.44), u2

does not. Hence, u2 cannot be derived accordingly to help render the system risk-bounded.

So the constraint in Thrm. 4 may not be satisfied if ∂Bi
∂xi

ergr(xr)u = ∂Bi
∂pxr

cos(θ) + ∂Bi

∂pyr
sin(θ)

is a zero vector, or if no admissible velocity u1 in the corresponding bounds in U can

satisfy the constraint in Thrm. 4. As in [97], to avoid involved control design methods,

we use a near-identity diffeomorphism to solve the problem for a closely related system.

Consider x̄r = [p̄xr , p̄
y
r , θ̄r], and the transformation x̄r := xr + l[R(θr)e1, 0]>, where l > 0

is a small constant that allows for approximating xr with x̄r with the needed precision,

R(θr) =

cos(θr) − l sin(θr)

sin(θr) l cos(θr)

, and e1 = [1, 0]>. Hence:

˙̄xr(t) =


cos(θr) − l sin(θr)

sin(θr) l cos(θr)

0 1


u1

u2

 . (3.58)

In the full rank system of Eq (3.58) both u1, u2 appear in Ineq. (3.44), and they can both

contribute to satisfaction of the condition. Note that the maximum distance of xr from

x̄r is l. Hence, defining x̄i = (x̄r, x̃o,i), the unsafe sets can be expanded to account for the

introduced error as

X̄u,i =: {x̄i | ([p̄xr , p̄yr ]− [pxo,i, p
y
o,i])

2 − (ri + l)2 ≤ 0}. (3.59)
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Figure 3.10: Top: Initial Positions of the Ego Vehicle and Traffic Participants. Bot-

tom: Final Position of the Traffic Participants Alongside With the Time-stamped Tra-

jectory of the Ego Vehicle From Start to Finish. Simulation Video Can Be Found At

https://youtu.be/hqGe8h1erzA.

3.4.9 Experimental Results

In this section, we illustrate our method on a reach-avoid problem in a highway scenario.

An ego vehicle in the rightmost lane needs to reach the left-most lane while avoiding colli-

sions with other traffic participants. The ego vehicle is modelled using the unicycle model

of Eq. (3.54) with the initial condition xr(0) = [0, 0, 0]>. The linear and angular velocities

of the vehicle are considered to be in the set u ∈ U = {0 ≤ u1 ≤ 2, −π/6 ≤ u2 ≤ π/6}. It

is assumed that the traffic participants move in their lanes with stochastic velocities close

to the highway’s desired speed, and, hence, they are modelled using the SDE in (3.56) with

vc,i = 1.5, ci = 0.2, and γi = 0. We consider a scenario with 15 traffic participants with

different initial states xo,i(0). The top subplot in Fig. 3.10 shows the position of the ego

vehicle (in blue) and the traffic participants (in red). The goal set (shown in green) is

Xg = {xr|(pyr − 3)2 ≤ 0.12}.

We define the sets Xu,i, i = 1, ..., 15 that include the augmented state of the ego car
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Figure 3.11: Figures Show Control Input Signals, Maximum Upper Bound to pbi over All

the Traffic Participants, Minimum hi(X) over All the Traffic Participants Respectively.

and the traffic participant i, x̃i, as in Eq. (3.57) with ri = 0.5, i.e:

Xu,i = {x̃i ∈ Xr ×Xo,i | ([pxr , pyr ]− [pxo,i, p
y
o,i])

2 − 0.52 ≤ 0}.

At time t, the control input u(t) should be designed to bound the risks of entering

the sets Xu,i within a 1-second time horizon (T = 1) by p̄i = 0.1 for all i = 1, ..., 15. In

order to find such a control input using BFs of the form Bi(xi) = e−γihi(xi), we transform

the model of the ego vehicle using Eq. (3.58) with l = 0.01. In order to compensate for

the transformation error, we define new unsafe sets as in Eq. (3.59). Hence, we define

Bi(x̄i) = e−γihi(x̄i) with γi = 5 and hi(x̄i) = ([p̄xr , p̄
y
r ]− [pxo,i, p

y
o,i])

2 − (0.5 + l)2.

At each state x̄r in order to find a sub-optimal control input u that guides the ego

vehicle to reach the goal set in the top lane, while bounding the risk to p̄i = 0.1, we

formulate the quadratic program (3.53), by fixing ai = 1, and using constraints from Ineq.

(3.46), and V (x̄r) = (p̄yr − 3)2− (0.1 + l)2. To guide the program to minimize the risk when

possible and avoid a risky action when it is not necessary, we will add the variables bi to

the objective function. Also, at each state x̄r, to improve the efficiency, we only consider

the SCBF constraints related to the traffic participants that are at a distance of 3 or less

of the ego vehicle. Finally, we add an additional soft constraint to the QP to encourage

smaller input changes from iteration to iteration. The bottom subplot in Fig. 3.10, shows
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the resulting - time-stamped - trajectory of the ego vehicle and the final positions of the

traffic participants. The computed control inputs u1 and u2 are admissible and lie in the

corresponding bounds of U . The control input related to the angular velocity (u2) is shown

in the top subplot in Fig. 3.11. The middle subplot shows the maximum p̄Bi over all the

traffic participants, where p̄Bi = 1− (1−B0)e−biT is the upper bound to the risk pui (see Eq.

(3.42)). The bottom subplot shows the minimum hi(x̄i) over all the traffic participants.

From the figures, we can see that p̄Bi , and, hence the chance of an upcoming collision in

the next 1 second is bounded to 0.1. The correlation between the bottom two subplots

shows that as expected, the risk increases as the distance between the ego vehicle and some

traffic participant (mini(hi(x̄i))) is about to decrease. Another observation is that when risk

increases and approaching the goal set conflicts with risk-related constraints, the computed

angular velocity (u2) steers the ego vehicle away from the traffic participants in the opposite

direction of the goal set. So, when necessary reachability objective is postponed until it can

be satisfied with the safety constraints at the same time. Note that our experiments show

that the task cannot be completed if the risk is not tolerated and the input u is expected

to make the probability of the undesired event zero as required in previous works like [28,

Cor. 1].

3.5 Conclusion and Future Work

In this chapter, we proposed different methods for control synthesis w.r.t requirements

of interest. The proposed methods consider the need for the implementation of efficient

controllers for real-time computations, and non-conservative low-risk decisions. We started

by focusing on general TL formulas, and later focused on the fragment of reach-avoid

specifications that can be specified as ‘2 safe ∧ 3 Goal’ that arise in many applications to

enable more efficient design strategies:

In Section 3.2, given a system model, we proposed a systematic approach to training

neural network controllers that satisfy system properties given in STL. The loss functions

for training the NNs are inspired by the robustness of the STL formula which is defined
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over temporal sequences corresponding to the closed-loop system response. We provided a

formulation for gradient-based training which solves this issue. Furthermore, after training

the NN with random samples, we iteratively search for adversarial samples to the STL

property, add them to the sample set and retrain the NN. We demonstrate our approach

on a 6 dimensional model of a quadrotor that needs to accomplish a mission specified in an

STL formula.

While we used state feedback neural network controllers, a controller might require

more information than current states to satisfy general STL properties. Specifying features

that are required for satisfying different STL properties will be investigated in future work.

Dynamical NN controllers for satisfying STL formulas will also be studied.

In Section 3.3, we studied Control Barrier Functions (CBF) in presence of disturbances.

These functions define constraints on the control input that can be used in an optimization

problem to find safe sub-optimal control inputs that enforce reach-avoid specifications. As

solving these optimization problems might not be possible in real-time, we presented a

framework to train NN controllers that can be used online to predict the outcome of the

optimization problems. Future work will use methods like [45] to establish the safety of the

learned controller and counter-example generation methods as in [138] to speed up training.

Control barrier functions that enforce STL satisfaction have also been explored recently in

[96]. Hence, future work can also include training NNs using imitation learning based on

QPs that enforce STL satisfaction using these CBFs.

While in sections 3.2, and 3.3 the NNs are trained to satisfy the TL or reach-avoid

specification, there is no guarantee that they satisfy these requirements. Hence, future work

can also work on methods for designing verified NN controllers. One possible approach is to

consider CBF constraints during the training procedure and enforce their satisfaction when

choosing the weights of the NN.

Section 3.4 presented the conditions under which the system’s probability of failure in a

finite time becomes bounded to desired thresholds. These conditions depend on BF candi-
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dates that contain unsafe operating conditions and constrain the growth of their expected

value to bound the probability of failure. These constraints combined with constraints

based on Lyapunov functions are used in a QP to design less conservative low-risk control

inputs that stabilize the system or lead the system to a set of goal states, online. Our

case study uses the proposed constrained QP to successfully drive a vehicle that needs to

change lanes on a crowded highway while bounding the risk of collisions. In the future,

we consider using the work in [75] to modify our proposed QPs to achieve a guaranteed

asymptotic convergence rate. A comparison between our approach with other notions of

risk, like the Conditional Value at Risk (CVaR) [6] for planning can be beneficial, too.

Furthermore, we may be able to improve the bounds derived in our work using the results

of [123] for exponential BFs. Finally, motivated by their application, another line of future

work can include designing risk-bounded controllers based on stochastic barrier functions

for stochastic systems whose states need to be estimated based on noisy measurements.
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the use of neural networks in control systems. International Journal of Robust and
Nonlinear Control: IFAC-Affiliated Journal, 12(11):959–985, 2002.

[62] Martin T. Hagan, Howard B. Demuth, and Orlando De Jesus. An introduction to
the use of neural networks in control systems. International Journal of Robust and
Nonlinear Control, 12(11):959–985, 2002.

[63] Nikolaus Hansen and Stefan Kern. Evaluating the cma evolution strategy on multi-
modal test functions. In International Conference on Parallel Problem Solving from
Nature, pages 282–291. Springer, 2004.

[64] Nikolaus Hansen and Andreas Ostermeier. Completely derandomized self-adaptation
in evolution strategies. Evolutionary computation, 9(2):159–195, 2001.

[65] Mohammad Hekmatnejad, Shakiba Yaghoubi, Adel Dokhanchi, Heni Ben Amor, Avi-
ral Shrivastava, Lina Karam, and Georgios Fainekos. Encoding and monitoring re-
sponsibility sensitive safety rules for automated vehicles in signal temporal logic. In
Proceedings of the 17th ACM-IEEE International Conference on Formal Methods and
Models for System Design, page 6. ACM, 2019.

[66] Thomas A Henzinger, Peter W Kopke, Anuj Puri, and Pravin Varaiya. What’s decid-
able about hybrid automata? Journal of computer and system sciences, 57(1):94–124,
1998.
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