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ABSTRACT

Recently, there has been a notable surge in the development of generative mod-

els dedicated to synthesizing 3D scenes. In these research works, Neural Radiance

Fields(NeRF) is one of the most popular AI approaches due to its outstanding per-

formance with relatively smaller model size and fast training/ rendering time. Owing

to its popularity, it is important to investigate the NeRF model security concern. If

it is widely used for different applications with some fatal security issues would cause

some serious problems. Meanwhile, as for AI security and model robustness research,

an emerging adversarial Bit Flip Attack (BFA) is demonstrated to be able to greatly

reduce AI model accuracy by flipping several bits out of millions of weight parameters

stored in the computer’s main memory. Such malicious fault injection attack brings

emerging model robustness concern for the widely used NeRF-based 3D modeling.

This master thesis is targeting to study the NeRF model robustness against the ad-

versarial bit flip attack. Based on the research works the fact can be discovered that

the NeRF model is highly vulnerable to BFA, where the rendered image quality will

have great degradation with only several bit flips in the model parameters.
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Chapter 1

INTRODUCTION

Deep Neural Networks (DNNs) have contributed great success in the computer vision

field, like image classification, object detection, and speech recognition. Besides those

areas, 3D scene modeling has become more and more important to attract researchers’

interest. Those 3D scene modeling techniques can create entire scenes for imagery or

animation for Automotive, Aerospace industries and Virtual reality (VR) and aug-

mented reality (AR) use. On those 3D scene modeling techniques, Neural Radiance

Fields (NeRF)(1) is one of the most efficient methods to generate a new view based on

limited quantity images. With its increasing popularity, the model robustness study

of Neural Radiance Fields(1) is quite important to ensure the security of NeRF. This

thesis highlights the potential safety concern of NeRF against Adversarial Bit Flip

Attack(2). The reason why chose the Adversarial Bit Flip Attack as the target attack

method is its outstanding performance on the hamper DNN accuracy with extremely

small model parameter noise injection. In the previous works, A. Rakin, et al. have

shown that Bit Flip Attack can degrade ResNet 18 top-1 accuracy from 69.8% to

0.1% by flipping 13 bits out of 93 million bits stored in the computer’s main memory.

Although 3D scene modeling uses the Peak signal-to-noise ratio(PSNR) of rendering

images to evaluate performance instead of classification accuracy, it is worth investi-

gating the NeRF model’s robustness against Adversarial Bit Flip Attack.
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Chapter 2

BACKGROUND

2.1 Neural Radiance Fields (NeRF)

The 5D(x,y,z,θ, ϕ) neural radiance field encapsulates a scene’s characteristics by

detailing the density and emitted radiance in a particular direction at any given

spatial point (1). When we compute the color of a ray traversing through the scene,

we apply principles derived from traditional volume rendering techniques.

(RGB, σ) = F (x, y, z, θ, ϕ)

Figure 2.1: The Visualization of NeRF Architecture

The Nerf multi-layer perceptron contains 11 layers, taking the input direction

y(x). It undergoes four fully connected layers and incorporates a skip connection that

concatenates this input with the activation of the fifth layer. The first eight layers are

dedicated to executing positional encoding information, denoted as points layer 0-7.

Succeeding the points layers is the view layer, which concatenated input information

on the viewing direction y(d) for training. This layer, characterized by the symbol σ,
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represents volume density and is processed by the alpha layer for density parameters.

All the previously mentioned layers use the Rectified Linear Unit (ReLU) activation

function. In contrast, the final layer, the RGB layer, uses the sigmoid activation

function to generate the emitted RGB radiance at position x, as perceived by a ray

with direction d.

C(r) =

∫ tf

tn

T (t)σ(r(t))c(r(t), d)dt

The volume density can be conceptualized as the infinitesimal probability of a

ray concluding its trajectory at a particle positioned at location x. The anticipated

color of a camera ray is constrained in the near and far limits. The function T(t)

represents the cumulative transmittance along the ray, extending from tn to tf. The

volume density, denoted as σ(x), can be construed as the infinitesimal probability of

a ray terminating at a particle located at the position x. The camera ray function is

denoted as r(t), where C(r) signifies the expected color, and d is the viewing direction.

This function represents the cumulative transmittance along the ray’s path from tn

to t. To generate a view from our continuous neural radiance field, it is necessary to

estimate this integral for a camera ray that traces through each pixel of the virtual

camera as per the desired perspective.

2.2 Bit Flipped Attack (BFA)

The Bit-Flip Attack (BFA) is an adversarial technique designed to disrupt a Deep

Neural Network (DNN) system by altering a small fraction of the weight parameters

stored in Dynamic Random-Access Memory (DRAM) (3). This method leverages the

row-hammer security exploit to manipulate specific bits in the DRAM, subsequently

flipping their binary values by the gradient ranking. The main idea of Bit-Flip Attack

(BFA) is flipping bits based on their gradients through the ascending rank of the DNN

loss. Subsequently, this operation executes bits flipping by leveraging the inference

3



loss of the Deep Neural Network (DNN) L, resulting in the identification of perturbed

bits. The operation can be simply written as follows:

b̂ = b+ sign(∇bL)

Since previous research(2) presents, deep neural networks exhibit vulnerability to

adversarial examples due to their extreme linearity(4). Applying the Bit-Flip Attack

can lead to significant misclassification of the model with a small perturbation of

the binary representation. Previous experimental results(2) demonstrate its potency,

where the top-1 accuracy of ResNet 18 drops to 0.1% by flipping a 13 out of 93 million

bits in the ImageNet dataset(5).
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Chapter 3

METHODOLOGY

3.1 Overview

This subsection introduces the methodology of how to perform Bit Flip Attack on

Neural Radiance Fields (NeRF) multi-layer perceptron. Fig below shows the overview

of the NeRF MLP attack frame. We quantize floating point NeRF MLP parameters to

int8 format. The reason why we perform the attack on the quantized model, not the

float model is that previous research(6) shows quantized models are robust to single-

bit corruption. This phenomenon arises due to model quantization, a technique in

which full-precision model parameters are substituted with low-bit-width integers or

binary representations. This replacement substantially constrains the potential range

of parameter values (60; 61).

After the quantized parameters were stored in DRAM. We can perform fault

injection attacks to investigate the vulnerability of NeRF MLP parameters. This

fault injection attack BFA is based on rowhammer(7) to flip the bits of the parameters

stored in memory.

3.2 On Training Quantization

This subsection introduces the quantization method we used for the experiments.

First, we use bi-linear layers to replace the original linear layers in MLP. The bi-

linear layer can store the necessary information to do further steps. Then, train the

new substitute MLP with bi-linear layers. At last, model quantization and weight

quantization can be applied to substitute MLP. After those steps, we would get a
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Figure 3.1: Overview of Applying Quantization and Perform Bit Flip Attack on
DRAM

quantized NeRF model with a small performance deduction.

3.3 Adversarial Bit Flip Attack

This subsection introduces the algorithm of progressive bit search to locate the

most vulnerable bits in the NeRF MLP and flip them in DRAM. Figure 3.2 shows the

flowchart of this procedure. After the quantization conversion, the model is stored in

DRAM in int8 format. The progressive bit search can be separated into two parts:

in-layer search, and cross-layer search.

In layer search, this part of the algorithm is searching for n most vulnerable bits

from Bk−1
l in target layers. The algorithm uses the input x and target t to calculate

the gradients of bits and the DNN loss. Then rank those bits according to their

gradients in descending order, the process can be written as:

b̂l
k−1

= Topnb

∣∣∣∣∇B̂l
k−1L(f(x;

{
B̂k−1

l

}L

l=1
), t)

∣∣∣∣
The next step involves applying Bit-Flip Attacks (BFA) to the bits that have been

previously identified, resulting in new gradients and a modified loss. This altered

gradient and loss serve as the evaluation metrics to gauge the increase in loss due

to the BFA. Once the evaluation is complete, the information about the vulnerable

6



bits is stored in the data profile, then the attacked bits are reverted to their original

values for further calculations.

The cross-layer search conducts BFA across the entire network, particularly dur-

ing the k-th iteration of the progressive bit search process. During this phase, the

cross-layer search commences by independently executing in-layer searches on each

layer, subsequently yielding a set of losses. The bits exhibiting the maximum loss

in each layer are then identified. The ranking of this loss set reflects the order of

the largest gradient changes resulting from the application (or non-application) of

BFA. Succeeding this stage, the progressive bit search proceeds to the next iteration.

Upon the completion of all iterations, the data profile should contain the top-n most

vulnerable bits across the target layers.
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Figure 3.2: Overall Flowchart of Applying Bit Flip Attack and How to Find the
Most Vulnerable Bits
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Chapter 4

EXPERIEMNT

4.1 Data Set

We are using NeRF Synthetic dataset(1) for training NeRF MLP. NeRF Synthetic

dataset contains 400 images in the size of 800*800 for each scene. Those images have

8 scenes with the camera angle and camera transform matrices for each image. The

experiment is mainly on the Lego scene, and the PyTorch NeRF code is a reference

to Yen and Lin’s work(8).

4.2 Experiment Goal

We want to find out if does Adversarial Bit Flip Attack also works on the image

synthesis models rather than the classification model. If it works, how many bits are

needed to flip to make large degradation? And, which layer is the most vulnerable

layer? Those questions are the goals for designing the following experiments.
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Chapter 5

RESULT

The results shown in the following tables are the average of 10 separate runs. And

each run stops at PSNR around or below 10 or the result is saturated.

5.1 Quantization Result

After applying the quantization method to the NeRF MLP part, the result is

shown in Figure 5.1. The PSNR drops 3.53, and the Structural Similarity Index

(SSIM) drops 0.0104. The image quality does not have degradation based on evaluat-

ing PSNR and SSIM differences. However, the model size is about 1/4 of the original

size, which matches the fact that the model is represented from float 32-bit numbers

to integer 8-bit numbers.

Figure 5.1: Figure of Quantization Result

5.2 Overall Vulnerability Analysis

In this section, we want to analyze the result of performing Bit Flip Attack on

the entire Network. By comparing the result with the original output and the output

10



Table 5.1: Table of Quantization Result

from performing BFA on the entire network,(fig. 5.2 and table 5.2) we can easily find

flipping 1 bit suffices to reduce the PSNR to 10 and SSIM to 0.5. It clearly shows

NeRF MLP is vulnerable to BFA. Since NeRF MLP only contains linear layers, BFA

has better performance when the target has extreme linearity. But when increasing

the flipping bit numbers, the result is saturated.

Figure 5.2: Figure of Apply Bit Flip Attack to All Layers

Table 5.2: Table of Bit Flip Attack on All Layers

5.3 Layer-wise Vulnerability Analysis

The analysis of the results obtained after executing the Bit Flip Attack (BFA)

on each layer yields intriguing insights. On the application of layer-wise BFA on the

11



NeRFMLP, the findings, as depicted in Figures 5.3 and 5.4, as well as Table 5.3, reveal

noteworthy observations. Flipping bits on layers points. from 0 to points.4 manifests

as the creation of shadows on the object’s side. Despite the uniform reduction of

PSNR around 10, the difference in SSIM indicates differing levels of impairment.

Specifically, performing BFA on layers points. from 0 to points.4 appears to impact

the model in some way.

Flipping bits on layers points.5 to points.7 results in changes to the object’s sur-

roundings, particularly affecting the plane on which the object is positioned. Notably,

the result for points.7 shows that flipping 10 bits can significantly disrupt structural

similarity (SSIM reduced to 0.05) with a PSNR of 3.94.

Figure 5.4 illustrates that flipping just 1 bit on the view layer and RGB layer

is sufficient to decrease the PSNR to 10. This result suggests that the view layer

and RGB layer exhibit similar vulnerabilities in resisting noise from BFA. However,

performing BFA on the RGB layer has a less pronounced impact on SSIM (reduced

to 0.79) compared to the view layer results (SSIM reduced to 0.51). The view layer

result also matches the overall BFA result, which proves the correctness of the algo-

rithm. These findings underscore the distinct sensitivities of different layers to Bit

Flip Attacks and provide valuable insights into their vulnerabilities and implications

on model performance metrics.

Table 5.3: Table of Bit Flip Attack on Single Layer
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Figure 5.3: Figure of Bit Flip Attack on Single Layer from points 0 to points 7 layer

Figure 5.4: Figure of Bit Flip Attack on Single Layer for view, alpha, and RGB
layer

13



Chapter 6

DISCUSSION AND FUTURE

6.1 Conclusion and Discussion

Our experiments provide interesting observations for the vulnerability of the NeRF

model. First, we discovered that the view layer is the most vulnerable layer in NeRF

MLP. Second, if the attacker wants to focus on reducing the structure similarity,

attacking the last layer of the positional encoding layer (points.7) is more effective.

6.2 Future and Extension

Based on this thesis study, there are many interesting findings to extend. While

attacking positional coding layers, it would create some shadow objects on the side of

scenes. It might be able to design a specific attack creating confusing noise around the

object. Flipping one bit in the view layer is enough to make a really large degradation

of PSNR. We want to verify how this approach performs in complex NeRF, like pixel

NeRF(9), GNeRF(10), etc. If we can find the same kind of vulnerable point in

complex NeRF, then it becomes a serious issue.
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