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ABSTRACT

A massive volume of data is generated at an unprecedented rate in the information

age. The growth of data significantly exceeds the computing and storage capacities of

the existing digital infrastructure. In the past decade, many methods are invented for

data compression, compressive sensing and reconstruction, and compressed learning

(learning directly upon compressed data) to overcome the data-explosion challenge.

While prior works are predominantly model-based, focus on small models, and not

suitable for task-oriented sensing or hardware acceleration, the number of available

models for compression-related tasks has escalated by orders of magnitude in the

past decade. Motivated by this significant growth and the success of big data, this

dissertation proposes to revolutionize both the compressive sensing reconstruction

(CSR) and compressed learning (CL) methods from the data-driven perspective.

In this dissertation, a series of topics on data-driven CSR are discussed. Individ-

ual data-driven models are proposed for the CSR of bio-signals, images, and videos

with improved compression ratio and recovery fidelity trade-off. Specifically, a scal-

able Laplacian pyramid reconstructive adversarial network (LAPRAN) is proposed

for single-image CSR. LAPRAN progressively reconstructs images following the con-

cept of the Laplacian pyramid through the concatenation of multiple reconstructive

adversarial networks (RANs). For the CSR of videos, CSVideoNet is proposed to

improve the spatial-temporal resolution of reconstructed videos.

Apart from CSR, data-driven CL is discussed in the dissertation. A CL framework

is proposed to extract features directly from compressed data for image classification,

objection detection, and semantic/instance segmentation. Besides, the spectral bias

of neural networks is analyzed from the frequency perspective, leading to a learning-

based frequency selection method for identifying the trivial frequency components

which can be removed without accuracy loss. Compared with the conventional spa-
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tial downsampling approaches, the proposed frequency-domain learning method can

achieve higher accuracy with reduced input data size.

The methodologies proposed in this dissertation are not restricted to the above-

mentioned applications. The dissertation also discusses other potential applications

and directions for future research.
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Chapter 1

INTRODUCTION

1.1 Motivation

We are living in a world that massive data is generated at an unprecedented rate.

According to Gartner’s forecast, 14.2 billion devices has been connected to the internet

in 2019, and the number will increase to 25 billion by 2021 gar (2018). Meanwhile,

five quintillion (ten to the eighteenth) bytes of data are produced every day, and the

large-scale data comes from diverse information sources. For example, 1.8 million

images are uploaded to social networks every day. Internet-of-Things (IoT) sensors

generate and transmit data uninterruptedly and will generate 79.4 zettabytes (ZB)

of data in 2025. The growth of data in the present data-explosion era significantly

exceeds the capacity of computing and storage devices.

It’s a challenging task to solve the data explosion problem, and the challenges

lie mainly in twofold factors. First, sensing and acquisition of raw data are diffi-

cult. In various emerging applications, it may simply be too costly, or even physically

impossible, to build devices capable of acquiring samples at the necessary Nyquist

rate. Though compressive sensing (CS) emerges as a promising sensing technique

that enables a substantial reduction in the sampling and computation costs, con-

ventional model-based CS reconstruction methods are computationally intensive and

not suited for hardware acceleration due to the iterative nature of optimization al-

gorithms. Second, compressed learning is difficult. Many emerging applications with

great promise involve the detection of very specific signals and sensing of signal at-

tributes, which requires the system to be fulfilled with the capability of task-oriented
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sensing. The key to achieve task-oriented sensing is integrating data sensing, com-

pression, and processing into a unified intelligent system. Hence we are motivated

to design a system that eliminates the back-and-force of compression-decompression

routines and can directly process compressed data in machine learning tasks without

data reconstruction.

Reconstruction from Compressed Data. Compressive sensing (CS) is an

emerging technique in signal processing as an alternative to traditional Shannon-

Nyquist sampling. CS allows a lower sampling rate than the Nyquist sampling rate,

and the number of measurements is reduced during acquisition so that additional

compression is not required. Although CS enjoys the above advantage, the recon-

struction of CS is complicated. Prior model-based methods Becker et al. (2011a,b);

Dong et al. (2014b); Li et al. (2009); Metzler et al. (2016); Blumensath and Davies

(2009); Huggins and Zucker (2007); Tropp and Gilbert (2007) assume the signal is

sparse in the time domain, or a transform domain. The above methods suffer from

two major drawbacks limiting their practical usage. First, these optimization-based

methods are computationally intensive and not suitable for hardware acceleration.

Second, the sparsity constraint may not be satisfied for under-researched signals.

Even well-studied signals such as natural images do not have an exactly sparse rep-

resentation on any known basis (DCT, wavelet, or curvelet) Metzler et al. (2016).

Therefore, the strong dependency on the sparsity constraint usually causes degraded

recovery quality in the conventional model-based methods.

The New Trend of Data-Driven Compressive Sensing. While model-based

CS methods rely on the sparsity constraint that may not be ubiquitously satisfied, we

turn to apply data-driven CS motivated by the recent success of deep neural networks.

We propose diverse models for the compressive reconstruction of bio-signals, images,
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and videos. Compared to the model-based method, the data-driven approach delivers

higher reconstruction quality and faster runtime speed.

Learning from Compressed Data. As illustrated above, another prominent

challenge for solving the data explosion problem is building a compressed learning

system that can directly learn from compressed data. Conventional machine learning

systems usually perform a compression, transmission, decompression, and proces-

sion routine. In comparison, the compressed learning system eliminates the back-

and-force of compression-decompression to save computations. However, prior works

suffer from poor performance due to the critical information loss incurred by data

compression methods that are not designed for compressed learning. In this work,

we propose a frequency-domain compressed learning approach to improve the accu-

racy in prevailing computer vision tasks such as image classification, object detec-

tion, and semantic/instance segmentation. The proposed method delivers a better

computation-accuracy trade-off and reduces the communication bandwidth between

CPU and GPU, hence suitable for hardware acceleration.

1.2 Dissertation Contributions

As illustrated in Fig. 1.1, We propose models for non-standard compression method,

i.e., CS and standard compression such as JPEG. We start by designing a family of

deep neural networks for the compressive reconstruction of bio-signals, images, and

videos. Then we propose a compressed learning approach that is compatible with

the JPEG compression standard. The key contributions of this dissertation can be

summarized as follows.

• The first research goal is to enhance the model-based compressive reconstruc-

tion methods by introducing the data-driven concept. Specifically, we propose a

data-driven CS framework for bio-signals towards improved restricted isometry
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Figure 1.1: Dissertation overview: proposed architectures for compressive recon-
struction and compressed learning.

property (RIP) and signal sparsity, which co-optimizes the sensing matrix and

the dictionary by exploiting the intrinsic data structure of bio-signals. The pro-

posed method significantly enhances the reconstruction quality and compression

ratio trade-off for the CS of bio-signals.

• The second research mission is to develop an end-to-end data-driven method

for the compressive reconstruction of images and videos by leveraging the enor-

mous modeling capacity of deep neural networks. Instead of specifying a strong

sparsity assumption on the data used in the model-based methods, the proposed

method seeks to avoid any domain-specific presumptions and allows end-to-end

compressive reconstruction. Necessary features required for reconstruction are

automatically learned by the network itself without any manual interference.

Hence, the learned model has better generalization capability and broader ap-

plication scenarios.
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• The third research goal is to develop a compressed learning method from the

frequency perspective for task-oriented computer vision tasks. We analyze the

spectral bias of neural networks from the frequency perspective and propose a

learning-based frequency selection method to identify the trivial frequency com-

ponents which can be removed without accuracy loss. The proposed method

enables efficient learning in the compressed domain and leverages identical struc-

tures of the well-known neural networks, such as ResNet-50, MobileNetV2, and

Mask R-CNN. Hence, the proposed method can be used as a universal replace-

ment for existing RGB-based computer vision systems.

1.3 Roadmap

In chapter 2, we proposed a general framework that utilizes compressive sens-

ing and online dictionary learning simultaneously. The introduction of the on-

line dictionary learning technique produces a dictionary that carries individual

characteristics of the original signal. The produced signal has an even sparser

representation compared to pre-determined dictionaries. We also demonstrate

the data dimension are effectively reduced because of the learned dictionary.

The content of this chapter is based primarily on Xu et al. (2016).

Chapter 3 extends chapter 2 by introducing a data-driven CS framework that

can learn signal characteristics and personalized features from any individual

recording of physiologic signals to enhance CS performance with a minimized

number of measurements. Such improvements are accomplished by a co-training

approach that optimizes the sensing matrix and the dictionary towards im-

proved restricted isometry property and signal sparsity, respectively. The con-

tent of this chapter is based primarily on Xu et al. (2017).
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Chapter 4 addresses the single-image compressive sensing (CS) and recon-

struction problem. We propose a scalable Laplacian pyramid reconstructive

adversarial network (LAPRAN) that enables high-fidelity, flexible, and fast CS

images reconstruction. LAPRAN progressively reconstructs an image follow-

ing the Laplacian pyramid concept through multiple stages of reconstructive

adversarial networks (RANs). At each pyramid level, CS measurements are

fused with a contextual latent vector to generate a high-frequency image resid-

ual. We demonstrate that LAPRAN can produce hierarchies of reconstructed

images and each with an incremental resolution and improved quality. The

scalable pyramid structure of LAPRAN enables high-fidelity CS reconstruction

with a flexible resolution that is adaptive to a wide range of compression ratios

(CRs), which is infeasible with existing methods. The content of this chapter

is based primarily on XU et al. (2018a).

Chapter 5 addresses the real-time encoding-decoding problem for high-frame-

rate video compressive sensing (CS). Unlike prior works that perform recon-

struction using iterative optimization-based approaches, we propose a non-

iterative model, named “CSVideoNet”, which directly learns the inverse map-

ping of CS and reconstructs the original input in a single forward propagation.

To overcome the limitations of existing CS cameras, we propose a multi-rate

CNN and a synthesizing RNN to improve the trade-off between compression

ratio (CR) and spatial-temporal resolution of the reconstructed videos. We

also show that due to the feedforward and high-data-concurrency natures of

CSVideoNet, it can take advantage of GPU acceleration to achieve three or-

ders of magnitude speed-up over conventional iterative-based approaches. The

content of this chapter is based primarily on Xu and Ren (2018).
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In chapter 6, we analyze the spectral bias from the frequency perspective

and propose a learning-based frequency selection method to identify the trivial

frequency components which can be removed without accuracy loss. The pro-

posed learning method leverages identical structures of the well-known neural

networks, such as ResNet-50, MobileNetV2, and Mask R-CNN, while accepting

the frequency-domain information as the input. We illustrate that compared

to the conventional downsampling operation in dealing with high-resolution im-

ages, learning in the frequency domain with static channel selection can achieve

higher accuracy than the conventional spatial downsampling approach and fur-

ther reduce the input data size. The content of this chapter is based primarily

on Xu et al. (2020).

In Chapter 7, we summarize the dissertation and provide insights for future

research and discuss a broad range of the proposed method of learning in the

compressed domain.
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Chapter 2

DATA-DRIVEN ONLINE DICTIONARY LEARNING FOR COMPRESSIVE

SENSING

2.1 Introduction

The existing heathcare model of the medical system is based on episodic exam-

ination or short-term monitoring for disease diagnosis and treatment. The major

issues in such a system are the overlook of individual variability and the lack of

personal baseline data, due to limited frequency of measurements. Continuous or

non-intermittent monitoring is the key to create big data of individual health record

for studying the variability and obtaining the personal baseline. Recent advancements

in wireless body area networks (WBAN) and bio-sensing techniques has enabled the

emergence of miniaturized, non-invasive, cost-effective wireless sensor nodes (WSNs)

that can be deployed on the human body for personal health and clinical monitoring

Mamaghanian et al. (2011). Through WBAN, the monitored data can be transmitted

to a near-field mobile aggregator for on-site processing. Through Internet infrastruc-

tures, the data can be uploaded to remote servers for storage and data analysis. These

technology advancements will eventually transform the existing model of health re-

lated services to continuous monitoring for disease prediction and prevention Varshney

(2007). Such a wireless health revolution will make healthcare systems more effective

and economic, benefiting billions of individuals and the society they live in.

One of the key challenges faced by the long-term wireless health monitoring is

the energy efficiency of sensing and information transfer. Due to the limited battery

capacity of WSNs, continuous sensing inevitably increases the frequency of battery
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recharging or replacement, making it less convenient for practical usage. In the WSNs

for bio-sensing applications, the energy cost of wireless transmission is about 2 orders

of magnitude greater than other operations (e.g., analog-to-digital conversion (ADC)).

State-of-the-art radio transmitters exhibit energy efficiency in the nJ/bit range while

every other component consumes at most tens of pJ/bit Chen et al. (2012). Therefore,

reducing the data size for information transfer is the key to improve energy efficiency.

The CS framework Mamaghanian et al. (2011); Wang et al. (2015) offers a uni-

versal and simple data encoding scheme that can compress a variety of physiological

signals, providing a viable solution to realizing energy-efficient WSNs for long-term

wireless health monitoring. However, the compression ratio (CR) demonstrated by

existing frameworks is limited given a signal recovery quality required for diagonosis

purposes. In Ansari-Ram and Hosseini-Khayat (2012); Chae et al. (2013), percent

root-mean-square difference (PRD) of 8.5% and 9% is reported at a CR of 5x and 2.5x

for ECG signals, respectively. These frameworks all deal with the sparsity of physi-

ological signals on pre-determined bases and fail to take into account the individual

variability in signals that is critical to exact signal recovery.

In this work, we propose an energy-efficient data acquisition framework, cus-

tomized for the long-term electrocardiogram (ECG) monitoring, which exploits online

dictionary learning (ODL) on server nodes to train personalized bases that capture

the individual variability for further improving the sparsity of ECG signals. By in-

corporating such prior knowledge into signal recovery, the CS performance in terms

of accuracy-CR trade-off is significantly enhanced, leading to further data size re-

duction and energy saving on sensor nodes. Additionally, the proposed framework

does not require any pre-processing stages on sensor nodes. Alternatively, high recon-

struction quality is enforced by pre-processing training data prior to the dictionary

learning stage, to eliminate the impact of noise and interference on trained bases, en-
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abling simpler and more cost-effective sensor structures. Experimental results based

on MIT-BIH database show that our framework is able to achieve an average PRD

of 9% at a CR of 10x. This indicates that our framework can achieve 2-4x additional

energy saving on sensor nodes (for the same reconstruction quality) compared to

the reference designs Mamaghanian et al. (2011); Ansari-Ram and Hosseini-Khayat

(2012); Chae et al. (2013); Casson and Rodriguez-Villegas (2012). Due to the training

and personalization of the dictionary, the proposed framework has the potential to

be generally applied to a wide range of physiological signals.

2.2 Preliminaries

2.2.1 Compressive Sensing Review

Assuming a signal f ∈ Rn can be well represented by a sparse vector x ∈ Rk on a

certain basis Ψ ∈ Rn×k as f = Ψx, then the signal information can be well preserved

by projecting f onto a random domain through a sensing matrix Φ ∈ Rm×n (m<n)

Candès and Wakin (2008), given as

y = Φf = ΦΨx. (2.1)

Candes and et al. Candès et al. (2006a) has proven that one has a high probability

to recover the sparse coefficient x by solving the basis pursuit (BP) problem defined

as

min
x∈Rk
‖x‖1 s.t. ‖y −ΦΨx‖2 ≤ ε, (2.2)

where ε is an error tolerance term for enhancing the accuracy of the solution consid-

ering noise.
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2.2.2 Dictionary Learning

Learning dictionaries from data instead of using off-the-shelf bases has been proved

effective in improving signal reconstruction performance for images Elad and Aharon

(2006). The most recent dictionary learning algorithms Aharon et al. (2006); Bruno

A. Olshausen (1997); Lee et al. (2007) are second-order iterative batch procedures that

access the whole training set at each iteration in order to minimize a cost function

under certain constraints. Although these algorithms have been shown experimen-

tally faster than first-order gradient descent methods, they cannot effectively handle

very large training sets Bottou and Bousquet (2008), because of the involved matrix

factorization upon the entire training data. To be able to deal with large data sets for

long-term monitoring, the ODL algorithm is adopted in our framework. Compared

to the methods mentioned above, ODL has a higher training speed and requires less

storage space Mairal et al. (2009) because of its elimination of large matrix factor-

izations. With ODL, it is possible to add new features into the dictionary without

stalling the reconstruction, which offers a mechanic of amelioration when a distinctive

input is received.

2.2.3 Online Dictionary Learning (ODL)

Assuming the training set is composed of i.i.d. samples following a distribution

p(x), ODL draws one sample xt at a time and alternates between the sparse coding

stage and dictionary update stage.

Sparse Coding

The sparse coding problem is a l1-regularized least-squares problem defined as

αt = arg min
α∈Rn

1

2
‖xt −Dt−1α‖22 + λ‖α‖1. (2.3)
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Due to the high correlations between columns of the dictionary, a Cholesky-based

implementation of the LARS-Lasso algorithm, which provides the whole regulariza-

tion path, is chosen here to solve the sparse coding problem Mairal et al. (2010).

Dictionary Updating

At this stage, the objective is to find a dictionary D that satisfies:

Dt = arg min
D

1

t

t∑
i=1

1

2
‖xi −Dαi‖22 + λ‖αi‖1. (2.4)

The problem in (4) can be solved by the block coordinate descent algorithm Mairal

et al. (2009). Overall, the detailed procedure for ODL algorithm is summarized in

Algorithm 1.

Algorithm 1 Pseudocode for ODL

Input: Input data x ∈ Rn ∼ p(x), initial dictionary D0 ∈ Rn×k, number of iterations

t.

Output: Learned dictionary Dt.

Steps:

1: Set A0 ← 0,B0 ← 0.

2: For t=1:T

3: Draw a new sample xt from p(x).

4: Sparse coding: find a sparse coefficient of xt under current dictionary Dt−1.

5: At ← At−1 + αtα
T
t .

6: Bt ← Bt−1 + xtα
T
t .

7: Dictionary update: update dictionary Dt−1 column by column, the j-th

column is given by

8: For j=1:k

9: dj ← 1
(At)jj

(Bt(:, j)−DAt(:, j)) + dj.
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if ‖dj‖2 > 1, then normalize it to unit form.

10: end for

11. end for

12. Return Dt.

Figure 2.1: Block diagram of the proposed framework. The parameter sweeping and
dictionary training procedure are executed on servers. The reconstruction process is
performed on mobile platform for providing timely feedback. The random encoding
process using random Bernoulli matrix is embedded into the sensor node for effective
data compression and energy saving.

2.3 The Proposed Framework

The most recent frameworks on ECG monitoring Lee et al. (2014b); Polania et al.

(2011); Abo-Zahhad et al. (2015) adopt a QRS detection process, such as the Pan-

Tompkins algorithm, prior to the sensing stage in order to locate the period informa-

tion of ECG signals. However, integrating the QRS detection process into the sensor

nodes not only occupying CPU cycles but also burning excessive power. For wearable

applications, an energy-efficient framework must get rid of such pre-processing stages

on sensor nodes.

The block diagram of the proposed framework is shown in Fig. 1. It is composed

of three functional modules (i.e., dictionary learning, random encoding, and CS sig-
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nal reconstruction, performed on a server node, a sensor node, and a mobile node,

respectively).

The dictionary learning module is used to train personalized bases to capture the

individual variability that is critical to exact signal recovery. As dictionary learning

directly extracts features from the segmented raw data, the learned dictionary con-

tains critical temporal and spatial information needed for reconstruction. As a result,

there is hardly a need for signal alignment. To search for an optimum setup, we first

sweep each parameter used in dictionary learning, including signal dimension, batch

size for training, regularization coefficient, and dictionary size. The derived parame-

ters are then applied to the dictionary learning module. As the reconstructed signals

are the linear composition of atoms in the trained dictionary, a “clean” dictionary

thereby have the denoising effect on signal reconstruction. To get a “clean” dictio-

nary, the training data is first filtered by a notch filter to remove power-line inference.

Then the signal is passed through a band-pass filter to remove baseline wandering and

high-frequency inference. Enabled by the pre-processing in the dictionary learning

stage, the proposed framework eliminates the need of employing complicated pre-

processing methods prior to random encoding on the sensor node. Instead, a simple

segmentation module is sufficient for clean reconstruction.

The initialization in dictionary learning is important. A poorly initialized dictio-

nary may contain bad atoms that are never used Mairal et al. (2009). Generally, the

dictionary can be initialized by random numbers or input data. For more difficult

and regularized problem, it is preferable to start from a less regularized case and

gradually increase the regularization coefficients. In our framework, the dictionary is

initialized by randomly chosen columns from the input data set for simplicity.

The most notable advantage of ODL over other dictionary learning algorithms,

such as K-SVD, is that ODL does not rely on the matrix factorization upon the
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Table 2.1: Performance comparison of CS frameworks.

Framework CR PRD (%)

Proposed 10 9

Ansari-Ram et al. Ansari-Ram and Hosseini-Khayat (2012) 5 9

Casson el al. Casson and Rodriguez-Villegas (2012) 4 9

Mamaghanian el al. Mamaghanian et al. (2011) 3.4 9

Chae et al. Chae et al. (2013) 2.5 9

entire training data. As a result, the time cost is much less compared to the non-

online versions when handling large training datasets. So a specific input ECG signal

that carries new features, such as disease information, can be quickly processed by the

dictionary learning module to update the dictionary when necessary. As dictionary

update does not depend on the previous samples, the framework also eliminates the

demand of large storage space for prior inputs.

BP algorithm, running on the mobile node, is used in our framework to reconstruct

high-quality signals. As ODL is compatible with other reconstruction algorithms,

more computation efficient algorithms (e.g., fast iterative shrinkage-thresholding al-

gorithm (FISTA) can be implemented to improve accuracy-complexity trade-off).

Experiments are conducted to compare the performance of the proposed frame-

work in terms of recovery quality and CR with the conventional CS frameworks

adopting pre-determined basis for the reconstruction of ECG signal. All frameworks

employs the same random Bernoulli matrix Φ (0/1 only) as the sensing matrix, so

the hardware cost of the acquisition module, i.e., the sensor nodes, are the same.
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2.3.1 Performance Metrics

The compression ratio (CR) and percent root-mean-square difference (PRD) are

used as the performance metrics.

1) Compression Ratio (CR): CR is a measurement of the reduction of the data

required to represent the original signal f . If m measurements are required to recover

the signal with dimension n, then

CR =
n

m
. (2.5)

2) Percent Root-mean-square Difference (PRD): PRD is a measurement of the

difference between the original signal f and the reconstructed signal f ′. As arbitrarily

low PRD can be achieved by selecting a high DC level in signal f , a more appropriate

metric is to remove the DC bias in signal f as

PRD =
‖f − f ′‖2
‖f − f̄‖2

× 100, (2.6)

where f̄ is the mean of signal f .

2.3.2 Experiment Settings and Results

Through parameter sweeping, the dimension of the signal n is set to 256, size of

the dictionary k is set to 512. Experiments are carried out based on the MIT-BIH

Arrhythmia Database. In the experiments, 649984 samples are divided into 2539

epochs. Each epoch contains 256 samples. Among all the data sets, 512 epochs

are randomly chosen to initialize the dictionary, 1621 epochs are used to train the

dictionary, and the remaining is used as the testing set. For performance comparison,

the pre-determined basis used in the reference framework is a joint basis composed by

both discrete cosine transform (DCT) and descrete wavelet transform (DWT) bases

Ren and Markovic (2015). This is because the periods components (e.g. QS waves)
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Figure 2.2: Comparison of our proposed framework with conventional CS framework
in term of CR.

and the spike components (e.g. R wave) have sparse representations on DCT and

DWT basis, respectively.

Figure 2 shows the performance comparison results. Overall, the proposed frame-

work outperform the reference framework significantly due to the use of personlized

basis in reconstruction . Specifically, an average PRD of 9%, required for diagnosis

purposes Zigel et al. (2000), can achieved at a high CR of 10x. This represents a 6.5x

more sample size reduction (engergy saving) than the reference framework Ren and

Markovic (2015). Table 1 compares the proposed framework with existing CS frame-

works Mamaghanian et al. (2011); Ansari-Ram and Hosseini-Khayat (2012); Chae

et al. (2013); Casson and Rodriguez-Villegas (2012) that adopt pre-determined basis

in signal recovery. In general, our framework is able to further improve the CR by

2-4x for achieving an average PRD of 9%. Fig.3 demonstrates the high reconstruction

quality of the proposed framework in comparison to the reference framework Ren and

Markovic (2015) when CR=10.
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Figure 2.3: Reconstruction result for a segment of ECG signal when CR=10. (a)
Original ECG signal; (b) Reconstructed signal using pre-determined DCT-DWT joint
basis; (c) Reconstructed signal using online trained dictionary.

2.4 Conclusions

In this chapter, we propose an energy-efficient data acquisition framework com-

bining the notion of CS and ODL for long-term ECG monitoring. The framework

significantly enhances CS performance by learning personalized basis to inform signal

recovery. Experiment results show that by moving pre-processing to the dictionary

learning stage, a simple segmentation process in the sensor nodes is sufficient to re-

cover high-quality signals. In the future work, we will add sub-basis onto which the

abnormal ECG signal is projected, when the “healthy” sub-basis is unable to model

the original signal accurately.
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Chapter 3

DATA-DRIVEN CO-OPTIMIZATION OF COMPRESSIVE SENSING MATRIX

AND DICTIONARY

3.1 Introduction

As illustrated in Chapter 2, compressive sensing (CS) offers a universal and

straightforward data encoding scheme that can compress a variety of physiological

signals, providing a promising solution to the problem. However, most existing CS

frameworks are model-driven and suffer from very limited performance when deal-

ing with physiological signals Polania et al. (2011); Abo-Zahhad et al. (2015); Ren

and Markovic (2015). The reasons are two-fold. First, conventional CS frameworks

employ random Gaussian or Bernoulli sensing matrices that are generated indepen-

dently from any data, thereby they fail to leverage any particular geometric struc-

ture embedded in the signals of interest. This limits the rank of the sensing matrix

required for preserving the Restricted Isometry Property (RIP), leading to limited

compression ratio (CR). On the other hand, conventional CS frameworks Polania

et al. (2011); Lee et al. (2014a); Abo-Zahhad et al. (2015) that adopt predetermined

basis for reconstruction underestimate the intricacy of philological signals and over-

look the criticality of individual variability to signal fidelity, which results in very

limited reconstruction performance especially at high CR Ren and Markovic (2015).

Our previous study Xu et al. (2016) has shown that learned dictionaries can bet-

ter approximate the underlying statistical model of input data. Therefore, they can

significantly improve the sparsity of physiological signals as well as reconstruction

performance.
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3.2 Related Work

There have been some recent work on exploiting data structures for compressive

sensing Elad (2007); Duarte-Carvajalino and Sapiro (2009); Hegde et al. (2015). In

Elad (2007), the authors aim to minimize the averaged mutual coherence between

sensing matrix and dictionary. The major limitation of this work is that the mutual

coherence is not a direct indicator of RIP, so the optimization result is not suitable

for sensor applications. In Duarte-Carvajalino and Sapiro (2009), the authors aim

to find a sensing matrix Φ and a dictionary Ψ such that the Gram matrix of the

product ΦΨ is as close to the identity matrix as possible. The problem is that the

Gram matrix can hardly be the identity matrix in practice as Ψ is usually over-

complete, so the result is sub-optimal. In Hegde et al. (2015), the authors aim to

preserve the pairwise distance between sample vectors. However, since the NuMax

formulation minimizes the transformation distortion against the original signal rather

than its sparse coefficient, the trained sensing matrix is not compatible with any over-

complete dictionaries. Therefore, these existing approaches are not ideally suitable

for the CS of physiological signals in wearable sensing applications.

In this work, we propose a data-driven CS framework that co-optimizes the sensing

matrix and the dictionary towards improved restricted isometry property (RIP) and

signal sparsity, respectively, by exploiting the intrinsic data structure of physiological

signals. Specifically, online dictionary learning (ODL) Mairal et al. (2010) is first

adopted to train a personalized basis that further improves signal sparsity by cap-

turing the characteristics and individual variability of physiological signals. Based on

the learned dictionary, a distortion minimization problem is formulated to construct

a near-isometry and low-rank sensing matrix to guarantee a satisfactory recovery per-

formance at improved compression ratios. Overall, the proposed framework keeps the
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promise to significantly enhance the reconstruction quality and CR trade-off for the

CS of physiological signals.

The data-driven nature of the proposed CS framework is very appealing because it

fills the gap between the massive medical data and how to utilize them to improve the

quality of sensing. The key insight from this study is that the sensor energy efficiency

can be enhanced by learning the intrinsic signal structures from big data through

cost-effective computation on server systems, rather than doing costly circuit-level

development. Moreover, the proposed data-driven framework is equally applicable to

a variety of physiological signals and has the potential to be consistently improved as

more and more data is collected for training.

3.3 Preliminaries

When fully implemented in the digital domain, CS can be considered as a di-

mensionality reduction technique for signal compression. Assuming a signal f can be

represented by a sparse vector θ ∈ Rk on a certain basis Ψ ∈ Rn×k, i.e., f = Ψθ,

the signal information x can be well preserved by projecting f onto a low-dimension

space through a sensing matrix Φ ∈ Rm×n, (m ≤ n and Φ should satisfy 3.2), given

as

y = Φf + z = ΦΨθ + z, (3.1)

where z is a noise term.

For robust reconstruction, the matrix Φ should satisfy the RIP Candès et al.

(2006b) for all k-sparse signal x, defined as

(1− δK‖x‖22 ≤ ‖Φx‖22 ≤ (1 + δK‖x‖22)). (3.2)

When the RIP holds, Φ approximately preserves the Euclidean norm of all k-sparse

signals. Then the sparse coefficient can be solved the following `-1 minimization
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Figure 3.1: Block diagram of the proposed data-driven compressive sensing frame-
work.

problem with a relaxed constraint,

min
θ∈Rk
‖θ‖1 s.t. ‖y −ΦΨθ‖2 ≤ ε. (3.3)

If matrix A ∈ Rm×n satisfies the RIP of order 2k with δ2k <
√

2−1, the solution to

3.3 is equivalent to the original signal with overwhelming probability Candès (2008).

In addition, we have

‖x∗ − x̂‖`2 ≤ C · ‖x− xk‖`1√
k

, (3.4)

where x ∈ Rn is the input signal, xk is the k-sparse approximation, and x̂ is the

solution to 3.3, and C is a constant which is proportional to the isometry constant

δ2k. Eq. 3.4 means a smaller isometry constant guarantees a smaller recovery error,

which is suitable for target applications.

3.4 Methodology

3.4.1 Architecture Overview

The architecture of the proposed framework is shown in Fig. 3.1. It is composed

of three functional units, including a training unit, a CS sampling unit and signal

recovery unit performed on server, sensor and mobile nodes, respectively. Since phys-

iological signals can vary among different patients, a generic basis for all patients
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usually perform poorly. The dictionary learning module trains personalized basis

that captures individual-specific features that are critical to CS recovery, which guar-

antees a higher sparsity than predetermined basis. Here I employ ODL as the method

for dictionary learning. The most notable advantage of ODL is that it does not rely

on the matrix factorization upon the entire training data. As a result, the computa-

tional complexity is much less compared to the non-online approaches especially for

handling large training data. Before ODL is performed, the raw physiological signals

must be pre-processed to remove baseline wandering and high-frequency interference.

This is essential to achieving a high signal reconstruction quality. Once the dictio-

nary is learned, it can be downloaded to the mobile node to perform accurate signal

recovery.

In the proposed framework, the sensing matrix training (SMT) generates a data-

specific sensing matrix with minimized rank and a small isometry constant. A small

rank further reduces the data size for transmission, and a smaller isometry enhances

reconstruction quality denoted by 3.4. Once the sensing matrix is trained, it can

be downloaded to the sensor node to perform effective compression of physiological

signals for energy-efficient sensing and information transfer.

3.4.2 Sensing Matrix Training (SMT)

Candès and Tao prove that if the sensing matrix Φ satisfies the RIP, then `-1

minimization algorithms can successfully recover a sparse signal from noisy measure-

ments Candès et al. (2006b). Here I formulate an optimization problem that directly

optimizes the RIP towards lower isometry constant δ and lower rank of the sensing

matrix Φ in 3.5.

(1− δ)‖θ‖2 ≤ ‖ΦΨθ‖2 ≤ (1 + δ)‖θ‖2, (3.5)
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where θ is the sparse coefficient vector under the dictionary Ψ. 3.5 is equivalent to

|‖ΦΨθ‖2 − ‖θ‖2| ≤ δ, (3.6)

when θ is normalized.

Suppose we have L sparse coefficients, θi, i = 1, . . . , L , the optimization problem is

essentially to guarantee each of them will satisfy 3.6, which can be then reformulated

as

|θTi (ΨTΦTΦΨ − I)θi| ≤ δ, i = 1, . . . , L. (3.7)

Assume A = ΦΨ, Y = ATA, 3.7 can be represented as

|θTi (Y − I)θi| ≤ δ, i = 1, . . . , L. (3.8)

As the rank of the sensing matrix implies the data size for transmission after

compression, I also aim to minimize the rank of the sensing matrix in 3.9. Since the

rank minimization problem is not convex, I use the nuclear norm as a proxy to relax

the problem to 3.10.

min
Y
{|θTi (Y − I)θi|, rank(Y)}, i = 1, . . . , L

s.t. Y � 0,

diag(Y) = [1, 1 , . . . , 1]T .

(3.9)

min
Y

(δ + β‖Y‖∗)

s.t. Y � 0,

diag(Y) = [1, 1 , . . . , 1]T

|θTi (Y − I)θi| ≤ δ, i = 1, . . . , L.

(3.10)

where β is the penalty parameter for the nuclear norm. Then, I perform an Cholesky

decomposition to obtain the matrix A, and a singular value decomposition (SVD) to
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derive the sensing matrix Φ, as defined in 3.11 and 3.12, respectively.

Y = ATA = USUT ,A = (Usqrt(S))T (3.11)

Ψ = USVT ,Ψ† = VS−1UT ,Φ = AΨ† (3.12)

3.4.3 Online Dictionary Learning (ODL)

I seek the dictionary that gives the best representation of every item in the train-

ing dataset under the sparsity constraint. The advantage of learning dictionaries from

individual recordings of physiological signals is that it provides much better sparse

representations than model-driven approaches by exploiting the rich information em-

bedded in the training data. ODL offers faster training speed and fewer storage

requirements because of the online processing nature. It is also possible to add new

features to the dictionary without stalling the reconstruction using ODL, which offers

a mechanic of melioration when a distinctive input is received. Due to the page limit,

I would like to refer the readers to Mairal et al. (2010) for details of ODL.

3.4.4 Co-training of Sensing Matrix and Dictionary (CTSMD)

I aim to jointly improve signal sparsity and isometry constant through a co-

training approach. The proposed CTSMD algorithm is described in Algorithm 1.

One should note that the proposed CTSMD algorithm is a non-iterative process. Em-

pirical results show that one round of CTSMD is sufficient to obtain a well-defined

results.

Algorithm 1 Pseudocode for CTSMD

Input: x ∈ Rn, Ψ0 ∈ Rn×k, λ, β,

Output: Φ,Ψ,

Online dictionary learning:
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1) θt = arg min
θ∈Rn

1

2
‖xt −Ψt−1θ‖22 + λ‖θ‖1,

2) Ψt = arg min
Ψ

1

t

t∑
i=1

1

2
‖xi −Ψθi‖22 + λ‖θi‖1,

Sensing matrix training:

3) min
Y

(δ + β‖Y‖∗)

s.t. Y � 0,

diag(Y) = [1 1 . . . 1],

|θTi (Y − I)θi| ≤ δ, i = 1, . . . , L,

4)Y = ATA = USUT ,A = (Usqrt(S))T ,

5)Ψ = USVT ,Ψ† = VS−1UT ,Φ = AΨ†.

3.5 Experiments

3.5.1 Experiment Setup

Real electrocardiogram (ECG) data from the MIT-BIH arrhythmia ECG database

Goldberger et al. (2000) is used to benchmark the proposed framework. The cus-

tomized solver is used for ODL problem and CVX solver Grant and Boyd (2008) is

used to solve the SMT problem. Due to the large memory requirement of CVX, our

experiments are subjected to limited problem size, which has cost a certain perfor-

mance degradation across our algorithm. Here we extract 3600 samples, and each

sample has a dimension of 128. 3000 and 600 samples are used for training and

testing, respectively. The training data is first used with the CTSMD algorithm to

construct the sensing matrix and the reconstruction dictionary, which are then used

to perform CS measurement and signal reconstruction on the testing data. Three

reference approaches are compared in our experiments, i.e. random Gaussian sensing

matrix with trained dictionary by ODL, trained sensing matrix by SMT with prede-

26



Compression ratio n/m

2 3 4 5 6 7 8 9 10

Is
o

m
et

ry
 c

o
n

st
an

t 
δ

 

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

The proposed SMT method

Gaussian random sensing matrix

Figure 3.2: Isometry constant under different compression ratios.

termined discrete cosine and wavelet transform (DCT-DWT) dictionary, and random

Gaussian sensing matrix with a predetermined DCT-DWT dictionary.

CR = n/m and reconstructed signal-noise ratio (RSNR) = ‖x‖2/‖x− x′‖2 are

used as the performance metrics, where n is the dimension of original signal x, m is

the number of measurements, and x′ is the reconstructed signal.

3.5.2 Experiment Results

The isometry constant of the trained sensing matrix with respect to CR is shown

in Fig. 3.2. Note that the sensing matrices produced by the proposed framework have

reduced the isometry constant by over 80% over the Gaussian random matrices across

all the CRs. The reduced isometry constant implies better preservation of the signal’s

geometry structure in the compressed domain. According to 3.4, such improvement

will lead to a higher reconstruction accuracy.

The RSNR results at different CR are shown in Fig. 3.3. By using SMT and

ODL, RSNR is increased about 5dB and 10dB, respectively. Overall, the proposed
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data-driven method achieves a 15dB improvement of RSNR over the model-based

approach across all different CRs.

3.6 Conclusion

In this chapter, we propose a data-driven CS framework tailored for the energy-

efficient wearable sensing of physiological signals. Exploiting the structure of data is

the key to enhancing CS performance. Specifically, the SMT reduces the isometry

constant in RIP, and the ODL improves signal sparsity, which are both critical to

providing a better recovery performance under improved compression ratios. In future

works, we plan to develop customized solver for the SMT problem to handle large

dataset. We also need to add binary constraint to SMT for efficient sensor hardware

implementations. This will benefit the hardware and energy cost of mobile sensors,

which enables the data-driven technique to be used in practical IoTs applications.
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Chapter 4

DEEP LEARNING FOR SINGLE IMAGE COMPRESSIVE SENSING

RECONSTRUCTION

4.1 Introduction

Compressive sensing (CS) is a transformative sampling technique that is more

efficient than Nyquist Sampling. Rather than sampling at the Nyquist rate and

then compressing the sampled data, CS aims to directly sense signals in a com-

pressed form while retaining the necessary information for accurate reconstruction.

The trade-off for the simplicity of encoding is the intricate reconstruction process.

Conventional CS reconstruction algorithms are based on either convex optimization

Becker et al. (2011a,b); Dong et al. (2014b); Li et al. (2009); Metzler et al. (2016) or

greedy/iterative methods Blumensath and Davies (2009); Huggins and Zucker (2007);

Tropp and Gilbert (2007). These methods suffer from three major drawbacks limiting

their practical usage. First, the iterative nature renders these methods computational

intensive and not suitable for hardware acceleration. Second, the widely adopted spar-

sity constraint assumes the given signal is sparse on a known basis. However, natural

images do not have an exactly sparse representation on any known basis (DCT,

wavelet, or curvelet) Metzler et al. (2016). The strong dependency on the sparsity

constraint becomes the performance limiting factor of conventional methods. Con-

structing over-complete dictionaries with deterministic atoms Xu et al. (2016, 2017)

can only moderately relax the constraint, as the learned linear sparsity models are

often shallow thus have limited impacts. Third, conventional methods have a rigid

structure allowing for reconstruction at a fixed resolution only. The recovery quality
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cannot be guaranteed when the compression ratio (CR) needs to be compromised

due to a limited communication bandwidth or storage space. A better solution is to

reconstruct at a compromised resolution while keeping a satisfactory reconstruction

signal-to-noise ratio (RSNR) rather than dropping the RSNR for a fixed resolution.

Deep neural networks (DNNs) have been explored recently for learning the in-

verse mapping of CS Dong et al. (2016, 2014a); Kim et al. (2016); Kulkarni et al.

(2016). The limitations of existing DNN-based approaches are twofold. First, the re-

construction results tend to be blurry because of the exclusive use of a Euclidean loss.

Specifically, the recovery quality of DNN-based methods are usually no better than

optimization-based methods when the CR is low, e.g., CR <= 10. Second, similar

to the optimization-based methods, the existing DNN-based methods all have rigid

structures allowing for reconstruction at a fixed and non-adaptive resolution only.

The reconstruction will simply fail when the CR is lower than a required threshold.

In this work, I propose a scalable Laplacian pyramid reconstructive adversarial

network (LAPRAN) for flexible CS reconstruction that addresses all the problems

mentioned above. LAPRAN does not require sparsity as prior knowledge hence can

be potentially used in a broader range of applications, especially where the exact

signal sparsity model is unknown. When applied to image signals, LAPRAN progres-

sively reconstruct high-fidelity images following the concept of the Laplacian pyramid

through multiple stages of specialized reconstructive adversarial networks (RANs). At

each pyramid level, CS measurements are fused with a low-dimensional contextual

latent vector to generate a reconstructed image with both higher resolution and recon-

struction quality. The non-iterative and high-concurrency natures of LAPRAN make

it suitable for hardware acceleration. Furthermore, the scalable pyramid structure of

LAPRAN enables high-fidelity CS reconstruction with a flexible resolution that can

be adaptive to a wide range of CRs. One can dynamically add or remove RAN stages
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from LAPRAN to reconstruct images at a higher or lower resolution when the CR

becomes lower and higher, respectively. Therefore, a consistently superior recovery

quality can be guaranteed across a wide range of CRs.

The contributions of this paper are summarized as follows:

• I propose a novel architecture of the neural network model (LAPRAN) that

enables high-fidelity, flexible and fast CS reconstruction.

• I propose to fuse CS measurements with contextual latent vectors of low-

resolution images at each pyramid level to enhance the CS recovery quality.

• I illustrate that the progressive learning and reconstruction strategy can miti-

gate the difficulty of the inverse mapping problem in CS. Such a strategy not

only accelerates the training by confining the search space but also improves

the recovery quality by eliminating the accumulation of errors.

4.2 Related Work

CS reconstruction is inherently an under-determined problem. Prior knowledge,

i.e., the structure of signals must be exploited to reduce the information loss after

reconstruction. According to the way of applying prior knowledge, CS reconstruction

methods can be grouped into three categories: 1) model-based methods, 2) data-

driven methods, 3) hybrid methods.

4.2.1 Model-based Reconstruction Methods

Model-based CS reconstruction methods mostly rely on a sparsity prior. For ex-

ample, basis pursuit (BP), least absolute shrinkage and selection operator (LASSO),

and least angle regression (LARS) are all based on `1 minimization. Other methods

exploit other types of prior knowledge to improve the recovery performance. NLR-CS
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Dong et al. (2014b) proposes a non-local low-rank regularization to exploit the group

sparsity of similar patches. TVAL3 Li et al. (2009) and EdgeCS Guo and Yin (2010)

use a total variation (TV) regularizer to reconstruct sharper images by preserving

edges or boundaries more accurately. D-AMP Metzler et al. (2016) extends approx-

imate message passing (AMP) to employ denoising algorithms for CS recovery. In

general, model-based recovery methods suffer from limited reconstruction quality, es-

pecially at high CRs. Because images, though compressible, are not ideally sparse in

any commonly used transform domains Metzler et al. (2016). Additional knowledge of

the image structure is required to further improve the reconstruction quality. Further-

more, when the number of CS measurements available is lower than the theoretical

lower bound, the model-based methods will simply fail the reconstruction.

4.2.2 Data-driven Reconstruction Methods

Instead of specifying prior knowledge explicitly, data-driven methods have been

explored to learn signal characteristics implicitly. Kuldeep et al. and Ali et al. pro-

pose “ReconNet” Kulkarni et al. (2016) and “DeepInverse” Mousavi and Baraniuk

(2017), respectively. Both work aims to reconstruct image blocks from CS measure-

ments via convolutional neural networks (CNNs). Experimental results prove that

both models are highly robust to noise and able to recover visually better images

than the model-based approaches. However, the major drawback of these methods

is the exclusive use of the `2 reconstruction loss for training. As the `2 loss cannot

reliably generate shape images, additional loss metrics must be introduced to further

improve the reconstruction quality. In addition, the direct mapping from the low-

dimensional measurement domain to the high-dimensional image domain is highly

under-determined. This under-determined mapping problem becomes even more no-
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torious as CR increases since the dimension gap between the two domains is enlarged

accordingly.

4.2.3 Hybrid Reconstruction Methods

Hybrid methods aim to incorporate the benefits of both model-based and data-

driven methods. Such methods first utilize expert knowledge to set up a recovery al-

gorithm and then learn additional knowledge from training data while preserving the

model interpretability and performance bounds. Inspired by the denoising-based ap-

proximate message passing (D-AMP) algorithm, Chris etal . propose a learned D-AMP

(LDAMP) network for CS image reconstruction. The iterative D-AMP algorithm is

unrolled and combined with a denoising convolutional neural network (DnCNN) that

serves as the denoiser in each iteration. The major drawback of this method is its so-

phisticated and iterative structure prohibiting parallel training and efficient hardware

acceleration.

Inspired by the success of generative adversarial network (GAN) for image gen-

eration, Bora et al. propose to use a pre-trained DCGAN Radford et al. (2015) for

CS reconstruction (CSGM) Bora et al. (2017). This approach finds a latent vector ẑ

that minimizes the objective ‖AG(z)− y‖2, where G, A and z is the generator, sens-

ing matrix, and CS measurements, respectively. The optimal reconstruction result is

represented as G(ẑ). Differently, the proposed LAPRAN directly synthesize an image

from CS measurements, which alleviates the exploration of an additional latent space.

Although both approaches are GAN-based, they represent two fundamentally differ-

ent CS reconstruction schemes. CSGM is a sparse-synthesize model Candès et al.

(2006b,a) that approximates an unknown signal as x = G(z), where the sparse coef-

ficient (z) is measured concurrently. While LAPRAN is a co-sparse-analysis model

Nam et al. (2013); Candès et al. (2011) that directly synthesize an unknown signal

33



x from the corresponding CS measurements y according to x = G(y). Hence, I call

the building block of the proposed model reconstructive adversarial network (RAN)

instead of GAN. RAN elegantly approximates the nature image distribution from CS

measurement samples, avoiding the detour in the synthesize model. While multiple

network propagations are needed to obtain the optimal ẑ in CSGM, LAPRAN finishes

reconstruction in a single feedforward propagation. Therefore, LAPRAN has lower

computational complexity and a faster reconstruction speed.

4.3 Methodology

The overall structure of the proposed CS system is shown in Figure 4.1. It is

composed of two functional units, a multi-rate random encoder for sampling and

a LAPRAN for reconstruction. The multi-rate random encoder generates multiple

CS measurements with different CRs from a single image. LAPRAN takes the CS

measurements as inputs and progressively reconstructs the original image in multi-

ple hierarchies with incremental resolutions and recovery quality. In the first stage,

RAN1 reconstructs a low-resolution thumbnail of the original image (8 × 8). The

following RANs at each stage fuses the low-resolution input generated by the previ-

ous stage with CS measurements to produce a reconstructed image upsampled by a

factor of 2. Therefore, the resolution of the reconstructed image is progressively im-

proved throughout the cascaded RANs. The proposed LAPRAN architecture is highly

scalable. One can concatenate more RANs (just like “LEGO” blocks) to gradually

increase the resolution of the reconstructed image. Each building block of LAPRAN

is detailed below. Further details about the LAPRAN architecture are provided in

the supplementary materials.
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Figure 4.1: Overall structure of the proposed LAPRAN. The CS measurement of a
high-dimensional image is performed by a multi-rate random encoder. The LAPRAN
takes CS measurements as inputs and progressively reconstructs an original image
in multiple hierarchies with incremental resolutions and recovery qualities. At each
pyramid level, RAN generates an image residual, which is subsequently combined
with an upscaled output from the previous level to form a higher-resolution output
of the current level (upsampling and upscaling respectively refers to increasing the
image resolution with and without new details added). The detailed structure of
RAN is shown in Figure 4.3.

4.3.1 Multi-rate CS Encoder

I propose a multi-rate random encoder for CS sampling. Given an input image, the

encoder generates multiple CS measurements {y1, · · · ,yt} simultaneously, each has a

different dimension. The generated measurements are fed into each stage of the RANs

as input, i.e., {y1, · · · ,yk} is forward to {RAN1, ..., RANk}, respectively. According

to the rate-distortion theory Davisson (1972), the minimum bit-rate is positively

related to the reconstruction quality, which indicates that the i-th RAN requires more

information than all the previous RANs in order to improve the image resolution

by adding finer details incrementally. The quantitative analysis of the number of

measurements required for each RAN is as follows. Let A be an m×n sensing matrix

that satisfies the restricted isometry property (RIP) of order 2k, and the isometry

constant is δ2k ∈ (0, 1
2
]. According to the CS theory Davenport (2010), the lower

bound of the number of CS measurements required for satisfying RIP is defined as:

m ≥ Ck log(n
k
), where C = 1

2
log(
√

24 + 1) ≈ 0.28. In the CS image reconstruction

problem, let the number of input measurements required by two adjacent RANs for
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accurately reconstructing a N × N image and a 2N × 2N image is m1 and m2,

respectively, I define the measurement increment ratio as β = m2
m1

. If I assume the

sparsity ratio ( k
n
) of the two images remains constant across the two adjacent RANs,

then β can be calculated as:

β =
4k × log[(2N × 2N)/4k]

k × log[(N ×N)/k]
= 4. (4.1)

Equation (4.1) indicates that the number of CS measurements (as well as CR) required

for a former RAN should be at least 1/4 of a latter one in order to guarantee a

satisfactory reconstruction performance. One should note that β = 4 is the upper

bound, lower β values can be used to offer better reconstruction performance at the

cost of collecting more CS measurements in early stages. In this work, I adopt β = 2

to set a gradually increasing CR at different stages instead of using a unified CR.

Since the dimension of a measurement vector equals to the number of rows in a

sensing matrix, the k sensing matrices in Figure 4.1 have the following dimensions:

Φ1 ∈ Rm×N ,Φ2 ∈ Rbβmc×N , · · · ,Φk ∈ Rbβk−1mc×N . An example of the sensing matrix

used for the multi-rate encoding of a 4-stage LAPRAN is illustrated in Figure 4.2.

The generated measurements y1 ∈ Rm,y2 ∈ R2m,y3 ∈ R4m,y4 ∈ R8m is used as the

input to RAN1, RAN2, RAN3 and RAN4, respectively. With respect to a k-stage

LAPRAN, I only need to generate yt for training. Since yi is always a subset of yi+1,

I can feed the first bβi−1mc elements of yt to the i-th stage in a backward fashion.

The proposed LAPRAN enables CS reconstruction with a flexible resolution,

which is not feasible with existing methods. When the number of CS measurements

fail to meet the required threshold, the existing methods will fail to reconstruct with

no room for maneuver. Alternatively, the proposed method can still reconstruct lower-

resolution previews of the image with less detail in the case that the CS measurements

are insufficient. The output of each RAN constitutes an image pyramid, providing the
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Figure 4.2: Illustration of a sensing matrix for multi-rate CS. The four sensing
matrices Φ1 ∈ Rm×N ,Φ2 ∈ R2m×N ,Φ3 ∈ R4m×N ,Φ4 ∈ R8m×N are used to generate
the four CS measurements {y1,y2,y3,y4} ∈ R{m,2m,4m,8m}. y1, y2, y3, y4 is fed into
RNN1 to RNN4 as the information source, respectively.

user with great flexibility in choosing the desired resolution of reconstructed images.

4.3.2 RAN for CS Image Reconstruction

I propose a RAN at each pyramid level to generate the reconstructed image

with a fixed resolution. A RAN is composed of a reconstructive generator denoted

as“RecGen”, and a discriminator denoted as “RecDisc.” RecDisc follows the structure

of DCGAN Radford et al. (2015), and the structure of RecGen is specially customized

for reconstruction. Taking RecGen2 in the 2nd RNN stage as an example (see Fig-

ure 4.3), {i2, r2,u2,o2} is the contextual input from the previous stage, image resid-

ual, upscaled input, and output image, respectively. y2 is the input measurements

generated by the multi-rate CS encoder. RecGen2 is composed of two branches: 1)

the upper branch that generates an upscaled input image u2 via a deconvolutional

neural network (deconv1); and 2) the lower branch that generates an image residual

r2 to compensate for the artifacts introduced by the upper branch. Note that u2

is upscaled from a lower-resolution image, thus u2 lacks high-frequency components
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Figure 4.3: The structure of RecGen2. A low-resolution input image i2 is trans-
formed into a high-frequency image residual r2 by an encoder-decoder network. A
high-resolution output image is generated by adding the image residual to the up-
scaled input image. The dimension of each feature map is denoted in the figure. An
example output of each convolutional layer is also shown.

(see Figure 4.3) and only provides a coarse approximation to the higher-resolution

ground-truth image. It is the addition of the high-frequency residual r2 that recovers

the entire frequency range of the image thus substantially improves the reconstruction

quality Denton et al. (2015).

The input i2 is treated as a low-resolution context for generating the residual

image r2. I propose to first use an encoder to extract a contextual latent vector c1

to represent the low-resolution context i2. The encoder is composed of two convo-

lutional layers and a fully-connected layer. To guarantee an equal contribution to

the feature after fusion, the contextual latent vector c1 has the same dimension as

the CS measurement y2. It should be noted that by increasing the dimension of c1,

one can expect more image patterns coming from the contextual input appear in the

final reconstruction, and vice versa. c1 is fused with the CS measurement y2 through

concatenation (referred to as “early fusion” in Snoek et al. (2005)) in a feature space.

The fully-connected layer is used to transform the fused vector back to a feature

map that has the same dimension as the contextual input i2. A common practice
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of upscaling is to use an unpooling layer Zeiler and Fergus (2014) or interpolation

layer (bilinear, bicubic, or nearest neighbor). However, these methods are either non-

invertible or non-trainable. Instead, I apply a deconvolutional layer deconv1 Zeiler

et al. (2011) to learn the upsampling of the fused feature map. I set up three residual

blocks (resblk1∼3) He et al. (2016) to process the upsampled feature map to generate

the image residual r2, which is later combined with u2 generated by the upper branch

(deconv2) to form the final output image.

Learning from context.

Instead of reconstructing the original image from CS measurements directly, I propose

to exploit the low-resolution context (i2 in Figure 4.3) to condition for reconstruction.

The proposed conditional reconstruction scheme is fundamentally different from the

conventional methods that solely rely on CS measurements. The reason is as follows.

Learning the inverse reconstructive mapping is a highly under-determined prob-

lem, hence notoriously tricky to solve. I need to accurately predict each pixel value in

such an exceptionally high-dimensional space. All the existing data-driven methods

directly search in such a vast space and try to establish a direct mapping from the

low-dimensional CS measurements to the high-dimensional ground-truth. The intri-

cacy of the problem and the lack of additional constraints make the search process

inefficient and untrustworthy. Differently, I delegate the low-resolution context to

confine the sub-search space, i.e., the candidates that are far from the context in the

search space will be obviated. Besides, the CS measurements supplement the neces-

sary information needed for recovering the entire frequency spectrum of the image.

The fusion of the context and CS measurements hence improve both convergence

speed and recovery accuracy.
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Residual learning.

In LAPRAN, the RecGen of each RAN is similar to a segment of the ResNet in He

et al. (2016). All the convolutional layers are followed by a spatial batch normalization

(BN) layer Ioffe and Szegedy (2015) and a ReLU except for the output layer. The

output layer uses a Tanh activation function to ensure the output image has pixel

values in the range of [0, 255]. The use of BN and normalized weight initialization

LeCun et al. (1998) alleviates the problem of vanishing or exploding gradients hence

improve both convergence accuracy and speed.

4.3.3 Cascaded RANs for Flexible CS Reconstruction

The existing DNN-based methods all have rigid structures allowing for reconstruc-

tion with a fixed CR and at a non-adaptive resolution only. A new model must be

retrained from scratch when a different CR is used in the encoding process. Inspired

by the self-similarity based super resolution (SR) method Glasner et al. (2009); Cui

et al. (2014), I propose a flexible CS reconstruction approach realized by dynamically

cascading multiple RANs (see Figure 4.1) at runtime. Upon training, each RAN cor-

responds to a specific resolution of the reconstructed image as well as an upper bound

of the CR needed for accurate reconstruction. The thresholds of CR at different stages

should be determined from experiments given a target accuracy metric. At runtime,

depending on the CR of inputs, only the RANs with a higher CR threshold will be

enabled for reconstruction. As a result, the proposed LAPRAN can perform high-

fidelity CS reconstruction with a flexible resolution that is adaptive to a wide range of

CRs. This merit is particularly significant to the CS application scenarios, where the

CR must be adaptive to the dynamic requirements of storage space or communication

bandwidth. When the CR is compromised in such an application scenario, all the
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Figure 4.4: Convergence analysis. I compare the MSE test error using the CIFAR10
dataset at the CR of 10. The results without measurement fusion can be regarded
as the performance of an SR approach. The MSE loss of the SR approach cannot be
effectively reduced after stage 1 because of the lack of new information.

existing methods will fail the reconstruction, while the proposed LAPRAN can still

reconstruct an accurate preview of the image at a reduced resolution.

Another advantage of the proposed LAPRAN is that its hierarchical structure

reduces the difficulty of training. CS reconstruction is a highly under-determined

problem that has a humongous space for searching. Therefore, it is very challeng-

ing for a single network to approximate the inverse mapping accurately. Adopting

a divide-and-conquer strategy, I propose to divide a highly under-determined prob-

lem into a series of lightly under-determined problems and conquer them in multiple

hierarchies. As the dimensionality gap between the input and output in each sub-

problem is significantly reduced, the difficulty for learning each mapping is much

reduced compared to the original problem. Besides, since the hierarchical structure
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leverage a series of upsampling operations, error accumulation occurs at each stage.

To alleviate such a problem, I define a loss function and perform back-propagation per

stage independently. The training error is effectively reduced after each stage com-

pared to the case that a single back-propagation is performed at the final output.The

injected CS measurements at each pyramid level are the key for CS reconstruction,

which distinguishes the proposed approach from image SR methods. The SR mod-

els Dong et al. (2016, 2014a); Kim et al. (2016); Lai et al. (2017) are responsible

for inferring the high-frequency components non-existed in the input. From the fre-

quency perspective, SR models should be adequately non-linear to compensate for

the frequency gap, which inevitably results in complicated structures. Differently,

the proposed approach incorporates new information provided by CS measurements

into the reconstruction at each stage. The CS measurements supplement necessary

information needed for recovering the entire frequency spectrum of an image, which is

a powerful information source for learning visual representations. Consequently, both

the resolution and the quality of the reconstructed images increase across different

stages in the proposed approach. To illustrate this point, I compare LAPRAN with a

variant that has no fusion mechanism implemented at each stage (an SR counterpart).

The comparison results are shown in Figure 4.4. It is obvious that the reconstruction

accuracy of the proposed LAPRAN is consistently improved stage by stage, while the

SR counterpart suffers from limited performance improvement.

4.3.4 Reconstruction Loss

I use a pixel-wise `2 reconstruction loss and an adversarial loss for training. The

`2 loss finds an overall structure of a reconstructed image. The adversarial loss picks

up a particular mode from the image distribution and generates a more authentic

42



output Pathak et al. (2016). The overall loss function is defined as follows:

z ∼ Enc(z|xl), xh = G(y|z),

Ladv(G,D) = Exh
[logD(xh|z)] + Ey[log(1−D(G(y|z)))],

Leuc = Exh
[‖xh − xG‖2],

Ltotal = λadvLadv + λeucLeuc, (4.2)

where xl, xh and xG,y is the low-resolution input image, the high-resolution output

image, the ground-truth image, and the CS measurement, respectively. The encoder

function (Enc) maps a low-resolution input xl to a distribution over a contextual

latent vector z.

4.3.5 Training

The training of each RAN is performed individually and sequentially. I start by

training the first stage and the output is used as the input for the second stage.

The training of all the subsequent stages is performed in such a sequential fashion.

Motivated by the fact that the RANs in different stages share a similar structure but

with different output dimensionality, I initialize the training of each stage with the

pre-trained weights of the previous stage to take advantage of transfer learning. Such a

training scheme is shown in experiments to be more stable and has faster convergence

than those with static initialization (such as Gaussian or Xavier). Besides, the weight

transfer between adjacent stages helps to tackle the notorious mode collapse problem

in GAN since the pre-trained weights already cover the diversity existed in training

images. It is recommended to leverage weight transfer to facilitate the training of the

remaining RANs.
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4.4 Experiments

In this section, we evaluate the performance of the proposed method. We first

describe the datasets used for training and testing. Then, the parameters used for

training are provided. Finally, we compare our method with state-of-the-art CS

reconstruction methods.

4.4.1 Datasets

We train and evaluate the proposed LAPRAN on three widely used benchmark

datasets. The first two are MNIST and CIFAR10. The third dataset is made following

the rule used in prior SR work Kim et al. (2016); Lai et al. (2017); Schulter et al.

(2015), which uses 91 images from Yang et al. Yang et al. (2010) and 200 images from

the Berkeley Segmentation Dataset (BSD) Arbelaez et al. (2011). The 291 images

are augmented (rotation and flip) and cut into 228, 688 patches as the training data.

Set5 Bevilacqua et al. (2012) and Set14 Zeyde et al. (2012) are pre-processed using

the same method and used for testing.

4.4.2 Training Parameters

We implemented a four-stage LAPRAN for CS image reconstruction. We resize

each training image to 64×64 and train the entire LAPRAN with a batch size of 128

for 100 epochs. We use Adam solver with a learning rate of 1 × 10−4. The training

takes roughly two days on a single NVidia Titan X GPU.

4.4.3 Comparisons with State-of-the-art

We compare the proposed LAPRAN with six state-of-the-art CS reconstruction

methods: NLR-CS Dong et al. (2014b), TVAL3 Li et al. (2009), BM3D-AMP (D-
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AMP with BM3D denoiser Dabov et al. (2007)), ReconNet Kulkarni et al. (2016), CS

reconstruction using a generative model (CSGM) Bora et al. (2017), and learned D-

AMPMetzler et al. (2017). We summarize the major differences between the proposed

and the refernce methods in Table 4.1. Structural similarity (SSIM) and peak signal-

to noise ratio (PSNR) are used as the performce metrics in the benchmark.

The quantitative comparison of reconstruction performance is shown in Table 4.2.

The proposed LAPRAN achieves the best recovery quality on all the testing datasets

and at all CRs. Especially, the performance degradation of the LAPRAN at large CRs

( ≥20) is well bounded. The main reasons are two-fold. First, our approach adopts a

progressive reconstruction strategy that mitigates the difficulty of approximating the

inverse mapping of CS. In contrast, CSGM tries to generate high-resolution images

in a single step thus has a low reconstruction quality due to the difficulty in learning.

Second, our approach utilizes a low-resolution image as input to guide the generation

process at each stage, which helps to further reduce the search space of the under-

determined problem by eliminating irrelevant candidates. The visual comparison of

reconstructed images (at the CRs of 5 and 20) from Set 5 and Set 14 is shown in

Figure 4.5a and 4.5b, respectively. It is illustrated that our method can accurately

Table 4.1: Summary of the major differences between the proposed and the reference
methods.

Name Model/Data-driven Iterative? Reconstruction Loss

NLR-CS Model Yes Direct Group sparsity, low rank

TVAL3 Model Yes Direct `2, TV

D-AMP Model Yes Direct Denoising

ReconNet Data No Direct `2

LDAMP Hybrid Yes Direct Denoising

CSGM Data No Direct `2, Adversarial

LAPRAN Data No Progressive `2, Adversarial
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reconstruct high-frequency details, such as the parallel lines, contained in the ground-

truth image. In contrast, the reference methods produce noticeable artifacts and start

to lose details at the CR of 20.

Ground-truth

(SSIM, PSNR)

(SSIM, PSNR)

Ground-truth

(SSIM, PSNR)

(SSIM, PSNR)

HRGAN
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(a) CS reconstruction results at the CR of 5.
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(b) CS reconstruction results at the CR of 20.

Figure 4.5: Visual comparison of butterfly (Set 5) and zebra (Set14) at the CRs of
5 and 20. LAPRAN better preserves details.
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Table 4.2: Quantitative evaluation of state-of-the-art CS reconstruction methods.

Algorithm
Compression

ratio (CR)

MNIST CIFAR10 Set5 Set14

SSIM/PSNR SSIM/PSNR SSIM/PSNR SSIM/PSNR

NLR-CS

5

0.408/24.85 0.868/37.91 0.803/30.42 0.794/29.42

D-AMP 0.983/37.78 0.968/41.35 0.852/33.74 0.813/31.17

TVAL-3 0.934/36.39 0.847/32.03 0.812/31.54 0.727/29.48

ReconNet 0.911/29.03 0.871/32.55 0.824/31.78 0.763/29.70

CSGM 0.748/28.94 0.788/30.34 0.619/27.31 0.575/26.18

LDAMP 0.797/31.93 0.971/41.54 0.866/32.26 0.781/30.07

LAPRAN (ours) 0.993/38.46 0.978/42.39 0.895/34.79 0.834/32.71

NLR-CS

10

0.416/21.98 0.840/33.39 0.764/28.89 0.716/27.47

D-AMP 0.963/35.51 0.822/30.78 0.743/27.72 0.649/25.84

TVAL-3 0.715/27.18 0.746/29.21 0.702/28.29 0.615/26.65

ReconNet 0.868/28.98 0.843/29.78 0.779/29.53 0.704/27.45

CSGM 0.589/27.49 0.784/29.83 0.560/25.82 0.514/24.94

LDAMP 0.446/22.40 0.899/34.56 0.796/29.46 0.687/27.70

LAPRAN (ours) 0.990/38.38 0.943/38.13 0.849/32.53 0.775/30.45

NLR-CS

20

0.497/21.79 0.820/31.27 0.729/26.73 0.621/24.88

D-AMP 0.806/28.56 0.402/16.86 0.413/16.72 0.329/15.12

TVAL-3 0.494/21.00 0.623/25.77 0.583/25.18 0.513/24.19

ReconNet 0.898/27.92 0.806/29.08 0.731/27.07 0.623/25.38

CSGM 0.512/27.54 0.751/30.50 0.526/25.04 0.484/24.42

LDAMP 0.346/17.01 0.756/28.66 0.689/27.00 0.591/24.48

LAPRAN (ours) 0.985/37.02 0.896/34.12 0.801/30.08 0.716/28.39

NLR-CS

30

0.339/17.47 0.703/27.26 0.580/22.93 0.581/22.93

D-AMP 0.655/21.47 0.183/10.62 0.230/10.88 0.136/9.31

TVAL-3 0.381/18.17 0.560/24.01 0.536/24.04 0.471/23.20

ReconNet 0.892/25.46 0.777/29.32 0.623/25.60 0.598/24.59

CSGM 0.661/27.47 0.730/27.73 0.524/24.92 0.464/23.97

LDAMP 0.290/15.03 0.632/25.57 0.572/24.75 0.510/22.74

LAPRAN (ours) 0.962/31.28 0.840/31.47 0.693/28.61 0.668/27.09
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4.4.4 Reconstruction Speed

We compare the runtime of each reconstruction method for reconstructing a 64×64

image patch to benchmark reconstruction speed. For the optimization-based methods,

GPU acceleration is impractical due to their iterative natures. Thus, we use an

Intel(R) Xeon E5-2695 CPU to run the codes provided by the respective authors.

For the DNN-based methods, we use an Nvidia GTX TitanX GPU to accelerate the

reconstruction process. The average runtime for each method is shown in Table 4.3.

The proposed LAPRAN taks about 6ms to reconstruct 64× 64 image patch, which is

4 orders of magnitude faster than NLR-CS and TVAL3, and 2 orders of magnitude

faster than BM3D-AMP and LDAMP. Although our method is slightly slower than

ReconNet and CSGM, it is sufficiently fast for performing real-time reconstruction.

Table 4.3: Runtime (seconds) for reconstructing a 64 × 64 image patch. Unlike
the model-based methods, the runtime of LAPRAN is invariant to CR. LAPRAN
is slightly slower than ReconNet and CSGM because of its large model capacity.
LDAMP is relatively slower due to its iterative nature.

Name Device CR=5 CR=10 CR=20 CR=30

NLR-CS CPU 1.869e1 1.867e1 1.833e1 1.822e1

TVAL3 CPU 1.858e1 1.839e1 1.801e1 1.792e1

BM3D-

AMP

CPU 4.880e-1 4.213e-1 3.018e-1 2.409e-1

ReconNet GPU 2.005e-3 1.703e-3 1.524e-3 1.661e-3

CSGM GPU 1.704e-3 1.562e-3 1.490e-3 1.481e-3

LDAMP GPU 3.556e-1 2.600e-1 1.998e-1 1.784e-1

LAPRAN GPU 6.241e-3 6.384e-3 6.417e-3 6.008e-3

4.5 Conclusions

In this chapter, we present a scalable LAPRAN for high-fidelity, flexible, and

fast CS image reconstruction. The LAPRAN consists of multiple stages of RANs
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that progressively reconstruct an image in multiple hierarchies. At each pyramid

level, CS measurements are fused with a low-dimensional contextual latent vector

to generate a high-frequency image residual, which is subsequently upsampled via

a transposed CNN. The generated image residual is then added to a low-frequency

image upscaled from the output of the previous level to form the final output of the

current level with both higher resolution and reconstruction quality. The hierarchical

nature of the LAPRAN is the key to enabling high-fidelity CS reconstruction with

a flexible resolution that can be adaptive to a wide range of CRs. Each RAN in

the LAPRAN can be trained independently with weight transfer to achieve faster

convergence and improved accuracy. The use of contextual input at each stage and

the divide-and-conquer strategy in training are the keys to achieving excellent recon-

struction performance.
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Chapter 5

DEEP LEARNING FOR VIDEO COMPRESSIVE SENSING

RECONSTRUCTION

5.1 Introduction

High-frame-rate cameras are capable of capturing videos at frame rates over 100

frames per second (fps). These devices were originally developed for research pur-

poses, e.g., to characterize events that occur at a rate that traditional cameras are

incapable of recording in physical and biological science. Some high-frame-rate cam-

eras, such as Photron SA1, SA3, are capable of recording high resolution still images

of ephemeral events such as a supersonic flying bullet or an exploding balloon with

negligible motion blur and image distortion artifacts. However, due to the complex

sensor hardware designed for high sampling frequency, these types of equipment are

extremely expensive (over tens of thousand dollars for one camera). The high cost

limits the field of their applications. Furthermore, the high transmission bandwidth

and the large storage space associated with the high frame rate challenges the man-

ufacture of affordable consumer devices. For example, true high-definition-resolution

(1080p) video cameras at a frame rate of 10k fps can generate about 500 GB data

per second, which imposes significant challenges on existing transmission and storage

techniques. Also, the high throughput raises energy efficiency a big concern. For ex-

ample, “GoPro 5” can capture videos at 120 fps with 1080p resolution. However, the

short battery life (1-2 hours) has significantly narrowed their practical applications.

Traditional video encoder, e.g., H.264/MPEG-4, is composed of motion estima-

tion, frequency transform, quantization, and entropy coding modules. From both
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speed and cost perspectives, the complicated structure makes these video encoder un-

suitable for high-frame-rate video cameras. Alternatively, compressive sensing (CS)

is a much more hardware-friendly acquisition technique that allows video capture

with a sub-Nyquist sampling rate. The advent of CS has led to the emergence of

new image devices, e.g., single-pixel cameras Duarte et al. (2008). CS has also been

applied in many practical applications, e.g., accelerating magnetic resonance imag-

ing (MRI) Ma et al. (2008). While traditional signal acquisition methods follow a

sample-then-compress procedure, CS could perform compression along with sampling.

The novel acquisition strategy has enabled low-cost on-sensor data compression, re-

lieving the pain for high transmission bandwidth and large storage space. In the

recent decade, many algorithms have been proposed Candès et al. (2006a); Needell

and Tropp (2010); Beck and Teboulle (2009); Daubechies et al. (2010); Tropp and

Gilbert (2007); Blumensath and Davies (2009) to solve the CS reconstruction prob-

lem. Generally, these reconstruction algorithms are based on either optimization or

greedy approaches using signal sparsity as prior knowledge. As a result, they all suf-

fer from high computational complexity, which requires seconds to minutes to recover

an image depending on the resolution. Therefore, these sparsity-based methods can-

not satisfy the real-time decoding need of high-frame-rate cameras, and they are not

appropriate for the high-frame-rate video CS application.

The slow reconstruction speed of conventional CS approaches motivates us to di-

rectly model the inverse mapping from the compressed domain to original domain,

which is shown in Figure 5.1. Usually, this mapping is extremely complicated and

difficult to model. However, the existence of massive unlabeled video data gives a

chance to learn such a mapping using data-driven methods. In this work, we design

an enhanced recurrent convolutional neural network (RCNN) to solve this problem.

RCNN has shown astonishingly good performance for video recognition and descrip-
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Figure 5.1: Illustration of domain transformations in CS. This work bridges the gap
between compressed and signal domains.

tion Donahue et al. (2017); Venugopalan et al. (2015); Xu et al. (2015); Srivastava

et al. (2015). However, conventional RCNNs are not well suited for video CS applica-

tion, since they are mostly designed to extract discriminant features for classification

related tasks. Simultaneously improving compression ratio (CR) and preserving visual

details for high-fidelity reconstruction is a more challenging task. To solve this prob-

lem, we develop a special RCNN, called “CSVideoNet”, to extract spatial-temporal

features, including background, object details, and motions, to significantly improve

the compression ratio and recovery quality trade-off for video CS application over

existing approaches.

The contributions of this paper are summarized as follows:

• We propose an end-to-end and data-driven framework for video CS. The pro-

posed network directly learns the inverse mapping from the compressed videos

to the original input without additional pre/post-processing. To the best of our

knowledge, there has been no published work that addresses this problem using

similar methods.

• We propose a multi-level compression strategy to improve CR with the preser-

vation of high-quality spatial resolution. Besides, we perform implicit motion

estimation to improve temporal resolution. By combining both spatial and tem-
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poral features, we further improve the compression ratio and recovery quality

trade-off without increasing much computational complexity.

• We demonstrate CSVideoNet outperforms the reference approaches not only in

recovery quality but also in reconstruction speed because of its non-iterative na-

ture. It enables real-time high-fidelity reconstruction for high-frame-rate videos

at high CRs. We achieve state-of-the-art performance on the large-scale video

dataset UCF-101. Specifically, CSVideoNet reconstructs videos at 125 fps on a

Titan X GPU and achieves 25dB PSNR at a 100x CR.

5.2 Related Work

There have been many recovery algorithms proposed for CS reconstruction, which

can be categorized as follows:

Conventional Model-based CS Recovery: In Sankaranarayanan et al. (2013),

the authors model the evolution of scenes as a linear dynamical system (LDS). This

model comprises two sub-models: the first is an observation model that models frames

of video lying on a low-dimensional subspace; the second predicts the smoothly varied

trajectory. The model performs well in stationary scenes, however, inadequate for

non-stationary scenes.

In Yang et al. (2014), the authors use Gaussian mixture model (GMM) to recover

high-frame-rate videos, and the reconstruction can be efficiently computed as an ana-

lytical solution. The hallmark of the algorithm is that it adapts temporal compression

rate based upon the complexity of the scene. The parameters in GMM are trained

off-line and tuned during the recovery process.

In Sankaranarayanan et al. (2015), the authors propose a multi-scale video recov-

ery framework. It first obtains a low-resolution video preview with very low computa-
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tional complexity, and then it exploits motion estimates to recover the full-resolution

video by solving an optimization problem. In a similar work Fowler et al. (2012), the

authors propose a motion-compensated and block-based CS reconstruction algorithm

with smooth projected Landweber (MC-BCS-SPL). The motion vector is estimated

from a reference and a reconstructed frame. The reconstructed video is derived from

the combination of the low-resolution video and the estimated motion vector. The

drawback of the two work is the requirement of specifying the resolution at which the

preview frame is recovered, which requires prior knowledge of the object speed. Also,

the recovery performance is highly dependent on the quality of motion estimation.

To accurately estimate motion vector is a challenging task especially in high-frame-

rate scenarios. The high computational cost further makes this model inadequate for

reconstructing high-frame-rate videos.

Deep Neural Network (DNN) Based CS Recovery: In Mousavi et al.

(2015), the authors propose a stacked autoencoder to learn a representation of the

training data and to recover test data from their sub-sampled measurements. Com-

pared to the conventional iterative approaches, which usually need hundreds of it-

erations to converge, the feed-forward deep neural network runs much faster in the

inference stage.

In Kulkarni et al. (2016), the authors propose a convolutional neural network,

which takes CS measurements of an image as input and outputs an intermediate re-

construction. The intermediate output is fed into an off-the-shelf denoiser to obtain

the final reconstructed image. The author shows the network is highly robust to sen-

sor noise and can recover visually higher quality images than competitive algorithms

at low CRs of 10 and 25. Both Mousavi et al. (2015) and Kulkarni et al. (2016)

are designed for image reconstruction, which only focus on spatial feature extraction.

For video applications, temporal features between adjacent frames are also impor-
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tant. Therefore, the overlook of temporal correlation makes the image reconstruction

algorithms inadequate for video applications.

In Iliadis et al. (2018), the authors propose a Video CS reconstruction algorithm

based on a fully-connected neural network. This work focuses on temporal CS where

multiplexing occurs across the time dimension. A 3D volume is reconstructed from

2D measurements by a feed-forward process. The author claims the reconstruction

time for each frame can be reduced to about one second. The major drawback of this

work is that the algorithm is based on a plain fully-connected neural network, which

is not efficient in extracting temporal features.

5.3 Methodology

5.3.1 Overview of the Proposed Framework for Video CS

Two kinds of CS cameras are being used today. Spatial multiplexing cameras

(SMC) take significantly fewer measurements than the number of pixels in the scene

to be recovered. SMC has low spatial resolution and seeks to spatially super-resolve

videos. In contrast, temporal multiplexing cameras (TMC) have a high spatial resolu-

tion but low frame-rate sensors. Due to the missing of inter frames, extra computation

is needed for motion estimation. For these two sensing systems, either spatial or tem-

poral resolution is sacrificed for achieving a better spatial-temporal trade-off. To

solve this problem, we propose a new sensing and reconstruction framework, which

combines the advantage of the two systems. The random video measurements are

collected by SMC with very high temporal resolution. To compensate for the low

spatial resolution problem in SMC, we propose a multi-CR strategy. The first key

frame in a group of pictures (GOP) is compressed with a low CR, and the remaining

non-key frames are compressed with a high CR. The spatial features in the key frame
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are reused for the recovery of the entire GOP due to the high inter-frame correla-

tion in high-frame-rate videos. The spatial resolution is hence improved. The RNN

extrapolates motion from high-resolution frames and uses it to improve the tempo-

ral resolution. Therefore, a better compression ratio and spatial-temporal resolution

trade-off are obtained by the proposed framework.

The overall architecture of the proposed video CS reconstruction framework is

shown in Figure 5.2. The network contains three modules: 1) an encoder (sensing

matrix) for simultaneous sampling and compression; 2) a dedicated CNN for spatial

features extraction after each compressed frame; 3) an LSTM for motion estimation

and video reconstruction. As mentioned earlier, to improve the spatial resolution, the

random encoder encodes the key frame in a GOP with more measurements and the

remaining with less. Also, our previous study Xu et al. (2017) shows that sensing

matrix can be trained with raw data to better preserve the Restricted Isometry Prop-

erty (RIP). Therefore, the encoder can also be integrated into the entire model and

trained with the whole network to improve reconstruction performance. Besides, as

the proposed algorithm eliminates the sparsity prior constraint, the direct optimiza-

tion of RIP preservation in Xu et al. (2017) is not necessary. Instead, we can use the

reconstruction loss to train the sensing matrix along with the model. For simplicity,

we still use a random Bernoulli matrix for information encoding in the experiment.

Different from the prior work that extracts motion from low-resolution previews,

the proposed LSTM network infers motion from high-resolution frames generated by

multi-rate CNNs. The resolution of the reconstructed video is further improved with

the incorporation of high-quality motion estimation.
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Figure 5.2: Overall architecture of the proposed framework. The compressed video
frames are acquired by compressive sensing. In a length T GOP, the first one frame
and the remaining (T-1) frames are compressed with a low and high CR, respectively.
The reconstruction is performed by the CSVideoNet that is composed of a key CNN,
multiple non-key CNNs, and a synthesizing LSTM.

Multi-rate CNN Encoder for Compression Ratio Enhancement

Typical CNN architectures used for recognition, classification, and segmentation that

map input to rich hierarchical visual features is not applicable to the reconstruction

problem. The goal of the CNN is not only to extract spatial visual features but also to

preserve details as much as possible. Therefore, we eliminated the pooling layer which

causes information loss. Also, we discard the convolution-deconvolution architecture

(widely used in segmentation tasks Noh et al. (2015)), which first encodes salient

visual features into low-dimension space and then interpolates the missing information

to generate a high-resolution image. Instead, we design a special CNN suitable for

CS reconstruction, which has the best recovery performance among all the tested

structures mentioned above. The overall network structure is shown in Figure 5.3.

All feature maps have the same dimension as the reconstructed video frames, and

the number of feature maps decreases monotonically. This process resembles the

sparse coding stage in CS, where a subset of dictionary atoms is combined to form

the estimation of the original input. There is a fully-connected (FC) layer, denoted

in gray color in Figure 5.3, which converts vectorized m-dimensional video data to

2D features maps. To reduce the latency of the system and to simplify the network
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architecture, we use video blocks as input and set the block size n to 32×32. All

convolutional layers are followed by a ReLU layer except the final layer. We pre-train

an eight-layer key CNN to process the key frame that is compressed with a low CR.

For other non-key frames compressed with a high CR, we use 3-layer non-key CNNs

to handle them since they carry information of low entropy. All weights of the non-key

CNNs are shared to reduce the requirement of storage. Hence the proposed framework

can be easily generalized to other high-frame-rate video applications that require a

larger number of non-key frames. It should be noted that the pre-training of the

key CNN is critical for improving the reconstruction performance. In the case where

the whole network is trained from scratch without any pre-training, the convergence

performance is bad. The reason is partly due to the vanishing gradients, since we

have a long path from the CNNs to the LSTM. The pre-training greatly alleviate this

problem.

Motion-estimation Synthesizing LSTM Decoder for Spatial-temporal Res-

olution Enhancement

The proposed framework is end-to-end trainable, computationally efficient, and re-

quires no pre/post-processing. This is achieved by performing motion estimation

implicitly, which is different from prior works Sankaranarayanan et al. (2015); Yang

et al. (2014); Fowler et al. (2012). We utilize an LSTM network to extract motion

features that are critical for improving temporal resolution from the CNN output.

Since the information flows from the first LSTM node to the remaining, the LSTM

will implicitly infers representations for the hidden motion from the key frame to the

non-key frames. Therefore, the recovery quality of the GOP is improved by the ag-

gregation of motion and spatial visual features. That is why we call this network the

motion-estimation synthesizing LSTM. For simplicity, each input LSTM node in the
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experiment accepts input data with equal length. In fact, since the non-key frames

carry less information than the key frame, the LSTM network can be designed to

accept inputs with variable lengths. Hence, we can further reduce the model size and

get a faster reconstruction speed. From the experiment results, we find the utilization

of the LSTM network is critical to improving recovery fidelity. As a result, our model

outperforms the competitive algorithms by a significant margin.

The update of the LSTM units is as follows:

it = σ (Wxixt +Whiht−1 +Wcict−1 + bi) ,

ft = σ (Wxfxt +Whfht−1 +Wcfct−1 + bf ) ,

ct = ftct−1 + it tanh (Wxcxt +Whcht−1 + bc) ,

ot = σ (Wxoxt +Whoht−1 +Wcoct + bo) ,

ht = ot tanh(ct),

where xt is the visual feature output of the CNN encoder. The detailed information

flow and the output dimension at each LSTM node is shown in Figure 5.2. The

number on the LSTM nodes denotes the dimension of the output features. Specifically,

the output feature map of each CNN has a dimension of 16x32x32. All these feature

maps are directly fed into the input nodes of the LSTM. The LSTM has two hidden

layers, the dimension of the output of each hidden layer is 6x32x32. The dimension

of the final output is 1x32x32.

5.3.2 Learning Algorithm

Given the ground-truth video frames x{1,··· ,T} and the corresponding compressed

frames y{1,··· ,T}, we use mean square error (MSE) as the loss function, which is defined

as:

L(W,b) =
1

2N

T∑
i

‖f(yi; W,b)− xi‖22, (5.1)
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where W, b are network weights and biases, respectively.

Using MSE as the loss function favors high PSNR. PSNR is a commonly used

metric to quantitatively evaluate recovery quality. From the experiment results, we

illustrate that PSNR is partially correlated to the perceptual quality. To derive a

better perceptual similarity metric will be a future work. The proposed framework

can be easily adapted to a new loss function.

Three training algorithms, i.e., SGD, Adagrad Duchi et al. (2011) and Adam

Kingma and Ba (2015) are compared in the experiment. Although consuming most

GPU memory, Adam converges towards the best reconstruction results. Therefore,

Adam is chosen to optimize the proposed network.

5.4 Experiment

As there is no standard dataset designed for video CS, we use UCF-101 dataset

introduced in Soomro et al. (2012) to benchmark the proposed framework. This

dataset consists of 13k clips and 27 hours of video recording data collected from

YouTube, which belong to 101 action classes. Videos in the dataset are randomly

split into 80% for training, 10% for validation and the remaining for testing. Videos

in the dataset have a resolution of 320×240 and are sampled at 25 fps. We retain

only the luminance component of the extracted frames and crop the central 160×160

patch from each frame. These patches are then segmented into 32×32 non-overlapping

image blocks. We get 499,760 GOPs for training and testing in total.

We set three test cases with CRs of 25, 50 and 100, respectively. Since the CR for

key and non-key frames are different in the proposed method, we derive and define the

CR for a particular GOP as follows. Let m1,m2 denotes the dimension of compressed

key and non-key frame, respectively. Let n denotes the dimension of raw frames. T
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Figure 5.3: Pre-training of the key CNN.

is the sequential length of a GOP.

CR1 =n/m1, CR2 = n/m2,

CR =
CR1 × 1 + CR2 × (T − 1)

T
. (5.2)

In the experiment, the CR of each key frame is m1=5, and the CR of non-key

frames in each test case is m2=27, 55, and 110, respectively. Therefore, the averaged

CR for each test case is about 25, 50, and 100, respectively.

The dimension of data for pre-training the key CNN is (N ×C ×H ×W ), where

N=100 is the batch size, C=1 is the channel size, and W,H=(32, 32) is the height and

width of each image block, respectively. The dimension of the data used for training

the entire model is (N ′×T ×C×H×W ), where T=10 is the sequence length for one

GOP, and N ′=20 is the batch size. The other dimensions are the same. We shrink

the batch size here because of the GPU memory limitation. In every ten consecutive

video frames, we define the first one as the key frame, and the remaining as non-key

frames.

5.4.1 Comparison with the State-of-the-art

We compare our algorithm with six reference work for CS reconstruction: Yang

et al. (2014); Fowler et al. (2012); Mousavi et al. (2015); Metzler et al. (2016); Kulkarni

et al. (2016); Iliadis et al. (2018). We summarize all baseline approaches and our

approach in Table 5.1. For a fair comparison, we also re-train reference algorithms

using UCF-101 dataset. Three metrics: Peak signal-to-noise ratio (PSNR), structural
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Table 5.1: Summary of major differences between the proposed approach and all
baselines.

Image CS

Iterative Based
Denoising-based

approximate message passing
D-AMP Metzler et al. (2016)

Non-iterative Based
Stacked denoising autoencoder SDA Mousavi et al. (2015)

Convolutional neural network ReconNet Kulkarni et al. (2016)

Video CS

Iterative Based

Motion-compensated block-

based CS with smooth

projected Landweber

MC-BCS-SPL Fowler et al. (2012)

Gaussian mixture model GMM Yang et al. (2014)

Non-iterative Based
Fully-connected neural network VCSNet Iliadis et al. (2018)

Proposed approach CSVideoNet

similarity (SSIM) Wang et al. (2004), and pixel-wise mean absolute error (MAE) are

applied for performance evaluation. Note that MAE is the averaged absolute error of

each pixel value within the range of [0,255], which gives a straightforward measure of

the pixel-wise distortion. The authors of VCSNet only offer a pre-trained model with

CR of 16, without providing sufficient training details to reproduce the experiment

at present. Therefore, we train the proposed model and compare it with CVSNet at

a single CR of 16.

Comparison with Image CS Approaches

We first compare with the algorithms used for image CS reconstruction. D-AMP

is a representative of the conventional iterative algorithms developed for CS, e.g.,

matching pursuit, orthogonal mating pursuit, iterative hard-thresholding. It offers

state-of-the-art recovery performance and operates tens of times faster compared to

other iterative methods Metzler et al. (2016). Both SDA and ReconNet are DNN-

based reconstruction approaches for images proposed recently. Specifically, ReconNet

is based on CNN and achieves state-of-the-art performance among all image CS re-
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construction algorithms Kulkarni et al. (2016). In the experiment, we tested both

frame-based and block-based D-AMP that reconstructs an entire frame and an image

block at a time, respectively. For other approaches, we test them in a block-based

pattern to reduce the difficulty for training the models. The quantized results of

average PSNR, SSIM, and MAE for each method under different CRs are shown in

Table 5.2. It is shown that CSVideoNet outperforms the reference approaches on all

three metrics by a meaningful margin, especially at the CR of 100. The MAE of

CSVideoNet is 4.59 at a 100x CR which means the averaged pixel-wise distortion is

only 4.59/255 = 1.2% compared to the ground-truth video. The PSNR drop from

the CR of 25 to 100 is also calculated in Table 5.2. We found the proposed approach

suffers from the least performance degradation. This is partly due to the feature shar-

ing between the key and non-key frames when the compressed input carries limited

information.

For visual quality assessment purpose, we list the reconstructed frame by each

approach in Figure 5.4. The reconstructed frame is the middle (fifth) frame in a GOP.

We find all the reconstructed non-key frames have homogeneous recovery quality, and

the key frame has slightly better reconstruction quality than the non-key frames. As

the proportion of key and non-key frames is 1:9, and the reconstruction quality of the

video is dominated by that of the non-key frames. Therefore, the middle frame (a

non-key frame) shown in Figure 5.4 well represents the average reconstruction quality.

For all the numerical results, we calculate all the quality metrics, including PSNR,

SSIM, and MAE, by averaging the results over all frames in a GOP. We can see that

CSVideoNet provides the finest details among all approaches. The edges produced

by CSVideoNet is much sharper, while such details are no longer preserved by other

methods after reconstruction. This comparison demonstrates that the temporal cor-

relation is critical for video reconstruction, the overlook of such features will signifi-
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Figure 5.4: Illustration of reconstruction results for each method at the CR of (a)
25, (b) 50, and (c) 100, respectively.

cantly degrade the recovery quality of videos. Therefore, the conventional image CS

approaches are not suitable for video applications.

5.4.2 Comparison with Video CS Approaches

We compare the proposed CSVideoNet with existing video CS approaches. MC-

BCS-SPL estimates motion directly from the current and the reference frame. GMM

models the spatial-temporal correlation by assuming all pixels within a video patch

are drawn from a GMM distribution. GMM has the state-of-the-art performance

among conventional model-based video CS approaches Yang et al. (2014). To the

best of our knowledge, Iliadis et al. (2018) is the only DNN-based work proposed for
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Figure 5.5: Illustration of reconstruction results at the CR of 16.

Table 5.2: Performance comparison with image CS reconstruction approaches.

CR D-AMP(F) D-AMP(B) SDA ReconNet CSVideoNet

PSNR

25 25.34 15.1494 23.39 24.27 26.87

50 12.49 9.1719 21.96 22.47 25.09

100 7.17 8.0942 20.40 20.44 24.23

SSIM

25 0.76 0.0934 0.69 0.73 0.81

50 0.08 0.0249 0.65 0.67 0.77

100 0.03 0.0067 0.61 0.61 0.74

MAE

25 4.65 24.92 5.76 5.02 3.38

50 64.30 81.67 6.60 5.67 4.31

100 92.12 86.04 8.50 7.42 4.59

PSNR↓ 25 → 100 72% 13% 47% 16% 10%

video CS. The quantized results of average PSNR, SSIM, and MAE for each method

under different CRs are shown in Table 5.3. It is observed that the proposed approach

improves PSNR by 3 to 5dB over the reference methods. Specifically, we find MC-

BCS-SPL and GMM have similar performance and perform much better than the

model-based image CS approach, D-AMP. However, their performance are similar to

SDA and ReconNet, which are designed for processing images. This implies that the

conventional model-based methods suffer from limited performance due to the limited

model capacity when dealing with large-scale problem. Even though they consider the
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Table 5.3: Performance comparison with video CS reconstruction approaches.

CR MC-BCS-SPL GMM CSVideoNet

PSNR

25 22.41 23.76 26.87

50 20.59 21.26 25.09

100 19.67 19.64 24.23

SSIM

25 0.37 0.72 0.81

50 0.30 0.61 0.77

100 0.19 0.54 0.74

MAE

25 11.88 5.14 3.38

50 16.03 7.50 4.31

100 28.86 9.37 4.59

PSNR↓ 25 → 100 26% 17% 10%

temporal correlation among video frames, the model capacity is insufficient for visual

patterns. To improve performance, one could increase the size of the conventional

models. However, the computational complexity forof these meods will also increase

substantially, inhibiting their application to video CS.

DNN provides a viable solution. Both CSVideoNet and VCSNet are designed

for video CS reconstruction. For reasons explained earlier, we compare the two ap-

proaches at a CR of 16. The results are shown in Table 5.4 and Figure 5.5. Both the

two approaches achieve high recovery quality compared to other baselines. However,

VCSNet is a plain fully-connect network that has limited capability for processing

sequential data. As a result, it suffers from a low-quality motion estimation, which

explains why it has inferior performance compared to the proposed solution.

To illustrate that the performance improvement of the proposed approach comes

from integrating temporal features through the LSTM network rather than simply

increasing the model size, we set another experiment, in which we compare the per-
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Table 5.4: Performance comparison with VCSNet at the CR of 16.

VCSNet CSVideoNet

PSNR 25.07704 28.078

SSIM 0.817669 0.8431

MAE 3.887867 2.9452

Table 5.5: Structures of CNN1 and CNN2.

# Layer 1 2 3 4 5 6 7 8 9 10 11 12 13

CNN1 1 128 64 32 32 16 16 1

CNN2 1 512 256 256 128 128 64 64 32 32 16 16 1

* CNN1 is used in CSVideoNet. The dimension of all feature maps in both CNNs are 32×32.

formance of two CNNs with different sizes. The structure of the two CNNs are shown

in Table 5.5, and the performance comparison is shown in Table 5.7. We can see

that simply increasing the size of CNN does not provide meaningful improvement

for reconstruction. This, wh be explained by the incapability of CNN to capture

temporal features. The incorporation of the LSTM network improves the PSNR by

up to 4 dB, which represents more than twice of error reduction. Specifically, the

performance improvement increases with thealong wiachieves theits maximum wheR

is 100. This explains that the implicit motion estimation by LSTM is critical to the

video CS reconstruction especially at high CRs.

5.4.3 Performance under Noise

To demonstrate that the robustness of CSVideoNet to sensor noise, we conduct

a reconstruction experiment with input videos contaminated by random Gaussian

noise. In this experiment, the architecture of all DNN-based frameworks remains the

same as in the noiseless case. We test the performance at three levels of SNR - 20dB,
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Table 5.6: Runtime comparison for reconstructing a 160×160 video frame at different
CRs.

Model CR=25 CR=50 CR=100

D-AMP(F) 38.37 41.20 31.74

D-AMP(B) 8.4652 8.5498 8.4433

SDA 0.0278 0.027 0.023

ReconNet 0.064 0.063 0.061

MC-BCS 7.17 8.03 9.00

GMM 8.87 10.54 18.34

CSVideoNet 0.0094 0.0085 0.0080

Table 5.7: Performance comparison with CNN methods.

CR CNN1 CNN2 CSVideoNet

PSNR

25 24.27 23.74 26.87

50 22.47 22.17 25.09

100 20.44 20.10 24.23

SSIM

25 0.73 0.69 0.81

50 0.67 0.65 0.77

100 0.61 0.58 0.74

MAE

25 5.02 6.46 3.38

50 5.67 6.23 4.31

100 7.42 8.92 4.59
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40dB, and 60dB. For each noise level, we evaluate all approaches at three CRs of

25, 50, and 100. The average PSNR achieved by each method at different CRs and

noise levels are shown in Figure 5.6. It can be observed that CSVideoNet can reliably

achieve a high PSNR across at different noise levels and outperform the reference

methods consistently.

5.4.4 Time Complexity

We benchmark the runtime performance of different methods. Due to the iter-

ative nature of conventional CS algorithms (D-AMP, MC-BCS-SPL, GMM), they

suffer from high data-dependency and low parallelism, which is not suitable for GPU

acceleration. Due to the lack of GPU solvers, we run these reference algorithms on

an octa-core Intel Xeon E5-2600 CPU. Benefiting from the feedforward data-path

and high data concurrency of DNN-based approaches, we accelerate CSVideoNet and

other DNN-based baselines using a Nvidia GTX Titan X GPU. The time cost for

fully reconstructing a video frame in the size of (160×160) are compared in Table 5.6.

CSVideoNet consumes 8 milliseconds (125 fps) to reconstruct a frame at the CR of

100. This is three orders of magnitude faster than the reference methods based on

iterative approaches. The time cost of VCSNet and CSVideoNet at the CR of 16 is

3.5 and 9.7 milliseconds, respectively. Through further hardware optimization, we

believe CSVideoNet has the potential to be integrated into CS cameras to enable the

real-time reconstruction of high-frame-rate video CS.

5.5 Conclusion

In this chapter, we present a real-time, end-to-end, and non-iterative framework

for high-frame-rate video CS. A multi-rate CNN variant and a synthesizing LSTM

network are developed to jointly extract spatial-temporal features. This is the key
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to enhancing the compression ratio and recovery quality trade-off. The magnifi-

cent model capacity of the proposed deep neural network allows to map the inverse

mapping of CS without exploiting any sparsity constraint. The feed-forward and

high-data-concurrency natures of the proposed framework are the key to enabling

GPU acceleration for real-time reconstruction. Through performance comparison, we

demonstrate that CSVideoNet has the potential to be extended as a general encoding-

decoding framework for high-frame-rate video CS applications. In the future work,

we will exploit the effective learning methods to decode high-level information from

compressed videos, e.g., object detection, action recognition, and scene segmentation.
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Chapter 6

LEARNING IN THE FREQUENCY DOMAIN

6.1 Introduction

Convolutional neural networks (CNNs) have revolutionized the computer vision

community because of their exceptional performance on various tasks such as image

classification Krizhevsky et al. (2012); Karpathy et al. (2014), object detection Ren

et al. (2017); Redmon et al. (2016), and semantic segmentation Long et al. (2015);

Chen et al. (2018). Constrained by the computing resources and memory limitations,

most CNN models only accept RGB images at low resolutions (e.g., 224×224). How-

ever, images produced by modern cameras are usually much larger. For example, the

high definition (HD) resolution images (1920×1080) are considered relatively small by

modern standards. Even the average image resolution in the ImageNet dataset Rus-

sakovsky et al. (2015) is 482×415, which is roughly four times the size accepted by

most CNN models. Therefore, a large portion of real-world images are aggressively

downsized to 224×224 to meet the input requirement of classification networks. How-

ever, image downsizing inevitably incurs information loss and accuracy degradation

Pei et al. (2019). Prior works Kim et al. (2018); Saeedan et al. (2018) aim to reduce

information loss by learning task-aware downsizing networks. However, those net-

works are task-specific and require additional computation, which are not favorable

in practical applications. In this work, we propose to reshape the high-resolution im-

ages in the frequency domain, i.e., discrete cosine transform (DCT) domain 1, rather

1We interchangeably use the terms frequency domain and DCT domain in the context of this

paper.

72



than resizing them in the spatial domain, and then feed the reshaped DCT coefficients

to CNN models for inference. Our method requires little modification to the existing

CNN models that take RGB images as input. Thus, it is a universal replacement for

the routine data pre-processing pipelines. We demonstrate that our method achieves

higher accuracy in image classification, object detection, and instance segmentation

tasks than the conventional RGB-based methods with an equal or smaller input data

size. The proposed method leads to a direct reduction in the required inter-chip com-

munication bandwidth that is often a bottleneck in modern deep learning inference

systems, i.e., the computational throughput of rapidly evolving AI accelerators/GPUs

is becoming increasingly higher than the data loading throughput of CPUs, as shown

in Figure 6.1.

Inspired by the observation that human visual system (HVS) has unequal sensi-

tivity to different frequency components Kim and Lee (2017), we analyze the image

classification, detection and segmentation task in the frequency domain and find that

CNN models are more sensitive to low-frequency channels than the high-frequency

channels, which coincides with HVS. This observation is validated by a learning-based

channel selection method that consists of multiple “on-off switches”. The DCT coeffi-

cients with the same frequency are packed as one channel, and each switch is stacked

on a specific frequency channel to either allow the entire channel to flow into the

network or not.

Using the decoded high-fidelity images for model training and inference has posed

significant challenges, from both data transfer and computation perspectives Wei et al.

(2019); You et al. (2018). Due to the spectral bias of the CNN models, one can only

keep the important frequency channels during inference without losing accuracy. In

this work, we also develop a static channel selection approach to preserve the salient

channels rather than using the entire frequency spectrum for inference. Experiment
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results show that the CNN models still retain the same accuracy when the input data

size is reduced by 87.5%.

CNN

High CBPre-processing (CPU)

Inference 
(GPU or accelerator)

(a)

Channel 
selection

DCT

Pre-processing (CPU)

Low CB

CNN

Inference 
(GPU or accelerator)

(b)

Figure 6.1: (a) The workflow of the conventional CNN-based methods using RGB
images as input. (b) The workflow of the proposed method using DCT coefficients
as input. CB represents the required communication bandwidth between CPU and
GPU/accelerator.

The contributions of this paper are as follows:

• We propose a method of learning in the frequency domain (using DCT coeffi-

cients as input), which requires little modification to the existing CNN models

that take RGB input. We validate our method on ResNet-50 and MobileNetV2

for the image classification task and Mask R-CNN for the instance segmentation

task.

• We show that learning in the frequency domain better preserves image infor-

mation in the pre-processing stage than the conventional spatial downsampling

approach (spatially resizing the images to 224×224, the default input size of

most CNN models) and consequently achieves improved accuracy, i.e., +1.60%

on ResNet-50 and +0.63% on MobileNetV2 for the ImageNet classification task,
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+0.8% on Mask R-CNN for both object detection and instance segmentation

tasks.

• We analyze the spectral bias from the frequency perspective and show that the

CNN models are more sensitive to low-frequency channels than high-frequency

channels, similar to the human visual system (HVS).

• We propose a learning-based dynamic channel selection method to identify the

trivial frequency components for static removal during inference. Experiment

results on ResNet-50 show that one can prune up to 87.5% of the frequency

channels using the proposed channel selection method with no or little accuracy

degradation in the ImageNet classification task.

• To the best of our knowledge, this is the first work that explores learning in the

frequency domain for object detection and instance segmentation. Experiment

results on Mask R-CNN show that learning in the frequency domain can achieve

a 0.8% average precision improvement for the instance segmentation task on the

COCO dataset.

Y

Cb

Cr

DCT transform

Y
Cb

Cr

DCT reshape DCT concatenateDCT channel select DCT normalizeSpatial resize and crop

Y
Cb

Cr

Figure 6.2: The data pre-processing pipeline for learning in the frequency domain.
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6.2 Related Work

Learning in the frequency domain: Compressed representations in the frequency

domain contain rich patterns for image understanding tasks. Torfason et al. (2018);

XU et al. (2018b); Wu et al. (2018a) train dedicated autoencoder-based networks on

compression and inference tasks jointly. Gueguen et al. (2018) extracts features from

the frequency domain to classify images. Ehrlich and Davis (2019) proposes a model

conversion algorithm to convert the spatial-domain CNN models to the frequency

domain. Our method differs from the prior works in two aspects. First, we avoid the

complex model transition procedure from the spatial to the frequency domain. Thus,

our method has a broader application scope. Second, we provide an analysis method

to interpret the spectral bias of neural networks in the frequency domain.

Dynamic Neural Networks: Prior works Veit and Belongie (2018); Wang et al.

(2018); Guo et al. (2019); Wu et al. (2018b); Chen et al. (2019b) propose to selectively

skip the convolutional blocks on the fly based on the activations of the previous

blocks. These works adjust the model complexity in response to the input of each

convolutional block. Only the intermediate features that are most relevant to the

inputs are computed in the inference stage to reduce computation cost. In contrast,

our method exclusively operates on the raw inputs and distills the salient frequency

components to lower the communication bandwidth requirement for input data.

Efficient Network Training: There are substantial recent interests in training

efficient networks Frankle and Carbin (2019); Molchanov et al. (2019); Wang et al.

(2019); Han et al. (2016), which focus on network compression via kernel pruning,

learned quantization, and entropy encoding. Another line of works aim to compress

the CNN models in the frequency domain. Chen et al. (2016) reduces the storage

space by converting filter weights to the frequency domain and using a hash function to
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group the frequency parameters into hash buckets. Wang et al. (2019) also transforms

the kernels to the frequency domain and discards the low-energy frequency coefficients

for high compression. Dziedzic et al. (2019) constrains the frequency spectra of CNN

kernels to reduce memory consumption. These network compression works in the

frequency domain all rely on the FFT-based convolution, which is generally more

effective on larger kernels. Nevertheless, the state-of-the-art CNN models use small

kernels, e.g., 3 × 3 or 1 × 1. Extensive efforts need to be taken to optimize the

computation efficiency of these FFT-based CNN models Lavin and Gray (2016). In

contrast, our method makes little modification to the existing CNN models. Thus,

our method requires no extra effort to improve its computation efficiency on the CNN

models with small kernels. Another fundamental difference is that our method aims

at reducing the input data size rather than model complexity.

6.3 Methodology

In this work, we propose a generic method on learning in the frequency domain,

including a data pre-processing pipeline as well as an input data size pruning method.

Figure 6.1 shows the comparison of our method and the conventional approach.

In the conventional approach, high-resolution RGB images are usually pre-processed

on a CPU and transmitted to a GPU/AI accelerator for real-time inference. Because

uncompressed images in the RGB format are usually large, the requirement of the

communication bandwidth between a CPU and a GPU/AI accelerator is usually high.

Such communication bandwidth can be the bottleneck of the system performance, as

shown in Figure 6.1(a). To reduce both the computation cost and the communication

bandwidth requirement, high-resolution RGB images are downsampled to smaller

images, which often results in information loss and thus lower inference accuracy.
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In our method, high-resolution RGB images are still pre-processed on a CPU.

However, they are first transformed to the YCbCr color space and then to the fre-

quency domain. This coincides with the most widely-used image compression stan-

dards, such as JPEG. All components of the same frequency are grouped into one

channel. In this way, multiple frequency channels are generated. As shown in Sec-

tion 6.3.2, certain frequency channels have bigger impact on the inference accuracy

than the others. Thus, we propose to only preserve and transmit the most important

frequency channels to a GPU/AI accelerator for inference. Compared to the conven-

tional approach, the proposed method requires less communication bandwidth and

achieves higher accuracy at the same time.

We demonstrate that the input features in the frequency domain can be applied to

all existing CNN models developed in the spatial domain with minimal modification.

Specifically, one just need to remove the input CNN layer and reserve the remaining

residual blocks. The first residual layer is used as the input layer, and the number

of input channels is modified to fit the dimension of the DCT coefficient inputs. As

such, a modified model can maintain similar parameter count and computational

complexity to the original model.

Based on our frequency-domain model, we propose a learning-based channel selec-

tion method to explore the spectral bias of a given CNN model, i.e., which frequency

components are more informative to the subsequent inference task. The findings

motivate us to prune the trivial frequency components for inference, which signif-

icantly reduces the input data size, consequently reducing both the computational

complexity of domain transformation and the required communication bandwidth,

while maintaining inference accuracy.
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1x1 Conv, 64

3x3 Conv, 64

1x1 Conv, 256

DCT:56x56x64

7x7 conv, 64, /2

3x3 Max Pool, /2

RGB:224x224x3

Figure 6.3: Connecting the pre-processed input features in the frequency domain
to ResNet-50. The three input layers (the dashed gray blocks) in a vanilla ResNet-
50 are removed to admit the 56×56×64 DCT inputs. We take 64 channels as an
example. This value can vary based on the channel selection. In learning-based
channel selection, all 192 channels are analyzed for their importance to accuracy,
based on which only a subset (� 192 channels) is used in the static selection approach.

6.3.1 Data Pre-processing in the Frequency Domain

The data pre-processing flow is shown in Figure 6.2. We follow the pre-processing

and augmentation flow in the spatial domain, consisting of image resizing, cropping,

and flipping (spatial resize and crop in Figure 6.2). Then images are transformed to

the YCbCr color space and converted to the frequency domain (DCT transform in

Figure 6.2). The two-dimensional DCT coefficients at the same frequency are grouped

into one channel to form three-dimensional DCT cubes (DCT reshape in Figure 6.2).

As will be discussed in Section 6.3.2, a subset of impactful frequency channels are

selected (DCT channel select in Figure 6.2). The selected channels in the YCbCr color

space are concatenated together to form one tensor (DCT concatenate in Figure 6.2).
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Lastly, every frequency channel is normalized by the mean and variance calculated

from the training dataset.

The DCT reshape operation in Figure 6.2 groups a two-dimensional DCT coeffi-

cients to a three-dimensional DCT cube. Since the JPEG compression standard uses

8 × 8 DCT transformation on the YCbCr color space, we group the components of

the same frequency in all the 8× 8 blocks into one channel, maintaining their spatial

relations at each frequency. Thus, each of the Y, Cb, and Cr components provides

8 × 8 = 64 channels, one for each frequency, with a total of 192 channels in the fre-

quency domain. Suppose the shape of the original RGB input image is H ×W × C,

where C = 3 and the height and width of the image is denoted as H and W , respec-

tively. After converting to the frequency domain, the input feature shape becomes

H/8×W/8× 64C, which maintains the same input data size.

Since the input feature maps in the frequency domain are smaller in the H and

W dimensions but larger in the C dimension than the spatial-domain counterpart,

we skip the input layer of a conventional CNN model, which is usually a stride-2

convolution. If a max-pooling operator immediately follows the input convolution

(e.g., ResNet-50), we skip the max-pooling operator as well. Then we adjust the

channel size of the next layer to match the number of channels in the frequency

domain. It is illustrated in Figure 6.3. This way, we minimally adjust the existing

CNN models to accept the frequency-domain features as input.

In the image classification task, the CNN models usually take input features of the

shape 224× 224× 3, which is usually downsampled from images with a much higher

resolution. When the classification is performed in the frequency domain, larger

images can be taken as input. Take ResNet-50 as an example, the input features in

the frequency domain are connected to the first residue block with the number of

channels adjusted to 192, forming an input feature of the shape 56 × 56 × 192, as
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shown in Figure 6.2. That is DCT-transformed from input images of size 448×448×3,

which preserves four times more information than the 224 × 224 × 3 counterpart in

the spatial domain, at the cost of 4 times the input feature size. Similarly, for the

model MobileNetV2, the input feature shape is 112×112×192, reshaped from images

of size 896 × 896 × 3. As discussed in Section 6.3.3, the majority of the frequency

channels can be pruned without sacrificing accuracy. The frequency channel pruning

operation is referred to as DCT channel select in Figure 6.2.

1x1xC

C

H
W

1x1xCx2

Gumbel samples

C

H

W

1x1xC

Tensor 2

Tensor 1

Tensor 3 Tensor 4

Tensor 5

Figure 6.4: The gate module that generates the binary decisions based on the
features extracted by the SE-Block. The white color channels of Tensor 5 indicate
the unselected channels.

6.3.2 Learning-based Frequency Channel Selection

As different channels of the input feature are at different frequencies, we conjec-

ture that some frequency channels are less informative to the subsequent tasks such as

image classification, object detection, and instance segmentation, and removing the

trivial frequency channels shall not result in performance degradation. Thus, we pro-

pose a learning-based channel selection mechanism to exploit the relative importance

of each input frequency channel. We employ a dynamic gate module that assigns a

binary score to each frequency channel. The salient channels are rated as one, the

others as zero. The input frequency channels with zero scores are detached from the
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network. Thus, the input data size is reduced, leading to reduced computation com-

plexity of domain transformation and communication bandwidth requirement. The

proposed gate module is simple and can be part of the model to be applied in online

inference.

Figure 6.4 describes our proposed gate module in detail. The input is of shape

W × H × C (C = 192 in this chapter), with C frequency channels (Tensor 1 in

Figure 6.4). It is first converted to Tensor 2 in Figure 6.4 of shape 1 × 1 × C by

average pooling. Then it is converted to Tensor 3 in Figure 6.4 of shape 1 × 1 × C

by a 1 × 1 convolutional layer. Conversion from Tensor 1 to Tensor 3 is exactly

the same as a two-layer squeeze-and-excitation block (SE-Block) Hu et al. (2018),

which utilizes the channel-wise information to emphasize the informative features

and suppress the trivial ones. Then, Tensor 3 is converted to Tensor 4 in Figure 6.4

of the shape 1×1×C×2 by multiplying every element in Tensor 3 with two trainable

parameters. During inference, the two numbers for each of the 192 channels in Tensor

4 are normalized and serve as the probability of being sampled as 0 or 1, and then,

point-wise multiplied to the input frequency channels to obtain Tensor 5 in Figure 6.4.

As an example, if the two numbers in the ith channel in Tensor 4 are 7.5 and 2.5,

there is a 75% probability that the ith gate is turned off. In other words, the ith

frequency channel in Tensor 5 becomes all zeros 75% of the times, which effectively

blocks this frequency channel from being used for inference.

Our gate module differs from the conventional SE-Block in two ways. First, the

proposed gate module outputs a tensor of dimension 1 × 1 × C × 2, where the two

numbers in the last dimension describe the probability of being on and off for each

frequency channel, respectively. Thus we add another 1× 1 convolution layer for the

conversion. Second, the number multiplied to each frequency channel is either 0 or

1, i.e., a binary decision of using the frequency or not. The decision is obtained by
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sampling a Bernoulli distribution Bern(p), where p is calculated by the 2 numbers in

the 1× 1× C × 2 tensor mentioned above.

One of the challenges in the proposed gate module is that the Bernoulli sam-

pling process is not differentiable in case one needs to update the weights in the gate

module. Jang et al. (2017); Tucker et al. (2017); Maddison et al. (2017) propose

a reparameterization method, called Gumbel Softmax trick, which allows the gradi-

ents to back propagate through a discrete sampling process (see Gumbel samples in

Figure 6.4).

Let x = (x1, x2, . . . , xC) be the input channels in the frequency domain (C = 192)

for a CNN model. Let F denote the proposed gate module such that F(xi) ∈ {0, 1},

for each frequency channel xi. Then xi is selected if

F(xi) 6= 0, i.e., F(xi)� xi 6= 0, (6.1)

where � is the element-wise product.

We add a regularization term to the loss function that balances the number of

selected frequency channels, which is minimized together with the cross-entropy loss

or other accuracy-related loss. Our loss function is thus as follows,

L = LAcc + λ ·
C∑
i=1

F(xi), (6.2)

where LAcc is the loss that is related to accuracy. λ is a hyperparameter indicating

the relative weight of the regularization term.

6.3.3 Static Frequency Channel Selection

The learning-based channel selection provides a dynamic estimation of the im-

portance of each frequency channel, i.e., different input images may have different

subsets of the frequency channels activated.
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Y Cb Cr

(a) Heat maps of Y, Cb, and Cr components on the ImageNet validation dataset.

Y Cb Cr

(b) Heat maps of Y, Cb, and Cr components on the COCO validation dataset

Figure 6.5: A heat map visualization of input frequency channels on the ImageNet
validation dataset for image classification and COCO validation dataset for instance
segmentation. The numbers in each square represent the corresponding channel in-
dices. The color from bright to dark indicates the possibility of a channel being
selected from low to high.

To understand the pattern of frequency channel activation, we plot two heat maps,

one on the classification task (Figure 6.5a) and one on the segmentation task (Fig-

ure 6.5b). The number in each box indicates the frequency index of the channel,

with a lower and higher index indicating a lower and higher frequency, respectively.

The heat map value indicates the likelihood a frequency channel being selected for

inference across all the validation images.

Based on the patterns in the heat maps shown in Figure 6.5, we make several

observations:
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• The low-frequency channels (boxes with small indices) are selected much more

often than the high-frequency channels (boxes with with large indices). This

demonstrates that low-frequency channels are more informative than the high-

frequency channels in general for vision inference tasks.

• The frequency channels in luma component Y are selected more often than

the channels in chroma components Cb and Cr. This indicates that the luma

component is more informative for vision inference tasks.

• The heat maps share a common pattern between the classification and segmen-

tation tasks. This indicates that the above-mentioned two observations are not

specific to one task and is very likely to be general to more high-level vision

tasks.

• Interestingly, some lower frequency channels have lower probability of being

selected than the slightly higher frequency channels. For example, in Cb and

Cr components, both tasks favor Channel 6 and 9 over Channel 5 and 3.

Those observations imply that the CNN models may indeed exhibit similar char-

acteristics to the HVS, and the image compression standards (e.g., JPEG) targeting

human eyes may be suitable for the CNN models as well.

The JPEG compression standard puts more bits to the low-frequency and the luma

components. Following the same principle, we statically select the lower frequency

channels, with more emphasis on the luma component than the chroma components.

This ensures the frequency channels with higher activation probabilities are fed into

the CNN models. The rest of the frequency channels can be pruned by either the

image encoder or decoder to reduce the required data transmission bandwidth and

input data size.
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Table 6.1: ResNet-50 classification results on ImageNet (validation). The input
size of each method is normalized over the baseline ResNet-50. The input frequency
channels are selected with the square and triangle channel selection pattern if the
postfix S and T is specified, respectively.

ResNet-50 #Channels Size Per Channel Top-1 Top-5 Normalized Input Size

RGB 3 224×224 75.780 92.650 1.0

YCbCr 3 224×224 75.234 92.544 1.0

DCT-192 Gueguen et al. (2018) 192 28×28 76.060 93.020 1.0

DCT-192 (ours) 192 56×56 77.194 93.454 4.0

DCT-24D (ours) 24 56×56 77.166 93.560 0.5

DCT-24S (ours) 24 56×56 77.196 93.504 0.5

DCT-24T (ours) 24 56×56 77.148 93.326 0.5

DCT-48S (ours) 48 56×56 77.384 93.554 1.0

DCT-48T (ours) 48 56×56 77.338 93.614 1.0

DCT-64S (ours) 64 56×56 77.232 93.624 1.3

DCT-64T (ours) 64 56×56 77.280 93.456 1.3

Table 6.2: MobileNetV2 classification results on ImageNet (validation).

MobileNetV2 #Channels Size Per Channel Top-1 Top-5 Normalized Input Size

RGB 3 224×224 71.702 90.415 1.0

DCT-6S (ours) 6 112×112 71.776 90.258 0.5

DCT-12S (ours) 12 112×112 72.156 90.634 1.0

DCT-24S (ours) 24 112×112 72.364 90.606 2.0

DCT-32S (ours) 32 112×112 72.282 90.592 2.7

6.4 Experiment Results

We benchmark our proposed methodology on three different high-level vision

tasks: image classification, detection, and segmentation.

6.4.1 Experiment Settings on Image Classification

We benchmark our method on image classification using the ImageNet 2012 Large-

Scale Visual Recognition Challenge dataset (ILSVRC-2012) Deng et al. (2009). We
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use the stochastic gradient descent (SGD) optimizer. SGD is applied with an initial

learning rate of 0.1, a momentum of 0.9, and a weight decay of 4e-5. We choose

ResNet-50 He et al. (2016) and MobileNetV2 Sandler et al. (2018) as the CNN models

because they contain important building blocks (e.g., residue blocks and depthwise

separable convolutions) widely used in modern CNN models. Note that our method

can be generally applied to any CNN model. We train 210 and 150 epochs and decay

the learning rate by 0.1 every 50 epochs for ResNet-50 and MobileNetV2, respectively.

To normalize the input channels, we compute the mean and variance of the DCT

coefficients for each of the 192 frequency channels separately on all the training im-

ages.

As described in Section 6.3.1, the input features in the frequency domain are

generated from images with a much higher resolution than the spatial-domain coun-

terpart. However, some of the images in the ImageNet dataset have lower resolutions.

We perform similar pre-processing steps as in the spatial domain, including resizing

and cropping to a larger image size, performing upsampling when needed.

6.4.2 Experiment Results on Image Classification

We train the ResNet-50 model with 192 frequency channel inputs on the image

classification task using the approach described in Section 6.3.2. The gate module for

channel selection is trained together with the ResNet-50 model. Figure 6.5a shows

a heat map of the selection results over the validation set with λ = 0.1. Note that

different regularization parameters λ generate different number of activated frequency

channels in heat maps. A typical example is shown in Figure 6.5a, that most channels

(≥ 80%) have very low possibility (≤ 3%) of being selected.

Observing that low frequency channels are more important in the heat maps, we

explore the sensitivity of the precise shapes of selected channels. In Table 6.1, DCT-
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24D shows the accuracy when 24 (14+5+5) channels are precisely selected based on

the result of the dynamic selection in Figure 6.5a. In comparison, DCT-24T and

DCT-24S show the accuracy when a total of 24 channels for Y, Cb, Cr components

are close to upper-left triangles and squares, respectively. The variation of the top-1

accuracy is almost negligible and all of them outperform a baseline ResNet-50 by

roughly 1.4%. This demonstrates that the benefit of the proposed frequency-domain

learning can be applied to many tasks as long as a majority of low-frequency channels

are selected. Note the input data size is only a half of the baseline ResNet-50. Since

DCT-24S provides a slightly better result, the remaining static selection are based

on patterns that are close to upper-left squares (some lower right channels may be

missing).

Similarly, we choose the top (32, 8, 8) channels for DCT-48S/T and top (44, 10, 10)

channels for DCT-64S/T. The results on the ImageNet dataset are shown in Ta-

ble 6.1 along with selecting all 192 frequency channels. In particular, compared with

the baseline ResNet-50, the top-1 accuracy is improved by 1.4% using all frequency

channels. One should also note that the accuracy is dropped when the inputs are

transformed from the RGB to the YCbCr color space (both in the spatial domain)

by roughly 0.5%, and the improvement of our method (in the frequency domain) over

the YCbCr case is even larger.

Another interesting observation is that the model trained with a subset of channels

may perform better than the model trained with all the 192 channels. Such a counter-

intuitive observation implies that a small number (e.g., 24) of low-frequency channels

are sufficient to capture useful features and additional frequency components may

introduce noise.

Similar experiments are performed using the MobileNetV2 as the baseline CNN

model and the results are shown in Table 6.2. Note that DCT-12S and DCT-6S select
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12 and 6 frequency channels, and the input data size is the same and a half of the

baseline MobileNetV2, respectively. The top-1 accuracy of DCT-12S and DCT-6S is

improved by 0.454% and 0.074%, respectively. The top-1 accuracy is improved by

0.662% and 0.580% by selecting 32 and 24 frequency channels, respectively.

Table 6.3: Bbox AP results of Mask R-CNN using different backbones on COCO
2017 validation set. The baseline Mask R-CNN uses a ResNet-50-FPN as the back-
bone. The DCT method uses the frequency-domain ResNet-50-FPN as the backbone.

Backbone #Channels Size Per Channel
bbox

AP AP@0.5 AP@0.75 APS APM APL

ResNet-50-FPN (RGB) 3 800×1333 37.3 59.0 40.2 21.9 40.9 48.1

DCT-24S (ours) 24 200×334 37.7 59.2 40.9 21.7 41.4 49.1

DCT-48S (ours) 48 200×334 38.1 59.5 41.2 22.0 41.3 49.8

DCT-64S (ours) 64 200×334 38.1 59.6 41.1 22.5 41.6 49.7

Table 6.4: Mask AP results of Mask R-CNN using different backbones on COCO
2017 validation set.

Backbone #Channels Size Per Channel
mask

AP AP@0.5 AP@0.75 APS APM APL

ResNet-50-FPN (RGB) 3 800×1333 34.2 55.9 36.2 15.8 36.9 50.1

DCT-24S (ours) 24 200×334 34.6 56.1 36.9 16.1 37.4 50.7

DCT-48S (ours) 48 200×334 35.0 56.6 37.2 16.3 37.5 52.3

DCT-64S (ours) 64 200×334 35.0 56.5 37.4 16.9 37.6 51.6

6.4.3 Experiment Settings on Instance Segmentation

We train our model on the COCO train2017 split containing about 118k images

and evaluate on the val2017 split containing 5k images. We evaluate the bounding box

(bbox) average precision (AP) for the object detection task and the mask AP for the

instance segmentation task. Based on the Mask R-CNN He et al. (2017), our model

consists of a frequency-domain ResNet-50 model as introduced in Section 6.4.1 and

a feature pyramid network Lin et al. (2017) as the backbone. The frequency-domain
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ResNet-50 model is fine-tuned with the bounding-box recognition head and the mask

prediction head. Input images are resized to a maximum scale of 1600×2666 without

changing the aspect ratio. The corresponding DCT coefficients have a maximum size

of 200 × 334, which are fed into the ResNet-50-FPN Lin et al. (2017) for feature

extraction.

We train our networks for 20 epochs with an initial learning rate of 0.0025, which

is decreased by 10× after 16 and 19 epochs. The rest of the configurations follow

those of MMDetection Chen et al. (2019a).

In Table 6.3 and Table 6.4, we report the AP metric that averages APs across IoU

thresholds from 0.5 to 0.95 with an interval of 0.05. Both the bbox AP and the mask

AP are evaluated. For the mask AP, we also report AP@0.5 and AP@0.75 at the IoU

threshold of 0.5 and 0.75 respectively, as well as APS, APM , and APL at different

scales.

6.4.4 Experiment Results on Instance Segmentation

We train our Mask R-CNN model using the 192-channel inputs in the frequency

domain for instance segmentation. The gate module for dynamic channel selection is

trained together with the entire Mask R-CNN. Figure 6.5b shows the heat maps for

the dynamic selection.

We further train our models using only the top 24, 48, and 64 high-probability

frequency channels. The bbox and mask AP of our method in different cases is

reported in Table 6.3 and Table 6.4, respectively. The experiment results show that

our method outperforms the RGB-based Mask R-CNN baseline with both an equal

(DCT-48S) or smaller (DCT-24S) input data size. Specifically, the 24-channel model

(DCT-24S) achieves an improvement of 0.4 in both bbox AP and mask AP with a

half of the input data size compared to the RGB-based Mask R-CNN baseline.
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Figure 6.6 visually illustrates the segmentation results of the Mask R-CNN model

trained and performing inference in the frequency domain.

Figure 6.6: Examples of instance segmentation results on the COCO dataset.

6.5 Conclusion

In this chapter, we propose a method of learning in the frequency domain and

demonstrate its generality and superiority for a variety of tasks, including classifi-

cation, detection, and segmentation. Our method requires little modification to the

existing CNN models that take RGB input thus can be generally applied to existing

network training and inference methods. We show that the proposed method better

preserves image information in the pre-processing stage than the conventional spatial

downsampling approach and consequently achieves improved accuracy. We propose a

learning-based dynamic channel selection method and empirically show that the CNN

models are more sensitive to low-frequency channels than high-frequency channels.

Experiment results show that one can prune up to 87.5% of the frequency channels

using the proposed channel selection method with no or little accuracy degradation

in the classification, object detection, and instance segmentation tasks.
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Chapter 7

CONCLUSION

In this dissertation, we have systematically introduced our work on compressed recon-

struction (CR) and compressed learning (CL). We demonstrate the effort on building

CR and CL systems from the data-driven perspective.

We propose a number of models for the CR of bio-signals, images, and videos.

Specifically, a scalable Laplacian pyramid reconstructive adversarial network (LAPRAN)

is proposed for single-image compressed reconstruction, which progressively recon-

structs images following the concept of Laplacian pyramid. LAPRAN provides high-

fidelity recovery quality with a flexible resolution that is adaptive to a wide range

of compression ratios. For the CR of videos, we propose CSVideoNet that is com-

posed of a multi-rate CNN and a synthesizing RNN to improve the trade-off between

compression ratio (CR) and spatial-temporal resolution of the reconstructed videos.

We also propose a CR framework that can directly extract features from the

compressed data for image classification, objection detection, and semantic/instance

segmentation. We provide an algorithm for analyzing the spectral bias of neural

network from the frequency perspective, and propose a learning-based frequency se-

lection method to identify the trivial frequency components which can be removed

without accuracy loss. Compared with the conventional spatial downsampling ap-

proaches, our model learning in the frequency domain can achieve higher accuracy

with reduced input data size.

Although this field is rapidly progressing within the past few decade, many critical

questions are still open.
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1. The integration of data compression and model compression. Though data

compression and model compression are considered as two independent task,

the two tasks might be highly correlated since they both aim to reduce data

dimension. The co-optimization of model and data may be beneficial for both

tasks and may improve the performance of neural networks according to the

information bottleneck theory Tishby and Zaslavsky (2015).

2. Compressed reconstruction (CR) meets few-shot learning. Most existing data-

driven CR frameworks are still data-intensive and thus prevent their applica-

tion scenarios. Few-Shot Learning can potentially expand the flexibility of CR

systems by rapidly generalizing to new tasks containing only a few samples

available.

3. Compressed learning (CL) beyond Fourier-related transforms. It is still un-

known which transformation will deliver better compression-accuracy trade-off

than the Fourier-related transforms (such as DFT and DCT). Following the con-

cept of learning image/video compression, a learned network-based compression

model may be treated as the desired transform.

4. Frequency-based neural network architecture design. It is still unknown how the

performance of CNN impacted by the frequency response of each CNN kernel.

Frequency analysis may provide an alternative perspective for explaining neural

networks and the network architecture design may be influenced accordingly.

5. How to apply CL on 3D data such as point clouds. The vast amount of generated

data by 3D sensing devices opens a new direction to develop 3D CL systems

that can effectively compress 3D data and inference directly on the compressed
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data. Autonomous driving, augmented reality (AR), virtual reality (VR) and

mixed reality (MR) applications may benefit from the 3D CL system.

6. CR meets reinforcement learning (RL). The deterministic sensing matrix used

for sampling in CR delivers sub-optimal recovery quality. A better sampling

policy may be by found out by leveraging RL through searching in a vast sam-

pling space.
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Pathak, D., P. Krähenbühl, J. Donahue, T. Darrell and A. Efros, “Context encoders:
Feature learning by inpainting”, in “CVPR”, (2016).

100



Pei, Y., Y. Huang, Q. Zou, X. Zhang and S. Wang, “Effects of image degradation
and degradation removal to cnn-based image classification”, IEEE Transactions on
Pattern Analysis and Machine Intelligence pp. 1–1 (2019).

Polania, L., R. Carrillo, M. Blanco-Velasco and K. Barner, “Compressed sensing
based method for ecg compression”, in “ICASSP”, (2011).

Radford, A., L. Metz and S. Chintala, “Unsupervised representation learning with
deep convolutional generative adversarial networks”, in “ICLR”, (2015).

Redmon, J., S. Divvala, R. Girshick and A. Farhadi, “You only look once: Unified,
real-time object detection”, in “CVPR”, (2016).

Ren, F. and D. Markovic, “18.5 a configurable 12-to-237ks/s 12.8mw sparse-
approximation engine for mobile exg data aggregation”, in “ISSCC”, (2015).

Ren, S., K. He, R. Girshick and J. Sun, “Faster r-cnn: Towards real-time object
detection with region proposal networks”, IEEE Transactions on Pattern Analysis
and Machine Intelligence 39, 6, 1137–1149 (2017).

Russakovsky, O., J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma, Z. Huang, A. Karpa-
thy, A. Khosla, M. Bernstein, A. C. Berg and L. Fei-Fei, “ImageNet Large Scale
Visual Recognition Challenge”, International Journal of Computer Vision 115, 3,
211–252 (2015).

Saeedan, F., N. Weber, M. Goesele and S. Roth, “Detail-preserving pooling in deep
networks”, in “CVPR”, (2018).

Sandler, M., A. Howard, M. Zhu, A. Zhmoginov and L. Chen, “Mobilenetv2: Inverted
residuals and linear bottlenecks”, in “CVPR”, (2018).

Sankaranarayanan, A., P. Turaga, R. Chellappa and R. Baraniuk, “Compressive ac-
quisition of linear dynamical systems”, SIAM Journal on Imaging Sciences 6, 4,
2109–2133 (2013).

Sankaranarayanan, A. C., L. Xu, C. Studer, Y. Li, K. F. Kelly and R. G. Bara-
niuk, “Video compressive sensing for spatial multiplexing cameras using motion-
flow models”, SIAM Journal on Imaging Sciences 8, 3, 1489–1518 (2015).

Schulter, S., C. Leistner and H. Bischof, “Fast and accurate image upscaling with
super-resolution forests”, in “CVPR”, (2015).

Snoek, C. G. M., M. Worring and A. W. M. Smeulders, “Early versus late fusion
in semantic video analysis”, in “ACM International Conference on Multimedia”,
(2005).

Soomro, K., A. R. Zamir and M. Shah, “UCF101: A dataset of 101 human actions
classes from videos in the wild”, CoRR abs/1212.0402 (2012).

Srivastava, N., E. Mansimov and R. Salakhudinov, “Unsupervised learning of video
representations using lstms”, in “ICML”, (2015).

101



Tishby, N. and N. Zaslavsky, “Deep learning and the information bottleneck princi-
ple”, in “IEEE Information Theory Workshop”, (2015).
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Reconstructed Images

We have shown the visual comparison on Set 5 and Set 14 at the CR of 5 and
20 in Figure5 and Figure6, respective. Besides, more reconstructed images on Set 5
and Set 14 at the CR of 5, 10, 20 and 30 are shown in FigureA.1, A.2, A.3, and A.4,
respectively.

Network Architecture

The network architecture of RecGen1, RecDisc1, RecGen2, RecDisc2, RecGen3,
RecDisc3, RecGen4 and RecDisc4 is shown in Table A.1, A.2, A.3, and A.4, respec-
tively.

Table A.1: Network structure of the first stage of LAPRAN.

Layer Name Output Size Kernel Stride Pad

Input 3x51
Reshape 153
Linear 4096

Reshape 64x8x8
conv1 64x8x8 3,3 1,1 1,1
bn1 64x8x8

Resblk 64x8x8
conv2 3x8x8 3,3 1,1 1,1
tanh 3x8x8

(a) Network structure of RecGen1.

Layer Name Output Size Kernel Stride Pad

Input 3x8x8
conv1 32x8x8 3,3 1,1 1,1
bn1 32x8x8

conv2 32x4x4 3,3 2,2 1,1
bn2 32x4x4

conv3 64x4x4 3,3 1,1 1,1
bn3 64x4x4

conv4 1 4,4 1,1 0,0

(b) Network structure of RecDisc1.
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Table A.2: Network structure of the second stage of LAPRAN.

Layer Name Output Size Kernel Stride Pad

Input 3x8x8
conv1 64x8x8 3,3 1,1 1,1
bn1 64x8x8

conv2 64x4x4 3,3 2,2 1,1
bn2 64x4x4

Reshape1 1024
Linear1 306

Fuse 612
Linear2 4096

Reshape2 64x8x8
Deconv1 64x16x16 4,4 2,2 1,1
Resblk 64x16x16
conv3 3x16x16 3,3 1,1 1,1
tanh 3x16x16

(a) Network structure of RecGen2.

Layer Name Output Size Kernel Stride Pad

Input 3x16x16
conv1 32x16x16 3,3 1,1 1,1
bn1 32x16x16

conv2 32x8x8 3,3 2,2 1,1
bn2 32x8x8

conv3 64x8x8 3,3 1,1 1,1
bn3 64x8x8

conv4 64x4x4 3,3 2,2 1,1
bn4 64x4x4

conv5 128x4x4 3,3 1,1 1,1
bn5 128x4x4

conv6 1 4,4 1,1 0,0

(b) Network structure of RecDisc2.
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Table A.3: Network structure of the third stage of LAPRAN.

Layer Name Output Size Kernel Stride Pad

Input 3x16x16
conv1 64x16x16 3,3 1,1 1,1
bn1 64x16x16

conv2 64x8x8 3,3 2,2 1,1
bn2 64x8x8

Reshape1 4096
Linear1 612

Fuse 1224
Linear2 16384

Reshape2 64x16x16
Deconv1 64x32x32 4,4 2,2 1,1
Resblk 64x32x32
conv3 3x32x32 3,3 1,1 1,1
tanh 3x32x32

(a) Network structure of RecGen3.

Layer Name Output Size Kernel Stride Pad

Input 3x32x32
conv1 32x32x32 3,3 1,1 1,1
bn1 32x32x32

conv2 32x16x16 3,3 2,2 1,1
bn2 32x16x16

conv3 64x16x16 3,3 1,1 1,1
bn3 64x16x16

conv4 64x8x8 3,3 2,2 1,1
bn4 64x8x8

conv5 128x8x8 3,3 1,1 1,1
bn5 128x8x8

conv6 128x4x4 3,3 2,2 1,1
bn6 128x4x4

conv7 256x4x4 3,3 1,1 1,1
bn7 256x4x4

conv8 1 4,4 1,1 0,0

(b) Network structure of RecDisc3.
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Table A.4: Network structure of the fourth stage of LAPRAN.

Layer Name Output Size Kernel Stride Pad

Input 3x32x32
conv1 64x32x32 3,3 1,1 1,1
bn1 64x32x32

conv2 64x16x16 3,3 2,2 1,1
bn2 64x16x16

Reshape1 16384
Linear1 1227

Fuse 2354
Linear2 65536

Reshape2 64x32x32
Deconv1 64x64x64 4,4 2,2 1,1
Resblk 64x64x64
conv3 3x64x64 3,3 1,1 1,1
tanh 3x64x64

(a) Network structure of RecGen4.

Layer Name Output Size Kernel Stride Pad

Input 3x64x64
conv1 32x64x64 3,3 1,1 1,1
bn1 32x64x64

conv2 32x32x32 3,3 2,2 1,1
bn2 32x32x32

conv3 64x32x32 3,3 1,1 1,1
bn3 64x32x32

conv4 64x16x16 3,3 2,2 1,1
bn4 32x16x16

conv5 128x16x16 3,3 1,1 1,1
bn5 128x16x16

conv6 128x8x8 3,3 2,2 1,1
bn6 128x8x8

conv7 256x8x8 3,3 1,1 1,1
bn7 256x8x8

conv8 256x4x4 3,3 2,2 1,1
bn8 256x4x4

conv9 512x4x4 3,3 1,1 1,1
bn9 512x4x4

conv10 1 4,4 1,1 0,0

(b) Network structure of RecDisc4.
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Ground-truth LAPRAN

(0.889, 31.79)

(0.880, 33.19)

CSGM

(0.580,24.91 )

(0.634, 23.52)

NLR-CS

(0.661, 24.23)

(0.778, 25.48)

TVAL-3

(0.803, 27.86)

(0.720, 27.52)

ReconNet

(0.852, 30.79)

(0.859, 31.18)

LDAMP

(0.889, 27.84)

(0.790, 32.91)

(0.882, 30.33)

BM3D-AMP

(0.817,31.70 )

(SSIM, PSNR)

(SSIM, PSNR)

(SSIM, PSNR) (0.613, 26.38)

(0.514, 23.75)

(0.484, 24.73)

(0.904, 35.80)

(0.903, 34.10)

(0.948, 38.88)

(0.890, 30.17)

(0.784, 27.36)

(0.924, 40.10)

(0.842, 29.99)

(0.869, 30.03)

(0.935, 34.80)

(0.891, 37.54)

(0.834, 32.04)

(0.860, 33.75)

(0.814, 31.21)

(0.679, 27.36)

(0.845, 33.35)

(0.683, 26.00)

(0.864, 32.67) (0.629, 31.57)(SSIM, PSNR)

(SSIM, PSNR)

Figure A.1: Visual comparison on Set 5 and Set 14 at the CR of 5.
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Figure A.2: Visual comparison on Set 5 and Set 14 at the CR of 10.
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Figure A.3: Visual comparison on Set 5 and Set 14 at the CR of 20.
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Figure A.4: Visual comparison on Set 5 and Set 14 at the CR of 30.

112



APPENDIX B
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In section five of the main paper, we show comparisons of our proposed “CSVideoNet”
and the reference algorithms in terms of reconstruction quality from noiseless and
noisy inputs. Here, we present additional reconstruction results using each approach.

The reconstruction results from noiseless CS measurements at the CRs of 25, 50,
and 100 are shown in Figure B.1.

PSNR=23.57dB PSNR=23.11dBPSNR=30.20dB PSNR=30.61dB

PSNR=29.66dB PSNR=29.30dB PSNR=23.49dB PSNR=21.91dB

PSNR=29.54dB PSNR=23.59dBPSNR=29.21dB PSNR=12.88dB

PSNR=23.43dB

PSNR=21.19dB

PSNR=18.43dB

Frame 1 Frame 5 Frame 1 Frame 5 Frame 1

VideoNet MC-BCS GMM

CR=25

CR=50

CR=100

Ground 
Truth

Frame 1

ReconNet

PSNR=25.04dB

PSNR=23.52dB

PSNR=21.05dB

Figure B.1: Reconstruction result for each method at the CRs of 25, 50, and 100.
Some visual details that are well captured by CSVideoNet but not the reference
methods are highlighted for comparison purposes.

The reconstruction results from noisy CS measurements at the CRs of 25, 50, and
100 are shown in Figure B.2, B.3, and B.4, respectively.
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SNR=20dB

SNR=40dB

SNR=60dB

CSVideoNet MC-BCS GMM ReconNet

28.09dB

PSNR=26.69dB

28.57dB

26.67dB

27.28dB

28.10dB

22.63dB 20.50dB

24.62dB 22.23dB

25.93dB 23.04dB

21.18dB

22.23dB 22.26dB

22.52dB

20.96dB

22.56dB

23.21dB

Ground Truth

Frame 1 Frame5 Frame 1 Frame5 Frame 1 Frame5 Frame 1 Frame 1

Test Image

Figure B.2: Reconstruction result for each algorithm at the CR of 25 when inputs
are contaminated by Gaussian white noise with the SNRs of 20dB, 40dB and 60dB.

SNR=20dB

SNR=40dB

SNR=60dB

27.17dB

PSNR=26.21dB

27.90dB

25.56dB

27.10dB

27.89dB

22.68dB 18.46dB

24.58dB 17.53dB

25.78dB 21.94dB

19.61dB

19.83dB

19.96dB

20.10dB

21.42dB

22.14dB

Ground Truth

Frame 1 Frame5 Frame 1 Frame5 Frame 1 Frame5 Frame 1 Frame 1

Test Image CSVideoNet MC-BCS GMM ReconNet

Figure B.3: Reconstruction result for each algorithm at the CR of 50 when inputs
are contaminated by Gaussian white noise with the SNRs of 20dB, 40dB and 60dB.
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SNR=20dB

SNR=40dB

SNR=60dB

27.39dB

PSNR=25.59dB

27.78dB

25.54dB

26.94dB

27.32dB

22.72dB 9.14dB
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18.83dB

19.88dB

19.97dB

Ground Truth

Frame 1 Frame5 Frame 1 Frame5 Frame 1 Frame5 Frame 1 Frame 1

Test Image CSVideoNet MC-BCS GMM ReconNet

Figure B.4: Reconstruction result for each algorithm at the CR of 100 when inputs
are contaminated by Gaussian white noise with the SNRs of 20dB, 40dB and 60dB.
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Static Channel Section

Figure C.1 shows two different channel-selection strategies for the proposed 24-
channel DCT model. The selected channels in Figure C.1a is the same as we used in
the main paper. The channels in Figure C.1b is selected according to the learning-
based channel selection results (Figure 5 in the main paper). The classification per-
formance comparison of the two channel-selection strategies is shown in Table C.1.
The two channel-selection methods achieve similar classification accuracy. We can di-
rectly apply the channel-selection approach in Figure C.1a instead of designing more
complicated strategies.

Y Cb Cr

(a) The selected Y, Cb, and Cr channels used in the main paper.

CbCbYY CbCb

(b) The selected Y, Cb, and Cr channels based on the learning-based channel
selection results.

Figure C.1: A visualization of input frequency channels for the DCT-24 model on the
ImageNet validation dataset. The numbers in each square represent the corresponding
channel indices. The dark color indicates the current channel is selected.

Table C.1: Performance comparison of the DCT-24 models trained using the strate-
gies in Figure C.1a and Figure C.1b. The input size of each method is normalized
over ResNet-50 (RGB).

ResNet-50 #Channels Size Per Channel Top-1 Top-5 Normalized Input Size
DCT-24 (a) 24 56×56 76.714 93.234 0.5
DCT-24 (b) 24 56×56 76.792 93.254 0.5
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Additional Instance Segmentation Results

More experiment results for instance segmentation is shown in Figure C.2.

Figure C.2: Examples of instance segmentation results on the COCO dataset.

Object Detection Results

We train our model for object detection on the COCO train2017 split and evaluate
on the val2017 split. Based on the Faster R-CNN Ren et al. (2017), our model consists
of a frequency-domain ResNet-50 model (introduced in Section 4.1 in the main paper)
and a feature pyramid network Lin et al. (2017) as the backbone. The frequency-
domain ResNet-50 model is fine-tuned with the classification head and bounding box
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regression head. Input images are resized to a maximum scale of1600×2666 without
changing the aspect ratio. The corresponding DCT coefficients have a maximum size
of 200×334, which are fed into the ResNet-50-FPN for feature extraction. The rest
of the configurations follow those of MMDetection Chen et al. (2019a).

In Table C.2, we report the results on the object detection task. The proposed
method can achieve a 0.8% AP improvement compared to the baseline Faster R-CNN
on the COCO dataset.

Table C.2: Bbox AP results of Faster R-CNN using different backbones on COCO
2017 validation set. The baseline Mask R-CNN use a ResNet-50-FPN as the back-
bone. The DCT method uses the frequency-domain ResNet-50-FPN as the backbone.

Backbone #Channels Size Per Channel
bbox

AP AP@0.5 AP@0.75 APS APM APL

ResNet-50-FPN (RGB) 3 800×1333 36.4 58.4 39.1 21.5 40.0 46.6
DCT-24 (ours) 24 200×334 37.2 58.8 39.9 21.9 40.7 48.9
DCT-48 (ours) 48 200×334 37.1 58.6 40.2 21.7 40.9 48.8
DCT-64 (ours) 64 200×334 37.2 58.5 40.6 21.9 40.9 48.3
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