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ABSTRACT 

Modern Complementary-Metal-Oxide-Semiconductor (CMOS) technologies are 

facing critical challenges: scaling channel lengths below ~10 nm is hindered by significant 

transport degradation as bulk semiconductors (i.e., silicon) are thinned down, energy 

consumption is affected by short-channel effects and off-state leakage, and conventional 

von Neumann computing architectures face serious bottlenecks affecting performance and 

efficiency (energy consumption and throughput). Neuromorhic and/or in-memory 

computing architectures using resistive random-access memory (RRAM) crossbar arrays 

are promising candidates to mitigate these bottlenecks and to circumvent CMOS scaling 

challenges. Recently, emerging two dimensional materials (2DMs) are investigated 

towards ultra-scaled CMOS devices, as well as towards non-volatile memory and 

neuromorphic devices with potential improvements in scalability, power consumption, 

switching speed, and compatibility with CMOS integration. 

The first part of this dissertation presents contributions towards high-yield 2DMs field-

effect-transistors (FETs) fabrication using wafer-scale chemical vapor deposition (CVD) 

monolayer MoS2. This work provides valuable insight about metal contact processing, 

including extraction of Schottky barrier heights and Fermi-level pinning effects, for next-

generation integrated electronic systems based on CVD-grown 2DMs. 

The second part introduces wafer-scale fabrication of memristor arrays with CVD-

grown hexagonal boron nitride (h-BN) as the active switching layer. This work establishes 

the multi-state analog pulse programmability and presents the first experimental 

demonstration of dot-product computation and implementation of multi-variable stochastic 

linear regression on h-BN memristor hardware. This work extends beyond previous 
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demonstrations of non-volatile resistive switching (NVRS) behavior in isolated h-BN 

memristors and paves the way for more sophisticated demonstrations of machine learning 

applications based on 2DMs. 

Finally, combining the benefits of CVD-grown 2DMs and graphene edge contacts, 

vertical h-BN memristors with ultra-small active areas are introduced through this research. 

These devices achieve low operating currents (high resistance), large RHRS/RLRS ratio, and 

enable three-dimensional (3D) integration (vertical stacking) for ultimate RRAM 

scalability. Moreover, they facilitate studying fundamental NVRS mechanisms of single 

conductive nano-filaments (CNFs) which was previously unattainable in planar devices. 

This way, single quantum step in conductance was experimentally observed, consistent 

with theorized atomically-constrained CNFs behavior associated with potential 

improvements in stability of NVRS operation. This is supported by measured 

improvements in retention of quantized conductance compared to other non-2DMs 

filamentary-based memristors. 
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CHAPTER 1  

INTRODUCTION 

Background 

Currently, the CMOS technologies are facing some critical challenges: the scaling 

down of the device dimension, energy consumption, and computing architecture. In the 

past several decades, the number of transistors on chips has been doubled every two years 

based on Moore’s law, which is shown in Figure 1.1 (a), to obtain high integration density, 

high operation speed and low cost per transistor1. However, it is more and more difficult 

to maintain the Moore’s law as the transistors dimension become smaller and smaller2. The 

other issue along with Moore’s law is that the energy consumption problem in current 

computing systems. As you can see in Figure 1.1 (b), the energy costs of data centres, 

consumer devices, production of ICT (information and communication technoloogy), and 

networks have been increasing significantly in recent years3.  

The third issue arises from the von Neumann structure of the computing system. It 

includes the central processing unit (CPU), memory and input/output (I/O) components 

and has been widely adopted in modern computing systems. However, the problem is that 

the throughput rate of computer system is limited because of the relatively slow rate of data 

ba

Figure 1.1 (a) Moore's law and (b) energy forecast for network, information and 
cummunication technology (ICT), consumer devices, and data centres 
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transfer from memory compared with the frequency of the CPU, as you can see in Figure 

1.24. This is known as “von Neumann bottleneck”. Hence, there exists a substantial need 

for the advancement of novel memory technologies and emerging computing systems that 

can facilitate high-density memory storage and efficient computational processes. 

The existing conventional memory technologies include dynamic random-access 

memory (DRAM), static random-access memory (SRAM), and flash memory, such as 

NAND and NOR. The DRAM and SRAM are volatile memories, in which the data will 

lose once the power is disconnected, while the flash memory is non-volatile, in which the 

data will be retained even if the power is off. DRAM comprises of one transistor and one 

capacitor (1T1C). It is energy-consuming since the charge in the capacitor needs to be 

refreshed frequently. SRAM is fast, but the disadvantage is the large memory cell size, 

which limits the applications for high-density memory. Flash memory cell consists of a 

floating-gate MOS transistor (FG-MOSFET), which utilizes the storage of charges in 

different level, such as multi-level cell (MLC), in floating gate to realize multi-level storage 

Figure 1.2 Von Neumann structure4 
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memory. However, flash memory requires a high voltage to charge the floating gate which 

requires a high energy consumption and low operation speed5.  

Many emerging memory technologies have been investigated recently, including phase 

change memory (PCM), magneto-resistive random-access memory (MRAM), and resistive 

random-access memory (RRAM). These emerging memories rely on the changes of 

resistance or conductance of the switching materials in the cells to store information rather 

than using the storage of charges. RRAM, also call resistive switching memory or 

memristor, has been widely investigated among the emerging memory technologies due to 

its promising properties for next-generation memory, such as fast-switching speed, high 

storage density, low energy consumption, non-volatility, and extremely simple device 

structure. It contains two planar electrodes (top electrode and bottom electrode) and a 

switching layer sandwiched in between, as you can see in Figure 1.3, which shows the 

classification of RRAM based on different switching mechanisms as metal oxide RAM 

(OxRAM) and conductive bridge RAM (CBRAM)5. In the metal oxide-based RAM, the 

Figure 1.3 Schematic of the classification of RRAM based on different switching 
mechanism as metal oxide RRAM (OxRAM) and conductive bridge RAM 

(CBRAM)5 
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oxygen vacancy in the switching layer can form a conductive filament (CF) when a 

sweeping or pulse voltage is applied onto top electrode (TE) and grounded bottom 

electrode (BE) while for the CBRAM a metallic CN can be formed due to the mobile ions 

of TE or active electrode (AE) migrated into the layer sandwiched in between AE and 

counter electrode (CE).  

Figure 1.4 shows the CBRAM cell with a detailed classification of the materials that 

are used for TE and BE and the different switching layers5. Various metal materials can be 

used as TE and BE. For the TE, it is usually deposited on the switching layer with 

electrochemically active metal, such as Ag, Cu, and Ti while the BE is typically inert metals 

and do not diffuse easily into the switching layer, such as Pt, Au, and W. Wide range of 

materials can be used as switching layer in the two-terminal MIM structure of CBRAM 

cell. They are categorized into metal oxides and non-oxides. In the non-oxides based 

CBRAM, two dimensional materials (2DMs) have attracted many attentions due to their 

Figure 1.4 CBRAM cell with a detailed classification of the materials 
that are used for top electrode (TE, or active electrode, AE) and bottom 

electrode (BE, or counter electrode, CE), and switching medium in a 
CBRAM device. 
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excellent electronic properties, especially the insulating hexagonal boron nitride (h-BN) 

for non-volatile memory applications.  

To solve those issues mentioned above, one proposed solution is the neuromorphic 

computing with 2DMs based RRAM (2D-RRAM). There is many research exploring the 

neuromorphic computing system, which emulates the biological nervous system to endow 

Figure 1.6 The era of geometrical scaling of silicon technology ended 
around the turn of the century. 

Figure 1.5 An illustration of the similarities between biological neuron and 
memristor-based artificial synapses and neural networks. 
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the man-made chips working in the same way as human brain. Figure 1.5 shows an 

illustration of the similarities between biological neuron and memristor-based artificial 

synapses and neural networks6. The two-terminal device resembles a synapse in biological 

neural systems, as you can see in the Figure 1.5, where the TE and BE act as axon and 

dendrite that connect pre-neuron and post-neuron with the conductance of the switching 

layer in the middle playing the role of the weight of a synapse. The crossbar structure also 

enables the implementation of physical mapping of the neural network in hardware and 

executive the parallel matrix operations directly in memory6.  

Figure 1.6 shows the co-integration of 2DMs with silicon CMOS technology. This will 

lead to a vast increase in chip functionality and enable the arrival of 2DMs applications in 

the order of their device complexity7. 2DMs enable further scaling of CMOS technology 

beyond the limits of silicon (More Moore) and memristors based on 2DMs also allow new 

paradigms like neuromorphic computing application (More than Moore). Therefore, 

neuromorphic computing based on 2D-RRAM offers a new route towards ultra-efficient 

computing.  

Motivation for Studying 2DMs and Neuromorphic Computing 

2DMs have attracted many attentions for next-generation electronic devices, 

optoelectronics, flexible electronics, and bioelectronics due to their unique electronic, 

optical, and mechanical properties8–12. Graphene exhibits extremely high carrier mobilities 

over 100,000 cm2V-1S-1 owing to its Dirac-like linear dispersion13–16. Two-dimensional 

layered transition metal dichalcogenides (TMDs), such as MoS2, MoSe2, and WS2, have 

attracted substantial attention for their use as semiconducting channel materials in 

switching devices17–23. Unlike graphene (semimetal) or TMDs (semiconductor), hexagonal 
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boron nitride (h-BN), which is a typical 2D-insulator material, has been used as dielectric 

layer material and nonvolatile switching layer in memristors due to its large band gap and 

outstanding thermal characteristics. Additionally, 2DMs are scalable and scalable. They 

can be fabricated devices with high density, as illustrated in Figure 1.724,25, which shows 

the different electrical properties of different 2DMs and different applications, such as in-

memory computing and neuromorphic computing. 

Neuromorphic computing is the research that mimic the neural structure of human brain. 

Human brains consume much less energy than that of current computing system when 

complete a same task. Therefore, the neuromorphic computing system that emulate the 

working mechanism of human brains is much more energy-efficient. Neuromirphic 

computing promies an artificial intelligence (AI) revolution, such as self-driving cars, 

identifying individual’s face, brain-machine interface, et al. 

Current Status on 2DMs-based RRAM and 3D Vertical RRAM 

Motivated by the high effectiveness of human brain, the AI and Internet of Things (IoTs) 

have been developed based on the imitation of the neural structure. Memristor crossbar is 

one of the important structures for neuro-inspired computing. Figure 1.8 shows some 

a b

Figure 1.7 Different material properties and applications of 2DMs 
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typical research on status of memristors for memory and neuromorphic computing 

application. In Figure 1.8 (a-f), Pan, et al reported the mechanism of forming free bipolar 

and threshold resistive switching behavior in multilayer h-BN based memristor and 

developed some different strategies to tune the switching properties of the devices26. In 

Figure 1.8 (g-l), Shi, et al, characterized the conductive nanofilaments (CNFs) by using 

a cb

d e f

g h i

j k l

Figure 1.8 Current reearch on h-BN memristors for memory, in-memory computing 
and neuromorphic computing applications 
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conductive atomic force microscope (c-AFM) and investigated the resistive switching 

behavior with different metal filaments and different compliance currents to get either non-

volatile or volatile switching behavior27. Later, based on the standalone memristor devices, 

more recent papers utilized these devices and constructed the crossbar structure and started 

to look more at the programming of the array levels and other important properties, such 

retention, and multi-states for machine learning and neuromorphic computing applications, 

as you can see in Figure 1.9, which presents parts of my research work in this dissertation. 

Figure 1.9 (a-d) shows the schematic of h-BN based memristor crossbars and the 

implementation of dot-product and linear regression with h-BN memristor crossbar. Figure 

a b c d

e f g

h

i j k

Figure 1.9 Current status of h-BN memristor crossbars for dot-product, linear 
regression, and logistic regression applications 
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1.9 (g-h) shows the dot-product implementation in larger array (1x10) and demonstration 

of unsupervised spiking neural networks with h-BN memristor crossbars28–30.  

Another important structure for the neuromorphic computing application is the 1T1R 

structure. It integrates one transistor with one memristor in series. The CMOS compatible 

1T1R RRAM configuration has the capability to solve the sneak current issue in large-

scale memristor crossbar array. Transistor in the combination not only plays the role of 

access controlling, also can use gate voltage to limit the current through pass the memristor. 

Figure 1.10 Recent research of 1T1R 
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In this case, it can also be used to tune the state of memristor by applying different gate 

voltage. Yang et al31 used 2D MoS2 transistor driving RRAMs with 1T1R configuration. 

The MoS2 was utilized to construct the transistor channel region as well as the oxide based 

HfO2 memristor was fabricated with transistor in series to build up the 1R1R structure, as 

illustrated in Figure 1.10 (a-b). It demonstrated the resistive switching performance of the 

1R1R. Zhang et al32 utilized the CVD-grown WS2 was utilized to work as the channel 

region for the transistor part and the h-BN was used as the resistive switching layer of the 

memristor. The transistor and memristor were connected via the graphene layer. The hybrid 

device allows the device to be fabricated in a very small geometry. The conductance of the 

memristor performance was also well-controlled via the gate pulse applied to the WS2 

transistor to achieve multiple conductance states, as shown in Figure 1.10 (c-d). In 2023, 

Zhu et al transferred CVD-grown h-BN in the BEOL of commercial CMOS with 180 nm 

node at the fourth metal layer to fabricate 5 by 5 1T1M (one transistor one memristor), as 

show in Figure 1.10 (e-g)33. The memristors fabricated with CMOS transistors in series 

show stable I-V performance for the simulation of spiking neural networks.  

3D stacking of the memristors offers higher capacity, lower power consumption and 

cost per bit. Figure 1.11 shows two different 3D stacking structures of memristors and the 

comparison of cost-efficiency for two different 3D stacking structures34,35. One stacking 

a b c

Figure 1.11 Two different 3D stacking of memristors and the cost-efficiency 
comparison. 
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structure is called 3D horizontal structure (3D H-RRAM, as shown in Figure 1.11 a) and 

the other one is called 3D vertical stacking structure (3D V-RRAM, as shown in Figure 

1.11 b). The memristor device area can be further reduced by stacking the memristor 

crossbars vertically to 4F2/n, where F is the minimum feature size, and n is the stacking 

layers. However, the cost-efficiency of these two different 3D stacking structures is 

different. The cost for H-RRAM increases linearly with the number of the stacked layer 

while the cost for V-RRAM is relatively independent of the stacking number, especially 

when the staking layer exceeds 32 layers, as shown in Figure 1.11 (c). Figure 1.12 shows 

some recent research about 3D stacking of V-RRAM with metal oxides as the switching 

layers. In 2014, Bai et al fabricated and characterized 3D vertical resistive switching 

memory with TaOx as switching layer and platinum edge as the contact electrode36. The 

vertical cells show good uniformity and high performance with multi-level cell operation, 

as exhibited in Figure 1.12 (a-c). Later, Lee, et al37, exploited the atomically thin graphene 

edge to assemble a resistive memory stacked in a vertical three-dimensional structure by 

using hafnium dioxide as the switching layer and compared the resistive switching 

behaviors of graphene-edge electrodes to that of the platinum electrodes, as shown in 

Figure 1.12 (d-i). Even though memristors with both electrodes show bipolar resistive 

switching behavior, the on/off ratio is small (only about two orders of magnitude). The 

most recent paper published in 2023 by Ren et al38 reported the self-rectifying memristors 

based on the 3D stacking of Ta and SiO2 as contact electrode and isolation layers 

respectively. TaO2 and HfO2 were utilized as switching layer and rectifying layer. The 

resistive switching behaviors are shown in Figure 1.12 (m-p). However, no work has been 

reported on 3D staking memristors based on h-BN.  
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To investigate the resistive switching behavior in h-BN memristors with ultimate ultra-

small active area, vertical h-BN memristors with graphene edge contact has been proposed 

as one chapter of my dissertation. Figure 1.13 (a) shows the proposed structure of vertical 

h-BN memristor with graphene-edge contact. The cross-sectional TEM image in Figure 

1.13 (b) marks the interfaces for each component and the resistive switching behavior in 

Figure 1.13 (c) shows large on/off ratio about seven orders of magnitudes higher than metal 

oxide based vertical memristors with graphene or platinum contacts reported before. This 

work investigated the h-BN memristors with the smallest active area, providing new 
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Figure 1.12 Some typical current research on 3D vertical RRAM 
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opportunities for scaling down and 3D stacking of memristors. The results in Figure 1.13 

will be discussed in Chapter 4 in detail.  

 

  

a b c

Figure 1.13 h-BN memristor with graphene-edge contact and the corresponding resistive 
switching behavior 
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CHAPTER 2  

ANALYSIS OF SCHOTTKY BARRIER HEIGHT AND REDUCED FERMI-LEVEL 

PINNING IN MONOLAYER CVD-GROWN MoS2 FIELD EFFECT TRANSISTORS 

Introduction to 2DMs-based FETs 

The emergence of graphene, transition metal dichalcogenides (TMD), black 

phosphorus, and other 2D materials has advanced basic research of monolayer (ML) 

crystals and has led to significant efforts towards their application in next-generation 

nanoscale electronic devices21,39–45. Molybdenum disulfide (MoS2) is one of the most 

extensively studied TMD semiconductors for use as the active channel material in field-

effect transistors (FETs). In addition to having a bandgap, MoS2 provides unique properties 

to achieve good electrostatic control and charge transport in FETs at the scaling limit. MoS2 

FETs have been investigated using mechanically exfoliated flakes as well as CVD-grown 

thin films. Several studies with exfoliated MoS2 flakes have discussed the significant role 

of metal contacts (i.e., the metal–semiconductor junction) on FETs operation and 

performance46–50. For example, Liu et al reported the properties of Ti contacts on exfoliated 

ML MoS2 and discussed the importance of Schottky barriers in analyzing device 

performance48. Das et al studied the performance of FETs with different metal contacts on 

multilayered (e.g., 10 nm thick) exfoliated MoS2 flakes49. They explained how the 

alignment of the Fermi level in the metal contacts with the bottom of the conduction band 

in the MoS2 channel reduces the Schottky barrier height (SBH) enabling easier injection of 

carriers and improvements in on-state current. Moreover, the thickness-dependent and 

temperature-dependent transport properties in mechanically exfoliated ML and multilayer 

MoS2 FETs were also explored extensively.51–55 
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Those studies based on exfoliated flakes have demonstrated the potential of MoS2, but 

large-area methods for ML MoS2 are needed for practical and scalable integrated 

technologies. Thus, CVD-grown MoS2 coupled with conventional photolithographic 

patterning techniques must pave the way for more practical applications. Recently, Kwon 

et al pointed out the lack of reports for conventional photolithographic patterning of large-

area ML MoS2 and presented a study of CVD-grown ML MoS2 FETs56. Similarly, Zhang 

et al synthesized and transferred CVD-grown MoS2 to fabricate and study FETs as a 

function of number of layers in the MoS2 channel57. In another recent study, Xu et al 

presented results on large arrays of CVD-grown MoS2 top-gated FETs and compared two-

probe versus four-probe measurements of transport parameters58. These studies presented 

statistical analysis of CVD-grown ML MoS2 FET parameters with histograms of threshold 

voltage56–58, mobility57,58, and gate hysteresis56, but did not analyze the effects of Schottky 

barriers at the contacts as done in previous studies of FETs with exfoliated MoS2. 

In this chapter, an examination of metal contacts on CVD-grown ML MoS2 by 

electrical measurements of large FET arrays is present. Specially, two large FET arrays 

with different source/drain metal contacts (Cr/Au and Ti/Au) were fabricated (via large-

area photolithography methods) and tested. SBH were extracted based on thermionic 

emission theory for 2D semiconductors using temperature dependent measurements. 

Statistically significant extractions reveal a reduction in SBH for CVD-grown ML MoS2 

compared to values extracted from FETs with exfoliated flakes. This reduction in SBH is 

attributed to an enhancement in the metallization of MoS2 by hybridization between S and 

the metal atoms (e.g., Ti) compared to exfoliated flakes due to a larger number of defects 

in CVD-grown samples48. Moreover, the dependence of SBH (FSB) on the metal work 
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function (FM) indicates a reduction in Fermi level pinning (FLP) for CVD-grown samples 

compared to exfoliated ML MoS2. The FLP factor (S = |d(FSB) /d(FM) |) extracted for CVD-

grown samples (S @ 0.5) is larger than those reported for exfoliated fakes (S @ 0.1) and 

closer to the ideal Schottky-Mott limit (S = 1). Optical characterization (Raman 

spectroscopy) indicates a larger concentration of defects in our CVD-grown ML MoS2 

samples compared to exfoliated fakes supporting a defect-induced enhancement in the 

coupling between the electrodes and the channel consistent with our electrical analysis of 

SBH.  

Method and Fabrication for CVD-grown Monolayer MoS2 

The fabrication of large-area ML MoS2 FET arrays is illustrated in Figure 2.1. Because 

of weak van der Waals (vdW) interaction between the substrate and the 2D material 

monolayer, a strategy is needed to prevent the monolayer from peeling off, which is 

typically caused by a stronger cross-linking interaction between photoresist and 2D 

materials after the post-exposure bake in the lithography process. For example, 

Theofanopoulos et al utilized a 30 nm titanium film as sacrificial layer to protect graphene 

from peeling off during fabrication of devices59. In this work a PMMA sacrificial layer was 

utilized to prevent peeling of the 2D material monolayer during photolithography 

processing. A 1 cm-by-1 cm CVD-grown ML MoS2 on 300 nm SiO2/Si (Figure 2.1(a)) was 

ordered from SixCarbon Technology (Shenzhen) and processed directly on the original 

substrate. A thin PMMA layer (5000 rpm for 30 s; 100 °C for 1 min) and negative 

photoresist (LOR3A, 5000 rpm for 30 s, 180 °C for 2 min; AZ5214, 4000 rpm for 30 s, 

95 °C for 90 s) were spun coat on top. Then, the photomask for patterning the channel 

regions and aligners were positioned over the substrate. After UV light exposure and post-
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exposure bake (50 mJ cm-2, 115 °C for 60 s; flood exposure: 150 mJ cm-2, no bake) the 

negative photoresist was developed by 300MIF for 1min. After developing, the photomask 

pattern was transferred into the negative photoresist as shown in Figure 2.1(b). Dry etching 

was then used to remove the unmasked regions (SF6: 20 sccm, Ar: 5 sccm, 10 mTorr, 75 

W for 2 min), as shown in Figure 2.1(c). Next, the negative photoresist and PMMA were 

removed by Remover PG at 80 °C exposing pristine ML MoS2 patterns as illustrated in 

Figure 2.1(d). Subsequently, positive photoresist (LOR3A, 5000 rpm for 30 s, 180 °C for 

2 min; AZ3312, 5000 rpm for 30 s, 100 °C for 60 s) was spun coat on the patterned ML 

MoS2, and a second photomask was used on the MoS2 channel regions. After exposure and 

post-exposure bake (30 mJ cm-2, 110 °C for 60 s), the positive photoresist was developed 

by 300MIF for 1 min to expose the ML MoS2 aligners (Figure 2.1(f)). These were then 

used for the alignment of the source and drain metal contacts (Figure 2.1(g)). After 

exposure, bake, and develop, the source/drain metal contacts (5 nm Cr/35 nm Au or 5 nm 

Ti/35 nm Au) were deposited via electron beam evaporation (Figure 2.1(h)). Finally, the 

Figure 2.1 Fabrication process of CVD-grown monolayer MoS2 FETs 
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liftoff process was performed in Remover PG at 80 °C. The final image of the fabricated 

CVD-grown ML MoS2 FETs array is shown in Figure 2.1(i). 

Result and Discussion for CVD-grown Monolayer MoS2 

Two separate arrays of ML MoS2 FETs, each with different type of metal contacts, 

were fabricated and tested. The starting material is a continuous CVD-grown ML MoS2 

film, as shown in Figure 2.2 (b). Optical images near the edges of the sample reveal large 

crystal grains as shown in Figure 2.2(a) and Figure 2.3 (a). The AFM image of an MoS2 

crystal grain and the step height measurement are shown in Figure 2.3(b) and (c). A picture 

of the full FET array sample is shown in Figure 2.3(d), and a micrograph of a single MoS2 

FET is shown in Figure 2.3(e) and (f) (closer view of the FET channel region). To verify 

the quality and the number of MoS2 layers, Raman spectroscopy in the channel region of 

five randomly selected fully fabricated FETs is conducted. Figure 2.3(g) plots the Raman 

spectra where the first and second peaks, centered at 385 cm-1 and 405 cm-1 respectively, 

correspond to the two 𝐸!"#  and 𝐴#"modes, which have been demonstrated to be sensitive 

to the number of MoS2 layers60–62. A difference in the peak positions of ~20 cm-1 confirms 

the monolayer MoS2 channels. An AFM image of the FET and height measurement across 

Figure 2.2 Optical images of the CVD-grown MoS2 monolayer film. (a) Image of 
region near edge of the sample reveals large isolated MoS2 monolayer grains. (b) 

Image of region near the middle of the sample shows uniform MoS2 monolayer film. 
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the channel region are shown in Figure 2.3(h) and (i) where the step observed in height 

includes the MoS2 ML thickness as well as etching into the SiO2 substrate. 

The fabricated arrays include FETs with various channel widths (W) and lengths (L). 

Typical drain current (Id) versus gate voltage (Vg) characteristics measured at different 

temperatures are shown in Figure 2.4(a) and (b) for FETs with Cr/ Au and Ti/Au contacts 

respectively (more Id-Vg measurements at different temperatures are shown in Figure 2.5). 

Figure 2.3 (a) Optical image of the CVD-grown MoS2 film (image shows edge of 
mostly uniform film). (b) Atomic force microscopy (AFM) image of CVD-grown 
MoS2 film. (c) Line scan on AFM image revels the step height on the CVD-grown 
MoS2 film. (d) Picture of one sample showing the large array of MoS2 FETs. (e) 

Micrograph of an MoS2 FET. (f) Higher magnification image of the MoS2 device. (g) 
Raman spectrum from the channel region of five different FETs selected randomly. (h) 

AFM image of the fabricated ML MoS2 FETs. (i) AFM heigh profile across the 
channel region of the MoS2 FET (step includes etching of SiO2 as illustrated by the 

schematic).  
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Dual Vg sweeps show negligible hysteresis at all temperatures indicating minor 

contribution from near interfacial traps and adsorbates on the surface of the MoS2 

channel63–66 (samples were annealed in situ at 375 K under high vacuum ~3E-7 Torr for 24 

h, see Figure 2.6). For the range of Vg in Figure 2.4(a) and (b), Id goes down with decreasing 

temperature consistent with charge transport limited by thermionic emission over the 

Schottky barriers at the interface between metal contacts and the MoS2 channel. In Figure 

2.4(c) it plots Id at Vg = 50 V (normalized by W) as a function of L for both Cr/Au and 

Ti/Au FETs. These results shown correspond to mean values (symbols) and standard 

Figure 2.4 Transfer characteristics at different temperatures for CVD-grown ML MoS2 
FETs with (a) Cr/Au contacts and (b) Ti/Au contacts (both devices have channel width 

W = 7 µm and length L = 4 µm). (c) L-dependence of current for Cr/Au and Ti/Au 
FETs (symbols are mean, error bars are standard deviation from over 100 devices 

tested). (d)–(f) Histograms of threshold voltage, subthreshold swing, and on/ off ratio 
for both Cr/Au and Ti/Au FETs at room temperature and Vd = 1 V (over 100 devices 

tested). (g)–(i) Energy band diagram for the MoS2 FETs for different biasing 
conditions. 



 22 

deviation (error bars) from over 20 FETs tested for each L (>100 FETs tested overall). It 

is worth noting that except for a few devices that failed during liftoff in the fabrication 

process, over 80% of the devices showed good field-effect characteristics (Id-Vd 

characteristics were also verified, see Figure 2.7 and Figure 2.8). Further statistical analysis 

is provided with histograms of important FET electrical parameters for both Cr/Au and 

Ti/Au devices. These include threshold voltage (Figure 2.4(d)), subthreshold swing (Figure 

2.4(e)), and on/off ratio (Figure 2.4(f)). Similar distributions of the parameters are observed 

for Cr/Au and Ti/Au samples, except for a wider distribution of threshold voltages (Vth) 

in Cr/Au devices. This may be attributed to variation in fixed oxide charge. The Cr/Au and 

Ti/Au FET arrays were fabricated on different CVD-grown samples on Si/SiO2 wafers with 

different distributions of oxide charge. For back-gated FETs with thick SiO2 gate oxides 

(300 nm in this case) small changes in fixed oxide charge can lead to large threshold shifts 

(e.g., a difference of ~7 × 1011 cm-2 can result in ~10 V shift in threshold voltage). The 

large values for subthreshold swing (SS) are also due to a having a thick gate dielectric. It 

is well established in the literature that to achieve a near-ideal SS of 60 mV/dec the 

effective oxide thickness (EOT) must be scaled down to a few nanometers67. 

Figure 2.5 Id-Vg characteristics measured at different temperatures using Vd = 100 
mV for FETs with (a) Cr/Au and (b) Ti/Au contacts. (c) Comparison of I-V 

measurements from FETs with Cr/Au and Ti/Au contacts at different temperatures. 
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The energy band diagrams in Figure 2.4 (g-i) illustrate the charge transport mechanisms 

of Schottky-barrier MOSFETs (SB-MOSFETs) similar to the MoS2 devices reported in 

this work. The band diagrams are shown for a positive drain-to-source voltage (Vds) and 

correspond respectively to biasing conditions with Vg below the flat band voltage (VFB), 

Vg = VFB, and Vg > VFB. For Vg < VFB a large (wide) energy barrier between the contacts 

and the channel limits the injection of carriers to thermionic emission processes. As Vg 

increases towards VFB, the energy bands in the channel are pulled down in energy reducing 

the barrier height for electron injection from the source into the channel. At the flat band 

condition (Vg = VFB) the energy barrier height for electron injection from source to channel 

is equivalent to the Schottky barrier (labeled as FSB). Further increase in Vg will not change 

Figure 2.6 (a) Id-Vg characteristics (dual gate voltage sweep) before in-situ anneal 
show large hysteresis. After in- situ annealing the gate hysteresis is successfully 
eliminated, significantly improving the measured I-V characteristics. (b) and (c) 

are Id-Vg measurements after in-situ anneal for FETs with Cr/Au contacts and with 
different channel lengths and widths. (d) and (e) are Id-Vg measurements after in-
situ anneal for FETs with Ti/Au contacts and with different channel lengths and 
widths. (f) Comparison of typical Id-Vg characteristics of FETs with Cr/Au vs. 

Ti/Au contacts at different drain voltages. 
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the Schottky barrier height. However, as Vg increases above VFB the barrier becomes 

triangular its width decreases with increasing Vg. As a result, thermally assisted tunneling 

of electrons through the barrier sets in for Vg > VFB. In a device with good electrostatics, 

Figure 2.7 Id-Vd characteristics for FETs with Cr/Au contacts for various Vg 
ranging from -30 to 150 V and at different temperatures: (a) 300 K, (b) 180 K, (c) 

60 K, (d) 10 K. (e) Id-Vd characteristics at Vg = 150 V for all four different 
temperatures. (f) Three-dimensional (3-D) Id-Vd plot for various Vg comparing 

300 K (solid red lines) and 10 K (solid blue lines). (g) and (h) are contours plot of 
Id as a function of Vg and Vd for temperatures of 300 K and 10 K respectively. 
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increasing Vg significantly above VFB would result in narrow Schottky barriers that would 

allow efficient electron tunneling. As explained by Illarionov et al67, strongly scaled 

insulators enhance gate control over the channel, thereby reducing the impact of the 

Schottky barriers. When this is true, the limiting charge transport mechanism becomes the 

Figure 2.8 Id-Vd characteristics for FETs with Ti/Au contacts for various Vg at 
different temperatures: (a-d) 300 K to 10 K. (e) Id-Vd characteristics at Vg = 150 V for 
all four different temperatures. (f) Three-dimensional (3-D) Id-Vd plot for various Vg 

comparing 300 K (solid red lines) and 10 K (solid blue lines). (g) and (h) are contours 
plot of Id as a function of Vg and Vd for temperatures of 300 K and 10 K respectively. 
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scattering effects in the channel rather than thermionic emission at the contacts. When 

current flow is limited by charge scattering in the channel, the FET mobility can be 

extracted to characterize the transport properties and quality of the MoS2 channel. The 

devices studied in this work do not have strongly scaled insulators (these are back-gated 

FETs with 300 nm SiO2 gate dielectrics) so the limiting transport mechanism must be 

verified. 

To better investigate the transport properties in the MoS2 FETs a subset of the samples 

was remeasured at different temperatures and sweeping Vg to higher voltages. Figure 2.9(a) 

plots the transfer characteristics for several FETs with Cr/Au contacts at different 

temperatures ranging from 10 K up to 300 K and Vg swept up to 150 V (similar results for 

Figure 2.9 (a) Transfer characteristics for the ML MoS2 FETs with Cr/Au contacts 
for Vd = 1 V and for different temperatures. (b) Scattered plot for Ioff (Id at Vg = 50 

V) versus Ion (circles: Id at Vg = 100 V; triangles: Id at Vg = 150 V). (c) Drain current 
as a function of temperature for various Vg (circles are mean values, error bars are 
standard deviations). (d) Example of transfer characteristics used to extract barrier 
height. (e) Arrhenius plot for extraction of barrier height; (f) barrier height versus 
Vg, and extractions of Schottky barrier height (dashed lines) for FETs with Cr/Au 

(diamonds) and Ti/Au (circles) contacts. 
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FETs with Ti/Au contacts are shown in Figure 2.10). For a fixed Vg, the temperature 

dependence of Id is a good indicator of the limiting charge transport mechanism68. Id 

increasing with temperature is indicative of thermionic emission (dominated by the 

contacts), while Id decreasing with temperature is indicative of scattering (dominated by 

the channel). Figure 2.9(b) and (c) take a closer look at the statistics of Id temperature 

dependence. Figure 2.9(b) plots the scattered data of Ioff (Id at Vg = 50 V) versus Ion (Id at 

Vg = 100 V) for each temperature (circles). The scattered data shows more overlap in Ion 

compared to Ioff between the different temperatures. The overlap is more pronounced when 

plotting the case of Ion corresponding to Vg = 150 V (triangles). The same trend can be 

observed by plotting drain current as a function of temperature for different Vg as shown 

in Figure 2.9(c). The top panel is for FETs with Cr/Au contacts, and the bottom panel is 

for FETs with Ti/Au contacts. At the lower gate voltages Id clearly increases with 

temperature (i.e., consistent with thermal activation of carriers). As Vg increases the 

dependence of Id begins to transition, but even at Vg = 150 V a full transition cannot be 

seen (Id does not decrease with temperature). Hence, for back-gated FETs with thick gate 

oxides the gate control over the channel is not sufficient to render the Schottky barriers 

negligible. Therefore, extractions of mobility are not useful as the transport properties of 

the FETs are affected by the contacts even for large Vg. Instead, this work focuses on the 

properties of the Schottky barriers and metal contacts to the CVD-grown monolayer MoS2 

and compare these to exfoliated MoS2. 

A statistical analysis of Schottky barrier height (SBH) from the off-state measurements 

(e.g., for Vg < 50 V) is performed. Previous works on exfoliated MoS248,49,69 (both 

monolayer and multilayer) as well as a study on CVD-grown multilayer MoS270 have 
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reported on the extractions of SBH, but to the best of our knowledge no reports have been 

published on the statistics of SBH from CVD-grown ML MoS2 devices. Since density of 

states, crystallinity, surface roughness, defect density, and other physical properties are 

different between exfoliated and CVD-grown MoS257,68,71,72, it is important to analyze the 

statistics of SBH at the interface between metal contacts (Cr and Ti in this paper) and ML 

Figure 2.10 (a) Transfer characteristics for the ML MoS2 FETs with Ti/Au 
contacts for Vd = 1 V and for different temperatures (300 K, 180K, 60K, 10K). (b) 
Scattered plot for Ioff (Id at Vg = 50 V) vs. Ion (circles: Id at Vg = 100 V; triangles: 
Id at Vg = 150 V). (c) Example of transfer characteristics used to extract barrier 

height. (d) Arrhenius plot for extraction of barrier height at different Vg. 
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CVD-grown MoS2. From thermionic emission theory for 2D semiconductors the (reverse-

bias) Schottky junction current is given by  

𝐼 = 𝑊𝐴!$𝑇%/! exp(−𝑞Φ'( 𝑘(𝑇⁄ ) 

where 𝑊 is the channel width, 𝑞 is the electron charge, 𝑘( is the Boltzmann constant, Φ'(  

is the Schottky barrier height, 𝐴!$ = 𝑞(8𝜋𝑘(%𝑚∗)#/!/ℎ! is the Richardson’s constant for 

2D47,48,73. For a fixed Vg, Id at different temperatures is extracted, as shown in Figure 2.9(d) 

and construct an Arrhenius plot like the one shown in Figure 2.9(e). Using the thermionic 

emission current equation, this work extracts barrier height as a function of Vg from the 

slope of the Arrhenius plot. The SBH (FSB) corresponds to the barrier extracted at the flat 

band condition, which can be identified from the plot of extracted barrier height as a 

function of Vg (Figure 2.9(f)) as the point where the extraction deviates from a linear 

dependence. In Figure 2.9(f) it shows examples of extracted SBHs for MoS2 FETs with 

Cr/Au and Ti/Au contacts (more examples of SBH extractions are shown in Figure 2.12 

and Figure 2.13). The extracted SBH is approximately 0.2 eV for the Cr/Au device and 

0.08 eV for Ti/Au (statistics in Figure 2.11). 

Figure 2.11(a) plots histograms of extracted SBHs for Cr/Au and Ti/Au devices. The 

mean and standard deviation of SBH extracted on ML MoS2 FETs with Cr/Au contacts 

were respectively µCr = 0.19 eV and sCr= 0.05, while for FETs with Ti/Au contacts µTi = 

0.09 eV and sTi = 0.02. The extracted SBH for Cr contact is higher than that of Ti contact 

due to the larger work function of Cr. The extracted SBH for CVD-grown ML MoS2 FETs 

with Ti/Au contacts in this paper is smaller than those of exfoliated ML MoS2 FETs 

reported earlier48,74. A possible explanation is enhancement in metallization of MoS2 

resulting from hybridization between S and the metal atoms (e.g., Ti) compared to 
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exfoliated flakes due to having more lattice defects in CVD-grown samples48. In Figure 

2.11(b) it plots the extracted SBH for CVD-grown monolayer MoS2 (this work) as a 

function of the metal (contact) work function and compare it against previous works on 

exfoliated monolayer MoS2. Interestingly, an improvement (reduction) in FLP is observed 

for CVD-grown samples compared to exfoliated ML MoS2. The FLP factor (S = |d(FSB) 

/d(FM) |) for CVD-grown samples (S @ 0.5) is larger than those reported for exfoliated 

flakes (S @  0.1) and closer to the ideal Schottky–Mott limit (S = 1). The enhanced 

Figure 2.11 (a) Histograms of extracted SBH. (b) SBH plotted as a function of metal 
work function for CVD-grown ML MoS2 samples from this work and for exfoliated 

samples. (c) Room temperature Raman spectra from the channel region of 5 randomly 
selected FET samples from this work (d) extracted full width half maximum (FWHM) 
for both MoS2 prominent Raman peaks from the CVD-grown ML samples (this work) 

compared to pristine exfoliated flakes. 
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metallization of CVD-grown MoS2 likely mitigates the effects of gap (interface) states 

known to be introduced during material synthesis and/or device fabrication74,75. To confirm 

the relation between our observations of SBH in CVD-grown versus exfoliated MoS2 and 

defect density this work uses optical characterization. Figure 2.11(c) plots the room 

temperature Raman spectra from the channel region of 5 different CVD-grown ML MoS2 

FETs. Firstly, the appearance of a defect-induced peak at ~225 cm-1 is not observed in 

pristine exfoliated samples76. Secondly, the full width half maximum (FWHM) for both 

MoS2 prominent peaks (𝐸!"#  and 𝐴#") are extracted and plotted. The FWHM are plotted in 

Figure 2.11(d) and compared against typical results obtained for pristine exfoliated samples. 

A larger FWHM (broadened peak) indicates a larger defect density. This effect can be 

attributed to defect assisted broadening around the Gamma symmetry point of the phonon 

dispersion spectra. As such, increasing defect density leads to broader Raman FWHM. As 

shown, the CVD-grown ML MoS2 samples contain a larger defect density compared to 

exfoliated flakes as evidenced by the larger FWHM. This supports a defect-induced 

enhancement in metallization of CVD-grown MoS2, leading to improved coupling between 

the electrodes and the channel, as a possible explanation for our SBH observations based 

on the electrical analysis of CVD-grown ML MoS2 FETs. 

The importance of defect on MoS2 contact properties were studied earlier on exfoliated 

samples77. More recently, Pelella et al17 reported a defect-induced lowering of contact 

resistance by electron beam irradiation of exfoliated samples, and Chee et al78 reported the 

metallization of defect- containing CVD-grown MoS2 using x-ray photoelectric 

spectroscopy (XPS) leading to reduced SBH and contact resistance. 
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Figure 2.12 Extraction of SBH for various FETs with Cr/Au contacts. 

 

Figure 2.13 Extraction of SBH for various FETs with Ti/Au contacts. 
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Conclusion 

In this chapter it demonstrates a high-yield fabrication process for 2D semiconductors 

that is compatible with high-throughput material synthesis and with wafer-scale fabrication 

techniques. Based on this process, large-area CVD-grown ML MoS2 FET arrays with 

Cr/Au and Ti/Au contacts were fabricated. The devices were inspected by optical images, 

Raman spectrum, and AFM measurements. In terms of electrical characterization and 

analysis, a significant advantage of this process is the ability to test multiple device samples 

and obtain statistics for key FET parameters (e.g., threshold voltage, on/off ratio, 

subthreshold swing, mobility, and Schottky barrier height). By characterizing the 

temperature dependence of charge transport in device with two different metal contacts, 

the significant impact of Schottky barriers at the interface between the metal contacts and 

the monolayer MoS2 channel was statistically verified. Our extractions of Schottky barrier 

heights for devices with Cr/ Au and Ti/Au contacts on CVD-grown ML MoS2 resulted in 

mean values of 0.19 eV and 0.09 eV respectively. These values are smaller compared to 

those previously reported on FETs with exfoliated MoS2 channels, indicating enhancement 

in metallization of CVD-grown MoS2 compared to exfoliated flakes due to larger number 

of lattice defects. Moreover, a reduction in FLP is observed compared to exfoliated samples 

and indicated better coupling between metals and the channel. While FLP is not eliminated 

as achieved with exfoliated/transferred van der Waals (vdW) metal–semiconductor 

junctions, this work provides new valuable insight about metal contacts on large-area MoS2 

processes for next-generation integrated electronic systems based on CVD-grown 

monolayer 2D semiconductors. 
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CHAPTER 3  

HEXAGONAL BORON NITRIDE (H-BN) MEMRISTOR ARRAYS FOR ANALOG-

BASED MACHINE LEARNING HARDWARE 

Introduction to CVD-grown H-BN Memristors 

Two-dimensional (2D) materials have attracted significant interest for the downscaling 

of CMOS (complementary metal-oxide-semiconductor)79–81, as well as for beyond-CMOS 

electronic applications7,82. Their atomic scale thicknesses and pristine (i.e., dangling-bond 

free) surfaces could enable ultra-dense integration for next-generation integrated electronic 

systems7. Consequently, many studies have evolved from the demonstration of isolated 

devices (e.g., field effect transistors or FETs) based on exfoliated flakes towards large-area 

methods for fabrication of integrated circuits with 2D materials83–89. While early device 

demonstrations focused predominantly on FET applications39,49,90,91, recent studies have 

proposed memory and neuromorphic devices based on the non-volatile resistive-switching 

(NVRS) behavior observed in various 2D materials including transition metal 

dichalcogenides (TMDC)92, black-phosphorus93,94, graphene95,96, and hexagonal boron 

nitride (h-BN)27,97–104, etc. These devices are generally configured in vertical two-terminal 

structures, where the resistive switching layer is sandwiched between top and bottom metal 

electrodes. The use of 2D materials has enabled the demonstration of devices with 

atomically thin resistive switching layers having low voltage operation100 and fast 

switching97,98. Chemical vapor deposition (CVD)-grown h-BN has attracted much attention 

for use as the resistive switching layer due to its compatibility with large-area wafer-scale 

fabrication, and arrays of h-BN memristors have been reported88. In CVD-grown h-BN 



 35 

devices the resistive switching process is attributed to the formation and rupture of 

conductive paths via penetration of metal ions into defects at h-BN grain boundaries. 

Initial studies of h-BN memristors reported on their non-volatile resistive switching 

behavior observed as transitions or hysteresis in measurements of DC current-voltage 

characteristics97,98,100,102. Previous work88 has also shown the programming of multiple 

resistive states in h-BN memristors by the application of consecutive voltage pulses, 

although using significantly larger pulse widths (milliseconds) compared to what is 

reported here (nanoseconds). Pulsed programming is required for practical memory and 

neuromorphic computing applications. Moreover, the pulsed programming of multiple 

conductive states is critical for the implementation of synaptic plasticity (i.e., long-term 

potentiation and depression) in neuromorphic hardware, as well as for the analog-based 

implementation of machine learning functions in memristor arrays105. For example, most 

analog-based implementations of neural networks and/or machine learning hardware based 

on memristor crossbars rely on dot-product (i.e., multiply-accumulate) operations106–108. 

Here, the accumulated currents at the outputs of the arrays result from the product of input 

voltage signals (input vector) and the conductance of the memristor arrays (column 

vectors). Nevertheless, this basic function has not been reported in arrays of h-BN 

memristors.  

This chapter presents the wafer-scale fabrication of memristor arrays using on CVD-

grown h-BN resistive switching layers, and their multi-state analog programmability. It 

focuses on the experimental demonstration of dot-product operation on h-BN memristor 

arrays and on the hardware implementation of multi-variable stochastic linear regression. 

This work extends beyond existing demonstrations of NVRS behavior in isolated h-BN 
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memristors and paves the way for more sophisticated demonstrations of machine learning 

applications based on 2D materials. 

Method and Fabrication for CVD-grown H-BN Memristor Arrays 

The Au/h-BN/Ti memristor arrays were fabricated on a 90 nm SiO2/Si wafer as shown 

in Figure 3.1(a-i). First, the bottom electrodes (5 nm Cr/35 nm Au) with 3, 20, and 50 μm 

width were patterned on the substrate via photolithography and e-beam evaporation 

methods. Second, CVD-grown multilayer h-BN on copper from Graphene Supermarket 

was transferred onto the prepared SiO2/Si substrate by wet transfer method. Third, h-BN 

film was patterned to expose the 100 μm by 100 μm bottom electrodes pads using oxygen 

plasma. Finally, the top electrodes (70 nm Ti) were patterned with the same electrode width 

and the same methods as that of the bottom electrodes. The top electrodes are exposed to 

air and a thin surface layer may be oxidized over time. This oxidized layer can be easily 

penetrated with probe needles during measurements, and its impact on the resistive 

switching behavior has been ruled out by comparing against devices with Au-capped top 

electrodes that show very similar characteristics (see Figure 3.6) 

Figure 3.1 Fabrication process of h-BN memristor 
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Figure 3.2(a) shows a schematic of the fabricated Au/h-BN/Ti memristors arrays where 

the Au bottom electrode (BE) is shared across various devices each having an independent 

Ti top electrode (TE) (1 × 3 and 1 × 10 arrays are shown). Figure 3.2(b) illustrates the 

cross-section of the Au/ h-BN/Ti memristor. Figure 3.2(c) is a photograph of the memristor 

arrays on a 2cm-by-2cm SiO2/Si wafer. A micrograph of the fabricated h-BN memristor 

arrays shown in Figure 3.2(d) corroborates the dimensions of the 100 μm × 100 μm squared 

pads and the electrodes with 3 μm × 3 μm active areas (see Figure 3.3 for 20 μm × 20 μm 

and 50 μm × 50 μm). Figure 3.2(e) shows a cross-section transmission electron microscopy 

(TEM) image of a typical Au/h-BN/Ti memristor. From the TEM image it confirms the 

thickness of the CVD-grown multilayer h-BN film (~8–10 nm) corresponding to 

approximately 15–20 atomic layers. Moreover, local defects can be observed that facilitate 

Figure 3.2 hexagonal Boron Nitride (h-BN) memristor arrays. a Schematic of the 
Au/h-BN/Ti memristor arrays and b cross-sectional schematic of single 

memristor c Photograph of Au/h-BN/Ti memristor arrays on 90 nm SiO2/Si 
wafer under ambient light, and d micrograph of arrays with 3 μm × 3 μm active 

areas. e Cross-sectional TEM image of the Au/h-BN/Ti memristor indicating 
local defects responsible for the formation of conductive paths. Scale bar, 5 nm. f 

A representation of conductive nanofilaments on the Au/h-BN/Ti memristors. 
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metallic penetration from the top electrode (Ti) to form conductive paths (i.e., conductive 

nanofilaments) responsible for the resistive switching behavior in the h-BN memristors. 

The electrical characterization was conducted on a Cascade semi-automatic probe 

station using a Keithley 4200 semiconductor characterization system. The DC I–V 

measurements were performed using source measure units (SMUs), while the pulse 

Figure 3.3 Optical images of Au/h-BN/Ti memristor crossbars with different 
active areas: (a) 20 μm and (b) 50 μm. 

Figure 3.4 The h-BN memristor arrays under the microscope in the probe station and 
experimental configuration used for electrical testing. Probe connections made on 

the h-BN memristor array pads (connecting electrically to the top and bottom 
electrodes) shown on the inset are routed with triaxial cables through the Keithley 

remote amplifier/switch (RPM) where I can automatically connect pulse or 
source/measure units (PMU or SMU). 
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programming experiments used a combination of pulse measure units (PMU, model 4225) 

for programming pulses and SMUs for reading currents. In the pulse programming 

experiments it was switched between PMU and SMU automatically using a Keithley 

remote amplifier/switch (4225-RPM). Figure 3.4 shows the experimental setup.  

Result and Discussion for CVD-grown H-BN Memristor Arrays 

Resistive Switching Properties 

Individual h-BN memristors from the arrays were measured electrically to evaluate 

their resistive-switching properties. Current–voltage (I–V) characteristics were obtained 

Figure 3.5 Resistive switching characteristics of h-BN memristors. (a) 
Representative I–V characteristics measured during 100 cycles in one single 3 μm 

× 3 μm Au/h-BN/Ti memristor with 0.1 and 1 mA compliance respectively for 
the positive and negative sides of the sweep. (b) Cumulative probability 

distribution of the HRS and LRS (read at 0.1V). (c) resistance vs cycle number 
plot, and (d) histogram of set and reset voltages. 
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by sweeping a voltage across the top and bottom electrodes while measuring current. 

Figure 3.5(a) plots 100 consecutive cycles of I–V measurements on an Au/h-BN/Ti 

memristor with a 3 μm × 3 μm active area. A compliance of 0.1 mA was activated for 

positive applied voltages. The numbered labels indicate the sweeping process during the 

I–V measurement. As shown, clear transitions occur between resistive states, evidence of 

a forming-free bipolar resistive-switching (RS) operation with low cycle-to-cycle 

resistance variability and low set and reset voltages (approximately 1 and −1 V). The 

cumulative distribution plot of the resistive states extracted at a read voltage of 0.1 V from 

all 100 cycles is shown in Figure 3.5(b). Two distinct states labeled as HRS (high resistance 

states) and LRS (low resistance state) are easily observed as their distributions are 

separated by approximately two orders of magnitude. Another illustration of the HRS and 

LRS distributions is provided in Figure 3.5(c) where the resistances are plotted as a 

function of the cycle number. A histogram of the set and reset voltages corresponding to 

Figure 3.6 Typical resistive-switching I-V characteristics (multiple cycles) of a 
3 μm × 3 μm Au/h-BN/Ti/Au memristor (i.e., the Ti top electrode is capped 

with Au). 
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transitions between HRS and LRS is shown in Figure 3.5(d). All results indicate a stable 

and reliable RS bipolar operation. 

This work also explored the dependence of the I–V characteristics and of the HRS and 

LRS statistics on h-BN memristor active area. In Figure 3.7(a) it compares the I–V 

characteristics from devices with 3 μm × 3 μm, 20 μm × 20 μm, and 50 μm × 50 μm active 

areas. All devices were measured for 100 cycles and the results show good repeatability 

with limited cycle-to-cycle variation. The difference in active area has a larger effect on 

the HRS and this is easier to identify in the cumulative distribution plot shown in Figure 

3.7(b). Here, the HRS an LRS resistances are shown for the three devices (all 100 cycles) 

extracted at a read voltage of 0.1 V. While distributions of LRS are only minimally affected 

by active area, a clear trend in HRS. The HRS resistance goes down with increasing the 

active area. This trend in HRS and LRS with active area has been previously reported for 

different filamentary-based RS memory109,110. Figure 3.7(c) is a box plot showing the 

distribution of HRS and LRS as a function of cell area side length (3, 20, and 50 μm). The 

plot includes the raw data (circles), the standard deviation (size of box), and the mean 

values (solid horizontal lines). While cycle-to-cycle variability is comparable to previous 

Figure 3.7 Dependence of the I–V characteristics and of the HRS and LRS statistics on 
h-BN memristor active area. (a) Comparison of 100 I–V cycles from Au/h-BN/Ti 

memristors with different active areas. (b) Cumulative probability distribution of the 
HRS and LRS (read at 0.1 V) and (c) statistical analysis of resistance (HRS, LRS) as a 

function of the active area side length. 
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resistive-switching technologies (e.g., oxide-based RRAM111), device-to-device variability 

remains large, likely due to nonuniformity of the h-BN film and may be improved by 

optimizing the synthesis and transfer methods.  

3.3.2 Multistate non-volatile pulse programmability 

Achieving multiple conductive states through the application of programming pulses is 

critical for the implementation of neuromorphic hardware and for the analog-based 

implementation of machine learning functions in memristor arrays. This work investigates 

Figure 3.8 Multi-state non-volatile pulse programming of h-BN memristors. (a) 
Diagram of the pulsed measurements and retention test. (b) 100 cycles of pulse 

programming for Au/h-BN/Ti memristor with 3 μm × 3 μm active area (50 
positive pulses, followed by 50 negative pulses for each cycle). Gray lines show 
100 individual cycles, and the red line shows the average. (c) Pulse measurement 
cycles with increasing number of positive pulses. Deep blue to red colored curves 

corresponds to increasing the number of positive pulses from 2 up to 20. (d) 
Retention tests measured immediately after the last positive pulse for each cycle 

using a read voltage of Vread = 0.1 V. The color of the curves in d match the color 
of the corresponding cycle in (c). 
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the multistate pulse programmability of the Au/h-BN/Ti memristors by applying a 

sequence of positive/negative voltage pulses (pulse width is 500 ns, amplitudes indicated 

in Figure 3.8). After each pulse a small read of 0.1 V is applied to read the current 

(conductive state) of the device (see Figure 3.8a top panel). The results are shown in Figure 

3.8, where 100 cycles of 50 positive pulses followed by 50 negative pulses were applied. 

The gray lines are the results from each individual cycle and the solid red line with circles 

is the average from all 100 cycles. The results show a gradual change in conductance (from 

~4 to 10 μS) indicating good analog (i.e., multistate) programmability. Due to the fast-

switching behavior (nanoseconds), a low energy consumption per programming pulse of 

Epulse = (I)(V)(tpulse) @ 125 fJ is achieved. This can be further reduced to aJ/pulse by applying 

a low compliance current as previously reported on h-BN memristors88. The non-volatile 

property of the conductive states is also demonstrated by retention tests where current is 

sampled over 100 s (read voltage 0.1 V) following the application of the programming 

pulses (Figure 3.8c, d). Figure 3.8c plots current for different programming cycles where 

Figure 3.9 (left) Resistive-switching I-V characteristics, and (right) retention 
test up to 10,000 seconds showing stable LRS and HRS at room temperature 

(Vread = 0.1 V). 
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the number of positive pulses was varied from two up to twenty. Immediately after the last 

positive pulse, a 0.1 V read voltage was applied and held and sample current every second 

for 100 s (see Figure 3.8a bottom panel). After the retention test the negative pulses are 

applied and it then proceeds to the next cycle. The results from the retention test are shown 

in Figure 3.8d where the current is plotted as a function of the retention time. Longer 

retention tests up to 104 s confirming a stable, non-volatile response are shown in Figure 

3.9(right). The results confirm the endurance and robustness of the conductive filaments 

and demonstrate the multistate non-volatile pulse programmability of Au/h-BN/Ti 

memristors. 

Dot Product with H-BN Memristor Arrays 

The dot-product operation is crucial for neuromorphic computing and machine learning 

hardware. For example, a dot-product operation is typically used in neural networks 

implemented on memristor crossbar arrays to accumulate currents at the outputs (i.e., the 

post-synaptic neurons). Here, the product of the input voltage signals (the input vector, v) 

multiply the conductances of the memristor arrays (the column vector, G) to accumulate 

an output current (I). This is achieved in hardware due to Ohm’s and Kirchhoff’s laws as 

given by I = ∑𝑣𝐺. This dot-product operation has been previously reported on oxide-based 

memristors107,112, but not on recently developed h-BN memristor arrays. Here it 

demonstrates the most basic implementation of dot-product on an array of two h-BN 

memristors where the accumulated current is given by I = ∑𝑣1𝐺1  + ∑𝑣2𝐺2 . The 

experimental setup is illustrated in Figure 3.10a. As shown, for each memristor it can be 

switched between a pulse source (used to program the memristor conductances G1 and G2) 
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and a voltage source to apply the read voltage on the memristors (v1 and v2). During the 

read operation it measures the output current through the shared bottom electrode. Figure 

3.10b plots the total current measured with a read voltage of 0.1 V (v1 = v2 = 0.1 V) 

following the application of consecutive programming pulses (positive then negative). It 

shows the case with both memristors pulsed (i.e., both are programmed with voltage 

pulses), the case with only one of the memristors pulsed, and with none pulsed (20 cycles 

shown for each case). For each cycle it also sweeps the read voltage (v1 = v2 = Vread) 

between −0.15 and +0.15 V and measure the total current after all 30 positive programming 

pulses. The results from these voltage sweeps are shown in Figure 3.10c. For the case where 

both memristor were pulsed (blue lines), the conductances G1 and G2 are both high (LRS) 

and therefore the current is the largest. When none of the memristors are pulsed (black 

lines), both G1 and G2 are low (HRS), and the current is the lowest. When only one 

memristor is pulsed, its conductance is high (LRS) while the other memristor’s 

Figure 3.10 Dot-product operation with h-BN memristor arrays. (a) Schematic of the 
experimental setup for demonstration of basic dot-product operation. (b) Three 

different cases of pulse programming the memristor arrays: a read voltage of Vread = 
0.1 V used to measure current after each pulse. (c) For each cycle in part (b) I also 

sweep the read voltage Vsweep between −0.15 and +0.15 and measure total current to 
show the linearity and repeatability of the dot-product operation. The sweeps are done 

after the 30 positive pulses for each cycle. 
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conductance is low (HRS), and the magnitude of the current is between the first two cases. 

The results in Figure 3.10c indicate good linear behavior of the memristor I–V 

characteristics (needed for reliable dot-product operation)113 and show good repeatability 

(small cycle-to-cycle variation). 

Implementation of Linear Regression 

The experimental demonstration was done with a Keithley 4200 SCS using a custom 

test script developed in the Keithley user library tool (KULT) and executed in the Keithley 

interactive testing environment (KITE). The input parameters to the test script are the 

minimum and maximum conductance values for each memristor (predetermined based on 

pulse measurements, used to normalize output currents from the array), the initial values 

for the programming pulse amplitudes, the constant value for the width of the programming 

pulses, and the number of iterations. The test script loads the training data and normalizes 

the independent variables (in this case marketing and R&D investments in thousands of 

dollars) to voltages between 0 and 0.15 V. I also subtract a constant offset (y-intercept) 

from the dependent variable (profit) so that the model is based only on two regression 

coefficients (model parameters represented by the memristor conductances). The script 

then goes into a loop where it randomly selects a sample for the data set and apply the read 

voltages (v1 and v2) that correspond to the independent variables of that sample. The current 

by I = ∑𝑣1𝐺1 + ∑𝑣2𝐺2 is read at the output of the h-BN memristor array (shared bottom 

electrode) and is translated from Amps to dollars to be compared against the training 

sample. This read operation is conducted with the Keithley SMUs. It then calculates the 

error (δ) in the prediction as well as the required update for each model parameter (i.e., 

ΔG1 and ΔG2). From the minimization of the cost function (i.e., δ2/2) the updates are 
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calculated as ΔG = −δv. Here it proposes a simplified hardware-compatible regression 

approach where the memristor conductances (i.e., the model parameters) are updated 

through the application of a single programming pulse, and the polarity of the pulse is 

determined by the sign of the corresponding ΔG. The programming pulses are applied 

using the Keithley’s 4225 PMU (pulse width is fixed to 500ns). Gradient descent 

algorithms typically use learning rate decay to improve convergence, where model 

parameter updates are weighted by a learning rate (α) that is reduced gradually as training 

advances. In the hardware demonstration I introduce learning rate decay by gradually 

reducing the amplitude of the programming pulses (I have reduced the amplitude of the 

programming pulses by 0.1% after each iteration).  

Figure 3.11 Implementation of stochastic multivariable linear regression on h-BN 
memristor arrays. (a) Flow diagram for stochastic multivariable linear regression: In 
step 1, the inputs (independent variables) are translated to DC voltages and applied 

to the array (top electrodes). In step 2, the total output current (the model prediction) 
is measured at the shared bottom electrode. In step 3, the prediction error is 

calculated by comparing against the training sample, and model parameter updates 
are obtained (ΔG1 and ΔG2). In step 4, a single programming pulse is applied to 

each memristor. Good convergence of the implementation is verified by (b) model 
prediction fit to training data before (magenta plane) and after (green plane) 

training. (c) Evolution of mean squared error (MSE) with training, and d evolution 
of h-BN memristor conductances (model parameters) with training step (iterations) 

reaching stable values that minimize prediction error. 
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The implementation of stochastic multi-variable linear regression on an h-BN 

memristor array. In this implementation I use an h-BN memristor array to predict the profit 

of startup companies given their investment in marketing and in research and development 

(R&D). Our model is trained using a dataset from 50 startup companies available online114. 

In this implementation, the memristor conductances (G1 and G2) are the model parameters. 

The training process is illustrated in Figure 3.11a. For each training step a single sample 

from the dataset is randomly selected (the sample includes profit, marketing, and R&D in 

$K). The input variables (marketing and R&D) are translated (normalized) to voltages 

between 0 and 0.15 V. These voltages are applied to the h-BN memristors (v1 and v2). I 

have previously confirmed that for this range of read voltages the I–V response is linear, 

and the dot-product operation is reliable (see Figure 3.10c). This is important for the 

implementation of linear regression as the prediction (h) is determined from the output 

current of the h-BN memristor array given by the dot product as 

𝐼 = 𝑣*𝐺	, 𝑣 = 	 A
𝑣#
𝑣!B , 𝐺 = C𝐺#𝐺!

D. (1) 

The prediction is then compared against the training sample (y = profit) from which I 

determine the error and the required update for each of the model parameters (ΔG1 and 

ΔG2). Here I use a hardware-compatible approach to update the model parameters whereby 

a single programming pulse is applied to each memristor115–117, and the polarity of the pulse 

is determined by the sign of ΔG1 and ΔG2. This programming pulse will slightly adjust the 

conductances to ultimately minimize the error in the prediction. To achieve good 

convergence, stochastic regression algorithms typically limit the parameter updates with a 

learning rate that is gradually reduced with training number115,116,118. In our experiments 

the learning rate is implemented by gradually reducing the amplitude of the programming 
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pulses. I reduce the amplitude of the programming pulses by 0.1% after each iteration 

(starting with ±1 V, the pulse amplitude will be reduced to ±0.67 V after 400 training steps). 

The width of positive and negative programming pulses is kept fixed at 500 ns throughout 

the training process.  

Figure 3.11b–d show the results of the stochastic linear regression implementation. In 

Figure 3.11b it plots the training data (black dots) as well as the model prediction before 

(magenta plane) and after 400 training steps (green plane). As shown, the trained model 

clearly predicts the profit of startup companies based on their investments in marketing and 

R&D much better than the before training. A more quantitative result is shown in Figure 

3.11c where it plots the mean squared error (MSE) as a function of the training step (i.e., 

iteration) as given by MSE = (1/𝑁)∑ 𝛿+!+  where 𝑁 is the sample size (50 in this case) and 

𝛿+ = ℎ+ − 𝑦+  is the error in the prediction. As shown, the MSE reduces with training 

indicating good convergence of the algorithm. Figure 3.11d shows the change in 

conductances G1 and G2 (the model parameters) during the training process. The mean 

Figure 3.12 Mean absolute error MAE = (1/𝑁) ∑ |𝛿+|+ as a function of iteration 
(training step) for the demonstration of stochastic multivariable linear regression 

implemented on the h-BN memristor array. 
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absolute error (MAE) was also calculated and is shown in Figure 3.12. I see larger updates 

and fluctuations in the conductances during the initial training steps, and eventually 

convergence to the optimal values for the model parameters.  

Conclusion 

In this chapter, I have reported the fabrication and characterization of Au/h-BN/Ti 

memristor arrays. I have presented statistics for the nonvolatile resistive switching behavior 

of h-BN memristors, including the effects of cell active area. I have then focused on 

establishing the non-volatile multistate pulse programmability of the h-BN memristors 

based on multiple cycles of consecutive programming pulses, and retention tests. Our 

results show successful multistate programming of conductive states with good stability. 

Moreover, I have presented the implementation of the dot-product operations on h-BN 

memristor arrays, and show good linearity and repeatability, which is crucial for machine 

learning hardware. Finally, I have demonstrated the hardware implementation of stochastic 

multivariable linear regression on an h-BN memristor array. Our hardware-compatible 

implementation shows good convergence and represents an important milestone in 

advancing the research and implementation of 2D materials for machine learning hardware. 

It also paves the way for more sophisticated demonstrations of machine learning algorithms 

using 2D materials, devices, and circuits.  
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CHAPTER 4  

VERTICAL HEXAGONAL BORON NITRIDE MEMRISORS WITH GRAPHENE-

EDGE CONTACTS 

Introduction to Vertical H-BN Memristors 

Resistive-switching random access memory (RRAM) is considered one of the most 

promising emerging candidates for non-volatile embedded memory, with applications in 

neuromorphic and in-memory computing (IMC) architectures for artificial intelligence 

(AI), machine learning (ML), and Internet of Things (IoT)119–121. It provides good 

scalability, low-power consumption, and fast-switching speeds121–123. Conventional 

RRAM cells (or memristors) consist of two-terminal devices in a metal-insulator-metal 

(MIM) configuration where the active material (insulating switching layer) is sandwiched 

between top and bottom metal electrodes26,27,97,124,125. A simple and compact structure and 

compatibility with back-end-of-line (BEOL) processing makes RRAM a viable candidate 

for CMOS+X paradigms (integration of CMOS with X = emerging technologies)7,125,126. 

The working principle of RRAM relies on the dependence of the internal resistive state on 

the history of the applied voltage and/or current127. Among the various physical mechanism 

responsible for non-volatile resistive switching (NVRS), formation and dissolution of 

filamentary conductive pathways is one of the most commonly employed128. Recently, 

2DMs have attracted significant interest for RRAM due to promising NVRS 

characteristics28,88,129–131, even with atomically-thin active layers (e.g., 0.3 nm h-BN 

monolayers)92,98,132. Specifically, 2DMs-based RRAM are sought not just for their ultimate 

scalability, but also for their experimentally demonstrated ultralow write currents (fA) and 
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programming energies (zJ)88,133, high thermal reliability and long-term retention, ultrafast 

switching speeds (ps)133–135, reduced temporal and spatial variation88,136,137, etc. 

In 2DMs-based RRAM, large-area CVD-grown films are desirable for wafer-scale 

integration. Here, h-BN has attracted significant interest because of its BEOL processing 

compatibility and excellent insulating properties138. However, native lattice defects (e.g., 

vacancies, grain boundaries) in CVD-grown films promote the penetration of metallic ions 

originating from the electrodes to form conductive nanofilaments (CNF). In fact, the 

formation and dissolution of CNF in CVD-grown (polycrystalline) h-BN films is what 

enables its NVRS behavior, but a significant defect density can lead to many conductive 

paths within the active region of a single device. Thus, existing h-BN memristor 

demonstrations using planar MIM configurations have many paths which are difficult to 

control in number, location, and conductive state (on, off, or partial formed CNF). Previous 

work on planar CVD-grown h-BN memristors estimates that >150 filamentary paths can 

be involved in NVRS of a single device139. Moreover, some of the CNFs cannot be turned 

off and remain active, so the current through the memristor cannot be lowered below a 

certain level. In other words, the resistance in the off-state / high resistance state (HRS) is 

severely limited. Granted, reducing the active area of the device would reduce the number 

of conductive pathways. However, scaling down the active area of CMOS-integrated 

memristors is limited by the resolution of lithography dictated by BEOL processing for a 

given technology node. For example, a recent demonstration33 of h-BN memristors 

integrated in the BEOL of a CMOS 180 nm node at the fourth metal layer with via contact 

diameters of 260 nm achieved a minimum active area of 53,000 nm2. To realize higher 
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integration density and improvement in power consumption (lower operating currents) a 

smaller active area is needed. 

The edge of atomically-thin (0.3 nm thick) graphene has been used as a contact for 

different electronic devices32,140,141, including previous work on metal-oxide-based 

RRAM142. Using graphene edge contacts, the active area of a memristor can be 

significantly reduced in a vertical memristor configuration (switching layer is integrated 

vertically, see Figure 4.1). For example, a 100 nm graphene edge contact (thickness of 0.3 

nm) can achieve an ultrasmall active area of 30 nm2, which is orders of magnitude smaller 

than previous demonstrations. Whereas numerous studies have focused on NVRS behavior 

of planar h-BN memristors28,30,33,88,100,133, no reports have discussed NVRS and scaling 

properties of vertical h-BN memristors. In this work, combining the benefits of CVD-

grown 2DMs and graphene edge contacts, it reports vertical h-BN memristors with 

ultrasmall active areas, low operating currents (high resistance) and large RHRS/RLRS ratio. 

Moreover, the proposed structure enables 3D integration (vertical stacking) for ultimate 

scalability and facilitates studying fundamental NVRS mechanisms of single CNFs in 

CVD-grown 2DMs which was previously unattainable in planar devices. It reports single 

quantum step in conductance consistent with theorized atomically-constrained 

nanofilament behavior in CVD-grown 2DMs-based memristors30,143,144 associated with 

potential improvements in stability of CNF and NVRS behavior. It shows improvements 

in retention of quantized conductance compared to other non-2DMs filamentary-based 

memristors.  
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Method and Fabrication for Vertical H-BN Memristors with Graphene-edge Contacts 

Au/Ti/h-BN/Gr(E) memristors fabrication.  

The Au/Ti/h-BN/Gr(E) memristors were fabricated on a 90 nm SiO2/Si wafer. First, 

the initial 90 nm SiO2/Si wafer was cleaned by piranha solution and mixture of DI water, 

hydrochloric caid, and hydrogen peroxide (5:1:1). Then, 5 nm Ti and 25 nm Au thin films 

were deposited on the blank wafer via e-beam evaporation method, as shown in Figure 

4.1a. Second, photoresist was spin-coated on the wafer surface and patterned by Heidelberg 

MLA-150 (Figure 4.1b). The pattern of the photoresist was transferred onto Au/Ti pad and 

electrode by Ar sputtering and Ti dry etch process. After removal of the photoresist, the 

bottom electrode was complete, as shown in Figure 4.1c. Subsequently, CVD-grown 

graphene ordered from Grolltex was transferred by wet transfer method, then 100 nm SiO2 

was deposited as isolation layer onto the graphene via e-beam deposition (Figure 4.1d). To 

pattern the graphene and isolation SiO2, the photoresist was spin-coated again and 

Figure 4.1 Fabrication steps of the vertical h-BN memristor with graphene edge 
contacts.  
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patterned via Heidelberg MLA-150. The SiO2 and graphene patterns were etched by 

SF6/Ar plasma (Figure 4.1e). The 90 nm SiO2 on the substrate was also recessed by ~30 

nm to expose the graphene edges on the side wall of the SiO2 film (Figure 4.1f). 

Afterwards, CVD-grown multilayer h-BN on copper foil ordered from Six Carbon 

Technology, Shenzhen, was transferred onto the substrate via wet transfer. Another 

lithography step was used to pattern the h-BN film (Figure 4.1g-h) over the SiO2 sidewall 

and graphene edges. Finally, photoresist was spin-coated and patterned for 25 nm Ti/25 

nm Au top electrode deposition. After liftoff process, the close-up at the electrode of the 

fully fabricated Au/Ti/h-BN/Gr(E) memristor is shown in Figure 4.1i.  

Wet Transfer Method 

I transfer 1 cm by 1 cm samples of 2D materials (graphene and h-BN) onto a pre-

patterned Si/SiO2 wafer using a wet-transfer method: First, the 2D material on copper foil 

was spin-coated with a thin layer of poly(methyl-methacrylate) (PMMA). Second, I put the 

PMMA/2D material/copper foil stack into copper etcher (Sigma-Aldrich). After about 20 

min, the Cu foil was etched and the PMMA/2D material stack floated on the surface. Third, 

the resulting PMMA/2D material stack was transferred with a clean blank wafer and 

cleaned in DI water for 1 h. Fourth, the stack was picked up and transferred into 

hydrochloric acid (HCl, 2 wt%) for 30 min and DI water for 1 h. After that, it was further 

cleaned in DI water for 3 times and picked up and transferred onto the target substrate. 

Fifth, the PMMA/2D material stack on the target wafer was dried naturally in the air and 

blown up with inert gas gun for 3 min, and then left in the vacuum chamber for 3 h. Finally, 

the substrate was immersed in acetone overnight to remove the PMMA.  

ADF-STEM 
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To study the vertical memristor, 0.7 μm of carbon film and 2 μm-thick ion-beam 

induced Pt film were deposited for preventing FIB damage and charging. An electron 

transparent lamella was prepared with the ThermoScientific Scios DualBeam system. 

Annular dark field scanning transmission electron microscopy (ADF-STEM) images were 

acquired using a JEOL NEOARM equipped with a probe corrector for STEM and an EDS. 

An accelerating voltage of 200kV was used to acquire the images. Figure 4.3a-c show the 

sample SEM before FIB, the targeted device after FIB, and the ADF-STEM cross-sectional 

image of the vertical h-BN memristor with graphene edge contact. 

Current sweeping method 

In the current sweeping method, I sweep current across the device (vertical h-BN 

memristor) while measuring voltage. Figure 4.5 shows the measured voltage as a function 

of the sweep current (top) and the extracted conductance as a function of sweeping current 

(bottom) for several test devices. A sharp transition in voltage translates to a sharp 

transition in conductance.  

Result and Discussion for Vertical H-BN Memristors with Graphene-edge Contacts 

The Au/Ti/h-BN/Gr(E) vertical memristors were fabricated on a Si/SiO2 wafer. First, 

the bottom Ti/Au electrodes/pads were fabricated using conventional lithography and 

etching processes. Then, CVD-grown graphene was transferred followed by deposition of 

100 nm SiO2 (isolation). I then patterned and etched the top SiO2 isolation layer as well as 

the graphene contacts with ~30 nm recessed SiO2 substrate to expose the graphene edge in 

the newly formed SiO2 sidewall. Subsequently, CVD-grown h-BN (multi-layered) was 

transferred and patterned to extend over the SiO2 isolation layer and sidewall with the 

exposed graphene edge contacts. Finally, I deposited 25 nm Ti and 25 nm Au patterned as 
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the top electrode using standard lithography/evaporation/lift-off process. Figure 4.2a 

shows an optical micrograph of the sample with a fully-fabricated array of vertical h-BN 

memristors with graphene edge contacts. The inset shows a close-up view of one device 

with active area width (W) of 10 µm. A cross-sectional schematic of the vertical h-BN 

memristor with graphene edge contacts is shown in Figure 4.2b. Annular dark field 

scanning transmission electron microscopy (ADF-STEM) images in Figure 4.2c-e reveal 

the critical h-BN switching layers as well as the graphene (Gr) edge contact. Additional 

images are provided as shown in Figure 4.3 

To investigate the resistive switching (RS) behavior of vertical h-BN memristor with 

graphene edge contact, standard dual-sweep current-voltage (I-V) measurements were 

Figure 4.2(a) Optical micrograph of fully fabricated devices array with different 
active widths. The insert in red box shows the single device with active width 

equals to 10 µm. (b) Schematic of the vertical h-BN memristor with graphene-edge 
contact. (c) Annular dark field and bright field (d, e) scanning transmission 

electron microscope (ADF-STEM and ABF-STEM) images at different 
magnification levels revels. 
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conducted. In these measurements, the bottom electrode is grounded while the top 

electrode is swept in positive and negative directions while measuring current across the 

device. Typical dual-sweep I-V characteristics are shown in Figure 4.4a over multiple (45) 

cycles measured at room temperature (300 K) for a vertical h-BN memristor with active 

region W = 20 µm. A current compliance (CC) was used to limit the current during the 

positive side of the voltage sweep held at ICC = 10 µA. The measurements reveal forming-

free bipolar NVRS behavior with extremely low off-state (HRS) current in the pico-ampere 

(read at 0.1 V) range. This observation confirms negligible leakage attributed to atomically 

Figure 4.3 Sample preparation (FIB) and annular dark field scanning transmission 
electron microscopy (ADF-STEM) images of the vertical h-BN memristor with graphene 

edge contact. 
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thin graphene edge contact and ultrasmall active area for vertical h-BN memristors. A 

closer look at the (cycle-to-cycle) statistical behavior is provided in Figures 4.4b-c. 

Cumulative distributions of resistance in the high-resistance state (HRS) and low-

resistance state (LRS) from all 45 dual-sweep I-V cycles are plotted in Figure 4.4b. These 

values are extracted at a read voltage of 0.1 V. The cumulative distributions indicate a large 

on/off ratio > 107, which is significantly larger than what is typically obtained in planar h-

BN memristors97, but also much larger than what is typically reported on oxide-based 

vertical RRAM145,146. A large HRS/LRS ratio (memory window) is desirable for stability, 

capacity, and reliable crossbar array implementation147,148. The dispersion in each of the 

distributions (HRS and LRS) is only slightly over a decade in resistance, which is a much 

smaller range compared to the memory window. Also indicated in Figure 4.4b (dashed line) 

Figure 4.4 (a) Representative 45 consecutive I-V curves showing bipolar RS in 
Au/Ti/h-BN/GrEdge memristor with W = 20 µm and CC = 10 µA. (b) Cumulative 
probability distribution of HRS and LRS (read at 0.1 V). (c) Histogram of set and 
reset voltages. (d) I-V curves of Au/Ti/h-BN/GrEdge memristor showing the HRS 
trend with increasing the W. The inset show the device structure with W indicated 
on the schematic. (e) Statistical analysis of HRS and LRS as a function of W. (f) 

Gon versus Goff comparison for h-BN memristors. 
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is the value for the quantum resistance 𝐺,-# = (2𝑞!/ℎ)-# ≈  12.9 kΩ, where 𝑞  is the 

electronic charge and ℎ is Planck’s constant. The fact that LRS resistance is near 𝐺,-# 

indicates atomic-scale CNF operation with single or few conductive paths in effect (small 

active area). Instead, earlier work on planar h-BN memristors show HRS resistance near 

𝐺,-# (and HRS/LRS ratios ~ 10-1000) because of incomplete control over CNFs with many 

existing paths over large active areas149. Figure 4.4c are histograms of set and reset voltages 

obtained from all 45 cycles of I-V measurements on the vertical h-BN memristors. The 

histograms show an average set voltage of approximately Vset = 4 V, and average reset 

voltage of approximately Vreset = –2.5 V. While Vset distribution is slightly wider than Vreset 

a sufficient voltage range (~ ±2V) is available for read or IMC operations without 

disturbing the cell. These Vset/Vreset values are larger than those in memristors with planar 

sandwiched structures. As previously reported97, set and reset voltages can increase as 

active areas are shrunk down due to reduced number of active native defects for CNF 

behavior. In this work I study NVRS in ultrasmall active areas using atomically thin 

graphene edge contact as the bottom electrode, so it is reasonable that Vset/Vreset voltages 

are slightly higher. 

Figures 4.4d-e provide more evidence of filamentary NVRS behavior. Figure 4.4d 

shows dual-sweep I-V measurements from vertical h-BN memristors with increasing active 

area width (W). Increasing W results in more current in the HRS (easier to observe for 

negative voltages), but LRS is mostly unaffected. This is confirmed in Figure 4.4e where 

it plots extractions of HRS and LRS resistance (extracted at Vread = –1 V), and plot them 

as a function of W. The error bars account for device-to-device variation (~ 1 decade in 

resistance) based on measurements of identical devices. As shown, HRS resistance 
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increased with reducing the active area (W), but LRS resistance is mostly unaffected, 

indicative of filamentary NVRS150. Figure 4.4f compares HRS and LRS conductance (Gon 

and Goff for LRS and HRS respectively) from vertical h-BN memristors reported in this 

work against previous reports from planar h-BN memristors27,28,30,33,98,124,125,151. Clearly, 

our vertical h-BN memristors with graphene edge contacts achieve the smallest Goff 

because of the ultrasmall active area. It also achieves one of the smallest Gon (at or slightly 

below G0) as conductive paths are better isolated to single of few atomic-scale CNFs. The 

smaller Gon reported by Zhu et al33 is due to a one-transistor one-memristor (1T1M) 

configuration where the transistor acts as a current limit (i.e., limits LRS conductance). 

To better understand NVRS behavior resulting from atomic-scale CNF operation in 

vertical h-BN memristors with graphene edge contacts, I use a current sweeping method. 

In this method, instead of sweeping voltage and measuring current I sweep the current 

across the device while monitoring the voltage. The current sweeping mode can suppress 

the effect of current overshoot, thereby enabling a self-compliant set process152 to better 

observe formation of atomic-scale CNFs and corresponding quantized steps in 
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Figure 4.5(a) Conductive map of the h-BN sample obtained by conductive 
atomic force microscopy (c-AFM). The signal is collected with the probe 

grounded and the bias (6 V) applied to the sample’s bottom electrode as depicted 
in the inset (top). Detailed view of a conductive spot is reported (inset bottom) to 
show actual size of the defect size. (b) The statistical distribution of spot sizes is 

obtained from the 2D c-AFM map shown in the inset. 
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conductance. This method was previously employed in other (amorphous) material 

systems with filamentary NVRS behavior to characterize quantized conductance steps as a 

function of current152,153. In those devices, the current sweeping method allows gradual 

thickening of CNFs (because of limiting current overshoot) resulting in quantized steps of 

the conductance (multiple steps in units of G0)152–155. Here, the switching material is 

polycrystalline CVD-grown h-BN (multi-layered) where CNFs are formed at the location 

of native defects (e.g., grain boundaries) that are surrounded by insulating regions of 

crystalline h-BN30,143,144. Thus, in CVD-grown h-BN memristors, the CNFs are already 

limited in thickness to atomically-constrained native defect. To estimate the lateral 

dimensions of conductive defects sites in h-BN, I used high sensitivity conductive atomic 

force microscopy (c-AFM). Here, a nanosized conductive (Pt coated) AFM probe is 

scanned in direct contact with the h-BN surface while a voltage is applied to the tip-sample 

system (inset Figure 4.5a). Figure 4.5a shows multiple conductive spots that are natively 

present on the h-BN surface. The size of the spots is reported in Figure 4.5b where it shows 

the distribution of the spots size obtained for a 500 x 500 nm2 region. Although the shape 

of the conductive spots is not perfectly circular, for the sake of simplicity, I extract for each 

spot the equivalent disc radius as shown in Figure 4.5b. It is worth noting that actual spots 

size is slightly smaller than the measured values. The reason for this overestimation can be 

found in a non-negligible lateral tip-sample electronic leakage that occurs while the moving 

tip is approaching the conductive spots. This is considered to introduce ~1 nm 

overestimation on the electrical convolution of the spots (i.e., h-BN defect sites). 

Based on our c-AFM observations, Figure 4.6a depicts the atomically-constrained CNF 

behavior in CVD-grown h-BN with a cross-sectional schematic diagram (top-view) of the 
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active region where the graphene edge contacts h-BN. Considering the thickness of the 

graphene contact and the typical area of conductive regions in CVD-grown h-BN (Figure 

4.5) I estimate CNF cross-sectional areas limited to a few nm2. Figure 4.6b plots the 

conductance (in units of G0) obtained as a function of sweep current for multiple devices 

with various W. A few interesting observations are made. Firstly, a single step in 

conductance is measured occurring at small programming currents (< 2 µA) with no 

additional steps with increasing current. This contrasts what was observed on amorphous 

materials where multiple steps in conductance at similar intervals in programming current 

were obtained as filament becomes thicker consistent with quantum point contact (QPC) 

theory154. I attribute the existence of a single step to the unique atomically-constrained CNF 

behavior of CVD-grown h-BN (similar behavior expected in other CVD-grown 2D layered 
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materials like TMDs), which limits the thickness of the conductive paths. However, I 

consider that this behavior is only attainable in the vertical h-BN memristors (as opposed 

to planar h-BN memristors) due to the ultrasmall active area which allows isolating single 

CNFs. Secondly, similar behavior is observed for devices with different W ranging from 

10 µm up to 100 µm. Although this may not be surprising given the filamentary behavior 

of the device. I speculate that even in devices with different W only a single CNF is formed 

during the current sweep. Once formed (at the transition of conductance) I observe a sharp 

drop in the measured voltage to sustain the same amount of current, as you can see in Figure 

4.7. Thirdly, the measured step in conductance is only a fraction of G0. Previous work has 

reported “subquantum” conductance in devices with semiconducting materials used to 

form the conductive paths156. Here, I attribute the sub-G0 conductance in h-BN memristors 

to quasi-ballistic transport resulting from scattering in metallic CNFs (in this case Ti CNFs) 

formed across the defect-rich ~5 nm h-BN thickness. I account for an estimated graphene 

Figure 4.7 The current sweeping method 



 65 

contact resistance of approximately 7 kΩ considering that significant current crowding 

effects may exist as the conductive path is limited to single CNF in the h-BN layers. A 

different visualization of the device-to-device variability in current-sweep programming is 

provided in Figure 4.6c where it plots contours of conductance as a function of 

programming current from over 35 devices.  

Finally, I study the robustness of atomically-constrained CNFs in vertical h-BN 

memristors with graphene edge contacts by measurements of retention in quantized 

conductance. Previous work30,143,144 has proposed that the unique NVRS behavior in CVD-

grown h-BN, where CNFs are formed in pre-existing defective regions surrounded by 

insulating crystalline h-BN grains, could enhance robustness compared to amorphous 

materials where filaments are more susceptible to naturally dissolve. Indeed, devices with 

amorphous switching layers have shown the effect of naturally dissolving filaments as a 

spontaneous decay towards HRS in quantized conductance steps152,153. Here, the retention 

tests were conducted on a few vertical h-BN memristors immediately after programming 

to LRS with the current sweeping method. In the retention test I apply a fixed small read 

voltage of 0.1 V and sample current in logarithmic steps to cover a wide time range from 

approximately 5 ms up to 12.5 ks. The results are shown in Figure 4.6d where it plots 

conductance (units of G0) vs time showing negligible drift (inset shows the test biasing 

conditions). To compare against other metal-ion based resistive switching devices (i.e., 

Cu/SiO2/W and Cu/polymer/Al) it replots conductance vs time in Figure 4.6e including the 

measurements from these two other technologies. For each case, there are a few different 

retention measurements from devices programmed to different values of conductance near 

G0. The comparison indicates that the vertical h-BN memristors can achieve better 
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retention (even at lower G, which typically limits retention) compared to the other devices 

with amorphous switching layers where spontaneous decay is observed.  

Conclusion 

In conclusion, I have introduced, fabricated, and characterized vertical h-BN 

memristors with graphene edge contacts. In this configuration, the proposed structure 

delivers ultralow power by isolating single conductive nanofilaments (CNFs) in ultrasmall 

active areas having negligible leakage. Statistics for the NVRS behavior of vertical h-BN 

memristors with graphene edge contacts are presented, as well as the dependence on 

graphene edge contact width (W). The measured devices achieve orders-of-magnitude 

improvements in on/off ratio and low current operation compared to planar h-BN 

memristors. Moreover, the ultrasmall active area facilitates studying quantum behavior of 

atomically-constrained CNF operation in CVD-grown h-BN switching layers. Here, 

single-step subquantum conductance is observed and analyzed, and the robustness of 

atomically-constrained CNFs is tested by retention measurements. Compared against other 

metal-ion based resistive switching devices, the vertical h-BN memristors show better 

stability. This is attributed to the unique NVRS behavior in CVD-grown h-BN, where 

CNFs are formed in pre-existing defective regions surrounded by highly-stable insulating 

crystalline h-BN grains. The proposed vertical h-BN memristor technology is promising 

for future 3D integrated (vertically stacked) 2D-material-based ultralow power RRAM.  
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CHAPTER 5  

CONCLUSIONS AND FUTURE WORKS 

Summary of Contributions 

This dissertation focuses on addressing and elucidating the issues of scaling down 

devices and current computing system and exploring 2DMs based RRAM as possible 

solution through innovation in device materials and structures.  

Chapter 2 focuses on CVD-grown ML MoS2 FETs. In this part, CVD-grown ML MoS2 

was utilized to fabricate FET arrays. Two different types of metal contacts were used to 

analyze the temperature-dependent electrical characteristics and their corresponding 

Schottky barrier characteristics. Statistical analysis provides new insight about the 

properties of metal contacts on CVD-grown MoS2 compared to exfoliated samples. 

Reduced Schottky barrier heights are obtained compared to exfoliated flakes, attributed to 

a defect-induced enhancement in metallization of CVD-grown samples. Moreover, the 

dependence of SBH on metal work function indicates a reduction in Fermi level pinning 

compared to exfoliated flakes, moving towards the Schottky-Mott limit. Optical 

characterization reveals higher defect concentrations in CVD-grown samples supporting a 

defect-induced metallization enhancement effect consistent with the electrical SHB 

experiments. 

Chapter 3 focuses on CVD-grown h-BN memristors with planar structure for dot-

product implementation and linear regression. Multilayer CVD-grown h-BN memristor 

arrays were fabricated and characterized. Statistics for the non-volatile resistive switching 

behavior of h-BN memristors, including effects of cell active areas, were presented. It then 

focuses on the non-volatile multi-state pulse programmability of the h-BN memristors 
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based on multiple cycles of consecutive programming pulses, and retention tests. The 

implementation of the dot-product operation on h-BN memristor arrays were also 

demonstrated, which shows good linearity and repeatability. Moreover, I have 

demonstrated the hardware implementation of stochastic multi-variable linear regression 

on the h-BN memristor array. This linear regression shows good convergence and 

represents an important milestone in advancing the research and implementation of 2DMs 

for machine learning hardware. 

Chapter 4 focuses on vertical CVD-grown h-BN memristors with graphene edge 

contacts. In this part, I introduced, fabricated, and characterized vertical h-BN memristors 

with graphene edge contacts to achieve atomic-level miniaturization. The proposed vertical 

structure delivers ultralow power by isolating single conductive nanofilaments in 

ultrasmall active areas having negligible leakage. I presented statistics for the non-volatile 

resistive switching behavior of vertical h-BN memristors. The measured devices achieve 

orders-of-magnitude improvements in on/off ratio and low current at HRS compared to 

planar h-BN memristors. Moreover, the ultrasmall active area facilitates studying quantum 

behavior of atomically-constrained CNFs operation in CVD-grown h-BN switching layers. 

The single-step subquantum conductance is observed and analyzed as well as the 

robustness of the atomically-constrained CNFs are tested via retention measurements. The 

unique non-volatile resistive switching behavior in CVD-grown h-BN, where CNFs are 

formed in pre-existing defective regions surrounded by high-stable insulating crystalline 

h-BN grains, provides the vertical h-BN memristors with better stability compared against 

other metal-ion based resistive switching devices. The proposed vertical h-BN memristor 

technology is promising for future 3D integration of 2DMs-based ultralow power RRAM.  
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Future Works 

Plasma-Enhanced CVD (PECVD) H-BN for Memristors 

Since the emergence of 2DMs, various synthetic protocols for h-BN have been 

developed, such as mechanical exfoliation, solution exfoliation, and chemical vapor 

deposition (CVD), etc. However, these methods have some disadvantages that impede the 

practical applications of h-BN based memristors. Mechanically exfoliated h-BN flakes 

from bulk, while it exhibits remarkable properties such as excellent electrical insulation 

and high thermal conductivity, face significant limitations when it comes to large-scale 

fabrication. Additionally, inherently good crystallinity of mechanically exfoliated h-BN 

flakes, characterized by fewer vacancies and grain boundaries, is unfavorable for the 

formation of conductive filaments under applied stress-voltage, resulting in limited 

switching cycles, reduced reliability, or even hard breakdown of the h-BN flakes. 

Currently, chemical vapor deposition (CVD) is widely used and regarded as the most 

effective method for h-BN thin film synthesis for memristive electronic applications, 

yielding both large-scale and high-quality results. However, CVD technique often 

necessitates the use of catalyst metals, such as Cu, Ni, or Pt for the synthesis of h-BN thin 

film. This requirement results in the post-synthesis wet transfer process instead of direct 

growth of h-BN thin films on the target surfaces, which leads to increased cost and the 

potential for introducing contaminations, breakage, wrinkles, and non-conformity, 

especially for features with high aspect ratio, to the transferred h-BN thin films on the pre-

patterned substrates. Moreover, the high operating temperature of CVD technique, 

approximately 1000 °C, is not energy-efficient, nor is it compatible with the back-end-of-

line (BEOL) CMOS integration processes, which is typically limited to lower temperatures 
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(around 400 °C) to avoid damage to the already-formed delicate features and 

interconnections. 

Plasma-enhanced chemical vapor deposition (PECVD) is an attractive technology in 

that high-energy plasma can decompose precursors into highly reactive species at 

temperatures ranging from 200 °C to 400 °C lower than conventional CVD, making it 

energy-efficient, low cost, and compatible with industrial microelectronics157. Furthermore, 

PECVD technique enables the catalyst-free growth of h-BN thin films directly on various 

noncatalytic substrates, such as SiO2/Si, which achieves transfer-free preparation of h-BN 

thin films on target substrates with clean surfaces. Finally, h-BN thin films directly 

deposited by PECVD method are highly conformal, which facilitates the applications of h-

BN in the 3D stacking memristors with high aspect ratio158. Till now, there has been no 

instance of catalyst-free deposition of h-BN thin film onto a pre-patterned target substrate 

using the PECVD method for the purpose of memristor applications. Based on the ideas 

mentioned above, h-BN thin film grown by PECVD method directly on pre-patterned 

substrate for memristor applications will be further explored in the future.  

 

Vertical H-BN Memristors Based Crossbar Arrays 

The exponential growth of data poses significant challenges to traditional CMOS-based 

memory technology due to Moore’s law approaching its limits and the accompanying high 

energy consumption, as well as to the traditional von Neumann computing system, which 

incurs high costs from frequent data movement between processor and memory159,160. 

Innovative memory storage techniques and computing architectures are essential to satisfy 

the ever-growing demand for data storage and information processing. Neuromorphic 
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computing, or brain-inspired computing, which emulates the structure and working 

mechanisms of the human brain, has emerged as an innovative computing paradigm to 

address these challenges. One popular approach, focused on collocating memory and 

computing functions, uses beyond-CMOS technology to overcome the challenges 

associated with traditional computing architectures6,159,160. This approach facilitates in-

memory computing, where massive amounts of data are processed in parallel, potentially 

minimizing the need for extensive data movement and thereby offering a promising 

solution for current and future computing demands6,160. To achieve efficient neuromorphic 

computing, the memristor crossbar array (MCBA) offers high-density integration and 

capabilities of parallel vector-matrix multiplication with ultra-low energy in in-memory 

computing. As one of the promising 2DMs, h-BN has attracted much attention for various 

electronic applications. Recently, h-BN-based MCBAs have been widely investigated 

owing to the unique properties of h-BN that contribute to resistive switching behavior. To 

the best of my knowledge, the reported work on h-BN based MCBA primarily involves a 

planar metal-insulator-metal (MIM) structure, wherein the CVD-grown 2D h-BN is 

transferred and sandwiched between top and bottom electrodes. However, significant 

challenges in achieving large-scale and efficient MCBA are the sneak path current issue, 

which reduces the reliability of MCBA by introducing errors when programming or 

reading the resistance state of the memristors161, as well as limited HRS resistance (large 

OFF-state leakage current). On the other hand, scaling down the active area of each 

memristor in the crossbar array is limited by the resolution of lithography, as mentioned in 

the introduction of Chapter 4. This limitation hinders the ultimate high-density integration 
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of the MCBA and potentially exposes additional paths within the active area for sneak 

currents through the non-target memristors in high resistance states.  

Thanks to one of the unique properties of 2DMs with the capability to scale down to 

atomically-thin thickness (i.e., 0.3 nm of single layer graphene), vertical h-BN memristors 

with graphene-edge contact (h-BN/GrE) provide new opportunities for MCBA towards in-

memory and neuromorphic computing. Firstly, the large ratio between ON state (low 

resistance state, LRS) and OFF state (high resistance state, HRS) achieved by h-BN/GrE 

(discussed in Chapter 4) enables easier differentiation between the two states, which is 

crucial in the MCBA to ensure accurate data readout. Secondly, the extremely low current 

in HRS of h-BN/GrE memristor is essential to minimize leakage and potential sneak path 

conduction, which occur when current inadvertently flows through unintended paths. By 

combining these two properties, h-BN/GrE memristors are expected to increase energy 

efficiency and data readout accuracy for large-scale MCBA, as opposed to arrays made 

with memristors that have planar electrode contacts. Therefore, h-BN/GrE based MCBA 

shows promise for use in in-memory and neuromorphic computing applications and should 

be further investigated. This future work is a straightforward continuation of my research 

on vertical h-BN memristor with graphene-edge contact detailed in Chapter 4. 

 

3D Stacking of H-BN-based Memristors 

With the rapid development of emerging technologies such as artificial intelligence 

(AI), Internet of Things (IoT), and big data, the ever-growing demand for massive data 

storage as well as Moore’s law approaching its limit impose significant challenges to 

conventional charge-based CMOS memory technology such as NAND flash memory, 
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which is currently widely used in smartphones and solid-state drives (SSDs)162. As the 

pressures of lateral scaling increase in two-dimensional (2D) planar NAND, the industry 

has shifted to vertical stacking of memory cells in the third dimension (3D) to achieve 

ultra-high bit density, transforming the 2D planar design into a 3D ‘skyscraper’ on the 

wafer (i.e., 3D vertical NAND). In addition to lateral and vertical scaling, multi-level cell 

programming strategy and error-correction algorithms have been developed to expand and 

ensure the storage capacity. Similarly, to compete with 3D vertical NAND technology, 3D 

memristor (also called RRAM) needs to be investigated and developed owing to its 

excellent properties in feature size scaling, simple fabrication, low per-bit cost, better 

endurance and retention, fast operating speed, and lower energy consumption for next-

generation non-volatile memory36. In addition to the applications on memory technology, 

3D memristors could also be integrated towards computing circuits for massive 

connections and efficient communications required to unleash the full potential of 

neuromorphic computing163. In terms of architecture, 3D memristor can be categorized as 

3D horizontal memristor (3D H-RRAM) and 3D vertical memristor (3D V-RRAM)34,162. 

However, 3D V-RRAM outperforms 3D H-RRAM in terms of cost due to its fewer 

lithography processes, while the number of critical lithography masks required for 3D H-

RRAM increases linearly with the number of stacked layers, particularly when the layer 

count exceeds 3234,162. 

From material perspective, hexagonal boron nitride (h-BN) is a promising candidate 

for 3D RRAM technology. Firstly, due to the unique property, the conductive filaments 

can form along the grain boundaries surrounded by stable 2D-layered crystalline h-BN, 

which facilitates stable resistive switching behavior and enhances retention robustness. 
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Secondly, CMOS-compatible, PECVD-grown h-BN thin film, which can be directly 

deposited onto the pre-patterned substrates without transfer processes, offers lower 

synthesis temperature, reduced energy-consumption, contaminant-free, and highly 

conformal contact to vertical trenches with high aspect ratios in 3D vertical RRAM. From 

structure perspective, as previously mentioned, vertical h-BN/GrE memristors offer a large 

memory window, potentially providing good conductance programmability across a wide 

range of operating currents for multi-level cell applications30. Therefore, 3D vertical 

RRAM based on PECVD-grown h-BN/GrE memristors shows many potential 

opportunities for the future work. 
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