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ABSTRACT

Phase-field (PF) models are one of the most powerful tools to simulate microstructural

evolution in metallic materials, polymers, and ceramics. However, existing PF ap-

proaches rely on rigorous mathematical model development, sophisticated numerical

schemes, and high-performance computing for accuracy. Although recently developed

surrogate microstructure models employ deep-learning techniques and reconstruction

of microstructures from lower-dimensional data, their accuracy is fairly limited as

spatio-temporal information is lost in the pursuit of dimensional reduction. Given

these limitations, a novel data-driven emulator (DDE) for extrapolation prediction of

microstructural evolution is presented, which combines an image-based convolutional

and recurrent neural network (CRNN) with tensor decomposition, while leveraging

previously obtained PF datasets for training. To assess the robustness of DDE, the

emulation sequence and the scaling behavior with phase-field simulations for several

noisy initial states are compared. In conclusion, the effectiveness of the microstruc-

ture emulation technique is explored in the context of accelerating runtime, along

with an emphasis on its trade-off with accuracy.

Meanwhile, an interpolation DDE has also been tested, which is based on obtaining

a low-dimensional representation of the microstructures via tensor decomposition and

subsequently predicting the microstructure evolution in the low-dimensional space us-

ing Gaussian process regression (GPR). Once the microstructure predictions are ob-

tained in the low-dimensional space, a hybrid input-output phase retrieval algorithm

will be employed to reconstruct the microstructures. As proof of concept, the results

on microstructure prediction for spinodal decomposition are presented, although the

method itself is agnostic of the material parameters. Results show that GPR-based

DDE model are able to predict microstructure evolution sequences that closely re-

semble the true microstructures (average normalized mean square of 6.78 × 10−7)
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at time scales half of that employed in obtaining training data. This data-driven

microstructure emulator opens new avenues to predict the microstructural evolution

by leveraging phase-field simulations and physical experimentation where the time

resolution is often quite large due to limited resources and physical constraints, such

as the phase coarsening experiments previously performed in microgravity.

Future work will also be discussed and demonstrate the intended utilization of

these two approaches for 3D microstructure prediction through their combined appli-

cation.
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PREFACE

The numerical modeling and analysis of microstructural evolution represent a

subject of widespread scientific fascination. The phase-field method, recognized for

its versatility, is a popular approach within the materials science community for

modeling phase transformations. However, existing phase field approaches rely on

rigorous mathematical model development, sophisticated numerical schemes, and

high-performance computing for accuracy. In inspiration of recently developed

surrogate data-driven models employ deep-learning techniques with traditional

molecular dynamics methods, two novel data-driven emulator combined with phase

field approach have been proposed.

I primarily developed the first data-driven emulator, utilizing convolutional and

recurrent neural networks. Dr. Ashif took the lead in developing the second

approach, as detailed in Article 2 listed below. Article 2 primarily utilizes a

data-driven emulator that integrates tensor decomposition, Gaussian process

regression, and the Phase Reconstruction algorithm. It then provides corresponding

interpolation predictions for spinodal decomposition. In this article, my primary

responsibility involves furnishing appropriate images illustrating the evolution of

spinodal decomposition, crucial for constructing the training, validation, and test

databases. Additionally, I contribute the corresponding code to quantify the

microstructure’s average grain size, serving as a metric to evaluate the performance

of the data-driven emulator.

Data-driven emulator methods and prediction results reported in Chapter 2

(Convolutional and recurrent neural network, Gaussian process regression) and

Chapter 3 (Microstructure image predictions via Data-driven emulator) were

published in the following peer-reviewed articles:
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Chapter 1

INTRODUCTION

The materials science domain has recently experienced a swift surge in the adoption

of data-driven practices, resulting in the creation of efficient, widely applicable, and

precise methods for various applications. These applications encompass material

property prediction, the exploration of microstructure-property and microstructure-

processing relationships, and the characterization of material microstructures. At the

heart of materials science is the crucial task of connecting microstructure to properties

and performance. An essential element in establishing these connections is gaining

a profound understanding of how microstructures undergo changes in response to

environmental exposure or processing conditions, such as time, temperature, applied

stress or strain, and irradiation.

Enhancements in computational capabilities have been driven by the integration

of deep neural networks, improved hardware, and the availability of openly acces-

sible software packages. Computational materials science spans a broad spectrum,

employing numerous methods that cover length scales from the atomic to the contin-

uum. Techniques like phase field modeling find extensive application for predicting

the evolution of microstructures in both two- and three-dimensional systems. Fur-

thermore, density functional theory (DFT), a quantum-based approach, has played a

pivotal role in uncovering new materials, pinpointing dopants for alloy reinforcement,

elucidating diffusion mechanisms, and more.

Nevertheless, any computational methodology encounters limitations related to

the length and timescales of simulations, accuracy, and the generalizability or trans-

ferability across diverse material systems. Advancements in materials science hinge

1



Emulating microstructural evolution during spinodal decomposition using a tensor 
decomposed convolutional and recurrent neural network
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Figure 1.1: Data-driven emulator working flow, as demonstrated by Peichen et al.

(2023)

significantly on feedback from both computational models and validation through

experiments. However, the expansion of such methods to handle larger datasets,

particularly in three dimensions, poses challenges due to the considerable time and

computational resources involved.

Phase-field methods are one of the most powerful and versatile tools to simu-

late microstructural evolution in metallic materials, polymers, and ceramic. Relevant

studies showcasing this capability include works by Boettinger et al. (2002); Chen

(2002); Moelans et al. (2008); Singer-Loginova and Singer (2008). As an illustration,

the phase-field method has proven highly effective in simulating phenomena such as

dendrite growth, grain coarsening, and eutectic growth, as depicted in fig. 1.2, fig.

1.3, and fig. 1.4, respectively. The popularity of the phase-field method’s in modeling

morphological evolution is due to the elegance with which it treats moving boundary

2



Figure 1.2: A freely growing dendrite in a forced flow. The lines represent computed

stream traces directed from left to right. Reprinted with permission from Singer-

Loginova and Singer (2008). Copyright 2008 by the IOP Publishing, Ltd.

problems by obviating the necessity to explicitly track the interfaces. However, they

remain computationally intensive due to the strict limits on the maximum time and

length scales imposed by the numerical methods, as highlighted Kautz (2021). For

instance, the computational complexity associated with simulating spinodal decom-

position, as elucidated by Provatas and Elder (2010); Moelans et al. (2008), warrants

the application of supercomputers for solving fourth-order Cahn-Hilliard partial dif-

ferential equations (PDEs). The finite difference and the finite element schemes have

been extensively employed, although there are challenges related to numerical imple-

3



Figure 1.3: Grain coarsening process obtained from 3D simulations of grain growth.

In the model, the grain boundary energy and mobility is isotropic. The elapsed time

t and the number of grains N are specified for every image. The microstructure at t =

10.0 illustrates the homogeneous nucleation of crystallites from the undercooled liquid

initial state. Reprinted with permission from Singer-Loginova and Singer (2008).

Copyright 2008 by the IOP Publishing, Ltd.
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Figure 1.4: Evolution of 2D eutectic lamellae of a binary alloy and the selection

process of lamellar spacing. The black and white colors represent the two solid phases,

and the numerical values of the solute concentration in the liquid are indicated in the

map in the first picture. Reprinted with permission from Singer-Loginova and Singer

(2008). Copyright 2008 by the IOP Publishing, Ltd.
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mentation, as outlined by Cheng et al. (2019). Various techniques have also been

employed to shorten the simulation runtimes, such as adaptive mesh refinement as

demonstrated by Provatas et al. (1998); Greenwood et al. (2018), load balancing as

discussed by George and Warren (2002), and random walker presented by Plapp and

Karma (2000).

However, depending on the spatial and time resolution warranted, simulating

the evolution of microstructures in three dimensions, which is a 4D problem, often

spans from several hours to weeks on a supercomputing cluster. Contemporary ap-

proaches for expediting phase-field calculations depend on high-performance GPUs

and power-intensive computational resources, as highlighted by Shimokawabe et al.

(2011), rather than utilizing past simulations to emulate new ones. As a result, a

new simulation needs to be performed every time a simulation parameter is altered.

Another limitation of the phase-field method is that it is not transferable across ma-

terial systems without extensive parameter adaptation, as noted by DeWitt et al.

(2020), even though the underlying phase transformation mechanism may be similar

such as spinodally decomposing microstructures of polymers, as discussed by Glotzer

(1995); Bruder and Brenn (1992); Mukherjee et al. (2016) and metallic materials, as

demonstrated by Rundman and Hilliard (1967); Langer (1971); Miller et al. (1995),

both of which entail up-hill diffusion of atoms.

Merriman-Bence-Osher (MBO) threshold dynamics is another popular algorithm

for simulating the mean curvature motion of interface, as proposed by Merriman

et al. (1992, 1994). However, this technique is only first order accurate in a two-phase

setting while the accuracy is known to rapidly degrade in a multiphase settings. A

recent effort has rendered MBO dynamics to be second order accurate in problems

limited to two-phases, as demonstrated by Zaitzeff et al. (2020), however, there are

currently no accurate schemes available for 3D multiphase problems.
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In fact, the dilemma of efficiency, computation cost, and accuracy is not a new

topic of interest within the materials modeling community. Parallel computation,

which utilizes multiple CPUs or GPUs, is one of the ways by which simulation run-

times can be reduced, as evidenced by its extensive use in molecular dynamics, phase-

field, and finite element simulations as noted by Millán et al. (2017). However, the as-

sociated computation cost is still high and often requires powerful and expensive high-

performance computing resources. Another pathway to dealing with this issue is the

utilization of machine learning. Some of the recent examples include neural network-

aided methodology to design modular meta-materials by Wu et al. (2020), potentials

for molecular dynamics (DeePMD) as demonstrated by Wang et al. (2018), depicted

in fig. 1.5, fig. 1.6 respectively, and Behler-Parrinello neural network (BPNN) by

Behler and Parrinello (2007).

While the existing literature extensively covers techniques that concentrate on

the fusion of machine learning with molecular dynamics and meta-materials, there is

a scarcity of works specifically addressing the integration of machine learning with

phase-field methods, as observed in a limited number of studies by Zapiain et al.

(2021); Herman et al. (2020); Yang et al. (2021); Hu et al. (2022); Oommen et al.

(2022); Desai and Dingreville (2022). These studies primarily rely on incorporating

dimensional reduction, machine learning, and phase reconstruction, for microstruc-

ture emulations. For the dimensional reduction of microstructural images, Principal

Component Analysis (PCA) is typically employed that has several limitations, as

noted in Elhaik (2022). Since PCA requires unfolding an image data into a one-

dimensional array which causes loss of spatio-temporal information, its use is to be

best avoided when dealing with image sequences for e.g. an evolving microstructure.

This spatio-temporal loss manifests as poor reconstruction of microstructures. This is

evident from the mismatch between the emulated and simulated spinodal microstruc-

7



Figure 1.5: Schematic plot of the DeePMD-kit architecture and the workflow. The

gray arrows present the workflow. The data, including energy, force, virial, box, and

type, are passed from the Data Generator to the DeePMD-kit Train/Test module

to perform training. After training, the DeePMD model is passed to the DeePMD-

kit MD support module to perform MD. The TensorFlow and DeePMD-kit libraries

are used for supporting different calculations. See text for detailed descriptions.

Reprinted with permission from Wang et al. (2018). Copyright 2018 by the Elsevier.
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Figure 1.6: Schematic of (a)biological genome and (b)modular design of meta-atoms.

(c)Schematic of machine learning-based method to design modular meta-materials.

Reprinted with permission from Wu et al. (2020). Copyright 2020 by the Elsevier.

tures shown in fig. 1.7, which is report by Zapiain et al. (2021). Another limitation

is that the phase reconstruction adopted by those authors is not very effective in

reconstructing the diffuse interfaces which are a characteristic of phase-field simula-

tions. Although, reconstruction of interface may be not be an issue for a majority of

solid-state transformations where the thickness of the interfaces in quite small (below

1 nm), the above noted limitation is particularly concerning for the case of solidifi-

cation microstructures where the solid-liquid interface is known to be comparatively

thicker. As compared to PCA, tensor decomposition is a better alternative since it

does not lead to any spatio-temporal losses, as demonstrated by Iquebal et al. (2023)
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although accurate emulations of microstructures may incur large computational costs.

• Chapter 2 presented a detailed exploration of the phase field model utilized

in generating the training, validation, and testing databases. Subsequently,

two distinct data-driven approaches (DDEs) are introduced: the CRNN-based

approach (Convolutional and Recurrent Neural Network) and the GPR-based

approach (Gaussian Process Regression). The phase field model is employed

to simulate spinodal decomposition, exhibiting diverse morphological evolution

for various initial conditions. The derivation from the free energy functional to

the governing concentration equation is outlined, along with the specification

of initial parameters for generating the database.

The CRNN-based approach is then introduced and expounded upon. It com-

prises three primary components: a convolutional neural layer, tensor decom-

position, and a recurrent neural layer. The intricacies of each component are

explained, and tensor dimensions for every layer are presented, utilizing an

example input image size of (32∆x × 32∆y). Following this, the GPR-based

approach is introduced, consisting of four main components: two-point corre-

lation, tensor decomposition, Gaussian Process Regression (GPR), and phase

reconstruction. Each component is detailed explained in this section, along with

relevant appendixes.

• Chapter 3 provides comprehensive predictions and validations for the two dis-

tinct data-driven approaches (DDEs). Then potential future work has been

discussed. Regarding the CRNN-based approach, predictions are presented

for three microstructure evolution cases and are compared with corresponding

phase field images. Through doubling the training database volume, signifi-
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Figure 1.7: Accelerated phase-field predictions. (a) Reconstructed microstructure

from the LSTM-trained surrogate model using a phase-recovery algorithm. (b) Phase-

field predictions using LSTM-trained surrogate model as an input. (c) Point-wise

error between predicted and true microstructure evolution. (d) Cumulative probabil-

ity distribution of the absolute relative error on characteristic microstructural feature

size. (e) Comparison of radial average of the microstructure auto-correlation between

predicted (red) and true (black) microstructure evolution. Reprinted with permission

from Zapiain et al. (2021). Copyright 2021 by the Nature.
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cant improvements in emulating microstructural evolution are achieved across

all cases. Average grain size plots from DDE predictions exhibit a consistent

trend similar to that observed in phase field results. Comparative analyses are

extended to DDE predictions for a larger domain size, showcasing reasonable

agreement in temporal evolution trends of emulated free energy minimization

with phase-field counterparts.

Minor discrepancies in emulating 1-D interface profiles of ϕ are noted with

smaller training database volumes, but convergence improves when doubling

the training volume. A table compares computation costs between phase-field

calculations using finite difference and Fourier spectral solvers and DDE. Train-

ing efficiency gains through tensor decomposition (TD) per epoch are listed,

and CPU runtime improvement is quantified, indicating that DDE is approxi-

mately 63 times faster than the finite difference solver. This section concludes

by discussing the trade-off between accuracy and training efficiency.

In the context of the GPR-based approach (Gaussian Process Regression), com-

parisons are made between sequences of two-point correlation images and mi-

crostructure images from phase field and DDE. DDE predictions demonstrate a

similar evolution trend to their corresponding phase field images. To highlight

the advantages of GPR over other nonlinear regression methods, comparisons

are made with support vector regression using radial basis and polynomial ker-

nels. GPR accurately fits data points, while support vector regression strug-

gles to capture nonlinear behavior. Additional comparisons involve average

domain size, average normalized Mean Squared Error (MSE) for distinct ∆t

from both DDE and phase field. Finally, a table contrasts computational run

times of the emulator and phase-field simulations across four different domain
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sizes: 32∆x× 32∆y, 256∆x× 256∆y, 512∆x× 512∆y and 1024∆x× 1024∆y.

• Chapter 4 concludes the dissertation document, with a summary of the many

topics that are explored pertaining to phase separation in PVD alloy films, and

the conclusions that are reached.
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Chapter 2

PHASE FIELD AND DATA-DRIVEN EMULATORS

2.1 Phase Field Model

For the sake of completeness, the well-known Cahn-Hilliard model, which is used

to generate microstructure training datasets, is briefly outlined in this section. Our

diffuse interface approach for modeling the phase separation in binary immiscible alloy

(A-B) films adopts a free energy functional consisting of distinct bulk and interfacial

energy terms, as described by Cahn (1961), written as

F =

∫
Ω

[
f(ϕ) +

1

2
ϵ2|∇ϕ|2

]
dΩ. (2.1)

Here, the order parameter, ϕ(x, t), denotes the scaled concentration assumed to be

a continuous function of position and time, ranging from equilibrium concentration

of 0 at the A-rich β phase to 1 at the B-rich α phase. The bulk free energy density,

f(ϕ), is given by

f(ϕ) =
1

4
Wϕ2(1− ϕ)2 (2.2)

where W is the well height that puts an energy penalty to all the states other than 0

and 1. ϵ is the gradient free energy coefficient, which penalizes large gradients in the

order parameter, giving rise to the diffuse nature of phase boundaries. At equilibrium,

the interfacial width, δ, and the interfacial energy, γ, is governed by an interplay of

the two terms in the free energy functional and scales as δ ∝
√
ϵ2/W and γ ∝

√
ϵ2W .

The kinetics of a phase-separating system can be simulated by solving the Cahn-

Hilliard equation,

∂ϕ

∂t
= ∇ ·M∇µ (2.3)
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where, µ is the chemical potential derived from the variational derivative of the free

energy functional as µ = δF
δϕ
. M is the mobility of the diffusing species which can be

related to the diffusion coefficient as D = M ∂2f
∂ϕ2 , assumed to be 1.0. In the present

study, we assume the kinetic parameter to be independent of the order parameter,

thus, the evolution equation may be rewritten as,

∂ϕ

∂t
= M∇2 δF

δϕ
. (2.4)

Using Eqs. 2.1 and 2.2, we arrive at the final form of the Cahn-Hilliard equation,

∂ϕ

∂t
= M∇2

[
1

2
W (2ϕ3 − 3ϕ2 + ϕ)− ϵ2∇2ϕ

]
. (2.5)

Eq. 2.5 is non-dimensionalized by using reduced variables which are defined as: x∗ =

x/∆x, M∗ = M/(M0kBT ), ∇∗ = (∆x)2∇, W ∗ = W/(kBT ), ϵ
∗ = ϵ/(∆x

√
kBT ), and

t∗ = M0t/(∆x)2, where ∆x is the grid spacing, M0 is an arbitrarily defined constant

bulk mobility that is dependent on the temperature, T, and kB is the Boltzmann

constant. The final dimensionless form is given by

∂ϕ(x∗, t∗)

∂t∗
= M∗(∇∗)2

{
1

2
W ∗(2ϕ3 − 3ϕ2 + ϕ)− (ϵ∗)2(∇∗)2ϕ

}
. (2.6)

We solve Eq. 2.3 via an explicit finite difference method (FDM) on a regular square

mesh. The method describe here is not the only way to solve those equations, one can

also use Allen-Cahn equation with a Lagrange multiplier to achieve the same effect

but with less computation time. One can also solve the We follow a forward difference

Euler scheme for the temporal derivatives and a second-order central difference for

the spatial derivatives. The Cahn-Hilliard Eq. 2.6 is solved in two steps. First, the

chemical potential µ is calculated at each grid point, while the Laplacian is calculated

using a 7-point stencil. The discretized equation required to compute µ is given by

µt
i,j,k =

1

2
Wϕt

i,j,k(1− ϕt
i,j,k)(1− 2ϕt

i,j,k) (2.7)

− ϵ2
ϕt
i+1,j,k + ϕt

i−1,j,k + ϕt
i,j+1,k + ϕt

i,j−1,k + ϕt
i,j,k+1 + ϕt

i,j,k−1 − 6ϕt
i,j,k

h2
.
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The Laplacian of µ is determined by another central difference scheme such that the

concentration evolution equation in the discretized takes the following form,

ϕt+∆t
i,j,k − ϕt

i,j,k

∆t
= M

{
µt
i+1,j,k + µt

i−1,j,k + µt
i,j+1,k + µt

i,j−1,k + µt
i,j,k+1 + µt

i,j,k−1 − 6µt
i,j,k

h2

}
.

(2.8)

The square grid dimensions are given by ∆x = ∆y = 0.3, while the timestep is defined

by ∆t = 0.0001. Periodic boundary conditions are imposed along the x- and the y-

directions. Non-dimensional M∗ = 1.0 allows the phase separating microstructures

to coarsen within a reasonable timeframe to limit the training time to below 1.5

hours, while W∗ = 4.0 and ϵ∗ = 0.051 ensure retention of equimolar composition

as the diffuse phase interfaces of width, 6 grid points (6∆x), develops. The initial

condition used for generating the phase-field training data comprises an equimolar

alloy composition with fluctuations, the amplitude of which varies in the range of

0.01% - 0.50%. Since these composition fluctuations are seeded randomly, distinct

microstructural evolution sequences are obtained from every simulation run.
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2.2 Data-driven Emulator

In this section, two data-driven emulators will be presented. One is the convo-

lutional and recurrent neural network (CRNN), which excels in extrapolation pre-

dictions, while the other approach employs Gaussian process regression, known for

its proficiency in interpolation predictions. The first one is good at predicting into

future, while the latter one is good at predicting middle timestep during a time-series.

2.2.1 Convolutional and Recurrent Neural Network

The data-driven emulator or the DDE proposed in this work is based on a CRNN

framework that employs a tensor decomposed convolutional neural network (CNN)

for image feature extraction, which is coupled to a recurrent neural network (RNN).

The latter enables image sequence prediction based on the series of features extracted

over time using CNN. Here, features refer to the line and curvature within the simu-

lated micrographs generated from phase-field simulations. Detailed model structure

is shown in Fig 2.1. TD entails decomposition of a 2D convolutional layer matrix into

several smaller layers. Although the number of layers as a result of decomposition in-

creases, the total number of floating-point operations and weights will be smaller than

the parent layer. The input and output tensor dimensions of a tensor decomposed

convolutional layer will be the same as a regular convolutional layer.
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Figure 2.1: CRNN layer structure, as proposed by Peichen et al. (2023), and the

corresponding tensor dimension. The activation function and padding type are also

indicated. (32× 32 is taken as an example for input image size)

Tensor Decomposition

Tensor decompositions play a crucial role in various mathematical contexts, includ-

ing the implementation of numerically efficient algorithms, solving systems of linear

equations, and extracting essential information from matrices. Deep learning algo-

rithms often needs to process huge amount of tensors, thus a efficient method is

needed to speed up the training process. Our work has employed Tucker decomposi-

tion to decompose our regular convolutional neural layers into several smaller layers.

Although the number of layers as a result of decomposition increases, the total num-
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ber of floating-point operations and weights will be smaller than the parent layer.

The process of tucker decomposition is shown in 2.2. This approach is originated

from Kim et al. (2016)’s work, they successfully compressed the deep convolutional

neural networks and deployed it in low computational power mobile devices. This

method involves three steps: (1) selecting ranks through variational Bayesian matrix

factorization, (2) applying Tucker decomposition to the kernel tensor, and (3) fine-

tuning to regain any accumulated loss of accuracy. Each of these steps can be readily

implemented using publicly accessible tools. The efficacy of this method has been

evaluated on different compressed CNNs (AlexNet, VGGS, GoogLeNet, and VGG-

16) using a smartphone. Substantial reductions in model size, runtime, and energy

consumption have been achieved, albeit with a slight trade-off in accuracy. A detailed

mathematical derivation for Tucker decomposition is shown in Appendix A.

Figure 2.2: Illustration of a Tucker decomposition, as mentioned by Peichen et al.

(2023), in which a tensor X can be decomposed as a core tensor g and factor matrices,

F1, F2, and F3, i.e. one for every mode.
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Convolutional Neural Layers

Artificial Intelligence has been undergoing significant expansion in narrowing the

gap between human and machine capabilities. Researchers and enthusiasts are ac-

tively engaged in various aspects of the field, striving to achieve remarkable outcomes.

Among the many areas of focus is Computer Vision. The objective within this field

is to empower machines to perceive the world akin to humans, interpret it simi-

larly, and apply this understanding to a myriad of tasks, including Image and Video

recognition, Image Analysis and Classification, Media Recreation, Recommendation

Systems, Natural Language Processing, and more. The progress in Computer Vision,

particularly with Deep Learning, has evolved and refined over time, primarily revolv-

ing around a specific algorithm, the Convolutional Neural Network. O’Shea and Nash

(2015)

A Convolutional Neural Network (CNN) is a Deep Learning algorithm designed to

process input images, assigning significance through learnable weights and biases to

different elements or objects within the image, enabling it to distinguish and differen-

tiate between them. The structure of a CNN is similar to the connectivity pattern of

neurons in the human brain, and draws inspiration from the organization of the visual

cortex. Each neuron responds to stimuli within a limited region of the visual field,

referred to as the receptive field. A combination of these fields overlaps to encompass

the entire visual area.

CNN is a non-parametric approach, and the pre-processing demand in CNN is

significantly reduced compared to other classification algorithms. In contrast to prim-

itive methods where filters are manually engineered, CNN possess the capability to

learn these filters or characteristics through sufficient training. An image is repre-

sented as a matrix of pixel values, and in contrast to traditional Feed-Forward Neural
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Networks, CNNs demonstrate exceptional accuracy, particularly when dealing with

complex images. By employing appropriate filters, a CNN can effectively capture

spatial and temporal dependencies in an image. This architecture achieves improved

fitting to the image dataset by reducing the number of parameters and facilitating

the reuse of weights. In essence, the network can be trained to comprehend the intri-

cacies of the image more effectively. Thus, CNN is an ideal choice for extracting our

microstructure image features.

The succeeding paragraph will showcase key parameters within CNN and some of

them that require adjustment to achieve improved training performance.

1. Input image size: The standard input image has an RGB format and an

example for input image has been shown in Fig. 2.3.

2. Kernel size, stride and padding: The dashed square in fig. 2.1 represent a

kernel which will scan through the whole image to extract image features. Then the

stride length define how long the kernel will move for each scan. For example, if the

input image I has a size as 5 × 5 × 1, the kernel size K is 3 × 3 × 1 and the stride

length equal to 1, the kernel will only move left/right or up/down one pixel length

and the kernel will totally shift 9 times for the input image size 5× 5× 1.

The operation yields two types of outcomes — one where the convolved feature un-

dergoes a reduction in dimensionality compared to the input, and the other where the

dimensionality either increases or remains unchanged. This is achieved by employing

Valid Padding in the former case and Same Padding in the latter.

By expanding the 5x5x1 image to a 6x6x1 image and subsequently applying the

3x3x1 kernel, the resulting convolved matrix maintains dimensions of 5x5x1. This

aligns with the concept of Same Padding. Conversely, when conducting the same

operation without padding, the resulting matrix assumes the dimensions of the kernel

itself (3x3x1), leading to what is known as Valid Padding.
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Figure 2.3: An example for CNN’s input image

The Convolution Operation aims to extract high-level features, such as edges, from

the input image. ConvNets can comprise multiple Convolutional Layers. Typically,

the initial ConvLayer is designed to capture low-level features like edges, color, and

gradient orientation. As additional layers are introduced, the architecture evolves

to comprehend high-level features, providing a network with a comprehensive under-

standing of images in the dataset, akin to human perception.

Pooling Layer

Much like the Convolutional Layer, the Pooling layer plays a role in diminishing

the spatial size of the Convolved Feature. This reduction is intended to lessen the
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computational demands for processing data through dimensionality reduction. Addi-

tionally, it proves beneficial for extracting dominant features that exhibit rotational

and positional invariance, thereby contributing to the effective training of the model.

Figure 2.4: An example for pooling operation

Pooling comes in two varieties: Max-Pooling and Average-Pooling. In Max-

Pooling, the maximum value from the kernel-covered portion of the image is returned,

whereas Average-Pooling provides the average of all values within the kernel-covered

portion.

Max-Pooling not only acts as a noise suppressant by discarding noisy activation
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but also serves as a denoising mechanism alongside dimensionality reduction. Max

Pooling preserves the most salient features of the feature map, resulting in a sharper

image compared to the original. Conversely, the Average-Pooling layer operates by

calculating the average of the pool and preserves the average values of features within

the feature map, contributing to image smoothing while maintaining the essential

features.

The Convolutional Layer and the Pooling Layer, together form the i-th layer of

a Convolutional Neural Network. Depending on the complexities in the images, the

number of such layers may be increased for capturing low-level details even further,

but at the cost of more computational power.

After going through the above process, the model has been enabled to understand

the features. Regular CNN will flatten the final output and feed it to a regular

Neural Network for classification purposes. However, our case also need the model to

recognize the time evolution between each microstructure image. After flatten, CNN

will be connected with a recurrent neural layer(LSTM).

Recurrent Neural Layers

A recurrent neural network (RNN) is a category of artificial neural networks designed

for processing sequential or time series data. These deep learning algorithms are

commonly employed for tasks involving temporal or ordinal aspects, such as language

translation, natural language processing (NLP), speech recognition, and image cap-

tioning. They find applications in popular services like Siri, voice search, and Google

Translate. Similar to feedforward and convolutional neural networks (CNNs), recur-

rent neural networks undergo training using data to acquire knowledge. What sets

them apart is their “memory”, as they incorporate information from previous inputs

to influence the current input and output. Unlike traditional deep neural networks
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that assume independence between inputs and outputs, recurrent neural networks

base their output on prior elements within the sequence. While considering future

events would enhance predictions, unidirectional recurrent neural networks lack the

ability to incorporate such events into their forecasts.

However, traditional RNNs are known to be inefficient in capturing the temporal

information for long sequences, particularly due to the vanishing gradient problem

where information from pastime steps decreases exponentially. Long Short-Term

Memory (LSTM) networks represent a modified iteration of recurrent neural networks,

facilitating improved retention of past data in memory and addressing the vanishing

gradient problem encountered in RNNs. LSTM proves effective in tasks involving the

classification, processing, and prediction of time series data with unknown time lags.

Training is accomplished through back-propagation. Within an LSTM network, three

gates are shown in fig 2.5:

Figure 2.5: Long shot term memory
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1. Input gate: determines the value from the input that should be utilized to

modify the memory. The sigmoid function governs which values to allow through

(ranging from 0 to 1), while the tanh function assigns weights to the passed values,

determining their level of importance within a range from −1 to 1.

it = σ(Wi · [ht−1, xt] + bi) (2.9)

C̃t = tanh(Wc · [ht−1, xt] + bc) (2.10)

2. Forget gate: determines which information to discard from the block. This

is determined by the sigmoid function, which assesses the previous state (ht − 1)

and the content input (Xt), producing a value between 0 (indicating omission) and

1 (indicating retention) for each element in the cell state Ct− 1.

ft = σ(Wf · [ht−1, xt] + bf ) (2.11)

3. Output gate: the input and the memory of the block is used to decide the

output. Sigmoid function decides which values to let through 0, 1. and tanh function

gives weightage to the values which are passed deciding their level of importance

ranging from −1 to 1 and multiplied with output of Sigmoid.

ot = σ(Wo · [ht−1, xt] + bo) (2.12)

ht = Ot ∗ tanh(Ct) (2.13)

Tensor Dimension

For an input image of dimension 32∆x× 32∆y, the input to the convolutional layer

is a tensor of 10× 32× 32, while the output has a dimension of 10× 32× 32× 256.

This is represented as ”Tensor decomposed Conv2d-1” in the CRNN architecture
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(see Fig. 2.1). In this algorithmic sequence, the convolutional layer is followed by a

max-pooling layer which is responsible for downsampling the output produced from

the previous layer. A pooling operation is performed to reduce the CNN framework’s

computational cost, which causes dimensional reduction from 10 × 32 × 32 × 256 to

10× 16× 16× 256. A combination of convolutional and max-pooling layers is useful

in extracting the low-level features, such as the presence of phase boundaries. We

additionally include convolutional ”Tensor decomposed Conv2d-2” and max-pooling

layers to extract higher-level features, such as phase boundary curvature, that enable

complete feature extraction and training. Also, the padding for all the convolutional

and max-pooling layers ensures that the convolved features retain their dimensions

for an entire sequence.

Within the proposed workflow shown in Fig. 2.1, the LSTM layer will output a

tensor of size 10 times the total number of LSTM’s repeat modules. Next, the dense

layer will output 10× 1024 values for every pixel point. Then, the 10× 1024 output

matrix is converted to the original input size of 10 × 32 × 32 × 1 before comparing

with the input tensor using a mean square error (MSE) function given by:

MSE = 1/n
n∑
i

(Yi − Ȳi)
2, (2.14)

where Ȳi is the prediction value, Yi is the actual value, and n is the total number of

predictions.

For microstructure emulation using CRNN, there are several parameters and hy-

perparameters that need to be tuned, which requires prior experience and rounds of

trial. For example, in the present work, we incorporated 32, 64, 128, 256, or 512

filters without altering other parameters and hyperparameters to optimize the losses

in the validation database.
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Figure 2.6: (a) Structure of the training and validation databases. (b) Schematic

diagram showing our data-driven emulation methodology, as noted by Peichen et al.

(2023).

Dataset Pre-processing (Training, Validation and Test)

Using the phase-field constitutive equations outlined in section 2.1, we first generate

the training, validation, and test datasets that are required to train and validate the

proposed CRNN-based algorithm. The validation dataset is used to tune the neural

network while maintaining the associated losses to a minimum during this process.

After achieving the lowest validation loss, CRNN outputs an image corresponding to

every new microstructural data in the test set, which does not contain any dataset

that was used for training or validation. Fig. 2.6(a) shows an exemplary training

dataset which comprises a series of 40 snapshots of phase separating microstructures

obtained every 1000 timesteps using the phase-field method. As shown, the first ten

images represent the first training sample, the next 10, the second sample, and so

on. Therefore, the output corresponding to the first training sample is overall the

eleventh image in sequence. Thus, we have a total of 30 training samples and 30
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responses from every image sequence. We generate 500 such image sequences using

different initialization of the phase-field i.e. seed number, with other material-specific

parameters consistent, such that we have a total of 15000 training samples. Similarly,

we generate a validation dataset with 300 validation samples.

In total, we obtain 10 testing datasets, one of which is shown in Fig. 2.6(b).

The first ten phase-field images are used as input to the DDE for predicting the

microstructure corresponding to t = 11. Then the phase-field images from t ∈ {2, 10}

in addition to the predicted image are rendered as the second input in sequence

for predicting the microstructure corresponding to the t = 12. In this manner, we

continue to predict the microstructures sequentially until t = 40.

The phase-field model that was used to generate microstructures for the training

dataset are natively coded in C++. The DDE model is constructed using Keras

library in Anaconda Python 3. In the spirit of establishing a fair comparison between

the DDE and phase-field method, both the codes are serially-coded or executed on a

single CPU running Linux OS.
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2.2.2 Interpolation Prediction via Gaussian Process Regression

This approach is mainly developed by Ashif et al. (2023) and it is based on rep-

resenting the microstructure evolution as a tensor and obtaining a low-dimensional

tensor decomposition of the two-point correlation functions representing the evolv-

ing microstructures. The tensor decomposition do not require any unfolding and

simultaneously preserves the spatio-temporal relationships, therefore overcoming the

limitations of PCA. With the low-dimensional representation at hand, we then employ

GPR—a non-parametric nonlinear regression approach to predict the microstructure

evolution in the low-dimensional space at arbitrary time steps that cannot be ac-

complished without running multiple phase-field simulations with distinct timestep

widths. For training, we generate spinodal decomposition via high-fidelity phase-field

simulations. After we obtain the predictions from GPR, we use a hybrid input-output

phase retrieval algorithm to reconstruct the microstructures from the predicted two-

point correlation functions. An outline of the proposed methodology is presented in

Fig. 2.7.

Two-point Correlation

We first begin with a mathematical description of the microstructures. For a discrete

microstructure as described in fig. 2.2.2, we denote mn
s as the probability of finding

the local state n = 1, 2, ..., N at a spatial location s = 1, 2, ..., S such that
∑

nm
n
s = 1

and mn
s > 0. Note that for a two-phase microstructure, N = 2. Such a mathematical

representation allows one to characterize the microstructure using various statistical

measures such as n-point statistics, chord-length, and nearest neighbor functions, as

demonstrated by Torquato (2002). One of the most commonly employed statistics,

as introduced by Kalidindi (2015), is the two-point spatial correlation that captures
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Figure 2.7: Flow sequence outlining our microstructure emulation approach via Gaus-

sian process regression, as proposed by Ashif et al. (2023).
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the conditional probability of finding a local state p at location s + r given that a

local state n is present at location s and is given as:

F np
r =

1

Sr

1

J

Sr∑
s

J∑
j=1

(j)mn(j)
s mp

s+r (2.15)

where Sr represents the number of admissible values of r for a given s and is upper

bounded by S. Note that superscript j = 1, 2, ...J represents different realizations of

the microstructure.

Two-point correlation begin by considering a statistical representation of the mi-

crostructures. Mathematically, a microstructure function mn
s is represented as the

probability of finding some local state n at a spatial location s ∈ R2 for two-

dimensional microstructures. Given the stochastic nature of microstructures in space,

we first obtained their statistical representation using two-point correlations. Intu-

itively, the two-point correlations, denoted as f r
np, capture the likelihood of observing

some combination of microstructure states (n and p) at two randomly selected loca-

tions separated by a distance of r. For a two state microstructure (say 0 and 1), as we

are concerned in this work, there are a total of four combinations of states, i.e., 00, 01,

11, and 10 and therefore four set of two-point correlations. However, two-point cor-

relation functions have inherent redundancies in them, making them interdependent.

For instance, the probability of observing states 1 and 0 in spatial bins separated by

a distance of r, i.e., f r
10 is the same as observing the two states in the reverse order

separated by a distance of −r, i.e., f−r
01 . Taking into account all redundancies, in the

case of a two-state microstructure, it is sufficient to compute either an autocorrelation

or a cross-correlation function, as the remaining correlations can be reconstructed,

as suggested by Frisch and Stillinger (1963). Since the two-point spatial correlation

summarizes the pairwise distribution of local states within the microstructure, they

are particularly useful in tracking microstructure evolution. Details of the two-point
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correlation functions are provided in the Methods section. To efficiently calculate

the two-point correlations, we subscribed to Discrete Fourier Transform (DFT) of the

microstructure function mn
s . We first note that the DFT of the two-point statistics is

given as:

F np
k = F(F np

k ) =
1

S
|Mn

k |eiθ
n
k |Mp

k |e
iθpk (2.16)

where F is the DFT operator, |Mn
k | denotes the magnitude component, and θnk

Figure 2.8: Frame-by-frame comparison of microstructure evolution simulated using

phase-field method with the corresponding emulation. The top row shows the original

sequence of the (a) two-point correlation and (b) auto-correlation functions of the

phase-field generated dataset while the emulations are plotted in the bottom row, as

demonstrated by Ashif et al. (2023).

represents the phase component of the microstructure function mn
s for state n. For

n = p, the DFT of the two-point statistic gives us the auto-correlation function

and for n ̸= p, the DFT gives the cross-correlation function. As mentioned earlier,

we only need either an auto-correlation or cross-correlation function for a two-phase
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microstructure and the rest could be recovered. In the remainder of the discussion,

we work with the auto-correlation function of one of the states. Figures 2.8(b) and

2.8(a) show representative examples of the microstructure and its corresponding auto-

correlation function, respectively. We note that auto-correlation functions follows a

similar evolution trend as their corresponding microstructures, i.e., they evolve rapidly

during the initial stages and slowly in the later stages of coarsening.
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Canonical Polyadic (CP) Tensor Decomposition

We next look at the tensor representation and decomposition of the auto-correlation

functions. Microstructure evolution lies in a high-dimensional space, e.g., the evolu-

tion of a 32 × 32 × 32 microstructure, which is the smallest dataset we are working

with, for just 10 time-steps (or samples) lies in a 327,680 dimensional space. To han-

dle such high-dimensional data structures, microstructures and their relevant statis-

tics such as two-point correlations have traditionally been represented via matrix or

vector-based methods such as principal component analysis that require flattening

them into vectors, as presented by Zapiain et al. (2021); Herman et al. (2020). How-

ever, upon vectorization, microstructure sequences lose their topological structures

and dependencies across spatial and temporal modes. The absence of an appropri-

ate mathematical representation has precluded the development of models that can

efficiently capture the higher order nonlinear patterns in microstructure evolution.

In this regard, we provide a tensor representation of microstructure evolution. More

specifically, we consider microstructure evolution as a three-way tensor with dimen-

sions of Parameter × Space × Time. Mathematically, microstructure evolution will

be represented as X : P × S × T where P , S, and T represents the dimension

of parameter, spatial, and temporal modes, respectively. For the emulation results

reported below, the parameter mode is kept constant. To obtain a low-dimensional

representation of the microstructure evolution, we employ a tensor decomposition ap-

proach known as Canonical Polyadic (CP) decomposition. Tensor decomposition is

an extension of conventional PCA for multi-way datasets that do not require any un-

folding. Several methods for tensor decomposition exists such as CP as demonstrated

by Richard (1970), Tucker as noted by Tucker (1966), tensor train as presented by

Oseledets (2011) etc.
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Figure 2.9: Schematic of tensor decomposition as presented by Ashif et al. (2023).

CP decomposition also known as PARAFAC decomposition is a generalization

of singular value decomposition to multi-way tensor datasets. Originally proposed

by Carroll and Chang (1970), CP decomposition aims to decompose a tensor χ of

dimension n× n× T into an outer product of rank one tensor given as:

χ ≈
R∑
i=1

λiai ◦ bi ◦ ci = [[λ,A,B,C]] (2.17)

where R is a positive number representing the number of rank one tensors needed

to represent χ, λi represents the weights, ai ∈ Rn, bi ∈ Rn and ci ∈ RT represents

the rank one tensors, λ = [λ1, ..., λR] and lastly, A, B, and C are the factor matrices

containing the rank one tensors as columns, i.e., A = [a1, ..., aR] and likewise for

B, C. Ideally, the number of rank one tensors required to recover the tensor χ is

equal to the rank of χ. However, there is no finite algorithm for computing the rank

of a tensor, leading to the approximation in Eq. 2.17. To identify the minimum

number of rank one tensors needed for CP decomposition, we start with an arbitrary

rank and gradually increase until a good fit (say 95%) is obtained. With the rank R

specified, we use the alternating least squares (ALS) to identify the rank one tensors

by minimizing the Frobenius norm between the original χ and the reconstructed

tensor χ̂ i.e., χ̂ = argminχ̂||χ̂ − χ||F . For a three-way tensor as considered in our

case, the ALS approach fixes one of the factor matrices to solve for the other two and

continues iteratively until some convergence criterion is reached. Detailed procedures
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for ALS can be found in other sources, as outlined by Kolda and Bader (2009). A

schematic of the CP decomposition approach is presented in Fig. 2.9. n this study,

we utilize the parafac function from the Tensorly package in Python, as described by

Kossaifi et al. (2019).

In this work, we implement CP decomposition as it factorizes the microstructure

tensor into an outer-product of rank one tensors that are simple to handle using GPR.

The number of such rank one tensors represents the rank of the original microstructure

tensor. Intuitively, the rank of the microstructure tensor increases as the complexity

in the spatio-temporal makeup of the microstructures increases. However, computing

the rank parameter is NP hard and therefore, we perform a sensitivity analysis to

determine the optimal rank. Essentially, we check the reconstruction error for varying

ranks and select the rank for which the reconstruction error is within 5% of the lowest

reconstruction error. We measure the reconstruction error using normalized mean

square error:

NMSE =
||X − X̂||2√

||X||
(2.18)

Figure 2.10 shows the reconstruction error for different ranks. We obtain the lowest

average normalized mean squared error (NMSE) of 86.17 for a rank 400. However,

for a lower rank of 300, we obtain the average NMSE of 86.32 which is within 5% of

the lowest normalized MSE. Therefore, to reduce computational complexity, we fix

the tensor rank to 300 for the rest of the discussion.

Before we present the results on GPR fitting, we provide an overview of the

microstructure data from a low-dimensional perspective. Figure 2.11(a) shows the

first rank-one tensor across the temporal domain after performing CP decomposition

and its corresponding trend is shown in red. Clearly, the rank one tensor component

shows a gradual increase as the microstructure evolves. In Fig. 2.11(b) we notice some

seasonality effect that is obtained after removing trend from the original data. Since
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Figure 2.10: Variation in the normalized MSE for microstructure reconstruction with

different tensor ranksAshif et al. (2023).

the magnitude of seasonality is almost one-tenth of the magnitude of the original data,

we can assume these variations to be noise. Furthermore, in Figs. 2.11(c) and (d), we

present the auto-correlation (i.e., correlation between the data and its lagged version)

and the partial auto-correlation function which is the same as auto-correlation but

without the correlation effect from data in between. From the auto-correlation plot,

we can infer that successive data points are highly correlated, especially for smaller

lag values. From a microstructure standpoint, this indicates that the microstructures

sequences at successive time instants are highly correlated which is also evident from

Fig. 2.8. The partial auto-correlation plot in Fig. 2.11(d) shows a strong correlation

if lag is 1, i.e., for successive data points, but it drops rapidly afterwards. This again

reaffirms our observation that the microstructure images are strongly correlated.
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Figure 2.11: Exploratory analysis of the microstructure data in the low dimensional

space. (a) The first rank one tensor across the temporal dimension (referred as original

data) and the corresponding trend, (b) seasonality in the original data, (c) auto-

correlation function and (d) partial auto-correlation function, as demonstrated by

Ashif et al. (2023).

Gaussian Process Regression (GPR)

After we obtain the low-dimensional representation of the microstructures, we use

GPR to emulate microstructural evolution. Once the microstructure evolution is

projected in the rank one tensor space, we can learn the microstructural variations

using statistical and machine learning techniques. In this work, we choose Gaus-

sian process regression, a non-parametric regression model that is well suited to cap-

ture the nonlinear function variability. The flexibility of Gaussian process regression
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arises from the assumption that the underlying data–in this case rank one tensors,

ai, bi, ci, i = 1, 2, ..., R− are drawn from a Gaussian Process with mean function θ(x)

and covariance function k(x, x
′
),i.e., f(x) ∼ GP(θ(x), k(x, x

′
)) where x is the domain

for each of the rank one tensors. For simplicity, we assume a zero mean Gaussian

process prior in this work.

Let us represent the time step and the target variable for the ith rank one tensor be

(T, ci) = (t1, ci1), (t2, ci2), ..., (to, cio). For any t∗ /∈ t1, t2, ..., to, the posterior predictive

distribution is given as ci∗|T, ci, t∗ ∼ N (c̄i∗, cov(ci∗)) where

c̄i∗ = K(t∗, T )[K(T, T ) + σ2I]−1ci (2.19)

cov(ci∗) = K(t∗, t∗)−K(t∗, t∗)
′
[K(T, T ) + σ2I]−1K(T, t∗) (2.20)

To model the covariance structure, we use a Matérn kernel function given as,

K(t, t
′
) = (1 +

√
3(t− t

′
)2

σ2
)exp(−sqrt3(t− t

′
)2

σ2
) (2.21)

where σ2 is the length scale parameter. We train one GPR for each of the rank one-

tensors across the temporal dimension obtained from training frames 0, 1, 3, 5, . . . ,

19 and subsequently, predict the rank-one tensors for frames 0, 1, 2, . . . 18, 19. For

every training microstructure sequence, we perform hyperparameter (σ2) optimization

by maximizing the log-marginal likelihood function. We tune the hyperparameters

individually for every rank one tensor. After obtaining the predictions, we reconstruct

the auto-correlations by using the outer product of the predicted one-dimensional

tensors across every mode.

40



Microstructures Reconstruction

Once we have predicted the auto-correlation functions, the last step involves recovery

of microstructures from the auto-correlation functions. This implies extracting phases

from the amplitude information since the phase information is typically lost during

the convolutions performed for determining auto-correlation functions. Thus, we

employ an iterative hybrid input-output phase retrieval algorithm as proposed by

Fienup (1982), based on the widely known Gerchberg-Saxton algorithm, as presented

by Gerchberg and Saxton (1972b).

Figure 2.12: Flow chart of the hybrid input-output algorithm for microstructure

reconstruction from the predicted auto-correlation functions, as outlined by Ashif

et al. (2023).

After the microstructure predictions are obtained from GPR, we reconstruct the

microstructure using a two-step procedure. First, we reconstruct the two-point cor-

relations corresponding to the predicted values of the rank of tensors. With the
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corresponding rank one tensors, the reconstructed two-point correlation is given as:

χ̂ =
R∑
l=1

λlal ◦ bl ◦ cl (2.22)

To recover the microstructure from reconstructed two-point correlation χ̂, we use

a hybrid input output (hIO) phase retrieval algorithm also known as the Gerchberg-

Saxton algorithm, which is proposed by Gerchberg and Saxton (1972a). Note that

traditionally, phase-retrieval methods have been reported to suffer from poor recon-

struction accuracy and are subject to the initial conditions, as noted in Zapiain et al.

(2021); Herman et al. (2020). To overcome these challenges, we embed a padding with

zero pixel value around the microstructures which has been shown to significantly im-

prove the reconstruction accuracy as indicated by Liu (2012). For a microstructure

of dimension n× n, we set a padding of n on each of the four sides. We now present

the algorithm that consists of the following steps:

(a) Initialize the microstructure with random 0-1 values, mn
s (0).

(b) For a given microstructure mn
s (τ) at iteration τ , obtain the corresponding

Fourier transform, i.e., F(mn
s ) = |Mn

k |eiθ
n
k where |Mn

k | and θnk are respectively the

amplitude and phase of the Fourier transform. Here, we removed the iteration number

τ to simplify the notations.

(c)Replace the amplitude of the Fourier transform in step (b) with the amplitude of

the auto-correlation function (χ̂) predicted in the previous step, such that F̃(mn
s ) =√

|F(χ̂)|eiθnk . Obtain the resulting microstructure using inverse Fourier transform,

i.e.,m̃s
n = F−1(F̃ (mn

s )).

(d)Finally, we apply the constraints in the real space. Let us consider that Γ

contains all the spatial locations where the local state violates the allowable values,

e.g., the local state is negative. We update the microstructure in the next iteration

as:
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mn
s (τ + 1) =

 mn
s (τ)− θm̃s

n(τ), s ∈ Γ

m̃s
n(τ), s /∈ Γ

(2.23)

where 0 < θ < 1 controls the rate of convergence. Additionally, if any of the local

states exceed 1, then we reassign the state to 1.

(e)Repeat steps (b)-(d) until the reconstruction error defined as the Frobenius

norm, ||mn
s (τ) − ms

n(τ − 1)||F between successive steps falls below a prespecified

threshold.

Note that the amplitude substitution in step (b) is based on the property of auto-

correlation and is a crucial step in ensuring that the guess microstructure gradually

converges to the true microstructure. In particular, it says that the Fourier Transform

of auto-correlation is equal to the square of the magnitude of the corresponding

microstructure function. The final step enforces the non-negativity constraint before

updating the microstructure function, i.e.,mn
s (τ) ≥ 0 at any iteration τ . A schematic

of the hIO algorithm is presented in Fig. 2.12.

Traditionally, phase-retrieval methods are known to suffer from poor reconstruc-

tion inaccuracies that depend on the initial conditions, as noted in Zapiain et al.

(2021); Herman et al. (2020). To circumvent this issue, we add a padding around

the microstructures before extracting the auto-correlation functions during the train-

ing phase. The padding around each of the microstructures, although increases the

computational complexity, significantly improves the reconstruction accuracy. In this

work, we find the optimal padding on every side to be equal to the image dimensions

such that a computational microstructure of size 32× 32 upon padding scales up to

96 × 96. The value of pixels in the padding is set to zero. Since the phase retrieval

algorithm is iterative, if the normalized MSE of the reconstructed microstructure does

not change beyond 5% for five consecutive iterations, the flow sequence exits. The
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top row in Fig. 2.8(b) shows the microstructure frames that were not included in

the training dataset while the corresponding predictions obtained from the phase-

field emulator are shown at the bottom. We note that the predicted microstructures

closely resemble the true microstructures.

Dataset Format (Training and Testing)

we first train the emulator using the microstructure evolution obtained at a large time

step and predict the microstructure evolution at smaller time steps. In particular,

we construct the training data by considering the microstructures at timesteps 2∆t

including the first and the last microstructure frames and predict the microstruc-

tures at timesteps ∆t. Every microstructure sequence contains N = 20 frames and

therefore, the training data is composed of 11 frames such that the dimension of the

microstructure tensor is 32 × 32 × 11. The input space after CP decomposition is

11×300 in the temporal dimension and 32×300 across each of the two spatial modes.

To predict the microstructure evolution at a smaller time step, we now merely have

to perform training and testing over the temporal mode.
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Chapter 3

RESULTS AND DISCUSSION

3.1 Extrapolation Prediction via CRNN

In this section, we discuss the DDE predictions corresponding to domains of size,

32∆x× 32∆y and 128∆x× 128∆y, while highlighting the trade-off between accuracy

and training efficiency of the novel CRNN approach for predicting microstructural

evolution.

3.1.1 Comparison for Domain Size 32∆x× 32∆y and 128∆x× 128∆y

Fig. 3.1 compares the simulated temporal evolution of microstructures of size

32∆x× 32∆y, with the emulated ones at the representative timesteps, starting from

distinct seed numbers. The adjacent plots compare the simulated with emulated

average domain sizes computed based on the scaling approach reported by Toral

et al. (1988); Bray and Emmott (1995). At steady state, the average domain size of

microstructures undergoing spinodal decomposition scales as

S = Atn (3.1)

where, S is the domain size, n is the power exponent, and A is the prefactor. The

same approach has been traditionally used to obtain the scaling behavior of phase

separating microstructures, one of the more recent examples being that of vapor co-

deposited alloy films as demonstrated by Ankit et al. (2019); Raghavan et al. (2020).

It is found that when the volume of the training database equals 500 image series,

the emulated microstructure although visually comparable shows minor discrepancies
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t=11 t=17 t=23 t=29 t=35 t=40
Phase-field

DDE prediction

t=11 t=17 t=23 t=29 t=35 t=40
Phase-field

DDE prediction (with 1x training)

t=11 t=17 t=23 t=29 t=35 t=40
Phase-field

DDE prediction (with 1x training)

(a) (b)

(c)

(d)

(e)

(f)

Seed 1

Seed 2

Seed 3

Phase-field
DDE

Phase-field
DDE

Phase-field
DDE

DDE prediction (with 2x training)

DDE prediction (with 2x training)

Figure 3.1: Comparing the simulated and the emulated evolution of microstructural

evolution at representative timesteps for distinct initial conditions generated by ran-

dom seeds, as discussed by Peichen et al. (2023). The scaling of the domain size which

is obtained by both these techniques is compared in the adjacent plots. Doubling the

training volume increases the accuracy of emulations as evident from (d) and (f). ‘1x

training’ refers to training dataset comprising of 500 phase-field simulations whereas

‘2x training’ implies twice as much i.e. 1000. The black arrows in (d) indicate the

regions where the 1D diffuse interface profiles shown in Fig. 3.4 were plotted.
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with respect to phase-field results, the most notable being the thinning of the vertical

ligament in Fig. 3.1d. Similar discrepancies can also be noted in Fig. 3.1f, where the

globule spanning the right edge does not pinch off unlike in the corresponding phase-

field simulated evolution. However, in either case, we were able to correctly emulate

the microstructural evolution by doubling the training database volume. Based on a

favorable comparison of scaling dynamics as well as the morphological evolution in

Fig. 3.1, we conclude that the accuracy of the CRNN-based emulation approach is in-

dependent of the initial condition. At this juncture, we highlight relevant differences

between our approach with respect to recently reported deep learning approaches

which are reported by Zapiain et al. (2021); Yang et al. (2021); Herman et al. (2020).

For instance, Yang et al. (2021) implemented an RNN with eidetic 3D LSTM cells to

predict the evolution pattern in four different evolution phenomena including plane-

wave propagation, grain coarsening, spinodal decomposition, and dendrite growth.

Their methodology involved training the RNN with microstructure sequences fol-

lowed by predicting the microstructure evolution for a new initial microstructure. In

Zapiain et al. (2021)’s work, they implemented a LSTM network to predict the mi-

crostructure evolution by obtaining a low-dimensional representation using two-point

statistics and principal component analysis. While both these previous approaches

have demonstrated the viability of using deep learning for microstructure prediction,

their application is limited by the following factors: first, deep learning approaches

are known to be data-hungry and therefore their performance is highly contingent

on the availability of large datasets. For instance, the LSTM network trained by

Zapiain et al. (2021) warranted 5000 high-fidelity phase-field simulations, each of

which comprised 60 sequential microstructure datasets. Another limitation of the

above approaches is the use of principal component analysis (PCA) for dimension-

ality reduction that has limited applicability in emulating microstructure sequences,
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since it entails unfolding images into one-dimensional arrays. In this operation, the

spatio-temporal information related to phase boundaries, particularly the width and

the curvature, is lost which ultimately manifests as poor reconstruction of emulated

microstructures , as demonstrated by Zapiain et al. (2021); Herman et al. (2020).

We emphasize that unlike the work of Zapiain et al. (2021), where the microstructure

prediction is limited to the final timestep, the CRNN approach reported here has pre-

dicted the complete microstructure evolution sequence with a reasonable accuracy.

Nonetheless, one of the limitations of our approach is that minor errors are accumu-

lated as the microstructure prediction is extrapolated for future time steps. This is

an expected outcome since we have utilized the phase-field generated microstructures

from the first 10 time steps to emulate microstructural evolution for the subsequent

30 time steps.

The microstructural evolution emulated using the DDE in a domain of size,

128∆x× 128∆y is found to be visually comparable to the corresponding phase-field

simulations, as observed in Fig. 3.2, and exemplified by the disappearance of the

globular phase separating domains within the encircled region.

3.1.2 Further Validations for DDE Predictions

To further validate the DDE in accordance with respect to the benchmark prob-

lems reported by Jokisaari et al. (2017), we estimated the total free energy from the

emulated micrographs. Depending on the value of the order parameter specific to

every grid point in the emulated microstructure, the corresponding bulk and the in-

terfacial energy contributions are added to obtain the total free energy for the entire

microstructure. The temporal evolution trend of the emulated free energy minimiza-

tion shows reasonable agreement with the phase-field free energy minimization as

shown in Fig. 3.3. Minor discrepancies in emulations of the 1-D interface profiles of
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Figure 3.2: The comparison between the phase-field simulation and the data-driven

emulation of microstructural evolution at representative timesteps for a simulation

box size of size 128× 128 grid points, as discussed by Peichen et al. (2023). Encircled

regions compare an instance when the disappearance of globular features seen in

phase-field simulations are satisfactorily emulated.

ϕ are also observed when the training database volume is smaller. However, the emu-

lated interface profile is found to better converge with the phase-field diffuse interface

when the training volume is doubled, as shown in Fig. 3.4. Both these findings indi-

cate the importance of selecting a large training database that ultimately facilitates

accuracy in microstructure emulations.

3.1.3 Trade-off Between Accuracy and Training Efficiency

An another advantage of DDE is the minuscule runtimes as compared to phase-

field which are tabulated in Table 3.1.
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Figure 3.3: Comparison of the temporal minimization of the total free energy obtained

from phase-field simulations and DDE, as noted by Peichen et al. (2023). Both trends

conform with the benchmark laid by Jokisaari et al. (2017). The total free energy for

DDE is estimated from the emulated microstructures by accounting for the bulk and

interfacial energy contributions specific to every grid point depending on the value of

the order parameter.
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Figure 3.4: Comparing the simulated and the emulated 1-D interface profiles of the

conserved order parameter, ϕ, plotted along the black arrow (at t=40) in Fig. 3.1d,

as demonstrated by Peichen et al. (2023).
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This acceleration in run time comes at the cost of accuracy which is quantified by

a metric that measures the average gain per epoch

Average gain =
t− tTD

t
× 100, (3.2)

where t refers to the time needed for running one epoch without applying tensor

decomposition while tTD corresponds to the runtimes when tensor decomposition is

incorporated. In the present context, the epoch refers to the number of times that

datasets pass in the forward or in the backward directions per the workflow shown in

Fig. 2.1. Corresponding gains in runtime, the MSE, and the overall emulation run-

times are listed in Table 3.1 for computational domains of size, 32×32 and 128×128

grid points. We note that the MSE and the prediction times increase with the com-

putational domain size, since the latter entails handling a larger input variable matrix

that increases the processing time. Clearly, a trade-off between prediction accuracy

and overall runtime exists in order to predict the microstructural evolution within

a reasonable timeframe. Our current technique of accelerating the CNN by deploy-

ing tensor decomposition, although novel in the context of emulating microstructural

evolution, is essentially motivated from previous findings where more than eight times

improvement in the training efficiency could be achieved without any significant de-

crease in accuracy, as demonstrated by Lebedev et al. (2015). One of the ways by

which the performance of the data-driven emulator can be further improved is by

lowering the rank of tensor decomposition based on the prediction accuracy thresh-

old. Image downsampling, which is known to be compatible with CRNN approaches,

can also be employed for this purpose.

Before concluding, we would like to specify that in our above estimation of average

gains and runtime improvements, we have completely ignored the training/learning

time that is required for phase-field modeling. Typically, learning phase-field theory
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can take over months even when an individual has an appropriate background in

materials science, computer programming, and related discipline. Apparently, even

a phase-field expert would invest significant time ranging from weeks to months (or

even a year) to write and debug the phase-field code. In the current work, we have

accounted for DDE training time but excluded the phase-field learning times, thereby,

providing a conservative estimate of the acceleration that the former provides. Finally,

our study does not discount the importance of phase-field methodology which still

remains the best technique for simulating microstructure evolution. Machine learn-

ing based surrogate models of microstructure evolution would more often than not

completely rely on phase-field models for the generation of training datasets, there-

fore, mastering the latter which entails acquiring well-rounded knowledge of materials

thermodynamics and kinetics, computer programming, and numerical techniques, re-

mains crucial and irreplaceable.
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3.2 Interpolation Predictions via Gaussian Process Regression

Figure 2.8: Frame-by-frame comparison of microstructure evolution simulated using

phase-field method with the corresponding emulation. The top row shows the original

sequence of the (a) two-point correlation and (b) auto-correlation functions of the

phase-field generated dataset while the emulations are plotted in the bottom row, as

demonstrated by Ashif et al. (2023). (repeated from page 33)

Fig. 2.8(a) shows the two-point correlation functions obtained from the phase-field

simulator while the corresponding predictions obtained from the emulator are plotted

in the second and fourth row. The top row in Fig. 2.8(b) shows the microstructure

frames that were not included in the training dataset while the corresponding predic-

tions obtained from the phase-field emulator are shown at the bottom. We note that

the predicted microstructures closely resemble the true microstructures.

To demonstrate the advantage of using GPR over other nonlinear regression meth-

ods, we compare the corresponding predictions in a representative low-dimensional

representation with that of support vector regression with two different kernel func-

tions (a) radial basis kernel and (b) polynomial kernel. The corresponding predictions
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Figure 3.5: Comparison of prediction in a representative low-dimensional space ob-

tained from (a) Gaussian process regression with support vector regression using (b)

radial basis function kernel and (c) polynomial kernel, as discussed by Ashif et al.

(2023). The y-axis is unlabeled as it may not have physical significance in the low-

dimensional space.

are shown in Figure 3.5. From the figure, it is evident that GPR is able to accurately

fit the data points whereas support vector regression fails to capture the nonlinear

behavior.

The emulated domain size is plotted as a function of time for distinct ∆t, as

shown in Fig. 3.6(a). The average feature size, as presented by Ankit et al. (2019),

was measured by calculating the inverse of the first moment, k1(t) as noted by Glotzer

et al. (1994), which in turn is obtained from the structure factor, s(k, t) given as:

k1(t) ≡
∑

k k(t)s(k, t)∑
k s(k, t)

(3.3)

See Bray and Emmott (1995) for details on the structure factor and the average feature

size. As indicated by these plots, the scaling dynamics are found to nearly overlap

with the phase-field results. To further quantify these emulations, we calculate the

normalized MSE (see Eq. 2.18) of the predicted microstructures for different values

of ∆t as shown in Fig. 3.6(b). The average normalized MSE for distinct ∆t is equal
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Figure 3.6: (a) Comparison of the microstructure feature size of the predicted mi-

crostructure and the simulated microstructure for different values of the time step,

∆t. (b) Normalized mean square error for predicted microstructures for different val-

ues of time step, ∆t, as presented by Ashif et al. (2023).

to 0.0314, 0.0280, 0.0236, 0.0207, and 0.0128.

At this point, some important observations are in order; first, the reconstruction

of the microstructures obtained from our methodology is statistically accurate (with

average normalized MSE = 6.78 × 10−7) as evident from Fig. 2.8(a). Secondly,

we notice that the proposed method is able to predict the microstructure evolution

both in the transient stages initially where the phase separating domain size increases

rapidly as well as later during the slow coarsening stage with a sufficiently high accu-
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racy (see Fig. 2.8(b)). It is noteworthy to emphasize that predicting microstructural

evolution during the transient stages has proven to be challenging for recently pub-

lished algorithms, as highlighted by Yang et al. (2021); Zapiain et al. (2021). This

difficulty arises from the rapid evolution of microstructures in the initial stages, mak-

ing it challenging to capture the evolving microstructural features. In contrast, the

tensor-based phase field emulator, developed in this research, preserves the spatio-

temporal relationships even in the low-dimensions, therefore, we are able to accurately

predict the microstructural evolution and recover the corresponding scaling dynam-

ics. These results show that the proposed approach is not only statistically accurate,

but is also able to capture the complex microstructural features. Thirdly, we notice

that the normalized MSE of the predicted microstructures decreases as the spinodal

decomposition proceeds towards the late-stage coarsening regime given that the fea-

ture complexity is higher when the average phase separated domain size is small. We

also observe that the average normalized MSEs decrease as the timestep width, ∆t,

for the training data decreases, which is owing to the larger interpolations that are

performed by the emulator at larger ∆t, causing a relative loss in accuracy.

The phase-field emulator proposed in this work involves four steps as outlined in

Fig. 2.7. The first three steps comprise the training phase of the emulator which

includes extraction of the auto-correlation functions, tensor decomposition, and GPR

training. Testing phase involves prediction using GPR and hybrid input-output al-

gorithm for phase retrieval. For a microstructure with S grids evolving for T time

periods and a tensor rank of R, the computation cost during the training phase for

each of the steps are O(S), O(STR), and O(RT 3) respectively. Note that the com-

putational complexity for tensor decomposition is determined for CP decomposition

with alternating least squares Ma and Solomonik (2021). For the testing phase, the

computational complexity for a single microstructure image is O(R) for GPR predic-
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Domain Training time Testing time PFS time
PFS to

Emulator

32× 32 0.24 0.12 0.19 1.58

256× 256 0.78 12.98 68 5.24

512× 512 3.18 64.5 588.97 9.13

1024× 1024 198.88 289.58 5057.3 17.46

Table 3.2: Computational run times of emulator and phase-field simulations (in sec-

onds), as presented by Ashif et al. (2023).

tion andO(MS logS) for the hybrid input-output algorithm consideringM iterations.

If the rank R of CP decomposition is fixed, then the computational complexity during

the testing phase scales as O(MS logS), making phase retrieval as the most resource

intensive step. Table 3.2 shows the breakdown of computational cost for each of

the steps. All computations presented in this work were performed on an Intel(R)

Core(T) i9-10900K CPU with 32 GB of RAM without any GPU acceleration. The run

time for obtaining the microstructure sequence from phase-field simulation required

approximately 0.19 sec for microstructure of size 32 × 32. For every microstructure

sequence generated from the phase-field simulation, we used n/2 + 1 of the frames

to construct the training dataset. The distribution for each of the steps involved

in the phase-field emulator are as follows: In the training phase, the calculation of

auto-correlation function consumed 44.4%, CP decomposition consumed 41.8%, while

training the GPR required 13.8% of the total training time. In the prediction phase,

GPR predictions accounted for merely 0.4% and the microstructure reconstruction
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from GPR predictions consumed more than 99.6% of the total run time. We also

compare the computational costs of microstructure prediction with an increase in do-

main size. Table 3.2 shows the time (in seconds) for generating one microstructure in

the sequence for 32×32, 256×256, 512×512, and 1024×1024. The last column shows

the ratio of time taken by the phase-field simulator for simulating one microstructure

to the time taken by phase-field emulator for predicting one microstructure. We note

that the proposed emulator is at least 5 times faster as compared to the phase-field

simulator. Interestingly, the phase-field emulator performs faster as the domain size

increases. In fact, for the largest domain size of 1024×1024, the phase-field emulator

is more than 17 times faster as compared to the phase-field simulations.

We also note some limitations of the proposed approach. In the current implemen-

tation, we first obtain a tensor decomposition followed by a separate GPR for each

rank one tensors. This two-step approach may be computationally intensive when

complex microstructural features are involved that require higher rank CP decompo-

sition. In our future works, we aim to develop nonlinear tensor regression methods

that would not require any decomposition. A second limitation of the approach origi-

nates from the CP decomposition itself. CP decomposition results in rank one tensor

across each of the temporal and spatial modes. Since we only predict across the tem-

poral mode, the information across the spatial mode is smeared across the temporal

mode. As a result, we notice that the reconstruction errors are higher in the initial

stages of spinodal decomposition when the microstructures are rapidly evolving (see

Fig. 2.8(b)). Finally, we also notice some limitations with the two point correla-

tions. For two phase microstructures (as considered in this work), it was possible to

handle two-point correlations since we can summarize all the information with just

either auto-correlation or cross-correlation. However, for microstructure with multi-

ple phases, two-point correlations may be cumbersome and may require higher-order
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correlation functions.

3.2.1 Limitations and Future Work

Data-driven approach is a promising method, however there are still some limita-

tions:

1. Demanding substantial human resources for the verification of train-

ing images: In our case, we employ the established phase-field method to automati-

cally generate a series of microstructure evolution images. This approach is advanta-

geous as it eliminates the need for manual checks on the training database. However,

for future work, the inclusion of real-world images in the training database will ne-

cessitate significant human resources to ensure the quality and validity of each image

data.

2. Intensive computational resource is needed for 3D emulations: As

the dimension increase from 2D to 3D, the computational power required increase

substantially. Take training time without TD for 32× 32 in Table. 3.1, the training

time for 32× 32× 32 is at least equal to 13.42× 32 = 429.44 hours. One of the future

work plans to combine the two DDE methods introduced here to solve the second

issue. The objective is to employ these two methods for the efficient emulation of

similar 3D microstructure evolution shown in fig. 3.7 and fig. 3.8.

In this study, we have introduced two data-driven approaches. The CRNN method

excels in predicting future microstructure images. On the other hand, GPR-based

(Gaussian process regression) approach demonstrates high efficiency in predicting ar-

bitrary interpolated time steps during the evolution of microstructures and this high

efficiency come from the implementation of the low representation of image data.

While CRNN can achieve impressive extrapolation predictions, it comes at the ex-

pense of intensive computational resources on training. Figure 3.8 illustrates a 3D
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Figure 3.7: Time slices showing competitive dendritic growth during directional solid-

ification of Al–Si alloy. This phase-field simulation was performed in a computational

domain of 3.072mm× 0.768mm× 3.072mm (4096× 1024× 4096 lattices) using GPU

supercomputer TSUBAME2.0 at Tokyo Institute of Technology. Reprinted with per-

mission from Takaki. (2014). Copyright 2014 by J-Stage.
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Figure 3.8: 3D spinodal decomposition microstructure.

spinodal decomposition microstructure, where the 3D image data can be conceptual-

ized as a series of 2D images in the x-y plane arranged vertically in the z direction.

The computational challenges associated with using CRNN directly for 3D ex-

trapolation predictions have prevented anyone from achieving 3D microstructure pre-

dictions thus far. To address this challenge, we adopt a strategy where CRNN is used

for 2D extrapolation predictions on a subset of layers within a 3D image. Simulta-

neously, the method (GPR) described in Subsec 2.2.2 is employed for interpolation

predictions along the vertical direction (z) to complement the remaining 2D layers in

the same 3D image.

63



While the foregoing discussions have employed phase-field simulations of spinodal

decomposition, the proposed approach is generalizable to other microstructural evolu-

tion scenarios, such as coarsening of precipitates and dendritic growth. The GPR ap-

proach may be attractive for another two applications. The first application involves

obtaining the microstructure evolution at arbitrarily small-time scales via phase-field

methods. Traditionally, the computational complexity limits the temporal resolu-

tion of phase-field simulations. With the proposed phase-field emulator, it is possible

to obtain the microstructure evolution at a smaller time step, i.e., higher tempo-

ral resolution using just the microstructure evolution obtained at a larger timescale.

Therefore, the emulator would preclude the need for running multiple simulations

whenever there is a change in the time step parameter. The second application will

be in physical experiments, such as those that were performed under microgravity

by NASA, where physical restrictions and resource constraints limit the number of

experiments that could be performed, as noted by Snyder et al. (2001). Similar limi-

tations are encountered when observing in-situ microstructure evolution using costly

high-fidelity measurement techniques, such as transmission electron microscopy, as

noted by Le Ferrand et al. (2019). These techniques often impose constraints on the

frequency of recording microstructures over time. Under such circumstances, the pro-

posed emulator could provide an opportunity to observe the microstructure evolution

at intermediate time steps that could not recorded by the measurement system.

64



Chapter 4

CONCLUSIONS

In conclusion, we have first introduced a novel CRNN-based approach for emulat-

ing microstructural evolution that accompanies spinodal decomposition. This data-

driven approach, which leverages phase-field generated microstructure datasets as

input, combines tensor decomposition and deep learning to predict the morphological

evolution efficiently. Based on a systematic study, we found that a fully trained DDE

emulator can predict the microstructural evolution 60 times faster when compared to

the phase-field method.

The convolution and recurrent neural network (CRNN) follows an image-based,

nonparametric algorithm, which is capable of extracting microstructural features and

their evolution pattern from phase-field simulated sequences. The proposed CRNN

is material as well as process agnostic, and therefore could potentially be used for

predicting microstructural evolution in distinct scenarios as long as the training data is

available. Unlike previous studies by Zapiain et al. (2021); Herman et al. (2020); Yang

et al. (2021), the present DDE model, in addition to reproducing the correct scaling

dynamics and the morphological evolution, conserves the characteristic diffuse nature

of the interfaces. However, in order to reproduce the smooth hyperbolic tangent-

like interface profiles which the phase-field predicts, the training volume needs to be

increased. The time required for a trained DDE to predict microstructural evolution

typically spans a minute, which is minuscule when compared to phase-field simulation

run times.

While our work is not the first one to develop a data-driven simulator for phase

field methods, our novel implementation of tensor decomposition into CNN instead
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of using low-dimensional projections of two-point correlation functions as used by

Zapiain et al. (2021); Herman et al. (2020), accelerates the neural network without

significant accuracy losses. In closing, we would like to emphasize that the devel-

opment of a microstructure emulation method such as the one reported here is not

aimed at replacing the phase field models. Rather it is meant to aid in scenarios

where obtaining the solution of partial differential equations is non-trivial, or in those

cases where the complexities related to multi-physics make the formulation of phase

field models, difficult. In numerous scenarios, phase-field models could be the only

means for generating the training data for DDE. Apparently, the present emulation

technique heavily relies on the development of phase-field models without which the

former cannot be applied.

CRNN can achieve impressive extrapolation predictions, it comes at the expense

of intensive computational resources on training. Unlike the CRNN-based approach,

we secondly introduced the GPR-based (Gaussian process regression) approach to ef-

ficiently predict arbitrary interpolated time steps during the evolution of microstruc-

tures and this high efficiency come from the implementation of the low representation

of image data. Traditionally, the computational complexity of phase-field simulations

limit the smallest time-scales that are tractable. In light of this, the proposed ap-

proach provides an alternative to obtain phase-field simulations at smaller time scales

without the need to running costly simulations. By casting microstructure evolution

as a tensor, the proposed approach preserves the spatio-temporal relationships in

the low-dimensional representations obtained via tensor decomposition. Overall, the

proposed-phase field emulator is able to predict the microstructures with average

NMSE of 6.78 × 10−7. We also highlight that the phase-field emulator is material

agnostic and may be applied to a wide array of evolving microstructures.

It is also equally important to note that both of our data-driven approaches
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(DDEs), unlike numerical schemes, does not involve solving any partial differential

equations. It is agnostic of the complex multi-physics associated with phase transfor-

mations as the morphological evolution that is emulated is entirely based on image

processing and machine learning. Therefore, the full potential of DDE lies in scenarios

where phase-field models that could possibly encapsulate all the relevant physics are

yet to be developed, for e.g., additive manufacturing. In such cases, training datasets

for DDE can be generated using in-situ experiments.

Finally, we have also discussed the potential future work. Thus far, no one has

successfully undertaken 3D microstructure predictions, primarily because the direct

application of CRNN for 3D extrapolation predictions is computationally demanding.

Nevertheless, through the amalgamation of our two data-driven approaches (DDEs),

there is a substantial potential to overcome existing challenges and attain effective

and efficient predictions for the evolution of 3D microstructures.
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Kernel tensor K can be approximated by using the Tucker decomposition:

K(i, j, s, t) =

R1=1∑
r1=1

R2=2∑
r2=1

R3=3∑
r3=1

R4=1∑
r4=1

Σr1r2r3r4K
x
r1
(i)Ky

r2
(j)Ks

r3
(s)Kt

r4
(t) (A.1)

The Tucker decomposition possesses a beneficial characteristic in that it is not oblig-
atory to decompose along all the axes or modes. Given that the spatial dimensions
are already relatively small (3 × 3), decomposing those dimensions may not be par-
ticularly meaningful. Instead, it can be used for decomposition along the input and
output channels (a mode-2 decomposition):

K(i, j, s, t) =

R3=3∑
r3=1

R4=1∑
r4=1

Σijr3r4(j)K
s
r3
(s)Kt

r4
(t) (A.2)

Plugging this into the formula for the convolutional layer output form above:

V (x, y, t) =
∑
i

∑
j

∑
s

R3=3∑
r3=1

R4=1∑
r4=1

σ(i)(j)r3r4K
s
r3
(s)Kt

r4
(t)X(x− i, y − i, s)

=
∑
i

∑
j

R3=3∑
r3=1

R4=1∑
r4=1

Kt
r4
(t)σ(i)(j)r3r4

∑
s

Ks
r3
(s)X(x− i, y − i, s)

(A.3)

By doing this, it gives us the following result:
1. Point-wise convolution Ks

r3
(s) with for reducing the number of channels from

S to Ks
r3
(s).

2. Regular (not separable) convolution with σ(i)(j)r3r4 .
Contrary to the original layer with S input channels and T output channels, this

convolution now has R3 input channels and R3 output channels. The speed gain is
achieved when these ranks are smaller than S and T .
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