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ABSTRACT  

   

Beta-Amyloid(Aβ) plaques and tau protein tangles in the brain are now widely 

recognized as the defining hallmarks of Alzheimer’s disease (AD), followed by structural 

atrophy detectable on brain magnetic resonance imaging (MRI) scans. However, current 

methods to detect Aβ/tau pathology are either invasive (lumbar puncture) or quite costly 

and not widely available (positron emission tomography (PET)). And one of the 

particular neurodegenerative regions is the hippocampus to which the influence of Aβ/tau 

on has been one of the research projects focuses in the AD pathophysiological progress.  

In this dissertation, I proposed three novel machine learning and statistical models 

to examine subtle aspects of the hippocampal morphometry from MRI that are associated 

with Aβ /tau burden in the brain, measured using PET images. The first model is a novel 

unsupervised feature reduction model to generate a low-dimensional representation of 

hippocampal morphometry for each individual subject, which has superior performance 

in predicting Aβ/tau burden in the brain. The second one is an efficient federated group 

lasso model to identify the hippocampal subregions where atrophy is strongly associated 

with abnormal Aβ/Tau. The last one is a federated model for imaging genetics, which can 

identify genetic and transcriptomic influences on hippocampal morphometry. Finally, I 

stated the results of these three models that have been published or submitted to peer-

reviewed conferences and journals.  
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CHAPTER 1 

INTRODUCTION 

Alzheimer’s disease (AD) is now viewed as a gradual process that begins many 

years before the onset of detectable clinical symptoms. Measuring brain biomarkers and 

intervening at preclinical AD stages are believed to improve the probability of therapeutic 

success (Brookmeyer et al., 2007; Jack et al., 2016). Amyloid-β (Aβ) plaques and tau 

tangles are two specific protein pathological hallmarks of AD and are believed to induce 

neurodegeneration and structural brain atrophy consequentially observable from 

volumetric magnetic resonance imaging (MRI) scans. Brain Aβ and tau pathology can be 

measured using positron emission tomography (PET) with amyloid/tau-sensitive 

radiotracers or by using lumbar puncture to measure these proteins in samples 

cerebrospinal fluid (CSF). Even so, these invasive and expensive measurements are less 

attractive to subjects in the preclinical stage, and PET scanning is also not as widely 

available as MRI.  

In the A/T/N system - a recently proposed research framework for understanding 

the biology of AD - the presence of abnormal levels of Aβ (A in A/T/N) in the brain or 

cerebrospinal fluid (CSF) is used to define the presence of biological Alzheimer’s disease 

(Jack et al., 2016). An imbalance between production and clearance of Aβ occurs early in 

AD and is typically followed by the accumulation of tau (T in A/T/N) protein tangles 

(another key pathological hallmark of AD) and neurodegeneration (N in A/T/N) 

detectable on brain MRI scans (Hardy & Selkoe, 2002; Jack et al., 2016; Sperling et al., 

2011). Therefore, there has been great interest in developing techniques to associate Aβ 
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and tau deposition with MRI measures (Ansart et al., 2020; Dahl et al., 2021; Ezzati et 

al., 2020; Petrone et al., 2019; W. Sun et al., 2020; Ten Kate et al., 2018; Tosun et al., 

2013, 2014, 2016, 2021). In the structural MRI, the hippocampus is a primary target 

region across the spectrum of dementia research from clinically normal to late stages of 

AD (Cullen et al., 2020; Dong et al., 2019; B. Li et al., 2016; Shi et al., 2011). 

Cognitively unimpaired individuals with abnormally high Aβ burden have faster 

progression of hippocampal volume atrophy (Insel et al., 2017; L. Zhang et al., 2020). 

Additionally, tau burden in the brain, assessed using PET tracers, also strongly correlates 

with subsequent hippocampal volume atrophy (La Joie et al., 2020).  However, the 

influence of Aβ/tau pathology on regional hippocampal atrophy in AD is still not fully 

understood. 

Many hippocampal surface morphometry measures can be extract from MRI 

scans, such as radial distances (RD, distance between each surface points to its medial 

center) (Thompson et al., 2004), local area differences (Woods, 2003), and spherical 

harmonic analysis (Styner et al., 2005). Surface tensor-based morphometry (TBM) 

(Chung et al., 2008a) is an intrinsic surfacer statistic that examines spatial derivatives of 

the deformation maps that register brains to a common template and construct 

morphological tensor maps. And we recently proposed a multivariate TBM (mTBM) (Y. 

Wang et al., 2010) and later further combined RD and mTBM into surface multivariate 

morphometry statistics (MMS) (Y. Wang et al., 2011), which also show excellent 

performance in AD diagnosis prediction (Y. Fu et al., 2021; J. Zhang et al., 2021; J. 

Zhang, Li, et al., 2017). 
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Additionally, mounting evidence suggests that germline mutations (e.g., DNA 

SNPs) play an important role in AD etiology and progression (Jack et al., 2016). People 

with a parent or sibling with AD are more likely to develop the disease. The gene with 

the strongest association to AD is apolipoprotein E (APOE) and the e4 allele is associated 

with increased risk, whereas the e2 allele is associated with decreased risk. The odds 

ratios (ORs) for developing AD are 3.2 for individuals with one e4 allele and 14.9 with 

two e4 alleles, but only 0.6 with one e2 allele, when compared with individuals with two 

common e3 alleles in Caucasians (Bertram et al., 2007). Besides, progressive tau 

accumulation is more prominent in e4 carriers (Baek et al., 2020). 

Therefore, I proposed three open problems. Firstly, whether the hippocampal 

morphometry features can be used to predict Aβ/tau deposition. Secondly, what is the 

association between Aβ/tau Measurements and hippocampal morphometry. Finally, what 

is the associations between Aβ/tau Measurements and hippocampal morphometry are 

different in the cohorts with different genotype. 

In this dissertation, I will introduce three novel models I developed to address 

three problems. The first model is an unsupervised feature reduction model, named Patch 

Analysis-based Surface Correntropy-induced Sparse coding and max-pooling (PASCS-

MP). This model can effectively generate a low-dimensional representation of 

hippocampal morphometry for each individual subject. Then, I trained machine learning 

models with these individual representations to predict brain Aβ positivity and measures 

for tau deposition of each person. These results compare favorably relative to measures 

derived from traditional algorithms, including hippocampal volume and surface area, 
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shape measures based on spherical harmonics (SPHARM) and our prior Patch Analysis-

based Surface Sparse-coding and Max-Pooling (PASS-MP) methods. However, there are 

two main limitations for this work. Firstly, it cannot figure out the disease-related region 

of interest (ROI). Secondly, it can only work on a local machine.  

Integrating data from multi-sites is common practice for large sample sizes and 

increased statistical power. An important direction of interest in multi-site neuroimaging 

research is federated learning – which offers an approach to learn from data spread across 

multiple sites without having to share the raw data directly or to centralize in any one 

location. In many cases, different institutions may not be readily able to share biomedical 

research data due to patient privacy concerns, data restrictions based on patient consent or 

IRB regulations, and legal complexities; this can present a major obstacle to pooling large 

scale datasets to discover robust and reproducible signatures of specific brain disorders. 

To remedy this distributed problem, a large-scale collaborative network, ENIGMA 

consortium, was built (Thompson et al., 2020). Accordingly, I also built the next two 

proposed models on a federated framework. 

The second model is Federated Morphometry Feature Selection (FMFS) model to 

examine subtle aspects of hippocampal morphometry that are associated with Aβ/tau 

burden in the brain. Experimental results indicate that FMFS achieves an 89x speedup 

compared to other published state-of-the-art methods under five independent hypothetical 

institutions. In addition, the subiculum and cornu ammonis 1 (CA1 subfield) were 

identified as hippocampal subregions where atrophy is strongly associated with abnormal 

Aβ/Tau. As potential biomarkers for Aβ/tau pathology, the features from the identified 
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ROIs have greater power for predicting cognitive assessment and for survival analysis 

than five other imaging biomarkers. All the results indicated that FMFS is an efficient 

and effective tool to reveal associations between Aβ/tau burden and hippocampal 

morphometry. However, genetics is also a significant factor for AD and this model can 

only analyze the associations between Aβ/tau measurements and hippocampal 

morphometry.  

To study the trios among Genotypes, Aβ/tau Measurements and Hippocampal 

Morphometry, I proposed a novel federated model for imaging genetics, Genotype-

Expression-Imaging Data Integration (GEIDI), to identify genetic and transcriptomic 

influences on brain sMRI measures. I applied this model on two different projects. The 

first one is to discover and infer multimodal relationships among sMRI, GWAS, and 

transcriptomics. Experimental results demonstrated our proposed method outperformed 

state-of-the-art expression quantitative trait loci (eQTL) methods for detecting genetic 

and transcriptomic factors related to AD and has stable performance when data are 

integrated from multiple sites. Our GEIDI approach may offer novel insights into the 

relationship among image biomarkers, genotypes, and gene expression and help discover 

novel genetic targets for potential AD drug treatments. The second project is exploring 

how the genetic and transcriptomic factor influence the morphometry of the hippocampal 

surface. Experimental results demonstrate the strong association among APOE, tau 

deposition and the morphometry of hippocampus.  And the identified hippocampal ROIs 

are quite consistent with the second project. 
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CHAPTER 2 

RELATED WORK 

2.1.Hippocampal Morphometry Measures 

There are many surface morphometry measures, such as radial distances (RD, 

distance between each surface points to its medial center) (Thompson et al., 2004), local 

area differences (Woods, 2003), and spherical harmonic analysis (Styner et al., 2005). 

Surface tensor-based morphometry (TBM) (Chung et al., 2008a) is an intrinsic surfacer 

statistic that examines spatial derivatives of the deformation maps that register brains to a 

common template and construct morphological tensor maps. We recently proposed a 

multivariate TBM (mTBM) (Y. Wang et al., 2010) and later further combined RD and 

mTBM into surface multivariate morphometry statistics (MMS) (Y. Wang et al., 2011).  

2.2.Unsupervised Feature Reduction 

These vertex-wise surface morphometry features are high-fidelity measures to 

describe the local deformation of the surface and can provide detailed localization and 

visualization of regional atrophy or expansion (Yao et al., 2018) and development 

(Thompson et al., 2000a). However, the high dimensionality of such features is likely to 

cause problems for classification. Feature reduction methods proposed by (Davatzikos et 

al., 2008; D. Sun et al., 2009) may ignore the intrinsic properties of a structure’s regional 

morphometry. I use the technique of sparse coding and dictionary learning (Mairal et al., 

2009; Q. Zhang & Li, 2015) to learn meaningful features. Dictionary learning has been 

successful in many image processing tasks as it can concisely model natural image 

patches. In this work, I propose a novel sparse coding and dictionary learning method 
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with an l1-regularized correntropy loss function named Correntropy-induced Sparse-

coding (CS), which is expected to improve the computational efficiency compared to 

Stochastic Coordinate Coding (SCC) (Lin et al., 2014). The model is named Patch 

Analysis-based Surface Correntropy-induced Sparse coding and max-pooling 

(PASCS-MP). 

2.3.Federated Morphometry Feature Selection 

Federated learning models, such as decentralized independent component analysis (B. 

T. Baker et al., 2015), sparse regression (Plis et al., 2016), and distributed deep learning 

(Kaissis et al., 2021; Stripelis et al., 2021; Warnat-Herresthal et al., 2021), have made 

solid progress with leveraging multivariate image features for statistical inferences, 

allowing iterative computation on remote datasets. Some other recent studies focus on 

multivariate linear modeling (Silva et al., 2020), federated gradient averaging (Remedios 

et al., 2020), and unbalanced data for multi-site (Yeganeh et al., 2020). To our 

knowledge, these methods have not yet been applied to detect multimodal associations in 

Alzheimer’s disease research, such as finding anatomically abnormal regions on MRI that 

are associated with Aβ/tau pathology defined using PET. Here I propose a novel 

framework, Federated Morphometry Feature Selection (FMFS), to detect the 

association between hippocampal morphometry markers and Aβ/tau burden. 

2.4.Imaging Genetics 

Various imaging genetics methods have been developed to integrate imaging and 

genetic data. However, most studies have focused on imaging, imaging combined with 

GWAS data (Chauhan et al., 2015; Grasby et al., 2020; J. Q. Li et al., 2017), imaging 
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with transcriptomics (Ritchie et al., 2018), or GWAS with transcriptomics (Albert & 

Kruglyak, 2015). For example, imaging genetics methods have been used to link SNPs 

with image features (Stein et al., 2010), and expression quantitative trait loci (eQTL) 

have been used to discover APOE-related genes (A. Zhang et al., 2018). However, 

relatively few methods have been developed to integrate GWAS/WES/WGS, imaging, 

and transcriptomic data to infer multimodal relationships. For instance, [49] (Liu et al., 

2017) use a brain-wide gene expression profile available in the Allen Human Brain Atlas 

(AHBA) as a 2-D prior to guide the brain imaging genetics association analysis. Their 

transcriptome-guided SCCA (TG-SCCA) framework incorporates the gene expression 

information into the traditional SCCA model. Such a multimodal approach may give us a 

more holistic view of the evidence from multiple sources to provide novel insights on the 

molecular mechanisms of AD pathogenesis and prognosis.  Besides, both gene 

expression and imaging features are dynamic and change with time and throughout the 

disease, whereas germline SNPs are unchanged over an individual’s lifetime. Therefore, I 

proposed a novel federated model for imaging genetics, Genotype-Expression-Imaging 

Data Integration (GEIDI), to study SNP-image-gene expression relationships to 

consider both the dynamic changes in imaging and gene expression features and 

understand how they are affected by an individual’s SNPs. Such knowledge will provide 

novel insights into the relationship among image biomarkers, genotypes and gene 

expression, and may help discover novel genetic targets for pharmaceutical interventions.  



 

  9 

CHAPTER 3 

METHODS 

3.1.Image Preprocessing 

Firstly, we use FIRST (FMRIB’s Integrated Registration and Segmentation Tool) 

(Patenaude et al., 2011) to segment the original MRI data and map the hippocampus 

substructure. After obtaining a binary segmentation of the hippocampus, we use a 

topology-preserving level set method (Han et al., 2003) to build surface models. Based on 

that, the marching cubes algorithm (Lorensen & Cline, 1987) is applied to construct 

triangular surface meshes. Then, to reduce the noise from MR image scanning and to 

overcome partial volume effects, surface smoothing is applied consistently to all surfaces. 

Our surface smoothing process consists of mesh simplification using progressive meshes 

(Hoppe, 1996) and mesh refinement by the Loop subdivision surface method (Loop, 

1987). Similar procedures adopted in a number of our prior studies (Colom et al., 2013; 

Luders et al., 2013; Monje et al., 2013; Shi et al., 2015; Shi, Thompson, et al., 2013; Shi, 

Wang, et al., 2013; Y. Wang et al., 2010, 2012) have shown the smoothed meshes are 

accurate approximations to the original surfaces, with a higher signal-to-noise ratio 

(SNR). 

To facilitate hippocampal shape analysis, we generate a conformal grid (150 ×

100) on each surface, which is used as a canonical space for surface registration. On each 

hippocampal surface, we compute its conformal grid with a holomorphic 1-form basis 

(Wang et al., 2010, 2007). We adopt surface conformal representation (Shi et al., 2015; 

Shi, Thompson, et al., 2013) to obtain surface geometric features for automatic surface 
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registration. This consists of the conformal factor and mean curvature, encoding both 

intrinsic surface structure and information on its 3D embedding. After we compute these 

two local features at each surface point, we compute their summation and then linearly 

scale the dynamic range of the summation into the range 0-255, to obtain a feature image 

for the surface. We further register each hippocampal surface to a common template 

surface. With surface conformal parameterization and conformal representation, we 

generalize the well-studied image fluid registration algorithm (Bro-Nielsen and 

Gramkow, 1996; D’Agostino et al., 2003) to general surfaces. Furthermore, most of the 

image registration algorithms in the literature are not symmetric, i.e., the correspondences 

between the two images depending on which image is assigned as the deforming image 

and which is the non-deforming target image. An asymmetric algorithm can be 

problematic as it tends to penalize the expansion of image regions more than shrinkage 

                                

                                                 

  

  
  

    

   

Figure 3.1.1. Image Preprocessing 
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(Rey et al., 2002). Thus, in our system, we further extend the surface fluid registration 

method to an inverse-consistent framework (Leow et al., 2005). The obtained surface 

registration is diffeomorphic. For details of our inverse-consistent surface fluid 

registration method, we refer to (Shi, Thompson, et al., 2013). 

After parameterization and registration, we establish a one-to-one correspondence 

map between hippocampal surfaces. This makes it effective for us to compare and 

analyze surface data. Besides, each surface has the same number of vertices (150 × 100) 

as shown in Figure. 3.1.1. The intersection of the red curve and the blue curve is a 

surface vertex, and at each vertex, I calculate features, the radial distance (RD) and the 

surface metric tensor used in tensor-based morphometry (TBM) (Chung et al., 2008a; 

Davatzikos, 1996; Thompson et al., 2000b; Woods, 2003) and multivariate tensor-based 

morphometry (mTBM). The RD (a scalar at each vertex) represents the thickness of the 

shape at each vertex to the medical axis (Pizer et al., 1999; Paul M. Thompson et al., 

2004), this reflects the surface differences along the surface normal directions. The 

medial axis is determined by the geometric center of the isoparametric curve on the 

computed conformal grid (Y. Wang et al., 2011). The axis is perpendicular to the 

isoparametric curve, so the thickness can be easily calculated as the Euclidean distance 

between the core and the vertex on the curve. The mTBM statistics (a 3 × 1 vector at 

each vertex) have been frequently studied in our prior work (Shi et al., 2015; Shi, Wang, 

et al., 2013; Y. Wang et al., 2009, 2010). They measure local surface deformation along 

the surface tangent plane and show improved signal detection sensitivity relative to more 

standard tensor-based morphometry (TBM) measures computed as the determinant of the 
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Jacobian matrix (Y. Wang et al., 2013). RD and mTBM jointly form a new feature, 

known as the surface multivariate morphometry statistics (MMS). Therefore, MMS is a 

4 × 1 vector at each vertex. The hippocampal surface in each hemisphere has 15,000 

vertices, so the feature dimensionality for each hippocampus in each subject is 60,000. 

3.2.Surface Feature Dimensionality Reduction  

This work develops the Patch Analysis-based Surface Correntropy-induced 

Sparse coding and max-pooling (PASCS-MP) to predict individual Aβ burden (see 

Figure 3.2.1 for the processing pipeline). In panel (1), hippocampal structures are 

segmented from registered brain MR images with FIRST from the FMRIB Software 

Library (FSL) (Paquette et al., 2017; Patenaude et al., 2011). Hippocampal surface 

meshes are constructed with the marching cubes algorithm (Lorensen & Cline, 1987). In 

panel (2), hippocampal surfaces are parameterized with the holomorphic flow 

segmentation method (Y. Wang et al., 2007). After the surface fluid registration 

algorithm, the hippocampal MMS features are calculated at each surface point. We 

propose a PASCS-MP and classification system to refine and classify MMS patches in 

individuals with different Aβ status. We randomly select patches on each hippocampal 

surface and generate a sparse code for each patch with our novel PASCS. Next, we adopt 

a max-pooling operation on the learned sparse codes of these patches to generate a new 

representation (a vector) for each subject. Finally, we train binary random forest 

classifiers on individual sparse codes in people with different Aβ status; we validate them 

with 10-fold cross-validation. The whole system is publicly available, 

http://gsl.lab.asu.edu/software/pass-mp/ . 

http://gsl.lab.asu.edu/software/pass-mp/
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Figure 3.2.1.  Patch Analysis-based Surface Correntropy-induced Sparse Coding 

and Max-pooling (PASCS-MP) Pipeline. Panel (1) shows hippocampal surfaces 

generated from brain MRI scans. In subfigure A of panel (2), surface-based Multivariate 

Morphometry Statistics (MMS) are calculated after fluid registration of surface 

coordinates across subjects. MMS is a 4 × 1 vector on each vertex, including radial 

distance (scalar) and multivariate tensor-based morphometry (3 × 1 vector). In subfigure 

B and C, we randomly select patches on each hippocampal surface and generate a sparse 

code for each patch with our novel Patch Analysis-based Surface Correntropy-induced 

Sparse-coding (PASCS) method. In subfigure D and E, we apply the max pooling 

operation to the learned sparse codes to generate a new representation (a vector) for each 

subject. In subfigure F, we train binary random forest classifiers on these representations 

and validate them with 10-fold cross-validation. 
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3.2.1. Patch Analysis-based Surface Correntropy-induced Sparse coding 

The above-mentioned vertex-wise surface morphometry feature, MMS, is a high-

fidelity measure to describe the local deformation of the surface and can provide detailed 

localization and visualization of regional atrophy or expansion (Yao et al., 2018) and 

development (Thompson et al., 2000a). However, the high dimensionality of such 

features is likely to cause problems for classification. Feature reduction methods 

proposed by (Davatzikos et al., 2008; D. Sun et al., 2009) may ignore the intrinsic 

properties of a structure’s regional morphometry. Therefore, we introduce the following 

feature reduction method for the vertex-wise surface morphometry features. 

The surface MMS feature dimension is typically much larger than the number of 

subjects, i.e., the so-called high dimension-small sample problem. To extract useful 

surface features and reduce the dimension before making predictions, this work first 

randomly generates square windows on each surface to obtain a collection of small image 

patches with different amounts of overlap. In our prior AD studies (Wu et al., 2018; J. 

Zhang, Shi, et al., 2016; J. Zhang, Stonnington, et al., 2016), we discuss the most suitable 

patch size and number. Therefore, in this work, we adopt the same optimal experimental 

settings, as 1,008 patches (patch size=10 × 10 vertices) for each subject (504 patches for 

each side of the hippocampal surface). As these patches are allowed to overlap, a vertex 

may be contained in several patches. The zoomed-in window in subfigure (b) of panel (2) 

in Figure 3.2.1 shows overlapping areas on selected patches. After that, we use the 

technique of sparse coding and dictionary learning (Mairal et al., 2009) to learn 

meaningful features. Dictionary learning has been successful in many image processing 
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tasks as it can concisely model natural image patches. In this work, we propose a novel 

sparse coding and dictionary learning method with an l1-regularized correntropy loss 

function named Correntropy-induced Sparse-coding (CS), which is expected to improve 

the computational efficiency compared to Stochastic Coordinate Coding (SCC) (Lin et 

al., 2014). Formally speaking, correntropy is a generalized similarity measure between 

two scalar random variables U and V, which is defined by 𝒱𝜎(𝑈, 𝑉) = 𝔼𝒦𝜎(𝑈, 𝑉). Here, 

𝒦𝜎 is a Gaussian kernel given by 𝒦𝜎(𝑈, 𝑉) = exp {− (u −  v)
2 𝜎2⁄ } with the scale 

parameter 𝜎 > 0, (u-v) being a realization of (U, V) (Feng et al., 2015; Gui et al., 2017). 

Utilizing the correntropy measure as a loss function will reduce the negative influence of 

non-Gaussian noise in the data. 

Classical dictionary learning techniques (H. Lee et al., 2007; Olshausen & Field, 

1997) consider a finite training set of feature maps, 𝑋 = (𝑥1, 𝑥2, … , 𝑥𝑛) in 𝑅𝑝×𝑛. In our 

study, 𝑋 is the set of MMS features from n surface patches of all the samples. All the 

MMS features on each surface patch, 𝑥𝑖, is reshaped to a 𝑝-dimensional vector. And we 

desire to generate a new set of sparse codes, 𝑍 = (𝑧1, 𝑧2, … , 𝑧𝑛) in 𝑅𝑚×𝑛 for these 

features. Therefore, we aim to optimize the empirical cost function as Eq. (3.2.1). 

                                               𝑓(𝐷, 𝑧𝑖) ≜ ∑ 𝑙(𝑥𝑖, 𝐷, 𝑧𝑖)
𝑛
𝑖=1                                    (3.2.1)  

where 𝐷 ∈ 𝑅𝑝×𝑚 is the dictionary and 𝑧𝑖 ∈ 𝑅
𝑚 is the sparse code of each feature vector. 

𝑙(𝑥𝑖, 𝐷, 𝑧𝑖) is the loss function that measures how well the dictionary 𝐷 and the sparse 

code 𝑧𝑖 can represent the feature vector 𝑥𝑖. Then, 𝑥𝑖 can be approximated by 𝑥𝑖 = 𝐷𝑧𝑖. In 

this way, we convert the 𝑝-dimensional feature vector, 𝑥𝑖, to a 𝑚-dimensional sparse 

code, 𝑧𝑖, where 𝑚 is the dimensionality of the sparse code and the dimensionality could 
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be arbitrary. In this work, we introduce the correntropy measure (Gui et al., 2017) to the 

loss function and define the 𝑙1-sparse coding optimization problem as Eq. (3.2.2) 

                                         min 
𝐷,𝑧𝑖

1

2
∑ 𝑒𝑥𝑝 (−

‖𝐷𝑧𝑖−𝑥𝑖‖2
2

𝜎2
) + 𝜆∑ ‖𝑧𝑖‖1

𝑛
𝑖=1

𝑛
𝑖=1                     (3.2.2) 

where 𝜆 is the regularization parameter, 𝜎 is the kernel size that controls all properties of 

correntropy. ‖∙‖2 and ‖∙‖1are the 𝑙2-norm and 𝑙1-norm and exp() represents the 

exponential function. The first part of the loss function measures the degree of the image 

patches’ goodness and the correntropy may help remove outliers. Meanwhile, the second 

part is well known as the 𝑙1 penalty (W. J. Fu, 1998) that can yield a sparse solution for 𝑧𝑖 

and select robust and informative features. Specifically, there are m columns (atoms) in 

the dictionary 𝐷 and each atom is 𝑑𝑗 ∈ 𝑅
𝑝, 𝑗 = 1, 2, … ,𝑚. To avoid 𝐷 from being 

arbitrarily large and leading to arbitrary scaling of the sparse codes, we constrain each 𝑙2-

norm of each atom in the dictionary no larger than one. We will let C become the convex 

set of matrices verifying the constraint as Eq. (3.3). 

                                    C ≜ {𝐷 ∈ 𝑅𝑝×𝑚𝑠. 𝑡. ∀𝑗 = 1,2, … ,𝑚, 𝑑𝑗
𝑇𝑑𝑗 ≤ 1}              (3.2.3) 

Note that, the empirical problem cost 𝑓(𝐷, 𝑧𝑖) is not convex when we jointly 

consider the dictionary 𝐷 and the coefficients 𝑍. But the function is convex concerning 

each of the two variables, 𝐷, and 𝑍, when the other one is fixed. Since it takes much time 

to solve 𝐷 and 𝑍 when dealing with large-scale data sets and a large-size dictionary, we 

adopt the framework in the stochastic coordinate coding (SCC) algorithm (Lin et al., 

2014), which can dramatically reduce the computational cost of the sparse coding, while 

keeping a comparable performance.  
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To solve this optimization problem, we reformulate the first part of the equation 

by the half-quadratic technique (Nikolova & Ng, 2006) and then the objective can be 

solved as the minimization problem Eq. (3.2.4): 

           min
1

2
𝐷,𝑧𝑖

∑ ℎ𝑖‖𝐷𝑧𝑖 − 𝑥𝑖‖2
2 + 𝜆∑ ‖𝑧𝑖‖1

𝑛
𝑖=1

𝑛
𝑖=1 , ℎ𝑖 = exp (−

‖𝐷𝑧𝑖−𝑥𝑖‖2
2

𝜎2
).          (3.2.4)                                                           

Here the auxiliary variable, ℎ𝑖, will be updated in each update iteration. At each iteration, 

we update 𝐷 and 𝑍 alternately, which means we firstly fix 𝐷 and update the sparse code 

𝑍 with coordinated descent (CD) and then fix 𝑍 to update the dictionary 𝐷 via stochastic 

gradient descent (SGD). As our optimization method is stochastic, we only update the 

sparse code and dictionary with only one signal for each iteration. In the following 

paragraphs, we will discuss the optimization in one iteration with only one signal.  

If a signal, 𝑥 = (𝑥1, 𝑥2, … , 𝑥𝑝) 
𝑇 ∈ 𝑅𝑝, is given, we first update its corresponding 

sparse code, 𝑧 = (𝑧1, 𝑧2, … , 𝑧𝑚), via CD. Let 𝑧𝑙 denote the 𝑙-th entry of 𝑧 and 𝑑𝑘𝑙 

represents the 𝑘-th item of 𝑑𝑙. 𝑑𝑙 is the 𝑙-th atom/column of the dictionary 𝐷. Then, we 

can calculate the partial derivative of 𝑧𝑙 in the first part of the function, 𝑓(𝐷, 𝑧𝑖), as  

𝜕

𝜕𝑧𝑙
𝑐(𝐷, z) =

𝜕

𝜕𝑧𝑙

1

2
ℎ‖𝐷𝑧 − 𝑥‖2

2 = −ℎ∑ 𝑑𝑘𝑙 (𝑥𝑘 −∑ 𝑑𝑘𝑟𝑧𝑟
𝑚

𝑟=1
)

𝑝

𝑘=1
 

                           = −ℎ∑ 𝑑𝑘𝑙 (𝑥𝑘 −∑ 𝑑𝑘𝑟𝑧𝑟
𝑚

𝑟≠𝑙
− 𝑑𝑘𝑙𝑧𝑙)                              

𝑝

𝑘=1
 

                    = −ℎ∑ 𝑑𝑘𝑙 (𝑥𝑘 −∑ 𝑑𝑘𝑟𝑧𝑟
𝑚

𝑟≠𝑙
)

𝑝

𝑘=1
+ ℎ𝑧𝑙∑ (𝑑𝑘𝑙)

2
𝑝

𝑘=1
 

                                      = −𝜌𝑙 + ℎ𝑧𝑙𝜐𝑙                                                                       (3.2.5) 
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where 𝜌𝑙 = ℎ∑ 𝑑𝑘𝑙(𝑥𝑘 − ∑ 𝑑𝑘𝑟𝑧𝑟
𝑚
𝑟≠𝑙 )𝑝

𝑘=1 , 𝜐𝑙 = ∑ (𝑑𝑘𝑙)
2𝑝

𝑘=1  and ℎ is the auxiliary 

variable for the signal. Since we normalize the atom, 𝑑𝑙, in each iteration, 𝜐𝑙 can be 

ignored. Then, we compute the subdifferential of the lasso loss function and equate it to 

zero to find the optimal solution as follows: 

              
𝜕

𝜕𝑧𝑙
𝑓(𝐷, z) =

𝜕

𝜕𝑧𝑙
𝑐(𝐷, z) +

𝜕

𝜕𝑧𝑙
𝜆‖𝑧‖1 = −𝜌𝑙 + ℎ𝑧𝑙𝜐𝑙 +

𝜕

𝜕𝑧𝑙
𝜆‖𝑧‖1 = 0       (3.2.6) 

Then, according to the derivative of the l1-norm, we can have the following equations. 

Figure 3.2.2. Illustration of One Iteration of the Proposed Patch Analysis-

based Surface Correntropy-induced Sparse-coding (PASCS) Algorithm. The 

input is many 10 × 10 patches on each surface based on our multivariate 

morphometry statistics (MMS). With an image patch 𝑥𝑖, PASCS performs one step 

of coordinate descent (CD) to find the support and the sparse code. Meanwhile, 

PASCS performs a few steps of CD on supports (non-zero entries) to obtain a new 

sparse code 𝑧𝑖
𝑘. Then, PASCS updates the supports (green boxes in the figure) of 

the dictionary by stochastic gradient descent (SGD) to obtain a new dictionary 

𝐷𝑖+1,𝑡. Here, t represents the t-th epoch; i represents the i-th patch. 
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                                             {

−𝜌𝑙 + ℎ𝑧𝑙𝜐𝑙 − 𝜆 = 0       𝑖𝑓 𝑧𝑙 < 0
−𝜌𝑙 − 𝜆 ≤ 0 ≤ −𝜌𝑙 + 𝜆 𝑖𝑓 𝑧𝑙 = 0
−𝜌𝑙 + ℎ𝑧𝑙𝜐𝑙 + 𝜆 = 0      𝑖𝑓 𝑧𝑙 > 0

                             (3.2.7) 

Finally, we can get the soft thresholding function as: 

                                    𝑧𝑙 =

{
 
 

 
 

𝜌𝑙+𝜆

ℎ𝜐𝑙
       𝑓𝑜𝑟 𝜌𝑙 < −𝜆

     0     𝑓𝑜𝑟 − 𝜆 ≤ 𝜌𝑙 ≤ 𝜆
𝜌𝑙−𝜆

ℎ𝜐𝑙
      𝑓𝑜𝑟 𝜌𝑙 > 𝜆

                               (3.2.8) 

After we update the sparse code, we propose the following strategy to accelerate 

the convergence for updating the dictionary 𝐷. The atom, 𝑑𝑙 will stay unchanged if 𝑧𝑙 is 

zero since ∇𝑑𝑙 = ℎ(𝐷𝑧 − 𝑥)𝑧𝑙 = 0. Otherwise, as shown in Figure 3.3.2, we can update 

the 𝑙-th atom of the dictionary 𝐷 as 𝑑𝑙 ← 𝑑𝑙 − 𝛾𝑙ℎ(𝐷𝑧 − 𝑥)𝑧𝑙. 𝛾𝑙 is the learning rate 

provided by an approximation of the Hessian: 𝑅 ← 𝑅 + 𝑧𝑧𝑇 and 𝛾𝑙 is given by 1/𝑟𝑙𝑙, 

where 𝑟𝑙𝑙 is the item at the 𝑙-th row and 𝑙-th column of the Hessian matrix 𝑅. The pseudo-

code of the model was shown in Alg.3.2.1, dubbed as PASCS.  

3.2.2. Pooling and Predicting 

After we get the sparse code (the dimension is m) for each patch, the 

dimensionality of sparse codes for each subject is still too large for classification, which 

is 𝑚× 1008. Therefore, we apply Max-pooling to reduce the feature dimensionality for 

each subject. Max-pooling (Boureau et al., 2010) is a way of taking the most responsive 

node of a given region of interest and serves as an important layer in the convolutional 

neural network architecture. In this work, we compute the maximum value of a particular 

feature over all sparse codes of a subject and generate a new representation for each 

subject, which is an m-dimensional vector. These summary representations are much 



 

  20 

lower in dimension, compared to using all the extracted surface patch features; this can 

improve results generalizability via less over-fitting.  Finally, I choose the random forest 

algorithm (Liaw and Wiener, 2002) for the binary classification and ridge regression for 

predicting measurements of Aβ and tau. 

  



 

  21 

Alg. 3.2.1 Patch Analysis-based Surface Correntropy-induced Sparse-coding 

Require: Data set 𝑿 = (𝒙𝟏, 𝒙𝟐, … , 𝒙𝒏) in 𝑹𝒑×𝒏 

Ensure: Dictionary 𝑫 ∈ ℝ𝒑×𝒎 and sparse codes 𝒁 = (𝒛𝟏, 𝒛𝟐, … , 𝒛𝒏) ∈ ℝ
𝒎×𝒏 

Initialize: 𝑫𝟏,𝟏, 𝑹 = 𝟎, 𝒛𝒊
𝟎 = 𝟎, 𝒉𝒊

𝟎 = 𝟏, 𝒊 = 𝟏,… , 𝐧 

1: for 𝒕 =  𝟏 to 𝝉 do 

2:        for 𝒊 =  𝟏 to 𝒏 do 

3:              Get an image patch 𝒙𝒊 from 𝑿. 

4:              Update 𝒛𝒊
𝒕 via coordinate descent:  

𝒛𝒊
𝒕 ← 𝑪𝑫(𝒙𝒊, 𝑫

𝒊,𝒕, 𝒛𝒊
𝒕−𝟏). 

5:              Update Hessian matrix and the learning rate:  

𝑹 ← 𝑹+ 𝒛𝒊
𝒕(𝒛𝒊

𝒕)𝑻, 𝜸𝒊,𝒍 = 𝟏/𝒓𝒍𝒍. 

6:              Update the support of the dictionary via SGD for non-zero entry 𝒛𝒊,𝒍
𝒕  

(and normalize it): 

𝒅𝒍
𝒊+𝟏,𝒕 ← 𝒅𝒍

𝒊,𝒕 − 𝜸𝒊,𝒍𝒉𝒊(𝑫
𝒊,𝒕𝒛𝒊

𝒕 − 𝒙𝒊)𝒛𝒊,𝒍
𝒕 . 

7:              Update auxiliary variable 𝒉𝒊: 

𝒉𝒊 = 𝐞𝐱𝐩(−‖𝑫𝒊,𝒕𝒛𝒊
𝒕 − 𝒙𝒊‖𝟐

𝟐
𝝈𝟐⁄ ). 

8:              If 𝒊 =  𝒏, Then 𝑫𝟏,𝒕+𝟏 = 𝑫𝒏,𝒕. 

9:        end for 

10: end for 

Output: 𝑫 = 𝑫𝒏,𝝉 and 𝒛𝒊 = 𝒛𝒊
𝝉 for 𝒊 = 𝟏,… , 𝐧 
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3.3.Federated Morphometry Feature Selection 

 In this work, we develop a Federated Morphometry Feature Selection 

(FMFS) model to detect the influence of Aβ and tau deposition on hippocampal shape 

deformity and to better support the future prediction of AD pathology as shown in Figure 

3.3.1. In panel (1), each institution first extracts the morphometric features locally. The 

hippocampal structures are segmented from registered brain MR images and smoothed 

hippocampal surfaces are further generated. After the surface parameterization and fluid 

registration, the hippocampal radial distance (RD) and tensor-based morphometry (TBM) 

features are calculated at each surface point. Each institution selects patches on each 

hippocampal surface and reshapes the grouped features (RD or TBM on each patch are 

one group) of each subject to a vector. Next, in panel (2), taking each Aβ/tau 

measurement as the dependent variable, the institutions perform the federated feature 

selection model on these patches of features to generate local hippocampal regions of 

interest (ROIs) for each Aβ/tau measurement.  

  



 

  23 
 

                                                      

                       
                    

                     
                

                                                             

                           
                

 

  
  

  

   

  
  

                                                 

       

         

       

         

       

         

 

          
            
         

          
   

   

                  
        

                                    

 

                                             
                                            
                                    

                                
                                    
                 

Figure 3.3.1.  Federated Morphometry Feature Selection (FMFS) Pipeline. Panel 

(1) shows the steps for each institution to extract morphometric features locally. The 

hippocampal structures are segmented from registered brain MR images and 

smoothed hippocampal surfaces are then generated. After the surface 

parameterization and fluid registration, the hippocampal radial distance (RD) and 

tensor-based morphometry (TBM) features are calculated at each surface point. Each 

institution selects patches on each hippocampal surface and reshapes the grouped 

features of each subject into a vector. Next, in panel (2), taking Aβ/tau measurements 

as dependent variables, the institutions perform the federated feature selection model 

on these patches of features to generate hippocampal local regions of interest (ROIs) 

for each Aβ/tau measurement. 
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3.3.1. Federated Group Lasso Regression 

Group LASSO (Yuan & Lin, 2006) is a widely-used technique for group-wise 

feature selection in high dimensional data. A group-LASSO linear regression has the 

following optimizing problem: 

              min
β ∈ Rp

𝐹(𝛽)   =
1

2
‖𝑦 − ∑ 𝑋𝑔

𝐺
𝑔=1 𝛽𝑔‖2

2
+ 𝜆∑ 𝑤𝑔‖𝛽𝑔‖2

𝐺
𝑔=1 ,              (3.3.1) 

where 𝑋𝑔 ∈ R
𝑁×𝑝𝑔 is the feature matrix, and 𝑦 denotes the 𝑁 dimensional response 

vector. Group LASSO divides the original feature matrix 𝑋 ∈ R𝑁×𝑝 into 𝐺 different 

groups, where 𝑋𝑔 represents the features in 𝑔th group and 𝑤𝑔 is the weight for this group. 

After solving the group LASSO problem, we get the 𝐺 solution vectors, 𝛽1, 𝛽2, … , 𝛽𝐺. 

The dimensionality of each group, 𝑝𝑔, can be arbitrary and the whole solution vector 𝛽 is 

[𝛽1, 𝛽2, … , 𝛽𝐺] ∈ R
𝑝. Additionally, 𝜆 is a positive regularization parameter to control the 

sparsity of the solution vector, and 𝑤𝑔 is the weight for 𝑔th group of features. 

There are many optimization methods to solve the group LASSO problem; block 

coordinate descent (BCD) (Qin et al., 2013) is one of the most efficient. Instead of 

updating all the variables at the same time, BCD only updates one or several blocks of 

variables at each epoch. Therefore, for the group LASSO problem, it can optimize one 

group of variables while keeping the other ones fixed. Based on this idea, we proposed a 

federated block coordinate descent (FBCD) to solve our problem. 

(Q. Li et al., 2016) proposed an optimization model, the local query model 

(LQM), which preserves the data privacy at each institution. We assume that there are 𝐼 
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institutions, and each of them owns a private data set (𝑋𝑖, 𝑦𝑖). We can reformulate the 

problem (3.3.1) as 

                            𝑚𝑖𝑛β∑ 𝑓𝑖(𝑋𝑖 , 𝑦𝑖; 𝛽)𝐼
𝑖=1 + 𝜆∑ 𝑤𝑔‖𝛽𝑔‖2

𝐺
𝑔=1 ,                            (3.3.2) 

where 𝑓𝑖(𝑋𝑖, 𝑦𝑖; 𝛽) =
1

2
‖𝑦𝑖 − ∑ 𝑋𝑔

𝑖𝐺
𝑔=1 𝛽𝑔‖2

2
 is the least square loss of the 𝑖th institution. 

We then have the global gradient, 

                 𝛻𝑓(𝑋, 𝑦; 𝛽) = ∑ 𝛻𝑓𝑖(𝑋𝑖 , 𝑦𝑖; 𝛽)𝐼
𝑖=1 = ∑ (𝑋𝑖)

𝑇
(𝑋𝑖𝛽 − 𝑦𝑖)𝐼

𝑖=1 .           (3.3.3) 

Each of the local institutions calculates its own gradient locally and uploads it to 

the master server. The master server will compute the global gradient, ∇𝑓(𝑋, 𝑦; 𝛽), by 

adding all ∇𝑓𝑖(𝑋𝑖 , 𝑦𝑖; 𝛽). It then assigns the global update gradient ∇𝑓(𝑋, 𝑦; 𝛽) back to 

all the local institutions to compute 𝛽. Then, 𝛽 is updated locally with the shrinkage 

function at the 6th line of Algorithm 1. Our proposed Federated Block Coordinate 

Descent (FBCD) method is outlined in Alg. 3.3.1. 
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Algorithm 3.3.1. Federated Block Coordinate Descent (FBCD) 

Input: Data pairs from the 𝑖 institutions (𝑋1, 𝑦1), … , (𝑋𝑖 , 𝑦𝑖), … , (𝑋𝐼 , 𝑦𝐼) with 

group information and the regularization parameter 𝜆 

Output: The learned solution 𝛽 

Initialize: 𝛽 = 𝟎 ∈ 𝑅𝑝 

1: while convergence and maximum number of iterations are not reached do 

2:        Randomly select 𝑔th group to optimize 

3:        Compute the local gradient of 𝑔th group: ∇𝑓𝑖(𝑋𝑔
𝑖 ) = [𝑋𝑔

𝑖 ]
𝑇
(𝑋𝑔

𝑖𝛽 − 𝑦𝑖) 

4:        Compute the global gradient by LQM: ∇𝑓(𝑋𝑔) = ∑ ∇𝑓𝑖(𝑋𝑔
𝑖 )𝐼

𝑖=1  

5:        𝛽𝑔 = 𝛽𝑔 − ∇𝑓(𝑋𝑔) ‖𝑋𝑔‖2
2

⁄  

6:        𝛽𝑔 = {

𝛽𝑔 −
𝜆𝑤𝑔

‖𝛽𝑔‖2
𝛽𝑔, 𝑖𝑓  ‖𝛽𝑔‖2 >

𝜆𝑤𝑔

‖𝑋𝑔‖2
2 

0 ∈ ℝ𝑝𝑔 ,           𝑖𝑓  ‖𝛽𝑔‖2 ≤
𝜆𝑤𝑔

‖𝑋𝑔‖2
2

 

3.3.2. Federated Screening for Group Lasso 

Finding the optimal value for the regularization parameter 𝜆 is a common problem 

in LASSO techniques. The most frequently used methods, such as cross-validation and 

stability selection, solve it by trying a sequence of regularization parameters, 𝜆1 > ⋯ >

𝜆𝜅; this can be very time-consuming. Instead, the enhanced dual polytope projection rule 

(EDPP) (J. Wang et al., 2015) achieved a 200x speedup on the cross-validation in real-

world applications, by using information derived from the solution of the previously tried 

regularization parameter. For the group LASSO problem, the 𝑔th group of features 𝑋𝑔 
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can be discarded if it satisfies the screening rule, ‖𝐽𝑔‖2 ≤ 𝑤𝑔(2𝜆 − 𝜆𝑚𝑎𝑥) where 𝜆𝑚𝑎𝑥 =

𝑚𝑎𝑥
𝑔

‖𝐿𝑔‖2

𝑤𝑔
 and 𝐽𝑔 and 𝐿𝑔 are the elements of 𝐽 and 𝐿 defined in Alg. 3.3.2. The screening 

rule is based on the uniqueness and non-expansiveness of the optimal dual solution, 

because the feasible set in the dual space is a convex and closed polytope. More 

information on EDPP may be found at the following GitHub: http://dpc-

screening.github.io/glasso.html  

Following the screening rule, we further propose a federated screening rule for 

group LASSO, named federated dual polytope projection for group LASSO (FDPP-GL), 

to rapidly locate the inactive features in a distributed manner while preserving data 

privacy at each institution (Figure 3.3.1 (g)). We summarize the method in Alg. 3.3.2. In 

the algorithm, we estimate the maximum regularization parameter, 𝜆𝑚𝑎𝑥. The input 

sequence of parameters, 𝜆1, 𝜆2,..., 𝜆𝜅, should be no greater than 𝜆𝑚𝑎𝑥. Based on the 

solutions with the sequence of regularization parameters, we can then perform stability 

selection (Meinshausen & Bühlmann, 2010) to select significant features that are most 

related to the corresponding 𝑦 (Figure 3.3.1 (h)).   

http://dpc-screening.github.io/glasso.html
http://dpc-screening.github.io/glasso.html
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Algorithm 3.3.2. Federated Dual Polytope Projection for Group Lasso (FDPP-GL) 

Input: Data pairs of the 𝑖 institutions (𝑋1, 𝑦1), … , (𝑋𝑖 , 𝑦𝑖), … , (𝑋𝐼 , 𝑦𝐼) with information 

of 𝐺 groups and regularization parameters 𝜆1 > 𝜆2 > ⋯ > 𝜆𝜅 

Output: The optimal solution 𝛽∗(𝜆1), 𝛽
∗(𝜆2), … , 𝛽

∗(𝜆𝜅) 

1: 𝐿𝑖 = (𝑋𝑖)
𝑇
𝑦𝑖, then computes 𝐿 = ∑ 𝐿𝑖𝐼

𝑖=1  by LQM 

2: 𝜆0 = 𝜆𝑚𝑎𝑥 = max
𝑔

‖𝐿𝑔‖2

𝑤𝑔
, 𝐿𝑔 represents all the elements in 𝑔th group 

3: 𝑄𝑖 = 𝑎𝑟𝑔𝑚𝑎𝑥𝑥𝑔𝑖
‖𝐿𝑔‖2

𝑤𝑔
, compute 𝑆 = ∑ (𝑄𝑖)

𝑇
𝑦𝑖𝐼

𝑖=1  by LQM 

4: for 𝑘 ← 1 to 𝜅 do 

5:        𝜃𝑖(𝜆𝑘−1) = {

𝑦𝑖−∑ 𝑥𝑔
𝑖 𝛽𝑔

∗ (𝜆𝑘−1)
𝐺
𝑔=1

𝜆𝑘−1
, 𝑖𝑓 𝜆𝑘−1 ∈ (0, 𝜆0)  

𝑦𝑖

𝜆0
,                    𝑖𝑓  𝜆𝑘−1 = 𝜆0

 

6:        𝑣1
𝑖(𝜆𝑘−1) = {

𝑦𝑖

𝜆𝑘−1
− 𝜃𝑖(𝜆𝑘−1) , 𝑖𝑓  𝜆𝑘−1 ∈ (0, 𝜆0) 

𝑄𝑖𝑆,               𝑖𝑓  𝜆𝑘−1 = 𝜆0

 

7:        𝑣2
𝑖 (𝜆𝑘, 𝜆𝑘−1) =

𝑦𝑖

𝜆𝑘
− 𝜃𝑖(𝜆𝑘−1) 

8:        𝑀𝑖 = ‖𝑣1
𝑖(𝜆𝑘−1)‖2

2
, , then compute 𝑀 = ∑ 𝑀𝑖𝐼

𝑖=1  by LQM 

9:        𝑣2
𝑖 (𝜆𝑘, 𝜆𝑘−1) = 𝑣2

𝑖 (𝜆𝑘, 𝜆𝑘−1) −
〈𝑣1
𝑖 (𝜆𝑘−1),𝑣2

𝑖 (𝜆𝑘,𝜆𝑘−1)〉

𝑀
𝑣1
𝑖(𝜆𝑘−1) 

10:       for 𝑔 ← 1 to 𝐺 do 

11:               𝐽𝑖 = [𝑋𝑔
𝑖 ]
𝑇
[𝜃𝑖(𝜆𝑘−1) +

1

2
𝑣2
𝑖 (𝜆𝑘, 𝜆𝑘−1)] 

12:               Compute 𝐽 = ∑ 𝐽𝑖𝐼
𝑖=1  by LQM 

13:               if 𝐽 < 1 −
1

2
‖𝑣2

𝑖 (𝜆𝑘, 𝜆𝑘−1)‖2‖𝑋𝑔‖2 then 

14:               All elements in 𝛽𝑔(𝜆𝑘) are zero 

15:       Discard features from data if the corresponding coefficients in 𝛽𝑔(𝜆𝑘) are 0 

16:       Solve the optimal solution, 𝛽∗(𝜆𝑘), by Alg. 3.3.1 
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3.3.3. Morphometry Feature Selection and Visualization 

We carry out the proposed federated group LASSO method to measure how 

significantly the patches of features are related to the response 𝑦. Given a decreasing 

sequence of regularization parameters, 𝜆1, … , 𝜆𝜅, we learn a set of corresponding models, 

𝛽(𝜆1),… , 𝛽(𝜆𝜅). We perform stability selection by counting the frequency of nonzero 

entries in the learned models and visualize the frequency on the surface. The counted 

frequency on each vertex is normalized to 1 to 100 and then mapped to a color bar. For 

better visualization, we smooth the values on each surface with a 2 × 3 averaging filter. 

The regions with higher frequency values will be assigned with warmer color as 

illustrated in the subfigure (h) of Figure 3.3.1. In other words, these areas have more 

significant associations with 𝑦. 

3.4.Federated Chow Test Framework for Imaging Genetics 

In this work, we propose a novel Federated Genotype-Expression-Image Data 

Integration model (GEIDI) based on the Chow test (Chow, 1960). The intuition behind 

our multi-omics framework is illustrated in Figure 3.4.1. Some important image-

expression relationships (correlations) may be diluted when the population is mixed 

together. Still, when we stratify the population based on their genotypes (a gene like 

APOE or a SNP like rs942439), we can observe strong correlations (AA and BB groups) 

across subgroups. Accordingly, as shown in Figure 3.4.2, our model is designed to detect 

if the relationships between X (imaging biomarker) and Y (gene expression) are different 

among the subgroups. The p-value of the model is then used to prioritize the trios 

(genotype-expression-image).  
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Econometrician Gregory Chow first proposed the Chow test in 1960 (Chow, 

1960) to determine whether correlation coefficients estimated in two subgroups are 

significantly different. In econometrics, it is most commonly used in time series analysis 

to test for the presence of a structural break at a period that can be assumed to be known 

as a priori (for instance, a significant historical event such as a war). For example, we 

can model the data as 𝑦 = 𝑤𝑋 + 𝜖. Then, the data can be broken into two groups 

according to some event and fitted to the regression model as, 𝑦1 = 𝑤1𝑥1 + 𝜖 and 𝑦2 =

𝑤2𝑥2 + 𝜖. The null hypothesis of the Chow test asserts that 𝑤1 = 𝑤2 and the model 

errors 𝜖 are independent and identically distributed from a normal distribution with 

unknown variance. Let 𝑆𝐶, 𝑆1, and 𝑆2 be the sum of squared residuals for the three 

regression models respectively, 𝑁1 and 𝑁2 are the number of observations in each group, 

Figure 3.4.1. The Intuition of Our Multi-omics Approach. The image-

tau relationship (correlation) is diluted when the population is mixed, but 

when we stratify the population based on their genotypes, we can observe 

strong correlations (AA and BB) across subgroups. 
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and 𝑘 is the number of parameters. The Chow test statistic is 𝐹 =
(𝑆𝐶−(𝑆1+𝑆2))/𝑘

(𝑆1+𝑆2)/(𝑁1+𝑁2−2𝑘)
, 

which follows the F-distribution with 𝑘 and 𝑁1 + 𝑁2 − 2𝑘 degrees of freedom.  

Although the Chow test is commonly used in the financial industry, it is seldom 

used in the biomedical field (B. Lee et al., 2021). In this work, we first generalize the 

Chow test model to estimate the multi-subgroup condition and further introduce a 

federated learning technique to the model. We apply the proposed model to the ADNI 

dataset to detect the significant trios among genotype, gene expression, and imaging 

biomarkers and discover the dominant genetic and transcriptomics factors for brain 

structures. 

3.4.1. Standardization 

We simulate the multi-site condition by separating all the samples into 𝐼 

hypothetical institutions (𝐼 = 5) on Apache Spark (spark.apache.org), a state-of-the-art 

distributed computing platform. (Although the ADNI data can be centralized, such a 

federated analysis would allow the method to be scaled up to much larger datasets, 

including genomic data that is difficult to centralize for logistic or regulatory reasons). As 

illustrated in Figure 3.4.2, the samples in each institution can be further partitioned into 

at most three subgroups (𝑔 = 1,2,3) according to the subject’s genotype at certain SNP 

loci (e.g. GG, GA, AA) or a gene (e.g., stratified by the three APOE genotypes 

considered in this study). Accordingly, 𝑋𝑖
𝑔

 and 𝑦𝑖
𝑔

 respectively represent the image 

biomarkers and gene expression values in the 𝑔th group of the 𝑖th institution. The data 
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from the 𝑔th group in all 𝐼 institutions will be fitted into a regression model in a federated 

strategy. 

3.4.2. Federated Chow Test Analysis 

Using federated linear regression, we can calculate four linear models for all the 𝐼 

institutions, including three models for three subgroups and one for all samples in the 

three subgroups. 𝑤(1)̅̅ ̅̅ ̅̅ , 𝑤(2)̅̅ ̅̅ ̅̅ , 𝑤(3)̅̅ ̅̅ ̅̅  and 𝑤(𝐶)̅̅ ̅̅ ̅̅  are their optimal coefficient vectors. The 

Chow test assumes that the errors ϵ are independent and identically distributed from a 

normal distribution by an unknown variance. The null hypothesis of the Chow test asserts 

that 𝑤(1)̅̅ ̅̅ ̅̅ , 𝑤(2)̅̅ ̅̅ ̅̅ , and 𝑤(3)̅̅ ̅̅ ̅̅  are equal. The predictive test suggested by Chow is then: 

                         𝐹 =
(𝑆(𝐶)−(𝑆(1)+𝑆(2)+𝑆(3)))/(2𝑘)

(𝑆(1)+𝑆(2)+𝑆(3))/(𝑁(1)+𝑁(2)+𝑁(3)−3𝑘)
,                                             (3.4.1) 

where 𝑆(𝐶) is the sum of squared residuals from the combined data from the three 

subgroups, 𝑆(1) is the sum of squared residuals from the first group, and so on for 𝑆(2) 

and 𝑆(3). 𝑁(1), 𝑁(2), and 𝑁(3) are the number of samples in each subgroup, and 𝑘 is the 

number of parameters. Under the null hypothesis, the test statistic follows the F-

distribution with 2𝑘 and 𝑁(1) + 𝑁(2) + 𝑁(3) − 3𝑘 degrees of freedom. The global center 

will calculate F by gathering all the least square losses and the number of subjects for 

each subgroup and combined data from each institution. For example, for the first 

subgroup, the global least-square loss is 𝑆(1) = ∑ 𝑆𝑖
(1)𝐼

𝑖=1  and the global subject number 

is 𝑁(1) = ∑ 𝑁𝑖
(1)𝐼

𝑖=1 . Eventually, the p-value will be calculated at the global coordinating 

center and assigned to each institution. 
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3.4.3. Federated Linear Regression 

Many regression models may be selected for the Chow test model, such as linear 

regression (Barbur et al., 1994), polynomial regression (Rawlings et al., 1998), ridge 

regression (Hoerl & Kennard, 1970), and so on. In this study, we focus on studying the 

differences in the relationships between imaging biomarkers and gene expression among 

different groups. Complex regression models, like polynomial regression, may lead to 

over-fitting and meaningless results. Also, sparse or penalized regression methods, such 

as ridge regression, require an appropriate regularization parameter. Therefore, in this 

work, linear regression would be the most rational choice.  

Since the federated regression models for each subgroup are the same, we omit 

the group superscripts here. For the data in one subgroup of all the 𝐼 institutions, we can 

calculate the linear regression equation as: 𝑦 = 𝑋𝑤 + ϵ, where 𝑋 ∈ 𝑅𝑁×𝑘 represents the 

independent variables, 𝑦 ∈ 𝑅𝑁 is a vector of the observations on a dependent variable, 

𝑤 ∈ 𝑅𝑘 is a coefficient vector, and ϵ ∈ 𝑅𝑁 is the disturbance vector. 𝑁 is the number of 

observations in the group, and 𝑘 is the number of parameters. Then, the coefficient vector 

𝑤 can be estimated by minimizing the least squared function, 𝑆(𝑤) =
1

2
‖𝑋𝑤 − 𝑦‖2

2.  

To avoid centralizing the data, (𝑋𝑖, 𝑦𝑖), from each institution, we first rewrite the 

minimization problem as, min
𝑤
∑ 𝑆𝑖(𝑤; 𝑋𝑖, 𝑦𝑖)
𝐼
𝑖=1 =

1

2
∑ ‖𝑋𝑖𝑤 − 𝑦𝑖‖2

2𝐼
𝑖=1 . Then, the global 

gradient can be calculated as, ∇𝑆(𝑤) = 𝑋𝑇(𝑋𝑤 − 𝑦) = ∑ 𝑋𝑖
𝑇(𝑋𝑖𝑤 − 𝑦𝑖)

𝐼
𝑖=1 =

∑ ∇𝑆𝑖(𝑤)
𝐼
𝑖=1 . Therefore, instead of centralizing the data, the global center only needs to 

gather the partial gradient, ∇𝑆𝑖(𝑤), which is calculated with (Xi,  yi) at each local 
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institution. After computing the global gradient, ∇𝑆(𝑤), the global center will send it 

back to 𝑖th local institution. Finally, 𝑤 will be updated at each institution by gradient 

descent with the same learning rate, 𝑤 ← 𝑤 − η∇𝑆(𝑤). The reason for not updating 𝑤 at 

the global center is to avoid possible data reconstruction. When 𝑤 is zero, the local 

gradient sent to the center is −𝑋𝑖
𝑇𝑦𝑖. Then, the global center can easily acquire 𝑋𝑖

𝑇𝑋𝑖𝑤 

and 𝑋𝑖 might be reconstructed if 𝑤 is known to the center. Consequently, our 

optimization strategy is able to preserve data privacy for all institutions. The whole 

framework of our federated Genotype-Expression-Image Integration model is 

summarized in Alg. 3.4.1. And the code can be downloaded at our website,  

http://gsl.lab.asu.edu/data/uploads/software/GEIDI/GEIDI.zip .  

  

http://gsl.lab.asu.edu/data/uploads/software/GEIDI/GEIDI.zip
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Algorithm 3.4.1. Federated Genotype-Expression-Image Data Integration Model. 

Input: Data pairs of the 𝐼 institutions,  (𝑋1, 𝑦1), . . . , (𝑋𝑖, 𝑦𝑖), . . . , (𝑋𝐼 , 𝑦𝐼) and the sample 

numbers of  each group, (𝑁1
(1)
, 𝑁1

(2)
, 𝑁1

(3)
), . . . , (𝑁𝑖

(1)
, 𝑁𝑖

(2)
, 𝑁𝑖

(3)
), . . . , (𝑁𝐼

(1)
, 𝑁𝐼

(2)
, 𝑁𝐼

(3)
) 

Output: p-value of the studying Genotype-Expression-Image trio 

Initialize: 𝑤(1), 𝑤(2), 𝑤(3), 𝑤(𝐶) = 𝟎 

1: for 𝑔 = {1,2,3, 𝐶} do 

2:        while convergence and maximum number of iterations are not reached do 

3:              Each institution computes the gradient:  

𝛻𝑆𝑖
(𝑔)
(𝑤(𝑔)) = [𝑋𝑖

(𝑔)
]𝑇(𝑋𝑖

(𝑔)
𝑤(𝑔) − 𝑦𝑖

𝑔(𝑔)
). 

4:              Global center computes and sends global gradient to each institution:  

𝛻𝑆(𝑔)(𝑤(𝑔)) =∑ 𝛻𝑆𝑖
(𝑔)
(𝑤(𝑔))

𝐼

𝑖=1
. 

5:              Each institution updates the coefficient with the global gradient: 

𝑤(𝑔) ← 𝑤(𝑔) − η𝛻𝑆(𝑔)(𝑤(𝑔)). 

6:        end while  

7:        Each institution calculates the sum of squared residual: 𝑆𝑖
(𝑔)
(𝑤(𝑔); 𝑋𝑖

(𝑔)
, 𝑦𝑖

(𝑔)
). 

8:        Global center gathers the global sum of squared residual: 𝑆(𝑔) = ∑ 𝑆𝑖
(𝑔)𝐼

𝑖=1 .  

9:      Global center gathers the global sample numbers: 𝑁(𝑔) = ∑ 𝑁𝑖
(𝑔)𝐼

𝑖=1 . 

10: end for 

11: Global center calculates F value with equation (1) and then computes and sends p-

value to all institutions. 
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CHAPTER 4 

EXPERIMENTAL RESULTS 

4.1.Results for PASCS-MP 

4.1.1. Data Description 

Data used in the preparation of this article were obtained from the Alzheimer's 

Disease Neuroimaging Initiative (ADNI) database (adni.loni.usc.edu) and the Open 

Access Series of Imaging Studies (OASIS) database (Marcus et al., 2010a). The ADNI 

was launched in 2003 as a public-private partnership, led by Principal Investigator 

Michael W. Weiner, MD. The primary goal of ADNI has been to test whether serial 

magnetic resonance imaging (MRI), positron emission tomography (PET), other 

biological markers, and clinical and neuropsychological assessment can be combined to 

measure the progression of mild cognitive impairment (MCI) and early Alzheimer's 

disease (AD). For up-to-date information, see www.adni-info.org.  

Table 4.1.1 shows demographic information we analyze from the ADNI and 

OASIS cohorts. From the ADNI cohort, we analyze 841 age and sex-matched subjects 

with florbetapir PET data and T1-weighted MR images, including 151 AD patients, 342 

MCI and 348 asymptomatic CU individuals. Among them, all the 151 AD patients, 171 

people with MCI and 116 CU individuals were Aβ positive. The remaining 171 MCI and 

232 CU individuals were Aβ negative. From OASIS database, we analyze age-and-sex-

matched 260 subjects with florbetapir PET data and T1-weighted MR images, including 

52 Aβ positive CU and 208 Aβ negative CU. To match the age and sex to the control 

group, we randomly select subjects from the majority group millions of times. For each 

http://www.adni-info.org/
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selected group and control group, we analyze the age with t-test and sex with chi-square 

test. We first select the groups, of which the p-value of Chi-squared test is 1. Among 

these groups, we select the one with the largest p-value of age. In this way, we try to 

minimize the statistical difference in age and sex. The p-values of Chi-squared test for 

sex and the p-values of t-test for age are shown in the columns after sex and age in Table 

1.  

In addition to each MRI scan, we also analyze centiloid measures (Navitsky et al., 

2018) from florbetapir PET data in ADNI and OASIS. Operationally, the positivity of Aβ 

biomarkers is defined using standard cut-offs, with some efforts to reconcile differences 

among different Aβ radiotracers using a norming approach called the centiloid scale 

(Klunk et al., 2015a; Rowe et al., 2017). ADNI florbetapir PET data are processed using 

AVID pipeline (Navitsky et al., 2018), and OASIS florbetapir PET data are processed 

using PUP (Y. K. Lee et al., 2013; Su et al., 2015). Both are converted to the centiloid 

scales according to their respective conversion equations (Navitsky et al., 2018; Su et al., 

2019). A centiloid cutoff of 37.1 is used to determine Aβ positivity, this threshold 

corresponds to pathologically determined moderate to frequent plaques (Fleisher et al., 

2011).  

For flortaucipir tau-PET - in a similar fashion to Aβ - tau data are reprocessed using a 

single pipeline consistent with (Sanchez et al., 2020), so that the standardized uptake 

value ratio (SUVR) from different ADNI study sites can be analyzed together. In this 

work, we examine two regional SUVR for tau deposition, corresponding to Braak12, and 

Braak34 (S. L. Baker, Lockhart, et al., 2017; S. L. Baker, Maass, et al., 2017; Maass et 
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al., 2017; Schöll et al., 2016). Table 4.1.2 shows the demographic information from the 

two cohorts that we analyzed. For amyloid PET, we utilize centiloid measures (Navitsky 

et al., 2018). Operationally, there have been widely accepted efforts to reconcile 

differences among different amyloid radiotracers using a norming approach called the 

centiloid scale (Klunk et al., 2015b; Rowe et al., 2017). ADNI florbetapir PET data are 

processed using AVID pipeline (Navitsky et al., 2018), which are converted to the 

Centiloid scales according to their respective conversion equations (Navitsky et al., 2018; 

Su et al., 2019).  

 



 

   

Table 4.1.1 Demographic Information for the Subjects We Study from the ADNI and OASIS Cohorts. 

Database Group Sex (M/F) p-val Age p-val MMSE Centiloid 

ADNI  

(n=841) 

Aβ+ AD (n=151) 79/72  74.6±7.8  22.6±3.1 86.3±27.4 

Aβ+ MCI (n=171) 92/79 1.00 74.1±7.4 0.90 27.7±1.7 76.8±26.4 

Aβ- MCI (n=171) 92/79 74.0±7.4 28.3±1.6 8.9±14.9 

Aβ+ CU (n=116) 45/71 1.00 75.9±6.1 0.78 28.9±1.1 71.1±26.4 

Aβ- CU (n=232) 90/142 75.7±6.3 29.0±1.3 7.5±14.5 

OASIS 

(n=260) 

Aβ+ CU (n=52) 22/30 1.00 70.5±7.5 0.08 29.0±1.3 71.4±20.9 

Aβ- CU (n=208) 88/120 68.5±6.8 29.0±1.3 8.5±9.5 

Values are mean ± standard deviation where applicable.
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Table 4.1.2 Demographic Information for the Participants We Studied From the ADNI Cohort. 

Cohort Group Sex (M/F) Age MMSE Braak12 Braak34 

tau 

(n=925) 

 

 

AD (n=115) 62/53 76.0±8.5 22.0±4.5 2.39±0.60 2.51±0.73 

MCI (n=278) 158/120 74.6±7.9 27.9±2.1 1.82±0.46 1.92±0.46 

CU (n=532) 210/322 73.4±7.1 29.1±1.1 1.58±0.23 1.73±0.21 

Cohort Group Sex (M/F) Age MMSE Centiloid 

Aβ 

(n=1,127) 

 

AD (n=173) 98/75 75.0±7.8 22.7±2.9 72.0±40.2 

MCI (n=516) 291/225 72.6±7.8 28.0±1.7 42.0±40.7 

CU (n=438) 200/238 74.5±6.5 29.0±1.2 24.4±33.3 

Values are mean ± standard deviation, where applicable. 
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4.1.2. Key Parameter Estimations for the PASCS-MP Method 

To apply PASCS-MP method on hippocampal MMS, four parameters need to be 

empirically assigned, namely: the patch size, the dimensionality of the learned sparse 

coding, the regularization parameter for the 𝑙1-norm (λ) and the kernel size (𝜎) in the 

exponential function. Selecting suitable parameters will lead to superior performance in 

refining lower dimensional MMS representations related to AD pathology. With 10-fold 

cross-validation, these key parameters are evaluated from PASCS-MP based 

classification performance on 109 AD patients and 180 CU subjects of ADNI-2 cohort. 

To avoid data leakage, these subjects are not used in the following study of Aβ burden 

classification.  

We perform grid search on the data set to explore the optimal parameter settings. 

In Figure 4.1.1, we only illustrate part of the classification accuracy for different values 

of each parameter in grid search since the combinations of four different parameters will 

lead to 54 results. For each parameter setting, we also repeat 10-fold cross-validation five 

times, and the average and 95% confidence interval of the accuracy are shown in Fig.3. 

When we evaluate one parameter, we fix the rest parameters. For example, in the first bar 

chart in Figure 4.1.1, we try different patch sizes including 5×5,10×10,15×15,20×20 and 

30×30 while we fix the sparse code dimensionality as to 1800, and set λ to 0.22, and σ to 

3.6. By testing varied sets of parameters, we find that the optimal patch size is 10×10, the 

optimal sparse code dimensionality is 1800, the optimal λ is 0.22 and the optimal σ is 3.6 

and these optimal parameters will be adopted in the study of Aβ burden classification.  
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Instead of predicting Tau measurements, we train ridge regression models to 

predict MMSE on a separate dataset from ADNI (100 AD patients, 100 MCI, and 100 

CN).  We perform grid search to explore the optimal parameter settings. After performing 

10-fold cross-validation ten times, we compare the average root mean squared errors 

(RMSE) of MMSE for each parameter setting. In Figure 4.1.2, we only illustrate the 

     

     

     
     

     

     

     

     

     

     

     

     

     

               

            

     
          

          

     

     

     

     

     

     

     

     

                    

                          

     
          

     

     

     

     

     

     

     

     

     

     

                    

                        

     

     

     

          

     

     

     

     

     

     

     

     

                       

          

Figure 4.1.1. The Relationship of Each Parameter to Classification Accuracy. The 

y-axis represents the value for each parameter. The orange bars represent the 

classification performances using the optimal parameters. Each bar represents the 

average and 95% confidence interval of classification accuracy. 

Figure 4.1.2. The Relationship of Each Parameter to RMSE. The x-axis represents 

the value for each parameter. The orange bars represent the classification 

performances using the optimal parameters. Each bar represents the average and 95% 

confidence interval for RMSE. 
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average and 95% confidence interval of RMSE for part of the grid search result. In each 

subfigure, we only compare one parameter and fix the remaining three. Eventually, we 

find that the optimal patch size is 10×10, the optimal sparse code dimensionality is 1800, 

the optimal λ is 0.22, and the optimal σ is 3.6; these optimal parameters are subsequently 

adopted for predicting tau and Aβ measurements. 

4.1.3. Classification of Aβ Burden 

To explore whether there is a significant gain in classification power with our new 

system, based on our surface MMS, we generate two different kinds of sparse codes with 

our previous framework (PASS-MP) (Dong et al., 2020a; Fu et al., 2021; Zhang et al., 

2017a, 2016b) and the new framework (PASCS-MP). The parameter settings for the two 

sparse coding methods are the same. Additionally, we apply the popular SPHARM 

method (Chung et al., 2008b; Shi, Thompson, et al., 2013) to calculate hippocampal 

shape features. Based on these three kinds of feature sets, we apply the random forest 

classifier to detect individuals with different Aβ status. Moreover, we also examine the 

classification performances using hippocampal MMS, surface area and volume measures. 

These classification performances are evaluated using ACC, B-ACC, SPE, SEN. For 

each binary classification of ADNI cohort, we repeat the 10-fold cross-validation 5 times; 

the mean and 95% confident interval of the evaluation measures are calculated as 

(Vanwinckelen & Blockeel, 2012) and shown in the middle three columns of Table 

4.1.3.  

We leverage the OASIS dataset as an external validation set to further evaluate 

the performance of our new framework. We firstly generate new representations with our 
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proposed PASCS-MP for all the CU subjects from ADNI and OASIS cohorts. Then, we 

train a binary random forest model on the ADNI dataset and test it with the OASIS 

dataset. Since there is no cross-validation here, there is no confident interval in the last 

column of Table 4.1.3. We also compute the area-under-the-curve (AUC) of the receiver 

operating characteristic (ROC). The ROC curve and AUC for these classification tasks 

are illustrated in Figure 4.1.3. This comparison analysis classification performance 

shows that the combination of PASCS-MP and hippocampal MMS measures have 

superior performance when detecting individuals with different Aβ status, compared to 

other similar methods. 

                             

                   

 

   

   

   

   

   

   

   

   

   

 

 
  
 
  
 
 
  
  
 
  
 
  

                                

                      

                     

                    

                    

                  

                             

                   

 

   

   

   

   

   

   

   

   

   

 

 
  
 
  
 
 
  
  
 
  
 
  

                                     

                      

                     

                    

                    

                  

                             

                   

 

   

   

   

   

   

   

   

   

   

 

 
  
 
  
 
 
  
  
 
  
 
  

                              

                      

                     

                    

                    

                  

                             

                   

 

   

   

   

   

   

   

   

   

   

 

 
  
 
  
 
 
  
  
 
  
 
  

                                      

                      

                     

                    

                    

                  

Figure 4.1.3. ROC Curves for the Classification Tasks, Aβ+ AD vs. Aβ- CU, Aβ+ 

MCI vs. Aβ- MCI, Aβ+ CU vs. Aβ- CU (ADNI), and Aβ+ CU vs. Aβ- CU (OASIS). 

OASIS is used as an external validation set for the model trained by ADNI CU. 
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Table 4.1.3. Classification Results for Four Contrasts. 

Area 
Aβ+ AD vs. 

Aβ- CU 

Aβ+ MCI vs. 

Aβ- MCI 

Aβ+ CU vs. Aβ- 

CU (ADNI) 

Aβ+ CU vs. Aβ- 

CU (OASIS) 

ACC 0.68±0.01 0.55±0.02 0.54±0.01 0.47 

B-ACC 0.69±0.02 0.55±0.02 0.54±0.02 0.43 

SPE 0.66±0.02 0.54±0.02 0.55±0.02 0.49 

SEN 0.71±0.03 0.56±0.03 0.53±0.04 0.37 

Volume 
Aβ+ AD vs. 

Aβ- CU 

Aβ+ MCI vs. 

Aβ- MCI 

Aβ+ CU vs. Aβ- 

CU (ADNI) 

Aβ+ CU vs. Aβ- 

CU (OASIS) 

ACC 0.71±0.01 0.53±0.02 0.50±0.03 0.51 

B-ACC 0.72±0.01 0.53±0.01 0.50±0.03 0.52 

SPE 0.68±0.01 0.52±0.01 0.51±0.02 0.54 

SEN 0.75±0.01 0.54±0.02 0.49±0.04 0.50 

SPHARM 
Aβ+ AD vs. 

Aβ- CU 

Aβ+ MCI vs. 

Aβ- MCI 

Aβ+ CU vs. Aβ- 

CU (ADNI) 

Aβ+ CU vs. Aβ- 

CU (OASIS) 

ACC 0.71±0.02 0.56±0.02 0.52±0.02 0.60 

B-ACC 0.71±0.02 0.56±0.03 0.51±0.04 0.60 

SPE 0.74±0.02 0.61±0.03 0.56±0.03 0.61 

SEN 0.68±0.04 0.51±0.03 0.46±0.05 0.60 

PASS-MP 
Aβ+ AD vs. 

Aβ- CU 

Aβ+ MCI vs. 

Aβ- MCI 

Aβ+ CU vs. Aβ- 

CU (ADNI) 

Aβ+ CU vs. Aβ- 

CU (OASIS) 

ACC 0.79±0.01 0.73±0.02 0.71±0.02 0.74 

B-ACC 0.79±0.01 0.73±0.02 0.70±0.03 0.73 

SPE 0.78±0.02 0.75±0.02 0.73±0.03 0.74 

SEN 0.79±0.01 0.72±0.03 0.67±0.03 0.73 

PASCS-

MP 

Aβ+ AD vs. 

Aβ- CU 

Aβ+ MCI vs. 

Aβ- MCI 

Aβ+ CU vs. Aβ- 

CU (ADNI) 

Aβ+ CU vs. Aβ- 

CU (OASIS) 

ACC 0.91±0.01 0.89±0.01 0.79±0.02 0.81 

B-ACC 0.91±0.01 0.89±0.01 0.79±0.03 0.80 

SPE 0.91±0.01 0.91±0.01 0.80±0.02 0.82 

SEN 0.90±0.01 0.88±0.01 0.79±0.05 0.79 

Values are mean ± 95% confident interval where applicable.  
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4.1.4. Prediction of Tau/Aβ Measurements 

After performing PASCS-MP on MMS of 925 subjects from ADNI, we obtain 

925 new representations, of which the dimensionality is 1,800. These representations are 

utilized for training ridge regression models to predict two Tau measurements, Braak12 

and Braak34. For each measurement, we also repeat the 10-fold cross-validation ten 

times. The mean and 95% confidence interval of the RMSE for the two measurements are 

illustrated in Figure 4.1.4. To demonstrate that our representations have stronger 

predictive power, we train ridge regression models with hippocampal surface area, 

hippocampal volume, and the hippocampal shape features calculated by the popular 

SPHARM method (Chung et al., 2008b; Shi, Thompson, et al., 2013). As shown in 

Figure 4.1.4, our PASCS-MP always has the minimum RMSE. 

4.1.5. Analysis of the Predicted Tau/Aβ Measurements 

Figure 4.1.4. RMSE for Predicted Braak12 and Braak34 from Four 

Measurements, Hippocampal Surface Area, Volume, SPHARM and Our 

MMS-based PASCS-MP Representations. Each bar represents the mean and 

95% confidence interval of RMSE for ten 10-fold cross-validations. 
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To evaluate the predicted tau/Aβ measurements from different features, we first 

    

    

    

    

       
            

         

   

   

       
              

         

    

    

    

    

       
              

         

 

 

 

 

       
       

         

   

   

   

   

       
                

         

          
          

     
       

         
       

       
          

       
          

    

    

    

    

       
            

         

   

   

   

       
              

         

   

   

   

   

       
              

         

   

   

   

   

   

       
                

         

 

 

 

       
       

         

           
          

          
          

     
       

         
       

       
          

  

  

  

  

  

  

       
              

         

  

  

  

  

  

       
                

         

 

  

   

   

       
         

         

   

 

  

  

  

       
                

         

   

 

  

   

       
                  

         

      
          

     
       

     
       

      
          

      
          

Figure 4.1.5. ANOVA Analysis for Real and Predicted Tau/Aβ Measurements. The 

first column is the distribution of real Braak12, Braak34 and Centiloid measures. The 

remaining columns are the predicted measurements from hippocampal surface area, 

hippocampal volume, SPHARM, and our MMS-based PASCS-MP representations. The 

F-value and p-value of ANOVA among AD, MCI, and CU are illustrated on the top of 

each subfigure. 
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perform analysis of variance (ANOVA) among the three clinical groups, AD, MCI, and 

CU. The distributions of the predicted measurements are shown in Figure 4.1.5. The first 

column is the distribution of real Braak12, Braak34 and Centiloid. Other columns are the 

predicted measurements from hippocampal surface area, hippocampal volume, 

SPHARM, and our PASCS-MP. The F-value and p-value of ANOVA among the three 

 

 

 

                
            

 
  
 
 
 
 

 

 

 

 

                
              

 
  
 
 
 
 

 

 

 

            
              

 
  
 
 
 
 

 

 

 

 

      
              

 
  
 
 
 
 

 

 

 

         
              

 
  
 
 
 
 

 

 

 

 

            
                

 
  
 
 
 
 

 

 

 

               
                

 
  
 
 
 
 

 

 

 

 

                
            

 
  
 
 
 
 

           
      

          
         

          
         

          
      

        
         

      
      

       
          

      
      

              

 

  

   

   

            
              

 
 
 
  
  
  

              

 

  

   

   

          
                

 
 
 
  
  
  

                

 

   

         
                  

 
 
 
  
  
  

                

   

 

  

   

   

          
                

 
 
 
  
  
  

       
      

       
      

      
         

      
         

Figure 4.1.6. Pearson Correlation Between Real Tau/Aβ Measurement and 

Predicted Measurement. The first row shows the Pearson correlation between real 

Braak12 and predicted Braak12 from hippocampal surface area, hippocampal volume, 

SPHARM, and our MMS-based PASCS-MP representations. The second row shows the 

Pearson correlation between real Braak34 and predicted Braak34. The third is for 

Centiloid. The y-axis is the real measurement and x-axis shows the predicted 

measurement. The Pearson correlation coefficient, R, and p-values are in the top left 

corner of each subfigure. 
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clinical groups are illustrated in each subfigure. Our PASCS-MP achieves the most 

significant group difference among all the predicted measurements.  

In addition, we leverage the Pearson correlation to evaluate the relations between 

real tau/Aβ measurements and each of the predicted tau/β measurements. In Figure 4.1.6, 

we visualize the linear relationships. The vertical axis is the real measurement, and the 

horizontal axis is the predicted one. The correlation coefficient, R, and p-value for each 

analysis are also illustrated in each subfigure. Our PASCS-MP always has the largest 

correlation coefficients, in these experiments, compared to the traditional measurements, 

which means the measurements predicted by our MMS-based PASCS-MP 

representations are close to the real measurements. Both experiments demonstrate that 

our MMS-based PASCS-MP representations have the best accuracy of the approaches we 

examined for predicting tau/Aβ measurements.  

4.2.Results for FMFS 

4.2.1. Data Description 

Data used in the preparation of this article were obtained from the Alzheimer's 

Disease Neuroimaging Initiative (ADNI) database (adni.loni.usc.edu). The ADNI was 

launched in 2003 as a public-private partnership led by Principal Investigator Michael W. 

Weiner, MD. The primary goal of ADNI has been to test whether serial MRI, PET, other 

biological markers, and clinical and neuropsychological assessments can be combined to 

measure the progression of MCI and early AD. For up-to-date information, see 

www.adni-info.org. From the multiple phases of ADNI - ADNI 1, ADNI 2, ADNI GO, 

and ADNI 3 - we analyzed two sets of scans for the study of Aβ deposition and tau 

http://www.adni-info.org/
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deposition. For the Aβ deposition study, we analyzed a total of 1,127 pairs of images 

from 1109 subjects (18 of them have two pairs from different visiting dates), including 

1,127 T1-weighted MR images and 1,127 florbetapir PET images. Similarly, we obtained 

925 pairs from 688 subjects (191 of them have more than one pair from different visiting 

dates) of MRI scans and AV1451 PET images for the study of tau deposition.  

In addition to each brain MRI scan, we also analyze the corresponding Mini-

Mental State Exam (MMSE) scores (Folstein et al., 1975). For amyloid PET, we utilize 

centiloid measures (Navitsky et al., 2018). Operationally, there have been widely 

accepted efforts to reconcile differences among different amyloid radiotracers using a 

norming approach called the centiloid scale (Klunk et al., 2015b; Rowe et al., 2017). 

ADNI florbetapir PET data are processed using AVID pipeline (Navitsky et al., 2018), 

which are converted to the Centiloid scales according to their respective conversion 

equations (Navitsky et al., 2018; Su et al., 2019). For flortaucipir tau-PET - in a similar 

fashion to Aβ - tau data are reprocessed using a single pipeline consistent with (Sanchez 

et al., 2020), so that the standardized uptake value ratio (SUVR) from different ADNI 

study sites can be analyzed together. In this work, we examine two regional SUVR for 

tau deposition, corresponding to Braak12, and Braak34 (S. L. Baker, Lockhart, et al., 

2017; S. L. Baker, Maass, et al., 2017; Maass et al., 2017; Schöll et al., 2016). Table 

4.2.1 shows the demographic information from the two cohorts that we analyzed. 



 

   

Table 4.2.1 Demographic Information for the Participants We Studied from the ADNI. 

Cohort Group Sex (M/F) Age MMSE Centiloid 

Aβ 

(n=1,127) 

AD (n=173) 98/75 75.0±7.8 22.7±2.9 72.0±40.2 

MCI (n=516) 291/225 72.6±7.8 28.0±1.7 42.0±40.7 

CU (n=438) 200/238 74.5±6.5 29.0±1.2 24.4±33.3 

Cohort Group Sex (M/F) Age MMSE Braak12 Braak34 

tau 

(n=925) 

AD (n=115) 62/53 76.0±8.5 22.0±4.5 2.39±0.60 2.51±0.73 

MCI (n=278) 158/120 74.6±7.9 27.9±2.1 1.82±0.46 1.92±0.46 

CU (n=532) 210/322 73.4±7.1 29.1±1.1 1.58±0.23 1.73±0.21 

  

Values are mean ± standard deviation, where applicable. 
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4.2.2. Efficiency Evaluation 

A significant innovation of FMFS is that we introduce a screening rule during the 

group LASSO feature selection stage, which highly improves the computation speed 

compared to the distributed alternating direction method of multipliers algorithm 

(DADMM) (Boyd et al., 2011). Moreover, we also compare FMFS with the Gauss-

Southwell-Lipschitz rules (GSL) for block coordinate descend in (Nutini, 2017). Besides, 

we also tested the running time of FBCD in our federated framework without the 

screening rule.  

We simulated the distributed condition on a cluster with several conventional x86 

nodes, of which each contains two Intel Xeon E5-2680 v4 CPUs running at 2.40 GHz. 

Each parallel computing node has a full-speed Omni-Path connection to every other node 

in its partition. 1,127 subjects for the Aβ deposition study were randomly assigned to five 

simulated institutions, each of which has almost the same number of subjects and one 

computation node. We uniformly selected 100 regularization parameters from 1.0 to 0.1 

      

       

       

       

      

       

       

       

      

      

      

      

     

     

     

     

                                                    

     

     

     

      

                

         
        

                

Figure 4.2.1. Comparison Analysis of Computation Efficiency. For the 

morphometry features with different resolutions, our framework achieves a speedup 

of 62-fold, 80-fold, 86-fold, and 89-fold, compared to DADMM. For FBCD, our 

FMFS has a speedup of 54-fold, 72-fold, 80-fold, and 86-fold. For GSL, our model 

has a speedup of 12-fold, 15-fold, 15-fold, and 17-fold. 
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and ran all three methods with the same experimental set-up. Under different 

morphometry feature resolutions (where we randomly down-sampled or up-sampled the 

dimension of the features), our FMFS method achieved a speedup of 62-fold, 80-fold, 86-

fold, and 89-fold, compared to DADMM as shown in Figure 4.2.1. For FBCD, our 

FMFS has a speedup of 54-fold, 72-fold, 80-fold, and 86-fold. For GSL, our model has a 

speedup of 12-fold, 15-fold, 15-fold, and 17-fold.  

4.2.3. Aβ and Tau Associated Hippocampal Morphometry 

We employed stability selection with our FMFS model to select the ROIs 

(subregions of the hippocampal surfaces) related to Aβ and tau. We respectively 

standardize the two types of input features, RD and TBM, for each subject, using Z-

scores, and adopt the centiloid value as the measure of Aβ burden and Braak12 and 

Braak34 measures for tau deposition. Since the regularization parameters can control the 

sparsity of the solution vector and further influence the area of the ROIs, we uniformly 

generated 100 regularization parameters between 0.01 to 0.001, which may lead to a 

reasonable size for the selected ROIs. After training the model, we got 100 solution 

vectors, of which the dimensionality is 60,000, since each of the left and right 

hippocampal surfaces contains 15,000 vertices, and each vertex has two features. Then, 

we performed stability selection by counting the nonzero entries for RD and TBM on the 

same vertex. The counted frequency on each vertex was normalized to 0 to 100 and then 

mapped to a color bar, as shown in Figure 4.2.2-4.2.4. For better visualization, we 

smoothed the values on each surface by a 2 × 3 averaging filter. The warmer color areas 
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have a higher frequency value and have stronger associations with the responses, i.e., 

brain global Aβ and tau burden. 

In this experiment, we first ran the proposed model on the cohorts for Aβ and tau 

deposition. As illustrated in the top left picture of Figure 4.2.2-4.2.4, the morphometric 

abnormalities mainly happen in specific hippocampal subregions, namely the subiculum 

and CA1. Additionally, we separately studied the ROIs for groups of CU, MCI, and AD 

subjects. As shown in the rest of the three panels in Figure 4.2.2-4.2.4, the morphometric 

associations are strongest in the subiculum and CA1 at the early stages; but with the 

progression of AD, the distortions are more focal in subiculum. Specifically, the results 

for CU subjects are shown in the top right panel of each figure, where the warmer colored 

regions are widespread in both the subiculum and CA1 areas. However, in the results for 

the AD group, the warmer colored regions mainly focus on the area of the subiculum.  

Figure 4.2.2. Visualization of ROIs Associated with Centiloid (Aβ 

Measurement). The top left figure is the results for all subjects. The top right is for 

AD patients. The bottom two are for participants with MCI and for the CU group. 
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Figure 4.2.3. Visualization of ROIs Associated with Braak12 (Tau 

Measurement). The top left figure shows the results for all subjects. The top right is 

for AD patients. The bottom two figures are for participants with MCI and for the 

CU group. 

Figure 4.2.4. Visualization of ROIs Associated with Braak34 (Tau 

Measurement). The top left figure shows the results for all subjects. The top right is 

for AD patients. The bottom two figures are for participants with MCI and for the 

CU group. 
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4.2.4. Association Analysis between Features on ROIs and Measure for Aβ and Tau 

Deposition 

In this experiment, we try to demonstrate the morphometric features of our 

selected ROIs have stronger correlations with the measures for Aβ and tau deposition 

than the other hippocampal surface features. After performing stability selection, we were 

able to rank the vertices related to each measurement of Aβ/tau deposition. We selected 

the 3,000 features from the 1,500 top-ranked vertices for each subject (1,500 RD and 

1,500 TBM). For a fair comparison, we also selected 3,000 features from 1,500 randomly 

selected vertices for each subject and used them as features representing differences 

across the entire hippocampus. To fit the Pearson Correlation analysis, we converted the 

features on ROIs to a single value for each subject. First, as the features on the ROIs 

should have stronger predictive power, we used the frequency on each vertex as a weight 

to multiply the RD and TBM on the vertex. And then, we respectively summed up the 

weighted RD and weighted TBM on the ROIs for each subject. The value for RD and the 

value for TBM were further reduced to a scalar with principal components analysis 

(PCA). PCA is an unsupervised model to reduce the dimensionality of the data while 

minimizing information loss. It creates new uncorrelated features which maximize the 

variance successively. For the randomly selected features on the whole hippocampal 

surface, the RD and TBM were directly summed up without multiplying the frequency 

and reduced to a single value with PCA. In Figure 4.2.5, we illustrate the results of 

Pearson correlation between morphometric features and measures for Aβ and tau 

deposition. The top three subfigures illustrate the correlation between the values on our 
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selected ROIs and the measure for Aβ or tau deposition. The bottom three are between 

the value on the whole hippocampal surface and the measure for Aβ or tau deposition. 

The correlation coefficients and p-values are shown in each subfigure. The correlation 

coefficient of Centiloid-related ROIs is -0.23, and the coefficient for the whole surface is 

only -0.1. For Braak12 and Braak34, the coefficients of our selected ROIs are -0.37 and -

0.29 and the ones for the whole surface are -0.11 and -0.096. Consequently, the features 

on our selected ROIs have more associations to the measure for Aβ or tau deposition than 

the other features on the surface. 

  

   

   

   

   

   

   

Figure 4.2.5. Pearson Correlation Between Morphometry Features and 

Measures for Aβ and Tau Deposition. The top three subfigures illustrate the 

correlation between the values on our selected ROIs and the measure for Aβ or tau 

deposition. The bottom three are between the value on the whole hippocampal 

surface and the measure for Aβ or tau deposition. The correlation coefficients and p-

values are shown in each subfigure. 
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4.2.5. Predicting MMSE Scores Based on Hippocampal ROIs 

In the model of (Jack et al., 2016), an abnormal level of Aβ and tau deposition 

tends to occur earlier than abnormal cognitive decline can be detected. In this experiment, 

we further validated the ROIs selected by our proposed model in terms of their prediction 

accuracy for MMSE score in cohorts where Aβ and tau deposition were measured 

separately. After performing stability selection, we were able to rank the vertices related 

to each measurement of Aβ/tau deposition. We selected the 3,000 features from the 1,500 

top-ranked vertices for each subject (1,500 RD and 1,500 TBM). Then, we used these 

features to predict the MMSE score as described in Section 4.2.3. For a fair comparison, 

we also selected 3,000 features from 1,500 randomly selected vertices for each subject 

and used them as features representing differences across the entire hippocampus. 

Moreover, we also leveraged the measurements for Aβ or tau deposition to predict 

MMSE. In addition, we compare our FMFS with recursive feature elimination (RFE) 

(Guyon et al., 2002). The feature dimensionality of our morphometry feature is 60,000 

and RFE may take tens of days to rank features for such a big dataset. For equal 

comparison, we also selected 1,500 RD and 1,500 TBM for each measurement of Aβ/tau 

deposition. To accelerate the feature selection speed, we randomly select 300 features 

from the 30,000 RD and use RFE to select the top 15 RD. We repeated the step 100 times 

and selected 1,500 RD. With the same strategy, we also select 1,500 TBM. Then, we 

used these features to train machine learning models, including random forest, multilayer 

perceptron (MLP), and Lasso regression. 10-fold cross-validation was adopted to 

evaluate the performance of the models, and root mean squared error (RMSE) was used 
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for measuring the prediction accuracy. In Table 4.2.2, the top five rows indicate the 

results for Aβ deposition, and the rest of the rows are for different measurements of tau 

deposition. Hippocampal ROIs represent the features on our selected ROIs and RFE-

selected represents the features selected by recursive feature elimination. The RMSEs of 

our framework are always the smallest. It is worth noting that comparing to the RFE 

method, our proposed FMFS framework demonstrated significant efficiency 

improvement. Specifically, the average running time of the RFE method is 49,319 

seconds while ours FMFS method 22 seconds, roughly with 2240-fold efficiency 

improvement. These results demonstrate that the features in the ROIs selected by our 

model can always have a stronger predictive power and predict the MMSE score better 

than the measurements of Aβ and tau deposition.  

We also perform Pearson correlation between the morphometry features and 

MMSE and between the measure for Aβ or tau deposition and MMSE. We also utilize 

the same method as Section 4.2.3 to convert the multivariate features to a scalar. The 

results are shown in Figure 4.2.6. The first column is the correlation between the 

measures for Aβ and tau deposition and MMSE. And the second column is the 

correlation between the features on our selected ROIs and MMSE. The last column is 

between the feature on the whole surface and MMSE. The correlation coefficients and p-

values are shown in each subfigure. In the study of Aβ deposition, the coefficient for 

centiloid is -0.36 and the ones for the features on centiloid-related ROIs and the whole 

surface are 0.3 and 0.11. In the study of tau deposition, the coefficient for Braak12 and 

Braak34 are -0.58 and -0.59. And the ones for the features on Braak12-related ROIs and 
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Braak12-related ROIs are 0.29 and 0.28. The coefficient for the features on the whole 

surface is 0.057. The correlation of the features on our selected ROIs is stronger than the 

features on the whole surface, which demonstrates the effectiveness of our model. The 

measures for Aβ or tau deposition have the strongest correlation with MMSE. But our 

selected features are multivariate, which can have better performance in predicting 

MMSE. Our work validated the AD progression model and may provide unique insights 

for accurately estimating clinical disease burden. 
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Table 4.2.2 RMSEs for Predicting MMSE Based on Various Kinds of Biomarkers and 

Models. 

Aβ associated Random forest MLP LASSO 

Hippocampal ROIs 2.58 3.00 2.59 

Whole Hippocampal 2.79 3.96 2.79 

Centiloid 3.15 4.01 2.85 

RFE selected 2.68 3.67 2.68 

Braak12 associated Random forest MLP LASSO 

Hippocampal ROIs 2.61 3.20 2.90 

Whole Hippocampal 3.11 4.24 3.00 

Braak12 3.03 4.98 3.03 

RFE selected 2.70 3.62 2.98 

Braak34 associated Random forest MLP LASSO 

Hippocampal ROIs 2.62 3.26 2.86 

Whole Hippocampal 3.09 4.16 3.02 

Braak34 2.81 4.94 3.02 

RFE selected 2.85 3.83 2.98 
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Figure 4.2.6. Pearson Correlation Between the Measures for Aβ and Tau 

Deposition and MMSE and Between the Morphometry Features and MMSE. 

The first column is the correlation between the measures for Aβ and tau deposition 

and MMSE. And the second column is the correlation between the features on our 

selected ROIs and MMSE. The last column is between the feature on the whole 

surface and MMSE. The correlation coefficients and p-values are shown in each 

subfigure. 
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4.2.6. Predicting Clinical Decline in Participants with MCI  

In this experiment, we evaluated the performance of our features on the ROI in 

survival analysis by using 118 MCI participants’ data from a separate dataset (G. Wang 

et al., 2021) from ADNI (Table 4.2.3), including 63 MCI converters, who converted to 

probable AD in the next six years, and 55 MCI non-converters. Similar to Section 3.3, 

we also chose 1,500 RD and 1500 TBM from the four ROIs (Aβ, Braak12, Braak34) and 

3000 features from 1500 random-selected vertices on the whole hippocampal surface to 

predict the conversion rates from MCI to AD, respectively. For comparison, we also 

performed the same experiment with the surface area and volume of the hippocampus. 

The hippocampal volume and surface area were calculated with the smoothed 

hippocampal structures after linearly registered to the MNI imaging space (Patenaude et 

al., 2011; Shi, Thompson, et al., 2013), and the sum of the bilateral hippocampal volume 

and the sum of the bilateral hippocampal surface area for each subject were used for this 

experiment. 

 

Table 4.2.3 Demographic Information for Participants with MCI.  

Group Sex (M/F) Age MMSE 

MCI converter (n=63) 42/21 75.2±7.0 26.7±1.7 

MCI non-converter (n=55) 38/17 74.7±7.8 27.7±1.4 

Values are mean ± standard deviation, where applicable. 
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To fit the univariate Cox model, we converted the features on ROIs to a single 

value for each subject. First, as the features on the ROIs should have stronger predictive 

power, we used the frequency on each vertex as a weight to multiply the RD and TBM on 

the vertex. And then, we respectively summed up the weighted RD and weighted TBM 

on the ROIs for each subject. The value for RD and the value for TBM were further 

reduced to a scalar with principal components analysis (PCA). PCA is an unsupervised 

model to reduce the dimensionality of the data while minimizing information loss. It 

creates new uncorrelated features which maximize the variance successively. For the 

           

 
 
 
 
  
  
  
 

                  

 
  

 
  

 
  

 
  

 
  

 
  

               

                 

                      

                    

                  

                  

Figure 4.2.7. The ROC Analysis Results for Hippocampal 

Surface Area, Volume, the Whole Hippocampal Feature, 

and the Features on ROIs Associated with Aβ, Braak12, and 

Braak34. The AUC for each measurement is shown in 

parentheses.   
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randomly selected features on the whole hippocampal surface, the RD and TBM were 

directly summed up without multiplying the frequency and reduced to a single value with 

PCA.  

Then, the optimal cutoffs for these measurements were determined with the 

maximum sensitivity and specificity for distinguishing MCI converters and non-

converters based on Receiver Operating Characteristic (ROC) analysis (Robin et al., 

2011). The ROC curves are illustrated in Figure 4.2.7, and the AUC, 95% confidence 

interval (CI) of AUC, and the optimal cutoffs are shown in Table 4.2.4.  

 

Table 4.2.4 AUC for ROC Analysis, Optimal Cutoffs, and Estimated Hazards Ratios 

(HRs) for Conversion to AD in MCI Patients with High-value and Low-value Biomarkers 

Based on a Univariate Cox Model.  

Measurements AUC (95% CI) Cutoff β HR (95% CI) p-value 

Area 0.64 (0.54, 0.74) 8037.8 0.92 2.5 (2.3, 3.2) 0.001 

Volume 0.66 (0.56, 0.76) 7814.9 0.89 2.5 (2.2, 3.1) 4.00E-04 

Whole_hippo 0.61 (0.51, 0.72) 1.7 0.69 2.0 (1.7, 2.8) 0.007 

Centiloid 0.72 (0.63, 0.81) 13.3 1.56 4.7 (4.6, 5.2) 4.00E-05 

Braak12 0.74 (0.66, 0.83) -3.0 1.35 3.8 (3.6, 4.3) 4.00E-07 

Braak34 0.74 (0.65, 0.83) -7.6 1.24 3.5 (3.3, 4.0) 1.00E-06 
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Figure 4.2.8. The Survival Probability Analysis for Progression to AD in MCI 

Patients Based on Hippocampal Surface Area, Volume, the Whole Hippocampal 

Features, and the Features on ROIs Related to Aβ, Braak12 and Braak34. The p-

values are from the log-rank test. The red curve represents the high-value (HV) group 

for each measurement. and the blue one represents low-value (LV) group. 
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With the optimal cutoffs, we could divide the whole cohort into two groups with 

different measurements. For example, the subjects with hippocampal volume higher than 

7814.9 mm3 were assigned to a high-value (HV) group, and the rest were into a low-

value (LV) group. As expected, AD may decrease the hippocampal volume as well as the 

other measurements. Next, we fitted a Cox proportional hazard model (Moore, 2008) 

with the six measurements separately, and the regression beta coefficients (β), the hazard 

ratios (HRs), and statistical significance (p-values) are shown in Table 4.2.4.  

Moreover, we calculated the survival probabilities for conversion to AD in the 

HV group and the LV group by fitting Kaplan-Meier curves. The survival probabilities of 

the subjects based on hippocampal surface area, volume, the whole hippocampal features, 

and the features on ROIs related to Aβ, Braak12, and Braak34 are shown in Figure 4.2.8. 

Each color represents the survival curve and 95% CI of one group. Here a log-rank test 

was used to compare the survival group differences based on a χ2 test, and the p-values 

are illustrated in each plot. A result with a p-value < 0.05 indicates that the two groups 

are significantly different in terms of survival time. The features from our selected ROIs 

tended to always yield stronger significant results than the hippocampal surface area, 

volume, and the whole hippocampal features. 

4.2.7. Stability Analysis 

To test whether the performance of our FMFS model could be affected by kinds 

of data distribution across institutions, we performed 5-fold cross-validation on the 

dataset for the study of Aβ under three conditions, including a data-centralized condition 

and data distributed across three institutions and five institutions. We simulated the 
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distributed condition on a cluster with several conventional x86 nodes, of which each 

contains two Intel Xeon E5-2680 v4 CPUs running at 2.40 GHz. Each institution is 

assigned one computing node. For each training data set, we randomly assigned the 

subjects to three institutions, five institutions, or a single institution. Besides, we also 

compared the performance of FMFS with DADMM and FBCD under the five-institution 

conditions. We perform cross-validation a total of 10 times with a sequence of 

regularization parameters, 1, 0.5, and 0.1, and with all the other experimental set-ups 

being the same as in the previous experiment. The average RMSE for the prediction of 

MMSE was employed to evaluate the prediction accuracy during training and testing, as 

shown in Table 4.2.5.  

Table 4.2.5 Average RMSE for Predicting MMSE with FMFS Across Different 

Institutional Settings.  

 λ FMFS (1) FMFS (3) FMFS (5) FBCD (5) DADMM (5) 

 

Train 

1.0 2.80 2.80 2.80 2.80 2.80 

0.5 2.70 2.70 2.70 2.70 2.70 

0.1 2.43 2.43 2.43 2.43 2.44 

 

Test 

1.0 2.79 2.79 2.79 2.79 2.79 

0.5 2.71 2.71 2.71 2.71 2.71 

0.1 2.60 2.60 2.60 2.60 2.61 

Additionally, we tried to collect datasets from different institutions and studies to 

validate the stability of our federated model in real-world conditions. Besides ADNI, we 

also collected MRI scans from other institutions, including 307 cognitively unimpaired 
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subjects from Open Access Series of Imaging Studies (OASIS) (Marcus et al., 2010b) 

and 38 MCI patients from Arizona APOE cohort study (AZ) (Caselli et al., 2009). The 

datasets for the study of Aβ and tau are treated as two institutions’ data. Therefore, in this 

experiment, we have four institutions, Aβ for ADNI, tau for ADNI, OASIS and AZ. In 

the four-institution condition, each institution was assigned one computing node and all 

the other parameter settings were the same. Then, we fit the features of these data and 

MMSE in our FMFS as well as FBCD and DADMM. FMFS are validated at data-

centralized and the four-institution condition. FBCD and DADMM are only under the 

four-institution condition. The average RMSE for the prediction of MMSE was used to 

evaluate the prediction accuracy. The results of the training loss are shown in Table 

4.2.6. The results indicated that different kinds of institutional distributions did not 

strongly influence our FMFS model. 

Table 4.2.6 Average RMSE for Predicting MMSE with FMFS Across Datasets from 

Different Institutions.  

λ Centralized FMFS (4) FBCD (4) DADMM (4) 

1.0 2.73 2.73 2.73 2.73 

0.5 2.56 2.56 2.56 2.56 

0.1 2.33 2.33 2.33 2.33 

4.3. Results for Federated GEIDI 

4.3.1. Data Description 

The data in this work are from the Alzheimer’s Disease Neuroimaging Initiative 

(ADNI, adni.loni.usc.edu) and the TADPOLE challenge (tadpole.grand-challenge.org) 
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(Marinescu et al., 2020). The ADNI was launched in 2003 as a public-private partnership 

led by Principal Investigator Michael W. Weiner, MD. The primary goal of ADNI has 

been to test whether serial MRI, PET, other biological markers, and clinical and 

neuropsychological assessments can be combined to measure the progression of MCI and 

early AD. The genome-wide association study of ADNI is designed to provide 

researchers with the opportunity to combine genetics with imaging and clinical data to 

help investigate the mechanisms of the disease. For up-to-date information, see 

adni.loni.usc.edu/data-samples/data-types/genetic-data/.  

From the ADNI GWAS, we analyzed data from 697 subjects, including AD 

patients, people with mild cognitive impairment (MCI), and cognitively unimpaired (CU) 

subjects, for whom the demographic information is shown in Table 4.3.1. Each sample 

has three types of modalities of data: genotypes of known AD risk genes (e.g., APOE) 

and SNPs from genome-wide association studies (GWAS), gene expression 

measurements (for 20,211 genes) from microarray-based transcriptomic profiling of 

samples’ blood, and imaging biomarkers from structural magnetic resonance imaging 

(sMRI) data of subjects’ brains. We use plink to perform a quality check of the genotype 

data. The SNPs in the normal group that deviate significantly from Hardy-Weinberg 

equilibrium are removed (Purcell et al., 2007). The LINNORM package (Yip et al., 2017) 

was adopted to perform data transformation on the expression data for normality and 

homoscedasticity. Recent evaluations (Huang et al., 2018; Yip et al., 2018) show that 

LINNORM typically performs better than current DEG analysis methods for both single-
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cell and bulk RNA-Seq, such as Seurat (Satija et al., 2015) and DESeq2 (Love et al., 

2014). 

Eventually, we get 2,059,586 SNPs, APOE genotype, and expression data for 

20,211 genes for each sample. Besides, from the TADPOLE challenge, we obtained two 

brain imaging biomarkers for each subject calculated using FreeSurfer (Fischl et al., 

1999) with sMRI, including the volume of the hippocampus and middle temporal gyrus 

(MidTemp). To adjust for individual differences in head size, the volume of each region 

is adjusted by the intracranial vault volume (ICV) of each subject (volume/ICV). The 

difference between the dates for gene expression collection and MRI scan is less than five 

months. 

Table 4.3.1 Demographic Information for the Subjects We Study from the ADNI. 

Group Sex (M/F) Age MMSE 

AD (n=96) 59/37 74.8 ± 7.5 21.8 ± 4.1 

MCI (n=366) 209/157 72.0 ± 7.5 28.0 ± 1.7 

CU (n=235) 115/120 74.4 ± 5.8 29.1 ± 1.2 

Values are mean ± standard deviation, where applicable. 

4.3.2. APOE-related Gene Expressions 

APOE genotype is a well-known genetic biomarker for predicting subjects’ risk 

for AD. We stratify 697 subjects into three subgroups based on their APOE genotype 

status: non-carriers (e3/e3), heterozygotes (e3/e4), and homozygotes (e4/e4). Federated 

GEIDI is then adopted to discover genes correlated with hippocampus volume 
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differentially across the three subgroups. We first run federated GEIDI with the volume 

of both sides of the hippocampus and the expression measures for 20,211 genes. Next, 

1,625 gene expression measures are selected with 𝑝 < 0.05. We evaluate the enrichment 

of these genes and the 632 AD-related genes annotated on alzgene.org and find 73 

overlapping genes, yielding a hypergeometric enrichment 𝑝 =  0.00039.  Among the 73 

overlapping genes, the top ten gene expressions are those measured for CAST, CST3, 

GSTO1, LSS, MS4A4A, NPC1, PMVK, PPM1H, PPP2R2B, and SORCS2. Besides, the 

top ten genes in the 1,625 gene expressions are IK, BRPF3, BTN3A2, LOC101929275, 

TDRG1, PAFAH1B1, SERINC3, ALKBH6, VPS45, and LGALS1. We also perform the 

false discovery rate (FDR) (Benjamini & Hochberg, 1995) test on the 20,211 p-values but 

none of the corrected p-values are significant.  

Additionally, we perform the same experiments on the volume of the middle 

temporal gyrus (MidTemp); the results are shown in Table 2. 2,415 gene expressions are 

significant and 92 of them overlap with the 632 AD-related genes - with a 

hypergeometric enrichment 𝑝 =  0.00624. The top ten gene expressions are those 

measured for ABCA2, COL11A1, CST3, GNA11, HMOX1, HSPA1B, MAOA, MS4A4A, 

PRKAB2, and SORCS2. And the top ten genes in the 2,415 gene expressions are GLRA3, 

CAMK2N2, MCOLN2, BPIFA1, KIT, CST3, SLC20A2, LGALS4, TNFSF8, and LCOR. 

After performing FDR on the 20,211 genes, three gene expressions are significant, 

including GLRA3, CAMK2N2, and BPIFA1.  

Matrix eQTL (Shabalin, 2012) is a state-of-the-art software to study the 

association between genotype and gene expression. We also leverage the linear model 
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and the ANOVA model in Matrix eQTL to evaluate the APOE genotype and the 

measured expression levels of the 20,211 genes. For the linear model, there are 2,657 

significant gene expressions and 98 overlapping genes, leading to a hypergeometric 

enrichment 𝑝 = 9.76𝐸 − 03. For the ANOVA model, 3,234 gene expressions are 

selected, and 110 known genes are found, which leads to a p-value = 2.665𝐸 − 02. The 

results show that our federated GEIDI can detect the most gene candidates that are 

significantly enriched for known AD genes. As the volume of hippocampus has the best 

performance in detecting AD-related genes, we use it as the imaging biomarker for all the 

remaining experiments. 

Table 4.3.2 Hypergeometric Statistics for APOE. 

Structures Selected genes Overlapping genes p-value 

Hippocampus 1,625 73 0.00039 

MidTemp 2,415 92 0.00624 

Linear Regression 2,657 98 0.00976 

ANOVA 3,234 110 0.02665 

4.3.3. SNP-related Gene Expressions 

In this experiment, we stratify the subjects into three subgroups based on their 

SNP status. We choose rs942439, as this SNP was reported in alzgene.org, and also one 

of the top hits in our experiment of discovering AD-related SNPs (the details about 

selecting AD-related SNPs will be introduced in Sec. 4.3.2). And we use the volume of 

both sides of hippocampus as the imaging biomarker because of its superior performance 
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in the first experiment. Federated GEIDI is used to detect any known AD gene whose 

expression is differentially associated with hippocampus volume in the subgroups 

stratified by the genotype at rs942439 locus.  

As shown in Table 4.3.3, 1,587 gene expressions are significant and 60 of them 

are reported in alzgene.org and IGAP GWAS results, leading to a hypergeometric 

enrichment 𝑝 = 0.017. Of these 60 gene expression measures, the top ten genes are 

ADRB1, ALOX5, ATXN1, CBS, FGF1, FLOT1, HSPA1A, RFTN1, SORL1, and XRCC1. 

Besides, the top ten genes in the 1,587 gene expressions are AIF1L, KRT23, CA2, 

C2ORF88, HSPA1A, LRGUK, LGALS3BP, IFT46, DDX23, and FAM166B. After 

performing the FDR test on the 20,211 genes, none of the gene expression is significant.  

We also perform eQTL analysis on the SNP, rs942439. For a linear regression 

model, 1,794 gene expressions are selected, and, of these, 66 genes are reported in 

alzgene.org and IGAP GWAS results, yielding a hypergeometric enrichment 𝑝 = 0.021. 

For the ANOVA model, 1,347 gene expression values are significant, and, of these, 49 

genes are reported in alzgene.org and IGAP; in this case, the hypergeometric enrichment 

was 𝑝 = 0.033. 

Table 4.3.3 Hypergeometric Statistics for rs942439. 

Structures Selected genes Overlapping genes p-value 

Hippocampus 1,587 60 0.017 

Linear Regression 1,794 66 0.021 

ANOVA 1,347 49 0.033 
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 In the experiment, one of the most significant gene expression measures is for 

XRCC1, for which the p-value is 4.332𝐸 − 03. XRCC1 is a gene coding for the X-ray 

repair cross-complementing protein; it was previously reported to be weakly associated 

with AD in a Turkish population (Doǧru-Abbasoǧlu et al., 2007).  

As shown in Figure 4.3.1, we further adopt Pearson’s correlation to evaluate the 

relationship between the hippocampal volume (x-axis) (adjusted for ICV) and XRCC1 

gene expression (y-axis) of each subgroup. Figure 4.3.1 (a) illustrates the distribution for 

all the samples. Figure 4.3.1 (b), (c) and (d) show the distribution for the samples with 

"GG", "GA" and "AA" genotype, respectively. Above each subfigure, R and p are the 

   

   

   

   

                         

               

 
 
 
 
 

   

   

   

   

                         

               

 
 
 
 
 

   

   

   

   

                         

               

 
 
 
 
 

   

   

   

   

                         

               

 
 
 
 
 

                                                        

                                                       

             

            

Figure 4.3.1. Correlation of Image Biomarkers and XRCC1 Gene Expression in 

Subpopulations Stratified by the Sample's Genotype at rs942439. (a) all samples (b) 

individuals with "GG" genotype; (c) those with "GA" genotype (d) those with "AA" 

genotype. 
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Pearson correlation coefficient and p-value, and N is the number of subjects. Even so, 

there is always some missing information in the genotype data. Hence, before we run 

federated GEIDI as well as the Pearson correlation statistics, we remove the subjects 

without the specific genotype. Because of this, the total number N in Figure 4.3.1 (a) is 

579 instead of 697. We find samples with an "AA" genotype had hippocampal volume 

negatively correlated with expression levels of XRCC1 (N=37, R=0.37, p=0.022). In 

contrast, the analysis in all samples (Figure 4.3.1 (a)) or subjects with either "GG" or 

   

   

   

   

   

                         

               

 
 
 
 
 
 
 

   

   

   

   

   

                         

               

 
 
 
 
 
 
 

   

   

   

   

   

                         

               

 
 
 
 
 
 
 

   

   

   

   

   

                         

               

 
 
 
 
 
 
 

                                                       

                                                     

             

            

Figure 4.3.2. Correlation of Image Biomarkers and SEC14L2 Gene Expression in 

Subpopulation Stratified by the Sample's Genotype at rs942439. (a) all samples (b) 

those with "GG" genotype; (c) those with "GA" genotype; (d) those with "AA" genotype.  
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"GA" genotype (Figure 4.3.1 (b), (c)) showed that the Pearson correlation coefficients 

were not significant in the overall, pooled sample. This result indicates that our method  

can establish associations among SNP, imaging, and gene expression data that include 

known AD risk factors. We further apply the above procedure to discover genes that have 

never been reported to be associated with AD. As shown in Figure 4.3.2 (d), SEC14L2 

gene expression is negatively associated with hippocampal volume only in the 

subpopulation with "AA" genotype at rs942439 locus (N=37, R=-0.47, p=0.003).  

 Interestingly, the opposite correlation is found in a subpopulation with "GA" 

genotype (Figure 4.3.2 (c), N=208, R=0.15, P=0.03), and when applied to all pooled 

subjects, the total population does not show significant correlations (Figure 4.3.2 (a), 

N=579, R=0.07, p=0.09). The SEC14L2 gene encodes a protein that stimulates squalene 

monooxygenase, a downstream enzyme in the cholesterol biosynthesis pathway. This 

gene has never been reported to be associated with AD, but high cholesterol levels have 

been linked to early-onset AD (Wingo et al., 2019). This result indicates that our method 

can detect strong correlations in specific subpopulations that cannot be detected in the 

whole population. We also observe conflicting directions in different subpopulations, as 

shown by "GA" and "AA" subpopulations showing opposite correlations. This also 

highlights the importance of individualized medicine in patient management, as the same 

drug may have opposing effects in different groups of samples. Thus, federated GEIDI 

offers a new approach to discover novel genes related to AD as potential drug targets.  

4.3.4. Discovering AD-related SNPs 
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In the experiments of Sec. 4.3.1, we used hypergeometric statistics to evaluate the 

ability of our proposed model to discover AD-related gene expressions that are 

differentially associated with imaging measures in populations stratified by APOE 

haplotype. In this experiment, we also use hypergeometric statistics to assess the 

discovery rate of known AD-related genes, in the set of genes whose expression shows 

different correlations with imaging markers, in samples stratified according to different 

genotypes. Sets that are enriched in AD-related SNPs will have a more significant p-

value in the hypergeometric test that assesses enrichment. Since the hippocampal volume 

measure showed superior performance for this task, among all the imaging biomarkers in 

Sec. 4.3.1, we adopt it as the brain imaging measure in this experiment. To illustrate the 

effectiveness of our GEIDI model, we perform the same experiment with the linear 

model in Matrix eQTL, which can evaluate the associations between SNPs and gene 

expression. To adjust for multiple comparisons, we will convert raw p-values to false 

discovery rate (FDR) and consider trios with FDR <0.05 as functionally important. When 

we analyze each SNP with our federated GEIDI and Matrix eQTL, we will obtain a p-

value for each of the 20,211 expressed genes. Instead of selecting the significant gene 

expressions with a p-value <  0.05, we respectively rank the p-value of all the gene 

expressions calculated by the two methods and select the top N (100 and 200) gene 

expressions to apply the hypergeometric analysis. With the p-value from this 

hypergeometric analysis (which assesses enrichment for known AD-associated genes), 

we may rank the SNPs and obtain the most AD-related ones. Then, we try to prove that 

our GEIDI is able to detect more AD-related SNPs. From AlzGene.org, we also created a 
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list of 1,217 AD-related SNPs, and we randomly selected another 1,217 SNPs as the non-

AD-related ones. After ranking the SNPs with the p-value computed by the two methods, 

we calculate the true positive rate (TPR) for the top m SNPs, which measures the 

percentage of AD-related SNPs in the selected top m SNPs. For example, the last number 

in Table 4.3.4 is 0.57, which means 57% of the top 500 SNPs are AD-related ones. As 

the results in Table 4.3.4, our federated GEIDI can always achieve superior performance 

than Matrix eQTL.  

Table 4.3.4 True Positive Rates of AD-related SNPs in the Top m SNPs. 

Matrix eQTL: Linear Regression 

EXP (N) \SNP (m) 10 50 100 200 500 

100 0.50 0.58 0.52 0.50 0.53 

200 0.50 0.60 0.55 0.58 0.54 

Matrix eQTL: ANOVA 

EXP (N) \SNP (m) 10 50 100 200 500 

100 0.60 0.58 0.52 0.49 0.55 

200 0.60 0.60 0.57 0.55 0.55 

Federated GEIDI 

EXP (N) \SNP (m) 10 50 100 200 500 

100 0.60 0.60 0.60 0.61 0.60 

200 0.60 0.62 0.61 0.58 0.57 

The SNPs are ranked with the p-value from hypergeometric analysis with the top N gene 

expressions as the number of samples drawn from the population 
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In Figure 4.3.3, we visualize the p-values of these 2,434 SNPs from 

hypergeometric analysis in the Manhattan plots. The top figure is the Manhattan plot for 

the result with the top 100 gene expressions and the bottom one is for the result of the top 

200 gene expressions. The SNPs, rs4889013 and rs11940059, are the top-ranked ones for 

         

          

          

                   

                  

        

                                        

                                        

Figure 4.3.3. Manhattan Plots for the Results of Federated GEIDI. The top 

figure is the Manhattan plot for the results from hypergeometric analysis with the top 

100 gene expressions as the number of samples drawn from the population and the 

bottom one is for the results with the top 200 gene expressions. The SNPs, 

rs4889013 and rs11940059, are the top-ranked ones for both results. 
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both results. When we select 100 or 200 as the number of samples drawn from the 

population, three parameters in of hypergeometric analysis are fixed and only the number 

of observed successes, k, varies for different SNPs. Therefore, the p-value from different 

SNPs might be the same if their numbers of observed successes are the same. This 

explains why results of some SNPs locate at the same horizontal position.  

4.3.5. Federated Learning Stability Analysis 

In this experiment, we aim to demonstrate that the performance of our federated 

GEIDI model is not greatly affected by different data distribution models across 

institutions. In practice, it would be convenient and efficient to run association tests on 

data that might be distributed across multiple servers without transferring it all to a 

centralized location. We developed this algorithm with R language and simulated the 

distributed condition on a cluster with several conventional x86 nodes, of which each 

contains two Intel Xeon E5-2680 v4 CPUs running at 2.40 GHz. Each institution is 

assigned one computing node. We synthesized 1,000 samples and randomly assigned 

them to different independent hypothetical institutions, including one institution, three 

institutions, five institutions and seven institutions.  We compared the residuals from each 

linear regression model for each condition and found the residuals remained unchanged, 

as shown in Table 4.3.5. The first column is the ground truth residual, and the rest are the 

residuals for our federated linear model under different data distribution conditions. The 

residuals are the same, which means that the results of our Federated GEIDI will remain 

stable under different multi-site conditions. Therefore, these results demonstrate the 

correctness and stability of our federated GEIDI model. 
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Table 4.3.5 Stability Analysis of Federated GEIDI Across Different Institutional Settings. 

 
Ground 

Truth 

1-

institution 

3-

institution 

5-

institution 

7-

institution 

Residual 3.9553 3.9553 3.9553 3.9553 3.9553 

 

4.4.Results for Federated Chow Test on Hippocampal Morphometry 

4.4.1. Data Description 

Data for testing the performance of our proposed framework and comparable 

methods were obtained from the publicly available ADNI database (adni.loni.usc.edu). 

ADNI is the result of efforts by many co-investigators from a broad range of academic 

institutions and private corporations. Subjects are recruited from over 50 sites across the 

U.S. and Canada. From ADNI 1, ADNI 2, ADNI GO, and ADNI 3 (the different phases 

of ADNI), we obtained 847 pairs of MRI scans and AV1451 PET images, including 502 

non-carriers (NC), 281 heterozygote subjects (HT) and 64 homozygote subjects (HM). 

Table 4.4.1 shows the demographic information from the cohort that we analyzed. The 

PET images are reprocessed using a single pipeline consistent with the work of Sanchez 

et al.(Sanchez et al., 2021), so the standardized uptake value ratio (SUVR) from different 

ADNI study sites can be analyzed together. In this work, we analyze tau deposition in a 

brain region named Braak34 (S. L. Baker, Lockhart, et al., 2017).  
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Table 4.4.1 Demographic Information for the Subjects We Study from the ADNI. 

Group Sex (M/F) Age MMSE Braak34 

NC (502) 242/260 75.4±7.5 28.2±2.8 1.80±0.34 

HT (281) 121/160 73.4±7.2 27.8±3.1 1.93±0.51 

HM (64) 33/31 71.0±7.9 25.8±4.6 2.24±0.71 

Values are mean ± standard deviation where applicable. 

4.4.2. Linking Hippocampal Volume to Tau Deposition 

In this experiment, we stratify 847 subjects into three subgroups based on their 

APOE genotype status: non-carriers (NC), heterozygotes (HT), and homozygotes (HM). 

And then, we use the federated chow test model to explore the difference of the changes 

in hippocampal volume and the measure of tau, Braak34, among these cohorts. The 

volume of each side of hippocampus is used as the predictors and Braak34 is used as the 

response. Both sides of hippocampi have significant results with our federated chow test. 

The p-value of the left side is 5.1e-16, and the right one is 8.5e-16, which means the 

changes of hippocampal volume and Braak34 are significantly different in different 

cohorts.  
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We further adopt Pearson’s correlation to evaluate the relationship between the 

hippocampal volume (x-axis) and Braak34 (y-axis) of each subgroup, as illustrated in 

Figure 4.4.1. The top four subfigures are the distributions for left hippocampal volume 

and Braak34, and the bottom four are for the right hippocampus and Braak34. The first 

column is the result for all the 847 samples, and the rest three are for the cohorts of NC, 

HT, and HM, respectively. R and p in each subfigure are the Pearson correlation 

coefficient and p-value. All the p-values are significant and the cohort with HM genotype 

has the strongest negative correlation between volume and Braak34.  

4.4.3. Linking Hippocampal Morphometry to Tau Deposition 

                         

                         

 

Figure 4.4.1. Correlation of Hippocampal Volume and Braak34 in 

Subpopulations Stratified by the Sample's APOE Genotype. The top four 

subfigures are the distributions for left hippocampal volume and Braak34 and the 

bottom four are for right hippocampus and Braak34. The first column is the results 

for all the 847 samples and the rest are for the cohorts of NC, HT and HM, 

respectively. R and p are Pearson correlation coefficient and p-value. 
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We further figure out the regions where the atrophy focuses on the hippocampal 

surface. In this experiment, we used two morphometry features, radial distance (RD) and 

tensor-based morphometry (TBM) in different cohorts. Each morphometry feature on the 

vertex is used as predictor and Braak34 is used as response. A p-value is calculated with 

the federated chow test to evaluate effect of tau deposition to the morphometry feature on 

each vertex in the cohorts with different APOE genotype. To adjust for multiple 

comparisons, we will convert these raw p-values of all the 15,000 features on each 

surface to false discovery rate (FDR) (Storey, 2003) and consider trios with FDR<0.05 as 

functionally important. The average correct p-values for RD and TBM on each side of 

Figure 4.4.2. p-maps of Our Federated Chow Test Model. The 

warmer color regions have more significant p-values. The top two 

subfigures are the results for RD and the bottom two are for TBM. 
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hippocampi are all significant. The average p-values for RD of left and right hippocampi 

are 2.6e-13 and 3.6e-13. And the p-values for TBM are 4.4e-13 and 6.3e-13.  

As the illustration in Figure 4.4.2, we further visualize the p-values on each 

hippocampal surface to figure out the atrophy regions. Since the p-values are very 

significant, we normalized the p-values by dividing each p-value by the maximal p-value 

on each surface. Then, we map the values to the color map as shown in Figure 4.4.2. The 

warmer color regions have more significant p-values. The top two subfigures are the 

results for RD and the bottom two are for TBM. The atrophy focuses on the hippocampal 

subregions, subiculum and cornu ammonis 1 (CA1 subfield), which is consistent with the 

previous studies (An et al., 2021; Hanko et al., 2019; G. Wang et al., 2021). 

                             

                                

 

   

   

   

   

   

   

   

   

   

 

 
 
 
 
  
  
 
 
  
 
 
 
  
 
 
  
  
 
  
 
 

                                  

       

        

        

         

          

Figure 4.4.3. Cumulative Distribution Functions of the p-values. 
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4.4.4. Cumulative Distribution Analysis 

To further compare the effect size of the morphometry features in the federated 

chow test model, we created cumulative distribution function (CDF) plots of the resulting 

uncorrected p-values as the previous studies (Y. Wang et al., 2011). For null 

distributions, the CDF of p-values is expected to fall approximately along the line (y = x). 

These empirical CDFs of p-values are the flip of the more common FDR PP plot; steeper 

CDFs show stronger effect sizes. We use 𝑦 = 10−11𝑥 line in Figure 4.4.3 since both RD 

and TBM show excellent effect size, and it is hard to figure out the better one with the 

null hypothesis (𝑦 = 𝑥). Use of the 𝑦 = 10−11𝑥 line is related to the fact that significance 

is declared when the volume of suprathreshold statistics is more than 1011 times that 

expected under the null hypothesis. As shown in Figure 4.4.3, RD is a little bit better 

than TBM. 

 

4.4.5. Predicting Clinical Decline in Participants with MCI  

Table 4.4.2 Demographic Information for Participants with MCI.  

Group Sex (M/F) Age MMSE 

MCI converter (n=63) 42/21 75.2±7.0 26.7±1.7 

MCI non-converter (n=55) 38/17 74.7±7.8 27.7±1.4 

Values are mean ± standard deviation, where applicable. 
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In this experiment, we evaluated the performance of our features on the ROI in 

survival analysis by using 118 MCI participants’ data from a separate dataset (G. Wang 

et al., 2021) from ADNI (Table 4.4.2), including 63 MCI converters, who converted to 

probable AD in the next six years, and 55 MCI non-converters. We also chose 50 RD and 

50 TBM from the ROIs of each hippocampal surface and 50 features on the whole 

hippocampal surface to predict the conversion rates from MCI to AD, respectively. For 

comparison, we also performed the same experiment with the surface area and volume of 

the hippocampus. The hippocampal volume and surface area were calculated with the 

           

 
 
 
 
  
  
  
 

                  

 
  

 
  

 
  

 
  

 
  

 
  

               

                 

                         

                          

                 

                  

Figure 4.4.4. The ROC Analysis Results for Hippocampal Surface Area, 

Volume, the Whole Hippocampal Feature, and the Features on ROIs Associated 

with RD and TBM. The AUC for each measurement is shown in parentheses.   
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smoothed hippocampal structures after linearly registered to the MNI imaging space 

(Patenaude et al., 2011; Shi, Thompson, et al., 2013), and the sum of the bilateral 

hippocampal volume and the sum of the bilateral hippocampal surface area for each 

subject were used for this experiment. 

To fit the univariate Cox model, we converted the features on ROIs to a single 

value for each subject. First, as the features on the ROIs should have stronger predictive 

power, we used the frequency on each vertex as a weight to multiply the RD and TBM on 

the vertex. And then, we respectively summed up the weighted RD and weighted TBM 

on the ROIs for each subject. The value for RD and the value for TBM were further 

reduced to a scalar with principal components analysis (PCA). PCA is an unsupervised 

model to reduce the dimensionality of the data while minimizing information loss. It 

creates new uncorrelated features which maximize the variance successively. For the 

randomly selected features on the whole hippocampal surface, the RD and TBM were 

directly summed up without multiplying the frequency and reduced to a single value with 

PCA.  

Then, the optimal cutoffs for these measurements were determined with the 

maximum sensitivity and specificity for distinguishing MCI converters and non-

converters based on Receiver Operating Characteristic (ROC) analysis (Robin et al., 

2011). The ROC curves are illustrated in Figure 4.4.4, and the AUC, 95% confidence 

interval (CI) of AUC, and the optimal cutoffs are shown in Table 4.4.4.  
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Table 4.4.3 AUC for ROC Analysis, Optimal Cutoffs, and Estimated Hazards Ratios 

(HRs) for Conversion to AD in MCI Patients with High-value and Low-value Biomarkers 

Based on a Univariate Cox Model.  

Measurements AUC (95% CI) Cutoff β HR (95% CI) p-value 

Area 0.62 (0.52, 0.72) 7447.9 0.76 2.1 (1.3, 3.6) 4.48E-03 

Volume 0.64 (0.54, 0.74) 7814.9 0.84 2.3 (1.4, 3.9) 1.91E-03 

RD_Whole_Hippo 0.63 (0.53, 0.73) 3.8 0.97 2.6 (1.6, 4.4) 2.98E-04 

TBM_Whole_Hippo 0.64 (0.54, 0.74) 4.1 0.94 2.6 (1.5, 4.4) 5.36E-04 

RD_ROI 0.68 (0.58, 0.78) 3.8 1.24 3.5 (1.9, 6.2) 2.89E-05 

TBM_ROI 0.70 (0.61, 0.80) 4.4 1.3 3.7 (2.2, 6.2) 1.38E-06 
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Figure 4.4.5. The Survival Probability Analysis for Progression to AD in MCI 

Patients Based on Hippocampal Surface Area, Volume, the Whole Hippocampal 

Features, and the Features on ROIs Related to Aβ, Braak12 and Braak34. The p-

values are from the log-rank test. The red curve represents the high-value (HV) group 

for each measurement. and the blue one represents low-value (LV) group. 
 



 

  92 

With the optimal cutoffs, we could divide the whole cohort into two groups with 

different measurements. For example, the subjects with hippocampal volume higher than 

7814.9 mm3 were assigned to a high-value (HV) group, and the rest were into a low-

value (LV) group. As expected, AD may decrease the hippocampal volume as well as the 

other measurements. Next, we fitted a Cox proportional hazard model (Moore, 2008) 

with the six measurements separately, and the regression beta coefficients (β), the hazard 

ratios (HRs), and statistical significance (p-values) are shown in Table 4.4.5.  

Moreover, we calculated the survival probabilities for conversion to AD in the 

HV group and the LV group by fitting Kaplan-Meier curves. The survival probabilities of 

the subjects based on hippocampal surface area, volume, the whole hippocampal features, 

and the features on ROIs related to RD and TBM are shown in Figure 4.4.5. Each color 

represents the survival curve and 95% CI of one group. Here a log-rank test was used to 

compare the survival group differences based on a χ2 test, and the p-values are illustrated 

in each plot. A result with a p-value < 0.05 indicates that the two groups are significantly 

different in terms of survival time. The features from our selected ROIs tended to always 

yield stronger significant results than the hippocampal surface area, volume, and the 

whole hippocampal features.  

4.4.6. Federated Learning Stability Analysis 

In this experiment, we aim to demonstrate that the performance of our federated 

chow test model is not greatly affected by different data distribution models across 

institutions. We synthesized 1,000 samples and randomly assigned them to different 

independent hypothetical institutions, including one institution, three institutions, and 
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five. We compared the residuals from each linear regression model for each condition 

and found the residuals remained unchanged, as shown in Table 4.4.4. The first column 

is the ground truth residual and the rest are the residuals for our federated linear model 

under different data distribution conditions. The results demonstrate our federated chow 

test will remain stable under different multi-site conditions. Therefore, these results 

demonstrate the correctness and stability of our federated chow test model. 

 

Table 4.4.4 Stability Analysis of Federated Linear Model Across Different Institutional 

Settings. 

 
Ground 

Truth 

One- 

institution 

Three- 

institution 

Five- 

institution 

Residual 3.96 3.96 3.96 3.96 
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Chapter 5 

CONCLUSIONS 

In this dissertation, I introduced three novel models I developed for the study for 

the A/T/N system. All these three models are exploring the association between Aβ and 

tau deposition and the morphometric features of hippocampus. In this final chapter, I 

summarize the specific contributions and future works of these studies. 

• Patch Analysis-based Surface Correntropy-induced Sparse coding and max-pooling 

(PASCS-MP) 

In this study(Wu, Dong, Gui, et al., 2021; Wu et al., 2018), I explore the 

association between hippocampal structures and Aβ p/tau deposition using our 

hippocampal MMS, PASCS-MP method. Compared to traditional hippocampal shape 

measures, MMS have superior performance for predicting Aβ/tau depostion in the AD 

continuum. Compared to similar studies, this work achieves state-of-the-art performance 

when predicting Aβ positivity based on MRI biomarkers. And it can enrich the 

understanding of the relationship between hippocampal atrophy and AD pathology, and 

thus help in assessing disease burden, progression, and treatment effects. 

In the future, we plan to apply this proposed framework to other AD ROIs and 

further improve the comprehensibility of the framework by visualizing morphometry 

features selected in the classification. 

• Federated Morphometry Feature Selection 
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This work proposes a novel high-dimensional federated feature selection 

framework, FMFS, to study the A/tau burden associated with abnormalities in 

hippocampal subregions on two datasets (Wu, Dong, Zhang, et al., 2021; Wu et al., 

2020). Experimental results showed that FMFS encoded hippocampal features at 

different clinical stages that were associated with A/tau burden. As the clinical 

symptoms worsen, these ROIs appear to be more focal. Our novel proposed framework 

achieved superior performance in efficiency compared to a similar feature selection 

method. To the best of our knowledge, this is the first feature selection model to study 

hippocampal morphometric changes with A/tau burden across the AD spectrum. More 

importantly, this model can visualize brain structural abnormalities affected by AD 

proteinopathies. The features on ROIs could provide a means for screening individuals 

prior to more invasive Aβ/tau burden assessments that might determine their eligibility 

for interventional trials. Beyond brain MRI, our framework may also be applied to any 

other kinds of medical data for feature selection. 

• Federated Integrating Transcriptomics, Genomics, and Imaging model 

In this study (Wu et al., 2022), I proposed a novel federated Genotype-

Expression-Image Data Integration model. Compared to similar studies, this work 

achieves state-of-the-art performance in discovering downstream effects of AD-related 

genes and SNPs. Besides, the model provides novel insights into the relationship among 

image biomarkers, genotypes, and gene expression and could discover novel drug targets 

for precision medicine.   
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In the future, we will further validate our model with more datasets and more 

advanced imaging biomarkers. Specifically, we will introduce blood-based biomarkers 

into our model when such data are available.  
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