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ABSTRACT

High-dimensional systems are difficult to model and predict. The underlying

mechanisms of such systems are too complex to be fully understood with limited

theoretical knowledge and/or physical measurements. Nevertheless, redcued-order

models have been widely used to study high-dimensional systems, because they are

practical and efficient to develop and implement. Although model errors (biases)

are inevitable for reduced-order models, these models can still be proven useful to

develop real-world applications. Evaluation and validation for idealized models are

indispensable to serve the mission of developing useful applications.

Data assimilation and uncertainty quantification can provide a way to assess the

performance of a reduced-order model. Real data and a dynamical model are com-

bined together in a data assimilation framework to generate corrected model forecasts

of a system. Uncertainties in model forecasts and observations are also quantified in a

data assimilation cycle to provide optimal updates that are representative of the real

dynamics. In this research, data assimilation is applied to assess the performance of

two reduced-order models.

The first model is developed for predicting prostate cancer treatment response

under intermittent androgen suppression therapy. A sequential data assimilation

scheme, the ensemble Kalman filter (EnKF), is used to quantify uncertainties in

model predictions using clinical data of individual patients provided by Vancouver

Prostate Center. The second model is developed to study what causes the changes of

the state of stratospheric polar vortex. Two data assimilation schemes: EnKF and

ES-MDA (ensemble smoother with multiple data assimilation), are used to validate

the qualitative properties of the model using ECMWF (European Center for Medium-

Range Weather Forecasts) reanalysis data. In both studies, the reduced-order model is

able to reproduce the data patterns and provide insights to understand the underlying
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mechanism. However, significant model errors are also diagnosed for both models from

the results of data assimilation schemes, which suggests specific improvements of the

reduced-order models.
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Chapter 1

INTRODUCTION

Developing mathematical models for high-dimensional dynamical systems can be

challenging because of the complexity of underlying mechanisms. For example, it

is difficult to achieve high accuracy in modeling the global dynamics of atmospheric

weather due to a large system state that includes the physics and chemistry occurring

in the atmosphere. Developing such a high-dimensional model can be costly in both

intellectual effort and computational power. In most real-world applications, we do

not have the required knowledge or computing system to develop and simulate a

high-dimensional dynamical model. Alternatively, reduced-order modeling is often

used to study complex high-dimensional systems. It simplifies a high-dimensional

dynamical system by reducing the system’s state dimension significantly without

losing the fundamental mechanism of the observed system. Although reduced-order

models are idealized representations of the respective realities, it is proven efficient

and practical to simulate and study the main causes of a high-dimensional system. In

this thesis, I will present applications of reduced-order modeling in both mathematical

medicine and climate.

For the first project, I use an ODE (ordinary differential equation) model to study

the growth of a prostate tumor undergoing the intermittent androgen suppression

(IAS) therapy. Due to limited clinical measurements of the prostate tumor, I am

only able to use a time series of blood serum prostate specific antigen (PSA) level to

approximate the tumor growth. Hence, the mathematical model simplifies the change

of tumor volume to a one-dimensional system represented by the PSA level at different

times of a treatment journey. For the second project, I am interested in studying the
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change of state of the stratospheric polar vortex. Since it is computationally expensive

to simulate a global model to study the long-term dynamics of the polar vortex, I use

three ordinary differential equations that localize the polar vortex to a single point

in the stratosphere to model the stratospheric wind-wave interactions.

In both studies, a reduced-order model is obtained to approximate the true dy-

namics due to limited measurements (data) and theoretical knowledge to fully under-

stand its underlying mechanisms. Reduced-order modeling ignores the unknowns of

a complex dynamical system and focuses only on what is known at the current stage.

Furthermore, real data are used to compare with model forecasts in order to verify

and update corresponding model assumptions. The ultimate goal of using reduced-

order models for both projects is to capture the main causes of the observed system

and recover the qualitative behaviors of the system. The model of prostate cancer

treatment is used to foretell if and how much the cancer cell population will decrease

after a patient receives treatment, which can inform the patient and doctor if the

treatment will be effective. Similarly, the reduced-order model of the Arctic polar

vortex describes the annual and inter-annual variations of the polar vortex, which

can be used to interpret a warm or cold winter in the Northern Hemisphere. These

reduced-order models can be used to build useful applications to answer interested

scientific questions.

Although reduced-order models are much easier to develop and implement than

high-dimensional models, they suffer from consequential uncertainty because of sim-

plification of realities. Many aspects of a dynamical system are ignored in the de-

velopment of a reduced-order model. Hence, it is necessary to assess the reliability

and/or predictability of idealized models. “All models are wrong, but some are use-

ful” is a well-known quote by a late British statistician, George Box (Box (1976)).

This states my motivation to assess and validate the performances of reduced-order
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models for the two projects. I acknowledge that these idealized models are limited

to explain everything one can observe about the interested systems, but these simple

models can still be used to answer certain important scientific questions if it can be

proven that the model performance is representative of the observed reality.

Data assimilation is one popular way to assess a dynamical model’s performance.

It is a procedure that combines a dynamical model with available observations of

the system and produces updated analysis of the model’s state. Meanwhile, data

assimilation also provides statistics for observation errors and model errors (biases)

in its updates. Generally, two steps are involved in a data assimilation scheme:

a background forecast (prior estimate of the system state) and an analysis cycle

(posterior estimate of the system state). The background forecast (or background)

is the initial guess of the system state, so it serves as the initial condition(s) of the

dynamical model. The background is used to simulate the model in a short time scale

until new observations are available for the dynamical system. Then, the analysis

cycle is generated by combining the new observations with the current background

to produce an updated (corrected) initial guess of the system state. The analysis

serves as the new initial guess (background) for the next data assimilation cycle

and the previous procedure repeats. One optimal analysis cycle would achieve good

“synchronization” between the physical system (observation space) and the model

state. Data assimilation is an iterative approach alternating between the background

forecast and analysis cycle, and it keeps track of the uncertainty of model predictions

in real time.

Figure 1.1 shows a simple example of data assimilation applied to estimate the

temperature at a location. The orange circles represent the background forecasts from

a model at different times, the blue stars are real observations, and the red squares

are the analysis cycles generated by the data assimilation algorithm. At each time
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point when there is an observation available, the analysis is generated by combining

two pieces of information: the background forecast and an observation, to produce

a more accurate estimate of the temperature, which is the analysis. Ideally, the

analysis should improve the model predictions as shown in this figure that it is closer

to the true temperature (blue curve) than the original forecast. Moreover, the two-

step procedure of data assimilation is repeated every time when a new observation

becomes available. Thus, data assimilation is an iterative approach.

Figure 1.1: An example of data assimilation applied to predict the future temper-

ature at a location. The two-step data assimilation cycle is repeated whenever a new

observation is available.

A major challenge in the projects described here is that the provided data (obser-

vations) are inadequate to estimate some important model parameters. For example,

the model for prostate cancer treatment has 21 parameters in total. However, only

two types of clinical measurements are available for individual patients: blood serum

androgen and PSA level. These two time series do not provide enough information

to estimate each parameter correctly for an individual patient. If truthful param-
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eter values are not provided for each patient, then the parameter space will also

contribute to the uncertainty of model predictions and jeopardize the reliability of

short-term predictions. Similar issues also remain for the polar vortex project. There

are two control parameters of the model that represent the physical perturbations to

the stratospheric polar vortex, but no direct observations are available to estimate

those control parameters. The reduced-order model requires control parameters that

are consistent with observed data to reproduce the observed dynamics. Hence, for

both projects I realized that quantifying uncertainty only for the model state does

not guarantee that the models produce reasonable forecasts.

To cope with the uncertainty associated with parameter space, I have decided

to include parameter estimation as a part of a data assimilation scheme. For both

projects I have chosen some important model parameters and used data assimila-

tion algorithms to estimate those parameters directly from given data sets. This

parameter-estimation procedure can be seen as solving an inverse problem because

the data are used to infer the correct values of chosen model parameters.

For the prostate cancer treatment project, I have designed an augmented state

vector that includes both the model state vector and a vector for chosen model pa-

rameters. A new dynamical model is also developed for the augmented state vector,

which is implemented within the ensemble Kalman filter (EnKF) framework. The

EnKF is a sequential data assimilation scheme that updates both the model state

and the parameter space simultaneously. The mean of ensemble forecasts is used to

represent the final estimate for the system state.

For the polar vortex project, I have chosen two different data assimilation schemes

to estimate a control parameter of the reduced-order model under different assump-

tions. The first approach is the same design as the prostate cancer treatment project

– using EnKF with an augmented state vector. The second approach is a global data
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assimilation scheme called the ensemble smoother with multiple data assimilation

(ES-MDA). The ES-MDA only updates the parameter space so that the model with

estimated parameters can be used to reproduce the entire historical data set. More

details about the assumptions for different data assimilation schemes will be given in

Chapter 5 and 6. The overall goal for this dissertation is to demonstrate the efficiency

of reduced-order modeling to study high-dimensional systems and how to assess and

validate these idealized models using data assimilation.

1.1 Background of Data Assimilation

Data assimilation was first developed to aid with numerical weather prediction

(NWP). NWP can be viewed as an initial value problem: given an estimate of the

current state of the atmosphere (initial conditions), we want to obtain short-range

forecasts of the atmospheric evolution. In the early developments of NWP, interpo-

lations of the available observations to a regular grid were performed manually to

provide initial conditions for a forecast model. Jule Charney first envisioned in his

1951 paper (Charney (1951)) that an automatic “objective analysis” of meteorological

data was much needed to replace the time-consuming hand analyses. Now we refer

to this automated procedure as data assimilation, which combines observations with

short-range forecasts to estimate the initial conditions. As described in Talagrand

(1997), the purpose of data assimilation is “using all the available information, to

determine as accurately as possible the state of the atmospheric (or oceanic) flow.”

One important problem to be considered for determination of atmospheric state

is: current observations alone are not enough to initialize a forecast model. Modern

forecast models can have a state dimension of the order of 107, whereas the total num-

ber of conventional observations for the corresponding model variables is of the order

of 104 (Kalnay (2003)). Moreover, the distribution of these data is very nonuniform
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in time and space. Regions such as the North America and Eurasia are much more

densely observed than the oceans. Due to the inadequacy of observations, additional

information needs to be used to complete the initial guess of atmospheric state. We

also refer to the initial guess as the background or prior information.

Data assimilation updates (improves) the background whenever new data become

available, which is known as the “analysis cycle”. The analysis cycle provides a

forecast model corrected initial conditions based on the new information and hence

improves short-range forecasts. The short-range forecast then is used as the first

guess (background) for the next analysis cycle and so on. Currently, the intermittent

data assimilation cycle is performed every 6 hours and four times a day in operational

global forecast models. In each data assimilation cycle, all available new observations

and physical laws that govern the flow are used to update the initial conditions. This

approach not only provides a complete initialization of the global grid but also carries

information from the data-rich regions to the data-poor regions. For example, a data-

poor region like the North Atlantic Ocean could still have a good forecast benefiting

from the upstream information carried from the data-rich region North America.

The performance of a data assimilation cycle is significantly affected by the choice

of analysis schemes. There are two major categories of analysis schemes: empirical

schemes and statistical interpolation schemes. Successive corrections method (SCM)

is the first empirical analysis scheme developed by Bergthörsson and Döös (1955) and

by Cressman (1959). Newtonian relaxation (or nudging) is another empirical scheme

developed later in the 1970s by Hoke and Anthes (1976) and by Kistler (1974). The

empirical methods are simple but limited for large-scale assimilation. Instead, the

statistical interpolation schemes, in particular least squares methods, are more widely

used in current global operational forecasts. Some popular statistical interpolation

schemes are Kalman filtering (KF), 3D-Var and 4D-Var assimilation. There are many
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good literature reviews of detailed discussions for different analysis schemes developed

over the decades. Articles from Ghil and Malanotte-Rizzoli (1991), and Talagrand

(1997) give a rigorous overview of current methods of data assimilation. There are

also books by Bengtsson et al. (1981), Daley (1993) and Kalnay (2003) that contain

a comprehensive description of methods for atmospheric data assimilation.

Although the designs of various data assimilation analysis schemes look very differ-

ent from each other, they all share the same goal of quantifying observation errors and

model (forecast) errors in the background to optimize the analysis cycles. Empirical

schemes use arbitrary tuning parameters to approximate such errors, and statistical

interpolation schemes use error statistics such as the covariance matrix to quantify

the background uncertainty. Generally, it is important to capture the errors in both

observations and the background efficiently to obtain short-range forecasts that are

close to the real atmosphere.

In addition to considering the errors introduced by observations and model defi-

ciencies in data assimilation cycles, the chaotic nature of atmospheric flows discov-

ered by Edward Lorenz suggested another major improvement for NWP: ensemble

forecasting (Lorenz (1965)). Lorenz pointed out that due to the instabilities of atmo-

spheric flows, any small errors (either from the model or initial conditions) could grow

quickly over time and reduce the accuracy of forecast models dramatically. He esti-

mated the limit of weather predictability as about two weeks. This finding encouraged

the replacement of single deterministic forecast to an ensemble forecast with differ-

ent initial conditions to represent the stochastic nature of atmospheric evolution. In

this dissertation, we focus only on ensemble methods to develop respective real-world

applications.
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1.2 Data Assimilation for Reduced-order Modeling

Although data assimilation was initially developed for operational NWP to solve

the initial value problem for atmospheric predictions, many principles of its design are

still practical and transferable to other domains of science. As described briefly in the

above section, data assimilation is an iterative algorithm of two steps: background

and analysis. This two-step structure is ideal for dynamical systems that have in-

complete observations for the state space and need additional information to update

initial conditions. Data assimilation provides optimal updates for the current state

of a system by combining available observations with model forecasts. In addition,

the analysis cycle also considers errors from observations and model forecast (or the

background) to update the initial conditions iteratively so that the updated short-

range forecast is close to the real dynamics. Lastly, the option of ensemble forecasting

in data assimilation provides reliable predictions for chaotic dynamical systems that

are sensitive to errors in initial conditions.

Data assimilation has been proven robust in forecasting high-dimensional systems

since its first development in the 1950s, and it still contributes to many operational

global forecast models today. For example, the European Center for Medium-Range

Weather Forecasts (ECMWF) incorporates data assimilation into its global forecast

models and provides archives of hourly estimates of atmospheric and oceanic climate

variables, which is known as the ECMWF Reanalysis data.

The challenges that have been overcome for NWP can also be found in many appli-

cations for reduced-order modeling. Often reduced-order models are used to simplify

a complex high-dimensional system to better understand the underlying mechanism.

As a result of the simplification, there is always inevitable model error in the model’s

simulation (prediction) of respective reality. Moreover, in most real-world applica-
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tions, a reduced-order model is built after the observations are collected. Hence, most

of the model variables lack real observations to be initialized or validated. Reduced-

order modeling shares the same issue of initial condition uncertainty as NWP. In order

to assess and validate reduced-order models, quantifying errors caused by model defi-

ciency and incomplete data is necessary as well. Therefore, the design of data assim-

ilation is much applicable to resolve similar challenges encountered in reduced-order

modeling.

In recent years, data assimilation has been applied in some other domains of social

and physical sciences. Evensen et al. (2020) adapted data assimilation to a low-

dimensional disease model to study the spread of COVID-19 over different regions of

the world. Similarly in my study, I have adapted various data assimilation methods

to develop applications for mathematical medicine and climate.

The first project is about developing a predictive model for prostate cancer treat-

ment response. The second project is about developing a mechanistic model to under-

stand what causes the changes in the state of polar vortex in the Northern Hemisphere.

For both projects, the models are low-dimensional models of ordinary differential

equations built upon assumptions of underlying mechanisms. These models focus

majorly on studying the qualitative behaviors of corresponding dynamical systems.

For example, the polar vortex model assumes inter-annual variability of stratospheric

polar vortex: some winters the polar vortex is stable and associated with high zonal

wind speed, whereas other winters an unstable polar vortex is observed with low zonal

wind speed. High quality data are obtained to test relevant model assumptions and

thus validate the model performance. Data assimilation is applied in both projects to

combine the mathematical model with real data, subsequently, it provides a compu-

tational model for the dynamical system. Moreover, the developed data assimilation

framework is also able to estimate important model parameters directly so that the
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model is calibrated in real time to produce short forecasts that are representative of

reality.

The data assimilation framework is developed to answer different scientific ques-

tions for the two projects. The prostate cancer project focuses on the predictive

ability of a mathematical model. A common problem discovered for prostate cancer

models is that parameters that provide good fits to previous data do not assure ac-

curate predictions for the future. Hence, the developed data assimilation framework

aims to quantify (correct) errors in model forecasts to ensure the model’s prediction

accuracy. On the other hand, the polar vortex project is more concerned with the

representativeness of a low-dimensional model that is used to study the mechanism

of the Arctic polar vortex. The model presented in my study is a crude reduction

of the high-dimensional system of stratospheric polar vortex. Consequently, model

bias is inevitable for such a low-dimensional mechanistic model of the polar vortex.

In this case, the developed data assimilation framework is used to identify potential

model bias and to verify the model’s representativeness of reality. It is discovered that

an accurate parameter estimation is essential to reproduce the observed dynamical

system. More detailed discussions of the results of both projects will be provided in

Chapter 4 and 6, respectively.

The structure of this dissertation is as follows. Chapter 2 introduces the concep-

tual formulation of data assimilation methods used in this dissertation. Chapter 3

presents the background information and mathematical modeling for prostate cancer

treatment. Chapter 4 describes the data assimilation applications for prostate cancer

treatment response prediction. This result is published in the journal Mathematical

Biosciences and Engineering. Chapter 5 introduces a low-dimensional model of the

Arctic polar vortex. Chapter 6 presents the data assimilation applications for the

reduced-order model of the polar vortex.
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Chapter 2

DATA ASSIMILATION

As mentioned briefly in Chapter 1, data assimilation solves an initial value problem

for a dynamical system by combining the current background forecast with available

observations. The background forecast is obtained by integration of a dynamical

model with given initial conditions. In the context of numerical weather prediction,

the dynamical model is a high-dimensional model that describes the physical laws

governing the atmospheric and oceanic flows. However, in this thesis, the models

developed for the two projects are both reduced-order models, which are given by a

set of ordinary differential equations in the form

dx

dt
= F (t,x), (2.1)

where x is an m-dimensional state vector representing the system state at a given

time.

A data assimilation cycle is constructed with these two steps: forecast and anal-

ysis, denoted as xb and xa, respectively. The forecast can also be called background,

first guess or prior information. The background is given by integrating the model

in Equation (2.1) with given initial conditions of the state vector. The main goal

of data assimilation is to calculate an “optimal” update for current background us-

ing new observations yo (a vector of observed model variables), which produces the

analysis. An observation operator is required in this process to map model variables

to the observation space, which is denoted as H. The difference between the obser-

vations and the model first guess yo − H(xb) is called observational increments or

“innovations”. The analysis is given by adding the innovations to the background
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forecast with weights W that are calculated based on statistical error covariances of

the forecast and the observations, defined as

xa = xb + W
[
yo −H(xb)

]
. (2.2)

Different analysis schemes can be used to determine the weights W. There are

both empirical methods such as successive corrections method (SCM) (Bergthörsson

and Döös (1955); Cressman (1959); Barnes (1964)) and statistical interpolation meth-

ods such as Kalman filtering (KF) (Kalman (1960); Kalman and Bucy (1961)) and 3D-

Var (Sasaki (1970)) to calculate the weights. The analysis schemes used in this thesis

are derived from the KF: ensemble Kalman filter (EnKF) and ensemble smoother

with multiple data assimilation (ES-MDA). The KF assumes Gaussian distributions

to the errors in the background and observations and provides a linear estimate of

the “true” system state using the error statistics.

This chapter begins with a simple scalar example of the Kalman filter, and then

proceeds to the ensemble-based methods. Practical challenges associated with these

methods will be discussed as well.

2.1 Kalman Filtering for a Scalar

The Kalman filter is one of the variational approaches that defines a cost function

to determine the weights W in Equation (2.2). Let us simplify the problem by

considering a one-dimensional state variable with one observation available currently.

Suppose an estimate of current room temperature (from thermostat) is given as

Tb, and this estimate has some error εb that is assumed to have a Gaussian distribution

with mean 0 and variance σ2
b . Then a thermometer is used to measure current room

temperature which gives an observation To associated with an error εo assumed to

have a Gaussian distribution with mean 0 and variance σ2
o . The error terms εb and

εo are assumed to be independent from each other. The problem needs to be solved
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here is to recover the most likely value of the true temperature T based on the two

noisy estimates. Basically, this is solving the analysis (Equation (2.2)) in the scalar

form

Ta = Tb +W (To − Tb), (2.3)

where the observation operator H becomes the identity and the analysis Ta serves as

the “most likely value of true temperature”.

The probability distribution (PDF) of the estimate Tb given a true value T and a

Gaussian error with variance σ2
b is given by the Gaussian distribution

p(Tb|T ) =
1√

2πσb
e−(Tb−T )2/(2σ2

b ). (2.4)

Similarly, the PDF of the estimate To given a true value T and a Gaussian error with

variance σ2
o is given by the Gaussian distribution

p(To|T ) =
1√

2πσo
e−(To−T )2/(2σ2

o). (2.5)

These two PDFs are also called the likelihood of a true value T given the corresponding

estimates.

Since Tb and To are independent, the most likely value of T is the one that maxi-

mizes the joint probability

p(T |Tb, To) = p(Tb|T )p(To|T ) =
1

2πσbσo
e
− (Tb−T )2

2σ2
b

− (To−T )2

2σ2o . (2.6)

Maximizing the exponential function is equivalent to minimizing the cost function

J(T ) =
1

2

[
(Tb − T )2

σ2
b

+
(To − T )2

σ2
o

]
. (2.7)

Expanding the quadratic expressions for Equation (2.7) and completing the square

gives

J(T ) =

(
1

σ2
b

+
1

σ2
o

)[
T − σ2

oTb + σ2
bTo

σ2
o + σ2

b

]2

+ C, (2.8)
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where C is constant with respect to T . Thus, the minimizer or the analysis of J(T )

is given by

Ta =
σ2
oTb + σ2

bTo
σ2
o + σ2

b

. (2.9)

Notice that one could also set the first derivative of J(T ) equal to zero and solves for

T to obtain the same results. Here, we set Equation (2.9) equal to Equation (2.3)

and solve for W which gives the optimal weight as

W =
σ2
b

σ2
b + σ2

o

, (2.10)

which is also referred to as the “Kalman gain”. Equation (2.8) also gives the analysis

error variance as

1

σ2
a

=
1

σ2
b

+
1

σ2
o

=
σ2
b + σ2

o

σ2
bσ

2
o

, (2.11)

or

σ2
a = (1−W )σ2

b . (2.12)

This analysis gives an intuitive understanding of how the filter works: if the obser-

vation error σ2
o is large, then W � 1 and σ2

a ≈ σ2
b , so the filter gives more weight to

the background forecast. Similarly, if the background error σ2
b is large, then W ≈ 1

and σ2
a ≈ σ2

o , so the filter will give much more weight to the measurement given by

the thermometer.

2.2 Multi-dimensional Case of the Kalman Filter

Now let us go back to the multi-dimensional system defined in Equation (2.1).

Suppose xb ∈ Rm is the current background state vector and yo is an l-dimensional

vector of observed model variables (l ≤ m). They are assumed to have Gaussian

errors with uncertainties quantified by covariance matrices Pb and R, respectively.

In particular, the observation vector has the relationship with the true system state
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x:

yo = H(x) + εo, (2.13)

where εo is a Gaussian random variable with mean 0 and covariance matrix R. Then,

the cost function analogous to Equation (2.7) is given by

J(x) = [x− xb]T (Pb)−1[x− xb] + [yo −H(x)]TR−1[yo −H(x)]. (2.14)

If the model dynamics and the observation operator are both linear, then there exists

a unique minimizer for Equation (2.14), which can be obtained by completing the

square similarly to what we did for Equation (2.8). The analysis is given by the state

estimate xa and its covariance matrix Pa and needs to satisfy

J(x) = [x− xa]T (Pa)−1[x− xa] + C ′ (2.15)

for some constant C ′. To solve for xa and Pa, we expand Equation (2.14) and equate

the terms of degree 2 in x and we have

Pa =
[
(Pb)−1 + HTR−1H

]−1
. (2.16)

We equate the terms of degree 1 in x and we have

xa = Pa
[
(Pb)−1xb + HTR−1yo

]
. (2.17)

Equations (2.16) and (2.17) can also be rearranged to the have the following form

Pa =
[
I + PbH

T
R−1H

]−1

Pb (2.18)

xa = xb + K
(
yo −Hxb

)
, (2.19)

where K = PaHTR−1 is the Kalman gain matrix. Note that K is the weight matrix

in the context of KF. Equations (2.18) and (2.19) are the so called Kalman filter

update equations. Notice that a linear combination of Gaussian distributions is still

Gaussian, so the updated analysis also has a Gaussian error.
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All the computations above are done at the same time point tn, so we dropped

the notation for time to demonstrate how one analysis cycle works. In real practice,

the background and analysis are performed sequentially at times t1 < t2 < · · · < tn

when observations become available. The updated analysis serves as the new first

guess (background) for the next analysis cycle and the above process repeats. In the

case of a linear model, let Mt,t′ be the matrix that propagates the solution from time

t to t′. The sequential scheme can be written as

xbn = Mtn−1,tnx
a
n−1, (2.20)

Pb
n = Mtn−1,tnP

a
n−1M

T
tn−1,tn

, (2.21)

which uses previous step’s analysis xan−1 and its covariance Pa
n−1 to calculate the

current time step’s analysis update. Then, the current analysis update will be used

as the new background for the next iteration of data assimilation cycle.

2.3 Ensemble Kalman Filtering for Nonlinear Scenario

The KF is developed for linear dynamics. In the case that the dynamical model

(Equation (2.1)) and the observation operator become nonlinear, the KF fails to

update the background uncertainty Pb
n precisely. The ensemble Kalman filter (EnKF)

was originally proposed by Evensen (1994) to solve for nonlinear dynamics. The main

concept of the EnKF is to use an ensemble of background estimates at time tn−1 and

propagate each ensemble member to time tn and use their spread to characterize the

covariance Pa
n.

Here we drop the time notation again for simplicity and denote the background

ensemble with size k as {xb(i)}ki=1. The best estimate for the current system state is

given by the background ensemble mean

xb = k−1

k∑
i=1

xb(i). (2.22)
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Then, the sample covariance of the background ensemble is given as

Pb = (k − 1)−1Xb(Xb)T , (2.23)

where Xb is the m × k background perturbation matrix whose ith column is given

as xb(i) − xb. The EnKF produces an analysis ensemble {xa(i)}ki=1 with sample mean

and covariance, respectively

xa = k−1

k∑
i=1

xa(i), (2.24)

Pa = (k − 1)−1Xa(Xa)T , (2.25)

where Xa is the m × k analysis perturbation matrix whose ith column is given as

xa(i) − xa. The background mean xb and its associated sample covariance matrix

Pb are used to define the cost function Equation (2.14) which yields the updated

analysis ensemble with mean xa and covariance matrix Pa that appear in similar

forms as Equations (2.18) and (2.19).

The EnKF algorithm also requires a routine to choose a specific analysis ensem-

ble, as there are many possible choices of an analysis ensemble to provide the matrix

Xa. The simplest case is to apply the KF update equation, Equation (2.17), directly

to each background ensemble member to obtain the corresponding analysis ensem-

ble. However, this method tends to give a sample covariance that is smaller than

the analysis covariance given by Equation (2.18). Instead, the ensemble square-root

filter (Anderson (2001); Whitaker and Hamill (2002); Tippett et al. (2003); Ott et al.

(2002)) is applied to construct an analysis ensemble with mean and sample variance

that are the same as the KF update equations in the linear case as Equations (2.18)

and (2.19). Square root filters are also known as a deterministic version of the EnKF

(Whitaker and Hamill (2002)), which is different from the earlier approach used in

Evensen (1994); Burgers et al. (1998); Houtekamer and Mitchell (1998), where ob-
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servations are perturbed artificially to generate each analysis ensemble member. The

EnKF frameworks developed for the prostate cancer treatment project and the polar

vortex project both use the square root filters.

2.3.1 Covariance Inflation

The classical KF update equations stated above produce unbiased system updates

only if the covariances Pb and Pa are representative of the underlying uncertainties.

However, in reality, an accurate estimate for the error covariances can be hindered by

many factors. One of the main causes is model error, which is common for nonlinear

dynamics. The EnKF tends to underestimate the uncertainty because of model er-

rors (biases), which leads to overconfidence in the background forecasts. Eventually,

the data assimilation system ignores the observations and decouples from the true

trajectory.

Different ad hoc procedures (using tunable parameters for the framework) have

been developed to resolve this problem. Generally, one can inflate the estimated

covariances (either for the background or the analysis) in order to decrease the con-

fidence in model forecasts. “Additive inflation” adds a small multiple of the identity

matrix to the background covariance or the analysis covariance during each data

assimilation cycle (Ott et al. (2002, 2004)). In my studies, a “multiplicative infla-

tion”, denoted as ρ (Anderson and Anderson (1999); Hamill et al. (2001)), is used

to multiply the background perturbation matrix, Xb, during each assimilation cycle.

Normally, ρ is set equal to 1 meaning that there is no inflation. If a factor ρ > 1

is applied, then the influence of past observations on future analyses will decrease

exponentially over time.
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2.4 Ensemble Smoothing

Ensemble-based methods in data assimilation such as the EnKF (Evensen (1994,

2009a,b)) have been widely used for parameter estimations in the reservoir-engineering

community. As an alternative to the EnKF, ensemble smoothing (ES) is another pop-

ular method that has been used to build applications for history matching reservoir

models. The reader can refer to Aanonsen et al. (2009) for a comprehensive review

for those applications. Skjervheim et al. (2011) have used both EnKF and ES for

history matching reservoir models and showed similar results and performances from

the two methods in a reservoir test case.

Ensemble smoothing solves the same formulation of the cost function as EnKF,

i.e., maximum likelihood. In the context of reservoir history-matching problems, the

model uncertainty is often ignored as reservoir models are usually stable functions of

the rock property fields (Emerick and Reynolds (2013)). Thus, ES is often applied to

solve only the parameter-estimation problem for reservoir simulation models.

Similarly, in this dissertation, ES is applied to solve the parameter-estimation

problem for specific reduced-order models, i.e., the ES only updates some parameters

of a reduced-order model. Consequently, in the context of ES, the input of Equation

(2.14) becomes a vector of chosen model parameters instead of model state variables.

The updated parameters for a model given by ES can be used to simulate the model

in order to improve the model predictions.

A major difference between the ES and the EnKF is how data are assimilated into

model forecasts. The ES assimilates all data including both past and future obser-

vations at once to generate a global update for selected model parameters, whereas

the EnKF is a recursive algorithm that updates the system state sequentially as new

data become available in real time. The data are seen as the history of a dynamical
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system rather than incoming new observations in the context of ES. That is why ES

is useful to solve history matching problems.

The method used in this thesis is called ensemble smoother with multiple data

assimilation (ES-MDA) developed in Emerick and Reynolds (2013), which is an iter-

ative version of the ES. The ES is proven to have identical performances as the EnKF

for linear dynamical models and observation operators by Evensen (2004). However,

for nonlinear dynamical models, the EnKF provides much better results than the ES

(Evensen and Van Leeuwen (2000)). Thus, ES-MDA modifies the one-step ensemble

smoothing to be an iterative method, so that the iterations can help the model to

effectively update the prediction uncertainties. In sections below, we first start with

stating the history matching problem formulated in the petroleum industry, and then

present the solutions proposed by ES-MDA.

2.4.1 History Matching Problem

Generally, the history matching problem is a standard inverse problem. Given

some measurements and a dynamical model of a system, we want to estimate the

model parameters using the measurements. Assume that the model parameters and

measurements are drawn from Gaussian distributions. A Bayesian formulation of the

problem is presented here.

Suppose a perfect model is provided for a dynamical system

y = G(x), (2.26)

where x is an n-dimensional vector of model parameters and y is an m-dimensional

predicted measurements. Let d ∈ Rm be the real measurements with the following

relationship to y

d = y + ε, (2.27)
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where ε is assumed to be a Gaussian error. The problem to be solved consists of

estimating the most likely values of the model parameters x based on measurements

and model forecasts. Using Bayes’ theorem and a perfect forward model, the joint

posterior PDF for x and y is defined as

f(x,y|d) ∝ f(x,y)f(d|y)

= f(x)f(y|x)f(d|y)

= f(x)δ(y −G(x))f(d|y), (2.28)

where the transition density f(y|x) is the Dirac delta function under the assumption

of a perfect model (no model error). In order to obtain the marginal PDF for x, we

integrate Equation (2.28) over y, which gives the posterior PDF of the parameters

f(x|d) ∝
∫
f(x)δ(x−G(x))f(d|y)dy

=f(x)f(d|G(x)). (2.29)

Assume that both the prior f(x) and likelihood f(d|G(x)) are Gaussian. Then, the

marginal PDF becomes

f(x|d) ∝ exp

[
−1

2

(
(x− xf )TC−1

xx (x− xf ) + (G(x)− d)TC−1
dd (G(x)− d)

)]
,

(2.30)

where xf is the prior estimate for x, Cxx is the n× n error covariance matrix of xf ,

and Cdd is the m ×m error covariance matrix of the measurements d. Maximizing

Equation (2.30) is equivalent to minimize the cost function

J(x) =
(
x− xf

)T
C−1
xx

(
x− xf

)
+ (G(x)− d)T C−1

dd (G(x)− d) . (2.31)

This cost function is similar to the one defined for KF in a linear case, Equation

(2.14). In the case that G is a linear model, the minimizer for Equation (2.31) is
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given by the standard KF update equations

xa = xf + K(d−Gx), (2.32)

Ca
xx = (I−KG)Cxx, (2.33)

K = CxxG(GCxxG
T + Cdd)

−1, (2.34)

which produce the analysis update (superscript a stands for analysis).

Now continue with the linear case but considering an ensemble representation of

the error covariances

Ce
xx = AAT/(ne − 1), (2.35)

where ne is the number of ensemble members and A is analogous to the background

perturbation matrix Xb as in EnKF: each column of A is given by the difference

between each prior ensemble member and the ensemble mean. Then, Equations

(2.32) and (2.34) can be rewritten as

xaj = xfj + Ke(dj −Gxj), (2.36)

Ke = Ce
xxG(GCe

xxG
T + Cdd)

−1, (2.37)

where xj and dj, are a pair of ensemble realizations, and dj = dj + εj denotes the

perturbed observations (Burgers et al. (1998)). The noise εj is sampled out of a

Gaussian distribution with mean 0 and covariance Cdd. Evensen has shown that

with an infinite size of the ensemble, the update in Equation (2.36) implies Equation

(2.33) (Evensen (2009a)). It is also easy to show that the solutions Equations (2.36)

and (2.37) can be obtained by solving the alternative cost function defined as

J(xj) =
(
xj − xfj

)T
C−1
xx

(
xj − xfj

)
+ (Gxj − dj)

T C−1
dd (Gxj − dj) . (2.38)

In the nonlinear case, the cost function in (2.38) becomes

J(xj) =
(
xj − xfj

)T
C−1
xx

(
xj − xfj

)
+ (G(xj)− dj)

T C−1
dd (G(xj)− dj) , (2.39)
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where the sampled posterior will be non-Gaussian due to the nonlinear model G(x).

Consequently, the analysis update equations become

xaj = xfj + Ke
(
dj −G

(
xfj

))
, (2.40)

Ke = Ce
xxG

′(xf )(G′(xf )Ce
xxG

′(xf )T + Cdd)
−1, (2.41)

where the tangent-linear operator G′ is approximated at the mean of the prior ensem-

ble. Equations (2.40) and (2.41) are also known as the standard ensemble smoothing

update equations.

2.4.2 Ensemble Smoother with Multiple Data Assimilation

The ES-MDA solves the Bayesian formulation of the history matching problem us-

ing a tempering procedure of the likelihood function in Equation (2.29) (Neal (1996);

Stordal and Elsheikh (2015)). In ES-MDA, the likelihood function for measurements

is rewritten as

f(d|y) = f(d|y)
∑Nmda
i=1

1
αi =

Nmda∏
i=1

f(d|y)
1
αi , (2.42)

where
Nmda∑
i=1

1

αi
= 1. (2.43)

Under the same Gaussian assumption, the likelihood becomes

f(d|y) ∝ exp

(
−1

2
(y − d)C−1

dd (y − d)

)
(2.44)

=

Nmda∏
i=1

exp

(
− 1

2αi
(y − d)C−1

dd (y − d)

)
. (2.45)

Plug in the likelihood in Equation (2.29), we get

f(x|d) ∝ f(x)

Nmda∏
i=1

f(d|G(xi−1))
1
αi . (2.46)
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This equation can also be rewritten in a recursive manner, starting with the prior

x = x0 leading to the posterior x = xNmda
:

f(x1|d) ∝f(x0)f(d|G(x0))
1
α1 ,

f(x2|d) ∝f(x1|d)f(d|G(x1))
1
α2 ,

...

f(xNmda
|d) ∝f(xNmda−1

|d)f(d|G(xNmda−1
)

1
αNmda . (2.47)

The KF update equations are applied to minimize a cost function for each recursive

step. Thus, the ES-MDA solves a predefined sequence of cost functions that are

similar to the cost function defined in Equation (2.31), which are defined as

J(xj,i+1) =(xj,i+1 − xj,i)
(
Ce,i
xx

)−1
(xj,i+1 − xj,i)

+(G(xj,i+1)− d−
√
αiεj)

×(αiC
e
dd)
−1(G(xj,i+1)− d−

√
αiεj), (2.48)

where j = 1, . . . , ne, i = 1, . . . , Nmda, and the initial (Ce
xx)i=1 = Ce

xx and xj,i=1 = xfj .

In each recursive step, ES-MDA inflates the measurement errors by a factor
√
αi to

reduce the impact of the measurements.

The standard ES Equations (2.40-2.41) are used to solve the sequence of cost

functions stated above. With the inflated measurement errors, the analysis update

at each recursive step for individual ensemble member becomes

xj,i+1 = xj,i + G′(xj,i)C
e,i
xx

(
G′(xj,i)C

e,i
xxG

′(xj,i) + αiC
e
dd

)−1

× (d +
√
αiεj −G(xj,i)). (2.49)

After getting the updated parameters xj,i+1, the model is rerun with updated param-

eters to get a posterior ensemble of model predictions (predicted measurements given

by model)

yj,i+1 = G(xj,i+1), (2.50)
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which will be used to approximate the tangent-linear operator G′ for the next iter-

ation. The final output of parameters is after Nmda steps where xaj = xj,Nmda
. The

model is rerun with the final updated parameters to generate the final history-matched

ensemble of model predictions. This iterative scheme of the ensemble smoothing is

expected to have better performance than one long update step in standard ensemble

smoother, because it uses many short linear steps to help reduce the errors.
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Chapter 3

A REDUCED-ORDER MODEL OF PROSTATE CANCER UNDER ANDROGEN

SUPPRESSION THERAPY

3.1 Androgen Suppression Therapy

Prostate cancer is the second leading cause of cancer death in American men

according to the American Cancer Society. On average, one in every eight American

men will be diagnosed with prostate cancer in his life time (ACS (2021)). Much

progress has been made in treatment for prostate cancer over the years to improve

patients’ symptoms and quality of life.

In 1941, Huggins and Hodes (Ch and Hodges (1941)) discovered that castration

induces the regression of prostate tumors which led to the conclusion that the growth

of prostate tumors is highly dependent on male hormones, called the androgen. Their

study suggested the first time that some cancers could be treated by chemical means.

Huggins shared the 1966 Nobel Prize for Physiology or Medicine because of this dis-

covery. Currently, hormonal therapy, in particular the androgen suppression therapy,

is a regular treatment option for prostate cancers especially for metastasized cases

(Kumar et al. (2006)).

Generally in androgen suppression therapy, drugs are administrated continuously

to a patient, which is known as the continuous androgen suppression therapy (CAS)

(Feldman and Feldman (2001)). However, like any kind of drugs, the tumor develops

drug resistance eventually. In addition, CAS also causes long-term side effects such

as muscle loss, bone demineralization, and dementia. Consequently, intermittent
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androgen suppression therapy (IAS) has been tested as a way to delay the onset of

hormonal resistance and reduce the side effects for a patient (Spry et al. (2006)).

IAS will pause the treatment if a patient’s blood serum level of prostate-specific

antigen (PSA), a biomarker for prostate cancer, falls below a certain threshold as

determined by his doctor. Likewise, the patient receives treatment if his PSA level

arises above an upper predetermined level. Clinical measurements of PSA and serum

androgen are usually taken monthly to assess a patient’s treatment results. The on-

treatment and off-treatment cycles are repeated until the tumor develops resistance.

One round of IAS therapy is considered as one consecutive on-and-off treatment cycle.

3.2 Modeling for IAS Treatment Response

The most important question in IAS therapy is whether another round of IAS will

be effective to treat the cancer. Based on a patient’s past treatment results, how can

one extract useful information to make a sensible decision for the short future? If

the doctor and patient know beforehand that another round of IAS would not work,

then they could look for a different treatment option to make the most out of time

and resources. To answer these fundamental questions, a predictive model that can

produce accurate short-term forecasts of treatment response is much needed.

3.2.1 Brief History of Model Development for Prostate Cancer

Over the past 20 years, various mathematical models have been developed to aid

with our understanding of prostate tumor dynamics with or without treatment. The

article by Phan et al. (2020) gives a comprehensive overview of available mathematical

models for prostate cancer under different types of therapies. Most of these models

are simplified low-dimensional models that can be used to test different hypotheses

of the tumor dynamics.
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One early model by Yorke et al. (1993) is a kinetic model that treats the tumor

as one uniform system and describes how it interacts with local treatments such as

radiation therapy. Later models adapted the theory of population dynamics by treat-

ing the tumor as a combination of different cancer cell subpopulations. For example,

Ideta et al. (2008) suggested the idea of an androgen dependent (treatment sensitive)

subpopulation and an androgen independent (treatment insensitive) subpopulation

to represent the tumor. These two subpopulations were modeled individually via or-

dinary differential equations with the assumption that androgen dependent cells can

transform into androgen independent cells. Ideta et al. used their model to study and

compare tumor dynamics under the two therapies: CAS and IAS. Early development

of mathematical models for prostate cancer mostly focused on understanding possible

mechanism of prostate tumor growth by considering various assumptions. However,

these older models do not include clinical data in its modeling process which hinders

validation of the model.

Hirata et al. (2010) first developed a data-driven model to generate simulations

that recover the real clinical data of PSA levels. They built a piecewise linear

model for the IAS therapy that includes three cancer cell subpopulations: treatment-

sensitive, treatment-insensitive, and irreversibly treatment-insensitive cells. They

assumed that all the interactions among different cell subpopulations happen in a

linear manner. The model takes different forms during on and off treatments. When

a patient is on treatment, their models takes the form:

d

dt


x1(t)

x2(t)

x3(t)

 =


w1

1,1 0 0

w1
2,1 w1

2,2 0

w1
3,1 w1

3,2 w1
3,3



x1(t)

x2(t)

x3(t)

 . (3.1)

When a patient is off treatment, the model takes the form:
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d

dt


x1(t)

x2(t)

x3(t)

 =


w0

1,1 w0
1,2 0

0 w0
2,2 0

0 0 w0
3,3



x1(t)

x2(t)

x3(t)

 . (3.2)

Treatment-sensitive, treatment-insensitive, and irreversibly treatment-insensitive

cell populations are denoted by x1, x2 and x3, respectively. The weight parameters

wij, i, j ∈ {1, 2, 3}, are transformation rates from xi to xj. Notice that the weight

parameters of on and off treatments are different. This model also assumes that the

PSA level (denoted as P ) is produced proportionally to the sum of the subpopulations:

P (t) = α(x1(t) + x2(t) + x3(t)). (3.3)

The linear model can be chosen to reproduce individual patient’s PSA level during IAS

therapy. However, the Hirata model does not explain well the biological mechanism

of tumor dynamics under the IAS therapy.

As an improvement from Hirata’s approach, Portz et al. (2012) created a more

biologically mechanistic model that also includes the clinical measurements in its

modeling procedure. Their model assumed that androgen is the main limiting nu-

trient to feed the tumor and considered the two cell subpopulations of androgen

dependent (AD) and androgen independent (AI) cells. The nutrient-limiting theory

was first established by Droop (1968) in the context of marine ecology which intro-

duced the terminology “cell quota” to refer to the limiting nutrient. In the context of

prostate cancer, cell quota represents the minimum androgen level required for each

cell subpopulation to survive and grow. The model allows for the possibility that

the transformation between the AD and AI subpopulations is reversible. The model
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takes the final form of five ordinary differential equations:

dx1

dt
= µm

(
1− q1

Q1

)
x1︸ ︷︷ ︸

growth

− d1x1︸︷︷︸
death

− c1λ1(Q1)x1 + c2λ2(Q2)x2︸ ︷︷ ︸
mutation

, (3.4)

dx2

dt
= µm

(
1− q2

Q2

)
x2︸ ︷︷ ︸

growth

− d2x2︸︷︷︸
death

− c2λ2(Q2)x2 + c1λ1(Q1)x1︸ ︷︷ ︸
mutation

, (3.5)

dQ1

dt
= vm

(
qm −Q1

qm − q1

)(
A(t)

A(t) + vh

)
︸ ︷︷ ︸

androgen influx to x1 cells

− µ(Q1 − q1)︸ ︷︷ ︸
x1 androgen uptake

− bQ1︸︷︷︸
degradation

, (3.6)

dQ2

dt
= vm

(
qm −Q2

qm − q2

)(
A(t)

A(t) + vh

)
︸ ︷︷ ︸

androgen influx to x2 cells

− µ(Q2 − q2)︸ ︷︷ ︸
x2 androgen uptake

− bQ2︸︷︷︸
degradation

, (3.7)

dP

dt
= σ(x1 + x2)︸ ︷︷ ︸

baseline PSA production

+
σ1x1Q

m
1

Qm
1 + ρm1

+
σ2x2Q

m
2

Qm
2 + ρm2︸ ︷︷ ︸

tumor PSA production

− δP︸︷︷︸
degradation

. (3.8)

Here the variables x1 and x2 denotes the AD and AI subpopulations, respectively.

The variables Q1 and Q2 denotes the respective intracellular androgen level (androgen

available inside the cell) for AD and AI cells. PSA level is denoted by the variable

P . The cell quota concept is coded in the parameters q1 and q2 to represent the

minimum androgen level required for each cell subpopulation to grow. The basic

idea of the model is that when Q < q, the subpopulation is expected to decrease;

when Q > q the subpopulation will grow. Another important feature of this model is

that A(t), the blood serum androgen level, is a time-dependent parameter obtained

by interpolating the real clinical data of serum androgen. Usually every patient

will be taken measurements of both PSA and blood serum androgen throughout the

treatment journey.

The “Portz model” describes the underlying biological mechanism meanwhile re-

produces the clinical data of PSA for model validation. This model has motivated

more later studies by Baez and Kuang (2016) and Phan et al. (2019) where both
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studies used the structure of the Portz model but modified different assumptions of

the original model. In this thesis, the model I focus on is developed by Phan et al.

(2019), which is referred as the Model T hereafter.

Model T was built upon a simplified version of the Portz model developed in Baez

and Kuang (2016). Baez and Kuang assumed that the mutation between the AD and

AI subpopulations is irreversible: only AD cells can mutate into AI cells. Model T

adapted this assumption as well. Furthermore, Model T included the clinical data of

serum androgen directly in its model state which is represented by the variable A.

Model T is described as:

dx1

dt
= µ1

(
1− q1

Q

)
x1︸ ︷︷ ︸

growth

− (D1(Q) + δ1x1)x1︸ ︷︷ ︸
death

−λ(Q)x1︸ ︷︷ ︸
mutation

, (3.9)

dx2

dt
= µ2

(
1− q2

Q

)
x2︸ ︷︷ ︸

growth

− (D2(Q) + δ2x2)x2︸ ︷︷ ︸
death

+λ(Q)x1︸ ︷︷ ︸
mutation

, (3.10)

dQ

dt
= m(A−Q)︸ ︷︷ ︸

androgen diffusion A → Q

− µ1(Q− q1)x1 + µ2(Q− q2)x2

x1 + x2︸ ︷︷ ︸
androgen uptake

, (3.11)

dA

dt
= γ2 + γ1(A0 − A)︸ ︷︷ ︸

production

−A0γ1u(t)︸ ︷︷ ︸
suppression of production

, (3.12)

dP

dt
= bQ︸︷︷︸

baseline PSA production

+ σ(Qx1 +Qx2)︸ ︷︷ ︸
tumor PSA production

− εP︸︷︷︸
degradation

. (3.13)

Model T was specifically created for the IAS therapy. The on-treatment and

off-treatment cycles are controlled by the parameter u(t) in the equation for serum

androgen, A. When the patient is on treatment, u(t) equals to 1 and equals to 0

otherwise. The advantage of Model T in comparison to previous models is that it

utilizes all available information from clinical measurements which could enhance the

accuracy of model predictions. In practice, PSA level of a patient is used to assess
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the efficacy of the IAS therapy. Hence, I also use the predicted PSA level from the

model to compare with the real clinical data so as to validate the model later.

3.2.2 Prediction Uncertainty Contributed by Parameter Identifiability

The British statistician George Box has a well-known saying about modeling (Box

(1976)): “All models are wrong, but some are useful.” Although many mathematical

models were developed over the past 20 years to study IAS treatment, the question of

how useful these models are in clinical applications is unexplored. In the context of

intermittent androgen suppression therapy, patients and doctors rely on an accurate

model forecast on patient’s short-term treatment response in order to decide the best

treatment plan for a patient. This practice is an example of precision (personalized)

medicine. Thus, assessment and validation of a model’s prediction skills are vital to

integrate the theoretical approach with the real-world application.

Parameters of a mathematical model play an important role in the model’s per-

formance. In order to achieve the goal of personalized medicine for prostate cancer

patients, patient-specific model parameters must be estimated. Phan et al. (2019) has

a detailed discussion on how parameters of the Model T are estimated – either from

previous literature reviews or directly estimated from the clinical data. As Table 3.1

shows the original parameter ranges for Model T, the variability of each parameter

is large. Individual parameter could be different by factor of 10 to 1000.

Now a reasonable question based on Table 3.1 could be: how can we have confi-

dence in the parameter estimates while the range is so wide? A common challenge

encountered by most of the mathematical models for prostate cancers is that model

parameters may not be identifiable for a given data set, i.e., we cannot obtain unique

parameter values for a specific patient given only time series of PSA levels and pos-

sibly serurm androgen levels. This problem is known as the parameter identifiability.
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Param Description Range Unit

µ max proliferation rate 0.001− 0.09 [day]−1

µ1 max proliferation rate (AD cells) 0.001− 0.09 [day]−1

µ2 max proliferation rate (AI cells) 0.001− 0.09 [day]−1

q1 min AD cell quota 0.41− 1.73∗∗ [nmol][day]−1

q2 min AI cell quota 0.01− 0.41∗∗ [nmol][day]−1

b baseline PSA production rate 0.0001− 0.1 [µg][nmol]−1[day]−1

σ tumor PSA production rate 0.001− 1 [µg][nmol]−1[L]−1[day]−1

ε PSA clearance rate 0.0001− 0.1 [day]−1

d1 max AD cell death rate 0.001− 0.09 [day]−1

d2 max AI cell death rate 0.01− 0.001 [day]−1

δ1 density death rate 1− 90∗ [L]−1[day]−1

δ2 density death rate 1− 90∗ [L]−1[day]−1

R1 AD death rate half-saturation 0− 3 [nmol][L]−1

R2 AI death rate half-saturation 1− 6 [nmol][L]−1

c maximum mutation rate 0.00001− 0.0001∗ [day]−1

K mutation rate half-saturation level 0.8− 1.7∗ [nmol][day]−1

γ1 primary androgen production rate 0.008− 0.8 [day]−1

γ2 secondary androgen production rate 0.001− 0.1∗ [day]−1

m diffusion rate from A to Q 0.01− 0.9 [day]−1

A0 maximum serum androgen level 27− 35∗∗ [nmol][day]−1

x1(0) Initial population of AD cells 0.009− 0.02 [L]

x2(0) Initial population of AI cells 0.0001− 0.001 [L]

Table 3.1: Parameter ranges for Model T. Table 2 from Phan et al. (2019), used

with permission. Parameters with an asterisk are fixed for the model; parameters

with double asterisks are estimated from the first 1.5 cycles of clinical data using a

built-in MATLAB function fmincon.
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Wu et al. (2019) has proven analytically using the Fisher information matrix (Eisen-

berg and Hayashi (2014); Miao et al. (2011)) that neither the “Hirata model” nor the

“Portz model” is identifiable.

Models with unidentifiable parameter(s) can still fit the clinical data well. How-

ever, the uncertainty in future forecasts produced by such unidentifiable models can

be large. Figure 3.1 demonstrates the prediction uncertainty in both the Hirata model

(Model H) and the Portz model (Model P) for a particular patient time series of PSA.

The patient data is provided in Bruchovsky et al. (2006). Wu et al. (2019) used five

different sets of parameters for both Model H and Model P to first fit the clinical data

of the same patient (about first 900 days of treatment) then to predict the rest of the

treatment response. The “optimal” sets of parameters are obtained by a MATLAB

built-in function called fmincon, which is a mean-squared-error parameter estimation

method. For Model H, the five sets of parameters are obtained by varying the pa-

rameter w0
11 over a ±10% range of the optimal set. For Model P, the five sets of

parameters are obtained by varying µm over a ±10% range of the optimal set.

As Figure 3.1 shows that different sets of parameters can give comparable good

fitting results over the first 1.5 treatment cycles of the same patient. However, using

the same sets of parameters to predict another treatment cycle, most of the predictions

diverge quickly from the real clinical data except for one parameter set in Model P.

The predictions given by five parameter sets for each model often overestimate the real

PSA level of the patient and also show a spread among themselves. This finding by Wu

et al. (2019) suggests that unidentifiable models may not be able to produce reliable

short-term forecasts for clinical applications. The concern of prediction uncertainty

in unidentifiable models motivates us to look for a more identifiable model and also

quantify the model’s forecast uncertainty via data assimilation. The data assimilation

scheme chosen for this application is the ensemble Kalman filter (EnKF).
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Figure 3.1: Fitting and prediction results obtained from Model H and Model P.

Figure 1 in Wu et al. (2019), used with permission. The left of the dotted vertical

line is the fitting results of different parameter sets; the right of the dotted line is the

prediction results. Red dots are clinical data of the same patient. For both models, the

“optimal” fitting parameter set are generated by MATLAB built-in function fmincon.

(a) Model H results. (b) Model P results. Data are provided by Bruchovsky et al.

(2006).

3.3 Data Assimilation with an Identifiable Model

As discussed in the previous section that unidentifiable models can suffer from

large uncertainty in short-term predictions, so we want to look for an identifiable

model to reduce the uncertainty. The model we are interested in studying is Model

T.

Model T has 21 parameters in total together with a 5-dimensional state vector.

Phan et al. (2019) carried a sensitivity analysis on all parameters of Model T. Ac-

cording to their study, these five parameters: c,K, δ1, δ2, and γ2 do not influence

significantly the results of model simulations. Thus, these five parameters are fixed
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at c = 0.00015, K = 1, δ1 = 5, δ2 = 5, γ2 = 0.005 throughout the study. Furthermore,

Wu et al. (2019) also simplified the model by setting µ1 = µ2 = µm. Then there are

13 parameters left which is referred as Model T-13. Wu et al. (2019) analytically

showed that Model T-13 is still unidentifiable using the Fisher information matrix.

This leads to a further reduction of the parameter space by leaving only 5 most sen-

sitive parameters unfixed, which gives a new version of the model called Model T-5.

These 5 free parameters are: µm, q2, d1, γ1, and A0. According to the analysis in Wu

et al. (2019), Model T-5 is identifiable, which is used to design the data assimilation

scheme.

3.3.1 Data and Parameter Values

The clinical data is provided by Vancouver Prostate Center, which admitted pa-

tients who experienced a rising serum PSA level after they received radiotherapy

and had no evidence of metastasis (Bruchovsky et al. (2006)). These patients have

not had hormonal suppression therapy with the exception of less than 3 months of

neoadjuvant androgen-suppression. Their PSA levels prior to the therapy are usually

high (greater than 6µg/L). Moreover, they must have experienced PSA relapses after

radiotherapy with no evidence of distant metastasis such as bone metastasis.

In this study, two subsets of patients are selected from the clinical study in Bru-

chovsky et al. (2006). The first subset contains 28 patients with complete data for

at least one cycle of treatment. This set is used to estimate the statistics (mean and

variance of 28 patients) of each parameter to initialize the EnKF. The second subset

contains 26 patients (selected outside of the previous 28 patients) with complete data

for 2.5 cycles of treatment. The latter data set is used for assessment of the model’s

prediction skill (predictability).
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The first data set is used to generate the sample statistics of parameters in Model

T-13 with a built-in MATLAB function called fmincon. This function minimizes

the mean squared error of predicted PSA given by model and corresponding real

observations to search for the optimal combination of parameters, i.e., the parameter

set is generated all at once as a final output of the function. Table 3.2 shows the

results of estimated mean and variance out of the 28 patients for each parameter

in Model T-13. The mean of each parameter is used as either the value of fixed

parameters in Model T-5 or initial condition for developed EnKF algorithm.

Parameter µm q1 q2 b d1 R1

mean 0.0710 0.6130 0.1971 0.0379 0.0687 1.2499

var 0.0006 0.0111 0.0091 0.0008 0.0005 0.4059

Parameter γ1 σ ε A0 d2 R2 m

mean 0.3742 0.8667 0.0565 11.63 0.0633 2.7351 0.7188

var 0.0928 0.0680 0.0006 23.69 0.0006 1.2527 0.0604

Table 3.2: Parameter estimations from the 28 patients after running fmincon. Table

2 in Wu et al. (2019), used with permission.

3.3.2 State-parameter Estimation of Model T-5 with Ensemble Kalman Filter

Data assimilation is useful to quantify the errors in model forecasts and parameter

estimations for Model T-5. The ultimate goal of using data assimilation is to generate

corrected predictions of the treatment response by combining the mathematical model

with real clinical data (PSA and serum androgen).

Data assimilation usually is used to update the state of a dynamical system di-

rectly, but the 5 unfixed parameters of Model T-5 also require correct estimations

to uncover the underlying mechanism of tumor dynamics for an individual patient.

State-parameter estimation within the data assimilation framework can be used to
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update the parameter values of the model directly. Using the computational model

and data to estimate parameters is essentially solving an inverse problem: the cause

of the dynamics is inferred from the real observations.

In this thesis, the ensemble Kalman filter (EnKF) is chosen as the data assimilation

framework for Model T-5. EnKF is one popular sequential data assimilation method

originally proposed by Evensen (1994). It has gained much popularity ever since

because of its simple conceptual formulation and efficient implementation. EnKF is a

derivative of the Kalman filter (Kalman (1960)) which originally is designed for linear

dynamics and assumes Gaussian distributions for system states. As an advancement

from the Kalman filter, EnKF is created specifically for nonlinear dynamics and uses

an ensemble of states to account for the stochastic nature of nonlinear dynamics. It

also assumes that the system states are Gaussian distributed. Evensen (1994, 2003,

2009a) are good overviews of formulation and implementation for EnKF.

Moreover, in order to estimate the chosen parameters of Model T-5 in real-time, an

augmented state vector is required for development of the data assimilation algorithm.

The augmented state vector will include both the state variables (5-dimensional state

vector) and chosen parameters of Model T-5. Whenever there is new data available

from a patient’s time series, the data assimilation algorithm will assimilate that data

to the background forecast provided by Model T-5 and then generate the new analysis

cycle (updated ensemble forecast). This analysis cycle will be used as the updated

initial conditions for the next background forecast and subsequently used to calculate

the next analysis cycle and so on. Throughout the course of the treatment, ensemble

realizations of parameters and states are expected the converge to the “true” trajec-

tory that recovers the real observations. The mean of the ensemble is used as the

model prediction of the system.
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Lastly, in order to assess the predictability of the model, each patient’s data are

divided into two subsets: the first 1.5 cycles of treatment as the train set, and one more

subsequent treatment cycle as the test set. First, the train set is assimilated into the

mathematical model via the EnKF framework, which provides updated parameters

for the model. Then the last estimation (analysis cycle) of parameters is used to

predict another treatment cycle so that the free model run can be used to assess

prediction uncertainty (spread of the ensemble) in comparison to the test set.
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Chapter 4

DATA ASSIMILATION WITH AN IDENTIFIABLE MODEL OF PROSTATE

CANCER TREATMENT

4.1 Introduction

Over the past twenty years, many mathematical models have been developed to

study various aspects of prostate cancer in clinical settings. Chapter 3 introduced

some of these models and the challenge of parameter identifiability for these reduced-

order models. It was shown in Figure 3.1 that though a model can fit past observations

well, its prediction of future may not be reliable. Unidentifiable models can suffer

from large uncertainty in short-term predictions.

Evaluation of a model’s prediction skills is crucial for developing a useful clinical

application. The most important question to be answered for intermittent androgen

suppression therapy (IAS) is whether another round of IAS therapy will be effective to

treat the cancer. Though numerous mathematical models have been developed over

the decades to study the mechanism of prostate tumors, assessment of these models’

predictive ability is not available. The goal of my study is to evaluate an identifiable

reduced-order model for the IAS therapy and provide a useful clinical application that

can be used to predict the short-term treatment response for an individual patient.

As stated in Chapter 3, a version of the two-cell-population model developed by

Phan et al. (2019), called Model T-5, will be assessed using data assimilation. Model

T-5 is proven to be an identifiable model for the IAS therapy in Wu et al. (2019).

This model has 5 model variables and 5 free parameters (all other model parameters

are fixed). The 5 free parameters are the most sensitive parameters according to
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Figure 4.1: The negative log likelihood (vertical axes) of all adjustable parameters

in Model T-5 in Wu et al. (2019). Used with permission. Intervals where the black

curves lie below the red dotted line are the 95% confidence intervals. The parameter

q2 (bottom right) confidence interval lies outside of the biologically realistic ranges

indicated in Table 3.1.

the sensitivity analysis in Phan et al. (2019). Wu et al. (2019) also used analytical

methods such as coefficients of variation (Eisenberg and Hayashi (2014)) and profile

likelihood (Eisenberg and Jain (2017); Raue et al. (2009)) to study the identifiability

of these 5 parameters. Specifically, both methods confirm that 4 of the 5 adjustable

parameters in Model T-5 may be practically identifiable. The only parameter may

subject to large uncertainty is the cell quota for treatment-insensitive cell population,

q2. Shown as in Figure 4.1, the 95% confidence interval of q2 lies beyond the biological

constraint for q2 stated in Table 3.1, which suggests that this parameter may be

practically unidentifiable.
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A data assimilation framework called the ensemble Kalman filter (EnKF) is used

to provide state-parameter estimations for Model T-5. In particular, 3 of the 5 ad-

justable parameters are chosen to be estimated by the EnKF, which are A0, γ1 and

q2. Time series of 26 patients provided by the Vancouver Prostate Center database

are used to assess the model’s predictive skills. Notice that this subset of 26 patients

is independent from the subset of patients used to estimate model parameters shown

as in Table 3.2. Individual patient’s time series are also split into two subsets to be

used for different purposes: the first on-off-on treatment intervals are assimilated into

the EnKF framework to provide correct parameter estimations; the subsequent off-on

treatment intervals are used to compare with free model run using the parameters

obtained from the EnKF. The EnKF framework is tested for all 26 patients and pro-

duces reliable predictions for most of the patients. However, there are some anomalies

which show significant model error (bias). Both ideal predictions and anomalies will

be included and discussed in this chapter.

4.2 Uncertainty Quantification for Model T-5

4.2.1 The Ensemble Kalman Filter

The ensemble Kalman filter (EnKF) is used here to provide state-parameter es-

timation for Model T-5. This type of ensemble-based data assimilation method is

now state of art in a majority of operational prediction systems in the geosciences

(Carrassi et al. (2018)) including weather prediction (Houtekamer and Zhang (2016)),

and petroleum applications (Aanonsen et al. (2009)). The mathematical formulation

of the filter is stated in Chapter 2, so the mathematical details are omitted here but

the implementation of the EnKF for Model T-5 will be presented.
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The EnKF is a recursive algorithm that alternates between a forecast step and

an analysis (correction) step. The algorithm repeats itself at each time point when

new observations become available for the system. Suppose at time tn there is an

ensemble of initial conditions, which is assumed to be a sample drawn from a Gaussian

distribution about a mean state that we are interested in estimating. A background

ensemble is obtained by integrating the model (Model T-5) from time tn to tn+1 for

each ensemble member. At time tn+1 new observations of the system become available,

the EnKF seeks a linear combination of the background forecasts that best fits the

data in a weighted least-squares sense. Then this linear combination serves as an

updated set of initial conditions, called the “analysis”, at tn+1 from which the model

is integrated forward to the next time point tn+2, and the above process is repeated.

The mean of the analysis ensemble is used as the updated estimate of the “true”

state of the system, and the sample covariance matrix represents the uncertainty in

the analysis mean.

Since all computations below are done at time tn+1, we drop the time dependence

to simplify the notation. Let {xb(k)}Kk=1 be the set of K state vectors that denote

the background ensemble, where xb(k) ∈ Rm, and let xb represent the corresponding

ensemble mean. Let Xb be the m×k matrix whose kth column is xb(k)−xb. Suppose

that w is a Gaussian K-vector with mean 0 and covariance (K − 1)−1I. Then x =

xb +Xbw has mean xb and covariance (K − 1)XbX
T
b , which is the ensemble estimate

of the model forecast uncertainty.

Let yobs be the s-vector of observations, which is assumed to have the following

relationship with the “true” model state vector xt by

yobs = H(xt) + ε, (4.1)
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where ε is assumed to be an s-vector Gaussian error with mean 0 and covariance R.

The EnKF minimizes the cost function defined as

J(w) = (K − 1)wTw + [yobs −H(xb + Xbw)]TR−1[yobs −H(xb + Xbw)], (4.2)

where the forward operator H is approximated as

H(xb + Xbw) ≈ yb + Ybw. (4.3)

Here yb is the mean of the background observation ensemble

yb(k) = H(xb(k)), k = 1, . . . , K (4.4)

and the kth column of the s×K matrix Yb is yb(k)− yb. The minimizer of Equation

(4.2) is found in the form

wa = P̃aY
T
b R

−1(yobs − yb) (4.5)

P̃a =
[
(k − 1)I + YT

b R
−1Yb

]−1
. (4.6)

In model space, the analysis mean and covariance become, respectively

xa = xb + Xbwa (4.7)

Pa = XbP̃aX
T
b . (4.8)

As mentioned earlier, the analysis ensemble is derived from a linear combination of

the background ensemble members. The first step in this procedure is to compute

the symmetric square root

Wa =
[
(k − 1)P̃a

]1/2

. (4.9)

The analysis ensemble {wa(k)}Kk=1 is formed by adding wa to each column of Wa.

Then in model space, the analysis ensemble is

xa(k) = xb + Xbwa(k), k = 1, . . . , K. (4.10)

More details on the derivation of the EnKF are given in Hunt et al. (2007).
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4.2.2 State Augmentation

In order to use the EnKF algorithm for a state-parameter estimation, an aug-

mented state system that includes both the model variables and parameters is re-

quired. Let us rewrite the Model T-5, Equations (3.9-3.13), in the compact form

dx

dt
= F (t,x), (4.11)

where x is the m-dimensional model state vector. Let p be an n-dimensional vector

of selected model parameter. Considering the (m+ n)-dimensional state vector x∗ =

(x,p)T , the EnKF can be used to solve the augmented system

dx∗

dt
=

 dx
dt

dp
dt

 =

F(t,x,p)

G(t,x,p)

 , (4.12)

where G is the model for the parameter space p, which is assumed to be G =

0. However, one can always choose a more complicated model for G rather than

the simplest case considered here. The forward operator for the augmented system

becomes H∗ = (H,0)T , because there is no observations for p. Let F̃ = (F,G)T

denote the augmented vector field. The forecast-and-update cycle can be presented

in the following steps:

1. Set the previous analysis ensemble, {xna(k)}Kk=1, as the initial conditions for the

next short forecast.

2. Integrate the model F̃ (t,x∗) from tn to tn+1 for each ensemble member to obtain

the background ensemble at time tn+1: {xn+1
b(k)}Ki=1.

3. Map the background ensemble to the observation space at time tn+1 by applying

the forward operator H∗ to each of the background ensemble member: yn+1
b(k) =

H∗
(
xn+1
b(k)

)
, k = 1, . . . , K.
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4. Minimize the cost function, Equation (4.2), which produces the analysis at time

tn+1: {xn+1
a(k)}Kk=1 with covariance matrix Pn+1

a .

5. Use updated analysis ensemble {xn+1
a(k)}Kk=1 as the initial conditions for the next

background ensemble and repeat above steps.

4.3 Results and Discussion

The ensemble Kalman filter (EnKF) is useful to quantify the uncertainty in model

predictions and parameters, provided that the latter are identifiable. As outlined in

Section 4.2, the EnKF updates the model state vector in real time whenever new

observations are available. The updated state vector is then used as the new ini-

tial condition for the next short forecast. In addition, an augmented state system,

Equation (4.12), is implemented within the EnKF framework to update the chosen

patient-specific parameters. In particular, these 3 parameters of Model T-5 are in-

cluded in the augmented system: A0, γ1, and q2. The other two parameters µm and

d1 are fixed at the same values as means of estimated parameters in Table 3.2 for

all patients, because they do not vary significantly among the patients. Having a

smaller set of parameters helps to reduce the prediction uncertainty (smaller ensem-

ble variance), with all other factors held equal. However, as mentioned above, q2

may be practically unidentifiable, so including this parameter to be estimated can be

problematic, which will be discussed with specific results below.

The initialization of the ensemble (the first background ensemble) is another im-

portant factor to consider. The sample variance of the initial conditions is supposed

to represent that of the underlying state space, but neither the initial proportion of

treatment-sensitive cells nor the amount of intracellular androgen in each patient’s

tumor can be measured. Moreover, the uncertainty in patient-specific model param-

eters may be large, which cannot be known or measured beforehand. As a guess, 100
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initial values of the initial state vector are chosen randomly from 0.7 to 1.6 times the

value of each component of initial condition x0 estimated for each patient in Phan

et al. (2019). The initial ensemble mean values of the parameters A0, γ1 and q2 are

provided by the output from MATLAB built-in function fmincon that minimizes the

mean squared error of observations and model predictions, results seen as in Table

3.2. The standard errors for these 3 parameters are estimated from the respective 95%

confidence intervals in Figure 4.1. Altogether, the augmented state vector becomes

x∗ = (x1, . . . , x5, A0, γ1, q2)T . The standard errors in the observations for serum PSA

and androgen levels are assumed to be independent and have variance of 1.

The first background ensemble is obtained by integrating the initial conditions of

the 100-member ensemble to the first observation time t1, then the analysis ensemble

is computed by minimizing the cost function Equation (4.2), which becomes the new

initial condition for the next background ensemble. The integration continues to the

second time step t2 and the assimilation cycle is repeated until the end of the time

series or until another predetermined ending time. We ran the EnKF algorithm for

26 patients chosen from the Vancouver Prostate Cancer database.

For each patient, we ran the EnKF in two different settings. In the first setting,

the computational model only assimilates data from the first on-off-on treatment

interval and continues with free model run (no data assimilation) for the subsequent

off-on intervals using parameter values updated at the end of the first 1.5 treatment

cycles. Three representative patient-specific results are shown in Figure 4.2, and the

left panels are results for the first setting of model run. The ensemble mean is given

by red curves, and the ensemble member solutions are shown as the gray curves.

The black circles are patient’s clinical data. The second setting is to run the EnKF

through the entire time series of an individual patient, shown as the panels on the

right in Figure 4.2. The first setting is used to assess the model’s predictive ability
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Figure 4.2: Representative ensemble Kalman filtering results of predicted PSA

levels for three patients. Red curves: ensemble mean. Gray curves: ensemble member

solutions. Black circles: clinical observations. For left panels, the vertical dashed line

separates the 1.5 cycles of EnKF from the 1-cycle prediction. The right panels are

results for the same patients but the EnKF is run through the entire time series.
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and the second setting is used to gain more insights on the uncertainty in model

predictions.

In order understand the uncertainty in model predictions, a simple metric is de-

veloped for results seen as the right panels in Figure 4.2. At each observation time tn,

the mean of the predicted PSA level from the analysis at tn−1 over all 100 ensemble

members is given as

yn =
1

100

100∑
k=1

H(xb(k)(tn)). (4.13)

At the end of the time series, the root mean square (RMS) of the one-step ahead

prediction error of serum PSA level averaged over all N observation time points is

P̂ =

(
1

N

N∑
n=1

(
ȳn − yobs(tn)

)2

)1/2

. (4.14)

The calculated P̂ values for Patient 15, Patient 39, and Patient 29 are 1.80, 2.38, and

2.84 µg/L, respectively.

In the case of Patient 15, the EnKF update for PSA level is in good agreement with

observations throughout the clinical time series. Viewing the left panel of Patient 15,

during the first on-off-on interval, the ensemble mean underestimates the observed

PSA levels towards the end of the first off-treatment cycle. However, prediction of

another treatment cycle using parameters updated around day 800 (the last analysis)

shows much improvement towards the end of the second off-treatment cycle. When

the data assimilation cycle is halted shortly after day 800, the model provides a good

prediction of the patient’s treatment response over the next off- and on-treatment

cycles. When the EnKF is run continuously throughout the entire clinical course of

Patient 15, the variance in ensemble prediction decreases over time. As stated above,

the RMS error of the ensemble mean’s one-step ahead prediction of PSA level is about

1.80 µg/L.
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The results for Patient 39 are similar, though the ensemble mean tends to under-

estimate the observed serum PSA levels towards the end of each on-treatment cycle.

As with Patient 15, the augmented state vector produced by the EnKF at the end

of the second on-treatment interval yields a reasonable 450-day prediction of Patient

39’s clinical course.

However, results from Patient 29 shows serious problems in model predictions. In

particular, during the off-treatment intervals, the ensemble forecasts show significant

model errors. The filter is initialized the same way as for the other patients, but how

can it perform so poorly for Patient 29? This problem is associated with the parameter

estimation for q2, the cell quota for the treatment-resistant tumor cell subpopulation.

As shown in Figure 4.1, the profile likelihood of q2 shows its 95% confidence interval

includes values that are not biologically meaningful, which suggests that it may be

unidentifiable with the given data.

Figure 4.3 shows the parameter estimations give by the EnKF for Patient 29. The

blue curves give the range (minimum and maximum) of the ensemble estimations for

the parameters A0, γ1, and q2, and the green curve gives the ensemble mean. The

biological assumption of Model T-5 is q1 > q2: the treatment-sensitive cell popula-

tion requires more androgen to grow than the treatment-insensitive cell population.

However, for Patient 29, some of the ensemble estimates for q2 exceeds the fixed

q1 = 0.613. In this case, the model cannot be used to explain the observed dynamics.

As shown in Figure 4.2, the forecast ensemble for Patient 29 diverges shortly from

reality, and of course the model’s predictions are not believable.

The last example is included as a cautionary note in the application of the ensem-

ble Kalman filter. One needs to keep in mind that the patient-specific parameters

being estimated have a sufficiently small variance so that the ensemble updates of

these parameters can remain within a sensible range for the model under considera-
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Figure 4.3: Augmented ensemble Kalman filter parameter estimates of Patient 29

from Model T-5. Green curve: ensemble mean; blue curves: minimum and maximum

ensemble values.

tion. An alternative to cope with this challenge is to modify the EnKF framework by

adding a suitable penalty term to Equation (4.2) to further constrain the parameter

values, but the resulting optimization problem becomes nonlinear and is more costly

to solve numerically.

4.4 Conclusions

In the past 20 years, numerous mathematical models have been developed to

study the biological mechanism of prostate tumors with or without treatment. As

seen in Chapter 3, these models often appear in the form of ordinary differential

equations with a set of model parameters that describe the underlying mechanism.

Although these model parameters can be used to explain the possible causes of the

tumor dynamics, most of these parameters cannot be measured directly in clinical
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settings. Consequently, the uncertainty in these model parameters are large, refer to

the parameter ranges in Table 3.1. Wu et al. (2019) carried an analysis for model

parameters of three models: Model H, Model P, and Model T, each of which has

been validated with clinical data in Hirata et al. (2010); Portz et al. (2012); Phan

et al. (2019). They discovered a common problem for these models called parameter

identifiability.

Many existing mathematical models of prostate cancer treatment are proven

unidentifiable in Wu et al. (2019), which implies that there are multiple sets of param-

eters that can be used to fit a given data set equally well. Nevertheless, good fitting

does not guarantee good predictions seen as in Figure 3.1. This problem motivates us

to look into uncertainty quantification for existing models so that a useful application

can be provided to aid with real clinical practices.

Model T-5 originally developed by Phan et al. (2019) is used in this study to

develop a useful clinical application. This model has 5 model variables and 5 control

parameters, which is proven to be an identifiable model in Wu et al. (2019). With

an identifiable model, it is possible to quantify the uncertainty in model predictions.

Hence, a data assimilation framework is built for Model T-5 in order to estimate the

chosen patient-specific parameters directly from a patient’s clinical data.

The ensemble Kalman filter is a useful way to assess (validate) the model with

real data and quantify uncertainties in short-term predictions. The EnKF provides a

systematic and consistent framework for Model T-5 to assimilate clinical observations

and calibrate the model in real time by estimating important parameters from the

data. Short-term treatment response predicted by the model is reliable for most of

the patients chosen from the Vancouver Prostate Center database.

An improved model of IAS therapy is needed. The EnKF result for Patient 29

reveals significant model bias. The assumption of the model is not capable of explain-

53



ing every possible situation of the tumor dynamics. In the case of Patient 29, the

model seems to settle at a local equilibrium which is not physical. Systematic model

biases (errors) can be accounted in EnKF schemes (Baek et al. (2006)), but it is not

pursued in this study. Furthermore, the assumption that the tumor is divided into

two cell subpopulations based on the nutrient-limiting theory should be examined

further for special cases of prostate cancer. For later staged prostate cancer, other

types of screening such as bone scan are used to provide more accurate assessment

of a patient’s tumor progress. In the case that the tumor transforms into a popula-

tion that is independent from androgen, the existing model will not capture the true

tumor dynamics.

The application of observing-system simulation experiments (OSSEs) could con-

tribute to the development of clinically applicable dynamical models of prostate can-

cer treatment, and many other cancers. OSSEs have been widely used in numerical

weather prediction to improve the model’s performance. Broadly speaking, in an

OSSE, synthetic data are assimilated into a high-dimensional dynamical model in

order to assess measures like prediction accuracy (predictive ability) as a function of

the accuracy, sparsity, and types of observations. A more detailed historical review

can be found in Arnold, Jr. and Day (1986). One important application concerns

“the potential improvements in climate analysis and weather prediction to be gained

by augmenting the present atmospheric observing system with additional envisioned

types of observations that do not yet exist” (Errico et al. (2013)). In the context of

prostate cancer treatment, OSSEs might be useful to quantify uncertainties in param-

eter estimates from data with various noise levels or to assess the impact of a new or

other tumor diagnostic on the prediction skills of an existing model. Such efforts may

be necessary to develop clinically validated mathematical models to provide useful

tools for physicians and patients.
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Chapter 5

REDUCED-ORDER MODELING OF THE POLAR VORTEX

5.1 Introduction

The polar vortex in the Northern Hemisphere is a low-pressure area of cold air

above the Arctic. It is kept in the polar region by the polar jet stream, a high-speed

current of air that circles the Earth between the Arctic and mid-latitudes. The state

of the polar vortex varies together with the state of polar jet stream. When the polar

jet stream is weak, it meanders southward to the mid-latitudes and transports the

cold Arctic air from the polar region to lower latitudes. During wintertime, weakening

of the polar vortex can cause outbreaks of Arctic air in lower latitudes that affect win-

ter/spring weather in many European and/or Northern American countries. Current

forecasting and climate models, such as global prediction models (NCEP, ECMWF)

and general circulation models (GCMs) (Balachandran et al. (1999)), provide dynam-

ical models to study the stratospheric dynamics, but relevant simulations incur a high

computational cost. To better understand the mechanism underlying the variation

of Arctic polar vortex, a reduced-order model is necessary for studying the long-term

dynamics of polar vortex.

Multiple atmospheric factors may perturb the stratospheric polar vortex. Two

of the major factors have been proposed and studied by Holton and Mass (1976),

Yoden (1987), Yoden (1990), and Ruzmaikin et al. (2003). They are the vertical

gradient of radiative zonal flow and the initial amplitude of planetary waves. The

vertical gradient of the zonal wind is associated with solar forcing that has both a

seasonal cycle and an 11-year solar cycle. The initial amplitude of planetary waves
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represents forcing from vertically propagating planetary waves. Considering the two

driving forces, Ruzmaikin et al. (2003) have developed a simple dynamical model

composed of three ordinary differential equations that describe a one-dimensional

atmospheric system localized as one point in the stratosphere. The “Ruzmaikin

model” is a highly truncated version of the Holton and Mass 1976 model (the “HM76”

model) of stratospheric wave-zonal flow interactions. It is obtained by considering

only one longitudinal and one latitudinal mode of the HM76 model, and fixing the

vertical level to 25 km log-pressure height using finite differences. Although such

a one-dimensional model cannot realistically describe the complicated stratospheric

dynamics, it captures the essential mechanism of interactions between planetary waves

and the zonal wind.

Ruzmaikin et al. (2003) refer to the vertical gradient of the zonal wind as the

parameter Λ, and the initial amplitude of planetary waves as the parameter h, which

are the only two control parameters for the Ruzmaikin model (all other parameters

are fixed). In their study, Λ(t) is a time-dependent parameter accounting both the

seasonal variability and the 11-year solar cycle variability of solar radiation. The

planetary wave amplitude h(t) at the bottom boundary is also time-dependent and

equivalent to the perturbation at ground level. Bifurcation studies on these two

control parameters (Figures 2 and 3 in Ruzmaikin et al. (2003)) show that the system

is bistable in some ranges of Λ and h.

The bistability behavior of the zonal wind is demonstrated as one unstable equi-

librium state in the middle and two stable equilibrium states on the top and bottom

branches of the bifurcation diagram, shown in Figure 5.1. The upper branch in the

diagram corresponds to a high winter zonal wind speed and a stable polar vortex

(fast jet stream), while the lower branch corresponds to a low winter wind speed and

an unstable polar vortex (slow jet stream). During a year, the system switches from
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Figure 5.1: A bifurcation diagram of h, Figure 3 in Ruzmaikin et al. (2003) c©

American Meteorological Society. Used with permission. The crosses denote the

unstable steady states, and the asterisks denote the stable steady states.

the single-well regime in the summer to the double-well regime in the winter. This

double-well regime suggests an inherent uncertainty in predicting which branch the

system will choose transitioning from autumn to winter each year.

Simulation of the model over the course of 25 years (refer to Figure 5.2) shows the

temporal evolution of the polar jet stream: during winter time the zonal wind reaches

its maximum of the year cycle; during summer time the wind changes direction and

decreases to its negative minimum. Furthermore, this simulation also reveals the

bistability behavior insofar as some winters exhibit a faster zonal wind of 80 m/s

(stable polar vortex), while other winters exhibit a slower zonal wind around 30 m/s

(unstable polar vortex). Despite the Ruzmaikin model being a simple one-dimensional

model, it is able to capture the seasonal variability and inter-annual variability of the

stratospheric dynamics. These qualitative behaviors studied by the model are also

observed in the post-processed ECMWF reanalysis data shown in Figure 6.1.
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Figure 5.2: Simulation of zonal wind speed from the Ruzmaikin model with ε =

0.03, h = 68.

The main purpose of the Ruzmaikin model is to study how perturbations from

planetary waves and solar forcing could influence the state (stability) of the strato-

spheric polar vortex in long timescale of decades. This low-dimensional model pro-

vides an analytical tool to study the underlying mechanism of long-term dynamics of

the Arctic polar vortex, which is too computationally expensive when simulated with

global prediction and climate models. However, many model assumptions made by

Ruzmaikin et al. (2003) to simplify a high-dimensional system may be oversimplifi-

cations of the dynamics and the physics pertinent to the polar vortex. For example,

they have fixed h at 68 meters throughout their study so as to focus on studying

the effect of solar forcing to the dynamics of the polar vortex. They assumed a con-

stant forcing from vertically propagating planetary waves which is not realistic. It

is uncertain that the assumptions of the Ruzmaikin model are representative of real
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dynamics and physics. An assessment of this idealized model is necessary to answer

this question.

The motivation of my study is to use data assimilation to assess the reduced-

order model. In particular, I aim to develop a suitable data assimilation framework

for the Ruzmaikin model to verify if the qualitative behavior of the zonal wind can be

reproduced with the ECMWF reanalysis data under specific model assumptions. Fur-

thermore, the control parameter h will be estimated directly from the reanalysis data

using these two different model assumptions: h is constant and h is time-dependent.

We want to search for evidences of bistability of the zonal flow associated with h from

corresponding data assimilation results.

The analysis of the reduced-order model suggests that within certain range of

the parameter h, there lies the bistable region of the zonal wind during winter time.

However, this parameter has large uncertainty as shown in the bifurcation diagram

that h can vary from zero to several hundred meters. No direct physical measurements

of the wave amplitude are available to recover h. Thus, data assimilation can be

used to estimate h directly under different model assumptions as proposed earlier.

A sequential data assimilation scheme, the ensemble Kalman filter (EnKF), will be

used to estimate a time-independent (constant) h. On the other hand, the ensemble

smoother with multiple data assimilation (ES-MDA) will be used to estimate a time-

varying h. The underlying mechanism of the polar vortex studied by the model: the

bistable state of the polar vortex related to the vertical forcing from planetary waves,

can then be validated with corresponding data assimilation updates of h and U .

In this chapter, the mathematical formulation of the Ruzmaikin model and rel-

evant bifurcation studies for important model parameters will be discussed. The

data assimilation application for this model and relevant results will be presented in

Chapter 6.
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5.2 Development of the Ruzmaikin Model

As mentioned above, the Ruzmaikin model represents a one-dimensional strato-

spheric system which includes prognostic equations for geostrophic streamfunction

and zonal wind. This model is a simplified version of a mechanistic model of strato-

spheric wave-zonal flow interaction developed in Holton and Mass (1976) (the “HM76”

model).

The HM76 model is a quasi-geostrophic β−plane channel model, which is similar

to the one used by Geisler (1974) to study the essential dynamics of sudden strato-

spheric warming. Holton and Mass modified Geisler’s model by adding a sine jet

meridional variation to reflect the mean zonal flow’s dependence on latitude, while

Geisler assumed a zonal flow that is independent of latitude. This sine jet profile

roughly models the observed polar night jet in the Northern Hemisphere and is as-

sociated with vertical forcing from planetary waves. HM76 assumes that the main

driving forces of mean zonal circulation are differential radiative heating and hori-

zontal eddy heat fluxes caused by vertically propagating planetary waves. The mean

zonal wind u and the geostrophic streamfunction of a wave ψ′ are assumed to take

the following forms by Holton and Mass (1976):

u(y, z, t) = U(z, t) sin `y, (5.1)

ψ′(x, y, z, t) = Re[Ψ(z, t)eikx]ez/2H sin `y, (5.2)

where k, ` are wavenumbers for x, y the standard azimuthal and latitudinal coordi-

nates. Here f0 is the Coriolis parameter at 60◦N (f0 = 1.26 × 10−4s−2) and H is a

mean scale height (H = 7 km). Notice that the variable Ψ is complex valued. Holton

and Mass also further assumed that the wave fields are governed by the linearized
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quasi-geostrophic potential vorticity equation in log pressure coordinates:(
∂

∂t
+ u

∂

∂x

)
q′ + β′

∂ψ′

∂x
+
f 2

0

ρ

∂

∂z

(
αρ

N2

∂ψ′

∂z

)
= 0, (5.3)

where

q′ = ∇2ψ′ +
f 2

0

ρ

∂

∂z

(
ρ

N2

∂ψ′

∂z

)
(5.4)

represents the perturbation potential vorticity and

β′ = β − ∂2u

∂y2
− f 2

0

ρ

∂

∂z

(
ρ

N2

∂u

∂z

)
(5.5)

represents the gradient of the basic state potential vorticity. Here β is the meridional

derivative of the Coriolis parameter at 60◦N which is 1.14 × 10−11s−1m−1, N2 is the

buoyancy parameter fixed at N2 = 4 × 10−4s−2, ρ = ρ0 × exp(−z/H) is a standard

density, and α = α(z) is a Newtonian cooling rate coefficient.

The prognostic equation of the mean zonal flow is given by Holton and Mass

(1976):

∂

∂t

[
∂2u

∂y2
+
f 2

0

N2

1

ρ

∂

∂z

(
ρ
∂u
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N2

1

ρ
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0

N2

∂2
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[
1

ρ

∂

∂z

(
ρv′

∂ψ′

∂z

)]
,

(5.6)

where v′ = ∂ψ′/∂x and u is the mean zonal flow obtained by averaging over x. The

flow is assumed to be confined to a β−channel centered at 60◦N with a meridional

extent L of 60◦ latitude. We substitute the assumed form of solutions, Equations (5.1)

and (5.2), for ψ′ and u into Equations (5.3) and (5.6). Then, the linearized quasi-

geostrophic potential vorticity equation and mean-flow equation become, respectively(
∂

∂t
+ ikεU

)[
−(k2 + `2) +

f 2
0

N2

(
∂2

∂z2
− 1

4H2

)]
Ψ + β′eikΨ

+
f 2

0

N2

(
∂

∂z
− 1

2H

)[
α

(
∂

∂z
+

1

2H

)
Ψ

]
= 0,

(5.7)
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∂β′e
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f 2
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∂
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− 1

H

)[
α

(
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dz
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f 2
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ez/HIm

[
Ψ∗
∂2Ψ

∂z2

]
, (5.8)
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where

β′e = β + `2εU − ε f
2
0

N2

(
∂2U

∂z2
− 1

H

∂U

∂z

)
. (5.9)

A constant ε = 8/(3π) is derived from the truncation of nonlinear term sin2 `y using

Fourier sine series. With the specific localization of the β−channel, ` = 3/a = 4.71×

10−7m−1 and k = 2/(a cosπ/3) = 6.28×10−7m−1 where a is the earth radius. For the

boundary conditions, HM76 assumes zero normal flow across the lateral boundaries

which requires that ψ′ and v′ vanish at the side boundary y = 0, L. The upper

and bottom boundaries are chosen at zB = 10 km (tropopause) and zT = 80 km

(mesopause), respectively. The HM76 model assumes that perturbation and zonal

mean flow vanish at the upper boundary and specifies the lower boundary conditions

by setting u = uB(y) and ψ′ = ψB(y, t).

HM76 has two important parameters: mean zonal wind in radiative equilibrium

UR(z, t) and wave amplitude at the bottom boundary h(t). The latter governs the

geopotential height perturbation:

Ψ(zB, t) =
g

f0

h(t), (5.10)

at the lower boundary caused by forcing from upward propagating planetary waves.

Holton and Mass were interested in studying the stratospheric response to vertically

propagating planetary waves excited by steady tropospheric forcing. Hence, they

fixed the radiative equilibrium zonal wind shear ∂UR/∂z = 3 m s−1km−1 but defined

a time dependent wave amplitude at the bottom boundary

h(t) = hB[1− e−t/τ ].

Here τ = 2.5 × 105s and hB is a specified parameter chosen by Holton and Mass to

represent the asymptotic steady-state amplitude of the forcing.

Yoden then developed a simplified version of HM76 in 1987 and 1990 (Yoden

(1987, 1990)), denoted as “Y87” and “Y90” hereafter. Y87 simplifies HM76 by using
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central finite differencing for Ψ and U :

∂Ψ

∂z

∣∣∣∣
z=j∆z

=
Ψj+1 −Ψj−1

2∆z
, (5.11)

∂2Ψ

∂z2

∣∣∣∣
z=j∆z

=
Ψj+1 − 2Ψj + Ψj−1

∆z2
, (5.12)

where j = 0, 1, · · · , 28 and similar expressions hold for derivatives of U . Applying this

finite differencing, Y87 reduces Equations (5.7) and (5.8) to 81 nonlinear ordinary

differential equations. Y87 changes the bottom boundary to 0 km instead of the

tropopause as in HM76 and specifies the top and bottom boundary conditions as:

Ψ(zT , t) = 0, (5.13)

∂U

∂z

∣∣∣∣
z=zT

=
dUR
dz

∣∣∣∣
z=zT

, (5.14)

Ψ(0, t) = ghB(t)/f0, (5.15)

U(0, t) = UR(0), (5.16)

where hB plays the same role as h(t) in HM76 but is assumed to be constant in

Yoden’s studies. For the radiative equilibrium UR, Y87 uses the same simple linear

model suggested by Holton and Dunkerton (1978):

UR(z, t) = URB + Λ(t)z, (5.17)

where Yoden fixed URB at 10 m s−1 and Λ at 2 m s−1/km. Hence dUR/dz is assumed

to be constant by Y87. Yoden used Y87 to study how vertical wave forcing affects

the zonal circulation. Thus, he carried a bifurcation study on the parameter hB and

showed that there exists a multiplicity of stable steady solutions within certain ranges

of hB.

Y90 is identical to the form of Y87 but assumes time dependency in dUR/dz by

adding an annual component with the following form:

dUR
dz

(t) = 0.75− 2.25 cos

(
2πt

365

)
, (5.18)
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where time t is expressed in day. Y90 illustrates the seasonal variation of the strato-

spheric circulation by adapting the periodic radiative heating.

Ruzmaikin et al. (2003) further simplified Y87 and Y90 by using finite differences

in a single layer for Equations (5.11) and (5.12). They considered j = 0, 1, 2 in the

finite difference scheme and used variables defined at the middle height zT/2 with

∆z = zT/2 (zT is assumed to be 50 km here). Boundary conditions are taken into

account at the top and bottom. This produces the approximation:

∂Ψ

∂z
=

Ψ2 −Ψ0

2∆z
= − gh

f0zT
, (5.19)

∂2Ψ

∂z2
=

Ψ2 − 2Ψ1 + Ψ0

∆z2
= −8Ψ

z2
T

+
4gh

f0z2
T

, (5.20)

∂U

∂z
=

U2 − U0

2∆z
=
U1 − UR(0) + ΛzT/2

zT
, (5.21)

∂2U

∂z2
=

U2 − 2U1 + U0

∆z2
= −4(U1 − UR(0)− ΛzT/2)

z2
T

. (5.22)

This reduction of Yoden’s 81 ordinary differential equations removes the vertical

dependence. Rewrite Ψ = X(t)+iY (t) and substitute Equations (5.19 - 5.22) back to

the linearized quasi-geostrophic potential vorticity equation and zonal wind prediction

equation. Then, the Ruzmaikin model appears in the final form of three ordinary

differential equations:

Ẋ = −X/τ1 − rY + sUY − ξΨ0 + δwΨ̇0, (5.23)

Ẏ = −Y/τ1 − rX + sUX + ζΨ0U, (5.24)

U̇ = −(U − UR)/τ2 − ηΨ0Y − δΛΛ̇, (5.25)

where UR = UR(zT/2) = UR(0) − ΛzT/2. The appendix of Ruzmaikin et al. (2003)

gives the derivation of all other fixed parameters.

The two control parameters of this model are the same as HM76, Y87, and Y90:

Ψ(0, t) = gh(t)/f0 and Λ(t) = dUR/dz. The overdot of these two parameters in
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Equations (5.23) and (5.25) represents the corresponding time derivative. Ruzmaikin

et al. (2003) used a contant h throughout their study and hence Ψ̇0 = 0 in this case.

In their study, they modified the gradient of the mean radiative zonal wind by adding

a solar cycle component to the periodic form obtained in Y90:

Λ(t) =
dUR
dz

(t) = Λ0 + δΛa sin

(
2πt

1 yr

)
+ δΛs sin2

(
πt

11 yr

)
, (5.26)

where Λ0 = 0.75, δΛa = 2.25 and δΛs = εΛ0 with 0 ≤ ε ≤ 0.3. Ruzmaikin et al. (2003)

varied ε to control forcing from the 11-year solar cycle, which shows inter-annual

variability in the long-term simulations of the model. Figure 5.3 reproduces Figure

4 in Ruzmaikin et al. (2003), which shows both seasonal and inter-annual variations

in stratospheric circulations. Notice that the simulated zonal wind speeds are not

identical to the results in Ruzmaikin et al. (2003), because the initial conditions are

chosen differently.

The Ruzmaikin model is the final product of continuous modeling efforts origi-

nated from the HM76 model of stratospheric wave-mean flow interaction. A linearized

quasi-geostrophic potential vorticity equation and the Holton-Mass zonal flow predic-

tion equation are used as the prognostic equations for the wave-flow interaction in

stratosphere. The Ruzmaikin model is localized to a β−channel centered at 60◦N

with meridional extent of 60◦ and vertical level of 25 km log pressure height. Impor-

tant model parameters are the vertical gradient of the zonal wind Λ(t) and the initial

amplitude of planetary waves h(t). These two parameters are described differently

by HM76, Y87, Y90, and the Ruzmaikin model to study the stratospheric response

to various forms of perturbations. In particular, Ruzmaikin et al. (2003) focused on

studying the effect of weak solar forcing to the stratosphere and assumed seasonal

and 11-year solar cycles for the parameter Λ(t). Although h(t) is defined as time-

dependent, Ruzmaikin et al. (2003) fixed this parameter at 68 meters throughout
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Figure 5.3: Multiple model runs of the Ruzmaikin model with different choices of

ε = 0, 0.03, 0.3 from top to bottom, respectively. Fixed h at 68 m. Plotted zonal wind

over 35 years.

their study. The Ruzmaikin model indicates the seasonal and inter-annual variations

of the stratospheric circulation.

5.3 Bistability Analysis of the Ruzmaikin Model

The two control parameters of the Ruzmaikin model are the initial wave am-

plitude h(t) = f0Ψ(0, t)/g, and the vertical gradient of mean radiative zonal wind

Λ(t) = dUR/dz. Notice that h is equivalent to the amplitude of the wave perturba-

tion Ψ(0, t) at the ground level. However, Ruzmaikin et al. (2003) used a constant

wave perturbation h at z = 0 m to study only the perturbation from solar forcing

to the upper stratosphere. They treated h as a statistical winter mean value that is

independent of the low-frequencies in the stratosphere.
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While h is fixed, Ruzmaikin et al. (2003) assumed a time-dependent Λ with the

functional form in Equation (5.26). This form of Λ(t) includes a one-year seasonal

cycle and an 11-year solar cycle. The magnitudes of the seasonal variation and the

inter-annual variation (caused by solar cycle) are controlled by the parameters δΛa

and δΛs = εΛ0, respectively. In their study, they chose ε out of the range 0 − 0.3 to

study the long-term effect of solar cycle forcing onto the zonal flow, shown in Figure

4 in Ruzmaikin et al. (2003). Their numerical experiments verified the bistable state

of zonal wind with different values of Λ. Furthermore, they carried a bifurcation

analysis on Λ and discovered a bistable region of U depending on specific values of Λ

(while h is fixed), shown in Figure 3 in Ruzmaikin et al. (2003).

Similarly, through a bifurcation analysis, Ruzmaikin et al. (2003) confirmed the

importance of the specific value of h to the equilibrium value of U , as illustrated in

Figure 5.1. In particular, the model admits a wide range of values of h that recovers

the bistability of the system. Small values of h are associated with less planetary

wave interference with the polar jet and therefore fast zonal winds at equilibrium

and a stable polar vortex. This case is equivalent to the upper stable branch in

the bifurcation diagram. On the other hand, large values of h correspond to more

intense forcing from planetary waves which therefore cause the jet stream to weaken,

as seen by slower equilibrium zonal wind. This situation is realized by the bottom

stable branch in the bifurcation diagram. Between these two extremes, however, lies

a region with two stable branches corresponding to each of these polar jet behaviors.

Thus, they choose an h = 68 m well within this region to exhibit the multiple states

of the polar jet when investigating time-dependence via the parameter Λ(t).

Following the assumption made by Ruzmaikin et al. that h is time-independent, I

choose 100 values of h randomly from the range 50−100 m to simulate the Ruzmaikin

model. Figure 5.4 shows wide spread values of zonal wind predictions (especially

67



Figure 5.4: 100 ensemble simulations of the Ruzmaikin model with values of h

chosen in the range [50, 100] m. Zonal flow is plotted against time for each choice

of h. All ensemble members are initialized with the same initial condition of X, Y, U

and ε = 0.03.

during wintertime) among the 100 ensemble members. The bistable state of the

system is validated by the results shown in this figure as every winter both stable

branches of the zonal wind in Figure 5.1 are simulated by ensemble predictions. Figure

5.5 shows zonal wind predictions from three individual ensemble members chosen from

the previous ensemble run. These three model runs are initialized with different values

of h (values are indicated on the top of the panels shown) within the bistability region

and thus also validate the bifurcation analysis of h in Ruzmaikin et al. (2003).

5.4 Uncertainty Quantification for the Parameter h

The numerical experiments with h from the previous section implies that the

stratospheric circulation is sensitive to the forcing driven by planetary waves. The

amplitude of planetary waves h is an important model parameter to study and un-
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Figure 5.5: Three individual ensemble members chosen from the 100 ensemble

predictions of zonal wind from Figure 5.4, corresponding to particular choices of h as

indicated.

derstand the bistability behavior of the polar vortex. In contrast to the other control

parameter Λ, which has tractable forms to explain the dynamics, h is a highly uncer-

tain parameter. The planetary waves are forced by topography and sea-land contrasts

in the Northern Hemisphere. According to Ruzmaikin et al. (2003), h could vary from

zero to several hundred meters. They assumed that h is constant and equals to 68

meters throughout their study to focus only on the effect of solar forcing to the

stratospheric circulation.

On the other hand, time-dependent h has also been suggested by various scholars.

Holton and Mass (1976) used a exponential function of h in the form

h(t) = hB(1− e−t/τ ), (5.27)

where hB is the asymptotic steady-state amplitude of the forcing and τ = 2.5×105 s.

They chose hB arbitrarily to study wave-mean flow oscillations caused by tropospheric
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forcing. Yoden (1990) used a periodic form of h:

h(t) = 130 + 30 cosωit, (5.28)

where t is in days and 0.0459 day−1 ≤ ωi ≤ 0.0823 day−1. He used this form of h to

examine the effect of intraseasonal variations of wave forcing from the troposphere.

Hu and Tung (2002) performed Fourier analysis for the observational data provided

by NCEP (National Center for Atmospheric Research) and also demonstrated the

time dependency of h, shown in Figures 1 and 2 in Hu and Tung (2002).

Previous studies of h show poor predictability in this parameter (Holton and Mass

(1976); Yoden (1990); Hu and Tung (2002); Ruzmaikin et al. (2003)). Moreover,

direct physical observations (meteorological data) are not available for amplitude of

planetary waves to provide estimates for h. In order to assess the qualitative behaviors

of the Ruzmaikin model with real data (available observations for model variables),

it is necessary to obtain estimates of h that are consistent with the observed data.

Data assimilation could be helpful to give insights for the uncertain model parameter

h, because it provides a computational model to recover (infer) the “true” values of

h directly from the data.

Furthermore, different assumptions of the time-dependency of h can be explored

with suitable data assimilation frameworks such as ensemble Kalman filter (EnKF) or

ensemble smoother. To investigate the assumption made by Ruzmaikin et al. (2003)

that h is constant over time, the EnKF will be used to provide a state-parameter

estimation framework for the Ruzmaikin model. This is a sequential data assimilation

scheme that provides predictions of the model state and the time-independent h

simultaneously. Alternatively, the ensemble smoother with multiple data assimilation

(ES-MDA) will be used to test the other assumption that h is time-dependent. ES-

MDA is a global data assimilation scheme which assimilates all historical data at
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once and iterates the data assimilation cycles until optimal parameters are found.

Ensemble smoothers can be viewed as solving a history-matching problem to look for

the true parameters that reflect the history. ES-MDA only updates the parameter

space of a model.

For both data assimilation schemes, the same data set obtained from the ERA-

Interim archive provided by the ECMWF Reanalysis is used to study the time-

dependency of h. The data set is averaged according to the assumption of model

levels: 25 km log-pressure height and β-channel centered at 60◦N. The main purpose

of developing these data assimilation applications for the Ruzmaikin model is to val-

idate the qualitative behaviors of the model, specifically, the inter-annual variations

of the zonal wind associated with planetary wave perturbations (the bistability of

zonal wind). Although this reduced-order model serves as a mechanistic model of

a complex system of the polar vortex, it is inevitable to encounter model bias as a

result of crude representation of real dynamics and physics. Hence, assessment and

validation of the reduced-order model using data assimilation can provide insights for

possible model errors and thereafter improve the model performance to better reflect

the observed dynamics.
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Chapter 6

DATA ASSIMILATION WITH A REDUCED-ORDER MODEL OF THE ARCTIC

POLAR VORTEX

6.1 Introduction

Chapter 5 presented a reduced-order model of the Arctic polar vortex developed by

Ruzmaikin et al. (2003), which is referred as the “Ruzmaikin model”. As stated in the

previous chapter, the Ruzmaikin model is a highly truncated version of the original

PDE (partial differential equation) model developed in Holton and Mass (1976) to

study stratospheric wave-zonal flow interactions. The final form of the Ruzmaikin

model is a set of three ordinary differential equations that describe a one-dimensional

stratospheric dynamical system.

Two important control parameters of the Ruzmaikin model are: Λ, the vertical

gradient of zonal wind associated with solar forcing, and h, the initial amplitude

of planetary waves at the bottom level. Time dependency are assumed for both

parameters. However, for simplicity, Ruzmaikin et al. (2003) fixed h = 68 m in their

study to focus only on the effect of weak solar forcing to the stratosphere circulation.

The parameter Λ is defined as a periodic function accounting an annual cycle and an

11-year solar cycle of solar forcing. Ruzmaikin et al. (2003) have shown the bistability

of zonal wind recovered by the parameter Λ both analytically and numerically, shown

in Figures 2 and 4 in Ruzmaikin et al. (2003). Similarly, they have also done a

bifurcation analysis for the other control parameter h to show that there is bistability

of the system recovered by some range of h values as well, seen as in Figure 3 of

Ruzmaikin et al. (2003). I performed some numerical simulations of the Ruzmaikin
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model with different values of h and was able to verify the bistability behavior studied

by the model, refer to Figures 5.4 and 5.5.

After a thorough literature review for the control parameter h (Holton and Mass

(1976); Yoden (1990); Hu and Tung (2002); Ruzmaikin et al. (2003)), I realized that

h has large variability and uncertainty. Well developed theories or direct physical

measurements are not available to provide accurate estimates for h. Instead, data as-

similation is applied to develop a useful computational application for the Ruzmaikin

model so that h can be estimated directly from available data to verify the model’s

qualitative properties related to h.

In this chapter, the main goal is to develop suitable data assimilation methods

to test different assumptions about h and validate the qualitative properties of the

model. In particular, a time-independent h (a constant h) can be estimated via the

ensemble Kalman filter (EnKF) with an augmented state vector. Alternatively, a

time-varying h can be estimated using a global data assimilation scheme called the

ensemble smoother with multiple data assimilation (ES-MDA). The updates for h

and U given by specific data assimilation frameworks provide evidences to verify the

bistability of the wind sown in Figure 5.1.

To assess the Ruzmaikin model, twenty years (1999 to 2018) of zonal wind data

are obtained from ECMWF Reanalysis - Interim (or “ERA-Interim”), a global atmo-

spheric reanalysis available from 1979. The reanalysis is based on a 2006 release of the

ECWMF’s Integrated Forecast System (IFS). The data assimilation system of ERA-

Interim uses a 4-dimensional variational analysis (4D-Var) with a 12-hour analysis

window. More details of the ERA-Interim archive can be found in Berrisford et al.

(2011). We averaged the data set according to the assumptions of the Ruzmaikin

model: the vertical level is fixed at 25 km log-pressure height, and the latitudinal

channel is centered at 60◦N. Both data assimilation schemes assimilate the reanalysis
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data into the low-dimensional model under different model assumptions and gener-

ate parameter estimations for h. Results from these two different data assimilation

schemes are compared and discussed in this chapter.

6.2 Data

6.2.1 Observations for the Zonal Wind

The zonal wind of the model (model variable U) is equivalent to “U component of

wind” provided by ECMWF Reanalysis - Interim archive. Thus, twenty years (from

1999 to 2018) of U component of wind data are obtained from ECMWF Reanalysis.

The data are selected at the pressure levels of 20 mb and 30 mb and grid resolution

of 1◦ × 1◦. Ruzmaikin et al. (2003) reduced the model to 25 km in log-pressure

coordinate for the vertical level, which is between the pressure levels 20 mb and 30

mb. I used these two pressure levels to interpolate the data to 25 km log-pressure

height by linear approximation in log-pressure vertical coordinate. In terms of time

intervals, the data are selected from daily data with four time steps stored per day.

The data are averaged over the four time steps each day to obtain daily averages of

the zonal wind. Thus, the processed data set provides zonal wind “observations” as

daily averages of the wind for each day, from 1 January 1999 to 31 December 2018.

The Ruzmaikin model is confined to a latitudinal channel centered at 60◦N with a

meridional extent of 60◦ latitude, so the daily means of zonal wind are then averaged

over a latitudinal window centered at 60◦N with meridional extents varying from 10◦

to 60◦ latitude. Different latitudinal channels are chosen to compare the variability

of the data with respect to the window sizes. In Figure 6.1, the post-processed

zonal wind data over different latitudinal windows are plotted, which illustrates that

the smaller the window, the larger the variation of winter winds (relative maxima
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Figure 6.1: Daily averages of the ECMWF Reanalysis zonal wind data over different

latitudinal windows centered at 60◦N from year 1999 to 2018. The four sizes of the

latitudinal window are 55− 65◦N, 50− 70◦N, 40− 80◦N, and 30− 90◦N.

and minima in the wind data). Though the magnitude of winter wind speed varies

according to the window sizes, the bistability pattern of the wind is recovered by all

window sizes.

6.2.2 Prior Estimate for a Time-dependent h: Geopotential Height

Parameter h is the amplitude of planetary waves at the lower boundary. It was

fixed in Ruzmaikin et al. (2003) at h = 68 m. However, h acts as the perturbation to

the polar jet and was proven to have time dependency by Hu and Tung (2002). They

used geopotential heights from NCEP-NCAR reanalysis data to approximate for h.

Similarly, in my study, the geopotential heights from ECMWF reanalysis data are

used to provide time-dependent prior estimates of h for initialization of the ensemble.
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Ruzmaikin et al. (2003) defined the lower boundary at the ground level, z = 0

m in log-pressure coordinates which is approximately at the pressure level of 1000

mb. This pressure level is close to the earth’s surface and introduces complications

related to extrapolation below the ground in the presence of elevated topography. For

example, the extrapolation may cause negative values of the geopotential height at

levels below the mountaintop as seen by the global model. Negative values for the

geopotential height are not practical to approximate the amplitude of planetary waves,

so a different pressure level of 500 mb is chosen instead. This level is located in the

middle troposphere, well above any mountaintop, and captures upward propagating

waves reaching the middle troposphere. All the four time steps of daily data are

downloaded and averaged daily to provide daily means of geopotential heights.

To extract the wave amplitudes, Fourier analysis of geopotential height data was

performed in a similar manner as in Hu and Tung (2002). Amplitudes of wave numbers

1 or 2 (depends on which wave number produces larger amplitude) are taken as the

prior for time-varying h to initialize the ES-MDA algorithm.

6.3 Data Assimilation Methods for Parameter Estimation of h

Two different data assimilation methods are used to estimate h under different

assumptions. First, following the assumption made by Ruzmaikin et al. (2003) that

h is constant, the EnKF is applied to update the model state and the parameter

simultaneously via an augmented state vector. We assume that dh/dt = 0 in the data

assimilation framework. The augmented state is a concatenated vector that includes

the three-dimensional model state and the parameter h. The EnKF will update h and

the model state in real-time by calculating the error statistics (covariance matrix) of

the ensemble forecast.
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On the other hand, time-dependent values of h can be estimated using the ES-

MDA. The ES-MDA is also an ensemble method but in contrast to the EnKF, it

updates only the parameter space. In this study, eight parameters (including h)

of the Ruzmaikin model are chosen to be updated by ES-MDA. Notice that the

dimension of the parameter space is much larger than eight dimensions because h is

assumed to be time dependent. Since daily means of the zonal wind are assimilated

into the computation model, h(t) is also updated daily which has a dimension of

∼ 8000 corresponding to the 20 years of data.

6.3.1 The Ensemble Kalman Filter

The ensemble Kalman filter (EnKF) is a common sequential data assimilation

scheme that can be used to estimate the state vector of a dynamical model given a

set of noisy observations (Evensen (1994)). It is an iterative approach of the two steps:

background forecast and analysis update. This type of sequential data assimilation

scheme is useful for high-dimensional and nonlinear inverse problems.

The EnKF assumes that the model forecast and observations are noisy measure-

ments of the system with some Gaussian errors. The analysis cycle of EnKF relies on

the error statistics of the ensemble model forecasts. Let N e be the ensemble size and

x be the state vector of the dynamical model. The error statistics is calculated using

the state vectors
(
xbi
)
, i = 1, . . . , N e derived from the state variables of each ensem-

ble member. When observations are available, each of the N e ensemble members are

updated according to

xai = xbi + K
[
yo −H(xbi)

]
, 1 ≤ i ≤ N e. (6.1)
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Here, yo is a vector of observations, H is the observation operator which maps model

variables to the observations, and K is the Kalman gain matrix with the form:

K = XbYT

[
1

N e − 1
YYT + R

]−1

. (6.2)

Notice that we only have one observation available for the model state, which is the

zonal wind data obtained from ECMWF. The observation operator in this case is

trivial, which is the identity matrix.

The ith column of the matrix Xb is the difference between each state vector xbi

and the background ensemble mean xb. The ith column of the matrix Y is defined

as the difference between each state vector xbi and the ensemble mean after applying

the observation operator H to each state vector. The matrix R is the observation

error covariance matrix. The EnKF is operated in a sequential manner by applying

updates, Equation (6.1), at each time when new observations are available. Then,

the analysis update will be used as new initial conditions for the next short model

forecast and so on.

In this work, the EnKF is used to estimate both the model state as well as the

model parameter h, so an augmented state vector is required. As h is assumed to be

constant, the simple dynamical model for h is:

dh

dt
= 0. (6.3)

Rewrite the Ruzmaikin model (Equations (5.23-5.25)) in the compact form:

dx

dt
= F (t,x), (6.4)

where x is the l-dimensional model state vector and F defines the vector field. Then

the augmented state system is modeled by this four-dimensional dynamical system:dx/dt
dh/dt

 =

F (t,x)

0

 = F ∗(t,x∗), (6.5)
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which is used to generate the background forecast. The analysis is obtained by cal-

culating the error covariance matrices of the augmented state vector and available

observations. These two error covariance matrices are used to define the Kalmain

gain matrix K. The new analysis then will be the initial conditions for the next

ensemble forecast and subsequently used to calculated the next analysis cycle and so

on. This process is repeated till all the observations of zonal wind are assimilated.

6.3.2 The Ensemble Smoother with Multiple Data Assimilation

The ensemble smoother with multiple data assimilation (ES-MDA) is a global

data assimilation method that can be used to solve the history matching problem,

which is stated in Chapter 2. In comparison to the sequential data assimilation

scheme presented earlier, instead of calculating the analysis step at every time when

new observations become available, ES-MDA assimilates the entire time series of the

observations at once and generates a global update for uncertain model parameters.

The history matching problem solves a standard inverse problem. First, let us

define the history matching problem as:

y = g(x). (6.6)

Here, x is the vector of uncertain model parameters including the time-dependent

h(t) and initial conditions of the model variables, y is the predicted measurements of

the system (zonal wind field U), and g is the model operator given by the Ruzmaikin

model (Equations (5.23-5.25)). Time series of measurements of the zonal wind are

related to the predicted measurements in the form,

d = y + ε, (6.7)

where ε is assumed to be the Gaussian observation error with mean of 0.
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This inverse problem is formulated using Bayes’ theorem (Evensen (2018)), defined

as:

f(x|d) ∝ f(d|g(x))f(x), (6.8)

where f(x|d) is the posterior probability density function (PDF) of the parameters

x conditioned on the observations d. In order to solve this problem, the prior f(x)

and the likelihood f(d|g(x)) are assumed to be Gaussian distributions. Equation

(6.8) is also known as the smoothing problem in data assimilation. Various ensemble

smoothing methods have been designed lately to solve this type of problem. Chen

and Oliver (2012, 2013) developed the iterative ensemble smoother (IES), which ini-

tially was called as ensemble randomized likelihood (EnRML). Emerick and Reynolds

(2013) proposed the ensemble smoother with multiple data assimilation (ES-MDA)

which is the method adapted here to estimate the time-varying h. In real practice,

this data assimilation framework can be used to estimate any uncertain model pa-

rameters. In my study, the ES-MDA is used to estimate eight uncertain parameters

of the Ruzmaikin model including h(t). In particular, the following parameters are

chosen for the vector x:

x = (X0, Y0, U0, ε, δΛa,Λ0, UR, h(t)), (6.9)

where X0, Y0, U0 are initial conditions for the model state vector. The rest of param-

eters included in the parameter vector are used to define the other control parameter

of the model, Λ(t). All other model parameters not included in x are fixed at values

defined by Ruzmaikin et al. (2003).

The mathematical formulation of the ES-MDA is presented in Chapter 2. Here

are the details (followed in the order of steps) of the ensemble framework designed

for the Ruzmaikin model:
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1. Sample a large prior ensemble of the chosen model parameters including time

series of h(t). Each parameter is provided with an initial guess of value and a

standard deviation. The prior ensemble for h(t) is provided by the processed

ECMWF geopotential height data.

2. Simulate (integrate) the model forward for the entire 20 years (1999 to 2018)

using the prior ensemble of uncertain parameters obtained in step 1. This step

provides a prior ensemble prediction for the system state which also represents

the initial forecast uncertainty.

3. Compute the posterior ensemble of parameters by maximizing a Gaussian likeli-

hood accounting the misfit between the model prediction and observations and

the correlations between the input parameters and the predicted measurements.

4. Update the posterior ensemble prediction of the system state with the updated

parameters from step 3. The posterior ensemble spread can be used to interpret

the uncertainty of posterior model forecasts.

The above algorithm is iterated for a number of steps till the “optimal” model

prediction is achieved. The difficulty is to define what an optimal state is, which can

be completely different metrics for different applications. In our study, we consider

the accuracy of zonal wind speed predictions (in comparison to real observations)

as the metric for the computational model performance. In general, one can expect

improvements in the model performance as number of iterations increases. However,

the computational time/cost can also increase significantly as a result of increasing

number of iteration steps. In real practice, a numerical experiment can be done

by varying the number of iteration steps and looking for an optimal trade-off be-

tween model performance and computational cost. The last iteration’s update for
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the parameter vector is used to generate the ultimate “optimal” model prediction of

a system. In our study, we have found that after 32 steps, the ES-MDA performance

does not show remarkable improvement, so we use 32 steps.

6.4 Results and Discussion

6.4.1 Data Assimilation for Time-independent h

The EnKF framework is built for estimating the time-independent h, which fol-

lows the same assumption made by Ruzmaikin et al. (2003). With the augmented

system designed as Equation (6.5), the EnKF can produce an ensemble realizations of

constant h. The data processed from ECMWF Reanalysis - Interim are daily means

of the zonal wind (corresponds to the model variable U) from 1 January 1999 to

31 December 2018. In order to assimilate the data, the numerical scheme of model

simulation is modified accordingly to provide daily means of the zonal wind.

Spin-up of the model (free run of the model) for the initial background ensemble is

a common practice in data assimilation. It can provide a representative approximation

of the initial uncertainty in model forecasts. In addition to this reason, in the context

of the Ruzmaikin model, spin-up is required since the model itself does not align with

real seasonality of the reanalysis data, i.e., the model runs do not necessarily start

on January 1st, 1999 (or roughly winter time). Therefore, the model is integrated for

500 days before computing the first analysis cycle, which allows the first background

ensemble to catch up with the initial seasonality of the data. Though one can always

choose a different number of days for spin-up for the same purpose.

In order to generate the spin-up, a suitable choice of the initial ensemble is also

required. In Ruzmaikin et al. (2003), the initial conditions of model variables X, Y

and U are not given. Thus, in our study, we arbitrarily determine the initial values for
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each model variable and the parameter h. We manually tune the initial ensemble until

desired EnKF results are obtained. The “deseried” result is the one that produces

accurate EnKF update for the zonal wind speed in comparison with the ECMWF

observations. As the final result of our numerical experiments, reasonable choices

for the initial conditions of model variables X and Y for all ensemble members are

X0 = 0 and Y0 = 0. The initial value for U is sampled randomly from the range 10 to

100 meters for each ensemble member. The initial value for h is sampled randomly

from the range 40 to 120 meters for each ensemble member. Notice that the chosen

ranges for U and h are also within the bistable region shown in Figure 5.1.

Furthermore, there are other algorithmic parameters such as the observation error,

inflation factor, and ensemble size that could be varied to optimize EnKF’s perfor-

mance. In Figure 6.2, the settings for the algorithmic parameters are: observation

error (observation variance) of 0.1, no inflation (inflation factor of 1), and 1000 en-

semble members. This plot of zonal wind speed produced by EnKF algorithm shows

that though the ensemble mean (maroon line) agrees well with the seasonal pattern of

the ECMWF data (dark connected dots), the mean does not reproduce the bistability

of the wind observed in the data. For example, the peaks of the ensemble mean (win-

tertime zonal flow speed) always converge to the slower winter wind observed in the

data. Nevertheless, the ensemble members (gray lines) in the same plot demonstrate

spread of zonal wind every winter with some ensemble members converging to the

faster winter wind. Hence, the bistability behavior is found in the ensemble members

but not present in the ensemble mean of zonal flow. Moreover, Figure 6.3 shows the

corresponding update for h under the same EnKF experiment. The ensemble mean of

h (green line) settles around 80 meters after 2008, which is within the bistable region

shown in Figure 5.1.
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Figure 6.2: The EnKF update for zonal wind speed U after assimilating the

corresponding ECMWF observations. The ensemble is initialized with 1000 ensemble

members which are plotted in gray. The ensemble mean is plotted in maroon and

observations are plotted as black dots. The ensemble forecasts run from 1999 to 2018.

Figures 6.4 and 6.5 illustrate the result of another numerical experiment in which a

much smaller observation error of 0.001 and a inflation factor of 1.02 are chosen. The

inflation factor is used to account for model errors. The EnKF update of U shown in

Figures 6.4 shows that both the ensemble mean and the ensemble members capture

the bistability behavior of the zonal wind observed in data. However, the update of

h shown in Figures 6.5 settles at 0 meter after year 2004, which implies that there

is no planetary waves. In this case, the EnKF has given priority to trust the data

due to a very small observation error, so it may ignore the background forecast. As a
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Figure 6.3: The EnKF update for h corresponding to the update of U in Figure

6.2. Ensemble mean of h is plotted in green and minimum and maximum values of

ensemble are in blue.

result, the EnKF updates for U and h show that the Ruzmaikin model is unable to

explain the observed dynamics in data with the bifurcation analysis of h.

Although these two model runs of the EnKF reproduce the seasonal pattern of the

data (annual variation of the jet) in the update of U , the results produced under the

model assumption that h is constant are limited to explain the bistability behavior

(inter-annual variation) of the zonal wind seen in the data.

6.4.2 Data Assimilation for Time-varying h

The ES-MDA is used here to explore the alternative assumption that h is time-

dependent. Unlike the EnKF where both the state variables X, Y, and U and the
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Figure 6.4: The EnKF update for U (m/s) with 100 ensemble members and a

much smaller observation error. The ensemble mean (in maroon) is plotted together

with each ensemble member (in gray) and observations (black dots). The gray lines

of ensemble members all converge to the data throughout the 20 years, so we do not

observe the spread in ensemble members.

model parameter h are updated together, the ES-MDA updates only the parameter

space. In particular, eight uncertain model parameters are chosen to be estimated.

The parameter vector is defined as x = (X0, Y0, U0, ε, δΛa,Λ0, UR, h(t)). The rest of

the model parameters are fixed throughout the model runs.

The geopotential height data obtained from ECMWF reanalysis are used to pro-

vide a prior ensemble for the time-varying h(t), which provides ∼ 7300 days (20 years)

of data. Moreover, the 500-day spin-up is also applied here so that the background

ensemble resembles the seasonality of data. Consequently, the dimension of h(t) con-
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Figure 6.5: The EnKF update for h corresponding to the update for U in Figure

6.4. Ensemble mean and extreme values of h are plotted. The green line of the mean

seems to disappear as it is overlaid by the blue curves of extreme values.

sists of archived output during a spin-up time period and analyzed times with a total

dimension of ∼ 7800. At each ES-MDA step, the twenty years of zonal wind obser-

vations are assimilated all at once to update the chosen parameter space including

time series of h(t). The ES-MDA is iterated 32 times to provide the final output for

h(t) and other chosen model parameters. The final updated parameters are used to

integrate the model forward for 20 years to provide the “optimal” model prediction.

The performance of the algorithm is assessed by the accuracy of predictions for the

zonal wind speed U in comparison to the data.

Figure 6.6 presents a representative result from the ES-MDA algorithm. The top

and bottom panels are ensemble realizations (with 1000 ensemble members) for U and
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h(t), respectively. The posterior ensemble mean of U produced at the last ES-MDA

step (orange curve) recovers the bistability behavior seen in the data. Moreover,

such update of U corresponds to the bottom panel of time-dependent h, which shows

regular oscillations between strong and weak tropospheric forcing from planetary

waves throughout the 20 years. When slower winter zonal flow is observed between

year 2001 and year 2004, the posterior ensemble mean of h(t) (dark green curve)

shows rapid increase with a huge spike right after year 2000. This combination of

small U and large h resembles the lower stable branch (unstable polar vortex) of the

bifurcation diagram seen as in Figure 5.1. (Here we are looking at the qualitative

behaviors of the forecasts instead of quantitative results.) Similarly, when fast winter

zonal wind is observed in the data, such as the year 2005 or 2016, the ES-MDA

produces an update of smaller h in the posterior, which implies less perturbation

from planetary waves to the polar jet. This combination of large U and small h maps

to the upper branch (stable polar vortex) of the bifurcation diagram of h. The ES-

MDA update of h(t) verifies the qualitative behavior of inter-annual variation of the

system studied by the Ruzmaikin model.

The prior ensemble of time-dependent h at the first iteration of the ES-MDA

is obtained from the analyzed ECMWF geopotential height data as described in

Section 6.2.2. In Figure 6.6, this prior ensemble of h(t) (light blue lines) converge

to the posterior mean of h(t) (dark green line) after the last iteration of the ES-

MDA. The final predicted ensemble mean of h(t) suggests much stronger forcing from

planetary waves than what is observed from the reanalysis data during wintertime.

This comparison between the prior and posterior of h(t) confirms that h plays an

important role to recover the observed dynamics of zonal wind.

However, there are also a small number of updates of h that are not consistent

with the bifurcation analysis in Ruzmaikin et al. (2003). For example, a fast winter
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zonal flow is observed in year 2012, but it corresponds to a large h update from the

ES-MDA, which disagrees with the bifurcation analysis that a strong planetary wave

forcing is associated with a weak polar jet and an unstable polar vortex. There is

an inherent model bias because of the simplified dynamics and physics in the model

employed. Not all the observed stratospheric dynamics can be explained using this

idealized model.

The Ruzmaikin model is a mechanistic model developed to study the underlying

mechanisms of the observed dynamics of the Arctic polar vortex. Under the assump-

tion that h is time-dependent, the prediction given by the ES-MDA recovers more

interesting dynamics than the prediction obtained by the EnKF for time-independent

h. The bistability of the wind associated with change in h is also validated by the

ES-MDA updates for U and h. Although the Ruzmaikin model is a reduced-order

model that simplifies the complex high-dimensional system of the polar vortex, it

can reproduce the qualitative patterns of the observed dynamics of polar vortex and

provide insights of underlying mechanism with its bifurcation analysis of h.

6.5 Conclusions

A reduced-order model developed by Ruzmaikin et al. (2003) can be used to study

the underlying mechanisms of stratospheric polar vortex in the Northern Hemisphere.

In particular, two important model parameters are used to understand the strato-

spheric response to perturbations from solar forcing and planetary waves. These two

parameters are: the vertical gradient of the zonal wind, Λ, and the initial amplitude

of planetary waves, h.

Although the idealized model cannot be used to predict or reproduce the high-

dimensional system of the polar vortex, it provides insightful explanations for the

qualitative behaviors of such a complex dynamical system. In particular, the bi-
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Figure 6.6: ES-MDA updates for U and time-dependent h. Top: ensemble forecast

for zonal wind U (m/s). The ensemble mean is in orange, and ensemble members

are in lighter orange but all converge to the mean after spin up. The red points are

ECMWF data. Bottom: posterior and prior ensembles of h(t).The mean of prior is

in dark blue and the mean of posterior is in dark green. The lighter blue and lighter

green are ensemble members of prior and posterior respectively.
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furcation analysis of h suggests the inter-annual variability of the polar vortex in

connection with forcing from planetary waves, which can be seen through modula-

tion of the number of cold and warm winters. A fair question to ask based on the

analysis of the model is: are these modeled qualitative behaviors also observed in real

data? Assessment and validation of the idealized model is required to answer this

question.

Two different data assimilation methods are used in my study in order to assess

the model. The first approach is a sequential data assimilation scheme called the

ensemble Kalman filter (EnKF), which is used to test the assumption that h is time-

independent. The other approach is a global data assimilation scheme called the

ensemble smoother with multiple data assimilation (ES-MDA), which is used to test

the assumption that h is time-dependent. Both methods provides estimates for the

parameter h using the same data set post-processed from the ECMWF Reanalysis -

Interim archive.

The qualitative behaviors of the model are reproduced (validated) in the data

assimilation results. The EnKF ensemble prediction of the zonal wind U (Figure

6.2) reproduces the seasonal pattern of the wind data. Additionally, the bistability

behavior is observed in the spread of ensemble members, although the ensemble mean

does not show bistability. The corresponding h update (Figure 6.3) also lies within the

bistability region seen as in Figure 5.1. To reproduce the bistability in the ensemble

mean, a much smaller observation error is applied for the EnKF algorithm (Figures

6.4 and 6.5). However, in this case the model is not meaningful to interpret the results

as the EnKF update for h converged to 0 meter which is not physical.

The assumption of a time-varying h is more representative of the real dynamics.

The ES-MDA framework is able to estimate the time series of h. Corresponding

results show large variability in h in the posterior prediction of the parameter (Figure
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6.6). Moreover, the bistabilty behavior of the zonal flow is reproduced well with such

time-dependent h. The two stable steady states in the bifurcation diagram of h are

realized in the posterior updates for h and U qualitatively, which supports the model’s

analysis. A stable polar vortex is associated with less perturbation from planetary

waves (upper branch in Figure 5.1), and an unstable polar vortex is associated with

larger perturbation from planetary waves (lower branch in Figure 5.1).

Data assimilation is a useful tool to diagnose model biases for reduced-order mod-

els. Two different data assimilation frameworks are used to test different assumptions

of the model: h is time-dependent or time-independent. Assimilating data produced

by a global forecast model reveals deficiency in the low-dimensional model. The

assumption of a constant h (steady forcing from planetary waves) is not realistic to

recover the bistability pattern observed in the data, whereas a time-varying h is capa-

ble. Model assumptions can be tested via suitable data assimilation methods, which

can aid with better model development.
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Bergthörsson, P. and B. R. Döös, “Numerical weather map analysis”, Tellus 7, 3,
329–340 (1955).

Berrisford, P., D. Dee, P. Poli, R. Brugge, K. Fielding, M. Fuentes, P. K̊allberg,
S. Kobayashi, S. Uppala and A. Simmons, “The era-interim archive version 2.0,
shinfield park”, Reading 1, 23 (2011).

Box, G. E., “Science and statistics”, Journal of the American Statistical Association
71, 356, 791–799 (1976).

93

https://www.cancer.org/cancer/prostate-cancer/about/key-statistics.html
https://www.cancer.org/cancer/prostate-cancer/about/key-statistics.html


Bruchovsky, N., L. Klotz, J. Crook, S. Malone, C. Ludgate, W. J. Morris, M. E.
Gleave and S. L. Goldenberg, “Final results of the Canadian prospective Phase II
trial of intermittent androgen suppression for men in biochemical recurrence after
radiotherapy for locally advanced prostate cancer: Clinical parameters”, Cancer
107, 2, 389–395 (2006).

Burgers, G., P. Jan van Leeuwen and G. Evensen, “Analysis scheme in the ensemble
kalman filter”, Monthly weather review 126, 6, 1719–1724 (1998).

Carrassi, A., M. Bocquet, L. Bertino and G. Evensen, “Data assimilation in the geo-
sciences: An overview of methods, issues, and perspectives”, Wiley Interdisciplinary
Reviews: Climate Change 9, 5, e535 (2018).

Ch, H. and C. Hodges, “The effect of castration, of estro gen and of androgen injection
on serum phosphatases in metastatic carcinoma of the prostate”, Cancer research
(1941).

Charney, J. G., “Dynamic forecasting by numerical process”, in “Compendium of
meteorology”, pp. 470–482 (Springer, 1951).

Chen, Y. and D. S. Oliver, “Ensemble randomized maximum likelihood method as
an iterative ensemble smoother”, Mathematical Geosciences 44, 1, 1–26 (2012).

Chen, Y. and D. S. Oliver, “Levenberg–marquardt forms of the iterative ensemble
smoother for efficient history matching and uncertainty quantification”, Computa-
tional Geosciences 17, 4, 689–703 (2013).

Cressman, G. P., “An operational objective analysis system”, Monthly Weather Re-
view 87, 10, 367–374 (1959).

Daley, R., Atmospheric data analysis, no. 2 (Cambridge university press, 1993).

Droop, M. R., “Vitamin b12 and marine ecology. iv. the kinetics of uptake, growth
and inhibition in monochrysis lutheri”, Journal of the Marine Biological Association
of the United Kingdom 48, 3, 689–733 (1968).

Eisenberg, M. C. and M. A. L. Hayashi, “Determining identifiable parameter com-
binations using subset profiling”, Mathematical Biosciences 256, 116–126, URL
http://linkinghub.elsevier.com/retrieve/pii/S0025556414001631 (2014).

Eisenberg, M. C. and H. V. Jain, “A confidence building exercise in data and iden-
tifiability: Modeling cancer chemotherapy as a case study”, Journal of Theoretical
Biology 431, 63–78 (2017).

Emerick, A. A. and A. C. Reynolds, “Ensemble smoother with multiple data assimi-
lation”, Computers & Geosciences 55, 3–15 (2013).
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Some of the material in Chapter 3 and 4 was published in Wu et al. (2019) and
Phan et al. (2019), which are given permission to reuse under an open access Creative
Common CC BY license.

A figure from Ruzmaikin et al. (2003) is reused in Chapter 5, which is given
the written permission by the copyright holder: “You may include Figure 3 from
Ruzmaikin, Lawrence, and Cadavid’s 2003 JCLI article in your ASU thesis, Data
Assimilation and Uncertainty Quantification with Reduced-Order Models, with the
following conditions:

1. Include the complete bibliographic citation of the original source.
2. Include the following statement with that citation: c© American Meteorological

Society. Used with permission.”
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CODE ACCESS
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The code of the data assimilation applications developed for Chapter 4 and 6 are
available to the public on the GitHub repository https://github.com/zhiminwu29.
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