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ABSTRACT  

   

Published in 1992, “The osteological paradox: problems of inferring prehistoric 

health from skeletal samples” highlighted the limitations of interpreting population health 

from archaeological skeletal samples. The authors drew the attention of the 

bioarchaeological community to several unfounded assumptions in the field of 

paleopathology. They cautioned that bioarchaeologists needed to expand their 

methodological and theoretical toolkits and examine how variation in frailty influences 

mortality outcomes. This dissertation undertakes this task by 1) establishing a new 

approach for handling missing paleopathology data that facilitates the use of new 

analytical methods for exploring frailty and resiliency in skeletal data, and 2) 

investigating the role of prior frailty in shaping selective mortality in an underexplored 

epidemic context. The first section takes the initial step of assessing current techniques 

for handling missing data in bioarchaeology and testing protocols for imputation of 

missing paleopathology variables. A review of major bioarchaeological journals 

searching for terms describing the treatment of missing data are compiled. The articles 

are sorted by subject topic and into categories based on the statistical and theoretical rigor 

of how missing data are handled. A case study test of eight methods for handling missing 

data is conducted to determine which methods best produce unbiased parameter 

estimates. The second section explores how pre-existing frailty influenced mortality 

during the 1918 influenza pandemic. Skeletal lesion data are collected from a sample of 

424 individuals from the Hamann-Todd Documented Collection. Using Kaplan-Meier 

and Cox proportional hazards, this chapter tests whether individuals who were healthy 
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(i.e. non-frail) were equally likely to die during the flu as frail individuals. Results 

indicate that imputation is underused in bioarchaeology, therefore procedures for 

imputing ordinal and continuous paleopathology data are established. The findings of the 

second section reveal that while a greater proportion of non-frail individuals died during 

the 1918 pandemic compared to pre-flu times, frail individuals were more likely to die at 

all times. The outcomes of this dissertation help expand the types of statistical analyses 

that can be performed using paleopathology data. They contribute to the field’s 

knowledge of selective mortality and differential frailty during a major historical 

pandemic.  
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CHAPTER 1 

INTRODUCTION 

Paleopathology, or the study of past health, explores the origins of health 

disparity, and the role of disease in the evolution of human biology and society (Buikstra 

and Roberts 2012; Grauer 2012; Mcilvaine and Reitsema 2013; Temple and Goodman 

2014). Studying health in ancient contexts elucidates the effects of major cultural and 

environmental transitions on the human condition, and how social structures and human 

ingenuity have influenced our biology over time.  

Bioarchaeologists commonly examine past health through the lens of stress. 

Stress is defined broadly as disruption to biological homeostasis caused by disease, 

nutritional, environmental, and/or cultural perturbation (Brown 1981; Huss-Ashmore et 

al. 1982; Bush and Zvelebil 1991; Goodman et al. 1984). Bodily tissues attempt to 

compensate for this disruption through a process known as allostasis (McEwen 1998; 

McEwen 2005; Klaus 2014) resulting in what are known as indicators of skeletal stress. 

Bioarchaeologists have compiled a vast suite of physical changes to the human skeleton 

to investigate the effects of stress in the past. Many are general reflections of long-term 

poor health such as reduced stature, structural asymmetry, cortical structure, low sexual 

dimorphism, altered subadult growth curves, malocclusion, musculoskeletal markers and 

osteoporosis (Buikstra and Cook, 1980; Huss-Ashmore et al., 1982; Goodman et al., 

1984). Others such as Harris lines, periosteal reactions, porotic hyperostosis, cribra 

orbitalia, dental defects, and skeletal indicators of infectious disease are considered 

indicative of acute stress events (Brown, 1981; Goodman et al., 1988).   
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Bioarchaeologists differentiate between nonspecific indicators of skeletal stress, 

and skeletal changes that are pathognomonic of certain disease processes (e.g. 

tuberculosis, syphilis, diffuse idiopathic skeletal hyperostosis). The pattern and 

appearance of the latter can be used to diagnose specific illnesses. Nonspecific indicators, 

however, cannot be used to identify a specific disease or stressor. Bone tissue can 

respond to injury or disease in a limited number of ways: by depositing bone, or by 

removing bone. While a nonspecific indicator of skeletal stress may have a certain cause 

(e.g. starvation), the lesion will not be distinguishable from a lesion caused by another 

stressor and are thus nonspecific.  

Inadequate health due to stress caused by cultural, nutritional, and environmental 

factors can permanently shape the human body, causing skeletal lesions, stunted growth, 

and structural abnormalities (Buikstra and Cook 1980; Goodman et al. 1984; Huss-

Ashmore et al. 1982). Bioarchaeologists use nonspecific indicators of skeletal stress to 

examine health while drawing connections to broader cultural and sociological change 

(Larsen 1997). 

In 1992, Wood et al. published “The osteological paradox: problems of inferring 

prehistoric health from skeletal samples” – an article that raised fundamental concerns 

about the ability to make straightforward interpretations about past health from skeletal 

assemblages. The authors coalesced their arguments around three main topics: 

demographic nonstationarity, selective mortality and hidden heterogeneity.   

Demographic nonstationarity refers to the non-static nature of real populations. A 

stationary population is one in which fertility and mortality rates do not change over time 
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and are both equal to zero, there is no population movement or migration, and the size of 

the population remains constant, and the number of individuals who die at each age 

remains constant (Coale 1956; Hoppa and Vaupel 2002; Lotka 1977; Milner et al. 2008; 

Sattenspiel and Harpending 1983). Virtually no real-life populations are perfectly 

stationary, however one of the foundations of paleodemographic analyses is that the 

living population from which the cemetery sample is derived was stationary. Milner et al. 

(2008) surmised that this assumption occurred in the early days of paleodemography 

when life tables – which are founded on demographic stationarity – were adopted as a 

standard technique. The belief at the time that human population growth had been almost 

zero for most of prehistoric history supported the approach (Alesan et al. 1999). The 

assumption posed significant problems for demographic interpretations estimated from 

skeletal samples. Age-at-death distributions more strongly reflect fertility rates rather 

than mortality rates (Coale 1956; Johansson and Horowitz 1986; Milner et al. 2008; 

Sattenspiel and Harpending 1983). As a result, fluctuating mortality profiles may be a 

greater reflection of changing fertility rates rather than mortality in the past.  

Selective mortality refers to the idea that “all individuals do not have an equal 

chance of entering the skeletal sample at each age” (Milner et al., 2008; p. 586). The 

individuals who comprise a skeletal sample are the non-survivors of a population. The 

most frail of each age cohort are selectively eliminated from the living population 

(Vaupel et al. 1979). Assuming lesions are reflective of frailty, selective mortality results 

in the least healthy individuals of a skeletal series being more likely to exhibit skeletal 

lesions. The prevalence of lesions in the skeletal sample will therefore overestimate the 
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prevalence of illness in the living population from which the assemblage is drawn, 

causing it to appear as though the living population was less healthy than it was.  

Hidden Heterogeneity in risks refers to the fact that while alive, the individuals 

who will eventually compose a skeletal sample, differed in their “underlying frailty and 

susceptibility to disease and death” (Wood et al., 1992, p. 345; Vaupel et al. 1979). The 

causes for this underlying variation in frailty are innumerable and may include genetics 

(Johnson et al. 1998; Lawrence et al. 2021; Sathyan and Verghese 2020; Taylor 2010; 

Wailoo 2014), environmental conditions (Dent et al. 2020; Loucks et al. 2011; Martins et 

al. 2020), mal- or undernutrition (Hayward et al. 2013; Larsen et al. 2001; Mummert et 

al. 2011), early life stresses (Armelagos et al. 2009; Barker et al. 1993; Barker 1998; 

Maniam et al. 2014), among others. Furthermore, it can be difficult, if not impossible, to 

identify sources of differential frailty in the past using skeletal remains (Milner et al. 

2008). Wood et al (1992) indicated that hidden variation in frailty hinders the ability of 

bioarchaeologists to make sweeping statements about health in the past as aggregate data 

on lesion frequencies cannot capture this variation. By failing to account for individual 

and subgroup heterogeneity, our perception of the prevalence of disease in the living 

population will be skewed. 

One of the other important concepts highlighted by Wood et al. (1992) was that 

skeletal lesions may reflect survival rather than increased frailty and mortality, as was the 

standard interpretation by most paleopathologists. Skeletal lesions take weeks, months or 

even years to manifest, therefore a population with a high frequency of stress lesions 

could reflect a healthier, more robust group than one with no lesions at all, with 
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individuals of this latter group having perished before lesions could develop. 

Wood et al. (1992) were not the first to recognize these issues. Cook and Buikstra 

(1979) acknowledged that the juvenile skeletal record may be inherently biased if the 

more sick individuals are entering the record at younger ages than others. Ortner (1991) 

questioned the assumption that the presence of skeletal pathology is indicative of poor 

health. Why did Wood et al. (1992) become so influential? The journal in which the 

article was published appealed to broader audience and was more aggressive than 

previous publications that addressed this issue. Furthermore, the format in which Wood et 

al. (1992) appeared required comments to be published with the article, so generating 

academic dialogue was a fundamental aspect of the paper (Buikstra, personal 

communication). DeWitte and Stojanowski (2015) hypothesize that the timing of the 

article may play a role. It was published around the time of the Columbian 

quincentennial, a period during which the impact of colonialism on the health of 

indigenous peoples was a popular research topic (Baker and Kealhofer 1996; Larsen 

1994; Larsen 2001; Larsen et al. 2001). The field was ready for a critical discussion of 

the methods and theory in bioarchaeology. Furthermore, while previous researchers had 

discussed problems inherent in skeletal samples, these concerns were not the main 

argument of their articles as they were for Wood et al. (1992).    

Reactions to the Osteological Paradox 

While most bioarchaeologists recognized the importance of the limitations 

articulated by Wood et al., not all agreed, contending that the problems were insignificant 

or easily overcome. Goodman and Martin (2002) maintained that heterogeneity in frailty 
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is not invisible in the skeletal record but is evident in “differing mortality profiles” (p. 13) 

and is clearly elucidated when scholars use multiple indicators of stress in their analyses 

(see also Goodman, 1993).  Cohen et al. (1994) asserted that “heterogeneity, differential 

frailty, and selective mortality, although real, do not play quantitatively as important a 

selective role in the creation of cemetery samples” (p. 631) as maintained by Wood et al. 

Despite the widespread acknowledgement of the osteological paradox having vital 

consequences for paleopathology and paleodemography, few publications in the ensuing 

decades sought to accept the challenge (Boldsen 1997; Garland 2020; Kyle et al. 2018; 

Lukacs 1994; McCool et al. 2021; Novak et al. 2017; O'Donnell 2019; Wright and Chew 

1998; Wright and Yoder 2003). DeWitte and Stojanowski (2015) showed that the 

concerns raised by the osteological paradox were being handled in one of four ways: 1) 

as an brief mention as an “important theoretical contribution,” 2) as a “potential study 

limitation” but with no real engagement with the material, 3) as an ad hoc explanation 

when results about the distribution of disease do not align with previous hypotheses, and 

4) articles engaging with the osteological paradox by exploring frailty and mortality in 

bioarchaeological contexts. Most articles fell into the first, second and third categories, 

with only a handful in the fourth.   

The past five years, however, have seen a notable increase in the number of 

publications dedicated to serious engagements with the osteological paradox. 

Considerable effort has been focused on identifying sources of heterogeneous frailty in 

the past (Cheverko 2018; DeWitte 2009; DeWitte 2012; DeWitte et al. 2016; Jatautis et 

al. 2018; Marklein 2020; Marklein et al. 2016; Newman and Gowland 2017; Temple 
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2019; Yaussy and DeWitte 2019; Yaussy et al. 2016). Using a set of dental casts with 

known genealogical information, Lawrence et al. (2021) showed that linear enamel 

hypoplasia may have a “heritable component” that was accounted for by genetic 

relatedness as well as shared household environment of family members. The authors 

suggested that one of the hidden forces influencing heterogeneity in the risk of 

developing LEH may be due to genetic susceptibility. Yaussy (2019) used an 

intersectional approach to examine how gender and class identities shaped health and 

mortality in 18th and 19th century England. She found variable interactions between the 

multiple identities and the manifestation of stress indicators, ultimately concluding that 

having at least one marginalized identity (low socioeconomic status or female) was 

associated with earlier mortality.  

No longer content with assuming that skeletal lesions are direct indicators of 

frailty, many scholars have adopted frameworks to interpret lesions to variably reflect 

frailty and/or resilience (Berger and Wang 2017; Hoover and Hudson 2016; Marklein and 

Crews 2017; Marklein et al. 2016; Godde et al. 2020; Godde and Hens 2021), as well as 

how frailty and the risk of mortality may vary over the life course (Agarwal 2016; 

Dewitte 2014b; McCool et al. 2021). McFadden and Oxenham (2020) tested how the risk 

of mortality due to cribra orbitalia may vary between juveniles and adults. They re-

analyzed pathology data collected for the Global History of Health Project using Kaplan-

Meier and Cox regression analyses. A large portion of the samples that had a statistically 

significant relationship between cribra orbitalia and survival when juveniles were 

included had no relationship once juveniles were eliminated from the sample. These 
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results suggest that cribra orbitalia may be associated with increased mortality in 

juveniles, but increased survival in adults.  

New analytical methods that rely on fewer assumptions about the relationship 

between skeletal lesions and frailty – such as survival and hazards analysis, odds ratios, 

and multi-state models – are being used to explore the associations between skeletal 

lesions, mortality, and other biological and cultural factors (Cheverko and Hubbe 2017; 

DeWitte and Wood 2008; Kelmelis et al. 2017; Kyle et al. 2018; Redfern et al. 2019; 

Redfern et al. 2015; Sołtysiak 2015; Usher 2000; Walter and DeWitte 2017). Using a 

combination of survivorship, hazards models, and stable isotope analysis, McCool et al. 

(2021) investigated temporal variation in lesion severity and frequency in a Peruvian 

sample. Their results revealed that the force of selective mortality associated with cranial 

lesions changed across the phases of the Late Intermediate Period.  

Research Orientation 

A key assertion of the osteological paradox is that scholars must be more critical 

of how skeletal lesions are analyzed and how they are interpreted. This dissertation seeks 

to advance knowledge about analysis and interpretation through two distinctive 

objectives. 

The first goal is to advance our methods for analyzing paleopathology data. 

Paleopathology data frequently include a mix of data types, including continuous, 

ordinal, binary, metric, and non-metric data, age-ranges, and descriptions. Compared to 

other social science fields, the sample sizes are generally small. As a result, missing data 

can have an enormous impact on the range of applicable statistical analyses, the power to 
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detect meaningful differences, and the potential biases introduced into the sample 

composition (Allison 2001; Baraldi and Enders 2010; De Leeuw et al. 2003; Enders 

2010; Finch 2010; Graham 2009; Howell 2007; Kang 2013; McKnight et al. 2007; Myers 

2011; Osborne 2013; Peng et al. 2006; van Buuren 2018). The first section of this 

dissertation aims to advance our knowledge of methods for handling missing data in 

bioarchaeology and paleopathology. This will encourage bioarchaeologists and 

paleopathologists to explore new analytical methods for investigating the osteological 

paradox along with other important topics.  

The second goal of this dissertation is to further interrogate the relationship 

between skeletal frailty and mortality using a unique pandemic context. This section 

builds on the results of the first section by incorporating new missing data methods into 

paleopathology analyses. One of the barriers to exploring aspects of the osteological 

paradox in the past, particularly heterogeneity in risks, has been a lack of temporal or 

demographic control over the samples. The individuals in an assemblage often died over 

a long period of time, and therefore they did not necessarily experience the same socio-

cultural environment or climate (DeWitte and Stojanowski 2015; Kyle et al. 2018; 

Lawrence et al. 2021; Stojanowski 2013). This chronological bias prevents meaningful 

inter- and intra-sample comparisons. To properly understand skeletal stress lesions and 

their utility as indicators of frailty or resilience, as well as examine individual variation in 

health, the ideal study sample is a group of individuals who died within a short time 

frame and experienced a single substantial stress event (Wood et al. 1992; Temple 2019). 



10 

 

Epidemics are therefore an ideal context in which to examine variation in frailty and 

resilience. 

Many of the initial advances in paleoepidemiology and paleodemography have 

been made within “catastrophic” burial contexts – contexts where usually large numbers 

of individuals were interred within a short time as a result of famine, violence, or an 

outbreak of epidemic disease (Gowland and Chamberlain 2005; Keckler 1997; 

Margerison and Knusel 2002). For example, DeWitte and colleagues explored the impact 

of pre-existing frailty during the Black Death (DeWitte 2009; DeWitte 2014a; DeWitte 

and Wood 2008; Zarulli et al. 2018). DeWitte and Wood (2008) demonstrated that the 

Black Death did not kill indiscriminately, but that prior frailty increased the risk of 

mortality and sex may have been an additional risk factor (DeWitte 2009). This section of 

the dissertation expands on this work by exploring selective mortality during the 1918 

influenza pandemic and the role of prior frailty in contributing to increased risk of death.  

The 1918 influenza pandemic is an excellent case study for investigating skeletal 

lesions and differential frailty in the past. There is a remarkable amount of scholarship on 

the pandemic, which was used to formulate hypotheses and interpret the results within 

appropriate historical and biological contexts. Numerous books and articles have 

described the historical trajectory of the pandemic (Aligne 2016; Barry 2004; Barry 2005; 

Chowell et al. 2010; Erkoreka 2010; Jester et al. 2019; Oxford et al. 2002; Patterson and 

Pyle 1991; Shanks and Brundage 2012; Taubenberger and Morens 2006), explored risk 

factors for increased morbidity and mortality (Afkhami 2003; Ammon 2001; Bengtsson 

et al. 2018; Dahal et al. 2018; Herring and Sattenspiel 2007; Johnson 2001; Mamelund 
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2003; Mamelund 2004; Mamelund 2011; Mamelund and Dimka 2019; McCracken and 

Curson 2003; McSweeny et al. 2007; Murray et al. 2006; Noymer and Garenne 2000; Oei 

and Nishiura 2012; Økland and Mamelund 2019; Paskoff and Sattenspiel 2019; Paynter 

et al. 2011; Pinnelli and Mancini 1998; Rice 1988; Tripp and Sawchuk 2017; Tuckel et 

al. 2006; Wilson and Baker 2008; Zürcher et al. 2016), and detailed the structure and 

behavior of the 1918 virus itself (Basler et al. 2001; de Wit et al. 2018; Kobasa et al. 

2007; Kobasa et al. 2004; Oxford and Gill 2018; Reid et al. 1999; Reid et al. 2004; Reid 

et al. 2000; Stevens et al. 2004; Taubenberger et al. 1997; Tumpey et al. 2005).  

Skeletal data for this dissertation were obtained from the Hamann-Todd 

Documented Osteological Collections – a documented skeletal collection containing 

individuals who died in Cleveland, Ohio, prior to and during the 1918 pandemic. Each 

individual has associated records on age-at-death and cause of death, eliminating 

uncertainty that may arise from traditional osteological age-at-death methods (Buckberry 

2015; Hoppa and Vaupel 2002; Milner et al. 2008) and uncertainty about death due to 

other causes. The assemblage also provides an appropriate comparative sample to assess 

changes in selective mortality during the 1918 flu. 

Structure of the Dissertation 

In addition to the introduction and the concluding chapters, this dissertation is 

organized into two sections, the first containing two chapters and the second containing 

one chapter. The second chapter explores the handling of missing data within the field of 

bioarchaeology. Missing data are a frequent and unavoidable challenge in bioarchaeo- 

logical research, yet how missing data introduce bias or invalidate statistical analyses are 



12 

 

infrequently made explicit. There is no consensus on best practices for the treatment or 

reporting of missing data. As an initial step in taking stock and exploring approaches to 

missing data in bioarchaeology, this study reviews bioarchaeological publications to 

ascertain what methods are currently used to handle them. Over 1000 bioarchaeology 

articles (2011-2020) from four major anthropology journals were surveyed, searching for 

the terms “missing,” “absent,” “unobserv,” “replace,” and “imputat” when used to refer 

to missing data. The articles so identified were then categorized by one of eight 

bioarchaeological subtopics and scored according to a set of six broad approaches for 

handling missing data. The results reveal broad themes in how missing data are treated in 

bioarchaeology, laying the groundwork for new missing data methods in the field.  

Chapter 3 builds on the results of chapter 2 by exploring the use of imputation to 

handle missing paleopathology data. An overview of missing data management in the 

social sciences and in bioarchaeology is provided, followed by a test of imputation and 

deletion methods for handling missing data. In the test, missing data were simulated on 

complete datasets of ordinal (n=287) and continuous (n=369) bioarchaeological data. 

Missing values were imputed using six imputation methods (predictive mean matching, 

mean, random, random forest, expectation maximization, stochastic regression) and the 

success of each at obtaining the parameters of the original dataset compared with listwise 

and pairwise deletion.  

Chapter 4 applies all the techniques and contextual information learned in the 

previous chapters to test the impact of prior frailty on mortality and survival in the 1918 

influenza pandemic. A large amount of contemporary anecdotal evidence reports that 
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“healthy young adults” were among the greatest risk group during the pandemic (Glezen 

1996; Hoffman 2011; Luk et al. 2001; Short et al. 2018; Taubenberger and Morens 

2006). Despite little scientific evidence, these accounts have been incorporated into 

modern-day academic scholarship, perpetuating the idea that the 1918 virus killed healthy 

individuals. Much research on the 1918 flu utilizes data from demographic records – 

most of which do not contain individual-level information on chronic health conditions, 

nutritional or environmental stresses, or other illnesses that render a person “unhealthy.” 

By using a novel bioarchaeological approach, we can combine individual-level 

information on health and stress gleaned from the skeletal remains of individuals who 

died in 1918 to ask the question: were healthy individuals dying during the 1918 

pandemic? Or did a currently unidentified underlying frailty contribute to increased 

mortality? 

Skeletal lesion data on porotic hyperostosis, cribra orbitalia, linear enamel 

hypoplasia, periodontal disease, and tibial periosteal lesions were obtained from a sample 

of 424 individuals from the Hamann-Todd documented osteological collection. The 

sample was separated into a control group (those who died prior to the 1918 pandemic) 

and a flu group (those who died during the pandemic). Skeletal data were analyzed 

alongside age-at-death information using Kaplan-Meier survival and Cox proportional 

hazards analysis. The results inform our understanding of frailty and selective mortality 

in the 1918 flu and in broader bioarchaeological contexts.  

The final chapter summarizes the results of the dissertation. It reviews the goals 

and findings of each chapter, assessing how they engage with the osteological paradox 
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and contribute to bioarchaeological knowledge and our understanding of the 1918 

influenza pandemic. Future research that builds on the results found in the previous 

chapters is proposed, including investigating sources of heterogeneity in frailty during the 

1918 flu, and additional testing of imputation in bioarchaeology. The dissertation 

concludes with an overview of the intellectual merits of this project and how the results 

expand our knowledge of the 1918 flu, advance methods and theory in bioarchaeology, 

and elucidate the interactions between people and pathogens in an epidemic context.  
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CHAPTER 2 

MISSING DATA IN BIOARCHAEOLOGY I: A REVIEW OF THE LITERATURE 

Amanda Wissler, Kelly Blevins. 

Target Journal: American Journal of Physical Anthropology 

Missing data commonly occur in nearly all types of quantitative research, 

including medicine, ecology, psychology, education, communication, and biology 

(Altman and Bland 2007; Dong and Peng 2013; Enders 2010; McKnight et al. 2007; Van 

Buuren 2018b). However, most introductory statistics texts do not discuss missing data, 

what causes them, how to treat them, or how they influence the validity of statistical 

analyses (Allison 2001; Altman and Bland 2007). The lack of attention paid to missing 

data means that most researchers simply delete cases, individuals, or variables that are 

missing values with little understanding of potential bias introduced (Acock 2005; Enders 

2010; Harel et al. 2008; King et al. 1998). Many scholars may be unaware that alternative 

options for handling missing data exist (McKnight et al. 2007).  

Missing data are a particularly inevitable challenge in bioarchaeological research. 

Preservation and recovery factors beginning at the death of the individual and lasting 

through curation affect skeletal element preservation and attendant data quality and 

quantity. Specialized mortuary treatment, secondary burial practices, taphonomy, burial 

environment, excavation, cleaning, transport, and curation all shape skeletal assemblages 

(Gordon and Buikstra 1981; Nawrocki 1995; Stodder 2008; Walker et al. 1988). 

Archaeological and historical assemblages are incomplete, fragmentary, and regularly 

have taphonomic changes obscuring bone surfaces. Skeletons from identified collections 
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are generally more complete, but still suffer from missing elements taken for destructive 

sampling and the loss of small bones such as those of the hands and feet, sesamoids, and 

coccygeal elements. In addition to these postmortem biases in skeletal completeness, 

antemortem events such as tooth loss and wear can exclude elements and individuals 

from downstream analyses.  

Despite these pervasive problems, there are no standardized methods for handling 

or reporting missing data. Often, missing data are not considered from the outset of a 

project, accounted for in project design, or explicitly documented in publications. This 

can lead to inconsistent and non-replicable results, systemically biased datasets and 

conclusions, and inhibit the use of results as comparative data or in meta-analyses (De 

Leeuw et al. 2003; Finch 2010; McKnight et al. 2007; Quintero and LeBoulluec 2018; 

Von Elm et al. 2007). Lack of engagement with missing data is also a barrier to 

implementing more advanced statistics and hypothesis testing. Most statistical tests 

require that no cells have missing data (Graham 2012) and deletion approaches generally 

reduce the sample size significantly, resulting in a loss of statistical power and an 

inability to explore interactions among many variables.  

Scholars in other areas of the social sciences such as psychology and 

epidemiology have noted a similar lack of protocols for handling and reporting missing 

data and have thus developed guidelines for moving forward (Burton and Altman 2004; 

Jeličić et al. 2009; Von Elm et al. 2007; Wilkinson 1999). As an initial step toward 

increasing the theoretical and statistical rigor of missing data treatments in 

bioarchaeology, this paper surveys the state of missing data in the field – examining what 
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methods are used to handle missingness, and how missingness is reported in publications. 

To accomplish these objectives, this paper begins with a brief overview of missing data 

theory followed by a bioarchaeology literature review in which we assess how 

researchers approach missing data and how missing data are reported. Guided by the 

literature review results, we address why accounting for missing data is a critical aspect 

of scientific rigor and provide recommendations for bioarchaeologists to improve their 

handling and reporting of missing data.  

Rubin (1976) defined three categories of missing data based on different causes of 

missingness. The first of these, missing completely at random (MCAR), occurs when a 

value is missing due to a cause that is unrelated to that variable or any other variables in 

the dataset (Enders 2010; McKnight et al. 2007; Quintero and LeBoulluec 2018). MCAR 

data are likely rare among bioarchaeological datasets but could occur when skeletons are 

only partially recovered due to an incomplete excavation grid or when taphonomic 

processes vary stochastically across mortuary deposits, resulting in some poorly 

preserved skeletal elements or cortical surfaces. The second category is missing at 

random (MAR). A value is MAR when the cause of the missingness is related to some 

variable in the dataset but not the variable of interest (Enders 2010; Myers 2011; Schafer 

and Graham 2002). Dental morphology data are generally MAR. While dental wear in 

older individuals results in trait missingness, an individual’s age does not impact their 

dental morphology. The third category is missing not at random (MNAR or NMAR). 

MNAR occurs when the cause of a missing value is dependent on that variable or when 

the cause of missingness is unknown (Little and Rubin 2002; Van Buuren 2018b). A 
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common example of MNAR data is dental enamel defects (DEDs). DEDs are pervasive 

in the bioarchaeological record and are a frequently recorded pathology. DEDs are often 

unobservable in older individuals, as the labial or buccal tooth surfaces can be obscured 

by dental wear. In much bioarchaeological research, however, there is an assumed 

relationship between DEDs and survivorship (age-at-death) (see Bhaskaran and Smeeth, 

2014 for examples of MAR, MCAR, and MNAR variables). Data that are MCAR or 

MAR are less problematic than MNAR and are often referred to as “ignorable” (Allison 

2001; Enders 2010; Graham 2012; Osborne 2013). Deleting data that are MCAR or 

MAR, however, will result in a decline in statistical power due to a decreased sample 

size, but because MCAR and MAR data are missing in ways that are “random,” their 

absence should not introduce bias into the dataset (Graham 2009; Howell 2007; Myers 

2011). MNAR, however, are problematic and are also referred to as “nonignorable” 

(Allison 2001; Graham 2009; Graham 2012). The probability of missingness is dependent 

on the missing data; it is almost impossible to know the true extent of that relationship, 

therefore it is not possible to control for or compensate for the missingness (Graham 

2012; Howell 2007; McKnight et al. 2007). Data missing not at random can result in a 

substantially biased dataset, as it means that information vital to answering the research 

question is absent (De Leeuw et al. 2003; Finch 2010; Graham 2009; Osborne 2013). 

There are many methodological and theoretical approaches for eliminating or 

handling missing data. Deletion methods are by far the most common, especially in the 

social sciences (Altman and Bland 2007; Harel et al. 2008; King et al. 1998). Case-wise 

or list-wise deletion involves removing entire cases or individuals from a dataset for all 
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analyses if any values are missing. Pairwise deletion involves removing individuals with 

missing data on a test-by-test basis, creating slightly different samples for each analysis 

in order to maximize the available data (Allison 2001; Howell 2007; Little and Rubin 

2002; Quintero and LeBoulluec 2018). Imputation involves inserting plausible values in 

place of missing variables (Allison 2001; McKnight et al. 2007; Schafer and Graham 

2002). A wide variety of imputation methods exist, the simplest being mean imputation, 

in which the variable mean is substituted for a missing value. Other, more complex 

methods include maximum likelihood, stochastic regression, and multiple imputation. 

Numerous books and articles exist describing specific imputation techniques, their 

statistical assumptions, advantages, and disadvantages (De Waal et al. 2011; Finch 2010; 

Graham 2012; McKnight et al. 2007; Musil et al. 2002; Quintero and LeBoulluec 2018; 

Schafer and Graham 2002; Van Buuren 2018a).  

Materials and Methods 

The objective of this literature review is to determine if there are commonly used 

methods for handling missing data in bioarchaeology, whether these methods vary by 

bioarchaeological subtopic, and if there is any variation in methods and treatment over 

time.  

Articles reporting human skeletal elements, mummified remains, or materials 

derived from human remains (i.e. dental casts) were compiled from the last 10 years of 

four major anthropology journals: American Journal of Physical Anthropology (2011-

2020), Bioarchaeology International (2017-2020), International Journal of 

Paleopathology (2011-2020), and International Journal of Osteoarchaeology (2011-
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2020). Bioarchaeology International began in 2017, therefore only the most recent four 

years are included through volume 4 number 1, which was the most recent issue available 

at the time of the current study. Research articles and reports were included; 

commentaries, literature reviews, book reviews or annual meeting programs were 

excluded. Case studies, osteobiographies, and differential diagnoses were omitted, as this 

investigation focuses on population-level studies. Articles with very small samples sizes 

tended to present individual osteobiographies, while those with larger samples more often 

analyzed the individuals using a population approach. Therefore, publications reporting a 

sample size of fewer than 10 individuals were eliminated. In choosing to focus upon 

bioarchaeology, we excluded paleoanthropology and forensic anthropology by including 

articles studying materials dating to the Holocene (~10kya) through approximately 50 

years ago. The aim was to stay strictly within the purview of bioarchaeology, therefore 

papers comparing anatomically modern humans to primates or other hominins were also 

excluded. This resulted in approximately 1000 articles (see Figure 1 for literature review 

flowchart). 

Each article was searched for the following terms: “missing,” “absent,” “imputat,” 

“replace,” and “unobserv.” Articles that employed any of these words in the context of 

missing data were compiled for further analysis by the first author. Note that these five 

terms did not necessarily capture every instance of missing data.  

An original goal of this review was to catalog the frequency of specific 

procedures used during data collection (e.g. antimere substitution) and pre-analysis data 

treatments (e.g. case deletion, imputation). However, there was a lack of consistency in 
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the language authors used to describe their methods, how they conceptualized their 

missing data, where in the article missing data were addressed, and whether this  

 

Figure 1.  

Literature Review Flow Chart.  
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information was included in the publication. Literature reviews of missing data in other 

disciplines have experienced similar difficulties (Klebanoff and Cole 2008; Lang and 

Little 2018; Peugh and Enders 2004; Powney et al. 2014). As a result, the research aim 

shifted to explore broader patterns in how bioarchaeological researchers engage with 

missing data, ranging from data collection procedures, theoretical considerations, and 

discussions of the impact of missing data. How missing data were discussed was 

therefore categorized according to the following six general missing data methods (Table 

1). 

A: The authors acknowledged there were values missing from their data. They 

stated, for example, that “unfused epiphyses are commonly missing,” or present summary 

data and indicate where certain data were unobservable or absent.  

B: The researchers implemented procedures during data collection or pre-analysis 

data treatment to control for or minimize missing data. Examples included antimere 

substitution, excluding individuals who did not meet a minimum threshold of 

completeness, omitting individuals/elements with damage or pathology, or creating an 

index in which variable categories are collapsed to optimize available data.  

C: The article discussed missing data generally as a concern – usually in the 

introduction or in the conclusion – but not directly related to the study sample. For 

example, “Traditionally, anthropologists have relied on morphological or metric criteria 

for sex determination, but none of these approaches are 100% accurate, especially when 

skeletons are incomplete and more sexually dimorphic bones, like the innominate, are 

absent or are very fragmented” (Garcia 2012, p. 361). 
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D: The article mentioned the presence of missing data as a reason for choosing a 

specific statistical method or as an important aspect of the method chosen. For example, 

numerous studies justified their use of mean measure of divergence as it can handle large 

amounts of missing data (e.g. Ragsdale and Edgar 2015).  

 

 

Table 1.  

 

Six Missing Data Methods 

 

Category Explanation 

A 
• Acknowledges missing data in the sample 

• e.g. “unfused epiphyses were commonly missing” 

B 

• Uses a collection procedure or pre-analysis data treatment to 

control for or minimize missing data  

• e.g. substituting right for left 

• e.g. excluding individuals who may be missing certain skeletal 

elements 

C 

• Mentions missingness in intro/conclusion generally as a 

concern or limitation 

• e.g. “Traditionally, anthropologists have relied on 

morphological or metric criteria for sex determination, but 

none of these approaches are 100% accurate, especially when 

skeletons are incomplete and more sexually dimorphic bones, 

like the innominate, are absent or are very fragmented” 

(Garcia p. 361 2012; IJOA) 

D 
• Mentions missing data as a reason for choosing a specific 

statistical method or as an important aspect of the method 

chosen 

E 

• Mentions missing data as a potential limitation for their results 

• e.g. renders the sample not entirely representative or limits 

statistical power  

F 
• Performs imputation or substitution for missing data 

• e.g. linear regression, mean replacement 



24 

 

E: The article cited missing data as a potential limitation for the results and 

conclusions. For example, the authors discussed how missing data may have reduced the 

statistical power to detect meaningful differences or how patterns of missingness biased 

the skeletal sample causing it to be unrepresentative of the original population. 

F: The study used imputation to replace missing data with statistically generated 

values. A single article could be assigned to more than one missing data method category. 

For instance, it was common for articles that performed some type of statistical 

imputation (F) to first use a method such as antimere substitution (B) to minimize 

missing data and also state that their statistical method allowed missing data (D).  

Each article was further categorized into one of eight subject subtopics according 

to the paper’s main research question (Table 2). Topics within bioarchaeology have 

preferred analytical methods, unique types of data, and draw from different non-

anthropological fields to inform their methods and theory. Examining how these topics 

variously handle missing data provides insight into broader patterns within the field.  

Pathology articles included those studying health and disease, paleoepidemiology, 

musculoskeletal markers, dental wear, and cranial and dental modification. Articles 

categorized under morphology included studies of tooth shape, stature, limb and cranial 

shape (when not used for biodistance studies). Methods articles had the goal of creating 

or testing a method such as age estimation or statistics; they have employed morphology 

or musculoskeletal markers but the focus of the paper was on the method. For example 

Stojanowski and Hubbard (2017) evaluated “what variables and methods best identify 

known relatives within [a] sample (p. 814)” in biological distance analyses. Since the  
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Table 2.  

 

Eight Bioarchaeological Subtopics  

 

 

goal of this paper was to inform and refine biodistance methodology, this paper was 

placed in “methods” rather than “biodistance.” Biodistance articles used metric or 

nonmetric traits to examine biological affinity and migration. Similarly, papers on 

ancient DNA explored biological affinity or migration but using ancient DNA. Isotopes 

articles use isotopes from skeletal elements or preserved tissues to examine diet, 

migration, and past lifeways. Trauma studies explored skeletal trauma and past violence. 

Category Explanation 

Pathology 

Health and disease, paleoepidemiology, 

musculoskeletal markers, cranial and dental 

modification, dental wear 

Morphology 

Stature (when not in framework of poor health), limb 

and cranial shape (when not used for biological 

distance), tooth shape 

Methods 

Creating or testing a method (e.g. aging, sexing, 

statistics)  

May use morphology or musculoskeletal markers but 

the focus of the paper is on the method 

Biodistance 
Using metric or nonmetric data to examine biological 

affinity 

aDNA 
Ancient DNA to examine migration, biological 

affinity 

Isotopes 
Using isotopes from skeletal elements to examine diet, 

migration, lifeways 

Trauma Skeletal trauma, warfare 

Archaeology 

Using bioarchaeological methods to explore an overall 

cultural context, or lifeway. Doing basic osteological 

methods to establish a context 
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Finally, archaeology articles used bioarchaeological methods to explore an overall 

cultural context. Several articles in this category involved establishing the age and sex 

profiles of a new skeletal assemblage, emphasizing the importance of a new 

archaeological context.  

Results 

Of the approximately 1000 bioarchaeology articles compiled, 277 mention 

missing data using one of the five search terms. A total of 142 were from the American 

Journal of Physical Anthropology, 93 from the International Journal of 

Osteoarchaeology, 32 from International Journal of Paleopathology, and 10 from 

Bioarchaeology International. The number of articles per year remained relatively 

consistent, ranging between 23-33 articles per year and averaging 27.7 per year. Nine 

articles could not be meaningfully categorized into a single subject and were thus placed 

into two categories and double counted. For example, Redfern et al. (2017) examined the 

association between multiple skeletal trauma and health status; it was therefore placed in 

both the trauma and pathology categories. The other 723 articles excluded from further 

analysis had study designs that discussed missingness in terms other than the five 

selected, did not have missing data, or did not disclose the presence of missing data. It 

would not be appropriate to generate summary statistics using the full 1000, therefore the 

following results will focus on 277 scorable articles. 

Overall, the most common missing data method found was B. A total of 137 articles 

(49.5%) employed a technique during data collection or data cleaning to limit missing 

data (Table 3). Note that due to double counting eight articles and because a single article 
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may have been tallied in multiple missingness categories the column sums in table 3 will 

not add up to 277. The most frequently used technique was antimere substitution (i.e. 

substituting the right element if the left was damaged or absent) or excluding individuals 

that failed to meet a minimum number of necessary observable elements. The second 

most common missing data method was A (n=116, 41.9%), which indicated the presence 

of missing data in the study. Only 22 articles employed missing data method D. Notably, 

few articles used missing data methods C (n=14) and E (n=25). A total of 44 articles used 

missing data method F (imputation). Table 3 also summarizes the number of articles per 

bioarchaeological subject topic. The majority are in pathology (n=126), followed by 

morphology (n=68) and methods (n=58) while the fewest are from isotopes (n=15) and 

ancient DNA (n=9).  

 

Table 3.  

 

Summary Literature Review Results 

 

 

 

 

 

 

 

 

 A B C D E F total 

aDNA 4 2 0 0 2 1 9 

Archaeology 14 3 1 0 1 0 19 

Biodistance 1 20 0 6 6 15 48 

Isotopes 11 2 0 1 0 1 15 

Methods 15 22 8 6 4 3 58 

morphology 16 31 0 2 2 17 68 

Pathology 48 52 4 7 8 7 126 

Trauma 7 5 1 0 2 0 15 

total 116 137 14 22 25 44  
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Figure 2 shows the percentage of each missing data method by subject topic. Given that 

the International Journal of Paleopathology and Bioarchaeology International focus 

heavily on skeletal pathology it is unsurprising there are so many articles in this area. The 

vast majority (80%) of pathology articles utilized missing data methods A or B – the least 

rigorous. Despite the large number of articles missing data in relation to their collection 

procedures or indicating that there are missing data in their samples, only 5.6% 

mentioned missing data as a potential problem or limitation for their results. Morphology 

contains the second greatest number of articles using a missing data method (n=68). Not  

quite half employed missing data method B. Morphology also has the second largest 

 

 

Figure 2.  

 

Barplot Showing Percentage of Missing Data Method by Subtopic  
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percentage (25%) of articles doing imputation. On the other hand, comparatively few  

articles of this topic discussed missing data as a potential concern or a limitation for their 

results (E). A total of 58 articles were categorized into the methods subfield. Most 

employed missing data methods A and B. Methods papers also had the greatest 

percentage (11%) of articles that considered the ability to handle missing data as an 

important aspect of their statistical methods selection (D) and papers falling in missing 

data method A (14%) – discussing missingness generally as a concern or limitation. A 

total of 48 biodistance articles used a missing data method, about half of which used 

collection procedure to minimize missing data (B). Compared to the other subjects, a 

greater proportion of the biodistance articles fell into missingness category D (missing 

data as a reason for choosing a specific statistical method) or F (imputation). Trauma was 

among the smallest subject group (n=15) and displayed the lowest diversity in the 

techniques for handling missing data, with over 40% used method A. Only 15 articles 

that employed a missing data method could be categorized as “isotopes,” 11 of which 

acknowledged missing data (A). A single isotopes article used imputation (Allen et al. 

2020); however, this article falls into two subject categories, the other being biodistance. 

Finally, only 9 articles categorized into the aDNA topic, most of which detail the 

presence of missing data (A) or mention missing data as a limitation for their results (E).   

Figure 3 shows how patterns in missing data methods have varied over time. The number 

of articles in each missingness category remains relatively constant over the past 10 years 

– indicating very little temporal change. There is a slight increase in the number of 

articles that discussed how missing data in the samples was a limitation for their results  
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Figure 3.  

 

Trends in the Usage Of Missing Data Methods Over Time 

 

 

 

 

and interpretations (E). Finally, only four articles (Falys and Prangle 2015; Luna 2019; 

Niinimäki 2012; Niinimäki and Baiges Sotos 2013) stated that there were no missing data 

in their sample or that missing data treatments were unnecessary. It is possible that many 

of the 723 articles also had no missing data but did not mention it in the text. 

 

Discussion 

This literature review explores how bioarchaeologists handle missing data by 

reviewing published articles from the last ten years from four major journals. In general, 
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we find that the most prevalent missing data methods were those deemed the least 

statistically or theoretically rigorous (A and B). The most frequent method employed a 

collection procedure to limit missingness such as antimere substitution or excluding 

individuals who fail to meet a minimum threshold of completeness (B). The ubiquity this 

method reveals that these are the base procedures for handling missing data in 

bioarchaeology. Indeed, substituting the right element when the left is unavailable is 

established in Standards for Data Collection from Human Skeletal Remains (Buikstra and 

Ubelaker 1994) for cranial, postcranial, and dental measurements. Furthermore, these 

results suggest that missing data is anticipated and planned for in bioarchaeological 

studies despite a lack of discussion of missing data in the field. Few authors explicitly 

considered missing data as an important aspect of a statistical analyses (D), indicating 

that analytical approaches are infrequently dictated by missing data. Examination of the 

impact of missing data was rare as were wider discussions of the statistical and 

interpretive limitations imposed by missing data – particularly given the number of 

articles explicitly pointing out missing values in their skeletal data. 

Each bioarchaeological topic has its own preferred techniques for conceptualizing 

and handling missing data. For example, pathology and trauma articles engage with 

missing data in the least rigorous ways. Both areas tend to focus on highly contextualized 

patterns of pathology and trauma and their data are more likely to be counts of particular 

lesions or injuries. General descriptive statistics and univariate analyses may be seen as 

appropriate in these cases and more sophisticated techniques to handle missing data 

viewed as unnecessary. 
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Biodistance and morphology – areas which tend to be the most statistically 

advanced in bioarchaeology – used the most rigorous approaches for missing data. These 

articles more often explicitly used statistical methods that allow missing data and were 

more cognizant of analytical methods that can be biased by missingness. This may be 

because multivariate statistics, such as would be used in biodistance or morphological 

analyses, do not permit missing data – causing scholars in these areas to deal with their 

missing data on a statistically more sophisticated level.  

Despite its frequent use in other fields, imputation of missing data is uncommon 

in bioarchaeology. It was expected that the number of articles using imputation would 

increase over time as the computational power of standard laptops has grown and 

statistical software packages for imputation have become widely available. However, the 

number of articles imputing missing data remained constant over the past 10 years. 

Two articles had the explicit goal of examining or developing missing data 

methods in bioarchaeology and were thus excluded from analysis. Auerbach (2011) 

developed mathematical formulae for estimating vertebral heights, femoral and tibial 

lengths, and talocalcaneal height when skeletal elements were absent, as previous 

methods did not facilitate handling missing data. Auerbach’s article represents one of the 

few instances of a protocol devised specifically to minimize obstacles due to missing 

skeletal data that does not involve deletion. Additional work in this vein would permit 

researchers not only to maximize the use of all available information, but also allow 

greater exploitation of the information contained in highly fragmentary and/or 

commingled assemblages.  For example, formulae could be developed that estimate 
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bucco-lingual or mesio-distal dental measurements for missing or damaged teeth given 

measurements of the available teeth. Such techniques could be broadened beyond 

continuous data with the development of models that predict the probable sex estimation 

score of missing elements (e.g. glabella) given the recorded scores of available elements 

within a population context. Auerbach (2011) also draws the reader’s attention to the 

importance of handling missing data properly rather than ignoring them, explaining how 

patterns of missingness in skeletal samples are usually assumed to be missing at random, 

when in fact biases in preservation may cause data to be missing not at random, 

generating a sample that is unrepresentative of the original population.  

Stojanowski and Johnson (2015) examined how dental wear influences the 

scoring of dental non-metric traits – in particular how higher levels of wear may result in 

trait downgrading. They found notable inconsistencies in when observers scored a dental 

non-metric trait versus when they coded it as missing or unobservable due to dental 

attrition, a bias that had the potential to support inaccurate interpretations about global 

dental patterns and population movement. Their conclusions show how profoundly 

missing data can affect inferences about the past when not handled adequately.    

The paucity of articles with the stated goal of exploring missing data suggests that 

bioarchaeology is not critically engaging with missing data methods or theory – a 

concern given the ubiquity of missing data in the field. The lack of engagement with 

missing data indicates that researchers are not considering how missing data may bias 

statistical analyses and ensuing results and conclusions. This study shows that the most 

common method for dealing with missing data is category B (antimere substitution or 
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deletion). Though pairwise and case-wise deletion are among the most simple methods 

for dealing with missing data, their use relies on the most conservative assumptions: less 

than 5% total missingness and that missingness is completely random (Graham 2009; 

Little and Rubin 2002). When the patterns of missing data do not meet these criteria and 

pairwise or case-wise deletion are employed, the results can be skewed, presenting an 

incomplete and biased outcome (McKnight et al. 2007). Bioarchaeological data are likely 

to be MNAR and therefore fail the requirements for pairwise and case-wise deletion, 

though this has not been explored in detail. More porous pathological skeletal elements 

are less likely to preserve over time or survive excavation; they may be separated from 

the rest of the individual and placed in an entirely different collection specializing in 

pathology. Smaller, lighter, and more fragile bones such as those belonging to children or 

females may be less likely to be recovered during excavation (Bello et al. 2006; Gordon 

and Buikstra 1981; Holt and Benfer 2000; Mays 1992; Stojanowski et al. 2002; Walker et 

al. 1988). Such biases are an inherent and yet unknowable part of bioarchaeological data.  

Based on the findings from this literature review, it is not standard practice in 

bioarchaeology to critically examine patterns of missingness in the data during the study 

design phase or in publication. The management of missing data in bioarchaeology has 

important implications for the scientific rigor of the research and the future of the field. 

Missing data can substantially decrease sample sizes, limiting the power of the study to 

detect meaningful differences between groups (Graham 2009; Kang 2013; McKnight et 

al. 2007; Peng et al. 2006). Most bioarchaeological studies do not perform power 

analyses so it is unclear whether those with small sample sizes are capable of producing 
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meaningful results. Failure to disclose missing data can also create uncertainty in a 

research article; the number of individuals listed in one section may not match the 

number presented in another, if pairwise deletion were performed but not described in the 

methods.  

Furthermore, missing data have a significant impact on what statistical analyses 

are possible (Peng et al. 2006). Multivariate methods incorporate multiple variables in a 

single test, allowing the researcher not only to control for but also investigate the 

interactions between many variables simultaneously. These methods facilitate a more 

realistic understanding of how study outcomes are influenced by the interaction of 

biological, social, and material variables. Most multivariate statistics methods, however, 

such as principle components analysis, discriminant analysis, or generalized linear 

models, do not permit missing data – potentially causing researchers to gravitate to more 

simple analytical methods and neglect more complex statistics that could reveal more 

nuanced patterns in bioarchaeological data.  

More advanced statistical methods can be excellent tools for bioarchaeologists to 

address some of the concerns raised by Wood et al. (1992) in the osteological paradox. 

The use of simple statistics such as lesion counts and frequencies to infer past population 

health will overestimate the prevalence of skeletal lesions in a population, providing a 

biased and false understanding of past health. Elementary statistical tests also rely on 

straightforward – and potentially erroneous – assumptions about the relationship between 

lesions and individual health and mortality. Advanced analytical methods allow 

researchers to investigate ancient health without requiring such assumptions. Survival 
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and hazards models, for instance, have been used successfully to investigate sources of 

increased morbidity and mortality in the past, without presupposing that skeletal lesions 

are indicative of poor health (DeWitte 2014; DeWitte 2015; DeWitte et al. 2013; Godde 

et al. 2020; Redfern and DeWitte 2011).   

Despite an abundance of approaches for handling missing data, they are rarely 

discussed in most fields and often go unreported (Harel et al. 2008; Lang and Little 2018; 

Powney et al. 2014; Sylvestre 2011; Wood et al. 2004). In many ways, there is an 

unrecognized taboo against discussing missing data – the assumption being that a study 

with missing data was badly designed and poorly executed (Van Buuren 2018b). To 

avoid such censure, authors often gloss-over areas of their sample with missing data, 

sometimes eliminating entire variables and sub-groups behind-the-scenes. Missing data 

have been described by researchers as a “dirty little secret” (Peugh and Enders 2004; p. 

540), and may be widely regarded as “a nuisance that is best hidden” (Burton and Altman 

2004 p. 6). In reality, “contrary to the old adage that the best solution to missing data is 

not to have them, there are times when building missing data into the overall 

measurement design is the best use of limited resources” (Graham 2009, p. 551). 

Focusing only on complete datasets privileges certain contexts such as those with better 

preservation (Auerbach 2011; Holt and Benfer 2000). Incorporating, exploring, and 

working with missing data provides a more holistic and less biased understanding of all 

the data and maximizes a researcher’s time, energy, and finances.  

Missing data are critical component of the data planning, collection, and analysis 

processes and should be reported and discussed. Upon publication, however, missing data 
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are often concealed or undisclosed. Small details such as pre-analysis data treatments and 

excluded samples are often removed due to word limits. Including this information 

facilitates study repeatability and transparency, particularly for students and early career 

researchers who may be unfamiliar with the standard protocols. Including information on 

the cause and patterns of missing data in the sample informs the reader of important 

biases in recovery, preservation, and curation, an understanding of which is essential for a 

baseline assumption in much bioarchaeological research: the study sample is 

representative of the population. Clarity in the study design and execution helps the 

authors, readers, and reviewers evaluate the research and assess the interpretations. 

Furthermore, a clear understanding of the research design and sample composition is 

essential if the study is to be included in meta-analyses (Von Elm et al. 2007).  

Numerous authors from other fields have recognized systemic inconsistencies in 

missing data reporting and created guidelines to improve the rigor of research design and 

publishing in their respective areas (Akl et al. 2015; Burton and Altman 2004; Jeličić et 

al. 2009; Wilkinson 1999). Following their example, we propose several 

recommendations to increase bioarchaeological engagement with missing data and 

transparency in study design. (1) Bioarchaeologists should publish detailed descriptions 

of data collection procedures, detailing how individuals were selected for inclusion. (2) 

Researchers should document specific causes of missing data (e.g. is the tooth missing, 

broken, worn, unerupted, etc.) rather than only recording “NA.” (3) Publications should 

include any pre-analysis data treatments or data cleaning, as well as justifications for 

these decisions. (4) Authors should disclose when missing data are present – or if there 
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are no missing data – and provide exact numbers of individuals and variables excluded 

for each analysis. (5) Discussion sections should describe how missing data impacts 

sample representativeness and research findings. (6) When appropriate, implementation 

of Little’s MCAR test (Little 1988) can reveal patterns in missing data and indicate when 

missing data may be problematic. Numerous statistical tutorials and packages for this test 

exist for R, SPSS, and Stata. According to the results of this research, imputation of 

missing data is underused in bioarchaeology but has great potential for future use. We 

recommend exploring imputation of various kinds of bioarchaeological data and 

ascertaining which methods are appropriate. Greater collaboration with statisticians will 

be beneficial in this regard.  

This study has several limitations. Four of the most well-known journals in 

bioarchaeology were chosen for analysis, yet it is possible that papers engaging in more 

critical discussions of missing data theory and procedures to handle missing data may be 

published in more methods-oriented journals. As mentioned above, articles included in 

our analysis were identified using one of the five keywords. Those that discussed missing 

data without using one of the keywords were not included; our results may therefore 

underestimate certain types of missing data methods. We provide an overview of missing 

data in bioarchaeology only and do not provide comparative data from other areas. 

Further research of missing data in other fields in anthropology such as archaeology or 

evolutionary anthropology would provide a greater understanding of how anthropologists 

as a whole handle missing data and provide guidance for future bioarchaeologists. 
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Conclusion 

Overall, the results of this study suggest bioarchaeology lacks a strong foundation 

in missing data methods and theory. Theoretically and statistically rigorous approaches 

for handling missing data are infrequently used while the least sophisticated methods for 

treating missing data are by far the most prevalent. We find that certain bioarchaeological 

subfields employ favored techniques for missing data, and that patterns in missing data 

methods have remained relatively constant over the past ten years. Researchers need to 

improve their awareness of missing data in their samples and appropriate methods for 

managing missing data. Small steps such as clearly reporting pre-analysis data treatments 

and patterns of missingness in publications, discussing the biases and limitations missing 

data presents, and exploring alternative methods such as imputation can address 

fundamental concerns in the field and improve the statistical rigor of our analyses. 
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CHAPTER 3 

MISSING DATA IN BIOARCHAEOLOGY II: A TEST OF MULTIPLE 

IMPUTATION 

Missing data are ubiquitous in the social sciences. Bioarchaeological data may be 

lost due to myriad factors including differential preservation, selective excavation, post-

mortem damage, pathology, transcription errors or computer crashes. When not handled 

properly, missing values can introduce substantial bias into a dataset, leading to 

erroneous study results and flawed interpretations. Furthermore, most statistical tests 

require datasets with no missing data. Despite the importance of missing data, their 

treatment is often unreported in the social sciences, including bioarchaeology. If they are 

addressed, the least statistically and theoretically rigorous methods are generally used 

(see previous chapter). The goal of this paper is to explore techniques for handling 

missing data, focusing on the use of imputation to manage missing bioarchaeology and 

paleopathology data. Our target audience includes anthropologists who have basic 

statistical and programming knowledge, but they need not be statistical experts; methods 

are explained conceptually rather than mathematically. This paper has two sections. Part 

1 details background information on data types, categories of missing data, deletion and 

imputation methods, and the use of imputation in the social sciences. Part 2 focuses on 

bioarchaeology and paleopathology, discussing special challenges with handling these 

data and concludes with a case study test of eight methods for handling missing ordinal 

and continuous paleopathology data. 
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Part I: Background 

Data Types 

Researchers must be aware of the data classes involved in their analyses to ensure 

consistent data recording and the application of appropriate statistical analysis. Data types 

determine appropriate techniques for managing missing data. Data can be partitioned into 

two broad categories: quantitative and qualitative (figure 4). Quantitative data are 

numerical and can only be expressed using numbers (Quintero and LeBoulluec 2018; 

Ranganathan and Gogtay 2019). Qualitative data are categorical, generally describing 

 

Figure 4.  

Flow Chart Showing Classes of Data.  
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some aspect or characteristic of the data, and cannot be expressed by numbers in a way 

that is mathematically meaningful (Ranganathan and Gogtay 2019; Verma 2016). There 

are two subtypes of quantitative data: continuous and discrete. Continuous data may be 

any number – including decimals and fractions – and can be continuously subdivided into 

smaller units (Quintero and LeBoulluec 2018). Femoral length is an example of 

continuous data; a meter can be divided into centimeters, millimeters, and so on and can 

be expressed as a fraction or with decimals. Note that simply because a caliper only 

displays 1 decimal place does not mean the data are not continuous; it means the 

measurement tool is not capable of capturing the full data. Discrete data can only be 

expressed in whole integers that are mathematically meaningful (King and Eckersley 

2019; Ranganathan and Gogtay 2019) and cannot be subdivided into smaller parts. For 

example, the number of patients will be in whole integers only (i.e., 2.5 patients is not a 

valid response). There are three subtypes of qualitative data: ordinal, nominal, and binary. 

Ordinal data are categorical data with an inherent hierarchy; the data can be ranked but 

neither the value of that rank, nor the differences between the ranks can be measured or 

mathematically expressed (King and Eckersley 2019; Shreffler and Huecker 2020; Verma 

2016). For example, the estimated age of a person could be “young adult,” “middle 

adult,” or “old adult.” There is a meaningful order to these categories, but the differences 

between them cannot be conveyed with numbers. Nominal data are categorical data that 

have no inherent order such as sex, country, or species (King and Eckersley 2019; 

Quintero and LeBoulluec 2018; Shreffler and Huecker 2020). Binary data are categorical 
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data that have only two possible answers (e.g., Yes/No, Present/Absent) and can be 

ordinal or nominal.  

Classes of Missing Data 

The best way to manage missing data will be determined by how and why the 

data are missing. Rubin (1976) described three main categories of missing data: missing 

completely at random, missing at random, and missing not at random (Figure 5). Data are 

described as missing completely at random (MCAR) when the reason the data are 

missing is unrelated to the pattern of missingness or any other variables of interest in the 

data set (Graham et al. 1997; Pepinsky 2018; Quintero and LeBoulluec 2018). If we have 

 

Figure 5.  

Rubin’s Three Categories of Missing Data 

 



50 

 

collected two variables (X and Y), data are MCAR “if the probability of missing data on 

Y is unrelated to the value of Y itself or to the values of any other variables in the data 

set” (Allison, 2001; p. 3). For example, in a dataset containing information on age (X) 

and femoral length (Y), data on femoral length would be MCAR if their missingness 

depends on something other than age or femoral length. 

The second category is missing at random (MAR). Data are missing at random if 

the pattern of missingness depends on some variable in the dataset that is not the variable 

of interest (Graham et al. 2007; Pepinsky 2018; Quintero and LeBoulluec 2018). Data are 

MAR if the probability of missing data on Y depends on the variable X but not on Y 

(Allison 2001). Using the above example, femoral length (Y) data would be missing at 

random if the missingness depended on age (X) but not on femoral length (Y).  

The third category of missing data is missing not at random (MNAR), also called 

not missing at random (NMAR). Data are described as MNAR if the probability of 

missingness depends on the missing data; i.e. if the probability of missing data on Y 

depends on Y (Pepinsky 2018; Quintero and LeBoulluec 2018). For example, data 

missing under the variable femoral length (Y) would be MNAR if the data are missing 

because of femoral length (Y). In practice, this may be because the researcher opted to 

exclude individuals with unusually short or long femurs, or because only “normal” 

femurs were accessioned to the museum collection. MNAR is most concerning to 

researchers as it will likely introduce bias into the dataset. MNAR has also been referred 

to as inaccessible missingness as both the cause and the probability of missingness is 

unknown (Graham 2012; van Buuren 2018). In bioarchaeology (and paleopathology in 



51 

 

particular), missing data likely fall into a combination of all three categories and it may 

be impossible to discern which variables belong in which category (Morris et al. 2014; 

Myers 2011). 

Deletion and Imputation Methods 

Most statistical analyses do not permit missing data. Therefore, there is an 

abundance of techniques for handling missing data, including removing individuals or 

variables with missing values, or inserting plausible values in place of missing values. 

Selected, common methods are described below (see figure 6).  

Listwise deletion (aka case-wise deletion) involves the removal of an individual 

and all its data – an entire row in a spreadsheet – if any data for that individual are 

missing (Allison 2001; Graham 2012; van Buuren 2018). This is the default method 

employed by statistical software programs SAS, SPSS, and Stata (van Buuren 2018). 

Listwise deletion has the advantage of being easy to understand, simple to execute, and 

does not require advanced statistical knowledge or software (Allison 2001; Meeyai 

2016). It creates a complete dataset that allows one to proceed with statistical analysis 

(Baraldi and Enders 2010). If, however, the amount of missing data is even moderate, 

listwise deletion can result in an enormous decrease in sample size and subsequent loss of 

statistical power (Baraldi and Enders 2010; Graham 2012). The amount of missing data 

may be so great that an entire variable will be deleted. If the data are not MCAR, listwise 

deletion can introduce substantial bias into final p-values and confidence intervals 

(Allison 2001; Baraldi and Enders 2010). Many statisticians consider listwise deletion to  
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Figure 6.  

Missing Data Methods Discussed in Chapter  

 

 

be the worst of all possible techniques for handling missing data (Allison 2001; King et 

al. 1998; van Buuren 2018; Wilkinson 1999).  

Pairwise Deletion (aka available case analysis) involves dropping cases or 

individuals based on variables present for each analysis (Allison 2001; Graham 2012; van 

Buuren 2018). For example, an individual missing a periodontal disease score will be 

deleted from any analyses requiring periodontal disease as a variable but included in 

other tests. This approach is easy to perform and has the benefit of making use of all 

available data, greatly maximizing the sample size. On the other hand, each analysis uses 

a slightly different sample, generating results that may not be comparable or can even 
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disagree (Myers 2011; Newman 2014; van Ginkel et al. 2020). Published tables may list 

different sample sizes, which can be confusing and misleading if not appropriately 

explained. Repeatedly running similar analyses on overlapping samples raises concerns 

of alpha inflation. If the data are not MCAR, pairwise deletion can create bias in the 

parameter estimates (Allison 2001; Baraldi and Enders 2010). Furthermore, as each 

analysis is based on a slightly different sample, there is no straightforward procedure for 

calculating the standard error for the entire sample (Graham 2012). 

Imputation, defined as inserting a plausible value in place of a missing value, is an 

alternative to deletion methods for handling missing data (Allison 2001; Schafer 1999; 

Schafer and Graham 2002). Imputation is a broad term that encompasses numerous 

frameworks and mathematical models for producing and selecting the imputed values.  

Maximum Likelihood is an imputation approach that estimates the most likely 

parameters (mean and standard deviation) based on the observed data. The algorithm 

selects values that “maximize the probability of observing what has, in fact, been 

observed” (Allison, 2001; p. 13).  

Expectation maximization (EM) is a form of maximum likelihood imputation. 

This method uses a two-step iterative process. In the E-step, a missing value is imputed 

based on what would be expected given other values in the dataset (Dempster et al. 1977; 

Graham 2012; Newman 2003). In the M-step, the algorithm checks whether the new 

value has the highest probability of being a good fit with the rest of data. If not, the 

process begins again, imputing a more likely value until all missing data have been 

replaced with the most likely values (Musil et al. 2002). Expectation maximization 
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procedures generally perform better than mean imputation or deletion methods 

(Nelwamondo et al. 2007). One potential drawback to expectation maximization is that it 

produces standard errors that may be narrower than those of the true data (Musil et al. 

2002).  

Single imputation replaces a missing value with a single substitute value, whereas 

multiple imputation replaces a single missing value with multiple possible values drawn 

from a distribution. Instead of selecting a single value to impute and hoping that it is the 

best, multiple values reflecting the uncertainty and variation in imputing unknown values 

(Allison 2000; Finch 2010; Little and Rubin 2002; van Buuren 2018).  

The process of multiple imputation involves three main steps (Graham 2012). 

First, the data are imputed, creating many imputed datasets where the number of imputed 

datasets is expressed by the variable m. The exact mathematical approach for generating 

values to be substituted for the missing values can be performed in a variety of ways 

(e.g., regression, random forest). The m imputed datasets will differ slightly as the 

imputed values will all be different, “reflecting our uncertainty about what to impute” 

(van Buuren, 2018; p. 20). Second, each of the m datasets are analyzed separately using 

the desired statistical analysis. If the original research design required a logistic 

regression, the regression would be performed on each of the m datasets, producing m 

coefficients, standard errors, and p-values. Third, the m coefficients, standard errors, and 

p-values are combined into a single coefficient, a single standard error, and a single p-

value using Rubin’s Rules (Rubin 1987). Rubin’s rules are a set of equations for properly 

pooling parameter estimates. While the researcher may be tempted to switch steps two 
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and three, thus pooling the imputed datasets and analyzing the single pooled dataset, this 

violates Rubin’s Rules. Pooling the estimates too early eliminates the variation multiple 

imputation introduces into the datasets. 

Mean Replacement is a form of single imputation that computes the mean of each 

variable and substitutes the mean for each missing data point (Little and Rubin 2002). It 

has the benefit of being easy to understand and implement but will decrease the variance 

of the sample, causing large amounts of missing data to have an increasingly negative 

impact (Osborne 2013). Mean imputation is also known to artificially increase the 

strength of the relationships between variables (Graham 2012; Musil et al. 2002). 

Regression imputation uses the data to build a model that will predict the best 

values to substitute for missing data. As with standard regression procedure, a model is 

fitted with the variable containing the missing data set as the dependent variable. The 

model coefficients predict appropriate values to impute. Regression imputation is 

relatively easy to understand and utilizes more of the information in the dataset (Graham 

2012; Musil et al. 2002). On the other hand, as the imputed values will generally lie on 

the regression line, the data variance will be lowered and the correlations between 

variables artificially inflated (Graham 2012; van Buuren 2018; Zhang 2016).  

Stochastic regression imputation corrects for the over correlation between 

variables by adding random “noise” to the model (Newman 2003; van Buuren 2018). One 

way to add this noise is by randomly selecting residuals and adding that value to the 

prediction (Enders 2010; Little and Rubin 2002; van Buuren 2018). Stochastic regression 

has the advantage of being able to produce unbiased parameters when the data are MCAR 
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or MAR but will produce narrow standard errors (Allison 2001; Enders 2010). 

Random Forest imputation uses a decision tree approach to predict the best values 

to impute. A bootstrapped random subset of samples is created to build multiple 

regression trees for each variable (Shah et al. 2014). The behavior of the data as it is run 

through the trees predicts the best values for the missing data. Random forest imputation 

is a commonly used method in epidemiology (Henriksson et al. 2016; Shah et al. 2014; 

Weng et al. 2019), and is capable of handling mixed data types and variable interactions 

(Stekhoven and Bühlmann 2012; Tang and Ishwaran 2017; Waljee et al. 2013). Random 

forest imputation can also be perceived as a black box technique, with little 

understanding of how the decision trees are being grown (Breiman 2001).  

Hot deck imputation is a broad “record matching technique” in which missing 

values from an individual (the recipient) are replaced by observed values from a similar 

case (the donor) (Kaiser, 1983, p. 1). There are a variety of methods that can be used for 

determining what “similar” means and selecting an appropriate donor (Little and Rubin 

2002). Depending on the approach used, hot deck imputation can be relatively easy to 

understand and execute and some forms (e.g. random, sequential, last observation carried 

forward) work well with categorical data (De Waal et al. 2011; Hardt et al. 2013). Since 

substitute values are drawn from variables already in the dataset, this approach will 

impute realistic values that reflect the actual data (Andridge and Little 2010; Siddique 

and Belin 2008). Hot deck methods are used frequently by the US Census Bureau and 

other governmental agencies (Andridge and Little 2010). There is, however, less 

evaluative information on hot deck methods (Little and Rubin 2002).  
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Random hot deck imputation forms a donor pool of complete cases that have other 

variables with values similar to those of the case with missing data. A donor is selected at 

random from the pool and the donor’s variable is used to fill in the missing value for the 

recipient (Bechtel et al. 2011; De Waal et al. 2011).  

Predictive mean matching is another form of hot deck imputation. In this method, 

a missing value is imputed by selecting an observed outcome from a case with a similar 

predicted mean (Bailey et al. 2020; Little 1988; Vink et al. 2014). Because predictive 

mean matching selects values from other donor cases within the dataset, imputed values 

will always fit with the observed range of values (Kleinke 2018; Vink et al. 2014). A 

potential disadvantage to predictive mean matching is that it may not be acceptable for 

use with small sample sizes as the pool of available observed outcomes with a similar 

case mean will be small (Kleinke 2018). 

Of the imputation methods surveyed here, the authors believe that there are many 

advantages to multiple imputation. Under the right set of circumstances, it can produce 

unbiased estimates even if the data are not MCAR (Allison 2001). Once the m imputed 

datasets are created, they can be used repeatedly for any number of different analyses 

(Schafer and Graham 2002). Most statistical software programs, including SPSS, SAS, 

Stata, and R are able to perform multiple imputation. On the other hand, multiple 

imputation can be unwieldy, intimidating, and easy to do incorrectly. However, it is 

generally believed to be one of the best methods for handling missing data (Allison 2001; 

Graham 2012; van Buuren 2018). 
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How many imputations (m) are necessary to best estimate the parameters of 

interest? Technically, since the more imputations one does the more precise the estimates, 

it is generally better to do more. However, the higher the m the longer the computer will 

take to run the analysis and the more computational storage required. Due to these 

drawbacks, initial recommendations suggested that as few as 3-5 imputations were more 

than adequate (Schafer and Olsen 1998). As computing power and statistical software has 

advanced, performing large numbers of imputations is no longer a challenge. Von Hippel 

(2009) recommends “the number of imputations should be similar to the percentage of 

cases that are incomplete” (p. 278); i.e. If 30% of the data are missing, one should 

perform m=30 imputations. Graham et al. (2007) finds that low numbers of imputations 

can have a significant decrease in statistical power and introduce bias. They recommend 

that for low levels of missingness (<15%), one should perform 10-20 imputations and for 

higher levels of missingness (20-40%) one should perform at least 40 imputations to 

preserve a high level of statistical power.  

Imputation in other fields 

While missing data are a problem in nearly all fields of research, some disciplines 

have adopted advanced methods for handling missing data more quickly than others. A 

coarse examination of the literature suggests that the social and behavioral sciences have 

been slow to accept more computationally and statistically intensive methods such as 

multiple imputation or regression, whereas the natural and ecological sciences use such 

methods more commonly.  
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Many scholars in psychology, political science, sociology, and economics use 

imputation methods. The data missing in these studies frequently stem from surveys in 

which responses are missing because the respondent did not understand the question, 

declined to answer, or was unable to complete the survey (Krause et al. 2018). Turney 

(2015) examined how paternal incarceration may be a cause of food insecurity for 

children, using multiple imputation to impute missing survey answers on how often a 

child has been hungry or how often they skipped meals. Evans and Smokowski (2015) 

test how social capital – as measured by proxies such as social support and mental health 

– predicted the likelihood of intervening in school bullying. They imputed missing survey 

data on demographic factors such as ethnicity and religion, and responses on parental 

support, school satisfaction, and optimism about the future. Within the social sciences, 

imputation of missing variables appears to be more common in social network analyses 

than other fields (Huisman 2009; Krause et al. 2018), possibly because the analysis of 

social networks is sensitive to missing data (Huisman 2009). 

Researchers in the natural and ecological sciences have adopted imputation 

techniques as standard for dealing with missing data. Mean imputation, multiple 

imputation, and random forest imputation have been used to impute a diverse suite of 

plant and animal traits such as leaf area, seed mass, plant height, animal body mass, litter 

size, diet diversity, sociality, and generation length (Bird et al. 2020; Cooke et al. 2019; 

Cooke et al. 2020; Grilo et al. 2020; Ordonez and Svenning 2017; Pacifici et al. 2013; 

Taugourdeau et al. 2014). Divíšek et al. (2018) for example, searched for patterns of traits 

that could be indicators of invasive plant species and imputed missing data on leaf area, 
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plant height, and seed weight. While investigating how certain traits relate to ecological 

strategies, Cooke et al. (2020) used multiple imputation to impute body mass, habitat 

breadth, generation length, diet, and litter/clutch size. 

Imputation of missing demographic or health data is commonplace within 

epidemiological and clinical medical studies (Barnard and Meng 1999; Bodnar et al. 

2006; Costello et al. 2014; Ferrie et al. 2005; Petersen et al. 2014; Zeka et al. 2006). 

Lassale et al. (2018) imputed missing body measurements, testing the association 

between obesity and coronary heart disease. Dam et al. (2016) used multiple imputation 

to impute missing values for age, education, smoking, and health status to examine 

whether increased alcohol use in postmenopausal women increased their risk of breast 

cancer while decreasing their risk of coronary heart disease.  

Part II: Missing Data in Bioarchaeology and Paleopathology 

Raw bioarchaeological data come in a wide variety of types including lesion 

counts, age ranges, continuous measurements, sex estimations, descriptions, and 

nonmetric trait scores. Paleopathology data have their own suite of unique characteristics 

that make them more challenging to analyze than data from other fields. The data are 

often a mix of continuous, categorical, and binary variables. Many statistical tests do not 

work well with categorical data or do not accept mixed data types. Unlike continuous 

data, categorical and binary data have a low range of possible values. For example, 

according to Standards for Data Collection from Human Skeletal Remains (Buikstra and 

Ubelaker 1994), porotic hyperostosis should be recorded as 0, 1, 2, 3, or 4 – with 0 as no 

expression, and 4 as the highest expression. Some of the more statistically complicated 
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methods for imputing missing data do not work well with such a narrow range of values. 

On the other hand, because of this low range, less computationally intensive methods 

may be successful. A randomly imputed number selected from 0-4 will be more likely to 

be correct than one selected from 0-100.  

Another challenge with bioarchaeological data is that we regularly collect data 

that are MNAR, yet we fail to account for those biases in our analyses or interpretations. 

For example, most scoring procedures for periodontal disease code missing teeth as NA 

or not scorable (e.g. Kerr, 1988) . However, in cases of extreme periodontal disease, tooth 

loss will occur (Lindhe et al. 1983; Morelli et al. 2018; Ong 1998; Ramseier et al. 2017). 

Antemortem tooth loss may therefore be the highest expression of periodontal disease. 

Scoring teeth missing antemortem as NA introduces MNAR values, creating a biased 

dataset.  

The Use of Imputation in Bioarchaeology 

The previous chapter on missing data in bioarchaeology assessed how 

bioarchaeologists handle and report missing data. We surveyed bioarchaeology articles 

from 4 major anthropology journals published between 2010-2020, searching for the 

following terms: “absent,” “imputat,” “missing,” “unobserv,” and “replace” used in the 

context of missing data. The articles were categorized according to the level of statistical 

and theoretical rigor used to handle missing data. According to our results, only 41 

articles out of 277 identified using some form of imputation to handle their missing data 

– most of which were biodistance or morphology studies.  
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Within these articles, a variety of imputation methods were employed (Figure 7). 

Regression imputation was the most common (n=11) including linear, multiple and PCA 

regression to estimate missing values. Six articles used expectation maximization – all of  

which were biodistance papers. Mean imputation (n=5) was also frequently used to 

handle missing data. Five articles used specific regression-based equations published by 

Auerbach (2011) and Auerbach et al. (2005) to estimate measurements of missing 

 

Figure 7. 

Barplot Showing Imputation Approaches Used by Each Bioarchaeology Subtopic. 

 

Note.  Mean = mean; Regression = regression; EM = expectation maximization; NN = 

nearest neighbor; TPS = thin plate spline; Auerbach = Auerbach; Other/Unclear = 

other/unclear 
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skeletal elements. Several geometric morphometric articles (n=4) employed thin plate 

spline to reconstruct missing areas. Two articles used nearest neighbor techniques for 

imputation of missing data. Finally, nine articles used other, less common approaches or 

were not specific about their statistical method. Willman et al. (2012), for example, 

“visually reconstruct[ed] a worn cusp tip” (p. 41). Ibáñez‐Gimeno et al. (2013) imputed 

the median in place of missing values. Reyes‐Centeno et al. (2017) imputed missing 

landmarks by “reflected relabeling of the bilateral homologue” (p. 272). Two others used 

multiple imputation, specifically the mice R package, but did not identify a specific 

statistical technique. Overall, these results show that there is a wide variety of imputation 

methods used in bioarchaeology, even within subject topics.  

Case study: a test of imputation methods in paleopathology 

Given the complexities of bioarchaeological data, the second aim of this paper is 

to discover which imputation technique (if any) is appropriate for imputing missing 

ordinal and continuous paleopathology data. To accomplish this goal, we simulated 

missing data on two complete bioarchaeological datasets (i.e. no missing data) and tested 

multiple methods for imputing ordinal paleopathology data and continuous skeletal 

measurements alongside pairwise and listwise deletion to discover which approach best 

obtained the parameters of the original dataset.  

Ordinal missing data were simulated on a complete dataset of 287 individuals 

from the Hamann-Todd Documented Skeletal Collection. The individuals included a mix 

of males, females, Black individuals and white individuals ranging in age from 18 to 80 

years. Demographic data were not included in the imputation analyses. Recorded 
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paleopathology data included porotic hyperostosis, cribra orbitalia, periodontal disease, 

linear enamel hypoplasia, and periosteal lesions of the tibia. The range of ordinal values 

for each were porotic hyperostosis: 0-2; cribra orbitalia: 0-3; periodontal disease: 0-4; 

linear enamel hypoplasia: 0-3; periostosis: 0-3.  

Continuous missing data were simulated on a complete dataset of 369 individuals 

from the same collection. Variables included left and right femoral lengths – measured in 

centimeters – and the antero-posterior (AP) and transverse (TR) vertebral neural canal 

diameters of T1, T5, T10, L1 and L3 – measured in millimeters.  

Five different datasets with 5%, 10%, 20%, 30%, and 40% of the data missing 

were created using the R package imputeR (v2.2; Feng et al., 2020) resulting in 50 

simulated missing datasets for ordinal and continuous data combined. To accurately 

reflect patterns of missingness found in a genuine bioarchaeology dataset, five additional 

datasets with percentages of missingness that were equal to the percent missing for each 

variable from the entire pooled sample. Missing data were simulated as MCAR, MAR 

and MNAR using the R package missMethods (v0.2.0; Rockel, 2020). For the ordinal 

data, percentages of missingness were set at porotic hyperostosis = 12.5%, cribra orbitalia 

= 20%, periodontal disease = 25%, linear enamel hypoplasia = 30%, and periostosis = 

10%. For continuous data, the following percentages of missingness were selected: 

femoral length right = 10%, femoral length left = 10%, T1AP = 15%, T1TR = 10%, 

T5AP = 12.5%, T5TR = 10%, T10AP = 15%, T10TR = 15%, L1AP = 20%, L1TR = 

15%, L3AP = 20%, L3TR = 15%.  
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Imputation Methods 

Six imputation methods were selected: predictive mean matching, random 

replacement, mean replacement, expectation maximization, random forest, and stochastic 

linear regression (continuous data only). These methods were chosen as they are among 

the more commonly used in the social sciences. Excellent statistical packages have been 

created for each, making these methods easy to implement and more accessible to non-

experts. The methods represent a wide range of statistical approaches and range from 

mathematically simple (e.g., mean imputation), to complex (e.g. expectation 

maximization or stochastic linear regression). This list also includes the most common 

imputation methods used by bioarchaeologists.  

Several methods make use of the mice package (v3.11.0; van Buuren and 

Groothuis-Oudshoorn, 2011): random replacement, mean replacement, predictive mean 

matching, and stochastic linear regression. For each, m=10 imputations were performed 

with 50 iterations. In a few instances, a single R package did not work well for both 

ordinal and continuous data and two different packages had to be used. Random forest 

imputation of ordinal data was executed with the missForest package (v1.4; Stekhoven, 

2013), while for continuous data mice was used. Similarly, imputation via expectation 

maximization for ordinal data was performed using TestDataImputation (v1.1; Dai et al., 

2019) while for continuous data missMethods (v0.2.0; Rockel, 2020) was used. All 

analyses were performed in RStudio version 1.1.456 (Rstudio Team, 2016).  
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Assessing success 

The success of each imputation method was assessed by comparing the mean and 

variance of the imputed datasets with those of the original using percent error; a lower 

percentage indicates a better fit. Success was also assessed using Kendall’s rank 

correlation coefficient and Cohen’s kappa where 1 indicates perfect agreement and 0 no 

agreement; a value approaching 1 indicates a better fit. For pairwise and listwise deletion 

only the mean and variance could be assessed since these methods create no 

corresponding dataset. Cohen’s kappa and Kendall’s tau have been used in other similar 

imputation test cases; however, they may not be the most effective for assessing 

imputation success. The goal of imputation is to not to recover the exact values missing 

from the dataset, but to “preserve important characteristics of the data set as a whole” 

(Graham, 2009, p. 559). Cohen’s kappa and Kendall’s tau assess pairwise agreement 

between the original and imputed values, which is not the point of imputation, and may 

be less important than other broad parameters.  

Case Study Results 

Ordinal Data The results are presented in Tables 4-9; Tables 4, 5, and 6 present 

outcomes for 5%, 10%, 20%, 30%, and 40% missing data while Tables 7, 8 and 9 present 

findings for the MCAR, MAR, and MNAR datasets. Tables 4, 5, 7, and 8 show the 

percent error for the mean and variance and the Kendall’s tau and Cohen’s kappa 

coefficients. Tables 6 and 9 present the performance rankings of each imputation method 

on the dataset. Imputation methods will increase the sample variance, therefore the 

percent error for the variance is generally the highest.  
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Table 4.  

 

Evaluation Criteria for Percentages of Missing Ordinal Data 

 

 

 

 

 

 

 

 

 

 5% 10% 20% 30% 40% 

 M V M V M V M V M V 

PMM 1.44 3.95 1.87 7.48 4.67 14.93 3.98 29.17 7.73 37.06 

Ran 1.51 2.18 2.33 3.46 4.75 6.43 3.88 4.60 6.95 5.18 

M 1.44 3.95 1.87 7.48 4.67 14.93 3.98 29.17 7.73 37.06 

EM 2.87 2.87 2.87 2.87 5.84 5.84 4.35 4.35 NA NA 

RF 1.96 3.24 2.26 6.09 5.43 10.23 5.72 23.51 14.36 26.44 

Pair 0.94 2.12 1.27 1.39 4.24 4.78 2.74 6.23 2.18 6.61 

List 2.41 4.03 5.78 3.59 9.29 10.32 15.94 20.21 17.99 23.87 

 

Mean and variance shown as percent error  

 

Cell values are the average of scores for the 

5 pathology scores. 

 

Evaluation Criteria 

M = mean 

V = variance 

 

Imputation Methods 

PMM = predictive mean matching 

Ran = random 

M = mean 

EM = Expectation Maximization 

RF = Random Forest 

Pair = Pairwise deletion 

List = Listwise Deletion 
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Table 5.  

 

Evaluation Criteria for Percentages of Ordinal Missing Data 

 

 

  

 

 

 

 

 

 

 

 

 

 5% 10% 20% 30% 40% 

 T K T K T K T K T K 

PMM 0.95 0.93 0.90 0.85 0.81 0.71 0.71 0.58 0.639 0.47 

Ran 0.95 0.92 0.91 0.85 0.82 0.71 0.71 0.57 0.61 0.47 

M 0.92 0.95 0.84 0.91 0.73 0.85 0.57 0.74 0.47 0.68 

EM 0.95 0.95 0.90 0.90 0.82 0.81 0.70 0.72 0.60 0.61 

RF 0.95 0.92 0.90 0.84 0.81 0.70 0.70 0.57 0.60 0.47 

 

Kendall’s Tau and Cohen’s Kappa are the 

test statistics 

 

Cell values are the average of scores for the 

5 pathology scores. 

 

Evaluation Criteria 

T = Kendall’s Tau 

K = Cohen’s Kappa 

 

Imputation Methods 

PMM = predictive mean matching 

Ran = random 

M = mean 

EM = Expectation Maximization 

RF = Random Forest 

Pair = Pairwise deletion 

List = Listwise Deletion 
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9
 

Table 6.  

 

Imputation Rankings for Arbitrary Percentages of Ordinal Missing Data. 

 

 

 

 

 5% 10% 20% 30% 40% 
Final 

M V T K M V T K M V T K M V T K M V T K 

PMM 2 5 1 3 2 6 4 4 2 6 3 3 3 6 2 3 3 5 1 3 4 

Ran 3 2 4 4 4 3 1 3 3 3 1 4 2 2 1 4 2 1 2 4 2 

M 2 5 5 2 2 6 5 1 2 6 5 1 3 6 5 1 3 5 5 1 5 

EM 1 3 3 1 5 2 3 2 5 2 2 2 4 1 4 2 NA NA 4 2 2 

RF 4 4 2 5 3 5 2 5 4 4 4 5 5 5 3 5 4 4 3 5 6 

Pair 1 1 NA NA 1 1 NA NA 1 1 NA NA 1 3 NA NA 1 2 NA NA 1 

List 5 7 NA NA 6 4 NA NA 6 5 NA NA 6 4 NA NA 5 3 NA NA 7 

 

Cell values are the average of the 5 

pathology rankings. 

 

Evaluation Criteria 

M = mean 

V = variance 

T = Kendall’s Tau 

K = Cohen’s Kappa 

 

 

Imputation Methods 

PMM = predictive mean matching 

Ran = random 

M = mean 

 

 

EM = Expectation Maximization 

RF = Random Forest 

Pair = Pairwise deletion 

List = Listwise Deletion 
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For the arbitrary 5%, 10%, 20%, 30%, and 40% missing datasets, pairwise deletion 

performed best while listwise deletion was by far the worst. When the amount of missing 

data is low there is no notable difference in performance for any imputation method; the 

sample means remain close to the original and the tau and kappa coefficients are high. At 

20% missing data the percent error for the mean remains below 5% and the tau and kappa 

remain in an acceptable range. At 30% and above, however, all the imputation methods 

become problematic. Random imputation performed surprisingly well, being the best 

method for data MNAR. This is likely due to the narrow range of possible values to 

impute with these ordinal data. As we will see with the results of the continuous data, this 

method is not as effective when used on data with greater variance. 

 As seen in Tables 7 and 8, all imputation methods perform reasonably well when 

the data are MCAR and MAR. The percent error for the mean remains below 5% for all 

except listwise deletion. For MNAR data the mean percent error is much higher. Nearly 

all imputation methods for data MCAR, MAR, and MNAR have Kendall’s tau and 

Cohen’s kappa coefficients in an acceptable range, indicating good agreement between 

the imputed data and the original dataset. Tables 6 and 9 show the final rankings for the 

five imputation methods. Overall, pairwise deletion was best able to recover the mean 

and variance of the original dataset, however Kendall’s tau and Cohen’s kappa could not 

be assessed. Expectation maximization was the best imputation method among the 

datasets with realistic patterns of missing data. Overall, no single imputation method was 

best able to recover the parameters of the original dataset in all categories of missing 

data.  
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Table 7. 

Evaluation Criteria for Ordinal MCAR, MAR, and MNAR Datasets 

 

 

 

 

 

 

 

                         MCAR  MAR     MNAR 

 M V M V M V 

PMM 2.78 16.41 3.04 17.03 11.74 24.52 

Ran 2.26 16.55 2.50 17.52 2.50 17.52 

M 1.92 18.72 2.35 19.32 12.08 26.53 

EM 2.76 14.77 2.30 15.64 9.70 23.11 

RF 2.21 15.15 4.52 15.47 11.02 22.51 

Pair 1.92 3.01 2.35 3.97 12.08 8.70 

List 4.19 5.38 6.70 11.03 12.99 9.14 

Mean and variance presented 

as percent error  

 

Cell values are the average of 

the 5 pathology scores. 

 

Evaluation Criteria 

M = mean 

V = variance 

 

 

Imputation Methods 

PMM = predictive mean 

matching 

Ran = random 

M = mean 

EM = Expectation Maximization 

RF = Random Forest 

Pair = Pairwise deletion 

List = Listwise Deletion 
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Table 8.  

Evaluation Criteria for Ordinal MCAR, MAR, and MNAR Datasets 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 MCAR MAR MNAR 

 T K T K T K 

PMM 0.71 0.81 0.79 0.71 0.77 0.71 

Ran 0.71 0.80 0.79 0.71 0.79 0.72 

M 0.71 0.82 0.81 0.71 0.79 0.70 

EM 0.72 0.81 0.79 0.72 0.78 0.71 

RF 0.71 0.80 0.78 0.71 0.77 0.70 

Pair NA NA NA NA NA NA 

List NA NA NA NA NA NA 

Mean and variance 

presented as percent error  

 

Cell values are the average 

of the 5 pathology scores. 

 

Evaluation Criteria 

T = Kendall’s Tau 

K = Cohen’s Kappa 

 

 

Imputation Methods 

PMM = predictive mean 

matching 

Ran = random 

M = mean 

EM = Expectation Maximization 

RF = Random Forest 

Pair = Pairwise deletion 

List = Listwise Deletion 
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Table 9.  

Imputation Rankings for Ordinal MCAR, MAR, and MNAR Datasets 

 

 

 

 

 

 

 

 

 

 

 

 MCAR MAR MNAR 
Final 

M V T K M V T K M V T K 

PMM 6 5 2 2 3 5 4 3 4 6 5 3 5 

Ran 4 6 3 4 5 6 2 2 1 3 1 1 3 

M 1 7 4 1 1 7 1 4 5 7 2 4 3 

EM 5 3 1 3 4 4 3 1 2 5 3 2 2 

RF 3 4 4 5 6 3 5 4 3 4 4 4 6 

Pair 1 1 NA NA 1 1 NA NA 5 1 NA NA 1 

List 7 2 NA NA 7 2 NA NA 7 2 NA NA 7 

 

Cell values are the average of the 5 

pathology rankings. 

 

Evaluation Criteria 

M = mean 

V = variance 

T = Kendall’s Tau 

K = Cohen’s Kappa 

 

 

Imputation Methods 

PMM = predictive mean matching 

Ran = random 

M = mean 

EM = Expectation Maximization 

RF = Random Forest 

Pair = Pairwise deletion 

List = Listwise Deletion 
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Continuous Data The results for continuous data are presented in Tables 10-15; 

Tables 10, 11, and 12 present outcomes for the 5%, 10%, 20%, 30%, and 40% missing 

data while Tables 13, 14, and 15 show findings for the MCAR, MAR, and MNAR 

datasets. The percent error for both the means and the variances are lower for continuous 

data, indicating that obtaining the parameters of the original dataset was far more 

successful with continuous compared to ordinal data. The highest percent error for the 

mean across all imputed continuous datasets was only 1.56% (MNAR random 

imputation), well below the majority of the percent errors for ordinal data. For the 5%, 

10%, 20%, 30% and 40% missing datasets, predictive mean matching performed best 

across nearly all percentages of missingness, with stochastic regression a close second.  

For the 5%, 10%, 20%, 30% and 40% datasets, the more advanced imputation methods 

(predictive mean matching, expectation maximization, random forest, and stochastic 

regression) had high levels of success obtaining the original mean up through 40% 

missing data. Pairwise deletion performed comparably to random number and mean 

imputation, likely because pairwise deletion maintains the sample variance better than 

imputation methods – increasing its appearance of success in the rankings. Listwise 

deletion performed poorly compared to all the other methods. Estimates of success were 

not obtainable for listwise deletion of 40% missingness because the sample size had 

decreased so significantly. 

 According to the results for the MCAR, MAR, and MNAR datasets, all 

imputation and deletion methods were relatively successful at recovering the means of 

the MCAR and MAR datasets, particularly compared to the results of the ordinal data.  
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Table 10. 

Evaluation Criteria for Arbitrary Percentages of Missing Continuous Data 

 

 

 

 

 

 

 

 5% 10% 20% 30% 40% 

 M V M V M V M V M V 

PMM 0.05 1.6 0.05 2.87 6.48 6.48 0.18 11.18 0.22 15.78 

Ran 0.09 5.57 0.13 8.46 18.62 18.62 0.24 28.62 0.37 36.88 

M 0.09 6.19 0.12 9.58 20.79 20.79 0.22 31.61 0.36 41.02 

EM 0.05 1.50 0.06 2.34 5.35 5.35 0.21 8.45 0.20 11.60 

RF 0.06 3.01 0.06 4.24 10.40 10.40 0.19 18.13 0.27 25.39 

Reg 0.05 1.62 0.06 2.39 6.24 6.24 0.17 10.25 0.28 14.09 

Pair 0.09 1.33 0.12 1.43 2.54 2.54 0.22 3.27 0.36 4.51 

List 0.95 4.39 0.78 11.28 30.85 30.85 1.72 43.26 NA NA 

Mean and variance shown as percent error  

 

Cell values are the average of scores for the 

5 pathology scores. 

 

Evaluation Criteria 

M = mean 

V = variance 

 

Imputation Methods 

PMM = predictive mean matching 

Ran = random 

M = mean 

EM = Expectation Maximization 

RF = Random Forest 

Reg = Stochastic Regression 

Pair = Pairwise deletion 

List = Listwise Deletion 
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Table 11.  

Evaluation Criteria for Arbitrary Percentages of Missing Continuous Data 

 

 

 

 

 

 5% 10% 20% 30% 40% 

 T K T K T K T K T K 

PMM 0.97 0.94 0.95 0.90 0.90 0.80 0.84 0.70 0.76 0.59 

Ran 0.94 0.94 0.89 0.90 0.790 0.80 0.68 0.70 0.58 0.59 

M 0.94 0.94 0.90 0.90 0.81 0.80 0.73 0.70 0.65 0.59 

EM 0.96 0.94 0.94 0.90 0.88 0.80 0.83 0.70 0.75 0.59 

RF 0.97 0.94 0.94 0.90 0.88 0.80 0.82 0.70 0.75 0.59 

Reg 0.97 0.94 0.95 0.90 0.89 0.80 0.83 0.70 0.77 0.59 

Pair NA NA NA NA NA NA NA NA NA NA 

List NA NA NA NA NA NA NA NA NA NA 

 

Kendall’s Tau and Cohen’s Kappa are the 

test statistics 

 

Cell values are the average of scores for the 

5 pathology scores. 

 

Evaluation Criteria 

T = Kendall’s Tau 

K = Cohen’s Kappa 

 

Imputation Methods 

PMM = predictive mean matching 

Ran = random 

M = mean 

EM = Expectation Maximization 

RF = Random Forest 

Reg = Stochastic Regression 

Pair = Pairwise deletion 

List = Listwise Deletion 
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           Table 12.  

           Imputation Rankings for Arbitrary Percentages of Continuous Missing Data. 

 

 

 

 

 5% 10% 20% 30% 40% 
Final 

M V T K M V T K M V T K M V T K M V T K 

PMM 2 3 1 2 1 4 1 3 1 4 1 3 2 4 2 1 2 4 2 1 1 

Ran 5 7 6 3 6 6 6 3 6 6 6 3 6 5 6 1 5 6 6 3 7 

M 6 8 5 2 5 7 5 2 5 7 5 2 5 6 5 2 6 7 5 4 6 

EM 1 2 4 2 4 2 4 2 4 2 4 2 4 2 3 2 1 2 3 4 3 

RF 4 5 3 1 3 5 3 1 2 5 3 1 3 5 4 1 3 5 4 2 4 

Reg 3 4 2 2 2 3 2 2 3 3 2 2 1 3 1 2 4 3 1 4 2 

Pair 6 1 NA NA 5 1 NA NA 5 1 NA NA 5 1 NA NA 6 1 NA NA 5 

List 8 6 NA NA 7 8 NA NA 7 8 NA NA 7 8 NA NA NA NA NA NA 8 

 

Cell values are the average of the 5 

pathology rankings. 

 

Evaluation Criteria 

M = mean 

V = variance 

T = Kendall’s Tau 

K = Cohen’s Kappa 

 

 

Imputation Methods 

PMM = predictive mean matching 

Ran = random 

M = mean 

 

 

EM = Expectation Maximization 

RF = Random Forest 

Reg = Stochastic Regression 

Pair = Pairwise deletion 

List = Listwise Deletion 
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Table 13.  

Evaluation Criteria for Continuous MCAR, MAR, and MNAR Datasets 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 MCAR MAR MNAR 

 M V M V M V 

PMM 0.07 4.05 0.13 6.13 0.28 6.61 

Ran 0.15 11.70 0.30 14.02 0.78 14.11 

M 0.15 13.12 0.30 15.32 0.77 15.51 

EM 0.08 3.77 0.14 4.67 0.28 5.48 

RF 0.10 6.58 0.16 8.51 0.42 8.92 

Reg 0.07 3.64 0.13 5.66 0.28 6.20 

Pair 0.15 2.16 0.30 2.47 0.77 2.69 

List 0.68 7.07 1.22 12.35 3.70 13.50 

Mean and variance presented 

as percent error  

 

Cell values are the average 

of the 5 pathology scores. 

 

Evaluation Criteria 

M = mean 

V = variance 

 

 

Imputation Methods 

PMM = predictive mean 

matching 

Ran = random 

M = mean 

EM = Expectation 

Maximization 

RF = Random Forest 

Reg = Stochastic Regression 

Pair = Pairwise deletion 

List = Listwise Deletion 
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Table 14.  

Evaluation Criteria for Continuous MCAR, MAR, and MNAR Datasets 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 MCAR MAR MNAR 

 T K T K T K 

PMM 0.93 0.86 0.92 0.86 0.92 0.86 

Ran 0.86 0.86 0.85 0.86 0.85 0.86 

M 0.87 0.86 0.87 0.86 0.87 0.86 

EM 0.92 0.86 0.91 0.86 0.91 0.86 

RF 0.92 0.86 0.92 0.86 0.91 0.86 

Reg 0.93 0.86 0.92 0.86 0.92 0.86 

Pair NA NA NA NA NA NA 

List NA NA NA NA NA NA 

Kendalls’s Tau and Cohen’s 

Kappa are the test statistics  

 

Cell values are the average 

of the 5 pathology scores. 

 

Evaluation Criteria 

T = Kendall’s Tau 

K – Cohen’s Kappa 

 

 

Imputation Methods 

PMM = predictive mean 

matching 

Ran = random 

M = mean 

EM = Expectation 

Maximization 

RF = Random Forest 

Reg = Stochastic Regression 

Pair = Pairwise deletion 

List = Listwise Deletion 
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Table 15.  

Evaluation Criteria for Continuous MCAR, MAR, and MNAR Datasets 

 

 

 

 

 

 

 

 

 

 

 

 

 

 MCAR MAR MNAR 
Final 

M V T K M V T K M V T K 

PMM 1 4 3 2 1 4 1 1 3 4 4 1 2 

Ran 5 7 4 6 5 7 4 6 6 7 4 6 7 

M 6 8 2 5 6 8 2 5 5 8 1 5 6 

EM 3 3 2 4 3 2 2 4 1 2 1 4 3 

RF 4 5 1 3 4 5 3 3 4 5 4 3 5 

Reg 2 2 2 1 2 3 2 2 2 3 1 2 1 

Pair 6 1 NA NA 6 1 NA NA 6 1 NA NA 4 

List 8 6 NA NA 8 6 NA NA 8 6 NA NA 8 

 

Cell values are the average of the 5 

pathology rankings. 

 

Evaluation Criteria 

M = mean 

V = variance 

T = Kendall’s Tau 

K = Cohen’s Kappa 

 

 

Imputation Methods 

PMM = predictive mean matching 

Ran = random 

M = mean 

EM = Expectation Maximization 

RF = Random Forest 

Reg = Stochastic Regression 

Pair = Pairwise deletion 

List = Listwise Deletion 
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Mean and random imputation performed poorly compared to imputation and in some 

cases did worse than pairwise deletion or listwise deletion. Expectation maximization and 

stochastic regression worked well for data that are MNAR. A pattern is evident in the 

Cohen’s kappa and Kendall’s tau coefficients in which variables tend to have similar, if 

not identical, results across all imputation methods. The percent error for 

T5AP, L1AP and L3AP, which had the highest percentages of missingness, are highest 

regardless of the imputation or deletion method employed. This indicates that the 

percentage of missingness may play a greater role in the ability to recover original dataset 

parameters than the imputation method used. For MCAR, MAR, and MNAR data, 

stochastic regression and predictive mean matching performed best, expectation 

maximization and random forest imputation ranked toward the middle, and other methods 

ranked at the bottom.  

Case Study Discussion 

For ordinal data, no imputation or deletion method performed significantly better 

than any others across all datasets. This uniformity likely reflects problems inherent in 

paleopathology data: the low range of possible values, high inter-variable correlation, and 

variable percentages of missingness. Imputation of ordinal MNAR data was unsuccessful 

for every missing data method, although random imputation performed well across the 

MCAR, MAR, and MNAR datasets. We suspect this was the result of random chance in 

which the algorithm was able to impute the exact original value. For continuous data, 

both predictive mean matching and stochastic regression performed well across all types 

of data, including those missing not at random (MNAR). 
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Despite expert caution against pairwise deletion (Allison 2001; Graham 2012; 

Kang 2013; van Buuren 2018), this method performed well for ordinal data. Because 

pairwise deletion performs better in obtaining the original variance than imputation, its 

standing in the rankings is elevated. For continuous data, pairwise deletion did not 

perform as well as stochastic regression, predictive mean matching, or expectation 

maximization for any dataset. Deletion methods cause a high rate of data loss that can be 

especially problematic if the data are MNAR. Paleopathologists generally have such 

small sample sizes any method that reduces the data further is suboptimal and may result 

in a biased dataset and decreased analytical power.  

Given its ability to work with multiple data types, we expected random forest 

imputation to work better for ordinal data, yet it performed poorly in nearly all instances. 

Finding an R package that could smoothly perform random forest imputation for this type 

of ordinal data was also difficult. It is probably the narrow range of possible values 

resulted in a reduced ability to form discrete decision trees. Random forest might not be 

advisable for similar ordinal paleopathology data.  

Critics of imputation claim these approaches “make up data,” invoking various 

justifications for continuing to use deletion methods (Osborne 2013; Schafer 1999; van 

Ginkel et al. 2020). Studies have shown, however, that imputed data are often better able 

to recover the original parameter estimates and be more easily replicable by other 

researchers than deletion methods (King et al. 1998; Osborne 2013). Using an 

epidemiological dataset which examined the association between blood transfusions and 

BMI after hip surgery, Pedersen et al. (2017) compared the results of multiple imputation 
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with listwise deletion alongside the full dataset. Multiple imputation generated results 

that more closely matched those of the full dataset and correctly identified additional 

variables of importance. The results using listwise deletion had larger standard errors and 

failed to identify gender as a confounding variable. Fichman and Cummings (2003) 

reanalyzed data from a study by Kraut et al. (1998) who examined the impact of internet 

usage on depression while largely using deletion to handle missing data. Fichman and 

Cummings (2003) used multiple imputation to eliminate missing data in Kraut et al.’s 

(1998) sample – increasing the sample size from 169 to 363 – and reanalyzed the data. 

The original results of Kraut et al.’s (1998) study showed that increased internet usage 

was associated with increased depression. Using the entire sample, however, Fichman 

and Cummings (2003) found no significant relationship between the amount of time 

spent on the internet and higher depression scores. The findings of this study support the 

conclusions of this prior research. Listwise deletion was the worst at recovering the 

parameters of the original skeletal sample. If the data are MNAR, listwise deletion is the 

least appropriate method to employ for ordinal or continuous paleopathology data.   

Numerous scholars have drawn attention to the dearth of advanced statistical 

analyses in bioarchaeology (Agarwal 2016; Konigsberg and Frankenberg 2013). Recent 

years have seen a surge in more advanced methods such as hazards models, survival 

analysis, and linear regression. However, much research – particularly paleopathology 

and trauma analysis – still depends on relatively simple statistical analyses such as chi-

squared or ANOVAs. Reliance on more simple statistics represents a major stumbling 

block to the advancement of paleopathology. Analyses such as the ANOVA, t-test, or 
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chi-squared have strict statistical assumptions about the data such as normal distribution 

or equal variances; inappropriate use of such tests can result in flawed results. As 

paleopathology data rarely adhere to these assumptions, data often must be aggregated or 

binned in ways that obscure vitally important patterns. More sophisticated analyses allow 

data to be explored on a spectrum rather than by arbitrary bins.   

Another serious drawback of the simpler methods is their failure to account for 

the concerns raised by Wood et al. (1992) in the Osteological Paradox. Because of 

selective mortality, straightforward percentages or counts of pathology lesions from a 

skeletal sample will overestimate our understanding of disease prevalence in the living 

population. The authors explain how aggregating data for more simple analyses prevents 

us from accounting for variation in individual frailty, obscuring not only important 

variation in disease experience but also the potential presence of subpopulations.  

How much missing data is too much? There is little clear guidance on the 

maximum amount of missing data allowed before missing data methods or statistical 

analyses become too biased (Dong and Peng 2013; Hardt et al. 2013; Meeyai 2016; 

Saunders et al. 2006). The definition of a “small” amount of missingness varies from 

<5% to <20% missingness (Little and Rubin 2002; Tabachnick et al. 2007). Some 

statisticians caution that bias may occur in samples with more than 10% of the data 

missing and that samples with over 40% missing should be used for  “hypothesis 

generating” only (Madley-Dowd et al., 2019, p. 64). Others recommend a maximum of 

30% missingness when imputing missing data and no more than 20% with samples sizes 

of 50 or lower (Hardt et al. 2013). On the other hand, under tightly controlled 
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circumstances, authors have managed to successfully impute and analyze datasets with 

much higher percentages of missing data. Madley-Dowd et al. (2019) imputed up to 80% 

missing MCAR and MAR data employing multiple imputation with auxiliary variables. 

Meeyai (2016) was able to recover unbiased parameters for MCAR data with 60% of the 

values missing for samples greater than n=1000. Graham et al. (2007) obtained unbiased 

regression coefficients with a 90% fraction of missing information but found that 

statistical power dropped considerably after 50% missingness even with m=20 

imputations.  

The percent of missing information may not be the most important consideration 

when faced with missing data. Sample size is an important factor; 20% missingness may 

have a greater impact with a sample size of 50 than with a sample size of 500 (Meeyai 

2016; Saunders et al. 2006). The class of missingness – MCAR, MAR, or MNAR – will 

also affect how much missing data is acceptable. Even a small amount of MNAR values 

may result in a biased dataset no matter what imputation method is used (Dong and Peng 

2013; Tabachnick et al. 2007). Whether the missing values are among the independent 

and/or dependent variables will also impact the success of missing data methods and 

ultimate statistical analyses (Saunders et al. 2006). 

This study has several limitations. First, according to Rubin’s Rules (Rubin 1987), 

statistical analyses are to be performed on each of the m datasets, and the final parameters 

of interest (e.g. p-values, confidence intervals, etc.) pooled at the very end using the 

equations designed by Rubin. The approach used in this paper, however, pools the 

multiply imputed datasets and assesses success at the end. Testing the success of 
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imputation on every type of statistical analysis bioarchaeologists use is beyond the scope 

of a single paper and the approach employed here is intended as a first step. Additional 

study is needed to test the success of imputation using different statistical analyses. 

Second, the success of imputation and deletion methods will depend not only on the 

percent of missing data, but also on the sample size. The samples used here (ordinal 

n=287; continuous n=369) are rather large compared to most paleopathology datasets. 

Additional research is needed to compare the results found here with those from smaller 

samples. Third, this study tests the success of missing data methods on ordinal and 

continuous data separately, however many bioarchaeologists collect mixed data types. 

Further research should identify which methods are successful at imputing mixed data 

including continuous, ordinal, and binary values.  

Conclusion 

The primary aim of this paper is to provide background on missing data methods 

and theory, highlighting how imputation can be used to manage missing bioarchaeology 

and paleopathology data. There are a great number of approaches for handling missing 

data, including deleting absent data or imputing missing values. While each technique has 

advantages and disadvantages, imputation methods are generally recommended over 

deletion. Other fields in the natural and social sciences commonly make use of 

imputation. Bioarchaeological research, however, seldom uses imputation to handle 

missing data. This paper tests the ability of eight methods to yield unbiased parameter 

estimates when handling missing ordinal and continuous bioarchaeological data. Results 

demonstrated that no single method performed best in all circumstances, suggesting there 
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is no “one-size-fits-all” solution to the missing data problem. Listwise deletion performed 

the worst for both ordinal and continuous data, introducing the most error into the dataset, 

while pairwise deletion performed well for ordinal variables but ranked toward the 

bottom for continuous data. Ultimately, the best method for handling missing continuous 

data was stochastic regression or predictive mean matching. Stochastic regression is 

particularly useful when the data may be missing not at random (MNAR). We intend for 

these findings to encourage the use of more advanced methods to handle missing data in 

bioarchaeology. With greater control over the data, bioarchaeologists can explore sources 

of bias and implement statistically rigorous analyses. 
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CHAPTER 4 

FRAILTY AND SURVIVORSHIP IN THE 1918 INFLUENZA PANDEMIC 

Though largely forgotten by the public (Crosby 2003; Hume 2000; Stanwell-

Smith 2019), the 1918 influenza is one of the most well-studied historical pandemics. An 

intriguing aspect of the 1918 flu was the unusual age-at-death distribution. Seasonal 

outbreaks and epidemics of influenza are generally fatal to young children and the 

elderly, yet the 1918 virus was unusually deadly to adults between the ages of 20-40 

years old – commonly assumed to be the most resilient segment of a population (Barry 

2004; Barry 2005; Crosby 2003; Gagnon et al. 2013; Luk et al. 2001; Shanks and 

Brundage 2012; Simonsen et al. 1998; Taubenberger and Morens 2006). Another 

remarkable feature of the pandemic was that the illness struck adults who otherwise had 

appeared perfectly healthy. It has become widely accepted that the 1918 virus killed 

“healthy young adults,” however this has not been explicitly tested. Were these adults 

truly healthy? Or was there some underlying frailty yet to be identified? Much of the 

research on the 1918 flu relies on data obtained from historical records such as medical 

records, vital statistics, census data, and life insurance records. These data often do not 

include individual-level information on co-morbidities, health conditions, or general 

environmental, nutritional, and chronic stressors and may therefore be inadequate for 

testing whether the people who died were healthy.  

In this paper, we use a bioarchaeological approach to explicitly interrogate the 

hypothesis that healthy individuals were as likely to die as non-healthy individuals during 

the pandemic. Poor health due to environmental, social, nutritional, or disease stresses 
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can leave permanent impressions on the skeleton such as reduced stature, structural 

asymmetry, abnormal subadult growth, poor teeth, or skeletal lesions (e.g. Buikstra and 

Cook 1980; Goodman et al. 1984; Larsen 1997). These stresses and their associated 

skeletal markers have been correlated with increased morbidity and mortality. Here, we 

assess patterns of these nonspecific indicators of skeletal stress to examine changes in 

individual- and population-level health during the 1918 pandemic. 

Background 

The 1918 influenza pandemic was one of the deadliest global outbreaks of disease 

since the Black Death. An estimated one-third of the world’s population became infected 

with the virus (Crosby 2003; Taubenberger and Morens 2006) and approximately 50 

million people died (Jordan 1927; Olson et al. 2005; Patterson and Pyle 1991; Johnson 

and Mueller 2002; Taubenberger and Morens 2006). Most of the deaths were caused by 

secondary bacterial pneumonia infection rather than the influenza virus itself (Shanks and 

Brundage 2012). Despite the enormous amount of scholarship dedicated to the 1918 

pandemic, many questions about the event remain unresolved. 

The high death rate among young adults remains one of the most studied and yet 

most mysterious features of the pandemic (Barry 2004; Barry 2005; Crosby 2003; Luk et 

al. 2001; Simonsen et al. 1998; Taubenberger and Morens 2006). Normal mortality 

curves form a U-shaped distribution, with most deaths occurring among the very young 

and the very old. The mortality curve for the 1918 flu pandemic, however, produced a W-

shaped age-at-death distribution with deaths occurring among young children and the 

elderly, but with a spike in the death rate among young adults (Ahmed et al. 2007; 
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Noymer and Garenne 2000; Shanks and Brundage 2012; Taubenberger and Morens 

2006). In a survey of data collected from the United States and Canada, Gagnon et al. 

(2013) found that the greatest mortality was in adults who were 28 years old. Between 

1918-1919, the mortality rate of individuals between 15-34 due to pneumonia and 

influenza was more than twenty times higher than previous years (Taubenberger and 

Morens 2006). Though several theories have been advanced, scholars remain unsure why 

young adults died at a rate that was so much greater than expected.    

One prominent explanation for the unusually high young adult mortality is the 

“cytokine storm” hypothesis. Cytokines are a class of proteins that are released as part of 

the immune system response (Chousterman et al. 2017; Tisoncik et al. 2012). 

Researchers speculate that the 1918 virus provoked an excessive release of cytokines – 

the cytokine storm – that lead to lung inflammation, respiratory distress, and systemic 

organ failure (de Wit et al. 2018; Ferrara et al. 1993; Kash et al. 2006; Kobasa et al. 2004; 

Osterholm 2005; Tisoncik et al. 2012). Those with strong immune systems – generally 

young adults – would have been at greatest risk for cytokine storms (Ma et al. 2011).  

Co-infection with tuberculosis and influenza is another possible explanation for 

the high mortality rate among young adults. Numerous studies have found a relationship 

between tuberculosis infection and increased morbidity and mortality in 1918 (Espersen 

1954; Noymer and Garenne 2000; Oei and Nishiura 2012; Zürcher et al. 2016; Mamelund 

and Dimka 2019). Tuberculosis is more prevalent in young adults compared to children 

or older adults (Dye 2006; Rothman 1994; Schaaf et al. 2010; Shryock and Association 

1904). Tuberculosis commonly causes necrosis in lung tissues, creating cavities that 
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become opportune sites for secondary bacterial infection (Gadkowski and Stout 2008; 

Noymer and Garenne 2000).  

An additional reason for high young adult mortality in 1918 is prior exposure to 

another influenza virus that impaired the immune system’s ability to respond to the 1918 

virus (Gagnon et al. 2015; Hallman and Gagnon 2014; Shanks and Brundage 2012). The 

“original antigenic sin” hypothesis proposes that the immune system adapts to the first 

viral strain encountered. It becomes effective at combating that particular strain, but less 

able to withstand other strains (Davenport et al. 1953; Francis Jr 1955; Kim et al. 2009). 

Individuals born around 1889-1890 may have imprinted on the “Russian Flu” virus, and 

their immune systems were then unable to effectively fight the 1918 virus (Gagnon et al. 

2013; Hallman and Gagnon 2014). 

The age-at-death distribution of the 1918 pandemic was notable not only due to 

the over-representation of young adults, but the underrepresentation of older adults 

(Mamelund 2011), which Worobey et al. (2014) contend could not have been caused by 

exposure to a single previous pandemic. Numerous influenza viruses had circulated prior 

to 1918 including an H1N1 between 1830-1847, H1N8 in 1847-1889, H3N8 in 1889-

1890, and H1N8 in 1900-1918. Worobey et al. (2014) hypothesize that exposure to 

hemagglutinin 1 (H1) and neuraminidase 1 (N1) subtypes provided immunity in the 1918 

pandemic. The immune systems of those born between 1889-1890 who were exposed 

only to the H3 and N8 subtypes, were unable to fight the H1 or N1 subtypes. Individuals 

born in the 1830s were exposed to the N1 and N1 subtypes and had greater survival in 

1918 despite being in their 80’s in 1918. Meanwhile those born between 1847-1889 were 



   

100 

 

exposed only to the H1 subtype, conferring some immunity in 1918 and contributing to 

the low than anticipated morality rate among older adults. 

Contemporary reports of the 1918 pandemic noted that the victims of the virus 

were not only young adults, but “healthy young adults” (Glezen 1996; Hoffman 2011; 

Luk et al. 2001; Short et al. 2018; Taubenberger and Morens 2006). The illness “seemed 

to be as fatal to strong adults as to young children and to the old and debilitated” 

(Phipson, 1923, p. 516). Daland (1919), a medical doctor at the US Naval Hospital in 

Philadelphia, reported that “most of the patients were between the ages of twenty to 

twenty-six years and were in unusually good physical condition” (p. 63). France (1919), a 

medical doctor from Virginia, noted that while many of patients he saw who died from 

pneumonia had previously been treated for other ailments such as tuberculosis, pellagra 

or heart problems, “a large percentage were young men apparently healthy and vigorous” 

(p. 39). According to present-day influenza researcher W. Paul Glezen “[it] was not just 

the weak and infirm who were taken away but the flower and strength of the land” (1996 

p. 66). Despite numerous accounts echoing these sentiments, there are few concrete, 

scientific data to support these claims.  

Bioarchaeology and Frailty 

Bioarchaeology is the study of human skeletal remains within past contexts 

(Buikstra 1977; Larsen 1997). While previous studies on selective mortality during the 1918 

flu have relied on primary archival documents or on viral DNA extracted from only a few 

individuals, bioarchaeological data allow us to target the individual disease experience from a 

biological perspective. Life events such as trauma, environmental stress, and disease shape 
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overall growth and morphology, leaving permanent markers on the skeleton and dentition. 

These data can be aggregated to provide a population-level understanding of selective 

mortality during the 1918 flu.  

Stress is defined broadly as disruption to biological homeostasis caused by 

disease, nutritional, environmental, and/or cultural perturbation (Brown 1981; Buikstra 

and Cook 1980; Bush and Zvelebil 1991; Edinborough and Rando 2020; Goodman et al. 

1988; Huss-Ashmore et al. 1982; Klaus 2014; Selye 1976). Bodily tissues attempt to 

compensate for this disruption through a process known as allostasis (McEwen 1998; 

McEwen 2005), resulting in what are known as nonspecific indicators of skeletal stress 

(Klaus 2014). Many of these indicators, such as reduced stature or structural asymmetry, 

reflect very long-term adverse health conditions (Buikstra and Cook 1980; Goodman et 

al. 1984; Huss-Ashmore et al. 1982) while others such as periosteal reactions, porotic 

hyperostosis, cribra orbitalia, and dental defects can be indicative of acute stress events 

(Brown 1981; Goodman et al. 1988).  

Accumulation of nonspecific indicators of skeletal stress have been correlated 

with increased frailty (DeWitte and Wood 2008; Wood et al. 1992). Frailty – defined as 

the increased susceptibility to death (Vaupel et al. 1979; Wood et al. 1992) – has become 

a useful framework for examining social, environmental, and biological processes that 

cause certain people to be at higher risk for increased mortality (Marklein et al. 2016; 

Redfern and DeWitte 2011; Usher 2000). DeWitte and colleagues, for example, have 

explored the impact of pre-existing frailty during the Black Death (DeWitte 2009; 

DeWitte 2014; DeWitte and Wood 2008; Zarulli et al. 2018). DeWitte and Wood (2008) 
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demonstrated that the Black Death did not kill indiscriminately, but that prior frailty 

increased the risk of mortality. More refined research has shown, however, the presence 

or absence of nonspecific indicators of skeletal stress is inadequate for determining 

whether a person was frail (DeWitte 2014; Grauer 1993; Mays et al. 2002; Novak and 

Šlaus 2010; Wood et al. 1992). Skeletal tissues take weeks or months to react to a 

stressor. As lesions take time to develop, the most frail person will die before lesions 

manifest. The presence of lesions may reflect a person who was resilient – at least 

resilient enough to withstand the initial onslaught of stress or disease. DeWitte (2014) 

made advances in this area by parsing skeletal lesions more finely – demonstrating that 

active skeletal stress lesions were associated with significantly increased mortality while 

healed lesions were associated with greater survival. This study builds upon previous 

research on stress and pandemics to explore assumptions about the 1918 influenza 

pandemic. It uses a bioarchaeological approach to examine the question: were healthy 

individuals dying during the 1918 pandemic? Based on prior assumptions, we 

hypothesize that non-frail (i.e. healthy) individuals were equally likely to die as frail 

individuals in 1918.  

Materials and Methods 

Data were collected from the Hamann-Todd Documented Osteological Collection 

housed at the Cleveland Museum of Natural History. The Hamann-Todd is comprised of 

over 3,000 individuals who were born between 1825-1910 (De La Cova 2010) and died 

between 1910-1938 in Cleveland, Ohio and surrounding areas (Mensforth and Latimer 

1989). The majority of the individuals were of low socioeconomic status and died in 
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almshouses or public hospitals (De La Cova 2010; Hunt and Albanese 2005). Their 

unclaimed bodies were dissected in anatomy classes and then the bones were cleaned, 

labeled, and added to the collection. Nearly every individual is accompanied by archival 

documentation on their name, age-at-death, date of death, sex, race, and cause of death 

(Jones-Kern and Latimer 1996). The exact dates of death are recorded by month, 

however dates of birth are less certain. Many of the individuals’ ages end in a 0 or 5 – a 

phenomenon known as age heaping (Stockwell and Wicks 1974; Szołtysek et al. 2018) – 

suggesting that the precise age for many was estimated rather than truly known. The 

sample used here included 424 individuals: 371 males and 53 females. Only individuals 

who died of natural causes (e.g. pneumonia, tuberculosis, myocarditis, influenza, cancer, 

etc.) were included; deaths of unknown causes, or as a result of accident, homicide or 

suicide were excluded from analyses. All individuals in the flu group did not necessarily 

have a cause of death that was listed as influenza or pneumonia. However, it is likely that 

influenza played a contributing factor in at least some of these other deaths.  

Data Collection Methods 

Data were collected on five nonspecific indicators of skeletal stress that manifest 

at various ages from the skeleton and dentition. Porotic hyperostosis and cribra orbitalia 

refer to abnormal porosity to the external surface of the cranium or on the inner surface of 

the eye orbits and may be caused by systemic illnesses such as iron deficiency anemia, 

high parasite load or scurvy (McFadden and Oxenham 2020; Stuart-Macadam 1991; 

Walker et al. 2009; Wapler et al. 2004). The presence or absence of porotic hyperostosis 

and cribra orbitalia was recorded using macroscopic observation following Buikstra and 
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Ubelaker (1994). Periostosis refers to inflammation of the periosteum caused by physical 

trauma, local or systemic infection (Roberts and Manchester 2007; Roberts 2019; Weston 

2012). In the skeleton, it manifests as new bone formation. Periostosis of the tibia was 

recorded through macroscopic observation collected on the anterior shaft of the tibia 

(Buikstra and Ubelaker 1994; DeWitte 2014; Weston 2012). Whether the lesion was 

active, healed, or mixed (in the process of healing, or reactivating) was also recorded 

(Lallo 1973; Weston 2008). Periodontal disease is caused by a bacterial infection in the 

oral cavity that destroys the gums, periodontal ligament, cementum and alveolar bone 

(DeWitte and Bekvalac 2010; Pihlstrom et al. 2005). The severity of periodontal disease 

was scored following standards set by Kerr (1988) and the maximum score in each 

quadrant of the oral cavity recorded. Linear enamel hypoplasia (LEH) are linear defects 

in tooth enamel produced by disruption in the process of enamel formation caused by 

systemic stress, malnutrition or disease in childhood (Goodman and Rose 1990; Keita 

and Boyce 2001). The presence of LEH was recorded on the anterior teeth following 

Starling and Stock (2007). Missing skeletal lesion data were imputed using the “pmm” 

function of the mice R package (van Buuren and Groothuis-Oudshoorn 2011).  

Analytical Methods 

The individuals of the Hamann-Todd were separated into two groups based on 

whether they 1) never experienced the pandemic (control group), or 2) died during the 

pandemic (flu group). The pandemic struck Cleveland between September 1918-March 

1919. The flu group (n=83) includes individuals who died during this seven-month 

period. The control group (n= 341) includes those who died prior to the pandemic (1910-
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August 1918). Frailty status was determined using skeletal lesion data in two ways. First, 

skeletal lesion data were combined to create a frailty index (FI). An individual with at 

least two frailty indicators was given FI=1 and those with zero or one frailty lesion FI=0. 

This decision was based on testing the survivorship of the pooled samples and selecting 

the number of lesions that had the greatest discriminatory power. Second, the effect of 

activity status (active, mixed, or healed) of periosteal lesions of the tibia was assessed.  

An active lesion is characterized by woven or unremodeled new bone formation 

resulting from osteoblastic activity and indicates local or systemic injury or disease 

processes that were ongoing at the time of death (DeWitte 2014). A mixed lesion 

contains both active and healing tissues at the time of death; it may be in the process of 

healing or was healing and is in the process of becoming active again. A healed lesion is 

characterized by smooth, remodeled bone, indicating a lesion that was not active at the 

time of death. Active lesions have been correlated with lower survivorship – i.e. greater 

frailty – than mixed or healed lesions (DeWitte 2014).   

The data were analyzed using Kaplan-Meier survival and Cox proportional 

hazards analysis. Survival analysis models the effect of certain variables on the time 

elapsed until an event occurs. In this case, the effect of time period (control=0, flu=1) on 

survival was assessed and statistical significance evaluated using the log rank test 

(=0.05). If non-frail (healthy) people were equally likely to die as frail people during the 

1918 pandemic, we expect to find no difference in survivorship or median survival time 

between frail and non-frail individuals during the flu. A hazard ratio expresses the 

differences in the risk of death between two or more groups. The change in the risk of 
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death in flu vs. control group was assessed using Cox proportional hazards analysis 

(Miller Jr 1981) modeling period of death (control or flu) as the covariate. The Cox 

model is semiparametric and does not specify the baseline hazard, meaning it does not 

assume that the survival times will follow a specific type of distribution. This makes it 

optimal for paleopathology analyses when the underlying hazard models are unknown 

and sample sizes are often insufficient for estimating model parameters. If non-frail 

people were as likely to die as frail people during the 1918 pandemic, we expect to find 

no difference in the hazard ratio/risk of mortality between the non-frail and the frail 

individuals during the flu. All analyses were performed in RStudio Version 1.1.456 

(Rstudio Team, 2016). 

Results 

Figures 8 and 9 show the results of the Kaplan-Meier survival curves for the 

control and flu groups using the frailty index. The control group shows a difference in 

survivorship between frail and non-frail individuals. Frail individuals had lower 

survivorship than those who were non-frail though the difference is not statistically 

significant (p=0.16). The median survival time for frail individuals was 44 years and for 

the non-frail was slightly longer at 45 years (Table 16). The results of the Cox 

proportional hazards analysis for the control group show a similar picture. The results are 

interpreted using the hazard ratios. Values that are greater than 1 indicate a risk of death 

that is greater than the reference group (here the reference is FI=0). Values equal to 1 

indicate no difference in the risk of death between groups. Values less than 1 indicate a 
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risk of death that is less than that of the reference group. In the control group (Table 17), 

frail individuals were 1.1974 times more likely to die than those who were non-frail.  

During the flu, we see that the difference in survivorship between the frail and the 

non-frail remains is similar to the frail vs non-frail difference in the control group (Figure 

9). The median survival times for the frail and the non-frail in both the control and flu 

groups decrease by six years. Focusing on the flu sample, according to the results of the 

Cox proportional hazards analysis, the frail were 1.1275 times more likely to die than the 

non-frail, reflecting an increased risk of death for those with skeletal lesions, albeit a  

small and non-statistically significant one.  

Figures 10 and 11 present the Kaplan-Meier curves using periosteal lesion activity 

as a reflection of frailty. In the control group, we can see that those with active lesions 

(i.e. the most frail) had the lowest survivorship, and those with mixed lesions had the 

greatest survivorship. Separate log-rank tests indicated no significant difference between 

survival of individuals with active vs healed (p = 0.52) and active vs mixed (p=0.29) 

periosteal lesions. There is a 6 and 7 year difference in the median survival time between 

individuals with active lesions and those with healed or mixed lesions (table 18).  

According to the results of the Cox proportional hazards analysis, having active or 

healed lesions was associated with an increase in the risk of death in the control group 

(table 19). Note that the reference group is mixed lesions because that group had the 

greatest survival according to the Kaplan-Meier analysis and the sample sizes change 
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Figure 8.  

 

Kaplan-Meier Survival Curves of Control Group Using Frailty Index 

 

 
Note. Survivorship curves show the non-frail (red line) compared to the frail (green line) 

in the control group using the frailty index. P-value (0.16) is the result of the log-rank 

test. 
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Figure 9.  

 

Kaplan-Meier Survival Curves of Flu Group Using Frailty Index 

 

 
Note. Survivorship curves show the non-frail (red line) compared to the frail (green line) 

in those who died during the 1918 influenza pandemic using the frailty index. P-value 

(0.62) is the result of the log-rank test. 
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Table 16.  

Results of Survival Analysis Using Frailty Index. 

 

Lesion Status N 

Median 

survival time 

(years) 

Lower 0.95 
Upper 

0.95 

Control 
FI=0 – non-frail 79 45 42 50 

FI=1 – frail 262 44 40 45 

Flu 
FI=0 – non-frail 25 39 34 50 

FI=1 – frail 58 38 35 42 

 

 

 

 

 

 

Table 17.  

 

Cox Proportional Hazards Results for Frailty Index.  

 

 Hazard Ratio p-value Lower 0.95 Upper 0.95 

Control - Frail 1.20 0.16 0.93 1.54 

Flu - Frail 1.11 0.62 0.70 1.18 

 

Note. Hazard ratios are in relation to non-frail individuals. 
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individuals with no periosteal lesions are not included. In the control group having active 

or healed lesions was associated with a greater risk of death compared to mixed lesions. 

Those with active lesions were 1.3 times more likely to die and those with healed about 

1.1 times more likely to die. 

Within the flu group (figure 11), individuals with active lesions showed the 

lowest survival values, but the survivorship of those with healed lesions decreased by a 

much greater magnitude. The median survival time for those with active lesions 

decreases only from 39 to 36 years while the median survival time for those with healed 

lesions decreases from 45 years to 38.5 years. During the flu, those with mixed lesions 

had greater survivorship than those with active lesions though the difference was not 

significant (p=0.091). According to the results of the Cox proportional hazards analysis 

(table 19), having active or healed lesions is still associated with an increase in the risk of 

mortality compared to mixed lesions. In the flu group active lesions were associated with 

a 2.9 times greater likelihood of death and healed lesions a 1.59 times greater likelihood. 

According to these results there is a greater risk of death associated with active lesions in 

the flu compared to the control.  
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Figure. 10  

 

Kaplan-Meier Survival Curves of Control Group Using Periosteal Lesions 

 

 
Note. Survivorship curves show survivorship of those with active (red), mixed (blue) and 

healed (green) periosteal lesions of the tibia in the control group. P-value (0.62) is the 

result of the log-rank test. 
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Figure 11. 

Kaplan-Meier Survival Curves of Flu Group Using Periosteal Lesions 

 

 
Note. Survivorship curves show survivorship of those with active (red), mixed (blue) and 

healed (green) periosteal lesions of the tibia in those who died in the 1918 flu pandemic. 

P-value (0.15) is the result of the log-rank test. 
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Table 18.  

Kaplan-Meier Survival Results for Periosteal Lesion Activity Status 

 
Lesion Status N 

Median survival 

time (yrs) 
Lower 0.95 Upper 0.95 

Control 

Active 14 39 35 65 

Mixed 60 46 42 40 

Healed 126 45 40 40 

Flu 

Active 5 36 32 NA 

Mixed 11 45 40 NA 

Healed 32 38.5 35 50 

 

 

 

 

Table 19.  

Cox Proportional Hazards Results for Periosteal Lesion Activity Status. 

 Lesion status Hazard Ratio Lower 0.95 Upper 0.95 

Control 
Active 1.31 0.73 2.35 

Healed 1.10 0.81 1.50 

Flu 
Active 2.90 0.94 8.70 

Healed 1.59 0.78 3.25 

 

Note. Hazard ratios are in relation to mixed tibial lesions. 
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Discussion 

The results reveal a complicated picture of frailty and survival during the 1918 

pandemic. In both pandemic and non-pandemic periods, frail individuals were more 

likely to die. During the flu, however, non-frail individuals died at a slightly greater rate 

than they did prior to the pandemic. Given that the global crude mortality rate of the 1918 

flu was around 2.5% (Johnson and Mueller 2002; Patterson and Pyle 1991; Taubenberger 

2005; Taubenberger and Morens 2006), or even as low as ~1% in the United States 

(Viboud et al. 2013), this small difference is expected. Based on the results reported here, 

the force of selective mortality decreased during the 1918 influenza pandemic, albeit very 

slightly. This means that healthy, non-frail individuals were more likely to die during the 

pandemic compared to non-pandemic times. However, non-frail individuals were not 

equally likely to die as frail individuals; those with frailty indicators were still more likely 

to die during the pandemic.  

Considering the unusual mortality of young adults, a greater decrease in selective 

mortality was expected for those between 20-40 years old. In Figure 9, a greater 

separation between the survival curves for the frail and non-frail between the ages of 20-

40 is visible. Though the difference is slight, this suggests that frailty had a greater 

impact on mortality for young adults compared to older adults.  

Given that we do find modest support for increased frailty for young adults, do 

these offer support for any of the hypotheses discussed previously for the cause of high 

young adult mortality in 1918? We discuss implications for the cytokine storm 

hypothesis, and the tuberculosis co-morbidity model. 
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A central assumption of the cytokine storm hypothesis is that the young adults 

who died were the most healthy individuals. The results found here partially support this 

hypothesis: due to the decrease in selective mortality more non-frail people were dying 

who would have been at risk for the cytokine storm. However, frail individuals were still 

more likely to die, suggesting that the cytokine storm could not have been the sole 

explanation for the unusual mortality in the 1918 pandemic.  

Based on these findings, we suggest that a broader interaction between 

periodontal disease and influenza may have increased the risk of cytokine storms. As 

mentioned above, a cytokine storm occurs when the immune system releases excessive 

cytokines – a class of pro-inflammatory proteins. Periodontal disease is caused by 

dysregulation of inflammatory processes, which includes cytokine activity (Andrukhov et 

al. 2011; Hegde and Awan 2019; Okada and Murakami 1998; Ramadan et al. 2020; 

Seymour and Gemmell 2001). Periodontal disease has also been linked with other 

chronic inflammatory conditions such as rheumatoid arthritis (Berthelot and Le Goff 

2010; Bingham III and Moni 2013; Detert et al. 2010; Potempa et al. 2017) and 

inflammatory bowel disease (Piras et al. 2017; Poyato-Borrego et al. 2020; She et al. 

2020; Vavricka et al. 2013), as well as pneumonia and chronic obstructive pulmonary 

disorder (Azarpazhooh and Leake 2006; Raghavendran et al. 2007; Scannapieco et al. 

2003). Periodontal disease has been associated with low levels of systemic inflammation 

(Acharya et al. 2017; Hajishengallis and Chavakis 2021; Loos 2005; Marouf et al. 2021; 

Molayem and Pontes 2020). 
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There is little scholarship exploring how coinfection with periodontal disease and 

the influenza virus influences morbidity and mortality. However, recent research suggests 

that Covid-19-periodontitis coinfection may place patients at greater risk for cytokine 

storms and poor health outcomes (Botros et al. 2020; Fabri 2020; Gupta and Sahni 2020; 

Hajizadeh et al. 2021; Kara et al. 2020; Marouf et al. 2021; Molayem and Pontes 2020; 

Sahni and Gupta 2020; Siddharthan et al. 2020; Sukumar and Tadepalli 2021). As of yet, 

this hypothesis has not been able to be extensively tested. Marouf et al. (2021) found that 

Covid-19 patients with pre-existing periodontal disease had greater likelihood of 

requiring ventilators, admission to the ICU, and death. Larvin et al. (2020) found that 

while individuals with self-reported periodontal disease had no greater risk of Covid-19 

infection, those with painful/bleeding gums were almost two times as likely to die of 

Covid-19 compared to the control group. While there are important differences between 

SARS-CoV-2 and the 1918 H1N1 influenza, it is likely that a co-occurrence of 

periodontal disease and influenza increased the risk of an out-of-control inflammatory 

response and elevated the risk of death. Furthermore, a person with periodontal disease 

would have been perceived as “healthy” by those around them even though they had an 

underlying source of frailty.  

The results of this study may also shed light on the tuberculosis hypothesis. 

Previous studies have found a relationship between tuberculosis and influenza mortality 

in 1918 (Espersen 1954; Herring and Sattenspiel 2007; Mamelund and Dimka 2019; 

Noymer and Garenne 2000; Oei and Nishiura 2012; Tripp et al. 2018; Zürcher et al. 

2016). Noymer (2009), however, argues that tuberculosis may not have been a direct risk 



   

118 

 

factor for increased influenza mortality, but that the association may be due to 

coincidental overlapping groups of at-risk individuals. The results found here support the 

hypothesis that tuberculosis was a direct risk factor for influenza mortality – namely that 

frail individuals were more likely to die. However, if tuberculosis were a significant risk 

factor for mortality in 1918, how do we explain the report of “healthy” individuals? 

While the effects of latent tuberculosis infection are understudied, latent TB has 

been associated with increased chronic inflammation (Cowan et al. 2012; Huaman et al. 

2016; Jensen et al. 2013; LaVergne et al. 2020; Naik et al. 2020) as well as greater risk of 

other adverse health outcomes (Huaman et al. 2018; Naik et al. 2020). Studies have 

reported a correlation between prior tuberculosis infection and worse outcomes from 

influenza (Abadom et al. 2016; Archer et al. 2009; Puvanalingam et al. 2011; Walaza et 

al. 2020). Crespo et al. (2017) found that cells previously exposed to M. tuberculosis 

showed an inflammatory response when subsequently exposed to P. gingivalis, one of the 

types of bacterial responsible for periodontal disease (PD). The authors conclude that 

“chronic infections like TB …  may cause a systemic inflammatory shift that can affect 

other inflammatory processes such as the one present in PD” (p. 143). Crespo et al. 

(2017) further proposes a framework for examining latent tuberculosis in the 

bioarchaeological record. Individuals with latent TB would express a hyperinflammatory 

phenotype, which would result in osteological evidence of periodontal disease, but no 

skeletal evidence of tuberculosis. These expectations align well with the results found 

here. Individuals with latent tuberculosis, have no discernible symptoms (Barry et al. 

2009; CDC.gov 2020; Pai and Rodrigues 2015), and in a time before testing was widely 
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available could have easily been viewed as “healthy.” It seems possible, then, that latent 

tuberculosis could be responsible for the high mortality rate among young adults in 1918, 

the perception of these individuals as “healthy,” as well as the increased risk of death due 

to frailty markers found here.  

Implications for Bioarchaeology 

The results of this study have implications for our understanding of stress, skeletal 

lesions, and frailty in the bioarchaeological record. Collecting descriptive statistics on 

lesion activity status has been common for decades (Andrushko 2007; Bartelink 2006; 

Berger and Wang 2017; Buikstra and Ubelaker 1994; Rose 1989; Shuler 2011; Šlaus 

2000). While the understanding of healed skeletal lesions as a reflection of recovery and 

resilience is not new (e.g. Mensforth et al. 1978), Wood et al. (1992) were among the first 

to amplify this idea within bioarchaeology and emphasize the role lesion status may play 

in revealing variation in frailty. Summarizing data from an Oneota sample, Wood et al. 

(1992) showed that active cranial lesions are more common in individuals who died in 

childhood while healed/healing lesions are more common among those who survived to 

adulthood. Bauder (2009) and Marx (2011) used the proportion of active to 

healed/healing lesions as a “survivorship index,” assuming that healed lesions are 

indicative of greater survival. DeWitte (2014), however, was the first to explicitly test the 

impact of lesion status on survivorship. Using Kaplan-Meier survival analyses, she 

demonstrated that individuals with active tibial periosteal lesions had the lowest 

survivorship, and individuals with mixed and healed lesions had middling and greatest 

survivorship, respectively. Budd and Wissler (2016) replicated DeWitte’s (2014) study 
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using a Nubian sample and found similar results. This study, however, finds that 

individuals with mixed periosteal lesions had greater survival than those with healed 

lesions, as do the aggregate results of Schwalenberg (2020). Using a sample of 

individuals from Colonial Period Peru, Phillips (2019) found that the presence of 

periosteal lesions of the tibia was associated with increased survival rather than mortality. 

These varying results suggest that lesion activity status is more complicated than 

previously thought and may be context and sample-dependent. More studies that explore 

the connection between lesion status and mortality are needed to understand this variation 

and develop a more holistic picture of the relationship between skeletal lesions and 

frailty.  

The results found here also expand our knowledge of the impact of lesion status 

across the life course. DeWitte’s (2014) study included individuals of all ages, but all 

with active lesions and approximately half of those with mixed lesions are below the age 

of 20. The sample used by Phillips (2019) is mostly adult individuals over the age of 15. 

Given that anyone who has made it to adulthood is a survivor, it is possible that the 

impact of lesion activity (or even lesions in general) may vary over the life span and 

decrease in adulthood. Figure 1 from DeWitte (2014) showed that the strength of 

selective mortality associated with lesions tapers off after age 40. Similarly, our Figure 3 

shows that after age 50, lesion activity status plays almost no role in shaping variation in 

mortality. The results found by McFadden and Oxenham (2020) support the hypothesis 

that the risk of mortality associated with nonspecific indicators of skeletal stress can vary 

over time. They reanalyzed data on cribra orbitalia from the Global History of Health 
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Project, separating juveniles from the samples. They found that approximately half of the 

samples demonstrating a significant relationship between cribra orbitalia and survival in 

combined samples, showed no relationship after juveniles were removed.  

This study contributes to our understanding of selective mortality in diverse burial 

contexts. DeWitte and Wood (2008) used bioarchaeological data to test the assumption 

that the Black Death was not selective regarding frailty. Like the results found here, frail 

individuals were more likely to die than the non-frail during this epidemic event. We 

hypothesize that all deaths due to natural causes, i.e. excluding accident/homicide/sui-

cide, are subject to selective mortality. While epidemic events show a decrease in the 

strength of selective mortality, resulting in more non-frail individuals dying, the most 

frail will always be at the greatest risk (Kyle et al. 2018). This has implications for our 

understanding of burial contexts and selective mortality. Singleton or mass burials – if 

they result from natural causes such famine or disease – will never be entirely 

catastrophic and will contain the frailest individuals of a population. The only wholly 

catastrophic assemblage – meaning that all members of the population, regardless of 

frailty status, are equally likely to be included – may be one caused by a mass casualty 

event such as war, accident, or massacre. To fully investigate selective mortality in 

bioarchaeological assemblages, researchers need to recognize the limitations of their 

samples and may need to be creative when searching for unique burial contexts.  

This paper has several limitations. Firstly, the small sample size, particularly of 

the flu group, means that some of the statistical analyses were underpowered. While 

trends in the data can be seen, statistical significance could not be properly assessed. 
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Secondly, while the ages at death listed for the individuals of the Hamann-Todd are 

generally accurate, the evidence of “age-heaping” suggests that some non-random 

variation may have been introduced into the analyses.  

Conclusion 

This paper used a bioarchaeological approach to test the assumption that healthy 

individuals were as likely to die as frail individuals during the 1918 influenza pandemic. 

Using Kaplan-Meier survival and Cox proportional hazards analysis, we show that while 

more non-frail individuals died during the pandemic compared to the pre-flu period, frail 

individuals were more likely to die overall. These results enhance our understanding of 

the unusual age-at-death distribution during the 1918 flu. Demonstrating that frail 

individuals were more likely to die in 1918 allows new critical investigation into previous 

explanations. We also propose a novel hypothesis that systemic inflammation due to 

periodontal disease may have increased the risk of cytokine storms during the influenza 

pandemic and contributed to greater mortality among young adults. This research 

demonstrates how bioarchaeology can inform our perspectives on historical pandemics 

and contribute valuable new insight to public health research. Additional study in this 

area can increase our knowledge of differential frailty in past and present contexts, 

enhancing our ability to mitigate the effects of pandemics.  
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CHAPTER 5 

CONCLUSION 

This dissertation engages the osteological paradox by improving the 

methodological handling of bioarchaeological data and contributing to our understanding 

of skeletal lesions as indicators of frailty and resilience. It builds on previous scholarship 

to show that ideas expressed by Wood et al. (1992) should be viewed as a framework for 

elevating our understanding of the interactions between skeletal lesions, frailty and 

survival as well as how they are shaped by biological, demographic, and cultural factors, 

rather than as a challenge that needs to be “solved.” Chapter 2 presents background 

information on the handling of missing data in bioarchaeology while Chapter 3 

demonstrates how imputation of missing paleopathology data can enhance 

bioarchaeologists’ ability to analyze skeletal lesions. Chapter 4 incorporates methods 

proposed in Chapters 2 and 3 to analyze skeletal data from the Hamann-Todd Collection 

to answer the question: were healthy individuals as likely to die as frail individuals during 

the 1918 influenza pandemic? Together, these chapters contribute to a more nuanced 

understanding of the relationship between frailty, selective mortality, and skeletal lesions. 

Summary of Results 

This dissertation had two primary goals: 1) to establish a new approach for the 

handling of missing paleopathology data that will facilitate the use of new analytical 

methods for exploring frailty and resiliency in skeletal data, and 2) to investigate the role 

of prior frailty in shaping selective mortality in the 1918 influenza pandemic using a 
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novel bioarchaeological approach. How these goals were achieved in the preceding 

chapters is discussed below.  

Chapter 2 broadly explored how missing data are handled in bioarchaeology by 

conducting a review of the literature. All bioarchaeology articles published between 

2011-2020 from four anthropology journals (American Journal of Physical 

Anthropology, International Journal of Paleopathology, International Journal of 

Osteoarchaeology, Bioarchaeology International) were reviewed. Each article was 

searched for the following terms when used in the context of missing data: “absent,” 

“imputat,” “replace,” “missing,” and “unobserv.” We identified 276 articles that met the 

search term criteria that were further categorized by subject topic and by the level of 

theoretical and statistical rigor in which missing data were managed.  

The results revealed considerable variety in how bioarchaeologists handle missing 

data, yet overall they rely on the least rigorous approaches. Methods such as antimere 

substitution and deletion are used widely across subject topics. Archaeology, pathology, 

and trauma articles used more basic missing data methods, while those such as 

biodistance and morphology more often employed advanced statistics. Despite the 

ubiquity of missing data, theoretical considerations of how they introduce bias are 

uncommon and standards for reporting are inconsistent. In Chapter 2 I propose a series of 

recommendations to improve techniques for handling and reporting missing data. These 

consist of (1) detailed descriptions of procedures for data collection, (2) explanations of 

any pre-analysis data treatments, (3) disclosing the presence of missing data in the 

sample, or when there are no missing data, (4) considerations of how missing data may 
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impact sample representativeness, and (5) testing for problematic patterns of missing 

data. Greater attention to these issues will increase the statistical rigor of the field, 

address fundamental areas of concern, and lead to new areas of anthropological inquiry.  

Chapter 3 built upon Chapter 2 in developing and testing a new methodology for 

handling missing bioarchaeology data. Imputation is widely considered the best method 

for managing missing values, yet the results of Chapter 2 suggest it is underused in 

bioarchaeology. To determine the best technique for bioarchaeological data, a test of six 

imputation methods (predictive mean matching, mean, random, random forest, 

expectation maximization, stochastic regression) was conducted on a sample of ordinal 

and continuous variables. The success of each method at obtaining unbiased estimates of 

the sample mean, variance, Kendall’s tau, and Cohen’s Kappa were compared with 

listwise and pairwise deletion. 

 In all instances, listwise deletion was least successful at obtaining the original 

parameters. Pairwise deletion performed well for ordinal data but ranked toward the 

bottom for continuous data. Imputation of continuous data was successful for 40% 

missingness, with stochastic regression and predictive mean matching ranked highest. 

Imputation of ordinal pathology data was more difficult, but several imputation methods 

were able to recover original parameter estimates with up to 30% missingness. These 

findings support the use of imputation methods over deletion for handling missing 

bioarchaeological and paleopathology data, especially when the data are continuous. 

Whereas deletion methods reduce sample size, imputation maintains sample size, 

improving statistical power and preventing bias from being introduced into the dataset.   
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Chapter 4 expanded our knowledge of the relationship between frailty and 

mortality by testing the widely held assumption that adults who died during the 1918 

influenza pandemic were “healthy.” Skeletal pathology and age-at-death data were 

collected from 424 individuals from the Hamann-Todd Documented Collection. 

Presence/absence data and activity status were collected on five nonspecific indicators of 

skeletal stress known to be correlated with increased frailty in this sample (porotic 

hyperostosis, cribra orbitalia, linear enamel hypoplasia, periodontal disease, and 

periosteal lesions of the tibia). Missing data were imputed following the 

recommendations established in Chapter 3. Individuals were deemed frail if they had at 

least two skeletal stress indicators or active periosteal lesions. The sample was separated 

into a flu group (n=83) and a control group (n=341).  

Using Kaplan-Meier survival and Cox proportional hazards analyses, I tested if 

individuals who were non-frail were equally as likely to die as those who were frail 

during the 1918 flu. The results demonstrated that while more non-frail individuals did 

die during the pandemic compared to non-pandemic times, frail individuals were more 

likely to die during both time periods. These findings suggest that at least some of the 

individuals perceived as “healthy” in 1918 had some underlying frailty that was captured 

in the bioarchaeological data. Furthermore, the conclusions of this chapter increase our 

understanding of selective mortality during epidemic events.  

Future directions and Intellectual Merit 

The results of this dissertation lay the groundwork for future research on missing 

data methods in paleopathology as well as investigating selective mortality and frailty 
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within the context of the 1918 influenza pandemic. As mentioned in Chapter 3, the 

sample sizes for testing the imputation of missing continuous and ordinal values were 

quite large compared to most paleopathology studies. The techniques that worked best 

with a larger sample may be less appropriate with a smaller one. Additional imputation 

case tests are required to clarify which missing data method works best given different 

sample sizes.  

Chapter 4 hypothesized that systemic inflammation caused by periodontal disease 

may have increased the risk of cytokine storms during the 1918 flu. This interaction may 

have contributed directly to the unusually high mortality among young adults as well as 

the perception that people who were dying were “healthy.” Increasing the sample size by 

incorporating more individuals and collecting more detailed information on the severity 

and activity of periodontal disease would help further tease out this potential relationship.  

This research established that differential frailty played a role in contributing to 

selective mortality in the 1918 influenza pandemic. The next step is to identify additional 

specific risk factors that may shape variation in frailty and resilience. Previous 

scholarship has suggested that a variety of factors influenced the risk of morbidity and 

mortality during the 1918 flu. These include socioeconomic status (Bengtsson et al. 2018; 

Grantz et al. 2016; Mamelund 2006; Mamelund 2018; McCracken and Curson 2003; 

Murray et al. 2006; Tuckel et al. 2006), race and racism (Britten 1932; Dahal et al. 2018; 

Gamble 2010; Herring and Sattenspiel 2007; Mamelund 2001; Mamelund 2011; Økland 

and Mamelund 2019; Pool 1973; Schmitt and Nordyke 1999; Shanks et al. 2012; 

Tomkins 1992; Wilson and Baker 2008), and sex/gender roles (Ammon 2001; 
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Brennaman 2019; Paskoff and Sattenspiel 2019; Rice 2018; Tuckel et al. 2006; Wilson et 

al. 2014; Winslow and Rogers 1920). The findings of these studies, however, have 

generated mixed results about how and why these factors contributed to increased 

morbidity and mortality. For example, some authors have reported that African 

Americans experienced lower rates of morbidity and mortality during the fall wave of the 

pandemic compared to white Americans (Britten 1932; Frankel and Dublin 1919; Frost 

1920; Garrett 2008; Opie et al. 1919). Økland and Mamelund (2019), on the other hand, 

found that white Americans experienced greater morbidity in fall of 1918, but African 

Americans had greater case fatality. Combined with data obtained from documentation 

and historical records, bioarchaeological analyses can help untangle these uncertainties 

by examining how intersecting identities affected frailty and survival in 1918.  

Another research agenda that will stem from this dissertation is investigating how 

selective mortality during the 1918 influenza shaped the lives of the survivors. As 

mentioned previously, prior research on the Black Death demonstrated that pre-existing 

frailty influenced the risk of death from the Black Death (DeWitte 2009; DeWitte 2014a; 

DeWitte and Hughes-Morey 2012). Due to the removal of large numbers of frail 

individuals from the population, post-epidemic populations experienced increased 

survivorship for almost two centuries compared to those who lived before the epidemic 

(DeWitte 2014b). Interestingly, males experienced greater increase in post-epidemic 

survivorship greater than did females (DeWitte 2018). Very few studies have considered 

the long-term impacts of the 1918 flu on population health and demography. This 
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research program will have strong implications for our ability to elucidate the long-term 

transformative power of disease to shape human biology and society.  

The results of this dissertation first and foremost expand our knowledge of the 

1918 influenza pandemic. Scholars are still unsure why age-at-death distribution was so 

unusual, why certain populations suffered catastrophic mortality rates, and why there was 

substantial variation in mortality. This dissertation demonstrated that underlying frailty 

influenced mortality in 1918. These results will contribute to the dialogue on why young 

adults were disproportionately at risk. They can be used to bolster certain theories such as 

the cytokine storm and tuberculosis hypotheses.  

This study is the first to utilize bioarchaeological data to examine the 1918 

influenza and demonstrates the potential for additional study in this area as well as for 

other historical pandemics. Seasonal and epidemic influenza represents an enormous 

drain on social and economic resources caused by lost work-days, hospitalizations, 

medical visits and deaths (Molinari et al. 2007; Reed et al. 2015). Many of the viral 

strains of influenza that continue to plague the world population are descendants of the 

1918 H1N1 virus (Taubenberger and Morens 2006). By continuing to risk factors for 

increased influenza mortality and characterizing how the disease may spread differently 

in various populations, these avenues of research can aid with predicting how a future 

influenza outbreak could affect modern populations.  

Bioanthropological study of epidemics is a relatively new area of inquiry yet it 

has permitted valuable new insight into heterogeneous frailty and selective mortality. The 

new discipline has stimulating the growth of a variety of subfields including 
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paleodemography, paleoepidemiology, and paleopathology. However, because of the 

relative novelty of this research, our understanding of changing patterns of mortality and 

survivorship in epidemic contexts is largely founded on work conducted on the Black 

Death in Europe. This dissertation provides an invaluable comparative datapoint for 

assessing how frailty and selective mortality may vary during an entirely different 

epidemic event. 

This dissertation enriches the knowledge base and theory of anthropology and 

related fields, as it combines methods and theory from multiple disciplines including 

bioarchaeology, epidemiology, demography, and statistics to examine the origins and 

evolution of human health and selective mortality. By identifying the foundations of 

differential survival, this project will augment our understanding of how the forces of 

natural selection shape biological vulnerability within our species.     

By drawing attention to the widespread use of deletion methods for handling 

missing data in bioarchaeology, this dissertation also provides a framework for the use of 

imputation to manage missing values in paleopathology datasets. Statistically and 

theoretically rigorous approaches to missing data will improve the size and composition 

of bioarchaeological datasets and permit the use of more advanced statistical analyses – 

opening new realms of inquiry for bioarchaeologists and paleodemographers. 

Pandemics on the scale of the 1918 influenza and the current Covid-19 have a 

remarkable ability to shape human society, genetics, and immunity. At the same time, 

human behavior can force change in pathogen behavior and biology. Elucidating this 

complex human-pathogen relationship helps us understand variation in pathogen 
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virulence and infectious disease etiology. This dissertation adds temporal depth to our 

understandings of the long-term interactions between humans and their disease 

environment, improving our scientific knowledge of human-pathogen coevolution. 

As we saw in 2020, the threat of devastating global pandemics is high. In this 

increasingly interconnected world, it is likely that Covid-19 will not be the last one many 

of us face in our lifetimes. As such, we must already begin thinking about risk factors for 

infection, cultural and biological sources of resilience, how to distribute health warnings, 

combating fake information, and ensuring equitable access to medical care. This 

dissertation shows how anthropologists and social scientists can contribute vital 

information and unique perspectives to this area of discourse (DeWitte 2016; van Doren 

2021). We are trained to understand how human biology is shaped by social, cultural, and 

historical contexts in ways that medical professionals often are not. We know that 

structural inequalities shape morbidity and mortality and that historical context is key to 

understanding them. This dissertation adds temporal depth to our understandings of the 

long-term interactions between humans and their disease environment and the 

development of health disparity. Despite being able to contribute nuanced perspectives on 

how social factors shape one’s health, recent history has shown that epidemiologists and 

medical doctors are unlikely invite social scientists and anthropologists to be part of their 

conversation. This dissertation integrates commonly used types of demographic 

information, that may seem more familiar and reliable, with novel skeletal data. We hope 

that research such as this will help break down the barrier separating the social scientists 

from the hard scientists leading to greater collaboration between disciplines. Multiple 
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perspectives will expand our knowledge of pandemic risk factors and combating future 

outbreaks.  
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