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ABSTRACT

Computational models have long been used to describe and predict the outcome

of complex immunological processes. The dissertation work described here centers

on the construction of multiscale computational immunology models that derives

biological insights at the population, systems, and atomistic levels. First, SARS-

CoV-2 mortality is investigated through the lens of the predicted robustness of

CD8+ T cell responses in 23 different populations. The robustness of CD8+ T cell

responses in a given population was modeled by predicting the efficiency of endemic

MHC-I protein variants to present peptides derived from SARS-CoV-2 proteins to

circulating T cells. To accomplish this task, an algorithm, called EnsembleMHC, was

developed to predict viral peptides with a high probability of being recognized by

CD T cells. It was discovered that there was significant variation in the efficiency

of different MHC-I protein variants to present SARS-CoV-2 derived peptides, and

countries enriched with variants with high presentation efficiency had significantly

lower mortality rates. Second, a biophysics-based MHC-I peptide prediction algorithm

was developed. The MHC-I protein is the most polymorphic protein in the human

genome with polymorphisms in the peptide binding causing striking changes in the

amino acid compositions, or binding motifs, of peptide species capable of stable binding.

A deep learning model, coined HLA-Inception, was trained to predict peptide binding

using only biophysical properties, namely electrostatic potential. HLA-Inception was

shown to be extremely accurate and efficient at predicting peptide binding motifs and

was used to determine the peptide binding motifs of 5,821 MHC-I protein variants.

Finally, the impact of stalk glycosylations on NL63 protein dynamics was investigated.

Previous data has shown that coronavirus crown glycans play an important role in

immune evasion and receptor binding, however, little is known about the role of the

stalk glycans. Through the integration of computational biology, experimental data,
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and physics-based simulations, the stalk glycans were shown to heavily influence the

bending angle of spike protein, with a particular emphasis on the glycan at position

1242. Further investigation revealed that removal of the N1242 glycan significantly

reduced infectivity, highlighting a new potential therapeutic target. Overall, these

investigations and associated innovations in integrative modeling.
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Chapter 1

RESEARCH SUMMARY

The human immune system is a truly remarkable and intricate system, simultaneously

operating at various scales and specificities. It is robust enough to passively protect

the host against the general milieu of bacteria encountered on a daily basis, while

maintaining the specificity to mount highly selective adaptive immune responses against

a novel viral infection. Amazingly, the immune system not only has the flexibility to

defend the host against the constant barrage of external threats, such as pathogens

and microbes, but also the ability to protect the host from internal threats like

cancer. Together, these aspects make the immune system a truly fascinating system to

study. The burgeoning field of molecular immunology has seen striking advancements

in a relatively short amount of time. For example, the field has evolved from the

discovery of T cells (Gowans et al., 1962; Miller et al., 1962) to the development

of targeted T-cell based immunotherapies capable of driving near-miraculous tumor

rejections (Zacharakis et al., 2018; Leidner et al., 2022) in a little over six decades.

However, despite such milestones there is still much to discover about the function

of the immune system (TW et al., 2019), particularly in the realm of correlating

detailed biophysical information to phenotypic outcomes. One method of addressing

and predicting the outcomes of complex systems starting from molecular cues is by

deploying mathematical and computational models. Early examples of immunology-

based modeling, primarily mathematical in nature, included epidemiological models of

malaria infections (Ross, 1916), stochastic models of immune induction (Marchalonis

and Gledhill, 1968), and population dynamics of persistent viral infections (Nowak

and Bangham, 1996). Since, we have seen an explosion of computational modeling to
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Figure 1.1: Multiscale computational immunology models

describe a diverse range of immunological functions. These models cross paradigms

and scales from population-level models, like those investigating large scale immunity

to SARS-CoV-2 (Britton et al., 2020; Wilson et al., 2021), to deep natural language

models predicting viral escape mutations (Hie et al., 2021). These models often work

in tandem with a wide array of omics and experimental data to improve predictions

regarding immunological function.

Our work describes integrative computational models that reveal biologically

relevant information across three scales: population level, systems level, and atomistic

level (Figure 1.1). In each case, population, biophysical, structural, and omics

data are leveraged and integrated into the models to answer questions ranging from

estimations of population CD8+ T cell response to SARS-CoV-2 viral infections to

impact of glycans on coronaviral spike protein dynamics.
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In Chapter two, the relationship between observed population mortality to SARS-

CoV-2 infections and predicted robustness of CD8+ T cell response is assessed. CD8+

T cell response robustness is modeled by calculating the average magnitude of SARS-

CoV-2 viral peptides presented by MHC-I proteins in a population based on the

endemic frequencies of MHC-I protein variants. To analyze this relationship, an

MHC-I epitope prediction algorithm, coined EnsembleMHC, was developed. Our

algorithm was shown to have high accuracy in identifying viral peptides likely to

produce a CD8+ T cell based immune response. The application of this algorithm

revealed that certain MHC-I protein variants present more virus-derived peptides

than others, and countries enriched with these alleles experienced lower SARS-CoV-2

related deaths.

In the third Chapter, the integration of biophysical data and machine learning

was explored as a method of improving MHC-I peptide prediction. The identification

of MHC-I peptides capable of cell surface presentation is crucial for the further

development of antiviral and anticancer immunotherapies. However, the extremely

polymorphic nature of the MHC-I protein makes the experimental determination of

MHC-I binding motifs difficult, excluding many populations from such therapies. To

combat this, a machine learning algorithm, called HLA-Inception, was developed that

predicts the peptide binding motifs of 5,821 different MHC-I alleles using only the

electrostatic environment of the MHC-I binding pocket. HLA-Inception was found to

be both accurate and fast, out competing current state-of-the-art MHC-I prediction

algorithms.

Finally, in the fourth chapter, the protein bending dynamics of the NL63 spike

protein was investigated. Using a combination of high quality CryoET data and exten-

sive physics-based simulations, a full length protein model recapitulating experimental

bending dynamics was built. The model was then used to investigate the impact of
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stalk glycan modification on bending profiles. The stalk glycans, and in particular

the glycan found at asparagine 1242, produce significant changes on bending after

removal. Further experimental analysis revealed that removal of the N1242 glycan

significantly reduced infectivity, identifying a new potential therapeutic target for

coronavirus vaccines.

In summary, the work in this dissertation describes the development of compu-

tational immunology models that transcend multiple paradigms. We show how the

application of molecular modeling and biophysical techniques, augmented by inno-

vations in statistical inference can serve as a credible and empirically viable tool for

driving biomedical discoveries.
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Chapter 2

TOTAL PREDICTED MHC-I EPITOPE LOAD IS INVERSELY ASSOCIATED

WITH POPULATION MORTALITY FROM SARS-COV-2

This chapter is published:

Wilson, E.A., Hirneise, G., Singharoy, A. and Anderson, K.S., 2021. Total predicted

MHC-I epitope load is inversely associated with population mortality from

SARS-CoV-2. Cell Reports Medicine, 2(3), p.100221.

2.1 Abstract

Polymorphisms in MHC-I protein sequences across human populations significantly

impacts viral peptide binding capacity and thus alters T cell immunity to infection.

Consequently, allelic variants of the MHC-I protein have been found to be associated

with patient outcome to various viral infections, including SARS-CoV. In the present

study, we assess the relationship between observed SARS-CoV-2 population mortality

and the predicted viral binding capacities of 52 common MHC-I alleles. Potential

SARS-CoV-2 MHC-I peptides were identified using a consensus MHC-I binding and

presentation prediction algorithm, called EnsembleMHC. Starting with nearly 3.5

million candidates, we resolved a few hundred highly probable MHC-I peptides. By

weighing individual MHC allele-specific SARS-CoV-2 binding capacity with popula-

tion frequency in 23 countries, we discover a strong inverse correlation between the

predicted population SARS-CoV-2 peptide binding capacity and observed mortality

rate. Our computations reveal that peptides derived from the structural proteins of

the virus produces a stronger association with observed mortality rate, highlighting

the importance of S, N, M, E proteins in driving productive immune responses. The
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correlation between epitope binding capacity and population mortality risk remains

robust across a range of socioeconomic and epidemiological factors. A combination of

binding capacity, number of deaths due to COPD complications, gender demographics.

and the proportions of the population that were over the age of 65 and overweight

offered the strongest determinant of at-risk populations. These results bring to light

how molecular changes in the MHC-I proteins may affect population-level outcomes

of viral infection.

2.2 Introduction

In December 2019, the novel coronavirus, SARS-CoV-2 was identified from a

cluster of cases of pneumonia in Wuhan, China (Zu et al., 2020; Li et al., 2020). With

over 73.1 million cases and over 1.6 million deaths, the viral spread has been declared

a global pandemic by the World Health Organization(Guo et al., 2020). Due to its

high rate of transmission and unpredictable severity, there is an immediate need for

information surrounding the adaptive immune response towards SARS-CoV-2.

A robust T cell response is integral for the clearance of coronaviruses, and generation

of lasting immunity(Channappanavar et al., 2014).The potential role of T cells for

coronavirus clearance has been supported by the identification of immunogenic CD8+

T cell epitopes in the S (Spike), N (Nucleocapsid), M (Membrane), and E (Envelope)

proteins(Janice Oh et al., 2012). Additionally, SARS-CoV specific CD8+ T cells

have been shown to provide long lasting immunity with memory CD8+ T cells being

detected up to 17 years post infection(Ng et al., 2016; Channappanavar et al., 2014;

Le Bert et al., 2020). The specifics of the T cell response to SARS-CoV-2 is still

evolving. However, a recent screening of SARS-CoV-2 peptides revealed a majority of

the CD8+ T cell immune response is targeted towards viral structural proteins (N, M,

S)(Grifoni et al., 2020).
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A successful CD8+ T cell response is contingent on the efficient presentation of viral

protein fragments by Major Histocompatibility Complex I (MHC-I) proteins. MHC-I

molecules bind and present peptides derived from endogenous proteins on the cell

surface for CD8+ T cell interrogation. The MHC-I protein is highly polymorphic, with

amino acid substitutions within the peptide binding groove drastically altering the

composition of presented peptides. Consequently, the influence of MHC genotype to

shape patient outcome has been well studied in the context of viral infections(Matzaraki

et al., 2017). For coronaviruses, there have been several studies of MHC association with

disease susceptibility. A study of a Taiwanese and Hong Kong cohort of patients with

SARS-CoV found that the MHC-I alleles HLA-B*07:03 and HLA-B*46:01 were linked

to increased susceptibility while HLA-Cw*15:02 was linked to increased resistance

(Lin et al., 2003; Wang et al., 2011; Ng et al., 2004). However, some of the reported

associations did not remain after statistical correction, and it is still unclear if MHC-

outcome associations reported for SARS-CoV are applicable to SARS-CoV-2(Ng et al.,

2010; Sanchez-Mazas, 2020). Recently, a comprehensive prediction of SARS-CoV-2

MHC-I peptides indicated a relative depletion of high affinity binding peptides for

HLA-B*46:01, hinting at a similar association profile in SARS-CoV-2(Nguyen et al.,

2020). More importantly, it remains elusive if such a depletion of putative high affinity

peptides will impact patient outcome to SARS-CoV-2 infections.

The lack of large scale genomic data linking individual MHC genotype and outcome

from SARS-CoV-2 infections precludes a similar analysis as performed for SARS-

CoV(Lin et al., 2003; Wang et al., 2011; Ng et al., 2004). Therefore, we endeavored

to assess the relationship between the predicted SARS-CoV-2 binding capacity of a

population and the observed SARS-CoV-2 mortality rate. However, current MHC-I

prediction algorithms have been characterized by a high false positive rate partic-

ularly when predicting peptides that are naturally presented(Zhao and Sher, 2018;
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Sarkizova et al., 2020). To mitigate false positives and identify the highest confidence

SARS-CoV-2 MHC-I peptides, we developed a consensus prediction algorithm, coined

EnsembleMHC, and predicted MHC-I peptides for a panel of 52 common MHC-I alle-

les(González-Galarza et al., 2015). This prediction workflow integrates seven different

algorithms that have been parameterized on high-quality mass spectrometry data and

provides a confidence level for each identified peptide(O’Donnell et al., 2020; Jurtz

et al., 2017; Andreatta and Nielsen, 2016; Bassani-Sternberg et al., 2017; Zhang et al.,

2009; Rasmussen et al., 2016; Sarkizova et al., 2020). The distribution of the number

of high-confidence peptides assigned to each allele was used to assess a country-specific

SARS-CoV-2 binding capacity, called the EnsembleMHC population score, for 23

countries (for selection criteria, please refer to the Methods). This score was derived

by weighing the individual binding capacities of the 52 MHC-I alleles by their endemic

frequencies. We observe a strong inverse correlation between the EnsembleMHC

population score and observed population SARS-CoV-2 mortality. Furthermore, the

correlation is shown to become stronger when considering EnsembleMHC population

scores based solely on SARS-CoV-2 structural proteins, underlining their potential

importance in driving a robust immune response. Based on their predicted binding

affinity, expression, and sequence conservation in viral isolates, we identified 108

peptides derived from SARS-CoV-2 structural proteins that are high-value targets for

CD8+ T cell vaccine development.
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Figure 2.1: Application of the EnsembleMHC prediction algorithm. The
EnsembleMHC prediction algorithm was used to recover MHC-I peptides from 10
tumor sample data sets. A. The average precision and recall for EnsembleMHC
and each component algorithm was calculated across all 10 tumor samples. Peptide
identification by each algorithm was based on commonly used restrictive (strong)
or permissive (strong and weak) binding affinity thresholds (inset table). B. The
F1 score of each algorithm was calculated for all tumor samples. Each algorithm
is grouped into 1 of 4 categories: binding affinity represented by percentile score
(blue), binding affinity represented by predicted peptide IC50 value (green), MHC-I
presentation prediction (orange), and EnsembleMHC (brown). The heatmap colors
indicate the value of the observed F1 score (color bar) for a given algorithm (y-axis)
on a particular data set (x-axis). Warmer colors indicate higher F1 scores, and cooler
colors indicate lower F1 scores. The average F1 score for each algorithm across all
samples is shown in the marginal bar plot. C. The schematic for the application of
the EnsembleMHC predication algorithm to identify SARS-CoV-2 MHC-I peptides.
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2.3 Results

2.3.1 EnsembleMHC Workflow Offers More Precise MHC-I Presentation Predictions

than Individual Algorithms.

The accurate assessment of differences in SARS-CoV-2 binding capacities across

MHC-I allelic variants requires the isolation of MHC-I peptides with a high probability

of being presented. EnsembleMHC provides the requisite precision through the use of

allele and algorithm-specific score thresholds and peptide confidence assignment.

MHC-I alleles substantially vary in both peptide binding repertoire size and median

binding affinity(Paul et al., 2013). The EnsembleMHC workflow addresses this inter-

allele variation by identifying peptides based on MHC allele and algorithm-specific

binding affinity thresholds. These thresholds were set by benchmarking each of the

seven component algorithms against 52 single MHC allele peptide data sets(Sarkizova

et al., 2020). Each data set consists of mass spectrometry-confirmed MHC-I peptides

that have been naturally presented by a model cell line expressing one of the 52 select

MHC-I alleles. These experimentally validated peptides, denoted target peptides, were

supplemented with a 100-fold excess of decoy peptides. Decoys were generated by

randomly sampling peptides that were not detected by mass spectrometry, but were

derived from the same protein sources as a detected target peptide. Algorithm and

allele-specific binding affinity thresholds were then identified through the independent

application of each component algorithm to all MHC allele data sets. For every

data set and algorithm combination, the target and decoy peptides were ranked by

predicted binding affinity to the MHC allele defined by that data set. Then, an

algorithm-specific binding affinity threshold was set to the minimum score needed

to isolated the highest affinity peptides commensurate to 50% of the observed allele

repertoire size (Methods, Figure A.1). The observed allele repertoire size was
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defined as the total number of target peptides within a given single MHC allele data

set. Therefore, if a data set had 1000 target peptides, the top 500 highest affinity

peptides would be selected, and the algorithm-specific threshold would be set to the

predicted binding affinity of the 500th peptide. This parameterization method resulted

in the generation of a customized set of allele and algorithm-specific binding affinity

thresholds in which an expected quantity of peptides can be recovered.

Consensus MHC-I prediction typically require a method for combining outputs from

each individual component algorithm into a composite score. This composite score

is then used for peptide selection. EnsembleMHC identifies high-confidence peptides

based on filtering by a quantity called peptideFDR (Methods Eq. 2.1). During the

identification of allele and algorithm-specific binding affinity thresholds, the empirical

false detection rate (FDR) of each algorithm was calculated. This calculation was

based on the proportion of target to decoy peptides isolated by the algorithm specific

binding affinity threshold. A peptideFDR is then assigned to each individual peptide

by taking the product of the empirical FDRs of each algorithm that identified that

peptide for the same MHC-I allele. Analysis of the parameterization process revealed

that the overall performance of each included algorithms was comparable, and there

was diversity in individual peptide calls by each algorithm, supporting an integrated

approach to peptide confidence assessment (Figure A.1). Peptide identification by

EnsembleMHC was performed by selecting all peptides with a peptideFDR of less than

or equal to 5%(Nichols, 2007).

The efficacy of peptideFDR as a filtering metric was determined through the predic-

tion of naturally presented MHC-I peptides derived from ten tumor samples(Sarkizova

et al., 2020) (Figure 2.1). Similar to the single MHC allele data sets, each tumor

sample data set consisted of mass spectrometry-detected target peptides and a 100-fold

excess of decoy peptides. The relative performance of EnsembleMHC was assessed
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via comparison with individual component algorithms. Peptide identification by each

algorithm was based on a restrictive or permissive binding affinity thresholds (Figure

2.1A (inset table)). For the component algorithms, the permissive and restrictive

thresholds correspond to commonly used binding affinity cutoffs for the identification

of weak and strong binders, respectively(Nielsen et al., 2020). The performance of

each algorithm on the ten data sets was evaluated through the calculation of the

empirical precision, recall, and F1 score.

The average precision and recall of each algorithm across all tumor samples demon-

strated an inverse relationship (Figure 2.1A). In general, restrictive binding affinity

thresholds produced higher precision at the cost of poorer recall. When comparing

the precision of each algorithm at restrictive thresholds, EnsembleMHC demonstrated

a 3.4-fold improvement over the median precision of individual component algorithms.

EnsembleMHC also produced the highest F1 score with an average of 0.51 followed by

mhcflurry-presentation with an F1 score of 0.45, both of which are 1.5-2 fold higher

than the rest of the algorithms (Figure 2.1B). This result was shown to be robust

across a range of peptideFDR cutoff thresholds (Figure A.1) and alternative perfor-

mance metrics (Figure A.1). Furthermore, EnsembleMHC demonstrated the ability

to more efficiently prioritize peptides with experimentally established immunogenicity

from the Hepatitis-C genome polyprotein, the Dengue virus genome polyprotein, and

the HIV-1 POL-GAG protein (Figure A.1). Taken together, these results demon-

strate the enhanced precision of EnsembleMHC over individual component algorithms

when using common binding affinity thresholds.

In summary, the EnsembleMHC workflow offers two desirable features. First, it

determines allele-specific binding affinity thresholds for each algorithm at which a

known quantity of peptides are expected to be successfully presented on the cell surface.

Second, it assigns a confidence level to each peptide call made by each algorithm.
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Together, these traits enhance the ability to identify MHC-I peptides with a high

probability of successful cell surface presentation.

EnsembleMHC was used to identify MHC-I peptides for the SARS-CoV-2 virus

(Figure 2.1C). The resulting identification of high-confidence SARS-CoV-2 peptides

allows for the characterization of alleles that are enriched or depleted for predicted

MHC-I peptides. The resulting distribution of allele-specific SARS-CoV-2 binding

capacities will then be weighed by the normalized frequencies of the 52 alleles (Figure

A.2, Methods Eq. 2.2-2.3) in 23 countries to determine the population-specific

SARS-CoV-2 binding capacity or EnsembleMHC population score (Methods Eq.

2.4). The potential impact of varying population SARS-CoV-2 binding capacities on

disease outcome can then be assessed by correlating population SARS-CoV-2 mortality

rates with EnsembleMHC population scores. Below, we use EnsembleMHC population

scores to stratify countries based on their mortality risks.

2.3.2 The MHC-I Peptide-Allele Distribution for SARS-CoV-2 Structural Proteins

Is Especially Disproportionate.

MHC-I peptides derived from the SARS-CoV-2 proteome were predicted and

prioritized using EnsembleMHC. A total of 67,207 potential 8-14mer viral peptides

were evaluated for each of the considered MHC-I alleles. After filtering the pool of

candidate peptides at the 5% peptideFDR threshold, the number of potential peptides

was reduced from 3.49 Million to 971 (658 unique peptides) (Figure A.3, Table

A.1). Illustrated in Figure 2.2A, the viral peptide-MHC allele (or peptide-allele)

distribution for high-confidence SARS-CoV-2 peptides was determined by assigning

the identified peptides to their predicted MHC-I alleles. There was a median of 16

peptides per allele with a maximum of 47 peptides (HLA-A*24:02), a minimum of 3

peptides (HLA-A*02:05), and an interquartile range (IQR) of 16 peptides. Quality
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Figure 2.2: Prediction of SARS-CoV-2 peptides across 52 common MHC-I
alleles. A-B. The EnsembleMHC workflow was used to predict MHC-I peptides for
52 alleles from the entire SARS-CoV-2 proteome or specifically SARS-CoV-2 structural
proteins (envelope, spike, nucleocapsid, and membrane). C. The peptide fractions for
both protein sets were calculated by dividing the number of peptides assigned to a
given allele by the total number of identified peptides for that protein set. Each line
indicates the change in peptide fraction observed by a given allele when comparing
the viral peptide-MHC allele distribution for the full SARS-CoV-2 proteome proteome
or structural proteins. Alleles showing a change of greater than the median peptide
fraction, X̃ = 0.015, are highlighted in color. For the performance of EnsmebleMHC
at a range of different peptideFDR cutoff thresholds, refer to Figure A.1
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assurance of the predicted peptides was performed by computing the peptide length

frequencies and binding motifs. The predicted peptides were found to adhere to

expected MHC-I peptide lengths(Trolle et al., 2016) with 78% of the peptides being

9 amino acids in length, 13% being 10 amino acids in length, and 8% of peptides

accounting for the remaining lengths (Figure A.3). Similarly, logo plots generated

from predicted peptides were found to closely reflect reference peptide binding motifs

for considered alleles(Rapin et al., 2010)(Figure A.3). Overall, the EnsembleMHC

prediction platform demonstrated the ability to isolate a short list of potential peptides

which adhere to expected MHC-I peptide characteristics.

The high expression, relative conservation, and reduced search space of SARS-

CoV-2 structural proteins (S, E, M, and N) makes MHC-I binding peptides derived

from these proteins high-value targets for CD8+ T cell-based vaccine development.

Figure 2.2B describes the peptide-allele distribution for predicted MHC-I peptides

originating from the four structural proteins. This analysis markedly reduces the

number of considered peptides from 658 to 108 (Table A.1). The median number of

predicted SARS-CoV-2 structural peptides assigned to each MHC-I allele was found to

be 2 with a maximum of 12 peptides (HLA-B*53:01), a minimum of 0 (HLA-B*15:02,

B*35:03,B*38:01,C*03:03,C*15:02), and a IQR of 3 peptides. Analysis of the molecular

source of the identified SARS-CoV-2 structural protein peptides revealed that they

originate from enriched regions that are highly conserved (Figure A.4AB). This

indicates that such peptides would be good candidates for targeted therapies as they

are unlikely to be disrupted by mutation, and several peptides can be targeted using

minimal stretches of the source protein. Altogether, consideration of MHC-I peptides

derived only from SARS-CoV-2 structural proteins reduces the number of potential

peptides to a condensed set of high-value targets that is amenable to experimental

validation.
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Both the peptide-allele distributions, namely the ones derived from the full SARS-

CoV-2 proteome and those from the structural proteins, were found to significantly

deviate from an even distribution of predicted peptides as apparent in figure 2.2AB

and reflected in the Kolmogorov–Smirnov test p-values, full proteome = 5.673e-07

and structural proteins = 1.45e-02). These results support a potential allele-specific

hierarchy for SARS-CoV-2 peptide presentation.

To determine if the MHC-I binding capacity hierarchy was consistent between

the full SARS-CoV-2 proteome and SARS-CoV-2 structural proteins, the relative

changes in the observed peptide fraction (number of peptides assigned to an allele

/ total number of peptides) between the two protein sets was visualized (Figure

2.2C). Six alleles demonstrated changes greater than the median peptide fraction

(X̃ = 0.015) when comparing the two protein sets. The greatest decrease in peptide

fraction was observed for A*25:01 (1.52 times the median peptide fraction), and the

greatest increase was seen with B*53:01 (2.38 times the median peptide fraction).

Furthermore, the resulting SARS-CoV-2 structural protein peptide-allele distribution

was found to be more variable than the distribution derived from the full SARS-CoV-2

proteome with a quartile coefficient of dispersion of 0.6 compared to 0.44, respectively.

This indicates that peptides derived from SARS-CoV-2 structural proteins experience

larger relative inter-allele binding capacity discrepancies than peptides derived from

the the full SARS-CoV-2 proteome. Together, these results indicate a potential MHC-

I binding capacity hierarchy that is more pronounced for SARS-CoV-2 structural

proteins.
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Figure 2.3: Predicted total epitope load within a population inversely
correlates with mortality. A. SARS-CoV-2 structural protein-based EnsembleMHC
population scores were assigned to 23 countries (Table A.2), and correlated with
observed mortality rate (deaths per million). The correlation coefficient is presented
as a function of time. The Spearman’s rank correlation coefficient between structural
protein EMP score and SARS-CoV-2 mortality rate was calculated at every day
following day 0 for each of the minimum death thresholds (methods for correlation
and temporal control can be seen in Methods section). Correlations that were shown
to be statistically significant (p-value ≤ 0.05) are indicated by a red point. B. The
correlations between the structural protein EnsembleMHC population score (y-axis)
and deaths per million (x-axis) were shown for countries meeting the 50 minimum
deaths threshold at days 1, 6, 12, 17, and 22. Correlation coefficients and p-values
were assigned using Spearman’s rank correlation and the shaded region signifies the
95% confidence interval. Red points indicate a country that has an EnsembleMHC
population rank less than the median EnsembleMHC population rank of all countries
at that day, and blue points indicate a country with an EnsembleMHC population rank
greater than the median EnsembleMHC population rank. C. The countries at each day
were partitioned into a upper or lower half based on the median observed EnsembleMHC
population rank. Therefore, countries with an EnsembleMHC population rank greater
than the median group EnsembleMHC population score were assigned to the upper
half (red), and the remaining countries were assigned to the lower half (blue). p-values
were determined by Mann-Whitney U test.
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2.3.3 Total Population Epitope Load Inversely Correlates with Reported Death

Rates from SARS-CoV-2.

The documented importance of MHC-I peptides derived from SARS-CoV-2 struc-

tural proteins(Grifoni et al., 2020), coupled with the observed MHC allele binding

capacity hierarchy and the high immunogenicity rate of SARS-CoV-2 structural

protein MHC-I peptides identified by EnsembleMHC (95% peptides tested in vitro,

Figure A.5), prompts a potential relationship between MHC-I genotype and infection

outcome. However, due to the absence of MHC genotype data for SARS-CoV-2

patients, we assessed this relationship at the population-level by correlating predicted

country-specific SARS-CoV-2 binding capacity (or EnsembleMHC population score)

with observed SARS-CoV-2 mortality.

EnsembleMHC population scores (EMP) were determined for 23 countries (Table

A.2) by weighing the individual binding capacities of 52 common MHC-I alleles

by their normalized endemic expression(González-Galarza et al., 2015) (Methods,

Figure A.2). This results in every country being assigned two separate EMP scores,

one calculated with respect to the 108 unique SARS-CoV-2 structural protein peptides

(structural protein EMP) and the other with respect to the 658 unique peptides derived

from the full SARS-CoV-2 proteome (full proteome EMP). The EMP score corresponds

to the average predicted SARS-CoV-2 binding capacity of a population. Therefore,

individuals in a country with a high EMP score would be expected, on average, to

present more SARS-CoV-2 peptides to CD8+ T cells than individuals from a country

with a low EMP score. The resulting EMP scores were then correlated with observed

SARS-CoV-2 mortality (deaths per million) as a function of time. Temporal variance

in community spread within the cohort of countries was corrected by truncating the

SARS-CoV-2 mortality data set for each country to start after a certain minimum
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death threshold was met. For example, if the minimum death threshold was 50,

then day 0 would be when each country reported at least 50 deaths. The number

of countries included in each correlation decreases as the number of days increases

due to discrepancies in the length of time that each country met a given minimum

death threshold (Table A.3). Therefore, the correlation between EMP score and

SARS-CoV-2 mortality was only estimated at time points where there were at least

eight countries. The eight country threshold was chosen because it is the minimum

sample size needed to maintain sufficient power when detecting large effect sizes (ρ ¿

0.85). The strength of the relationship between EMP score and SARS-CoV-2 mortality

was determined using Spearman’s rank-order correlation (for details concerning the

choice of statistical tests, please refer to the Methods section). Accordingly, both

EMP scores and SARS-CoV-2 mortality data were converted into ascending ranks

with the lowest rank indicating the minimum value and the highest rank indicating

the maximum value. For instance, a country with an EMP score rank of 1 and death

per million rank of 23 would have the lowest predicted SARS-CoV-2 binding capacity

and the highest level of SARS-CoV-2-related mortality. Using the described paradigm,

the structural protein EMP score and the full proteome EMP score were correlated

with SARS-CoV-2-related deaths per million for 23 countries.

Total predicted population SARS-CoV-2 binding capacity exhibited a strong inverse

correlation with observed deaths per million. This relationship was found to be true for

correlations based on the structural protein EMP (Figure 2.3A) and full proteome

EMP (Figure A.5) scores with a mean effect size of -0.66 and -0.60, respectively.

Significance testing of the correlations produced by both EMP scores revealed that the

majority of reported correlations are statistically significant with 63% attaining a p-

value of ≤ 0.05. Correlations based on the structural protein EMP score demonstrated

a 24% higher proportion of statistically significant correlations compared to the full
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proteome EMP score (74% vs 51%). Furthermore, correlations for EMP scores based

on structural proteins produced narrower 95% confidence intervals (Figure A.5,

table A.3). Due to relatively low statistical power of the obtained correlations

(Figure A.6), the positive predictive value for each correlation (Methods, Eq. 2.5)

was calculated. The resulting proportions of correlations with a positive predictive

value of ≥ 95% were similar to the observed significant p-value proportions with 62%

of all measured correlations, 72% of structural protein EMP score correlations, and

52% full proteome EMP score correlations (Figure A.5). The similar proportions

of significant p-values and PPVs supports that an overall true association is being

captured. Furthermore, analysis of similar sized peptide sets sampled from the full

SARS-CoV-2 proteome revealed that the observed distinction between the correlations

produced by the two protein groups are unlikely to be due to differences in peptide

set sizes (Figure A.7)

Finally, the reported correlations did not remain after randomizing the allele

assignment of predicted peptides prior to peptideFDR filtering (Figure A.7), through

the use of any individual algorithm (Figure A.7). This indicates that the observed

relationship is contingent on the high-confidence peptide-allele distribution produced

by the EnsembleMHC prediction algorithm. Altogether, these data demonstrate that

the MHC-I allele hierarchy characterized by EnsembleMHC is inversely associated

with SARS-CoV-2 population mortality, and that the relationship becomes stronger

when considering only the presentation of SARS-CoV-2 structural proteins.

The ability to use structural protein EMP score to identify high and low risk

populations was assessed using the median minimum death threshold (50 deaths)

at evenly spaced time points (Figure 2.3A, squares). All correlations, with the

exception of day 1, were found to be significant with an average effect size of -0.71

(Figure 2.3B). Next, the countries at each day were partitioned into a high or
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low group based on whether their assigned EMP score was higher or lower than the

median observed EMP score (Figure 2.3C). The resulting grouping demonstrated a

statistically significant difference in the median deaths per million between countries

with low structural protein EMP score and countries with high structural protein

EMP scores. Additionally, it was observed that deaths per million increased much

more rapidly in countries with low structural protein EMP scores. Taken together,

these results indicate that structural protein EMP score may be useful for assessing

population risk from SARS-CoV-2 infections.

In summary, we make several important observations. First, there is a strong

inverse correlation between predicted population SARS-CoV-2 binding capacity and

observed deaths per million. This finding suggests that outcome to SARS-CoV-2 may

be tied to total epitope load. Second, the correlation between predicted epitope load

and population mortality is stronger for SARS-CoV-2 structural MHC-I peptides.

This suggests that CD8+ T cell-mediated immune response maybe primarily driven by

recognition of epitopes derived from these proteins, a finding supported by recent T

cell epitope mapping of SARS-CoV-2(Grifoni et al., 2020). Finally, the EnsembleMHC

population score can separate countries within the considered cohort into high or low

risk populations.

2.3.4 Structural Protein EMP Score Correlates Better with Population Outcome

than Identified Individual Risk Factors.

Recent large scale patient studies have identified several socioeconomic and

health-related factors associated with increased risk of death from SARS-CoV-2

infections(Williamson et al., 2020; de Lusignan et al., 2020). To delineate the relative

importance of the structural protein EMP score as a SARS-CoV-2 severity descriptor,

12 additional risk factors were assessed for their ability to model population level
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Figure 2.4: Analysis of other SARS-CoV-2 covariates with observed SARS-
CoV-2 population mortality and development of an integrative model.
A. 12 covariates associated with SARS-CoV-2 mortality on the individual patent
level were assessed for correlation with population level mortality (table A.4) .
The correlation of each country-level covariate was determined at each time point
after a minimum death threshold was met (line color). The x-axis represents the
number of days (normalized) following when a minimum death threshold was met,
and the y-axis indicates the observed effect size for that covariate at a given time
point. Correlations achieving statistical significance are colored with a red dot. B.
All possible combinations of covariates were used to fit a linear model. The top 10
models, ranked by median adjusted R2 (red bars), were identified (B). The proportion
of regressions performed by that model that were found to be statistically significant
(F-test 0.05) are represented by the blue bars.

SARS-CoV-2 outcome in 21 countries (Table A.4).

Overall, the structural protein EMP scores produced a significantly stronger as-

sociation with population SARS-CoV-2 mortality compared to other 12 descriptors

(Figure 2.4A). While various effect size trends were observed, all additional covariates
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failed to produce statistically significant correlations. To determine if the modeling of

SARS-CoV-2 mortality rate could be improved by the combination of single socioeco-

nomic or health-related risk factors with structural protein EMP scores, a set of linear

models consisting of either a single risk factor (single feature model) or that factor

combined with structural protein EMP scores (combination model) were generated for

every time point across each minimum death threshold (Methods). Following model

generation, the adjusted coefficient of determination (R2) and significance level of each

individual model was extracted and aggregated by dependent variable (Figure A.8).

Single feature models were characterized by low R2 (x̃ = −0.0262) while combination

models showed significant improvement (x̃ = .496). Similarly, combination models

demonstrated a substantially higher proportion of statistical significance (Figure

A.8B). To determine the set of features that produce the best fitting model, all

possible combinations of explanatory factors (risk factors and structural protein EMP

score) were tested. Subsequently, the top ten performing models, ranked by adjusted

R2 value, were selected for analysis (Figure 2.4B). The identified models were found

to be largely significant (average proportion of significant regressions = 72%) and

produce strong fits to the data (average R2 = 0.7).

Analysis of the dependent variables included in the top performing models revealed

that all models included structural protein EMP scores followed by deaths per million

due to complications from COPD (90% of models). The median model size included

3 features with a maximum of 5 features and a minimum of 2 features. The model

producing the best fit (median R2 = 0.791) consisted of structural protein EMP scores,

gender demographics, number of deaths due to COPD complications, the proportion of

the population over the age of 65, and proportion of the population that is overweight

(Figure 2.4B). All together, these results further indicate the robustness of the

structural protein EMP score as a population level risk descriptor and identifies a
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potential candidate model for predicting pandemic severity.

2.4 Discussion

In the present study, we uncover evidence supporting an association between popu-

lation SARS-CoV-2 infection outcome and MHC-I genotype. In line with related work

highlighting the relationship between total epitope load with HIV viral control(Rolland

et al., 2008), we arrive at a working model that MHC-I alleles presenting more unique

SARS-CoV-2 epitopes will be associated with lower mortality due to a higher number

of potential T cell targets. The SARS-CoV-2 binding capacities of 52 common MHC-I

alleles were assessed using the EnsembleMHC prediction platform. These predictions

identified 971 high-confidence MHC-I peptides out of a candidate pool of nearly 3.5

million. In agreement with other in silico studies(Nguyen et al., 2020; Campbell

et al., 2020), the assignment of the predicted peptides to their respective MHC-I

alleles revealed an uneven distribution in the number of peptides attributed to each

allele. We discovered that the MHC-I peptide-allele distribution originating from

the full SARS-CoV-2 proteome undergoes a notable rearrangement when considering

only peptides derived from viral structural proteins. The structural protein-specific

peptide-allele distribution produced a distinct hierarchy of allele binding capacities.

This finding has important clinical implications as a majority of SARS-CoV-2 specific

CD8+ T cell response is directed towards SARS-CoV-2 structural proteins(Grifoni

et al., 2020). Therefore, patients who express MHC-I alleles enriched with a large

potential repertoire of SARS-CoV-2 structural proteins peptides may benefit from a

broader CD8+ T cell immune response.

The variations in SARS-CoV-2 peptide-allele distributions were analyzed at epi-

demiological scale to track its impact on country-specific mortality. Each of the 23

countries were assigned a population SARS-CoV-2 binding capacity (or EnsembleMHC
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population score) based on the individual binding capacities of the selected 52 MHC-I

alleles weighted by their endemic population frequencies. This hierarchization revealed

a strong inverse correlation between EnsembleMHC population score and observed

population mortality, indicating that populations enriched with high SARS-CoV-2

binding capacity MHC-I alleles may be better protected. The correlation was shown

to be stronger when calculating the EnsembleMHC population scores with respect to

only structural proteins, reinforcing their relevance to viral immunity. Finally, The

molecular origin of the 108 predicted peptides specific to SARS-CoV-2 structural

proteins revealed that they are derived from enriched regions with a minimal predicted

impact from amino acid sequence polymorphisms.

The utility of structural protein EnsembleMHC population scores was further

supported by a multivariate analysis of additional SARS-CoV-2 risk factors. These

results emphasized the relative robustness of structural protein EMP scores as a

population risk assessment tool. Furthermore, a linear model based on the combination

of structural protein EMP scores and select population-level risk factors was identified

a potential candidate for a predictive model for pandemic severity. As such, the

incorporation of the structural protein EMP score in more sophisticated models will

likely improve epidemiological modeling of pandemic severity.

In order to achieve the highest level of accuracy in MHC-I predictions, the most

up-to-date versions of each component algorithm were used. However, this meant

that several of the algorithms (MHCflurry, netMHCpan-EL-4.0 and MixMHCpred)

were benchmarked against subsets of mass spectrometry data that were used in the

original training of these MHC-I prediction models. While this could result in an unfair

weight applied to these algorithms in peptideFDR calculation, the individual FDRs of

MHCflurry, netMHCpan-EL-4.0 and MixMHCpred were comparable to algorithms

without this advantage (Figure A.1). Furthermore, the peptide selection of SARS-
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CoV-2 peptides was shown to be highly cooperative within EnsembleMHC (Figure

A.3), and individual algorithms failed to replicate the strong observed correlations

between population binding capacity and observed SARS-CoV-2 mortality (Figure

A.7).

In the future, the presented model could be applied to predict individual T cell

capacity to mount a robust SARS-CoV-2 immune response. Evolutionary divergence

of patient MHC-I genotypes have shown to be predictive of response to immune

checkpoint therapy in cancer and HIV(Chowell et al., 2019; Arora et al., 2020).

However, confirmation will require large data sets associating individual patient

MHC-I genotype and outcome. Additionally, future use of EnsembleMHC to design

personalized T cell vaccines will require broad experimental validation of high scoring

peptides, since EnsembleMHC predicts MHC-I peptides with a high probability of

antigen presentation as opposed to directly predicting peptide immunogenicity. While

previous work has determined that a majority of successfully presented viral MHC-I

peptides are immunogenic(Croft et al., 2019), there is an expectation that some

presented SARS-CoV-2 MHC-I peptides will fail to produce an immune response.

The current work assessed the relative importance of the structural protein EMP

score with respect to other population-level risk factors (e.g. population incidence of

risk-associated commodities, healthcare infrastructure, age, sex), however, it should

be noted that the impacts these risk factors on patient outcome are likely to vary

significantly on a individual basis. Furthermore, other genetic determinants of severity

were not considered(Cao et al., 2020). Therefore, a complete understanding of the

relative importance of MHC genotype and SARS-CoV-2 presentation capacity on

patient outcome will require the integration individual patient genetic and clinical

data.

The versatility of the proposed model will be improved by the consideration of
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additional MHC-I alleles. To reduce the presence of confounding factors, Ensem-

bleMHC was parameterized on only a subset of common MHC-I alleles that had strong

existing experimental validation. While the selected MHC-I alleles are among some of

the most common, personalized risk assessment will require consideration of the full

patient MHC-I genotype. The continued mass spectrometry-based characterization

of MHC-I peptide binding motifs will help in this regard. However, due to the large

potential sequence space of the MHC-I protein, extension of this model will likely

require inference of binding motifs based on MHC variant clustering.

2.5 Methods

EnsembleMHC prediction workflow

EnsembleMHC component binding and processing prediction algorithms.

EnsembleMHC incorporates MHC-I binding and processing predictions from 7 publicly

available algorithms: MHCflurry-affinity-1.6.0(O’Donnell et al., 2020), MHCflurry-

presentation-1.6.0(O’Donnell et al., 2020), netMHC-4.0(Andreatta and Nielsen, 2016),

netMHCpan-4.0-EL(Jurtz et al., 2017), netMHCstabpan-1.0(Rasmussen et al., 2016),

PickPocket-1.1(Zhang et al., 2009) and, MixMHCpred-2.0.2(Bassani-Sternberg et al.,

2017). These algorithms were chosen based on the criteria of providing a free academic

license, bash command line integration, and demonstrated accuracy for predicting

SARS-CoV-2 MHC-I peptides with experimentally validated binding stability(Prachar

et al., 2020).

Each of the selected algorithms cover components of MHC-I binding and antigen

processing that roughly fall into two categories: ones based primarily on MHC-I

binding affinity predictions and others that model antigen presentation. To this end,

MHCflurry-affinity, netMHC, PickPocket, and netMHCstabpan predict binding affinity
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based on quantitative peptide binding affinity measurements. netMHCstabpan also

incorporates peptide-MHC stability measurements and PickPocket performs prediction

based on binding pocket structural extrapolation. To model the effects of antigen

presentation, MixMHCpred, netMHCpan-EL, and MHCflurry-presentation are trained

on naturally eluted MHC-I ligands. Additionally, MHCflurry-presentation incorporates

an antigen processing term.

Parameterization of EnsembleMHC using mass spectrometry data. En-

sembleMHC is able to achieve high levels of precision in peptide selection through

the use of allele and algorithm-specific binding affinity thresholds. These binding

affinity thresholds were identified through the parameterization of each algorithm on

high-quality mass spectrometry data sets(Sarkizova et al., 2020). The mass spectrom-

etry data sets used for algorithm parameterization were collected in the largest single

laboratory MS-based characterization of MHC-I peptides presented by single MHC

allele cell lines. These characteristics significantly reduces the number of artifacts

introduced by differences in peptide isolation methods, mass spectrometry acquisition,

and convolution of peptides in multiallelic cell lines. An overview of the EnsembleMHC

parameterization is provided in supplemental figures (Figure A.1).

Fifty-two common MHC-I alleles were selected for parameterization based on the

criteria that they were characterized in Sarkizova et al. (2020) data sets and that

all 7 component algorithms could perform peptide binding affinity predictions for

that allele. Each target peptide (observed in the MS data set) was paired with 100

length-matched randomly sampled decoy peptides (not observed in the MS data set)

derived from the same source proteins. If a protein was less than 100 amino acids in

length, then every potential peptide from that protein was extracted.

Each of the seven algorithms were independently applied to each of the 52 allele

28



data sets. For each allele data set, the minimum score threshold was determined

for each algorithm that recovered 50% of the allele repertoire size (the total number

of target peptides observed in the MS data set for that allele). Additionally, the

expected accuracy of each algorithm was assessed by calculating the observed false

detection rate (the fraction of identified peptides that were decoy peptides) using

the identified algorithm and allele specific scoring threshold. The parameterization

process was repeated 1000 times for each allele through bootstrap sampling of half of

the peptides in each single MHC allele data set. The final FDR and score threshold

for each algorithm at each allele was determined by taking the median value of both

quantities reported during bootstrap sampling.

Peptide confidence assessment. Peptide confidence is assigned by calculating the

peptideFDR. This quantity is defined as the product of the empirical FDRs of each

individual algorithm that detected a given peptide. The peptideFDR is calculated

using equation 1,

peptideFDR =
N∏

i=1,i ̸=ND

algorithmFDR
i (2.1)

, where N is the number of MHC-I binding and processing algorithms, ND represents

an algorithm that did not detect a given peptide, and algorithmFDR represents the

allele specific FDR of the Nth algorithm.

The peptideFDR represents the joint probability that all MHC-I binding and

processing algorithms that detected a particular peptide did so in error, and therefore

returns a probability of false detection. Unless otherwise stated, EnsembleMHC

selected peptides based on the criterion of a peptideFDR ≤ 5%.
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Application of EnsembleMHC to tumor cell line data

Tumor MHC-I peptide data sets. Ten tumor samples were obtained from the

Sarkizova et al. data sets. Tumor samples were selected for analyis if at least 50% of

the expressed MHC-I alleles for that sample were included in the 52 MHC-I alleles sup-

ported by EnsembleMHC. For each data set, decoy peptides were generated in a manner

identical to the method used for algorithm parameterization on single MHC allele data.

Tumor MHC-I peptide identification. Peptide identification by each algo-

rithm was based on restrictive or permissive binding affinities thresholds. These

thresholds correspond to commonly used score cutoffs for the identification of strong

binders (restrictive) or all binders (permissive). These thresholds are 0.5% (per-

centile rank) or 50nM (IC50 value) for strong binders, and 2% (percentile rank) or

500nM (IC50 value) for all binders. Due to the lack of recommend score thresholds for

MHCflurry-presentation, the raw presentation score was converted to a percentile score

by histogramming the presentation scores produced by 100,000 randomly generated

peptides.

Application of EnsembleMHC for the prediction of SARS-CoV-2 MHC-I peptides

SARS-CoV-2 reference sequence. MHC-I peptide predictions for the SARS-CoV-2

proteome were performed using the Wuhan-Hu-1(MN908947.3) reference sequence

(https://www.ncbi.nlm.nih.gov/genbank/sars-cov-2-seqs/). All potential 8-14mer pep-

tides (n= 67,207) were derived from the open reading frames in the reported proteome,

and each peptide was evaluated by the EnsembleMHC workflow.

SARS-CoV-2 polymorphism analysis and protein structure visualizations.
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Polymorphism analysis of SARS-CoV-2 structural proteins were performed using

102,148 full length protein sequences obtained from the COVIDep database(Ahmed

et al., 2020). Solved structures for the E (5X29) and S (6VXX) proteins (Berman

et al., 2000) and predicted structures for the M and N proteins(Zhang et al., 2020)

were visualized using VMD(Humphrey et al., 1996).

Application of EnsembleMHC to determine population SARS-CoV-2 binding capacity

The peptides identified by the EnsembleMHC workflow were used to assess the

SARS-CoV-2 population binding capacity by weighing individual MHC allele SARS-

CoV-2 binding capacities by regional expression (for a schematic representation see

Figure A.2).

Population-wide MHC-I frequency estimates by country. The selection

of countries included in the EnsembleMHC population binding capacity assessment

was based on several criteria regarding the underlying MHC-I allele data for that

country (Figure A.2). The MHC-I allele frequency data used in our model was

obtained from the Allele Frequency Net Database (AFND)(González-Galarza et al.,

2015), and frequencies were aggregated by country. However, the currently available

population-based MHC-I frequency data has specific limitations and variances, which

we have addressed as follows:

Quality of MHC data within countries. We define MHC-typing breadth as the diversity

of identified MHC-I alleles within a given country, and its depth as the ability to

accurately achieve 4-digit MHC-I genotype resolution. High variability was observed

in both the MHC-I genotyping breadth and depth (Figure A.2 inset). Consequently,

additional filter-measures were introduced to capture potential sources of variance
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within the analyzed cohort of countries. The thresholds for filtering the country-wide

MHC-I allele data were set based on meeting two inclusion criteria: 1) MHC geno-

typing of at least 1000 individuals have been performed in that population, avoiding

skewing of allele frequencies due to small sample size. 2) MHC-I allele frequency

data for at least 51 of the 52 (95%) MHC-I alleles for which the EnsembleMHC was

parameterized to predict, ensuring full power of the EnsembleMHC workflow.

Ethnic communities within countries. In instances where the MHC-I allele frequencies

would pertain to more than one community, the reported frequencies were counted

towards both contributing groups. For example, the MHC-I frequency data pertaining

to the Chinese minority in Germany would be factored into the population MHC-I

frequencies for both China and Germany. In doing so, this treatment resolves both

ancestral and demographic MHC-I allele frequencies.

Normalization of MHC allele frequency data. The focus of this work was

to uncover potential differences in SARS-CoV-2 MHC-I peptide presentation dynamics

induced by the 52 selected alleles within a population. Accordingly, the MHC-I allele

frequency data was carefully processed in order to maintain important differences in

the expression of selected alleles, while minimizing the effect of confounding variables.

The MHC-I allele frequency data for a given population was first filtered to the 52

selected alleles. These allele frequencies were then converted to the theoretical total

number of copies of that allele within the population (allele count) following

allele count = allelefreq × 2× n, (2.2)

where allelefreq is the observed allele frequency in a population and n is the population

sample size for which that allele frequency was measured. The allele count is then
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normalized with respect to the total allele count of selected 52 alleles within that

population using the following relationship

norm allele counti =
allele counti

52∑
i=1

allele counti

, (2.3)

where i is one of the 52 selected alleles. This normalization is required to overcome

the potential bias towards hidden alleles ( alleles that are either not well characterized

or not supported by EnsembleMHC) as would be seen using alternative allele fre-

quency accounting techniques (e.g. sample-weighted mean of selected allele frequencies

or normalization with respect to all observed alleles within a population (Figure

A.6)). The SARS-CoV-2 binding capacity of these hidden alleles cannot be accurately

determined using the EnsembleMHC workflow, and therefore important potential

relationships would be obscured.

EnsembleMHC population score. The predicted ability of a given population

to present SARS-CoV-2 derived peptides was assessed by calculating the Ensem-

bleMHC Population (EMP) score. After the MHC-I allele frequency data filtering

steps, 23 countries were included in the analysis. The calculation of the EnsembleMHC

population score is as follows

EMP score =

52∑
i=1

peptidefrac × norm allele counti

Nnorm allele count ̸=0

, (2.4)

where norm allele count is the observed normalized allele count for a given allele

in a population, Nnorm allele count ̸=0 is the number of the 52 select alleles detected in a

given population (range 51-52 alleles), and peptidefrac is the peptide fraction or the

fraction of total predicted peptides expected to be presented by that allele within the

total set of predicted peptides with a peptideFDR ≤ 5%.
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Death rate-presentation correlation. The correlation between the EMP score and

the observed deaths per million within the cohort of selected countries was calculated

as a function of time. SARS-Cov-2 data covering the time dependent global evolution

of the SARS-CoV-2 pandemic was obtained from Johns Hopkins University Center

for Systems Science and Engineering(Dong et al., 2020) covering the time frame of

January 22nd to April 9th. The temporal variations in occurrence of community

spread observed in different countries were accounted for by rescaling the time series

data relative to when a certain minimum death threshold was met in a country. This

analysis was performed for minimum death thresholds of 1-100 total deaths by day

0, and correlations were calculated at each day sequentially following day 0 until

there were fewer than 8 countries remaining at that time point. The upper-limit of

100-deaths was chosen to ensure availability of death-rate data on at least 50% of

the countries for a minimum of 7 days starting following day 0. Additionally, a steep

decline in average statistical power is observed with day 1 death thresholds greater

than 100 deaths (Figure A.6).

The time death correlation was computed using Spearman’s rank correlation

coefficient (two-sided). This method was chosen due to the small sample size and

non-normality of the underlying data (Figure A.6). The reported correlations of

EMP score and deaths per million using other correlation methods can be seen in

appendix A figure A.6.

The low statistical power for some of the obtained correlations were addressed by

calculating the Positive Predictive Value (PPV) of all correlations using the following

equation(Button et al., 2013)

PPV =
1− β ×R

1− β ×R + α
, (2.5)
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where 1− β is the statistical power of a given correlation, R is the pre-study odds,

and α is the significance level. A PPV value of ≥ 95% is analogous to a p value of

≤ 0.05. Due to an unknown pre-study odd (probability that probed effect is truly

non-null), R was set to 1 in the reported correlations. The proportion of reported

correlations with a PPV of 95% at different R values can be seen in appendix A figure

A.6. The significance of partitioning high risk and low risk countries based on median

EMP score was determined using Mann-Whitney U-test. Significance values were

corrected for multiple tests using the Benjamini-Hochberg procedure(Benjamini and

Hochberg, 1995).

Sub-sampling of peptides from the Full SARS-CoV-2 proteome. 108 unique

peptides, derived from the Full SARS-CoV-2 proteome and passing the 5% peptideFDR

filter, were randomly sampled. Then, the time series EMP score - death per million

correlation analysis used to generate Figure 2.3 was applied to each sampled peptide

set. The sub-sampling procedure was repeated for 1,000 iterations (Figure A.7A).

To quantitatively describe the similarity of the distributions, the Kullback-Leibler

divergence (KLD), a measure of divergence between two probability distributions,

was calculated for the correlation distribution of each sub-sample iteration relative to

either the correlation distribution of the Full SARS-CoV-2 proteome or SARS-CoV-2

structural proteins (Figure A.7B).

Analysis of additional SARS-CoV-2 risk factors

Additional SARS-CoV-2 risk factors. Twelve potential SARS-CoV-2 risk factors

(table A.4) were selected for analysis. Country-specific data for each risk factor was

obtained from the Global Health Observatory data repository provided by the World

Health Organization (https://apps.who.int/gho/data/node.main). Countries were
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selected for analysis based on the criteria of having reported data in the WHO data

sets and inclusion in the set of 23 countries for which EnsembleMHC population scores

were assigned (table A.4A). Data regrading the total number of noncommunicable

disease-related deaths (Cardiovascular disease, Chronic obstructive pulmonary disease,

and Diabetes mellitus) were converted to deaths per million.

Correlation of additional risk factors with observed deaths per million.

Correlation analysis of each additional factor was carried out in a similar manner

to that of the EnsembleMHC population score. In short, Spearman’s correlation

coefficient between each individual factor and observed deaths per million was esti-

mated as a function of time from when a specified minimum death threshold was met

(Figure 2.4). The significance level was set to p ≤ 0.05 and significant PPV was set

to PPV ≥ 0.95 (eq 2.5).

Linear models of SARS-CoV-2 mortality. For the single and combination

models, individual linear models were constructed for each considered death threshold

as a function of time (similar to the univariate correlation analysis). Each model

consisted of 1 (a single socioeconomic or health-related risk factor) or 2 (a combination

of 1 risk factor and structural protein EMP score) dependent variables and deaths per

million as the independent variable. The adjusted R2 value and statistical significance

of the model (F-test) were then extracted from each individual model and aggregated

by dependent variable (Figure 2.4, Figure A.8).

The best performing models were determined by assessing all possible combinations

of factors including structural protein EMP score. This resulted in the consideration

of 4,083 different linear models. The top performing models were then selected by

ranking each model by median adjusted R2.
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Code and data availability.

All data analysis and statistical tests were performed using the R Statistical Computing

Environment v.3.6.0 (http://www.r-project.org). Data sets and example code are

available at https://github.com/eawilson-CompBio/EnsembleMHC-Covid.git

37



Chapter 3

HLA-INCEPTION: A STRUCTURE-BASED MHC-I BINDING MOTIF

PREDICTION ALGORITHM

3.1 Abstract

The ability to accurately identify peptide ligands for a given major histocompatibil-

ity complex class I (MHC-I) molecule has immense value for targeted anticancer and

antiviral therapeutics. However, the highly polymorphic nature of the MHC-I protein

makes universal prediction of peptide ligands challenging due to lack of experimental

data describing most MHC-I variants. To address this challenge, we have developed

a deep convolutional neural network, HLA-Inception, capable of predicting MHC-I

peptide binding motifs using biophysical properties of the MHC-I binding pocket. By

approaching this problem from a 3-dimensional perspective, we can fully consider

the impact of sidechain arrangement and topology on peptide binding, a feature not

inherently captured by the popular protein sequence-based MHC-I prediction methods.

Through a combination of molecular modeling and simulation, 5,821 MHC-I alleles

were modeled, providing extensive coverage of all human populations. The topology

and interaction forces within the MHC-I binding pocket were accounted for by solving

the electrostatic potential near the surface of the protein. HLA-Inception was then

trained on all MHC-I alleles with known peptide binding motifs and applied to the

full set of MHC-I models. Predicted peptide binding motifs fell into distinct and

well-defined clusters, which maintained disease associations. We demonstrate that the

predicted MHC-I binding motifs can be used for MHC-I ligand prediction, and are more

generalizable than sequence-based methods. The scores generated by HLA-Inception

38



are strongly correlated with quantitative MHC-I binding data, indicating predicted

peptides can be ranked. Finally, we show that HLA-inception has a higher precision

than the current state-of-the-art models when predicting naturally presented MHC-I

ligands.

3.2 Introduction

The major histocompatibility complex I (MHC-I) protein plays an integral role in

permitting CD8+ T cell based immune surveillance of host cells. As such, this protein

complex, and related pathways, have been directly implicated in the successful viral

clearance and tumor rejection. The MHC-I protein drives this process by presenting

endogenous protein fragments on the cell surface for interaction with CD8+ T cells via

T cell receptors(Rock et al., 2016). The MHC-I processing and presentation pathway

has the ability to present peptides from virtually any expressed cytosolic protein, and

as such, grants an unprecedented view into intracellular protein production. The

MHC-I protein cannocially binds peptides that are 8-14 amino acids(Trolle et al., 2016)

in length with binding being mainly driven by key interactions between peptide ligand

and binding pockets within MHC-I binding cleft(Garrett et al., 1989; Nguyen et al.,

2021). The peptide ligand residues that primarily drive this interaction (typically

position 2 and the C-terminal residue of binding peptides) are often referred to anchor

positions, and have highly conserved amino acids identities in peptides that are capable

of stable binding. Therefore, peptides that bind to a given MHC-I variant will typically

exhibit an overall peptide binding motif. Once presented on the cell surface, the

peptide-loaded MHC-I complex is able to interact with T cell receptors expressed on

circulating CD8+ T cells. Stably bound peptide ligands that are sufficiently diverged

from naturally presented host peptides, such as peptides derived from viral or mutated

proteins, can trigger an immune reaction(Sundberg et al., 2007). The cell specific
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nature of MHC-I driven immune responses is partly responsible for some of the

most remarkable anticancer immunotherapies(Leidner et al., 2022; Zacharakis et al.,

2018). However, such therapies rely on the ability to identify peptide targets from

an antigen of interest. While recent developments of high throughput techniques

to rapidly solve tumor-associated immunopeptidomes have allowed for experimental

verification of tumor associated MHC-I targets(Chong et al., 2018; Lan Zhang et al.,

2020), the costs are still prohibitive for any clinical application. Therefore, in silico

methods are commonly used to identify potential MHC-I peptides from antigens of

interest(O’Donnell et al., 2020; Bassani-Sternberg et al., 2017; Lan Zhang et al., 2020;

Reynisson et al., 2020).

The major obstacle to MHC-I prediction is the significant genetic diversity of

the MHC-I protein in the human population. The MHC-I protein is one of the

most polymorphic proteins in the human genome with over 24,000 known sequence

variations(Robinson et al., 2020). This can prove to be a formidable challenge as

even single point mutations in the binding pocket can lead to altered MHC-I peptide

binding motifs(Parham et al., 2018). In vitro binding experiments(Peters et al.,

2006) and mass spectrometry-based profiling of cell lines(Lan Zhang et al., 2020)

or tumors(Bassani-Sternberg et al., 2016) have provided crucial data for training

MHC-I peptide prediction algorithms. However, due to both the size of the MHC

allele space and the costs associated with such experiments, there are currently

only public datasets describing the binding motifs of 205 alleles(Vita et al., 2019).

The sequence diversity of the MHC-I protein was originally addressed through the

definition of MHC-I “supertypes” or clusters of MHC-I alleles assumed to produce

similar MHC-I binding motifs(Sidney et al., 2008). Recently, this diversity has been

tackled through the development of machine learning algorithms that perform pan-

allele predictions(O’Donnell et al., 2020; Bassani-Sternberg et al., 2017; Lan Zhang
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et al., 2020; Reynisson et al., 2020). In order to extrapolate to all alleles, these

methods rely on the amino acid identity of key positions within the MHC-I binding

pocket to infer the binding specificity of unresolved alleles(Nielsen et al., 2007). While

sequence-based methods are effective, they are sensitive to sequence variations. This

sensitivity can be problematic as changes in sequence are not necessarily commensurate

to significant changes in the biochemical properties. Attempts to address this issue

have involved numerically encoding amino acids with biochecmial properties such

as hydrophobicity, or the BLOSUM62 substitution matrix scores(Reynisson et al.,

2020; Lan Zhang et al., 2020). While numerically encoding residues better quantify

physical changes upon substitution, they are unable to accurately account for the

impact of mutations in binding pocket topology and sidechain orientation. Therefore,

we hypothesize that developing an MHC-I motif and binding prediction algorithm

that learns the underlying biophysics of peptide binding will better map the impacts

of polymorphisms to peptide binding motifs, resulting in better generalization of

predictions to significantly diverged alleles.

In what follows, we describe a fully structure-based MHC-I peptide binding motif

and ligand prediction algorithm. This was accomplished by training an inception-based

convolutional neural network (CNN) that is able to predict MHC-I binding motifs

based on the electrostatic properties of the MHC-I binding pocket. We found that

the generated motifs formed 12 well-defined clusters, and that euclidean distances

between motifs strongly correlated variations in binding motifs and immunopeptidome

diversity. The distances between predicted motifs could also recapitulate known

allele associations with HIV infection control. The predicted binding motifs were

then used for peptide ligand prediction, which outperformed sequence-based models

when generalizing to unseen data. Amazingly, this was accomplished despite never

being explicitly trained on peptide sequence. Finally, we show that HLA-inception is
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more precise when identifying naturally presented MHC-I peptides when compared to

current state-of-the-art sequence models.

3.3 Results

In what follows, we first demonstrate whether the electrostatic potential of the MHC-

I binding pockets can describe MHC-I binding motifs. Using computational models of

5,821 MHC-I binding pockets (4,464 unique), an Inception-based convolutional neural

network model was trained to predict MHC-I binding motifs based on electrostatic

potentials alone. Second, we find that the predicted MHC-I binding motifs form

clusters of alleles with similar biochemical properties, and these motifs distinguish

between MHC-I alleles with known disease association. Finally, we show that the

predicted MHC-I binding motifs can be applied to perform pan-allele MHC-I peptide

prediction from protein targets.

3.3.1 Electrostatic Potentials Track Peptide Binding Motif Variation

Electrostatic features are shown to be predictive of protein function, and have been

applied to determine the charge environment of protein structures(Santiveri et al.,

2020). In view of the electrostatic interactions between peptide ligands and MHC

proteins(Collins et al., 1994), the MHC-I molecule is an ideal target for such analysis.

A barrier to performing this analysis is the relatively small number of experimentally

solved MHC-I structures. Nonetheless, the high structural homology shared between

even significantly diverged MHC-I alleles indicates that MHC-I protein structure could

be accurately predicted using informatics-based models. Figure 3.1 demonstrates

an overview of the multiresolution modeling pipeline, i.e. sequence → ensemble →

electrostatics, used to generate structures of 5,821 structures of the MHC-I binding

pocket (Methods).
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Figure 3.1: Building models of 5,821 MHC-I binding pockets. The above
figure illustrates the MHC-I modeling process. (1.) MHC-I structural templates
are selected based on molprobity score, a measure of structure quality. (2.) MHC-I
variants without existing structures are a modeled using the best aligning template
structure. (3.) An ensemble of 40 binding pockets are generated via sidechain rotamer
sampling using the Rosetta simulation software. (4.) The electrostatic potential of
the MHC-I binding pocket is calculated for each ensemble member using APBS.

Following model construction and calculation of binding pocket electrostatic envi-

ronment, we use a metric to monitor MHC-I allele divergence defined by computing the

euclidean distance between two sets of binding pocket electrostatics potentials called

the electrostatic potential distance (EPD). Two more sequence-dependent methods,

namely hamming distance and BLOSUM80 alignment, were also calculated for inter-

allele comparisons (Figure 3.2A, Methods). Using all three metrics, the pairwise

inter-alleleic distances were computed for 133 MHC-I molecules with at least 50 known

peptide ligands. These distances were then correlated with the pairwise binding

motif variations, measured using Kullback–Leibler divergence or KLD (Methods).

Illustrated in figure 3.2A, Hamming distances produced a correlation coefficient of

0.22, while the more biochemically and structurally aware BLOSUM80 alignment
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Figure 3.2: Electrostatic potential configurational space better captures
MHC-I binding motif variation. A. The correlation between different binding
pocket variation measurement methods and binding motif KLD for 133 MHC-I alleles
with known binding motifs. Each dot indicates a pairwise comparison between two
alleles with the binding pocket distance metric defined by the header of plot. B.
Spherical regions of electrostatic potential corresponding to N- and C-terminal anchor
binding pockets were extracted, and the k-means clustering method was applied to
find 11 different groups. Alleles were then listed in order of their respective k-means
clusters (x- and y-axis) with each block indicating one of the 133 MHC-I alleles with
known binding motifs and colors representing the cluster. The fill color within the plot
indicates the pairwise KLD between alleles, with blue indicating a low KLD (more
similar binding motif) and red indicating a high KLD (diverged motif). C. The KLD
within each cluster identified in B was compared to the pairwise KLD of every allele
outside that cluster.
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improved the correlation coefficient to 0.28. Finally, we masked the electrostatic

potentials near the N- and C-terminal binding pockets, and calculated the EPD.

The correlation between allele KLD and EPD showed an improvement of at least

20% over the sequence-centric methods. Overall, our EPD analysis suggests that the

incorporation of information beyond simple sequence may be useful for MHC-I motif

prediction.

Next, the structure of the inter-allele electrostatic relationships was investigated.

K-means clustering was performed on the extracted electrostatic potentials masks,

revealing 11 unique clusters (Figure 3.2B, Methods). We found that MHC-I alleles

with similar binding motifs were generally clustered together, with the average KLD

within clusters being less than the KLD between clusters (Figure 3.2C). Taken

together, this indicates that MHC-I alleles can be grouped by electrostatic potential

into clusters of similar binding motifs.

In summary, using a multiresolution modeling approach, we generated 5,281

structures of the MHC-I protein. Next, we show that electrostatic potentials extracted

from these predicted structures better predict changes to MHC-I binding motifs.

Finally, we show that electrostatic potentials can be used to group MHC-I allele into

clusters of similar binding motifs.

3.3.2 Identifying MHC-I Binding Motif Complementarity with Inception Model

Trained on Electrostatic Features

While the EPD values successfully tracked with variations in MHC-I binding motifs,

it is inherently limited to experimental resolved alleles. Therefore, we developed a deep

learning model, named HLA-inception, which predicts MHC-I binding motifs from

predicted or experimentally determined MHC-I binding pocket structures (Figure

3.3, Methods). This approach works by segmenting the MHC-I binding pocket
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Figure 3.3: Learning peptide-protein complementarity. The above figures
demonstrate a schematic of the inception-based CNN that was trained on MHC-I
binding pocket electrostatic potentials in order to predict binding motifs.

electrostatic potential grid into a number of sections; here we have chosen three equal

sized segments – the region corresponding to N-terminal binding pocket, TCR contact

region, and C-terminal binding pocket. As described in methods (HLA-Inception

model), the N-terminal region was used to predict amino acid motifs for peptide

positions 1 - 3, the TCR contact domain was used to predict peptides positions 4-6,

and the C-terminal domain was used to predict peptide positions 7-9. The amino acid

residue distribution at each peptide location was predicted individually by passing the

corresponding block through HLA-Inception with the output layer being the empirical

distribution at that position for a given allele. Hyperparameter tuning was conducted

in order to optimize the model. Due to the overall importance of positions 2 and 9 to

peptide binding, hyperparameter tuning was focused on these positions. We found

that the testing KLD, with optimal parameters, converged at 0.4384 for position 2

and 0.1228 for position 9 (Figure B.1). These parameter values were then used to

train the model corresponding to each position.

Following model training with 5,320 unique maps (40 ensemble members x 133

alleles), The HLA-Inception model was applied to the average electrostatic potential
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Figure 3.4: k-means clustering of predicted motifs. k-means clustering was
applied to the predicted motifs of all 5,821 alleles. This resulted in the identification
of 12 clusters. The binding motif of each cluster is represented by logo plots of the
average binding motif of all alleles within that cluster. The average of all pairwise
euclidean distances between clusters was calculated, and each node in the graph was
connected to the two closest (most similar) allele clusters. Edge color indicates the
relative magnitude of the average distances.

maps from all generated MHC-I structures. Using the predicted binding motifs, k-

means clustering was used to create MHC-I ”supertypes”. We found that the predicted

motifs could be classified into 12 different clusters (Figure 3.4). These clusters were

largely defined by biochemical characteristics of the N- and C- terminal anchors. The

identified anchor classes were as follows: positively charge (R,K), bulky positive charge

(H), negatively charged (E,D), branched hydrophobic(L,V,M), aromatics (Y,F,W),

and small hydrophobic (A,P).

In brief, an Inception-based CNN, called HLA-Inception, was trained on electro-

static features of the MHC-I binding pocket. We found that predicted MHC-I binding

motifs formed general clusters analogous to traditional MHC-I ”supertypes”, indicating

a potential biochemical basis for observed results from sequence-based clustering.
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3.3.3 Exploration of Predicted Binding Motifs

Using the HLA-Inception generated binding motifs, we explored whether important

allele-specific peptide binding characteristics were being captured. Success in this

instance was defined by the overall correlation between the pairwise L2-norm (euclidean

distance) of predicted motifs, a quantity we refer to as ‘motif distance’, and empirical

motif KLDs. L2-norm was chosen due to its numerical robustness and usage in similar

approaches(Bassani-Sternberg et al., 2017). We investigated how inter-allele distances,

in the context of a full MHC-I genotype (genotype distance), impact the diversity

of the immunopeptidome. Finally, we test whether motif distance can be used to

recapitulate known MHC-I allele disease associations.

First, the motif distances were calculated for the set of 133 MHC-I alleles with

known binding motifs and correlated with pairwise KLD. Pairwise motif distance was

found to be strongly correlated with observed KLD (Figure 3.5A) with an overall

correlation of 0.83. This result indicates that the predicted motifs are capturing

empirical binding motif variations. Previous work has demonstrated that of MHC-I

genotype diversity improves response to immune checkpoint blockade (Chowell et al.,

2019). Therefore, we determined if genotype distance could be predictive of im-

munopeptidome diversity. The average pairwise distances between all 6 MHC-I alleles

(genotype distance) of multiallelic cell lines were compared to the average BLOSUM62

alignment score of anchor residues of peptides recovered from MS-based immunopep-

tidomic experiments of those cell lines(O’Donnell et al., 2020). We found that the

average gentoype distance was significantly correlated with BLOSUM62 alignment

score, indicating that genotype distance is predictive of immunopeptidome diversity

(Figure 3.5B). Overall, we found that the predicted motifs were correlated empirical

KLDs, and that the distance between motifs can be predictive of immunopeptidome
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Figure 3.5: Quantifying inter-allele motif distances. A. The pairwise motif
distances for all 133 allele were calculated and correlated with inter-allele KLD. both
Higher motif distance and KLD indicate greater divergence between alleles. Each
point represents a comparison of two motifs, and therefore associated with a motif
distance and an empirical binding motif KLD. The blue line is a linear fit to the
data. B. The average motif distance for cell lines with full MHC-I genotype resolution
was correlated with the average BLOSUM62 alignment score of anchor residues of
MS-detected MHC-I peptides eluted from each cell lines. C. A force-directed graph
was generated of alleles associated with HIV outcome. alleles associated with HIV
control are colored blue while alleles associated with HIV progress are colored red.
Each node was connected to the 3 nearest nodes. Nodes in close proximity to each
other indicate more similar predicted peptide binding motifs. D. The pairwise motif
distances of allele associated with HIV outcome were calulated. The x-axis indicates
the relative groups to which distance was measured. ctrl-ctrl indicates the all pairwise
distances between alleles associated with HIV control while prog-prog is the distances
between all alleles associated with HIV progression. crtl-prog is the distance between
control allele and progression alleles.
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diversity.

Finally, we assessed whether motif distance captures known trends in MHC-I disease

associations, specifically, for alleles associated with HIV viral control (International

HIV Controllers Study et al., 2010). The motif distance between alleles associated

with higher probability of being an HIV controller (individuals with these alleles

progress to AIDS slower than those without) and HIV progresser (individual progress

to AIDS faster than those without) was calculated. To visualize potential clusters of

HIV associated alleles, a force directed graph(Fruchterman and Reingold, 1991) was

generated, where each node is a different HIV associated allele. Edges between the

allelic nodes were defined by connecting each allele to the three most similar alleles,

as ascertained by motif distance. Illustrated in figure 3.5C, the algorithm resolved

distinct clusters. When all pairwise motif distances between HIV associated MHC-I

alleles were calculated, the distances between controlling and progressing alleles were

found to be higher than those within each respective group (Figure 3.5D). In light of

these results, It is inferred that the predicted binding motifs are persevering known

allele associations with HIV outcome.

3.3.4 Electrostatics-driven Pan-Allele MHC-I Peptide Ligand Prediction

The prediction of the peptide ligands for a target MHC-I protein has significant

clinical use for T cell-based immunotherapies. MHC-I binding motifs have previously

been used to predict the ligands(Rammensee et al., 1999). In a similar effort, the

binding motifs generated by HLA-Inception were used to identify potential MHC-I

ligands via peptide scoring by position-weighted matrix (PWM) scores (Methods).

Typically, pan-allele prediction algorithms are validated by performing ‘leave-one-

out’ cross validation analysis in which a target allele is removed from the training set,

and then the remaining data is utilized for testing prediction accuracy. However, such
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validation approaches fail to account for the existence of highly homologous MHC-I

alleles still contained within the training set. The inclusion of homologous alleles has

the potential to artificially boost algorithm performance. A more rigorous test of

pan-allele predictive properties can be performed by ensuring that highly homologous

alleles are removed prior to training and collectively tested, hence gaining a better

assessment of algorithm generalizability. To that end, the binding pocket sequences for

the 133 allele set were clustered using BLOSUM62 alignments, where each allele was

assigned to a cluster of alleles with similar amino acid sequences (Methods). In order

to appropriately benchmark the performance of HLA-Inception peptide predictions

with a sequence-based approach, a deep and densely connected neural network trained

on BLOSUM62 encoded peptide and key binding pocket resides was built (Methods).

Using the MHC-I binding pocket sequence clusters, ’leave-one-cluster-out’ analysis

(Methods) was performed by using each algorithm to predict MHC-I peptides. We

found that the MCC of the HLA-Inception produced a median MCC of 0.72 (IQR:

0.59-0.79), while the sequence-based model produced a median MCC of 0.52 (range

0.38-0.68). Remarkably, the HLA-Inception model produced an 38% improvement

over a sequence-based prediction method.

Next, peptides with known quantitative values, namely peptide binding affinity

(IC50) and MHC-I stability (minutes), were ranked based on the aforementioned

PWM score. We found that PWM scores were strongly associated with quantitative

values (Figure 3.6). PWM scores had an absolute correlation coefficient of 0.62

with MHC-I stability data, and a 0.65 correlation with MHC-I affinity. This result is

particularly notable as it suggests that the most probable binders determined from

our algorithm are also found to be strong binders, even though no peptide-protein

interaction data was used to train the model. The 60-65% correlation indicates that

the inception network has learnt to capture the strengths of their molecular interaction
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Figure 3.6: Pan-allele peptide prediction with HLA-Inception. A. Matthew’s
correlation coefficient (mcc) was calculated with respect to peptide prediction using
HLA-Inception (blue) and a sequence-based model (red). The x-axis for the box plot
(left) indicates the allele cluster that was left out during algorithm training, and then
subsequently used for testing. The bar blot (right) shows the median mcc value across
all clusters with the lines indicating ±1 standard deviation. B. The scatters plots
show the correlation between PWM score (y-axis) and MHC-I stability (x-axis;left) or
MHC-I binding affinity (x-axis;left). Each point indicates a different peptide that was
tested. C. The precision (y-axis) of HLA-Inception(blue) or netMHCpan-4.1(purple)
in the recovery of naturally presented MHC-I peptides is shown by a box plot. The
x-axis indicates the binding score percentile threshold used to select peptides (all
peptides at that threshold or better were classified as binders).

with the MHC-I binding pocket, leveraging only information of the MHC- binding

pocket environment and overall binding motif of the peptides. Such a training in

binding complementarity, gives a biophysical confirmation that the primary peptide

anchor positions are the most interactive, and therefore most stabilizing, to peptide

binding. Overall, we discover that PWM score offers a physical basis for seeking

interaction signatures of the peptides, and designing crucial features for peptide target

selection.
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Finally, we determined the precision of HLA-Inception on the prediction of natu-

rally presented peptide ligands. The peptides used for this analysis were extracted from

a dataset of mass spectrometry-detected MHC-I peptides eluted from monoalleleic cell

lines(O’Donnell et al., 2020). The single allele nature of these cell lines simplifies anal-

ysis, as each peptide can confidently be linked to a single MHC-I allele. The prediction

of naturally presented ligands is particularly important for the identification of T cell

targets for cancer immunotherapies. However, this necessitates the consideration of

many proteins, which can lead to high false positive rates.The performance of HLA-

Inception-based predictions were compared to the current state-of-the-art for pan-allele

peptide prediction, netMHCpan-4.1(Reynisson et al., 2020). Peptide selection was

based on two commonly used score thresholds, 0.5% and 2%, where peptides with this

score or lower can be considered to bind stronger than 99.5% and 98% of all possible

peptides respectively. We found that HLA-Inception-based prediction achieved a

median precision of 0.74 and 0.5 for the 0.5% and 2% threshold, respectively (Figure

3.6). While netMHCpan achieved significantly lower median precision values (median

0.5% = 0.6; 2% = 0.33). This result is significant, as netMHCpan was explicitly

trained on data within this testing set, whereas, HLA-Inception was only trained on

an overall motif.

3.4 Discussion

We discovered that simple pairwise euclidean distance calculations of voxelized

electrostatic potential regions near the MHC-I B and F binding pockets produced a

stronger correlation with observed variations in MHC-I binding motifs than a purely

sequence-centric analysis. Motivated by these results, an inception-based convolutional

neural network, coined HLA-Inception, was trained on segments of the binding pocket

electrostatic potential grid to predict MHC-I binding motifs. The predicted motifs
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were found to cluster analogously to previously identified MHC-I ”supertypes”. More

importantly, the generated motifs were predictive of immunopeptidome diversity when

applied in multiallelic context, capable of recapitulating known allele associations to

HIV outcome, and precise when used for MHC-I ligand prediction.

There are several profound advantages to approaching the prediction of MHC-I

binding motifs, and subsequently peptide ligands, from an electrostatic lens. First, we

are able to learn one of the biophysical rules that dictates peptide binding. Sequence-

centric MHC-I prediction methods do not explicitly state the underlying forces that

drive peptide binding, but rather a sequence configuration that leads to a particular

binding motif. This understandably makes such approaches highly sensitive to sequence

variation, which is problematic given the polymorphic nature of the MHC-I protein.

In contrast, by training our model directly on the underlying forces, HLA-Inception

is able to learn a measurable quantity which drives peptide binding. This physics

formulation enhances interpretability of binding predictions, which is immediately

evident by the results of the ‘leave-one-cluster-out’ analysis. Another advantage of the

shift to electrostatic modeling is a striking reduction of the experimental search space.

Because electrostatic potential is a degenerative property, as many different sequence

configurations can produce similar local electrostatic environments, the number of

MHC-I alleles with unknown binding motifs that require experimental validation is

significantly diminished. This makes universal coverage of all human MHC-I binding

motifs an experimentally tractable goal, and therefore, opens new doors to broadened

applications of T cell based immunotherapies. Finally, HLA-inception embodies

a methodological advance in computational biology. Arguably, we are the first to

determine that molecular interaction strength can be hierarchized by using knowledge

of only the electrostatic environment and binding sequence, without any additional

geometric information.
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There are some caveats to our approach, namely the compositional bias of the

training set, the use of nonameric peptide binding motifs, and the use of predicted

MHC-I models. Like most machine learning models, predictions are biased by the

composition of the training set. In cases where the training set provides a good

sampling of the total input space, predictions have a high likelihood of accuracy.

Conversely, in cases where isolated populations, not captured by the training set, exist

then predictions are unlikely to be accurate for these groups. The immense number

of MHC-I variants make this a valid concern for any machine learning approach to

MHC-I ligand prediction, and is not specific to our model. However, as outlined above,

we expect that our approach will be less affected by this problem due to the learning

of the underlying physical nature of peptide binding. To combat this problem, future

work can be focused on the experimental resolution of MHC-I alleles with predicted

electrostatic environments that fall outside the currently known distribution. Next,

predictions were only done with respect to nonameric peptide binding motifs. This

decision was made mainly due to the major of observed peptides being 9 amino acids

in length. This translated into high resolution binding motifs. However, there is a

small but relevant population of peptides at different lengths. We used an approach

analogous to NN-align(Reynisson et al., 2020) to extend the 9mer motifs to peptides

of length 8-11. We observed reasonably high accuracy for peptides of these lengths,

which cover 95% of all observed MHC-I peptides (Figure B.2). Finally, the PWM

method used for peptide prediction does not explicitly take into account the effects

of neighboring residues with a given peptide. While such effects have been shown to

occur, they are generally rare.

In future work, the method of learning the electrostatic environment to perform

motif prediction is readily applicable to numerous application, including MHC-II,

antibody-antigen binding, and TCR-MHC binding.
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3.5 Methods

Data

MHC-I protein sequences. MHC-I sequences were obtained from the IGMT-

HLA database (Robinson et al., 2000)(accessed 7/2021). Only MHC-I alleles with

resolution of the full canonical lengths were considered (HLA-A: 265 amino acids,

HLA-B: 362 amino acids, HLA-C: 366 amino acids), resulting in the consideration

of 5,821 sequences. After selection of full length sequences, the binding pocket was

extracted (residues 25-210).

MHC-I peptide data. MHC-I peptide data was extracted from the IEDB database(Vita

et al., 2019). The data was initially filtered to select only peptides that were 9 amino

acids in length and had four digit resolution. From this dataset, a separate quantitative

data set was generated by filtering peptides labeled with experimental IC50 values or

complex stability values.

Monoalleleic and multiallelic immunopeptidome data. For analysis centered

on the recovery of naturally presented MHC-I ligands, the training datasets generated

by O’Donnell et al. (2020) were used. The mutialleleic dataset was further filtered for

data with full genotype (i.e all 6 MHC-I allele) information.

MHC-I binding pocket modeling

MHC-I structures were identified using the IEDB database (Vita et al., 2019) and

downloaded from the RCSB Protein Data Bank(Rose et al., 2017). Molprobity(Chen

et al., 2010) was then used to score 606 MHC-I crystal structures, with lower scores

indicating higher resolution models. Out of the 606, the best structures for each
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MHC-I allele were selected, resulting in 50 unique MHC-I template structures. The

peptide was removed from each template model, and the structure was truncated

to only contain the binding pocket (reside 25-210 of the amino acid sequence). The

templates were then minimized using the default Rosetta score function(Park et al.,

2016). Models were then generated for all 5,821 MHC-I alleles. First, the binding

pocket region (reside 25-210) of each allele was aligned to all 50 template sequences,

and the best aligning template was selected. The template was then mutated to

match the target allele sequence using the Rosetta backrub application with default

parameters(Smith and Kortemme, 2008). Following the backrub simulation, an

ensemble of 40 structures were generated by selecting the lowest energy structures

from 40 iterations of the rosetta relax application(Nivón et al., 2013). The final result

was the generation of 232,840 unique structures (5,281 alleles x 40 ensemble members).

Finally, the electrostatic environment of the binding pocket was calculated using the

APBS software(Jurrus et al., 2018). First, each of the 40 ensemble members were

converted into PQR files using the pdb2pqr30 function. The electrostatic potential

was then determined using the default parameters of APBS. The grid dimensions were

set to 129Åx 161Åx 129Åwith the fine grid extending to 24Åbeyond the boundaries

of the binding pocket and the coarse grid extending to 12Åbeyond the fine grid.

This produced a voxel size of approximately 1Å3 Electrostatics were calculated using

the linearized Poisson-Boltzmann equation with a protein dielectric of 2, a solvent

dielectric of 78.54, and an ion concentration of 0.15M.

MHC molecule distance metrics

Three distance functions were used to calculate the divergence of 133 MHC binding

pockets with at least 50 known experimental binders.
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Hamming distance. This is a metric that determines the distance between two

equal length strings as the number of mismatches between sequences. For example,

when comparing the peptides “YMLDLQPET” and “YMLAAQPET”, the number of

mismatches (colored in red) are two. This means that the hamming distance between

these peptides is 2. Higher scores indicate more divergent alleles.

BLOSUM alignment. BLOSUM alignment is the sum of the log-odd ratios of a

particular amino acid substitution given the background frequency of that amino

acid(Henikoff and Henikoff, 1993). For the calculations in this paper, the BLOSUM80

was used, meaning that the probability matrix was determined from sequences with at

least 80% sequence homology. BLOSUM80 alignments were calculated with respect to

the binding pocket residues within 6Åof the MHC-I N- and C-terminal anchor residues

using the stringDist function in the Biostrings R package(Pagès et al., 2019). Higher

scores indicate more divergent alleles.

Electrostatic Potential Distance (EPD). Voxels that fell into a spherical re-

gion (r = 6Å), which originated from the average sidechain center of mass of the

position 2 and position 9 of crystallized 9mer peptide ligands, were extracted and

concatenated into a one-dimensional vector. The electrostatic potential distance

between pairwise combinations of the 133 electrostatic vectors (one for each allele)

was defined as the L2-norm or euclidean distance. EPD is defined as follows,

EPD =
n∑
i

√
(xi − yj)

2, (3.1)

where i is a single voxel out of n total voxels and xi and yi are the equivalent voxels in

two different electrostatic vectors corresponding to allele y and allele x. Higher EPDs

indicate more divergent binding pocket electrostatic environments.
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MHC motif distance metrics

Similar to MHC molecule distance, the pairwise distance of MHC-I binding motifs

was measured using 2 different metrics.

Kullback–Leibler divergence. This metric is a statistical distance measurement

that quantifies the divergence of two probability distributions. Kullback–Leibler

divergence is calculated using the following equation:

DKL(P ||Q) =
n∑
i

Pi log
Pi

Qi

. (3.2)

In the above equation, P and Q are discrete probability distributions of length n.

Due to the fact that KLD is not symmetric, i.e DKL(P ||Q) ̸= DKL(Q||P ), the KLDs

reported in this paper are the average KLD or

KLD =
DKL(P ||Q) +DKL(Q||P )

2
. (3.3)

For the correlations in figure 3.2, KLD was defined as the sum of KLDs for

position 2 and position 9. For the correlations in figure 3.5, KLD was defined as the

sum of the observed KLD at all positions (P1-P9).

Motif distance. Motif distance is defined as the L2-norm between two peptide

binding motifs. This distance is calculated as follows:

motif distance =
9∑
i

20∑
j

√
(qij − pij)

2. (3.4)

In the above equation, i represents a position of the peptide binding motif which

ranges from 1 to 9, and j represents one of the 20 amino acids. qij and pij represent

the probabilities of amino acid i at position j for two different MHC-I binding motifs,

p and q.
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Genotype distance. This metric is a specific application of motif distance which is

defined as the average distance between a full MHC genotype. Therefore, high values

indicate more diversity in binding motifs for a given genotype.

K-means clustering

K-means clustering was performed using the kmeans function from the stats R

package(Team, 2020). Electrostatic potentials were clustered using the electrostatics

potential vector extracted for EPD distance calculations. Predicted MHC-I binding

motifs were clustered by converting the 2D binding motif probability matrix(the

numerical representation of a peptide binding motif) into a one-dimensional vector of

length 180. MHC-I sequences were clustered with respect to BLOSUM-encoded key

positions from the MHC-I binding pocket (described in Nielsen et al. (2007)). The

optimal number of clusters for each application were determined using the average

silhouette width method implemented in the fviz nbclust function in the factoextra R

package(Kassambara and Mundt, 2017).

HLA-Inception model

Training data preparation. The HLA inception model was trained on the

electrostatic potential maps corresponding to MHC-I alleles with at least 50 known

binders, resulting in a training set of 5,320 maps (133 alleles x 40 maps). To increase

attention on important features, 3 segments of each electrostatic map were extracted,

an N-terminal binding pocket region, a TCR contact region, and C-terminal binding

pocket region, and used to predict the amino acid distribution of residues most likely

to interact with it, i.e. the N-terminal binding pocket region was used to predicted

the position 2 amino acid distributions. Each segment had the dimensions of 12 x
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6 x 12 voxels with the center of each segment falling on an evenly spaced vector

that ran the length of the binding pocket. The N-terminal region covered the area

that would likely interact with positions 1-3 of binding peptides; the TCR contact

region covered the region approximately below positions 4-6 of binding peptide; the

C-terminal regions covered the region that would likely interact with positions 7-9

of binding peptides. The segments were then transformed into 3 tensors with each

tensor having the dimensions of 5320 x 12 x 6 x 12. These tensors were then linked

to a response tensor containing the amino acid distributions for residues likely to

interact with that region (5320 x 20). This resulted in 9 training data set, with a

specific training set for each peptide position. For example, when training the model

to predict the amino acid distribution of position 2 of a binding peptide, the training

set would correspond to the tensor of all of the N-terminal segments (5320 x 12 x 6 x

12 using the N-terminal segment) with a response tensor all position 2 amino acid

distributions (5,320 x 20).

Model architecture and training. HLA-inception is modeled after the inception v1

model developed by google(Szegedy et al., 2015). The architecture of HLA-inception

consists of one AB inception module followed by 4 densely connected layers which

were separated by dropout layers. The output layer returns a one-dimensional vector

of length 20 with loss being calculated using KLD, and optimized using the ADAM

algorithm. Overall, HLA-inception consists of an ensemble of 9 individual models, each

corresponding to a different position of the peptide binding motif. A hyperparameter

search was performed to identify the best number of epochs and learning rate. Due to

the general importance of position 2 and position 9, a grid search was performed on

these positions covering epochs 50, 75, and 100 and learning rates 1e-2, 1e-3, and 1e-4.

100 Epochs and a learning rate of 1e-3 were identified as the most optimal and were
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used to train all 9 models when performing 10-fold cross validationB.1.

Motif prediction. Using the optimal parameters, HLA-Inception was trained on all

available data and used to predict binding motifs for across all 5,821 alleles. In order

to better generalize predictions, maps corresponding to each ensemble member for

a given allele were averaged to produce one average electrostatic potential map per

allele. The averaged maps were then segmented, as previously described, and used as

inputs to the trained model. Full binding motifs were then generated by combined

the predictions from all nine HLA-Inception models.

Sequence-based model

A deep sequence-based model, analogous to Nielsen et al. (2007), was constructed

for comparison to HLA-Inception. The input to this model of was a BLOSUM-encoded

vector of key position within the MHC-I binding pocket, and the model was trained

on a balanced data set consisting of 315,512 experimentally resolved MHC-I peptides

paired with randomly generated decoy peptides. The model consisted of 3 densely

connected layers separated by dropouts. The output of the model was the probability

of the given peptide being a binder.

Position-weighted matrix score

Position-weighted matrix (PWM) score is a measure of how well a peptide fits a

given binding motif. The PWM score is calculated by the sum of the log-odd ratios of

observing an amino acid at a particular position, given the background frequency of

that amino acid. The equation to calculate PWM is as follows,
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PWM score(pep) =
9∑

i=1

log2
pij
qj

, (3.5)

where pep is a peptide being scored, i is the residue number being considered, pij is

the probability of the i-th residue of pep at the i-th position according to the binding

motif, and qj is the background frequency of the i-th residue of pep. Higher PWM

scores indicates a higher probability of binding to a target allele. Allele-specific score

threshold were determined by calculating the PWM scores for all 9mer peptides in

the human protein and generating a cdf of that distribution.

Leave-one-cluster-out analysis

Leave-one-cluster-out analysis is defined as the process of using a cluster of alleles,

defined by similar binding pocket sequences, to test models, either HLA-Inception or

the sequence-based model, that were trained using a data set that did not contain the

withheld cluster of alleles. HLA sequences were clustered using the k-means cluster on

BLOSUM-encoded binding pocket sequences as previously described in methods(K-

means clustering). This produced 11 distinct clusters. The Leave-one-cluster-out

analysis was performed on all clusters, and performance was reported as the individual

matthew’s correlation coefficients(Chicco and Jurman, 2020) of each allele within the

cluster.
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4.1 Abstract

The Coronavirus spike glycoprotein is an important mediator of receptor binding

and subsequent viral entry. The spike protein is heavily glycosylated and recent

research has indicated that glycans located on the crown domain may be important

receptor binding and immune evasion. However, it remains unknown if glycans located

on the stalk domain contribute to these mechanisms, as the flexibility of this region

precludes high resolution structures. Using an integrative appraoch of molecular

modeling techniques and high quality Cryo-electron tomography (CryoET) data, we

built a complete model of the extracellular region of the NL63 spike protein. Molecular

dynamics simulations were then used to capture the conformational landscape of

the fully glycosylated spike protein. We show a single glycosylation site (N1242)

at the upper portion of the stalk domain is responsible for modulating most of the

orientational freedom of the NL63 spike protein. The importance of the N1242 glycan

was further supported by functional assays showing that infectivity is reduced by 50%

when is this glycan is removed. Overall, we show that the integration of conformational

landscape information derived from cryoET with molecular modeling and simulations

can be valuable for the future development of coronavirus therapeutics and vaccines.

4.2 Introduction

Coronavirus infection begins with binding of the spike protein to specific cellular

receptor(s) to initiate entry and membrane fusion (Belouzard et al., 2012). The

spike-receptor interaction determines virus pathogenicity, and mutations in spike are

responsible for coronaviruses crossing the species barrier and infecting humans(Yang

et al., 2015; Cosar et al., 2022). Spike undergoes a large conformational transition from

pre-fusion to post-fusion states to achieve membrane fusion during entry(Belouzard
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et al., 2012). Current mRNA vaccines for SARS-CoV-2 encode spike proteins stabilized

in the pre-fusion state(Vogel et al., 2021) while antibody- and protein-therapeutics

are designed to bind the spike receptor-binding domain (RBD), preventing entry via

the human ACE2 receptor(Kim et al., 2021).

Structural analysis and molecular dynamics (MD) simulations of spike protein

crown domains reveal that they are highly glycosylated, forming a “glycan shield” that

is believed to aid in evasion of the host immune response(Casalino et al., 2020; Grant

et al., 2020; Walls et al., 2016). However, the extreme flexibility of the stalk domain,

largely due to predicted intrinsically-disordered segments, have made it difficult to

resolve this region at a high resolution(Walls et al., 2016). Therefore, it is currently

unknown if stalk glycans serve a similar functional role as crown domain glycans.

Recent structural studies of SARS-CoV-2 virions revealed that the stalk region is able

to accommodate large bending angles(Turoňová et al., 2020). Such observations have

led to the hypothesis of a “three hinge” model, where the conformational flexibility of

the spike protein is granted by 3 disordered segments found within the stalk region.

Interestingly, mass spectrometry-based glycan analysis of the NL63 stalk shows that

there are two large high-mannose glycans (N1242 and N1247) positioned directly below

the longest intrinsically disordered segment(Walls et al., 2016). Given the impact of

glycosylations on local protein flexibility (More et al., 2018) and ability to provide

order to intrinsically disordered loops (Prates et al., 2018), we hypothesize that these

glycans, coined the hinge glycans, modulate the flexibility of NL63 stalk, an aspect

important viral entry(Wu and Nemerow, 2004).

In the following work, high quality CryoET data is combined with molecular mod-

eling and physics-based simulations to generate a full length spike protein model that

accurately replicates experimentally observed spike bending profiles. Next, the impact

of several stalk glycan modifications are investigated, revealing the importance of
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hinge glycans in modulating spike protein dynamics. The biological impact of the stalk

glycan modifications are then assessed using functional infectivity assays. Together,

these data suggest that N1242 glycan is particularly important for maintaining stalk

flexibility and viral function.

4.3 Results

4.3.1 Integrative Modeling of NL63 Spike

The following section summarizes the process of integrating experimental data

with computational modeling techniques to build the complete extracellular region of

the NL63 spike protein. The overall modeling process is summarized in figure 4.1.

Initial modeling of the stalk. The extracellular stalk region of the NL63 spike

protein was preliminarily modeled using the I-TASSER protein folding software (Yang

et al., 2015) to fold a monomeric subunit of the extracellular region NL63 spike protein

stalk (residues 1216 to 1297). I-TASSER was chosen because of its high demonstrated

accuracy in the CASP competitions. Furthermore, a template-based modeling ap-

proach is ideal due to the NL63 stalk consisting of a well studied structural motif,

namely a trimeric coiled-coil. The highest confidence model (Methods) indicated

that a monomeric NL63 stalk subunit likely consisted of a short alpha helix (1216 to

1228) followed by a disordered region (residues 1229 to 1245) that then transitioned

back into a longer alpha helix (residues 1246-1297), similar to other coronavirus spike

protein models (Turoňová et al., 2020; Woo et al., 2020).

Construction of a whole extracellular spike model. The predicted stalk

subunit model was initially in a folded conformation. However, this was likely due to
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Figure 4.1: Overview of spike model construction. The above figure shows a
graphical representation of the NL63 spike modeling procedure.

the modeling process only considering the stalk region as a monomer, a constraint

common to most structure prediction methods. Therefore, the monomer was manually

manipulated into an elongated confirmation using VMD’s interactive MD module.

Three elongated monomers were then attached to the high resolution crown model

by connecting one elongated monomer to each of the three crown monomers, result-

ing in a complete, but distorted, extracellular spike protein. Energy minimization

and a short 10ns MDFF simulation were then used to reorient the newly attached

stalk monomers to improve inter-helix contacts and orientations. The initial MDFF

simulation reduced the average amount of solvent exposed hydrophobic residues

of the NL63 stalk region (residues 1224 - 1297) by 36% (47Å
2 → 30Å

2
). While

the simulation successfully oriented the stalk monomers, the poor resolution of the

lower coiled-coil segment (residue 1245-1297) precluded direct modeling by MDFF

alone. Therefore, an optimized structure of the lower coiled-coil region was generated

using the CCbuilder 2.0 program (Methods). The parameterized coiled-coil was
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then re-attached to the complete model at position 1245, taking the place of the

region modeled by the initial MDFF run. A short MD simulation was performed

to relieve any bond strain introduced during the final reattachment process. Stalk

glycans were modeled onto the complete model using the CHARMM-GUI interface(Jo

et al., 2008), combined with the fully glycosylated crown protein model provided by

our collaborators. The glycans for the stalk were chosen based on the combination

of the glycans identified in (Walls et al., 2016) and our own mass spectrometry analysis.

Modeling of bent spikes. The different spike protein bending angles observed

in the CryoET experimental data (Figure C.1 (appedix C)) were recreated by

fitting the complete model to seven different density maps, each capturing an observed

bending angle (ranging from 10° to 70° by an increment of 10°). First, the chimeraX

visualization tool(Goddard et al., 2018) was used to align the lower stalk region of

the NL63 protein model so that the base of the lower coiled-coil region was flush

with the virion surface. The complete model was then fit to the experimental density

maps using the Molecular Dynamics Flexible Fitting (MDFF) method(Singharoy

et al., 2016). All MDFF simulations were performed using the molecular dynamics

simulation (MD) software, NAMD 2.13(Phillips et al., 2020), and the CHARMM36

force field(Brooks et al., 2009). During the 10ns MDFF simulations, a potential energy

function (UEM), obtained from the CryoET density map, was applied to all C-α

outside of the unstructured region (residues 1224-1241) in order to bias the protein

into adopting the experimentally resolved bending angle. Due to the large amount of

movement necessary to fit the starting model to the experimental density, especially

at large bending angles, a high g scale (Methods) was used. To avoid unwanted

perturbation of the model, restraints were added to maintain cis-peptide, secondary

structure, and chirality of the protein. While fitting to the cryo-ET density data, the
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map starting model MDFF (round 1) MDFF (round 2)

1 0.33 0.41 0.36

2 0.25 0.42 0.37

3 0.14 0.42 0.38

4 0.04 0.44 0.38

5 0 0.42 0.38

6 -0.01 0.44 0.39

7 0.01 0.29 0.39

Table 4.1: Cross correlation of spike protein models to CryoET maps. The
above table indicates the cross correlation coefficient (ccc) between a protein model
and the experimental map used to generate that model. Higher ccc values indicate a
better fit between the model and the experimental density. Starting model is the initial
ccc before any fitting. MDFF (round 1) indicates the ccc after fitting the starting
model to the experimental density using a strong coupling coefficient (g scale = 1).
MDFF (round 2) is the ccc after performing the successive MDFF simulations with
a decaying g scale (0.3 → 0.1 → 0) with the final structure generated from MDFF
(round 1).

overall structure of the crown and the coiled-coil regions were preserved using a domain

restraint in the form of a RMSD bias being applied to the C-α of all residues not in

the unstructured region using NAMD’s Targeted Molecular Dynamics module(Phillips

et al., 2020). Finally, excessive flexibility of the lower stalk region due to the lack

of a transmembrane domain was avoided by placing a positional restraint on the

C-terminal of the protein. Following the initial MDFF simulations, the unstructured

region was further refined by performing 3 sequential MDFF simulations. In each

simulation, the g scale of the MDFF potential applied to all protein C-α atoms was

reduced. The simulations started with a g scale of 0.3 (10ns), transitioned to a g scale

of 0.1 (5ns), and ended with a g scale of 0 (5ns). The cross correlation values of the

spike protein model at different steps of the modeling process can be seen in table
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4.1. Overall, the described procedure resulted in the creation of seven NL63 spike

protein models, each representing a different experimentally resolved bending angle.

4.3.2 Spike Ensemble Generation

Equilibrium MD simulation. Following construction of all seven bent models, all

atom explicit solvent simulations were performed using NAMD 2.13 and CHARMM36m

force fields(Phillips et al., 2020; Brooks et al., 2009). Following equilibration, the

structures were simulated in triplicates for approximately 50ns. To capture large

movements that would be otherwise inaccessible in explicit simulations, approximately

100ns of implicit solvent simulations were performed on the final frames of each

explicit simulation. This resulted in a total sampling time of 450ns per map for a

total of 3.15µs. For simulations investigating the effects of glycan modulation, glycans

were removed prior to the implicit solvent simulation step. An overview of the MD

simulation can be seen in figure 4.2, and a summary of simulation times can be found

in the appendix (table C.1-C.2).

4.3.3 Modification of Hinge Glycans Produces Deviations in Bending Profile

CryoET data indicated that the NL63 spike protein was most commonly found in

a bent confirmation ranging from 30-60 degrees with a minimum at 56° (Figure 4.3A

(black line), Figure C.1B). Therefore, the integrative model was initially tested to

see if a similar bending angle distribution was recovered in MD simulations (Methods).

Indeed, the bending profile derived from MD was found to be in agreement with the

experimental data (Figure 4.3A, red line), identifying the same most probable

bending angle (56°). This match of the simulated spike protein dynamics to the

experimental data prompted an investigation into the dynamical effects of stalk gylcan

modification.
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Figure 4.2: Spike simulation Summary. The above figure shows a graphical
summary of the spike molecular dynamics simulations. ∆ indicates removal of a
specified glycan, with ”∆ all” indicating the removal of all glycans.

Guided by the proximity and conservation of glycosylated residues to the primary

unstructured hinge region(Figure 4.3B), the bending dynamics of the spike protein

after removal of the glycans from these positions was accessed with 2.1 microsecond

implicit solvent simulations. Illistrated in (figure 4.3C), the removal of any hinge

glycan(s) biased the simulations to sampling shallower bending angles. This tendency

to sample smaller bending angles was particularly evident for any simulations in which

the N1242 glycan removed (one-sided mann-whitney U test: p ¡ 2.2e-16). Altogether,

we found that the general removal of glycans near the unstructured hinge region biased

simulations to sample more shallow bending angles, with the most pronounced effects

being observed upon removal of the N1242 glycan.
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Figure 4.3: Stalk glyan modifications modulate bending dynamics. A. The
simulated bending profile of the NL63 spike protein. Different colors represent different
starting maps, as indicated by the legend. The black line shows the overall bending
angle distribution calculated from the MD simulations, while the red line shows the
experimental distribution. B. A multiple sequence alignment was preformed using 35
coronaviruses. The x-axis indicates the conservation across all species, and the y-axis
indicates a different residue of the NL63 stalk (represented as sequence logos with
large letter sizes meaning stronger conservation). The red bars indicate stalk glycan
positions. The hinge glycans are defined as the glycans at position 1242 and 1245. C.
The bending angle distributions for 5 different glycan modifications. The black dotted
line indicates the WT bending angle distribution. D. Functional infectivity assays for
various stalk glycan modifications. Glycan deletion was accomplished by mutating the
glycosylated asparagine to alanine. 4 glycan configurations were tested: WT, N1242
or N1247 mutant, and N1242,N1247 double mutant
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The striking shift in bending angles after stalk glycan modification motivated

functional assays to ascertain the existence of commensurate biological changes. To

this end, infectivity assays using VSV-Luc reporter viruses pseudotyped with wild type

(WT) NL63 spike or NL63 spike bearing alanine mutations at N-linked glycosylation

sites were performed(Figure 4.3D). These experiments indicated that spike proteins

without glycans at N1242 had significantly decreased infectivity, providing biological

support for the observed dynamic changes.

In summary, we show that our NL63 model is able to faithfully replicated ex-

perimental bending angle profiles. Simulations of the fully glycosylated model show

that removal of stalk glycans significantly impact bending dynamics with the most

significant changes being associated with the removal of the N1242 glycan, a strongly

conserved glycan across coronavirus spike proteins. Finally, biological assays support

the importance of the N1242 glycan to spike function.

4.3.4 NL63 Stalk Bending is Modulated by N1242 Glycan

In light of the computational and biological support for the importance of hinge

glycans in spike protein structure and function, the interactions of these glycans with

the spike protein were analyzed. Figure 4.4 presents the overlaid positions of the

hinge glycans when WT simulations are binned by different bending angle ranges. We

found that the positions of the two hinge glycans were well mixed at low bending

angles, while a more noticeable separation between glycans was observed at higher

bending angles(Figure 4.4A). Analysis of the median minimum distance of hinge

glycans to protein residue (Methods) showed that the simulations containing the

N1242 glycan made more significant contacts with the unstructured region and upper

coiled-coil (Figure 4.4B). Additionally, this analysis shows that the N1242 glycan

is in the closest contact with the unstructured region and upper coiled-coil regions
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Figure 4.4: Hinge glycan-protein interactions. A. MD trajectories of WT
spike simulations were grouped into 3 bins based on bending angle (0-30;30-69;60-90).
Following binning, the position of the hinge glycans were superimposed, with red and
blue represent the N1242 and N1245 glycan, respectively. B. For each frame and
single glycan deletions, the minimum distance between hinge glycan(s) were calculated
to every residue in the unstructured and upper coiled-coiled region. The heatmap
indicates the median distance for all frames in that bin. C. The relationship between
combined hinge glycan-protein interaction energy (y-axis) and bending angle (x-axis)
was visualized with a contour map with warmer colors indicating higher density of
sampling. The dotted line is a polynomial function fit to the data. The solid purple
and black line indicate the −log of the experimental and simulated bending angles,
respectively. D. The individual energy contributions of the hinge glycans (N1242
and N1245). E. Hinge glycan-protein interaction energy for stalk glycan modification
simulations.
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during the most probable bending angles. Taken together, these data indicate that

the N1242 glycan is the primary intermediary between the unstructured region and

the hinge glycans.

Based on the contacts observed between the hinge glycans and the unstruc-

tured/upper coiled-coil region, we determined the interaction energy using the NAMD

energy score function (Figure 4.4C). Interestingly, we found that when a line was fit

to the NAMD energy profile of hinge glycans as a function of bending angle, there

was a minimum that coincided with the most probable angle. This indicates that the

most probable bending angles produced favorable hinge protein-glycan interactions.

To further delineate the impact of each hinge glycan, we determined their individual

energetic contributions(Figure 4.4D). We found that, while both glycans had similar

interaction profiles for moderate bending angles (30-60), there were stark differences in

the energies associated with extremes angles. The N1242 glycan showed less favorable

interactions at bending angles greater than 60° and less than 20°, while the N1247 had

interaction energy minima in both regions. A similar trend was observed in the energy

analysis of the hinge glycan-protein interaction energies for the glycan modification

simulations(Figure 4.4E). In simulations where the N1242 glycan is deleted, there

are poorer glycan-protein interactions at moderate bending angles(30°-60°). Overall,

we see that the hinge glycans have favorable energetic interactions at high probability

bending angles and that the N1242 glycan may play a role in stabilizing moderate

bending angles.

In summary, the nature of the hinge glycan-protein interactions were investigated.

We found that the hinge glycan contact, and associated interaction energies, with

the unstructured/upper coiled-coil region was dependent on bending angle, with the

N1242 glycan making the most significant interactions at the most probable bending

angle. When separating the individual energetic contributions of each hinge glycan,
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the N1245 glycan was found to have more favorable interactions at extreme bending

angle relative to the 1242 glycan. This observation was further supported by analysis

showing poorer hinge glycan-protein interactions at moderate bending angles after

N1242 glycan removal.

4.4 Discussion

CryoET is a powerful method for resolving heterogeneous structures at the single

particle level. For this reason, cryoET has been used to study viral and pathogen entry

mechanisms(Prasad et al., 2022; Sun et al., 2022; Quemin et al., 2020). As presented

here, we leverage the dynamical data gained from CryoET to create a protein model

ensemble, representing key milestones of the native protein dynamics. This synergistic

integration of experiments and modeling allowed for the recovery of the full NL63

spike bending profile without the use of any external steering forces. By forgoing

the use of such forces, it is possible to derive equilibrium properties and free energies

associated with bending(Ovchinnikov and Karplus, 2012) directly from experimental

data. It should be noted that the integrative modeling approach describe here is

not completely free from all bias, particularly with regard to the modeling of the

lower coiled-coil region. Future advances in structure determination methods that can

better resolve highly mobile regions will improve such modeling endeavors. Overall,

we show that CryoET can be synergistically combined with molecular modeling to

create native dynamical ensembles of proteins.

N-linked glycosylation of the coronavirus crown domain has been hypothesized

to be important for the viral entry and immune evasion(Casalino et al., 2020; Grant

et al., 2020; Walls et al., 2016), however, the role of stalk glycans has remained

unresolved. Extensive molecular dynamics simulations of the NL63 spike protein

show that the hinge glycans are likely responsible for modulating bending dynamics.
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These simulations reveal that the NL63 glycan makes extensive and energetically

favorable contacts with the unstructured/upper coiled-coiled regions of the stalk. The

importance of these contacts are further demonstrated by the significant changes in

bending profiles and viral function upon the removal of key hinge glycans. However,

while indirectly supported by both experiments and simulations, future CryoET

experiments of NL63 spike proteins with modified glycans will be necessary to confirm

the impact of hinge glycan modifications on bending profile. Going forward, the

modulating relationship between large glycan moieties and flexible protein regions

described in this work may be useful for elucidating the structure-function dynamics

of other immunologically relevant glycosylated flexible protein structures(Vaitaitis and

Wagner Jr, 2010; Shore et al., 2005; Lee et al., 1992).

In an effort to achieve maximal neutralization, current coronavirus vaccines target

the RBD domains of the virus(Vogel et al., 2021). However, such vaccines are

susceptible to immune escape given the high mutational rate of RBD domain(Greaney

et al., 2021). Our data shows that stalk glycans may be important for viral infectivity,

and the highly conserved nature of this region implies a lower rate of immune escape

of antibodies targeting this region(Shah et al., 2021). Furthermore, it has been shown

that antibodies targeting this region can inhibit viral entry and can be cross reactive

across variants and species(Wang et al., 2021; Wu et al., 2022). Therefore, antibodies

that target this glycan or restrict flexibility of the stalk region may be useful for the

next-generation of universal coronavirus vaccines.
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4.5 Methods

Molecular dynamics theory

Molecular Dynamics. Molecular dynamics (MD) is a computational simulation

method in which a molecular system is evolved through time according to Newtonian

mechanics,

mα
⃗̈ra = − ∂

∂r⃗α
Utotal(r⃗1, r⃗2 . . . , r⃗N), α = 1, 2 . . . N. (4.1)

In the above equation, ma represents the mass of atom a, r⃗a represents the position

of atom a, and Utotal represents the potential energy of atom a from the pairwise

interactions with all other atoms in the system (Phillips et al., 2005).

MD force fields and potential energy. The potential energy of a simulated

system is calculated using a “Force field”. A force field is a collection of empirically

determined parameters that quantify the pairwise energies associated with bonded

and non-bonded interactions between atoms(Brooks et al., 2009). The total potential

energy is calculated as the sum of component potential energies

Utotal = Ubond + Uangle + Udihedral + UvdW + Uelec. (4.2)

All of the bonded, or covalent, potential energy contributions are captured by

Ubond + Uangle + Udihedral. These describe the potential energies associated with the

stretching ( Ubond), bending ( Uangle) and rotation (Udihedral) of all covalent bonds within

the system. The final two terms UvdW + Uelec make up the non-bonded interactions.

UvdW encodes the van der Waals or volume exclusion interaction potential energies. In

NAMD, van der Waals interactions are solved using the lennard-jones 12-6 potential

equation,

UvdW = (−Emin)

[(
Rmin

rij

)12

− 2

(
Rmin

rij

)6
]
, (4.3)
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where rij indicates the distance between atoms, Emin is the energy well depth, and

Rmin is the distance at which the potential energy is minimized (i.e. Emin)(Phillips

et al., 2005). On the other hand, Uelec represents Coulomb’s Law of electrostatic

interactions. This term is calculated using the following,

Uelec = ϵ14
Cqiqj
ϵ0rij

, (4.4)

where qiqj are the respective charges of atoms i and j, ϵ0 is the dielectric constant,

rij is the distance between atoms, C is coulomb’s constants, and ϵ14is a unitless scaling

factor. In theory, non-bonded interactions exist between all pairwise combinations

of atoms in a system. However, consideration of all possible combinations is com-

putational expensive, especially as system size scales. Therefore, both the van der

Waals and electrostatics potential energy functions are truncated at a user-defined

distance. This is accomplished via a switching function which smoothly transitions

the interaction energy to 0 at the desired cutoff distance(Phillips et al., 2005).

In systems with periodic boundaries (i.e. Explicit solvent simulations), the user-

defined electrostatic interaction cutoff is used to determine the short range component

of the electrostatic potential energy function while the long range component is calcu-

lated periodically using the particle mesh ewald method or PME. The PME method

captures long range electrostatic interactions by summing over interactions in the

fourier space where it quickly converges, and thus can be efficiently truncated(Phillips

et al. 2005). The efficiency of this method can not be overstated as it reduces the com-

putational complexity of electrostatic calculations from O(n2) (pairwise electrostatic

calculations for all atoms) to O(n log n) where n is the number of atoms.

In systems without periodic boundaries (i.e implicit solvent simulations), both

long and short range electrostatic interactions are calculated as pairwise interactions.

In this case, the use of only pairwise calculations is computationally tractable as
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the lack of solvent causes a marked reduction in the total number of atoms in the

system. However, implicit solvent simulations typically require significantly larger

cutoff distances to recover an accurate representation of electrostatic forces.

Creating a trajectory. Following the calculation of atom interaction forces, the

positions and velocities of all atoms in the system are updated using the velocity

verlet integration method. In simple terms, this algorithm first solves the velocities

of each atom based on the inter-atom forces as determined from the force field. The

atom velocities are then used to update the positions of each atom after a short

period of time has passed. Following positional updates, the force field is then used

to recalculate the inter-atom forces. This process is repeated for the desired amount

of total simulation time. The short amount of time that is allowed to pass when

determining the new positions of the atoms is called the time step. The time step is

usually on the order of femtoseconds (fs). Larger time steps allow for faster simulations,

however, they also introduce instabilities into the simulation. This is particularly true

when calculating the movement of very light atoms,s such as hydrogen atoms. When

using large time steps, the position of hydrogen atoms can rapidly change, producing

unphysical characteristics (i.e. impossible bond lengths or angles) to manifest. This

results in extremely high energies which ultimately cause the simulation to fail. Such

instabilities are combatted using two methods, the use of which is dependent on the

length of the time step. For time step less than or equal to 2 fs, Hydrogen positions

and bond lengths can be constrained. This is accomplished via the SHAKE and

RATTLE algorithms(Ryckaert et al., 1977; Andersen, 1983) which numerically update

the bond lengths and velocities of hydrogen atoms so that they satisfy idealized values.

Both algorithms have a user defined tolerance for deviation from idealized values

that must be reached by all atoms. If the threshold is not met after the maximum
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allowed iterations, the simulation will fail. When simulating time steps ranging from

3-5 fs, Hydrogen mass reparation (HMR) (Hopkins et al., 2015) is required to ensure

convergence of the SHAKE and RATTLE algorithm. In HMR-based simulations, the

mass of hydrogen atoms are increased by a given factor (usually 3-fold). To conserve

mass of the entire system, the additional mass of the hydrogen is subtracted from the

heavy atom bonded to each hydrogen. For example, the mass of hydrogens attached

to a methyl group would be increased to 3.024 amu while the mass of the carbon atom

would be reduced to 5.963 amu.

Thermodynamic ensemble. Molecular dynamics simulations can be defined by

its thermodynamic ensemble. Use of the verlet algorithm alone will generate what is

known as the NVE or microcanonical ensemble. In this ensemble, the number of atoms

(N), the volume(V) of the simulation, and the energy(E) are held constant. While

many fundamental statistical mechanics properties are easily calculated from NVE

ensembles, most real world applications fail to meet such assumptions. Therefore,

most production simulations are run using the NVT (canonical) or NPT (isobaric-

isothermal) ensembles. The NVT ensemble is defined as having a constant number

of atoms, constant volume, and constant temperature (T). Constant temperature

across a simulation can be maintained through the use of a thermostat. In the case of

the simulation performed in this work, langevin dynamics was used. The langevin

equation is as follows,

Mv̇ = F (r)− γv +

√
2γkbT

M
R(t), (4.5)

where M is the mass, v is the velocity, r is the position, F is the force, γ is the

friction coefficient, kb is the Boltzmann constant, T is the temperature, and R(t) is a

random variable following a gaussian distribution. The last two terms of the langevin
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equation couple the simulation temperature to the specified constant temperature. In

order to integrate the forces when using langevin dynamics, the langevin equation must

be incorporated into the velocity verlet algorithm as seen in the BBK method(Brünger

et al., 1984). An example of this can be seen in the following equation pertaining to

the positional update using the BBK method:

rn+1 = rn+
1− γ∆t/2

1 + γ∆t/2
(rn−rn−1)+

1

1 + γ∆t/2
∆t2

[
M−1F (rn) +

√
2γkbT

∆M
zn

]
. (4.6)

The NPT ensemble is defined as having a constant number of atoms, constant pressure

(P), and constant temperature. For simulations contained in this work, the Hoover

Langevin piston method was used to maintain constant pressure (Phillips et al., 2005).

The Hoover langevin piston method is a Hoover-style extension of langevin dynamics

to provide pressure control. The equations of motions are as follows:

ṙ = p/m+ ėr (4.7)

ṗ = F − ėp− γp+R(t) (4.8)

V̇ = 3V ė (4.9)

ë = 3V/W (P − P0)− γeė+Re/W (4.10)

W = 3Nτ 2kT (4.11)

〈
R2

e

〉
= 2WgekT/h (4.12)

In the above equations, ė is strain rate (with ėW being the piston momentum);

is the volume; W is the weight of the piston; γe is the friction of the piston; Re is
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the random noise of the piston; τ is the oscillation period of the piston; h is the

length of the piston. Similar to what was previously shown for BBK integration, the

following equation governs the positional update when using the Hoover langevin

piston method(Quigley and Probert 2004):

rn+1 = rn +∆tṙ
[
r, pn+∆t2, pn+∆t2

e

]
(4.13)

Solvation models. All human proteins exist with an aqueous environment.

Therefore, it is important to represent the effects of solvent in protein dynamics. In

simulations, solvent can either be explicitly or implicitly modeled. In explicit solvent

simulations, fully atomistic representations of water molecules and ions are added to

the system. The interactions of these molecules with the environment are calculated

using the TIP3, or 3-point, water molecule force field. While these simulations

are the most accurate in terms of capturing protein dynamics, the number of water

molecules necessary to surround a given protein, in which periodic boundary conditions

are avoided, is significant. This makes explicit solvent simulations computationally

expensive for large protein systems. In implicit solvent simulations, the effect of water

on electrostatics interactions is mathematically approximated. While implicit solvent

simulations are less technically accurate, they are much more computationally efficient,

allowing for faster simulations. Furthermore, they engender enhanced conformational

sampling due to the reduction of the viscosity imposed by explicit water molecules.

The implicit water simulations described in this work were performed using generalized

born implicit solvent (GBIS). GBIS is a linear approximation of the Poisson-Boltzmann

equation in which each atom is modeled as a charged sphere. An important feature of

the implicit solvent model is the assignment of differential dielectric constants between

the interior of atoms and the larger environment, with the former typically being

much lower than the latter. This tempers the strength of long range electrostatic
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interactions, similar to the effect of explicit solvent. The magnitude of screening for

each atom is dependent on the immediate environment, with atoms in more crowded

environments experiencing less screening.

Protein modeling

In what follows, first the individual tools employed for the modeling of the NL63

stalk are outlined. Thereafter, an integrative modeling scheme is described, wherein

all these tools are combined in a pipeline to study both the structure and dynamics of

the NL63 spike protein.

I-TASSER structure prediction. I-TASSER is a hierarchical template-based

structure modeling software. The I-TASSER algorithm performs structure predic-

tion in two steps. First, structural templates are selected from a PDB library using

LOMETS(Wu and Zhang, 2007), an ensemble of protein threading algorithms. Thread-

ing or fold recognition is the process of predicting a protein structure by matching

stretches of amino acids from a target sequence to fragments of existing PDB struc-

tures. The full structure is then predicted by assembling the selected fragments

into a complete structure. Regions of the target protein without corresponding frag-

ments from the PDB database are modeled de novo using a monte carlo(MC) based

method called Touchstone II(Zhang et al., 2003). Ensembles of potential structures

are extracted from MC trajectories generated by the Touchstone II algorithm using

the SPICKER algorithm(Zhang and Skolnick, 2004). A reassembly process is then

performed using the identified clusters. The lowest energy structures from each cluster

are then refined using all atom simulations. The final output of I-TASSER is 5 pre-

dicted models, each with a predicted confidence score which is a metric based on the

statistical significance of template alignments and convergence of assembly simulations.
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CCbuilder 2.0. The CCbuilder2.0 is a web-based application to build parametric

coiled-coils (Wood and Woolfson, 2018). Parametric protein modeling typically in-

volves building a target structure mathematically based on user defined parameters.

This method can be very accurate in cases where the target protein structure adheres

to a regular structure with well-defined characteristics. The highly regular structure

of α-helical coiled-coil motifs represent an ideal use case for parametric structure

prediction. The CCbuilder2.0 model building processing is carried out using the

ISAMBARD package(Wood et al., 2017). This package assembles a coiled-coil motif

using the amino acid sequence of the target protein, and 3 parameters controlling the

inter-coil interface: radius, pitch, and interface. For the modeling of the lower NL63

stalk region, the default parameters were used which were 5.1, 226, and 24 for the

radius, pitch, and interface parameters respectively. Coiled-coil motifs are usually

defined by a heptad repeat register (which range from a to g). The most common

register for coiled-coiled motifs will have hydrophobic residues at positions a and

d. We assessed all potential heptad repeat registers, and selected the register that

produced the lowest energy structure. Finally, parameterized coils are scored and

optimized using the all-atom BUDE and Rosetta force fields (McIntosh-Smith et al.,

2015; Das and Baker, 2008).

CHARMGUI glycan builder. Stalk glycans were added to the complete model

using the web based CHARMMGUI glycan builder interface(Park et al., 2019). This

interface operates in two steps: a modeling step and confirmation sampling step. First,

it builds a model of the user specified glycans using PDB structures of template glycan

subunits. The glycosylation torsion angles for the modeled glycan are generated by

finding the average angles from clusters of angles sampled in the selected templates.
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Second, Clashes and glycan positions are optimized using rigid body rotations of each

glycan using the CHARMM force field. The optimization protocol begins by fixing

the atoms of the protein structure with the expectation of the asparagine molecule

bearing the glycosylation. The torsion angles of each rotatable glycosidic bond is

then sampled. If a given orientation has fewer than 5 bad contacts, as determined

by heavy atoms being closer than 2.5Å, a short minimization is performed on that

orientation. The protein-glycan interaction is then measured; if the interaction energy

is lower than the previous interaction, that orientation is stored. Following the initial

orientation search, a second search is conducted on the stored orientations identified

in the previous step. If any sampled orientation falls below the specified cutoff energy

threshold (i.e. 60 kcal/mol), the orientation search is terminated and that orientation

is selected for the final model. If the energy threshold is not reached, the orientation

search will restart with a different cluster identified in step 1 of the CHARMMGUI

glycan builder process. In the event that the minimum energy threshold is never

reached, the lowest energy structure is selected. After glycans have been modeled at

all positions, A final minimization procedure with improper dihedral restraints is then

applied to all glycosylation sites.

Molecular dynamic simulations of NL63 spike protein

All-atom simulations. A combination of explicit followed by implicit solvent molec-

ular dynamics simulations was used to determine the bending dynamics of the NL63

spike protein. Similar combined simulation schemes have been employed in the past

(Kleinjung and Fraternali, 2014), where the explicit solvent MD simulation is used first

to thermalize the initial model and subsequently, the implicit solvent MD is performed

to allow for enhanced sampling of the conformations. This scheme is particularly

useful for modeling the soluble proteins(Mishra and Koča, 2018), and has recently
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been extended to study glycan systems(Roy et al., 4113), showing that implicit solvent

simulations can sample the conformational space akin to accelerated sampling schemes.

Explicit system setup. All MD simulations were initiated using the NAMD 2.13

(Phillips et al., 2020) simulation software. The stalk model was solvated with 3 points

(TIP3P) water molecules, representing a unit cell of initial dimensions equal to 429Åx

319Åx 429Å. Na+ and Cl− ions were then added to ensure electronic neutrality. The

completely solvated system, including the protein, glycans, water molecules, and ions,

amounted to nearly 5.8 million atoms. After 11,000 steps of conjugate-gradient energy

minimization, the system was equilibrated for 10ns at 310K. All MD simulations

were performed in the isobaric-isothermal ensemble with the MD program NAMD

2.13 and the CHARMM36m all-atom force fields for proteins. The temperature was

maintained at 300 K using Langevin dynamics with a damping constant of 1 ps−1.

The pressure was fixed at 1 atm using the Langevin piston method. Van der Waals

and electrostatic short-range interactions were smoothly truncated with a 12 Å cutoff,

and a switching function was applied at 10 Å. Long-range electrostatic forces were

computed with the particle mesh Ewald algorithm. Simulations were performed using

4 fs time steps via hydrogen mass repartitioning and constraining covalent hydrogen

bonds. For production run simulations, a harmonic positional restraint was placed

on the C-α atoms of C-terminal residues (1296-1297). This was done to simulate

the effect of being attached to a membrane, as the transmembrane region was not

included in our model.

Implicit system setup. Implicit solvent simulations were performed using the

Generalized Born Implicit solvent method implemented in NAMD. Simulations were

performed using a solvent dielectric of 80 and an ion concentration of 0.1 M. The Born
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radius cutoff parameter was set to 14Å with the switch distance and cutoff set to 15Å

and 16Å respectively. Constant temperature was maintained at 300K using langevin

dynamics with a damping coefficient of 5 ps−1. Simulations were carried out with a

similar time step size as in the explicit solvent simulations.

Fitting protein structure to Cryo-ET maps. Molecular Dynamics Flexible

Fitting or MDFF is MD-based method to bias a simulation to adopt conformations

identified from an electron density map(Singharoy et al., 2016). This is a specialized

implementation of a GBIS simulation where user-defined atoms within the starting

structure are driven to align with high density regions of the electron density map.

As such, this method is popular for refining lower resolution structure determination

methods like CryoEM or CryoET. The following equation will describe the MDFF

bias potential. The MDFF potential can be determined by

VEM(r) =


ζ
(
1− Φ(r)−Φthr

Φmax−Φthr

)
if Φ(r) ≥ Φthrζ

if Φ(r) < Φthr

. (4.14)

In the previous equation, Φ(r) is the coulomb potential associated with the EM

map, Φthr is the noise threshold, and Φmax is the maximum calculated Φ(r). ζ, also

known as the g scale, is a scaling factor that modulates the coupling of strength

between atoms and the EM map. The total potential energy of MDFF potential can

be solved by UEM =
∑

i wiVEM (ri) where i is an atom coupled to the EM map and wi

is the mass of that atom. Total energy during an MDFF simulation can be calculated

using the following equation

Utotal = UMD + UEM + USS (4.15)

where UMD is the potential energy determined from the MD force field, UEM is

the potential derived from the electron density map, and USS is the potential energy
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that is added to preserve the secondary structure of the protein. The USS term is

necessary as UEM can be strong enough to warp the secondary structure if unchecked.

MD analysis.

Bending angle calculation. The bending of the crown relative to the stalk was

determined by finding a vector that passed through the center of the lower stalk region

while remaining normal to the virion surface and a second vector that was defined as

running through the center of the NL63 crown. The bending angle was then defined

as the arccosine of the dot product between unit norms of these two vectors. The

angle was calculated with the following equation,

θ = arccos ∥A∥ · ∥B∥, (4.16)

where A is the vector passing through the center of the stalk, and B is the vector

passing though the lower coiled-coiled region. Convergence of the simulations was

determined by a bootstrapping analysis of the sampled bending angles.

NAMD energy. The interaction energy of the hinge glycans (N1242,1247) were

measured using the NAMD energy plugin(Phillips et al., 2020). Energy was either

measured from both hinge glycans to the rest of the system or with respect to individ-

ual hinge glycans to the protein.

Median minimum glycan to protein distance. The median minimum gly-

can to protein distance is defined as the shortest distance between any two atoms

within the stalk and the glycan, respectively.
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R. D. Skeel, L. Kalé and K. Schulten, “Scalable molecular dynamics with NAMD”,
J. Comput. Chem. 26, 16, 1781–1802 (2005).

Phillips, J. C., D. J. Hardy, J. D. C. Maia, J. E. Stone, J. V. Ribeiro, R. C. Bernardi,
R. Buch, G. Fiorin, J. Hénin, W. Jiang, R. McGreevy, M. C. R. Melo, B. K. Radak,
R. D. Skeel, A. Singharoy, Y. Wang, B. Roux, A. Aksimentiev, Z. Luthey-Schulten,
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cryo-tomography to study virus-host interactions”, Annual Review of Virology 7,
239–262 (2020).

Rammensee, H., J. Bachmann, N. P. Emmerich, O. A. Bachor and S. Stevanović,
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Table A.1: MHC-I peptides identified by EnsembleMHC. All pre-
dicted peptides with a peptideFDR 0.05.(Full table can be found at
https://doi.org/10.1016/j.xcrm.2021.100221)

Minimum death 
threshold

Normalized day:  
0.25

Normalized day:  
0.5

Normalized day:  
0.75

Normalized day:  
1

5 8 15 23 30
10 7 14 20 27
15 7 13 20 26
20 7 13 20 26
25 7 12 18 24
30 7 12 17 23
35 7 12 17 23
40 7 12 17 23
45 6 11 17 22
50 6 11 17 22
55 6 11 17 22
60 6 11 16 21
65 6 11 16 21
70 6 11 16 21
75 6 11 16 21
80 6 11 15 20
85 6 11 15 20
90 6 11 15 20
95 5 10 14 19

100 5 10 14 19

non-norm
alized days

Countries

China
Japan

South Korea
Taiwan

US
Hong Kong

France
Germany

India
Italy

Russia
UK
Iran

Israel
CroaNa

Romania
Netherlands

Mexico
Ireland
Czechia

Morocco

A B

Table A.2: Countries included in analysis and normalized day to real day
mapping. A. The 23 countries for which SARS-CoV-2 population binding capacities
were calculated. B. The mapping of normalized days to real days for normalized day
quartiles (0.25, 0.5, 0.75, 1) at select minimum death thresholds.

Table A.3: EMP score correlation data. All data pertaining to the correlations
between EMP score and deaths per million. This includes rho estimates, 95% CI,
non-normalized day values, and sample size for each correlation.(Full table can be
found at https://doi.org/10.1016/j.xcrm.2021.100221)
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Factor Abbreviation Description

% of population ≥ 65 years 65 Percentage of the population that is 65 
years of age or older (2020).

Average BMI Avg. BMI The age-standardized average population 
body mass index (2016).

Cardiovascular disease CD The deaths per million due to 
cardiovascular disease (2016).

Chronic obstructive 
pulmonary disease COPD

The deaths per million due to 
complications from chronic obstructive 

pulmonary disease (2016).

Diabetes mellitus DM
The deaths per million due to 

complications from diabetes mellitus 
(2016).

High blood pressure BP
The age-standardized percentage of the 
population with a systolic blood pressure 
≥ 140 or diastolic blood pressure ≥ 90 

(2015).

Obesity prevalence OBS The age-standardized percentage of the 
population with a BMI ≥ 30 (2016).

Overweight prevalence OVW The age-standardized percentage of the 
population with a BMI ≥ 25 (2016).

Structural protein EMP 
score SP The SARS-CoV-2 structural protein 

presentation score.

% of GDP spent on health 
care GDP

Current health expenditure (CHE) as 
percentage of gross domestic product 

(2017).

% of total gov. expenditure 
on health care GGHE General government expenditure on 

health as a percentage of total (2014).

% of population that is 
female SEX The proportion of the total population that 

is female (2020).

Countries
China
Japan

South Korea
US

France
Germany

India
Italy

Russia
UK
Iran

Israel
Croa;a

Romania
Netherlands

Mexico
Ireland
Czechia

Morocco

A B

Table A.4: Socioeconomic and health-related risk factors A. 21 countries were
selected for analysis based on the existence of data in the Global Health Observatory
data repository and inclusion in the 23 country set used for EMP score analysis. B.
Descriptions and abbreviations for the selected risk factors. Each factor is labeled
with the year that the data was collected. In every case, the most recent data was
selected for analysis.
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Figure A.1: EnsembleMHC Parameterization overview and viral peptide
analysis. A. EnsembleMHC Parameterization workflow. B. The allele and algorithm
score distrubtion at each allele (n=7) C. A density plot of the observed FDRs for each
algorithm across all alleles (n = 52). D. The correlation between individual peptide
scores for each algorithm across all alleles was calculated using Pearson correlation.
Warmer colors indicate a higher level of correlation while cooler colors indicate lower
correlation. E. Matthew’s correlation coefficient was calculated for each algorithm.
The average MCC for each algorithm is represented by the bar plot on the right
margin. F. The effect of different peptideFDR cutoff thresholds on the results reported
in figure 1. G-H. The analysis reported in figure 1 (A-B) were repeated with
additional comparisons to consensus-based MHC-I prediction algorithms, namely
netMHCconskarosiene2012netmhccons and netCTLpanstranzl2010netctlpan. I. The
positive predictive value of each algorithm was calculated with respect to ability to
identify immunogenic peptides derived from Hepatitis-C genome polyprotein, Dengue
virus genome polyprotein, and the HIV-1 POL-GAG protein when selecting n number
of top scoring peptides (METHODS).
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Figure A.2: Data processing and EnsembleMHC population score calcu-
lation workflow. The overview of the data processing steps used on the global
MHC-I allele frequency data and the calculation of the EnsembleMHC population
score with respect to the full SARS-CoV-2 proteome and SARS-CoV-2 structural
proteins. (inset plots), The blue inset plot illustrates MHC-typing breadth and
depth variation by showing the distribution of the total number of MHC-I alleles
reported at 4-digit resolution in 86 countries. The red inset plot shows the distribution
of the number of MHC-genotyped individuals in the set of countries with at least 1
reported coronavirus case. AFND = Allele Frequency Net Database
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Figure A.3: Characteristics of peptides predicted by EnsembleMHC. A. The
UpSet plot shows the contribution of each individual component algorithm to the 658
unique SARS-CoV-2 peptides identified by EnsembleMHC. The top bar plot indicates
the number of unique peptides identified by the combination of algorithms shown
by the points and segments located under each bar. The bar plot on the left-hand
side of the plot indicates the total number of peptides identified by each algorithm.
B. The peptideFDR distribution of the 9,712 SARS-CoV-2 peptides that fell with
the score threshold of at least one component algorithm. The red line indicates an
peptideFDR level of ≤ 5%. C. The length distribution of the 108 high-confidence
peptides identified from SARS-CoV-2 structural proteins. D. The length distribution
of the 658 high-confidence peptides identified from full SARS-CoV-2 proteome. E.
Logo plots were generated for MHC alleles with at least 5 peptides identified by
EnsembleMHC. Peptides shorter than 9 amino acids had random amino acid inserted
into a non-anchor position while peptides longer than 9 amino acids had a random
non-anchor position deleted. Large amino acid character height indicates a high
frequency of that amino acid at that position. Amino acids are colored residue type.
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Figure A.4: Molecular origin of predicted SARS-CoV-2 structural pro-
tein MHC-I peptides and impact of sequence polymorphism. A. The
predicted SARS-CoV-2 structural protein MHC-I peptides were mapped onto the
solved structures for the envelope and spike proteins, and the predicted structures
for the nucleocapsid and membrane proteins. Red highlighted regions indicate an
enrichment of predicted peptides while blue regions indicate a depletion of predicted
peptides. B. The incidence of protein sequence mutations (colored bar) and the
frequency of that position in one of the 108 SARS-CoV-2 structural protein peptides
(black bars) were calculated for 102,148 SARS-CoV-2 sequence variants. Lower left
panel, all potential mutations arising in one of the 108 peptides identified by Ensem-
bleMHC were evaluated for changes in binding affinity (peptideFDR > 0.05). Lower
right panel, The overall frequency of mutations impacting EnsmebleMHC-predicted
peptides with light blue indicating deleterious mutations, and dark blue indicating
neutral mutations.

111



80 85 90 95 100

55 60 65 70 75

30 35 40 45 50

5 10 15 20 25

0 10 20 30 0 10 20 30 0 10 20 30 0 10 20 30 0 10 20 30

−1.0

−0.5

0.0

0.5

−1.0

−0.5

0.0

0.5

−1.0

−0.5

0.0

0.5

−1.0

−0.5

0.0

0.5

days from death threshold

sp
ea

rm
an

's 
rho

entire SARS−CoV−2 proteome SARS−CoV−2 structural proteins
F

●

●

●

● ●

●

●

●

●

●

● ●

●

● ● ●

●

●

●

●

●

●

●
●

●

●

●

● ●

●

●

● ● ●

●

● ●

●

●

● ●

●

●
●

● ● ●

● ● ●

● ● ●

●

●

●

●

● ●

●

● ● ●

● ● ●

● ● ●

●

●

●

●

●

● ● ●

● ● ● ●

● ●

●

●

●

●

●

●

● ● ● ● ● ● ●

●

●

●
●

●

●

● ●

● ● ● ●

●

●

●

●

●

●

● ●

● ● ● ● ● ● ●

●

●

●

●
●

●

●

●

●

● ● ● ● ● ● ●

●

●

● ●
●

●

●

● ● ● ● ● ● ●

●

● ●

●

●

● ●

●

● ●

● ● ● ● ● ● ●

●

●

●

●

●

●

●

●

●

● ● ● ● ● ●

● ●

●
●

●

●

●

●

●

● ●

● ● ● ●

●

●

●

●
●

●

●

●

●

●

● ●

● ● ● ●

●

●

●

●

●

●

●

●

●

● ● ●

● ● ● ●

●

●

●

●

●

●

●

●

●

● ● ●

● ● ● ●

●

●

●

●

●

●

●

●

●

● ● ●

● ● ● ●

●

●

●

●

●

●
●

●

● ● ● ●

● ● ● ● ●

● ●

●

●

● ●

●

● ● ● ●

● ● ● ● ●

● ●

●

●
● ●

●

● ● ● ●

● ● ● ●

●

●

●

●
●

●
●

● ● ● ●

● ● ● ●

●

●

●

●

●

●

●

● ●

● ●

● ●

●

● ●

●

●

●

●

●

●

●

● ●

● ●

● ●

●

● ●

●

●

●

●

●

●

● ● ●

● ●

● ●

●

● ●

●

●

●

●

●

●

●

● ● ●

● ●

● ●

●

●

●

●

●

●

●

●

●

● ● ●

● ●

● ●

●

●

●

●

●

●

●

●

●
● ● ●

●

● ●

● ●

●

●

●

●

●

●

●

●
● ● ●

●

● ●

● ●

●

●

●

●

●

●

●

●

● ● ●

●

● ●

● ●

●

●

●

●

●

●

●

● ● ● ●

● ● ●

● ●

●

●

●

●

●

●

● ● ● ● ● ●

● ● ●

●

●

●
●

●

●

● ● ● ● ● ●

● ● ●

●

●

●
● ●

●

● ● ● ● ● ●

● ● ●

●

●

●

●

●

●

●
●

●

● ● ●

● ●

● ●

●

●

●

●

●

●
●

●

● ● ●

● ●

● ●

●

●

●

●

●

● ●

● ●

●

●

● ● ●

●

●

● ●

●
●

● ●

● ●

● ● ● ● ●

● ●

●

●

● ●

●

● ● ● ● ● ●

● ● ● ●

● ●

●

●

● ●

●

● ● ● ● ● ●

● ● ● ●

● ●

●

●

● ●

●

● ● ● ● ● ●

● ● ● ●

● ●

●

●

●

●

●

●

● ● ● ● ● ●

● ●

● ●

● ●

●

●

●

●

●

●

● ● ● ● ● ●

● ●

● ●

● ●

●

●

●

●

●

●

● ● ● ●

●

● ● ●

● ●

● ●

●

●

●

●

●

●

● ●

● ●

●

● ● ● ●

●

●

●

●

●

●

●

●

●

● ● ● ●

● ● ● ● ●

● ●

●

●

●

●

●

●

●

● ● ●

●

● ● ● ● ●

● ●

●

●

●

●

●

●

● ● ● ●

●

● ● ● ● ●

● ●

●
●

●

● ● ●

● ● ●

● ●

● ● ●

● ●

● ●

●

●

●

●

●
●

● ● ●

● ●

●

●

●

●

●

●

●

●
●

● ●

● ● ●

●

●

●

●

●

●

●

●
●

● ●

● ● ●

●

●

●

●

●

●

●

●
●

● ●

● ● ●

●

●

●

●

●

● ●

●
●

●

● ● ● ●

●

●

●

●

●
● ●

●

●
●

● ● ● ●

●

●

●

●

●
● ●

●

● ●

●

●

●

●

●

●
● ●

●

● ●

●

●

●

●

●

●

● ●

●

●

● ●

● ● ●

● ●

● ● ●

● ●

● ●

●

●

●

●

●

●

● ●

● ● ●

● ●

● ● ●

● ●

●
●

●

●

●

●

●

●

● ●

● ● ●

● ●

● ● ●

●

●
●

●

●

●

●

●

●

● ● ● ●

● ● ●

● ● ●

●

●
●

●

●

●

●

●

●

● ● ● ●

● ● ●

● ● ●

●

●
●

●

●

●

●

●

●

● ● ● ●

● ● ●

● ● ●

●

●
●

●

●

●

●

●

●

● ● ● ●

● ● ●

● ● ●

●

●

●

●

●

●

●

●

●

● ● ● ●

●

● ● ● ● ●

●

●

●

●

●

●

●

●

●

● ● ● ●

●

● ● ● ● ●

●

●

●

●

●

●

●

●

●

● ● ● ● ●

●

● ● ● ● ●

●

●

●

●

●

●

●

● ●

● ● ●

● ●

● ● ● ●

●

● ●

●

●

●

●

●

● ●

● ● ●

● ●

● ● ●

● ●

● ●

●

●

●

●

●

● ●

● ● ●

● ●

● ● ●

● ●

● ●

●

●

●

●

●

● ●

● ● ●

● ●

● ● ●

● ●

●

●

●

●

●

●

●

●

● ●

● ● ●

● ●

● ● ●

● ●

●

●

●

●

●

●

●

●

● ●

● ● ●

● ●

● ● ●

● ●

●

●

●

●
● ● ●

●

● ●

● ●

●

● ●

●

●

●

● ●

●

●

●

●
● ● ●

●

● ●

● ●

●

● ●

●

●

●

● ●

●

●

●

●
● ● ●

●

● ●

● ●

●

● ●

●

●

●

● ●

●

●

●

●
●

● ●

●

● ● ● ●

● ● ●

●

●

●

● ●

●

●

●

●
●

● ●

●

● ● ● ●

● ● ●

●

●

●

● ●

●

●

●

● ●

●

●

● ● ●

● ● ● ●

●

●

●

●

●

● ●

●

●

● ● ●

● ● ● ●

●

●

●

●
●

●

●

●

●

● ● ●

● ● ● ●

● ●

●

●
●

●

●

●

●

● ● ●

● ● ● ●

● ●

●

●
●

●

●

●

●

● ● ●

● ● ● ●

● ●

●

●
●

●

●

● ●

● ● ●

● ● ● ●

● ●

●

●
●

●

●

● ●

● ● ●

● ● ● ●

● ●

●

●

●

●

● ●

●

● ●

● ● ●

● ● ● ●

●

● ●

●

●

●

● ●

●

● ●

● ● ●

● ●

● ● ●

● ●

●

●

●

● ●

●

● ●

● ● ●

● ●

● ● ●

● ●

●

●

●

● ●

●

● ●

● ● ●

● ●

● ● ●

● ●

●

●

● ●

●

● ●

● ● ●

● ●

● ● ●

● ●

●

●

● ●

●

● ●

● ● ●

● ●

● ● ●

● ●

●

●

● ●

●

● ●

● ● ●

● ●

● ● ●

● ●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

● ●

●

● ● ●

●

●
●

●

● ●

●

●

●

● ●

●

●

● ● ●

●

● ●

●

●

● ●

●

●

●

● ● ●

● ● ●

● ● ●

●

●

●
●

● ●

●

● ● ●

● ● ●

● ● ●

●

●

●

●

●

●

● ● ●

● ● ● ●

● ●

●

●

●

●

●

●

● ● ● ● ● ● ●

●

● ●

●

●

●

● ●

● ● ● ●

●

●

●

●

●

●

● ●

● ●

● ● ● ● ● ● ●

●

●

●

●

●

●

●

●

●

● ● ● ● ● ● ●

●

● ●

●

●

●

●
●

●

● ● ● ● ● ● ● ●

●

●

●
●

●

●

●

●

●
● ● ● ● ● ● ● ● ●

●

●

●
●

●

●

●

●

●

●

● ● ● ● ● ●

● ●

●
●

●

●

●

●

●

● ● ● ● ● ●

●

●

●

●

●
●

●

●

●

●

●

● ● ● ● ● ●

●

●

●

●

●

●

●

●

●

●
● ● ● ● ● ● ●

●

●

●

●

●

●

●

●

●

●
● ● ● ● ● ● ●

●

●

●

●

●

●

●

●

●

● ●
● ● ● ● ● ● ●

●

●

●

●

●

●

●

●

●
●

●

● ● ● ●

● ● ● ● ●

● ●

●

●

●

●

● ●

●

● ● ● ●

● ● ● ● ●

● ●

●

●

● ●

●

● ● ● ● ● ● ● ●

●

●

●

●

●

●

●

●

●

●
● ● ● ● ● ● ● ●

●

●

●

●

●

● ●

●

●

● ●

● ●

● ●

●

● ●

●

●

●

●

●

●

●

●

● ●

● ●

● ●

●

● ●

●

●

●

● ●

●

●

● ● ●

● ●

● ●

●

● ●

●

●

●

● ●

●

●

● ● ●

● ●

● ●

●

●

●

●

●

●

● ●

●

●

● ● ●

● ●

● ●

●

●

●

●

●
●

●

●

●

● ● ●

●

● ●

● ●

●

●

●

●

●
●

●

●

●

● ● ●

●

● ●

● ●

●

●

●

●

●

●

●

●

● ● ●

●

● ●

● ●

●

●

●

●

●

●

●

●

●

● ● ●

● ● ● ● ●

●
●

●

●

●

●

●

●

●

●

● ● ● ● ●

● ● ●

●
●

●

●

●

● ●

●

●

●

● ● ● ● ●

● ● ●

●
●

●

●

●

● ●
●

●

●

● ● ● ● ●

● ● ●

●
●

●

●

●

●

●

●

●

●

●

● ● ●

● ●

● ●
●

●

●

●

●

●

●

●

●

●

●

● ● ● ● ●

● ●
● ●

●

●

●

●

●

●

● ●

● ●

● ●

● ● ●
● ●

●

●

● ●

● ●

● ●

● ●

●

● ● ● ●

● ●

●

●

● ●

●

● ● ● ● ●

●

● ● ● ●

● ●

●

●

● ●

●

● ● ● ● ●

●

● ● ● ●

● ●

●

●

● ●

●

● ● ● ● ●

●

● ● ● ●

● ●

●

●

●

●

●

●

● ● ● ● ●

●

● ●

● ●

● ●

●

●

●

●

●

●

● ● ● ● ●

●

● ●

● ●

● ●

●

●

●

●

●

●

● ● ● ●

●

● ● ●

● ●

● ●

●

●

●
●

●

●

● ●

● ●
● ● ● ● ●

●

●

●

●

●

●
●

●

●

● ● ● ●

● ● ● ● ●

● ●

●

●

●

●
●

●

●

● ● ●
●

● ● ● ● ●

● ●

●

●

●

●
●

●

● ● ● ●
●

● ● ● ● ●

● ●

●
●

●

●

● ●

● ● ●
● ●

● ● ●

● ●

● ●

●

●

● ●

●
●

● ● ●
● ●

● ● ●

●

●

●

●

●

●

●

● ●

●
●

● ●
● ● ●

● ● ●

●

●

●

●

●

●

●

● ●

●
●

● ●
● ● ●

● ● ●

●

●

●

●

●

●

●

● ●

●
●

● ●
● ● ●

● ● ●

●

●

●

●

●

●

●

● ●

●
●

●
● ● ● ●

● ● ●

●

●

● ●

●

●

●

● ●

●

●

●
● ● ● ●

● ● ●

●

●

● ●

●

●

●

● ●

●

●

● ●

● ● ●

● ●

●

●

●

● ●

●

●

●

● ●

●

●

● ●

● ● ●

● ●

●

●

●

● ●

●
●

●

● ●

●
●

● ●

● ● ● ● ●

● ● ●

● ●

● ●
●

●

●
●

●
●

● ●

● ● ● ● ●

● ● ●

● ●

● ●
●

●

●

●

●
●

● ●

● ● ● ● ●

● ● ●

●

●
●

●

●

●

●

●
●

● ● ● ●

● ● ●

● ● ●

●

●
●

●
●

●

●

●
●

● ● ● ●

● ● ●

● ● ●

●

●
●

●
●

●

●

●
●

● ● ● ●

● ● ●

● ● ●

●

●
●

●
●

●

●

●
●

● ● ● ●

● ● ●

● ● ●

●

●
●

●

●

●

●

●
●

● ● ● ●

●

● ● ● ● ●

●

●
●

●

●

●

●

●
●

● ● ● ●

●

● ● ● ● ●

●

●

●
●

●

●

●

●

●
● ● ● ● ●

●

● ● ● ● ●

●

●

●

●

●

●

●

●

●
● ●

● ● ● ● ●

● ● ● ●

●

● ●

●

●

●

●

●

●
● ●

● ● ● ● ●

● ● ●

● ●

● ●

●

●

●

●

●

●
● ●

● ● ● ● ●

● ● ●

● ●

● ●

●

●

●

●

●

●
● ●

● ● ● ● ●

● ● ●

● ●

●

●

●

●

●

●

●

●
● ●

● ● ● ● ●

● ● ●

● ●

●

●

●

●

●

●

●

●

● ●

● ● ● ● ●

● ● ●

● ●

●

●

●

●

●

● ●

●

● ●

● ●

●

● ●

●

●

●

● ●

●

●

●

●

●

●

● ●

●

● ●

● ●

●

● ●

●

●

●

● ●

●

●

●

●

●

●

● ●

●

● ●

● ●

●

● ●

●

●

●

● ●

●
●

●

●

●

●

● ●

●

● ● ● ●

● ● ●

●

●

●

● ●

●
●

●

●

●

●

● ●

●

● ● ● ●

● ● ●

●

●

●

● ●

●
●

●

●

●

●

● ●

●

●

● ● ●

● ● ● ● ●

●

●

●
●

●

●

●

●

● ●

●

●

● ● ●

● ● ● ● ●

●

●

●

●
●

●

●

●

●

●

●

●

● ● ● ● ● ● ●

● ●

●

●

●

●

●

●

●

●

●

●

●

● ● ● ● ● ● ●

● ●

●

●

●

●

●

●

●

●

●

●

●

● ● ● ● ● ● ●

● ●

●

●

●

●

●

●

●

●

●

● ●

● ● ● ● ● ● ●

● ●

●

●

●

●

●

●

●

●

●

● ●

● ● ● ● ● ● ●

● ●

●

●

●

●

●

●

● ●

●

● ●

● ● ● ● ● ● ●

●

● ●

●

●

●

●

●

● ●

●

● ●

● ● ● ● ●

● ● ●

● ●

●

●

●

●

●

● ●

●

● ●

● ● ● ● ●

● ● ●

● ●

●

●

●

●

●

● ●

●

● ●

● ● ● ● ●

● ● ●

● ●

●

●

●

●

●

● ●

●

● ●

● ● ● ● ●

● ● ●

● ●

●

●

●

●

●

● ●

●

● ●

● ● ● ● ●

● ● ●

● ●

●

● ●

●

●

● ●

●

● ●

● ● ● ● ●

● ● ●

● ●

●

●

●

●
●

● ●

●

●

●

●

● ●

● ●

●

● ●
● ●

●

●

●
●

● ●
●

●

● ●

●

● ● ●

●

● ●
● ●

●

●

●

●
●

● ●
●

●

● ●

●

● ● ●

●

● ●
● ●

●

●

●

●

●

● ●

●

●

● ●

●

● ● ●

●

●
● ●

●

●

●

●

●

● ●

●

●

● ●

●

● ● ●

●

●
● ●

●

●

●

●

●

● ●

●

●

● ●

●

● ● ●

●

●
● ●

●

●

●

●

●

● ●

●

●

● ●

●

● ● ●

●

●
● ●

●

●

●

●

●

●

● ●

●

● ●

●

● ● ●

●

●
● ●

●

●

●

● ●

●

● ●

●

● ●

●

● ● ●

●

●
● ●

entire SARS−CoV−2 proteome SARS−CoV−2 structural proteins

Entire SARS-CoV-2 
proteome

0.0

0.2

0.4

0.6

14 15 16 17 18

number of peptides

de
ns

ity

Full SARS−CoV−2 proteome

0.00
0.25
0.50
0.75
1.00

1 2 3

number of peptides

de
ns

ity

SARS−CoV−2 structural prote

Full SARS-CoV-2 proteome

SARS-CoV-2 structural proteins

A C

D E

B
Full 

proteome
Structural
proteins

55

19

5

18

0

20

40

Ferretti_et_al Nelde_et_al Quadeer_et_al Snyder_et_al

nu
m

be
r o

f p
ep

tid
es

Number of 108 peptides included in each study

0

20

40

60

total validated total validated (no pools)

nu
m

be
r o

f p
ep

tid
es

Immunogenicity status of tested 108 peptides Negative Positive

peptide summary

Ferretti
et
al Nelde
et
al Quadeer
et
al Snyder
et
al Total
validated Total
validated
(no
pools)

A B% of p
-value 

≤ 0.05

% of p
-value 

≤ 0.05
% of P

PV 

≥ 0.95
% of P

PV 

≥ 0.95

-0.75

-0.50

-0.25

0.00

25 50 75 100

number of deaths at day 0

0 0.25 0.50 0.75 1 0 0.25 0.50 0.75 1

SARS-CoV-2 structural 
proteins

E

Figure A.5: Comparison of entire SARS-CoV-2 EnsembleMHC population
score and structural protein EnsembleMHC population score. A. The
correlations between EnsembleMHC population score based on the full SARS-CoV-2
proteome (left) or only SARS-CoV-2 structural proteins (right). B. The difference
in the proportions of significant p-values and PPV between the full SARS-CoV-2
proteome (left) and SARS-CoV-2 structural proteins (right) (not corrected for
multiple testing). C. The SARS-CoV-2 peptide-MHC allele distribution resulting from
uniform allele sampling. These distribution were used as the partner distributions for
the Kolmogorov-smirnov test described in the results. D. 62 (57%) EnsembleMHC-
identified SARS-CoV-2 structural protein peptides were included for testing in 4
different studies. E. The summary of immunogenicity status of tested EnsembleMHC
peptides across all studies. These summaries were split into two groups. Total validated
indicates the total number of experimentally validated peptides while total validated
(no pools) indicates the number of experimentally validated peptides excluding those
only tested in peptide pools. This distinction was made due to the potential of peptide
pools to obscure which tested peptide is truly responsible for the observed immune
response. F. Each individual plot shows the 95% confidence interval (shaded region)
for the correlations between EMP scores based on the entire SARS-CoV-2 proteome
(red) or SARS-CoV-2 structural proteins (blue) and observed deaths per million for
different starting minimum death thresholds (indicated by number above plot).
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Figure A.6: Justification of statistical tests. A. The correlation between Ensem-
bleMHC population score with respect to all SARS-CoV-2 proteins (left column)
or SARS-CoV-2 structural proteins (right columns) and deaths per million using
Pearson’s r (top), Spearman’s rho (middle), and Kendall’s tau (bottom). Correla-
tions that were shown to be statistically significant are colored with a red point. B.
The statistical power of each reported correlation. Correlations that were shown to be
statistically significant are colored with a red point. The orange line indicates a power
threshold of 80%. C. The effect of different allele frequency normalization techniques
on the reported correlations between SARS-CoV-2 mortality and EMP scores based
on the full SARS-CoV-2 proteome (left column) or SARS-CoV-2 structural proteins
(right column). Definitions of nomralization methods can be seen in the methods
D. QQ plots were generated from the respective distributions of the full proteome
EnsembleMHC population scores, structural protein EnsembleMHC population scores,
and deaths per million. E. The mean statistical power of all resulting correlations
between EnsembleMHC population scores and observed deaths per million at different
minimum reported death thresholds. The red line indicates a minimum death threshold
of 100 deaths by day 0, the selected upper limit for analysis.
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Figure A.7: Robustness of EMP score correlation analysis. A. 1,000 sub-
sampling iterations were performed by randomly selecting 108 peptides from the full
SARS-CoV-2 proteome that passed the 5% peptideFDR filter. The correlation between
the population EMP score produced by each sub-sampled set of peptides and observed
deaths per million were plotted (grey lines). The correlation distribution observed
for identified SARS-CoV-2 structural protein peptides (black line), all SARS-CoV-2
proteins (red line), and the median correlation distribution across all subsampling
iterations (green line) were plotted for comparison. B. Kullback-Leibler divergence
was calculated for the correlation distribution of each down sample iteration relative
to either the correlation distribution of the all peptide group (AP) or the structural
peptide group (SP). C. The MHC-I allele assessment of peptides that passed an
individual algorithm binding affinity thresholds were shuffled prior to peptideFDR

filtering. The red points indicate correlations with a p-value ≤ 5%. D. The impact
of varying peptideFDR cutoff threshold on the shuffled MHC data set. For each
peptideFDR cutoff threshold (x-axis), the upper bound of the shaded region indicates
the 75th percentile, the lower bound indicates the 25th percentile, and the solid line
indicates the median. E. Population SARS-CoV-2 binding capacities using only single
algorithms were correlated to observed deaths per million. Red points indicate a PPV
≥ 95%.
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Figure A.8: Addition of structural protein EMP score significantly improves
linear model fit to observed deaths per million. A. Linear models were
constructed using either a single risk factor (yellow) or a combination of a risk factor
and structural protein EMP scores (green). The x-axis indicates the number of
normalized days from when a minimum death threshold was met (line color), and the
y-axis indicates the observed adjusted R2 value. B. A summary of results obtained
from single feature linear models (top panel, yellow) or the combination models
(bottom panel, green). The red bars indicate the median R2 value achieved by that
model and the blue bars indicate the proportion of regressions that were found to be
significant (F-test ≤ 0.05).
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APPENDIX B

HLA-INCEPTION: A STRUCTURE-BASED MHC-I BINDING MOTIF
PREDICTION ALGORITHM: SUPPLEMENTAL MATERIAL
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Figure B.1: Hyperparameter tuning with respect to N- and C-terminal
anchor binding pockets. A. The training loss curves for tested parameters for
position 2 (P2) and position 9 (P9). B The median KLD for each parameter set
after 10-fold cross validation for P2 and P9. C. The position KLDs for 10-fold cross
validation when using the optimal parameters (learning rate = 1e-3 ; epochs = 100)
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Figure B.2: HLA-inception performance at other lengths. A. The perfor-
mance of HLA-Inception at different lengths. B. The correlation of PWM score with
quantitative peptide values for peptides at lengths other than 9
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APPENDIX C

INTEGRATIVE MODELING AND DYNAMICS OF THE NL63 SPIKE PROTEIN:
SUPPLEMENTAL MATERIAL
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Table C.1: The above table shows the amount of explicit simulation performed on
the spike model.
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Figure C.1: Spike bending observations. A. single particle images of NL63 spike
protein. B. The experimental distribution of single particle spike bending angles. C.
Individual bending maps
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Table C.2: The above table shows the amount of implicit simulation performed on
the spike model.
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