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ABSTRACT

Atmospheric turbulence distorts the path of light passing through the air. When
capturing images at long range, the effects of this turbulence can cause substantial
geometric distortion and blur in images and videos, degrading image quality. These
become more pronounced with greater turbulence, scaling with the refractive index
structure constant, C2

n. Removing effects of atmospheric turbulence in images has
a range of applications from astronomical imaging to surveillance. Thus, there is
great utility in transforming a turbulent image into a “clean image” undegraded by
turbulence. However, as the turbulence is space- and time-variant and statistically
random, no closed-form solution exists for a function that performs this transfor-
mation. Prior attempts to approximate the solution include spatio-temporal models
and lucky frames models, which require many images to provide a good approxima-
tion, and supervised neural networks, which rely on large amounts of simulated or
difficult-to-acquire real training data and can struggle to generalize.

The first contribution in this thesis is an unsupervised neural-network-based model
to perform image restoration for atmospheric turbulence with state-of-the-art perfor-
mance. The model consists of a grid deformer, which produces an estimated distortion
field, and an image generator, which estimates the distortion-free image. This model
is transferable across different datasets; its efficacy is demonstrated across multiple
datasets and on both air and water turbulence.

The second contribution is a supervised neural network to predict C2
n directly

from the warp field. This network was trained on a wide range of C2
n values and

estimates C2
n with relatively good accuracy. When used on the warp field produced

by the unsupervised model, this allows for a C2
n estimate requiring only a few images

without any prior knowledge of ground truth or information about the turbulence.
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Chapter 1

INTRODUCTION

Turbulence is pervasive in Earth’s atmosphere and bodies of water. When a ray

of light passes through a turbulent medium, its path is distorted. When attempting

to image through turbulence, this phenomenon must be considered because has an

effect on the final image. Light enters the camera aperture at a perturbed angle as

a result of this distortion. This angle changes the relative position of a given point

in the resulting image captured by the camera, resulting in a geometrically distorted

image. Blur also results from the dispersal of light waves emitted from a given source

as they pass through the turbulent medium. This combination of geometric distortion

and blur can make objects indistinct and unrecognizable, can be confused for motion,

and ultimately results in substantially degraded images. The effects are exacerbated

with increased turbulence. Although air and water turbulence effects share certain

visual similarities, they are described by different models.

Being able to remove the effects of turbulence - to restore an image free of

turbulence-induced distortion and blur - has great utility. Turbulence effects are

most pronounced at long distances, so astronomical imaging, often requiring spatial

precision and detail, would benefit greatly from atmospheric turbulence removal, as

would aerial reconnaissance and surveillance. However, removal of atmospheric tur-

bulence is not a simple task. In fact, physicist Richard Feynman is quoted as saying

“Turbulence is the most important unsolved problem of classical physics”. Suppose

some function F exists that transforms a turbulence-free image into the turbulent

image that is actually received by the camera. One could simply invert the function

F and run find that the turbulence-free image is F ′ (turbulent image). However, no
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Figure 1.1: A real example of a turbulent image.

known solution exists for F or F ′. Turbulence is spatio-temporally variant - in effect,

the distortion and blur at a certain point is different than another point in the given

image, and different at the same point in space in a different image in time - and

statistically random. Thus, all methods aiming to estimate the turbulence-free image

are still imperfect estimators.

A variety of models exist to accomplish this task; some are physics-based approx-

imators of F , others apply algorithms that splice together optimal regions of multiple

images, and more recently, some apply machine learning methods to approximate a

solution. In this thesis, we will review some existing methods, as well as provide

a method to address the unique challenges of turbulence and limitations in existing

models.

Also important is the estimation of the strength of turbulence, particularly air

turbulence. For instance, knowing the strength of turbulence can allow anticipation
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of performance degradation in electromagnetic systems. Methods exist to empiri-

cally measure the strength of turbulence, but they most frequently involve measuring

instruments that can be prohibitively expensive. Methods to estimate strength of

turbulence without prior sensor information about turbulent conditions are limited.

Being able to estimate turbulence strength solely from images would circumvent the

necessity of turbulence condition measurements, and allow determination of turbulent

conditions in both the present and past. We aim to also address this problem in this

thesis.

1.1 Our Contribution

In this thesis, we propose an unsupervised model that leverages convolutional

neural networks to produce a distortion-free image. Our model consists of a grid

deformer, which estimates the distortion field for a turbulent image, and an image

generator, which directly estimates the distortion-free image; these components learn

in tandem to ultimately produce a more optimal distortion-free image. We demon-

strate the model achieves state-of-the-art efficacy at removing both air and water

turbulence from images, while requiring relatively few input images.

In addition, we provide a method that effectively estimates the refractive index

structure constant, C2
n, which describes the strength of turbulence. We used a tur-

bulence simulator developed by Schwartzman et al. to produce a dataset of 5,000

warp fields with varying C2
n values. We then trained a supervised convolutional neu-

ral network on this dataset to predict C2
n directly from the warp field. The network

can be used on the warp field produced by our model, allowing for a fairly accurate

C2
n estimate without any underlying knowledge of either the ground truth image or

the turbulent conditions. The network can also be employed to estimate C2
n in any

circumstance where a warp field is available. To our knowledge, this is the first model

3



that estimates C2
n directly from warp fields.
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Chapter 2

BACKGROUND

Here we provide a brief overview of turbulence and the considerations when imaging

through turbulence. We then discuss supervised and unsupervised machine learning

and artificial neural networks. We review prior work aiming to remove the effects of

air and water turbulence, and lastly, we present our contribution.

2.1 Imaging through Turbulence

Fluid flow can be either laminar or turbulent. A fluid exhibiting laminar flow

moves in layers that may flow at different velocities, but generally slide past other

layers smoothly without currents perpendicular to the primary direction of flow. In

contrast, a fluid exhibiting turbulent flow moves more chaotically. Rather than layers

moving smoothly in a primary direction, eddies and recirculation are pervasive, and

the fluid’s movements appear to be random. The Navier-Stokes equations can be

used to describe describe the motion of fluids. These equations and their relationship

with turbulence are explored extensively in [15].

Turbulence causes the refractive index n(r, t) to fluctuate randomly in each loca-

tion R and at each time t [69]. A random field in space-time is formed by n(r, t),

which can be characterized for two distinct spatial locations r1 and r2 by the structure

function shown below [69]:

D(r1, r2, t) = 〈|n(r1, t)− n(r2, t)|2〉

For isotropic turbulence (i.e. the structure function is constant over t, D(r1, r2) =

D(r), and structure function is spherically symmetric such that D(r) = D(r)), the

5



Figure 2.1: Images with simulated turbulence at different C2
n values.

Figure 2.2: C2
n surface measurements at Fort Polk, July 2007, as found in [56]. Each

tick on the horizontal axis marks a day.

structure function is defined by the following [69]:

D(r) = C2
nr

2/3

where C2
n is a constant representing the strength of turbulence (see the following

section). When turbulence is non-homogeneous, C2
n is a function of absolute location.

The refractive index structure constant, C2
n, is commonly used to provide a mea-

sure of the strength of atmospheric turbulence [53]. Values for the constant typically
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range from 10−16 to 10−12 m−2/3 in the atmospheric surface layer [71]. Values of

greater than 10−13 m−2/3 indicating higher turbulence with marked affects such as

waviness and blur; values below 10−15 m−2/3 indicate lower turbulence. Differences

varies locally and is dependent on the temperature, humidity, and wind velocity at

any given point in space. Various devices exist to estimate C2
n, including scintillome-

ters and sonic anemometers; these devices are often prohibitively expensive, so not

much C2
n data is widely available [77]. An example of C2

n measures over time at a

given location is given in Fig. 2.2, and qualitative examples of different C2
n values are

given in Fig. 2.1.

As an electromagnetic wave, light undergoes random amplitude and phase fluctu-

ations when passing through a turbulent medium, such as air or water [69]. The angle

of arrival (abbreviated AoA or AA) of the light incident at a camera is determined by

the perturbed phase. The projected location of a given point in a scene is dependent

on this angle of arrival. When considering the propagation of spherical waves, we can

derive the following equation for the variance of the angles of arrival:

〈α2〉 = 2.914D−1/3
∫ L

0

C2
n(z)(

z

L
)5/3dz

where L is the distance between the scene and the camera, and D is the camera

aperture diameter.

Air turbulence distortion is caused by the constantly changing refractive index

field of the air flow. It typically occurs when imaging through long-range atmospheric

turbulence or short-range hot air turbulence (e.g., fire flames, vapor streams). The

motion of such turbulence is often swift. The turbulent images thus exhibit high

frequency distortions. Water turbulence distortion, in contrast, is induced by the

refraction of light at the water-air interface. The distortion is therefore highly relevant

to the water surface geometry (e.g., the depth and normal field). Although water
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turbulence might not be as fast evolving as air turbulence, it causes more drastic

geometric distortions in the turbulent images. As with the geometric distortion, blur

induced by turbulence is also randomly spatially- and time-varying [86].

2.2 Machine Learning

Machine learning (ML) most generally describes a computer algorithm that im-

proves itself by learning from data. ML is a foundational component of artificial

intelligence, and underpins most AI algorithms by enabling them to effectively per-

form a task. The applications of ML vary vastly, and ML is becoming increasingly

widespread and increasingly important [32]. Here we discuss the differences between

supervised and unsupervised learning and provide a particular emphasis on the class

of machine learning models called artificial neural networks.

Machine learning algorithms can be divided into several key categories based on

the type of learning; among these are supervised learning and unsupervised learning

[18]. Consider a machine learning algorithm that receives a sequence of input data

x1, ..., xn from which it will learn. These inputs may be images, spectral data, words,

or other types of input. The desired output from the algorithm is some sequence

y1, ..., yn where xi corresponds to each yi for i ∈ N. Each yi may be a class label,

a score, or even data structured in a similar format as xi. If the algorithm is a

supervised machine learning algorithm, y1, ..., yn must be known and given to the

algorithm. The algorithm then adjusts its parameters so as to optimally replicate the

correct y for any given x. Algorithms such as linear regression, logistic regression,

support vector machines, and K-nearest neighbors are supervised algorithms. On the

other hand, a supervised algorithm relies on input data and does not require labels.

Principal component analysis and cluster analysis are key unsupervised algorithms.

Artificial neural networks (also referred to as neural networks, neural nets, ANNs,
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or NNs) are an important class of machine learning models capable of performing rel-

atively complex tasks. The advent of the backpropagation algorithm allowed for the

effective training of multilayer neural networks [79]. ANNs have seen more widespread

use in recent years, coinciding with increasing computational bandwidth, optimiza-

tion of graphics processing units for ML use, and greater prevalence of distributed

computing. Various types of ANNs have made particularly notable impacts on diffi-

cult challenges, including image classification, speech recognition and synthesis, and

medical diagnosis and prognosis.

As their name suggests, artificial neural networks are inspired by the central ner-

vous system’s network of neurons, which passes information through electrical signals

and is capable of learning highly complex information [23]. Commonly, ANNs are

arranged in layers, each with a number of artificial neurons, also known as nodes. In

a multilayer perceptron (MLP), each node has a weighted connection to every node

in the previous layer (if it is not in the input layer) and every node in the succes-

sive layer (if it is not in the output layer). A given node’s value is the sum of all

previous values, typically with an added bias value. The final output can then be

compared with some known label, and the error can be computed using some loss

function. Common loss functions include mean squared error and cross-entropy. This

error is used to optimize the model through a process called backpropagation, where

a gradient descent algorithm is used to adjust the weights and biases to minimize

error. Common gradient descent algorithms include stochastic gradient descent and

ADAM.

Neural networks can be supervised or unsupervised [10]. Supervised neural net-

works are most common; they rely on known labels for the training data [35]. Unsu-

pervised networks, on the other hand, adjust parameters without training labels, and

rely on alternative methods of training, such as genetic algorithms [59].
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Figure 2.3: Diagram of a simple MLP. More hidden layers and more nodes per layer

are common. (Taken from Wikipedia under Creative Commons License 3.0)

Convolutional neural networks (CNNs) significantly outperform prior algorithms

at image-related tasks, and new models are superseding prior architectures at a swift

rate [24]. The modern theory of CNNs stems from the findings of Hubel and Wiesel,

which characterized the function of neurons in the visual cortex interpreting visual

information received from the eye.

CNNs are so named because convolutional neural network layers are based on the

discrete convolution operation, defined in 2 dimensions below:

S(i, j) = (K ∗ I)(i, j) =
∑
m

∑
n

I(i−m, j − n)K(m,n)

In practice, many machine learning libraries instead implement the cross-correlation
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function, where the kernel is simply flipped, as shown:

S(i, j) = (K ∗ I)(i, j) =
∑
m

∑
n

I(i+m, j + n)K(m,n)

In contrast with traditional fully-connected neural network layers, convolutional layers

have spare interactions, where the kernel is smaller than the input [22]. This results

in fewer model parameters and operations, which can significantly improve efficiency

of a model. Convolutional layers are capable of detecting features such as edges in an

image. Typically, convolutional layers are accompanied by pooling layers, where some

operation is leveraged to heavily reduce the dimensionality of the data; for instance,

in the case of 2D max pooling, the input is divided into a by b neighborhoods for

which the output is simply max{a,b}(xa,b). This also means that the network’s output

is invariant in the face of minor translations of the input, which is beneficial in many

image-related tasks.

The modern framework for the CNN was established with the LeNet architecture

[36, 37]. Their adoption and improvement accelerated rapidly with a series of key

CNNs, particularly those that won the ImageNet competition, including AlexNet

[58], followed by deeper and more computationally complex, including VGGNet [62],

GoogLeNet [64], and ResNet [26], which leveraged an extremely deep architecture

with residual connections.

Image restoration is another key area of application for deep neural networks.

Supervised learning with neural networks has been the more common approach; re-

cently, however, unsupervised or self-supervised learning using deep image priors [72]

for image restoration tasks has enabled improved performance without the need for

training data. In [72], the authors showed that a randomly-initialized neural net-

work can be used as a handcrafted prior with excellent results in standard inverse

problems such as denoising, super-resolution, and inpainting. Deep image priors have
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been adopted across many application domains [41, 21, 54, 76].

Also recently, analysis-by-synthesis techniques have demonstrated impressive ca-

pabilities for estimating visual information, particularly for inverse graphics problems

[42, 39, 48, 82, 20, 3, 70]. Mildenhall et al. [44] demonstrate how a multilayer percep-

tron (MLP) coupled with a special layer known as Fourier features [65] can estimate

the 5D radiance field of a scene. More recently, the NeRF architecture has been ex-

ploited to solve problems like view synthesis, texture completion from impartial 3D

data, non-line-of-sight imaging recognition, etc [6, 7, 13, 55, 85].

2.3 Related Work

A variety of methods to mitigate turbulence effects in imaging have been used,

including blind deconvolution [9, 19, 88] and optical flow [4, 45, 61]. The primary

classical approaches to turbulence removal include spatio-temporal models and lucky

frames.

Air and water turbulent images are usually enhanced in different ways. For air

turbulence, physics-based approaches use complex turbulence models (e.g., the Kol-

mogorov model [33, 34]) to simulate the perturbation, and then restore clear images

by inverting the models. For water turbulence, classical methods model the distortion

as a function of the water surface height or normal by applying Snell’s law [67, 84].

Recently, several learning-based methods are separately proposed to remove either

air or water turbulence effects.

The problem of turbulence removal can be conceived as the attempt to find some

function F that transforms some turbulent image It into a clean image Ic without the

distortion or blur caused by turbulence. Some models aim to use models that approx-

imate the function based of statistical and/or physics-based properties of turbulence.

Zhu and Milanfar provides a spatio-temporal model based on 2D convolution. Meth-
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ods employing image registration with deformation estimation architecture can also

resolve small movements of the camera and temporal variations due to atmospheric

refraction [88, 27].

While these models offer a clear mathematically-decipherable method for reversing

turbulence in contrast to neural networks, they rely on inaccurate approximations of

the turbulence function, and are thus inherently limited in their efficacy.

The lucky frames approach relies on short-exposure frames from a video stream

or sequence of images [75, 57, 16]. The image frame is divided into regions. For each

region, the best (”lucky”) frame is selected, then all of the regions are fused to form

the picture [87]. John and Vorontsov [31] improved this method by searching and

fusing the “lucky region”, instead of the whole frame, to restore the scene. Aubailly

et al. [2] introduced an automated kernel selection technique to further improve the

lucky frames approach.

These methods require enough images (often hundreds) that a sufficiently lucky

frame is found for each region. Even with a large enough dataset, this style of ap-

proach is outperformed by more modern approaches, particularly those that leverage

deep neural networks.

A modern approach to removing atmospheric turbulence relies on deep neural net-

works [17, 46]. NNs have the ability to approximate highly complex functions without

prior knowledge about said functions. These methods often outperform traditional

approaches to turbulence performance [5].

However, a key disadvantage of deep neural networks in the restoration of clean

images from turbulent images is the lack of available data [73]. Real-world images,

both clean and turbulent, of the same scene are difficult to obtain. Therefore, images

with simulated turbulence often must be used for supervised models. These models

also suffer from poor generalization beyond their training dataset.
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Recovering undistorted images from underwater images has been well-studied in

computer vision for various applications. Early solutions [14, 38] take the mean/median

of a distorted image sequence to approximate the latent distortion-free image, al-

though these methods are limited for large distortions. Like in the case of air tur-

bulence, “lucky region” algorithms have also been proposed using clustering [11, 12],

manifold embedding [14], and Fourier-based averaging [78]. The seminal work of

[67, 68] presents a model-based tracking method to restore underwater images.

Recent advances in imaging through water distortions have leveraged deep learn-

ing for state-of-the-art performance. Li et al. [40] propose a generative adversarial

network (GAN) to correct refractive distortions using a single image. The main draw-

back of Li’s method was that it did not leverage the temporal consistent nature of the

fluid flow. Thapa et al. [66] propose a two-step dynamic fluid surface reconstruction

network to recover the depth and normal maps of the transparent fluid given a short

sequence (3 frames) of distorted fluid images.

In a turbulence removal problem similar to the atmospheric examples presented,

Xue et al. adapt classical optical flow to estimate small refractive distortions caused

by hot air or gas [81].

Many of the methods discussed have artifacts when reconstructing dynamic scenes

with large amounts of motion. To counter this, methods have been introduced such

as block matching [30], enforcing temporal consistency [47], using reference frames

[8], and segmenting static background from moving objects [49, 25, 1]. One promising

avenue of direction has been utilizing the physics of turbulence to create accurate for-

ward models for image formation. Mao et al. [43] achieve state-of-the-art performance

by utilizing knowledge of atmospheric turbulence to create a physics-constrained prior

for optimization.
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Chapter 3

DEVELOPMENT OF AN UNSUPERVISED MODEL FOR REMOVING

EFFECTS OF ATMOSPHERIC TURBULENCE FROM IMAGES

Figure 3.1: The overall architecture of our unsupervised non-rigid image distortion

removal network. The network predicts the distortion-free image J , given a sequence

of distorted turbulent image {Ik|k = 1, 2, ...K} and uniform grid GU . Ĩ and J̃G

are two intermediate results to constrain the optimization procedure. We use the

pair-wise differences among I, Ĩ, and J̃G as the optimization losses.

Here we present our design for an unsupervised network that is able to remove non-

rigid distortions from both air and water turbulent images, as shown in Fig. 3.2. The

key idea is to model the non-rigid distortions as a deformable grids. For example, we

model the distortion-free image as a straight and uniform grid, and turbulent images

with distorted grids. Inspired by recent works on the Neural Radiance Field (NeRF)

[44, 65], we generate the distortion-free image using a grid-based rendering network.

Our method, therefore, bypasses sophisticated and heterogeneous physical turbulence

models and is able to restore images with different types of distortions.
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Figure 3.2: We present a novel unsupervised network to estimate the non-rigid dis-

tortion and latent distortion-free image when imaging through turbulent media. Our

method works for both air (Row One) and water (Row Two) distortions.

The overall structure of our network is illustrated in Fig. 3.1. Our network consists

of two main components: a grid deformer G that estimates the grid deformation and

an image generator I that renders a color image that matches the distortion of an

input grid. One critical component in our network is the position encoding operator

commonly used in NeRF networks [7, 13, 55, 65, 85]. By incorporating this operator

into the image generator, we can simplify our network structure while maintaining

fine spatial details in the reconstructed output images.

Our neural network works as an optimizer for generating the distortion-free image

by minimizing pairwise differences between the captured input images, the network’s

predicted distorted images, and resampled distorted images from the distortion-free

image. Our network optimizes its parameters based on specific inputs without anno-
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tation and does not need to be trained on a labeled dataset. Specifically, our network

is optimized in two steps: we first initialize our network parameters by exploiting the

locally-centered property [49] of pixel displacement caused by turbulent media; we

then iteratively update the estimated distortion-free image J by minimizing our ob-

jective function. Empirically, this two-step optimization converges very fast because

the initialization step provides a reasonable estimation that largely reduces the search

space.

3.1 Non-rigid Distortion Removal Network

Our problem formulation is as follows: we assume a static scene being imaged by

a camera with non-rigid distortion being induced by turbulence. Given a sequence

of captured non-rigidly distorted images {Ik|k = 1, 2, ...K} and a uniform grid GU ,

our goal is to recover the latent distortion-free image J as if it was unaffected by the

turbulent medium.

Our key idea is to model the non-rigid distortions through grid deformation and

reconstruct the distortion-free image J while estimating the distorted image sequence

to be consistent with the captured data. To do so, we utilize two sub-networks in

our main neural network architecture: a grid deformer and an image generator.

The grid deformer Gkθ is a network to deform a uniform sampled straight grid GU by

estimating the distortion field of the captured frames Ik, and generates a deformed

grid Gk = Gkθ (GU). The image generator is a neural network acting as a parametric

function Ĩ = Iφ(G) that maps a grid G to an image Ĩ. When the grid Gk from the

grid deformer is used as input, Iφ maps its parameters φ to a distorted color image Ĩk,

which is compared to the corresponding image frame Ik. At the same time, feeding

a uniform grid GU to the network Iφ , we can expect Iφ map φ to a distortion-free

image J , as shown in Fig. 3.1. We also use the predicted distorted grids {G1, ..., GK}
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to directly resample J and obtain another set of distorted images {J̃G1 , ..., J̃GK} as

intermediate results to constrain the optimization procedure.

Novel to our method is its unsupervised learning approach, which means that our

network does not require ground truth knowledge of the underlying true distortion-

free image Jtrue. Instead, given an image scene, our network works as an optimizer

that solves for J by minimizing the pair-wise differences among I, Ĩ, and J̃G. To

properly estimate sharp image details in the image generator, we leverage the latest

positional encoding technique in [44, 65] to preserve fine-details in our recovered latent

image, without the need for extra convolutional layers with many parameters, which

we describe in Section 3.1. To improve the convergence of our network, especially

important for learning in an unsupervised fashion, we introduce a novel two-step op-

timization algorithm to constrain our network described in Section 3.1.

Network structure The overall structure of our non-rigid distortion removal net-

work is shown in Fig. 3.1. Our network has two main components: the grid deformer

Gθ and the image generator Iφ. Table 3.1 provides detailed network architecture of

the two subnets. In the tables, Conv, BN, ReLU refer to convolution layers, batch

normalization and Rectified Linear Unit; γ refers to the GRFF position encoding

component.

Grid deformer Gθ takes a uniform grid GU ∈ R2×H×W as input, where W and H

are the sampling number along x− and y−axis, and outputs a deformed grid Gk ∈

R2×H×W corresponding to the distortion field of the distorted image Ik ∈ R3×H×W ,

i.e., Gk = Gkθ (GU), where θ is the set of trainable network parameters. Gθ com-

prises four convolution layers, each has 256 channels and ReLU rectifier. To meet the

range constraint for Gk, a tangent hyperbolic function is applied to the output layer.
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Input Filters Output Shape

Gθ

Input 128× 128× 2

Conv, ReLU, BN 256@1× 1 128× 128× 256

Conv, ReLU 256@1× 1 128× 128× 256

Conv, ReLU 256@1× 1 128× 128× 256

Conv, Tanh 2@1× 1 128× 128× 2

Iφ

Input 128× 128× 2

γ (GRFF) 128× 128× 256

Conv, ReLU, BN 256@1× 1 128× 128× 256

Conv, ReLU 256@1× 1 128× 128× 256

Conv, ReLU 256@1× 1 128× 128× 256

Conv, Sigmoid 3@1× 1 128× 128× 3

Table 3.1: Detailed architecture of grid deformer Gθ and the image generator Iφ. Here,

ReLU and BN stands for Rectified Linear Unit and Batch Normalization, respectively.

We use the input image size 128× 128× 3 as an illustrative example.

Note that, we train a separate Gkθ for each Ik for two reasons. First, the turbulence

field, especially for the air turbulence, is random and has less temporal consistency

when the image sequence or video is captured under a standard frame rate, i.e. 30

fps [60, 40, 67, 50]. Using a single network to predict all these random distortion

fields is challenging without empirical guidance from ground truth labels and strong

temporal consistency constraints. Secondly, the network structure of Gθ is simple and

has few parameters, and thus we can jointly optimize {Gkθ |k = 1, . . . K} with low

memory consumption for GPU implementation. Please find a more detailed discus-

sion in Section 3.2.

Image generator Iφ renders a color image Ĩ ∈ R3×H×W when given a grid input
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Figure 3.3: Distorted image generation via grid deformation.

G ∈ {G1, . . . Gk, GU}: Ĩ = Iφ(G). If the input grid is a deformed grid Gk, Iφ returns

an image Ĩk that matches the distortion of Gk. If the input grid is a uniform grid GU ,

we consider the output as a distortion-free image J ∈ R3×H×W . Iφ share a similar

network architecture with Gθ. Since the output of Iφ is a color image, we apply a

nonlinear Sigmoid activation function to the output layer. Please find more details

about the structure of Gθ and Iφ in our supplementary material.

Position encoding via Fourier features As pointed out by [52], networks which

directly map xy coordinates to values typically are biased to learn lower frequency

functions. To preserve high frequency content in the image, a good solution is to map

the grid inputs to a higher dimensional space using high frequency functions before

passing them to the network [65, 44]. In our work, we utilize Gaussian random Fourier
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features (GRFF) to transform the input grid to its high frequency Fourier feature

domain before passing it to the image generator Iφ. Let v = (x, y) be a coordinate

from the input grid. Its GRFF is computed as γ(v) = [cos (2πκBv), sin (2πκIBv)],

where cos and sin are performed element-wise, κI is a bandwidth-related scale factor,

and B ∈ R128×2 is randomly sampled from a Gaussian distribution N (0, 1). Thus, the

input grid G ∈ R2×H×W will be mapped into Fourier Feature space γ(v) ∈ R256×H×W .

It is worth noting that the choice of κI in the image generator is pertinent to our

network’s performance. In general, large κI tends to have the network converge fast

and very likely to end up at a local minimum. Here we empirically pick κI = 8. We

discuss the effect of GRFF in an ablative study in Section 3.2.

Two-step network optimization As our network is unsupervised, it is highly non-

convex and has enormous parameter search space. By exploiting redundant informa-

tion within the deformed image sequence, we propose a two-step network optimization

strategy to train a CNN at test time for a given sequence. We first initialize the pa-

rameters of Gθ and Iφ so that they are constrained under properties of non-rigid

distortion through turbulent media. Next, we iteratively refine the initialized net-

works and update the estimated underlying distortion-free image using the captured

input distorted images as references.

Parameter initialization. To avoid being trapped in potential saddle points and

to allow faster convergence speed, we initialize the network parameters θ and φ by

exploiting a physical property of pixel displacement caused by turbulent media: the

non-rigid distortions induced by a turbulent medium are generally locally centered [49].

The distorted images therefore still preserve a large amount of low-frequency image

structures. By extrapolating the similarities among the distorted images, we are able

to remove a certain amount of non-rigid distortions and obtain a reasonable initial
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estimation of the distortion-free image.

The grid deformer is initialized by constraining its output to be close to the

uniform grid. In this way, we can limit the grid deformation within a certain range

and also preserve the order of pixels. We initialize the image generator by constraining

its output to have a similar appearance as the input sequence. Specifically, we feed

the uniform grid GU to the image generator. We then compare the output image

J = Iφ(γ(GU)) with all images in {Ik}, and minimize the sum of per-pixel color

differences.

We formulate the initialization procedure as:

min
θ,φ

∑
k

|Gkθ (GU)−GU |+ |Iφ(γ(GU))− Ik|, (3.1)

where | · | represents the absolute differences (i.e., the L1 loss). Notice that we use

the L1 loss for all loss functions as it tends to be less affected by outliers. We run the

optimization for a few hundreds of epochs, and use the resulting parameters θ′ and

φ′ as the initialized weights.

As illustrated in Fig. 3.4, removing the initialization step will lead the network to

converge to a wrong local minimum and fails to predict a reasonable J . In addition,

our initialization produces a sharper image that is closer to the latent distortion-free

image in color space than simply averaging the images together. This is because

taking the average will result in the centroid of the images in RGB color space, and

will be blurry since turbulence is time-varying. We discuss more in Section 3.2.

Iterative refinement. After our initialization step, we set out to learn the under-

lying distortion-free image through the following optimization model:

min
θ,φ

∑
k

|Ĩk − Ik|+R(Ik), s.t. θ
0 = θ′, φ0 = φ′, (3.2)

where Ĩk = Iφ(γ(Gk)) is the estimated distorted image, Gk = Gkθ (GU) is the deformed

grid, R(Ik) is a regularizer, θ0 and φ0 are the initial weights of the network. We use
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Figure 3.4: The loss and accuracy comparison with and without the initialization step

(Top row). Our initialization algorithm improves our prediction performance signif-

icantly and can initialize sharper distortion-free images than the simple averaging

(Second row).

R(Ik) to strengthen the interconnection between the predicted distortion-free image

J = Iφ(γ(GU)) and deformed grids {Gk}:

R(Ik) = |J̃Gk − Ik|+ |J̃Gk − Ĩk|, (3.3)

where J̃Gk is a resampled distorted image by grid sampling the deformed grid Gk on

the recovered latent image J , as shown in Fig. 3.3. We iteratively update the J using

Eqn. 3.2 until networks converge.
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3.2 Experiments

In this section, we first compare our approach to a set of state-of-the-art methods

from the literature on the task of image restoration for both air and fluid turbulence.

Then, we present our experimental results to validate our neural network architecture

and optimization algorithm. We demonstrate that our method not only outperforms

the unsupervised approaches, but even edges out other supervised algorithms that,

in contrast to ours, have access to a large amount of synthetic turbulent data using

sophisticated physics-based simulators at training time. For quantitative evaluation,

we employ the most common metrics for image restoration, i.e., the peak signal-to-

noise ratio (PSNR) and structural similarity (SSIM).

Experimental setup Our network was implemented in Pytorch [51] with a desktop

computer equipped with two NVIDIA GTX 1080 GPUs. Unless specially stated, the

experiments follow the same setting: We use the Adam optimizer and set the learning

rate as 10−4 for both Gθ and Iφ. We use 1,000 iterations for parameter initialization,

and in the iterative refinement stage, our network converges within 1,000 epochs, as

shown in Fig. 3.4. We empirically pick κI = 8 as the bandwidth-related factor of the

Fourier feature mapping operator for all experiments.

The overall network to handle 10 input frames has around 1.53 million trainable

parameters, which include 1.33 million (M) total for the grid deformers (one for each

frame) and 0.2 M for the image generator. Compared to a contemporary GAN to

restore imaging through water turbulence with about 50 million parameters [40], our

network restores comparable high-frequency details in the predicted image with less

memory footprint.

We use the physics-based simulation software presented in [60] to render images
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affected by the air turbulence. Fig. 3.5 illustrates the simulation setup and the re-

spective parameters used in the simulator. Numerical values of the parameters are

given in Table 3.2.

Figure 3.5: Air turbulence simulation setup. We simulate the distorted image of the

scene through the turbulent air. Here L is the path length from camera to scene; d

is the camera’s focal length; h is the camera height; and D is the camera’s aperture

size.

The simulator uses the refractive image constant (C2
n) to control the strength

of the air turbulence. Stronger turbulence results in more distorted images. In our

simulation, we use three levels of C2
n to render images under weak, medium, and strong

air turbulence. Fig. 3.6 shows exemplary images of the three turbulent strengths.

Evaluation on air turbulence For the air turbulence, we compare with the fol-

lowing state-of-the-art methods: Clear [1], [49], [83], [17], and [43]. [1, 83, 43] are

physics-based approaches that use complex turbulence models. [17] is a supervised

method trained on a large semi-synthetic turbulence dataset.

We compare the image restoration performance on both real and synthetic datasets.

For synthetic experiments, we synthesize turbulent image sequences with different
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Parameter Value

Path length L 2km

Height h 4m

Aperture Diameter D 0.08m

Focal Length d 0.3m

Wavelength λ 550nm

Turbulence Weak 1× 10−14 m−2/3

Strength Medium 1× 10−13 m−2/3

C2
n Strong 1× 10−12 m−2/3

Table 3.2: Air turbulence simulation parameters.

turbulence strengths. We use the turbulence strength parameter C2
n = 1 × 10−14

for the weak turbulence; C2
n = 1 × 10−13 for the medium; and C2

n = 1 × 10−12 for

the strong. The quantitative comparison results with respect to various turbulence

levels are reported in Table 3.3. We can see that our method is robust for the strong

turbulence.

As for the real data, we compare on two types of air-turbulence phenomena: hot-

air turbulence and long-range atmospheric turbulence. For the former, we capture

our data by using a gas stove to heat the air. We use a cellphone camera to capture 5

scenes around 50 meters away from the heat source. For the latter, we use data from

two sources: (1) the widely adopted Chimney and Building sequences [28] and (2)

our own turbulent images captured using a Nikon Coolpix P1000 camera. We mount

the camera on a tripod to capture 1080p videos at 30 fps of 5 scenes at around 1-3

miles away with 125× optical zoom.

We show the comparisons with the state-of-the-arts on Chimney and Building
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Figure 3.6: Exemplary images of the three turbulent strength levels (weak, medium,

and strong) in comparison with the distortion-free image (taken from Open Turbulent

Image Set (OTIS) [19]).

Figure 3.7: Comparisons on the Building and the Chimney. We also report the PSNR

measurement for each restored image. It’s worth noting that all methods take the

full sequence (100 frames), while our method only takes 10 randomly picked frames.

in Fig. 3.7. As we don’t have access to the codes of several methods [1, 83, 17],

we directly take the images and reported PSNR from their original papers. It is

important to note that most of these algorithms take a longer input sequence (≥ 100

frames) and has deblurring component to produce sharper images. In contrast, our

network only needs 10 input frames to make a reliable prediction. But as our network
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Strength Metrics Average Our init. [1] Ours

Weak
PSNR↑ 25.10 25.20 18.31 24.29

SSIM↑ 0.941 0.95 0.856 0.984

Medium
PSNR↑ 19.48 19.85 14.09 20.70

SSIM↑ 0.774 0.804 0.561 0.904

Strong
PSNR↑ 17.08 17.12 12.51 17.40

SSIM↑ 0.632 0.667 0.433 0.799

Table 3.3: Quantitative comparison on air turbulence data with various strengths.

We compare with the temporal average frame, our initial J and CLEAR [1].

Figure 3.8: Visual comparison results on our real captured hot-air turbulence and

long-range atmospheric turbulence images.

focuses more on distortion removal, our output may still suffer from certain amount

of blurriness. To help predict sharper images, we can apply a deblurring algorithm

on our predicted distortion-free images.

Xu et al. [80] provided a method for motion deblurring, which we applied to

the output image of our network. The results presented in Fig. 3.9 demonstrate a

qualitative improvement in the output and a substantial reduction in blur.

We show the qualitative comparison on our real captured data in Fig. 3.8. Here
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(a) Original (b) Deblurred with [80]

Figure 3.9: Effect of sharpening approach from [80] on the output of our network.

we only compare to the methods that we have access to their codes or the authors

have provided us their results.

Evaluation on water turbulence For the water turbulence, we compare our

methods with the following state-of-the-arts: [67] and [50] are physics-based methods.

[40] is a learning-based method. All provided the source codes.

We perform experiments on two water turbulent image datasets: [66] and [40].

Thapa et al. proposed a synthetic dataset providing both the distorted image se-

quences and the ground truth pattern. The images are simulated using a physics-

based ray tracer with different types of waves. [40] is a real captured dataset. It

poses challenges such as illumination change and shadows. The distortions are also

more drastic. We show the visual comparison results in Fig. 3.10. We can see that

our method outperforms all the states-of-the-arts. To further validate the robustness,
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Figure 3.10: Visual comparisons on real water turbulence images provided by [40],

which proposed a supervised GAN model to restore water turbulence.

we created three synthetic sequences of water turbulence images, each contains 10

frames, caused by different types of waves using the physics-based ray tracer pro-

vided by [66]. The ocean waves are the most challenging, as they are more random

and have more high-frequency turbulence components. As shown in Table 3.4, our

method ranks higher on the Ripple and Ocean waves. Although [40] achieves higher

PSNR/SSIM scores on the Gaussian wave, their results appear blurrier than ours (see

visual comparisons in Fig. 3.14). Further, [40] requires training on ∼320K images.

Ablation Studies We conducted a set of ablation studies to validate various design

choices in our network architecture. For all these studies, we tested image restora-

tion through simulated air turbulence, as the resulting non-rigid distortions are more

random than water turbulence in general. We utilize a physics-based atmospheric tur-

bulence simulator for 2D images [60] to generate 100 different turbulence fields with

controllable turbulence strength C2
n that are applied to a clear image to generate

distorted image sequences.

Network structures of Gθ. For a fair comparison of the capability of different
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Types Metrics [67] [50] [40] Ours

Ripple
PSNR↑ 20.40 21.24 20.70 23.63

SSIM↑ 0.878 0.902 0.882 0.970

Ocean
PSNR↑ 20.93 21.13 21.32 22.32

SSIM↑ 0.891 0.901 0.833 0.964

Gaussian
PSNR↑ 17.61 17.40 18.67 17.50

SSIM↑ 0.787 0.789 0.833 0.818

Table 3.4: Quantitative comparison on different types of water turbulence. We com-

pare our result with [67], [50], and [40].

structures in encoding the deformed grid, we replace Gkθ with several different CNNs,

as shown in Table 3.5. Specifically, Con2, Con4 and Con6 are CNN structure with 2,

4, 6 convolutional layers respectively. As we have 10 frames in the input sequence,

the total number of parameters is equal to 10 × the size of each Gkθ . We also compare

with the architecture that simply use a deep autoencoder CNN (DAE) with skip con-

nections [54] to predict 10 deformed grids {Gk} at once. We demonstrate that the

proposed structure (Con4) is superior to other networks w.r.t. the restoration ability

with fewer trainable parameters.

Number of input images. One critical design consideration for our network is the

number of input images needed to generate a distortion-free image. There is a trade-

off between the speed of the network in restoring images versus the visual fidelity. In

Table 3.6, we show the average PSNR/SSIM and total run time (2,000 epochs) for

2, 5, 10, 15 and 20 frames. A visual comparison is shown in Fig. 3.12. Increasing

the input number does benefit our restoration task, but we sacrifice time efficiency
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Gθ
10 subnets 1 network

Conv2 Conv4 Conv6 DAE

Total params 0.02M 1.33M 2.65M 2.35M

PSNR↑ 19.23 20.48 20.06 16.83

SSIM↑ 0.775 0.790 0.742 0.467

Table 3.5: Comparison of the Performance on the Restoration Ability among Different

Network Structures of Gθ

# of inputs 2 5 10 15 20

PSNR↑ 17.55 18.50 20.50 21.43 21.13

SSIM↑ 0.556 0.666 0.793 0.827 0.830

Time 65s 143s 265s 403s 499s

Table 3.6: Average PSNR, SSIM, and run time (2,000 epochs) comparison on taking

different numbers of input images.

in order to do so. Since there are diminishing returns to the image quality of our

predicted sharp images after 10 input frames, this number is chosen as the default

input number throughout the following experiments.

Effect of position encoding. The Gaussian random Fourier features (GRFFs) en-

codes the input grid into a higher dimensional space, enabling our image generator to

approximate real high-frequency sharp images. We compare our full network with the

one that removes the GRFF in the image generator and simply takes {Gk} as input.

As shown in Fig. 3.11, with Fourier feature mapping operators in I, we have about

30.9% improvement in SSIM and 13.9% improvement in PSNR of the recovered latent
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Figure 3.11: Ablation study on different variants of our proposed network. We show

the PSNR and SSIM vs. the number of iteration curves for comparison.

images, compared with the network variant without GRFF (No GRFF). They also

help increase the convergence speed. We show the impact of the bandwidth-related

scale factor κI in Fig. 3.12.

Effect of initialization step. To evaluate the effects of the network initialization,

we created four variants of the network for comparison: 1) Gno init + I, that removes

the initialization step of grid deformer G; 2) G+Ino init, that removes the initialization

step of image generator I; 3) No init, that has no initialization step at all; and 4)

G ′ + I ′, that adds the initialization losses to the iterative refinement step. As shown

in Fig. 3.11, taking out the initialization step from either the Gθ and Iφ, the overall

network has subpar optimization performance and fails to predict a reasonably sharp

image. However, simply adding the initialization losses to the main optimization loop

can degrade our restoration performance, as these losses can lead the network to con-

verge to some local minimum, as discussed in Section. 3.1.
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Effect of number of input images Here Fig. 3.12 shows the visual comparison

results of different number of input images. We can see that the qualitative improve-

ment of the predicted distortion-free image becomes margin when the number of input

images is greater than 10. We therefore take 10 input images as the default setting

to balance performance and efficiency.

Effect of GRFF parameters We evaluate the impact of the bandwidth-related

scale factor κI for Fourier feature mapping. We show the quantitative comparison

results (average PSNR/SSIM) in Table 3.7, and qualitative comparison results on

distortion-free image and distortion field prediction in Fig. 3.12.

κI 0.1 1 8 10 50 100

PSNR 19.38 19.29 20.28 20.01 16.24 13.89

SSIM 0.627 0.800 0.796 0.754 0.373 0.372

Table 3.7: Quantitative comparison on varied Fourier feature mapping parameters

κI . Red and Blue refer to the top and second best performance respectively.

3.3 More Results on Synthetic and Real Data

Air turbulence results We show additional visual results on simulated air turbu-

lence in Fig. 3.13. We compare on simulated air turbulence of three strength levels:

weak, medium and strong. We compare with the state-of-the-art method CLEAR [1],

whose source code is available. We also compare with the average image of the entire

input sequence, as well as our initialization result.

We show more results on the real captured hot-air turbulence scenes in the sup-

plementary video. The videos are filmed by imaging through the hot air generated
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Figure 3.12: Qualitative comparison on varied values for κI and different numbers of

input images (1, 5, 10, 15, and 20).
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Figure 3.13: Qualitative comparison on simulated air turbulence images with various

strengths (weak, medium, and strong).

by a lit gas stove. We include video clips of two scenes. Each scene has 50 frames. As

recovering all frames together is computationally expensive, we divide the 50 frames

into three batches: 20, 20 and 10. We then feed these three batches into our network

to predict the distortion-free image and the distortion fields. In the videos, we show

the predicted distortion-free image from the last batch.

Water turbulence results We show additional visual results on simulated water

turbulence in Fig. 3.14. We compare on simulated water turbulence of three types:

ripple, ocean and Gaussian. We compare with the state-of-the-art methods Tian et

al. [67], Oreifej et al. [50], and Li et al. [40].

The real captured turbulent videos are provided by [66]. The videos are captured

through a wavy water surface. We choose two different types of waves with different

background patterns. The video processing method is similar to the air turbulence
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Figure 3.14: Qualitative comparison on simulated water turbulence images with var-

ious types of waves (ripple, ocean, and Gaussian).

case. Each scene has 50 frames. We divide the 50 frames into three batches: 20, 20 and

10. We then feed these three batches into our network to predict the distortion-free

image and the distortion fields. In the videos, we show the predicted distortion-free

image from the last batch.

In order to combat camera jitter, we stabilized the video input to the network

using the Adobe Premiere Pro software. The results are shown in Fig. 3.15. The

stabilization of the input results in a relatively clear image. In contrast, the unsta-

bilized input video frames resulted in an output that shows artifacts associated with

disparate locations of points in different frames. Still, the stabilized output does show

smaller artifacts, and does not display the exact same region of the input video as is

shown in the input.
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(a) House input (b) Unstabilized Output (c) Stabilized

Figure 3.15: Network results on unstabilized vs. stabilized inputs.
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Chapter 4

ESTIMATION OF THE REFRACTIVE INDEX STRUCTURE CONSTANT

FROM WARP FIELDS

Knowing the utility of estimation of the refractive index structure constant, C2
n, we

sought to provide a method for C2
n estimation that only required an image. We

leveraged an additional deep convolutional neural network model alongside a physics-

based turbulence simulator to accomplish this goal. The process behind this method

and results from experiments for C2
n estimation are describe in this chapter.

4.1 Existing C2
n Estimation Methods

Few methods exist that leverage deep learning to estimate C2
n. Those that do

use instrument data as inputs for training data, and scintillometer measurements as

training labels for supervised learning.

[77] trains on temperature, relative humidity, barometric pressure, potential tem-

perature gradient, and wind shear as inputs into a small MLP with a single hidden

layer containing 5 nodes, which outputs an estimated C2
n value. [63] presented 3 vari-

ations on their own model, and the best-performing trained both with a combination

of the typical backpropagation algorithm and an adaptive niche-genetic algorithm.

Its inputs were temperature, wind velocity, and relative humidity each at 0.5m and

2m above the ground as well as pressure and snow surface temperature. Similarly

to the prior example, they used an MLP with a single hidden layer containing 6

nodes, and had log(C2
n) as output. 4.1 the model has shows good accuracy with a

log(C2
n) between -13.5 and -14.5, but decreased accuracy for log(C2

n) values outside

this range. [74] proposed a model trained on intensity scintillation images captured
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(a) Day (b) Night

Figure 4.1: Scatterplot comparing real and estimated C2
n values for day and night, as

presented by Wang and Basu. Reprinted with permission from [77] ©The Optical

Society.

alongside (C2
n) values using a scintillometer setup. The model was a convolutional

neural network trained on 3 different datasets each with 9000 or more images over a

range of C2
n. As with the other models, estimation had higher error with lower C2

n

values.

4.2 Turbulence Simulator

The original simulator [60] is designed to effectively render 2-dimensional image

distortions consistent with 3-dimensional turbulence; see Fig. 4.2. The theory pro-

posed in the paper is summarized in a set of 2D operations, which together compose

the formula for rendering an image with atmospheric turbulence using a few param-

eters from the atmosphere and camera. The paper also demonstrates methodology

verifying that the distortion statistics of the generated warp fields are consistent with

the theory described.

Each pixel’s distortion can be described by Fig. 4.3. o represents the line of sight
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Figure 4.2: Rendering air turbulence in 3D vs. 2d, as shown in [60]. ©2017 IEEE.

to a point o in the scene. The angle of arrival of light from point o is perturbed by

the refractions through the turbulent medium, so that the point at which the light

arrives on the sensor is changed from p to p + e(p). Here L represents the length of

the light’s path, D the diameter of the aperture, and f the focal length of the camera.

The recipe presented in [60] is as follows (modified to include equations):
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Figure 4.3: Camera diagram demonstrating the change in angle of arrival of light

resulting from turbulence, as taken from [60]. ©2017 IEEE.

1) Calculate C(v) using the following equations:

C(v) = A(r)I−B(r)v̂v̂ᵀ

A(r) = b⊥

(
r

fθD

)
B(r) = b⊥

(
r

fθD

)
− b‖

(
r

fθD

)
2) Fourier transform C(v) to C̃(ω).

3) Calculate filter K̃(ω) using the following equation:

K̃(ω) =
1

t(ω)

[
C̃(ω) + s(ω)I

]
4) Sample a random Gaussian white noise field z(p).

5) Fourier transform z(p) to z̃(ω).

6) Use K̃(ω) in a simple multiplication per ω to obtain ẽ(ω), as written in the
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following equation:

ẽ(ω) =

∫
e(p)e−jω

ᵀpdp = K̃(ω)z̃(ω)

7) Inverse Fourier transform ẽ(ω), to obtain the distortion field e(p), of variance 1.

8) Amplify e(p) so its variance is consistent with the following equation:

σ2
AA = γ(q)C2nLD−1/3

For further details, including the derivation of these equations, consult the pa-

per. Additionally, an implementation of these equations in available in MATLAB as

published by the authors.

4.3 Preliminary Experiments - Differentiable C2
n Estimation

We adapted the existing turbulence simulator from [60] into the PyTorch frame-

work within Python 3. Fig. 4.5 demonstrates our adaption accurately reflects the

capabilities of the original simulator. By adapting the simulator into PyTorch, we

aimed to leverage PyTorch’s autograd feature to make the simulator automatically

differentiable. The structure of the simulator we implemented is shown in 4.4. Since

each of the modules that incorporate C2
n into their calculations are differentiable, and

they all lead up to the generation of a turbulent image, it is possible to impose a loss

between two different turbulent images and backpropagate the resulting error to cor-

rect the single adjustable parameter, C2
n (see Fig. 4.7). The turbulent image generated

by the forward pass with the parameters at the given stage of training is compared

with the true turbulent image. This enabled us to estimate C2
n if we know all other

parameters, including the random tensors used to generate the warp field. With all

other values known, the differentiable simulator is capable of consistently converging
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Figure 4.4: Differentiable simulator code structure. Modules are shown in gray; inputs

are shown in blue.

on the correct C2
n value; this is demonstrated in 4.6. We ran the differentiable sim-

ulator with a variety of initializing C2
n values and ground truth C2

n values, and this

consistently held true. This method then functions as an unsupervised estimator of

C2
n.

However, this method used alone has practical limitations. In practice, the white

noise vector field components Zx and Zy are not known; therefore, they too must

be estimated. Since the modules which depend on Zx and Zy are also differentiable,

it is possible to also backpropagate the error to adjust the individual values in Zx

and Zy. We attempted a series of experiments to determine whether these white

noise fields could be estimated using the warped image. We attempted to fix Zx and

estimate only Zy, estimate Zx and Zy simultaneously but with a fixed known C2
n value,

and finally estimate Zx, Zy, and C2
n simultaneously. In order to make convergence
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Figure 4.5: Side-by-side comparison of MATLAB (left) and PyTorch (right) turbu-

lence simulator results using identical input image and parameters shows that both

simulators produce nearly identical results.

(a) Loss over Epochs (b) Estimated C2
n value over Epochs

Figure 4.6: Loss and estimated C2
n over 500 epochs by differentiable simulator given all

other inputs are known. The estimator converges to the true value of C2
n = 7.203e−15.

45



Figure 4.7: Differentiable simulator backpropagation to estimate C2
n. The arrows that

have reversed direction from Fig. 4.4 represent the direction of the error backpropa-

gation.

easier for the machine learning stage, we initialized with the correct known white

noise field(s) and added only a small degree of additional Gaussian noise. We also

attempted initializing randomly the starting parameters without any prior knowledge

of Zx, Zy, or C2
n, as this would be a practical use case for the simulator estimating

these parameters. Unfortunately, while these methods did decrease in training error

over epochs, the error between the estimated white noise field(s) and true white noise

field(s) consistently stagnated, often converging to an error much higher than 0, and

sometimes even increasing. Additionally, the incorporation of Zx and Zy estimation

while simultaneously estimating C2
n resulted in a failure to converge to the correct C2

n

value most of the time; the estimation of C2
n is likely dependent heavily on having
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the correct white noise field.

We considered that there may be multiple white noise fields that resulted in the

correct distorted image, which could account for the continuously decreasing train-

ing loss despite convergence of Zx and Zy to the incorrect values. Unfortunately,

qualitative comparisons between the distorted images indicated that this was not the

case, since the warp pattern did not appear similar for the images. Ultimately, this

failure of the differentiable simulator makes theoretical sense. Due to the scale of

the white noise fields (on the order of tens to hundreds of thousands of parameters),

a relatively limited number and scale of mathematical operations would not be able

to account for the effects of each of the individual parameters sufficiently. This is

why the estimation of the warp field in the first place is performed by deep neural

networks with a large capacity for function approximation. If each of the operations

in the differentiable simulator were invertible, this would be a simple task, but many

of the operations are not bijective, and are therefore not invertible.

However, in light of our non-rigid distortion removal network is capable of esti-

mating a warp field, we attempted to proceed with the differentiable simulator by

treating the warp field as the initial guess for the warp field within the simulator.

The operations that transform the white noise vector fields Zx, Zy into the warp field

F in the simulator are not invertible, but we aimed to estimate C2
n by using F in

place of ZX and Zy and treating the estimated turbulent image from the network

as the true turbulent image. This lead to a practical problem in that the warp field

produced by the network already is scaled according to whatever C2
n value was in the

images from which the network produced the warp field. We thus attempted to scale

the result by C2
n artificially and scale back down when the error was incorporated, so

that the C2
n would still be a parameter that the simulator’s forward pass leverages,

and thereby still be a parameter that can be adjusted in the backpropagation stage.
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This lead to highly variable and innacurate results. Different initializations of C2
n

sometimes resulted in the simulator converging to different local minima, and the

simulator had an average percent error of approximately 100%. Naturally, this still

allows for a decent ball-park estimate of C2
n values, but not to the degree of precision

that we believed was achievable. We thus moved on from this approach in favor of

using a neural network to directly estimate C2
n from warp fields.

4.4 Deep Learning Estimation of C2
n

Estimating C2
n from warp fields using deep learning makes practical sense; the

input data is large, as abundant as necessary when using simulated data to train,

and in a form easily processable by a neural network. We leveraged the turbulence

simulator to construct a dataset that would allow robust estimation of a variety of C2
n

values. We generated 5000 random numbers Y to be C2
n values where Y ∼ 10U(−16,−12)

(U(a, b) being the continuous uniform distribution). We then used the turbulence

simulator to generated 5000 random 256x256 warp fields, each with one of the random

C2
n values. The warp fields were treated as inputs with corresponding C2

n values as

labels for supervised training. 4000 warp field/C2
n value pairs were assigned to the

training dataset, and 1000 were designated as the test dataset.

We performed the same procedure drawing the 5000 random C2
n values where Y ∼

U(10−16, 10−12). This allowed us to determine which dataset would result in optimal

classification, and to what degree the choice of distribution affected the outcome of

the training. With both datasets, we aimed to encompass the entire range of values

for C2
n suggested by [71].

The model uses the AlexNet architecture as defined in the Torchvision Python

package, but modified to take a warp field as input. This architecture is outlined in

Table 4.1. The architecture contains 5 2-dimensional convolutional layers, the first
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Layer Output Shape Activation # Parameters

Conv2d-1 n, 64, 31, 31 ReLU 15,552

MaxPool2d-1 n, 64, 15, 15 - -

Conv2d-2 n, 192, 15, 15 ReLU 307,392

MaxPool2d-2 n, 192, 7, 7 - -

Conv2d-3 n, 384, 7, 7 ReLU 663,936

Conv2d-4 n, 256, 7, 7 ReLU 884,992

Conv2d-5 n, 256, 7, 7 ReLU 590,080

MaxPool2d-3 n, 256, 3, 3 - -

AdaptiveAvgPool2d n, 256, 6, 6 - -

Flatten n, 9216 - -

Dropout-1 n, 9216 - -

FullyConnected-1 n, 4096 ReLU 37,752,832

Dropout-2 n, 4096 - -

FullyConnected-2 n, 4096 ReLU 16,781,312

FullyConnected-3 n, 1 ReLU 4,097

Table 4.1: Architecture of the C2
n network with n warp fields as input. The entire

network has 57,000,193 trainable parameters.
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Epochs Test Loss % Error r Run Time

1,500 4.143e-5 72.044 0.9655 ∼ 0.75 hours

8,000 5.106e-5 18.479 0.9972 ∼ 4 hours

20,000 2.309e-5 14.204 0.9978 ∼ 10 hours

Table 4.2: Comparison of different lengths of training time for C2
n network. “%

Error” represents the true percent error between the values, not log10 values. “r”

represents the Pearson product-moment correlation coefficient between true outputs

and estimated outputs.

two of which are followed by Max Pooling layers; all have ReLU activation functions.

The first convolutional layer has a kernel size of 11, the second layer, 5, and the

remaining three layers, 3. There is then an 6-by-6 adaptive average pooling layer

followed by a flattening. Finally, 3 fully-connected layers, the first two preceded by

dropout and all followed by ReLU activations lead to the final output vector. For

training, we used the Adam optimizer with a learning rate of 1e-4 and mean squared

error loss. All in all, the architecture is large, and thus training took substantial

memory and time.

We trained the model in parallel on two Titan Xp GPUs. Due to the video ran-

dom access memory limits of the GPUs, it was necessary to take a 128x128 region of

each warp field; thus the training input was 4,000x2x128x128 and the training output

was 4,000x1. When training, we discovered that of the two probability distributions

from which to sample C2
n values to construct a training dataset, the first distribution

resulted in faster convergence and higher test accuracy than the second distribution.

Therefore, we data presented here was derived from the former probability distribu-

tion. Table 4.2 shows the test loss and percent error for various training lengths.

50



Figure 4.8: Scatter plot of true vs. estimated C2
n for the 1000 values in the test

dataset.

Figure 4.9: Example warp fields from test dataset across a range of C2
n values, with

corresponding C2
n values shown. The warp fields were generated with the actual C2

n

value shown, and the estimated C2
n was generated from the model.
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The model saw substantial improvement between 1,500 epochs and 8,000 epochs, but

improvements diminished, although continued, when increasing training duration to

20,000 epochs. Overall, the model demonstrated an absolute error of 14.204%, and

was correct well within an order of magnitude for the entire training dataset. 4.9.

Given each model’s performance on its respective dataset, our model outperforms

the methods presented in [77] and [63]. While [63] provides increasingly inaccurate

estimations with lower C2
n values, and likewise [77] frequently overestimates lower C2

n

values, Fig. 4.8 demonstrates that the true and estimated C2
n values are estimated

accurately across the entire range of (10e−16, 10e−12). Additionally, the best model

in [63] reported an r value of 0.9323 between target and output, and [77] reported an

r value of 0.91, whereas we achieved an r value of 0.9978. It should be noted that

the test performance of our estimator is based on simulated data, whereas both of

the aforementioned studies were comparing with reference instrument measurements

(specifically, a sonic anemometer for [77]). We discuss approaches to demonstrate the

robustness of the model in the conclusion of this thesis.

52



Chapter 5

CONCLUSION

In this thesis we have presented an unsupervised network that effectively removes

distortion from turbulent images. The network utilizes a two-step framework that al-

lows for estimation of both a distortion-free image and the nonrigid distortion jointly.

Since the network is unsupervised, it does not suffer from the poor generalizeability as

with supervised approaches; rather, it is robust to different types of turbulence. We

demonstrate that the network is capable of distortion removal comparable to state-

of-the-art models for both air and water turbulence, and can account for a variety of

turbulent conditions in either circumstance.

Additionally, we have presented a deep-learning-based method for estimating C2
n

directly from a warp field. We demonstrate its efficacy for estimation of a wide

variety of C2
n values, and show that it also exceeds the performance of other deep

learning methods. Unlike other methods, it requires no prior data about the turbulent

conditions save those preserved within a single warp field. If we use this method in

tandem with the non-rigid image distortion removal network, we could provide a set

of 10 images and receive an estimation of C2
n from the warp field produced by the

network, in addition to the estimated image already provided by that network.

5.1 Limitations and Future Directions

Our non-rigid image distortion removal network does have certain limitations. The

network typically performs well on a sequence of 10 images, but this performance relies

heavily on a quality initialization; it is possible that poor initializations may result

from the relatively small number of images. Because the network is unsupervised,
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the training process requires an increased run time as a tradeoff for not requiring

any initial training of the network. The network also does not incorporate known

physical constraints of turbulence, and thus may be inconsistent with the physics of

turbulence.

It therefore follows that incorporation of losses based on the statistics of turbu-

lence may improve the estimation capabilities of the network. We hope to continue

exploring avenues to mitigate these disadvantages and improve the network’s capa-

bilities. This may include incorporating portions of the differentiable simulator into

the network. Initial attempts in this area have already been made involving making

components of the physics-based 2D turbulence simulator differentiable.

Furthermore, the network does not yet effectively account for camera jitter motion

or moving objects within a scene. Video stabilization techniques thus may be neces-

sary to mitigate the scene disparities from camera jitter motion prior to training. In

order to distinguish turbulent motion, object motion, and camera jitter, we may also

have to extend the model to consider the differences between these types of motion,

and we plan to make the model robust enough to operate well under conditions with

additional types of motion.

The accuracy of our C2
n estimations, while good, likely could be improved. This

may be accomplished by averaging the estimations from several sub-regions of a single

warp field or by combining several warp fields. The latter option nicely complements

the multiple warp fields produced by the distortion removal network, each of which

can be assumed to have the same C2
n values. Additionally, we could likely find a more

optimal architecture to accomplish this task. While we face an important hardware

limitation in the form of finite VRAM, a newer, lean-but-effective architecture may

provide a more accurate estimation than the AlexNet architecture used.
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