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ABSTRACT

Localization tasks using two-way ranging (TWR) are making headway in modern day

navigation applications as an alternative to legacy global navigation satellite systems

(GNSS) such as GPS. There is not currently literature that provides a closed-form

expression for estimation performance bounds on position and attitude when a TWR

system is employed. A Cramer-Rao Lower Bounds (CRLB) is derived for position

and orientation estimation using both 2-D and 3-D geometries. A literature review is

performed to give background and detail on the tools needed for a thorough analysis of

this problem. Popular Least Squares techniques and solutions to Wahba’s problem are

compared to the derived bounds as proof of correctness using Monte Carlo simulations.

A brief exploration on estimation performance using an Extended Kalman Filter for

non-stationary users is also looked at as an introduction to future extensions to this

work. The literature Applications like the CHP2 system are discussed as well to show

how secure, inexpensive and robust implementation of TWR is highly feasible.
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Chapter 1

INTRODUCTION

Highly accurate real time estimation of position and orientation (PnO) is a pri-

mary feature of interest in present-day navigation systems. Applications ranging from

military aircraft guidance, commercial and military drone operation, smart agricul-

ture and surveillance are just a few of the many systems where users desire high

precision positioning capabilities. Two-way ranging (TWR) systems are setup to

have 2 (or more) users who exchange a signal containing their own local clock infor-

mation back and forth. A user can then post-process this waveform to extract the

senders time and compare it to their local clock time. This allows a user to synchro-

nize it’s own clocks with the senders clocks and therefore determine how long it took

for the waveform to travel, otherwise known as time of flight (ToF). Additionally, by

multiplying the computed ToF by the speed the waveform traveled (speed of light for

most applications), the distance between the two users can be resolved.

TWR systems function similarly to GPS in that they use time information to

calculate relative location. In general, the family of global satellite navigation sys-

tems (GNSS) that includes the USA’s NAVSTAR GPS and Europe’s Galileo use ToF

information in conjunction with a technique called trilateration to obtain geodetic

coordinates. GPS for example relies on a constellation of 31 satellites to obtain 3

ToF measurements necessary to calculate 3-D position. An image showing the tech-

nique of trilateration is shown in figure (1.1). Using three different satellites or nodes,

a single point at the center of all three circles resolves any ambiguities in position

estimates.

Other algorithms are needed to find the orientation of one reference node with

1



Figure 1.1: Image Showing How 3 Different GPS Satellites Can Be Used to Pinpoint
Location As the Single Intersection of 3 Circles

respect to a target, which can be done by exploiting the geometry of multiple position

estimates. Applications that implement navigators such as drone swarms, aircraft

or automobiles will require real-time updates of position and orientation (PnO) to

be available on demand. Tracking filters like the Extended Kalman Filter (EKF)

or Particle Filter (PF) can be used to create physical predictions of the vehicles

movement and can be easily implemented in real-time embedded software.

Although GNSS systems are very popular and provide reliable estimates, many

users are looking for localization systems that have improved security, greater preci-

sion, simplified infrastructure and larger throughput. Due to the wide use of GPS

and GNSS style systems, many ”bad actors” have discovered methods to spoof and

jam ranging receivers because the GPS waveform definition and its related post-

processing algorithms are publicly available. Secondly, the GPS architecture relies on

a constellation of satellites which introduces challenges to reconfigurability and main-

tenance. For custom applications that require a higher level of precision and specific

size, weight and power requirements, a de-centralized architecture is preferred.

While there are apparent structural and security benefits to using a custom TWR

system, one natural question that arises is how well can a TWR system perform?

2



Navigation engineers seek to gain an understanding of performance in a general way

and one method for this is to derive performance bounds. In other words, given a

TWR style architecture, how close can one come to finding the exact location and ori-

entation of a target user? The purpose of this thesis is to try and answer this question

through use of the Cramer-Rao Lower Bound derived for a stationary environment.

On top of that, the work is extended to analyzing PnO estimation performance in a

dynamic flight environment using a tracking filter with different rotational represen-

tations.

1.1 Background

Realizing a performance bounds for position and attitude determination using a

TWR architecture requires an understanding of several different topics relevant to

physics, statistics, signal processing and state estimation. The work discussed in

[8, 25, 9] analyzes algorithms and implementations for a real-time TWR system. A

network-timing protocol (NTP) style algorithm is used in conjunction with a tracking

filter in [31, 30, 27] to show an example of how accurate ToF estimates can be made.

In [27], Srinivas shows how position and attitude can be tracked using an EKF for

various flight paths. A brief background on these topics will be introduced below and

expanded upon in Chapter 2.

1.1.1 Performance Bounds

Bounds on performance are primarily used in the beginning stages of defining

system requirements. It’s important to find a lower-bound on performance metrics

like the accuracy, speed and power of an algorithm to gain insight into what an

architecture is capable of. Famous bounds like the Cramer-Rao Bound are popular

3



for initial analysis because they don’t require algorithm details to be fully fleshed out.

Tighter bounds have also appeared in the literature [20] such as the Weiss-Weinstein

and Bobrovsky-Zakai bounds that impart more strict conditions in their calculations.

1.1.2 Time-of-Flight Estimation

ToF estimation has been another well-studied topic and found footing in many

engineering applications like 2D/3D mapping, autonomous vehicles, robotics, object

scanning, surveillance and more. As mentioned before, ToF estimation is a simple

technique that utilizes separated clocks to capture the time it takes for light to travel

between two users. Although the calculations are simple, the implementation of ToF

measurement is complicated in the fact that real physics extend beyond Newtons

Equations with factors like electronic noise and multipath that can delay and distort

the signal. Additionally, the user clocks are not typically synchronized, so the offset

between them must also be modeled. To combat these factors, a lot of research has

been done to alleviate these errors such as the work in [8, 15, 2, 1].

1.1.3 Position and Attitude Estimation

GPS and an assortment of other PnO estimation algorithms use a combination

of spatially diverse distance (and hence ToF) measurements from multiple nodes to

extrapolate position and bearing. Least squares (LS) techniques using a known ref-

erence location and computed pseudo-ranges is the most common way of estimating

position and used in GPS along with other time-based ranging systems. Extensions

to LS have also been studied to improve the algorithms performance and include it-

eratively recursive least squares (IRLS) and nonlinear least squares (NLLS) [39].

Attitude estimation algorithms follow directly from positioning and are usually for-

mulated through the solution to min/max optimization problems like Wahba [34, 17].
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The idea of reference frames becomes important here due to the nature of orienta-

tion being a quantity that is relative to a known reference. Common measurement

reference frames are the body, north-east-down (NED), wander-azimuth and geodetic

(latitude, longitude and altitude) coordinates. The choice of frame-rotation represen-

tation is also important due to representations breaking down due to singularities.

Euler angles are one example of this which suffer from ”gimbal lock” which gives way

to designers using quaternions or Rodrigues parameters as a substitute.

1.1.4 Tracking Filters

Sensors are commonly used for capturing real-time flight related information such

as GPS signals, linear acceleration or angular velocity. Imperfections in the sensors,

channel effects and nonlinear flight dynamics cause noisy measurements that make

position and attitude estimates vary wildly. Tracking filters like the Kalman Filter

and other variations [12, 10, 11, 38] improve these estimates by recursively finding the

measurement, state and processes noise covariance matrices which are incorporated

into the state variable prediction. Integrating the covariance matrices and sensor mea-

surements into the prediction is equivalent to minimizing the mean-square estimation

error in real-time.

5



Chapter 2

LITERATURE REVIEW

2.1 Introduction to Position and Attitude Estimation

Bounding and measuring performance on position and attitude estimation is cru-

cial task in the development of many systems used in commercial flight, farming, land

surveying and military defense. Although GPS is the most commonly used framework

for performing this task, other two-way ranging architectures are becoming popular-

ized to meet the security and performance needs of custom applications. In short, if

the clocks on a two-way communications link can be synchronized, accurate measure-

ments of the waveform propagation time can be made to extract the distance between

the two nodes. A simplified picture describing the physics of this situation is shown

below:

Figure 2.1: Simplified Depiction of Two-Way Ranging Problem

Deriving the bound on estimation performance for this situation is possible by

forming a mathematical mode of the physical geometry in conjunction with the

Cramer-Rao Lower Bound [19]. Once a bound has been found, real time estima-

tion performance can be analyzed and simulated using known estimation techniques.
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There are already many well known two-way ranging (TWR) algorithms that have

been developed and tested that achieve high precision propagation delay estimates

[31, 8, 15, 2]. Additionally, position and attitude estimation algorithms have been

developed that are typically optimization solutions formed from functions of the prop-

delay and a-priori node location knowledge [25, 39, 34, 17, 16, 23, 4, 22]. Attitude

and position reference frames will be explored in detail and tracking performance will

also be simulated using various tracking techniques to show a first-cut of real-time

performance.

Throughout this report, the joint positioning-communications system called CHP2

from [9, 24] will be leveraged as an example platform that implements TWR. This

system demonstrates a good example by which a joint waveform is designed for com-

munications and positioning tasks. The TWR algorithm deployed here operates with

only 10 MHz of spectral bandwidth and achieves less than 5 cm of ranging uncertainty.

2.1.1 Bounds

Bounds constantly appear in mathematics, and are defined for functions and more

generally sets of numbers. For functions, an upper bound is a real number M such

that a function |f(x)| ≤ M ∀x. Similarly, a lower bound is a real number M such

that |f(x)| ≥M ∀x. Generally speaking, if one has a set of numbers S, a bound is a

constant C such that all numbers in S are either less than (upper bound) or greater

than (lower bound) C. Formally, the infimum and supremum operators are used for

defining bounds on sets. The infimum operator denoted infx∈S is called the greatest

lower bound on a set S, and the supremum operator denoted by supx∈S is the least

upper bound.

Bounds are important for analytic purposes because they allow for approximation,

which means that the analysis doesn’t require an exact solution to the problem.
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Instead, a bound makes a universal statement about the maximum and minimum

limits that a function or set of functions can take on.

One important bound for the purpose of this thesis is the Cramer-Rao Lower

Bound (CRLB) which is rooted in probability and estimation theory. The CRLB

is defined as a lower bound for the minimum variance, unbiased estimator. This

means that instead of having to find the exact expression for an estimator, one can

mathematically calculate the lower bound for an unbiased estimator and gain intuition

into performance limitations. Having a closed-form expression for the CRLB is also

beneficial as it will often provide insight into the individual physical parameters that

control an estimators performance.

The most common way of computing the CRLB is by calculating the inverse of

the Fisher Information usually denoted as I(θ) in the literature. Intuitively speaking,

I(θ) measures the average value of the curvature of the log-likelihood function. Given

a random variable X with density p(x; θ), the log-likelihood is simply the logarithm of

the density function ln p(x; θ). Increasing curvature on the density function correlates

to stronger likelihoods. For completeness, I(θ) is given as

I(θ) = −E
{
∂2 ln p(x; θ)

∂θ2

}
(2.1)

And the CRLB is given as

σ2
θ ≥

1

I(θ)
(2.2)

A lot of work has already been done to derive bounds for the relevant topics in

this report. In [36] and [35], Weiss and Weinstein use the Ziv-Zakai lower bound

8



(ZZLB) as another tool to analyze the error performance for time delay estimation in

both narrow and wide-band systems. In [41], Zeira looks at the Barankin Bounds for

time delay estimation of narrow band signals in the low SNR regime. Bounds such

as the ZZLB are sometimes more informative than the CRLB for low SNR regimes

but more computationally difficult. Further details on these bounds are outside the

scope of this report and won’t be discussed in detail here.

2.1.2 Estimators

Given a set of measured data, is it possible to create an approximation for a de-

sired feature of the data itself? For example, let’s say that I’ve received a waveform

s(t) that I know is sinusoidal in nature. Can I use only the measured samples of this

signal to determine it’s amplitude, carrier frequency and relative phase? This is the

key question that estimation theory attempts to answer. Estimators are mathemati-

cal guesstimates of key data metrics that are generated by functions who only depend

on the data samples themselves.

The two most common types of estimators are point and interval estimates. A

point estimate is a single quantity numerical representation of the thing being esti-

mated. In comparison, interval estimates, also called confidence intervals, are a range

of values that likely contain the true value. My thesis will focus mostly on measuring

point estimates and comparing them to their relevant CRLBs.

There are three key metrics when it comes to studying the performance of differ-

ent estimators; bias, consistency and accuracy. In reality, the accuracy is a derived

metric based on the bias and consistency, but still important to separate from the

other two for the purpose of analysis.

The bias of an estimate is a deterministic offset from it’s true value. This can also

be thought of as how the expected value of an estimator deviates from it’s true value

9



[13]. Mathematically, for a given estimate θ̂, the bias is written as Bias(θ̂) = E[θ̂]−θ,

with E[·] being the expectation operator. Obtaining an unbiased estimator is a highly

desired quality in estimation theory as it allows for comparison to the CRLB.

Another metric called the consistency of an estimate measures variation in the

estimate with respect to truth [13]. The consistency is a random phenomenon and

shows up in the limit of running larger and larger numbers of random trials. Given a

set of N random variables (RV’s) {θ1, θ2, ...θN}, the consistency is a measure of how

closely the statistics of a RV match the true value when N →∞. Another way this

can be written is

var(θ̂) = E[(θ̂ − µθ)2] (2.3)

where Pr(·) is the probability operator, and ε is a small constant. Both bias and

consistency can be used to form another metric of interest, accuracy. Another common

name for accuracy is the Mean Squared Error (MSE) and is defined as

E[|θ̂ − θ|2] = var(θ̂) + bias2(θ̂) (2.4)

Equation (2.4) is an important statement in how the consistency (variance) and

bias of an estimator contribute independently to the MSE. An ideal estimator has

both bias and variance equal to zero, however there is usually a trade-off between

bias and variance when it comes to development. Figure (2.2) below provides a

visualization to better understand bias, consistency and accuracy.

Typical approaches for forming estimates include the Method of Moments, Max-

imum Likelihood Estimation (MLE), Bayesian Estimation and Least Squares [33].
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Figure 2.2: Visualization of Statistical Measurements: Accuracy, Consistency and
Bias

Method of moments focuses on looking at first, second and higher order statistics

formed using windows of incoming data samples. This is typically implemented in

the form of sample mean and variance estimators. MLE focuses on optimizing over

the likelihood function of a RV which guarantees the properties of asymptotically

unbiased and efficiency [13], or that it’s variance is equivalent to the CRLB. The

downside of this method is that the likelihood function requires prior knowledge of a

RV’s Probability Mass Function which isn’t always straight forward to obtain.

Least squares estimation is a well known method that assumes a linear model

formed by minimizing the squared error of the measurements and model inputs. The

well known solution of least squares coefficients is given by:

θ̂ = (XTX)−1XT y (2.5)

Where in the above, y is a vector of observed samples and X is the known system

input.

Finally, the Bayes Estimation leverages the Bayes Rule with prior-probabilities.

Bayes Theorem is given by:

11



p(θ|x) =
p(x|θ) p(θ)

p(x)
(2.6)

Where p(θ|x) and p(x|θ) are the conditional densities. In order to use Bayes

Estimation, the prior densities are required which are often difficult to obtain. A

common implementation of the Bayes Estimator is by empirical construction where

distributions for the priors/posterior are assumed and moments of these distribution

are derived as new measurements are made. Once the posterior p(θ|x) is calculated,

a loss function L is minimized to find the value of the estimate:

θ̂ = min
θ

∫
L(θ̂ − θ)p(θ|x)dθ (2.7)

2.1.3 Two-Way Ranging

Two-Way Ranging (TWR) is a method by which two or more communication links

use a waveform to measure the propagation delay between each other. Assuming the

signal travels at the speed of light, the two-way propagation delay is multiplied by

the speed of light and divided by two to calculate the distance. This can be written

as:

r =
cτ

2
(2.8)

As simple as this sounds, many problems exist in forming this measurement such
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as asynchronous clocks between radios that also drift over time and effects from the

channel. These impairments make it so that it takes multiple frames of data to

synchronize system clocks and accurately measure the range.

Many two-way ranging estimators exist and are derived with varying levels of

system dynamics. To keep things simple, I will focus mainly on a two node systems

in the survey of estimators that follows. One typical TWR model from [8] is:

t
(n−1)
B,Rx − t

(n−1)
A,Tx = τ (n−1) − T (n−1) (2.9)

Where tnB,Rx is the clock time at node B on the nth frame, tnA,Tx is the transmitted

clock time on node A, τ is the one-way propagation delay and T is the clock offset

between nodes A and B. The minus sign on the T (n) term is a chosen orientation

that assumes clock A is ahead of clock B. Higher order models include other dynamics

such as clock drift Ṫ , frequency drift T̈ , radial velocity τ̇ and radial acceleration τ̈ .

Several methods have been developed to both synchronize the clocks between

nodes by estimating the clock offset, and obtain accurate time-of-flight estimates.

Srinivas [26, 29, 28] address this problem by creating a first and second order model

for the propagation delay and time offsets, and then formulating estimates for τ̂ and

T̂ on the current frame n as solutions to a system of linear equations. This method

requires that at least 3 frames worth of data has been processed.

Another solution proposed by Bidigare [2] models the synchronization and TWR

problem using a state space representation and then tracks estimates of prop-delay,

radial velocity, clock offset and frequency drift τ̂ , ˆ̇τ , T̂ and ˆ̇T respectively using an

Extended Kalman Filter (EKF). The Wiess-Weinstein bound [20] is also used as

a way of initializing the measurement covariance matrix in the EKF formulation.
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Bidigare [1] also shows a maximum-likelihood (ML) delay estimator technique using

optimization and root finding. Here, a three-step process by which 2 cost functions

are minimized and newtons method is used to iterate over ambiguity and obtain a

high-precision phase accurate delay estimate that approaches the CRLB.

A formulation created by Lee [15] proposes a model that includes multi-path effects

and τ̂ is estimated by solving the nonlinear optimization problem:

τ̂ = min
τ

[
min

pd,M,α,β

∣∣∣∣∣∣r − pdsτ − M∑
k=1

αksβk

∣∣∣∣∣∣2 ] (2.10)

Where α′ks are the signal strength of the multi-path components that arrived

before the main component, β′ks are the time delays associated with those components,

pd is the signal strength of the direct path component, M is the number of multipath

signal components that arrived earlier than the direct signal and r is the measured

signal at the receiver. The form of r is:

r = ads(t− τd) +
L∑
n=1

ans(t− τn) + nm(t) (2.11)

In this formulation, pd,M, αk and βk are treated as nuisance parameters and an

iterative nonlinear-programming method is used to solve the optimization problem

for the desired τ̂ .

2.1.4 Reference Frames and Attitude Representations

Before talking about position and attitude estimation, I want to spend time in-

troducing the concept of reference frames and attitude representations, as that will

better aid in the formulation of the estimator discussion. A reference frame can be

thought of as a coordinate system that has a known reference. For the sake of sim-
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plicity, I will only consider inertial reference frames here which are frames that don’t

experience acceleration. This will need to be extended to non-inertial reference frames

in future work for more accurate physical modeling.

Typically when talking about position and attitude in space, this is the position

or orientation of an object with respect to another object. For example, the WGS84

earth model [21] defines the origin of it’s reference frame at the center of the earth,

and has corresponding equations that model the earths shape and distances from core

to the surface. Another common frame is the body frame that attaches a coordinate

system to a central location on the object of interest (such as the center of gravity),

and consecutive position and orientations are measured with respect to the objects

initial conditions. Below is an example image that shows the body frame and how it

could be used.

Figure 2.3: Example of Body Frame for an Airplane Adopted From [32]

Other common frames used in various problems are the north-east-down (NED)

frame, the Wander-Azimuth frame, and the local Geodetic frame which represents

position using latitude, longitude and altitude [5]. The body frame will be used for

deriving bounds and simulations in the following chapters, so I will go into more detail

about it here. In the body frame, angles are called roll α, pitch β and yaw γ. There
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are many different conventions for defining these angles but in this paper I will stick

to the convention that a positive rotation corresponds to the direction the fingers curl

when the right-hand thumb is pointing in the positive body-axis direction.

When representing a rotation in 3-D space, both a Direction-Cosine Matrix (DCM)

and quaternion derivation will be considered for reasons that will soon be explained.

A DCM is a matrix of sines and cosines that performs a 3-d rotation of the reference

frame to a desired roll, pitch and yaw. This matrix has many variations, but for the

sake of having a consistent representation I define mine as:

Cα,β,γ =


c(α)c(β) c(α)s(β)s(γ)− s(α)c(γ) c(α)s(β)c(γ) + s(α)s(γ)

s(α)c(β) s(α)s(β)s(γ) + c(α)c(γ) s(α)s(β)c(γ)− c(α)s(γ)

−s(β) c(β)s(γ) c(β)c(γ)

 (2.12)

where c(x) and s(x) have been used as a shorthand for cos(x) and sin(x) respectively.

With this definition, the rotation of a vector in the body frame from one orientation

to the next can be calculated as the linear transformation of a vector. Namely, if my

initial position and attitude is at v0, I can rotate to a new orientation v1 using the

transformation:

v1 = Cα,β,γv0 (2.13)

Another important quality of the DCM is that it’s a linear transformation, so

it can be decomposed into sub-rotation matrices that represent individual rotations

about the x-y-z body axis. This can be written as:

Cα,β,γ = CαCβCγ (2.14)

16



Where:

Cα =


c(α) −s(α) 0

s(α) c(α) 0

0 0 1

 , Cβ =


c(β) 0 s(β)

0 1 0

−s(β) 0 c(β)

 ,

Cγ =


1 0 0

0 c(γ) −s(γ)

0 s(γ) c(γ)



(2.15)

One problem with using DCM representations is that they suffer from singulari-

ties that are within 90 degrees. When β = π
2

for example, the rotation matrix Cα,π
2
,γ

gets locked into rotations about a single axis regardless of what α and γ are. This is

known as ”Gimbal Lock” and motivates the need for other types of representations.

Another type of attitude representation that doesn’t suffer from singularities

(i.e. Gimbal Lock) are called Euler Parameters or Quaternions. Quaternions can

be thought of as a complex representation of angles and are given by:

q = q0 + q1î+ q2ĵ + q3k̂ (2.16)

Using the Euler Identity, this can also be written as

q = cos(
θ

2
) + n̂sin(

θ

2
) (2.17)

Where n̂ is the unit vector [̂i, ĵ, k̂]T , and θ is the angle of rotation about the axis
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n̂. Rotation of vectors using quaternions is nearly as simple as using DCMs, namely,

given a rotation described by quaternion q, the quaternion rotates a vector v0 by:

v1 = qv0q
−1 (2.18)

where the Hamilton product is used to calculate the solution to equation (2.18).

Prior to transformation, it is common to normalize quaternions so as to not add gain

by using the fact that ||q|| =
√
q2

0 + q2
1 + q2

2 + q2
3, and the normalized quaternion is

given by qnorm = q
||q|| .

Lastly, it is very easy to transform from quaternions back to a DCM representation

using the following relationship [14] where:

Cα,β,γ =


||q||2 2(q1q2 − q0q3) 2(q0q2 + q1q3)

2(q1q2 + q0q3) q2
0 − q2

1 + q2
2 − q2

3 2(q2q3 − q0q1)

2(q1q3 − q0q2) 2(q0q1 + q2q3) q2
0 − q2

1 − q2
2 + q2

3

 (2.19)

Other common attitude representations that won’t be used in this report but are

worth mentioning are Rodrigues Parameters (classical and modified) which have a

larger linear region than DCM’s (180o for classical and a full 360o for modified) and

Principle Rotation Parameters.

2.1.5 Geometric Dilution of Precision

An important metric for position accuracy in systems that use trilateration tech-

niques is the Geometric Dilution of Precision or GDOP for short. GPS operates by

making sure at least 4 of the 24 operational GPS satellites have a line of sight to

any position on earth at all times which ensures unambiguous pseudo-range and time
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estimation. The always changing locations of the 4 satellites with respect to each

other affects the accuracy of the GPS measurement. Figure (2.4) visually describes

what good GDOP looks like in comparison to poor GDOP:

Figure 2.4: Visualization of GDOP: A.) Depicts Two Nodes With Target Location
Marked by the Intersection of the Red and Blue Circles, B Illustrates Quality Gdop

Due to Adequate Relative Node Placement, C Shows Poor Gdop Where Relative
Node Locations Increases the Measurement Error. Adapted From [37]

The equation for GDOP [40] is defined as:

GDOP =
∆(Output Location)

∆(Measured Data)
(2.20)

or in other words, how do variations in the locations of the target nodes (satellites

in the case of GPS) affect the measurement error? In the case of a TWR system, a

matrix A of unit distance vectors is formed and a covariance matrix Q is calculated

to measure GDOP. For the purpose of this report, I will ignore clock bias, as that

will be assumed 0 once the time-alignment algorithms are performed. Assuming the

positions of N nodes are being estimated, the matrix A is:
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A =



(x1−x)
R1

(y1−y)
R1

(z1−z)
R1

(x2−x)
R2

(y2−y)
R2

(z2−z)
R2

...
...

...

(xN−x)
RN

(yN−y)
RN

(zN−z)
RN


(2.21)

where Ri =
√

(xi − x)2 + (yi − y)2 + (zi − z)2 is the 3-D distance of the known

ground node to the ith target position of interest. Forming the covariance matrix:

Q = (ATA)−1 =


σ2
x σxy σxz

σxy σ2
y σyz

σxz σyz σ2
z

 (2.22)

and GDOP is:

GDOP =
√
Tr(Q) =

√
σ2
x + σ2

y + σ2
z (2.23)

with Tr(·) being the trace operator which is the sum of the diagonal elements for a

square matrix.

Other similar metrics of interest include time dilution of precision (TDOP) that

measures how clock bias affects the position accuracy and and horizontal/vertical

dilution of precision (HDOP/VDOP) which is equivalent to GDOP but in a localized

NED frame. For completeness, a table that numerically describes GDOP is included

below:
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Table 2.1: Table Defining Numerical Values of GDOP

2.1.6 Position and Orientation Estimation

Having defined the necessary estimation and reference frame tools in the previous

sections, we can now move on to discussion of position and orientation (PnO) estima-

tion. Position and attitude can be estimated by leveraging the previously discussed

TWR algorithms in conjunction with the geometry of the communication nodes. A

typical 3-d geometry of a system whose goal is to estimate PnO is shown in figure

(2.5).

Figure 2.5: 3-D Geometry for Performing Positioning With Reference Nodes gi and
Target Nodes hi [31], [27]

We first consider position estimation with a two-antennae system where each radio

can both transmit and receive. This can then be expanded to an n×n multiple-input

multiple-output (MIMO) system that estimates the distance between each antennae
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pair. Assuming that accurate time-of-flight (ToF) estimates τ̂ have been obtained,

the distance between nodes g and b is given by d = ||g − τc||2, where g is a known

location vector of a ground node and || · || is the 2-norm operator [25]. Additionally,

if there are N ground nodes [g1, g2, . . . , gN ] as shown in figure (2.5) who each receive

a ToF estimate [τ1, τ2, . . . , τN ], then the distance from each ground node to node B is

given by di = ||gi − τic||2.

Given the distance measurement described above, various estimators can then be

used to estimate position. The typical LS solution shown in [39] is a good first choice

with closed form shown in (2.5). Other solutions are found using an iterative version

of LS called iterative recursive least squares (IRLS) [39] that produces an enhanced

estimate by recursively updating the measurement covariance matrix and using the

modified optimal LS solution:

θ̂ = (XTΣ−1X)−1XTΣ−1y (2.24)

where Σ is covariance matrix of the measured distances from node G to B. A third

version of LS called Non-Linear Least Squares (NLLS) [39] also constructs an accurate

position estimator by solving the following nonlinear optimization problem:

θ̂ = min
θ

n∑
i=1

[ri − dir(θ)]2 (2.25)

With ri being the noisy distance measurement and dir(θ) the distance between

the known location of G and a statistical reference point. Manolakis in [16] forms a

similar solution to Navidi by cleverly transforming the distance equation into a root

finding problem.
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Attitude estimation has also been explored by many, and in terms of DCM’s, the

fundamentel problem can be stated as finding the rotation matrix R that is a solution

to the equation:

bi = Rvi (2.26)

which is the rotation matrix that aligns the reference vectors vi with observation

vectors bi. A typical starting point for this was first stated by Wahba [34] who

observed that a rotation matrix R that minimizes the loss function:

L(R) =
1

2

n∑
j=1

wj||v∗j −Rvj||2, ∀ n ≥ 2 (2.27)

would create a least squares attitude estimate, where the set {vj} are vectors in a

known reference (body) frame, and {v∗j} are the set of vectors in the observation

frame. Typically these measurements are captured by integrating angular rates using

a gyroscope sensor.

Algorithms such as TRIAD [23], Davenport Q’s Method [4], QUEST [22] and

OLAE [17] are just a few of the numerous solutions developed for this problem.

TRIAD solves (2.27) as a system of overdetermined equations by creating triads of

the reference and observation vectors {vj} and {v∗j} respectively.

Davenport Q’s Method solves (2.27) by maximizing the gain function (equivalent

to minimizing the loss function L(M) stated in (2.27)):

G(R) = 1− L(R) (2.28)
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G(R) is maximized by forming a gain matrix represented with quaternions and

finding the eigenvector corresponding to the max eigenvalue of this matrix as the

best estimate. QUEST addresses (2.27) in a similar way to Davenport except solves

the optimization problem using a mixture of Lagrange Multipliers and the Newton-

Raphson root finding method.

Lastly, OLAE finds a solution to the problem of attitude estimation by forming a

separate cost function:

LOLAE(R) =
1

2

n∑
i=1

ξi([s̃i×]g − d̃i)T ([s̃i×]g − d̃i) ∀ n ≥ 2 (2.29)

which is an unconstrained optimization problem that seeks to minimize LOLAE with

respect to Rodrigues parameter vector g.

2.1.7 Tracking

Once TWR (and hence position and attitude) estimates have been obtained, it’s

important to maintain a certain level of estimation accuracy over time as the vehicle

traverses space. Typically in inertial navigation systems (INS), sensors like gyroscopes

and accelerometers aid in navigation by providing attitude offsets, velocity and po-

sition of a moving body by integrating angular rate and acceleration measurements.

This is a sound idea in theory, however, real sensors introduce noise into the inte-

grators, which accumulate errors without bound over time. Additionally, real-time

systems require estimates that are available on-demand. Regular first and second

order statistics fail to deliver here due to requiring a sufficiently large amount of data

before reliable predictions are available.
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Popular solutions to these problems have been termed ”tracking” filters because

of their ability to provide accurate estimates in real-time along with statistical un-

certainty’s of these measurements. Common algorithms that will be simulated and

analyzed in this thesis are the Kalman Filter (KF) [12] and Extended Kalman Fil-

ter (EKF) [10]. Other variants of the KF will also be mentioned like the Unscented

Kalman Filter (UKF) [11] and Particle Filter [38] and may be useful in future exten-

sions to this work.

The Kalman Filter [12] is a recursive algorithm that seeks to estimate the unmea-

sured states of a physical model that have direct mathematical relationships to the

measurements. Given a nonlinear model or Plant represented by:

ẋ = f(x, u, w)

y = g(x, u, v)

(2.30)

It can be linearized and represented by:

ẋ = Ax+ Bu+ w

y = Cx+ Du+ v

(2.31)

Where A, B, C and D are the matrices that represent the dynamic system, x is the

states being estimated, w and v are both process and measurement noise respectively

(typically Gaussian), u is the system input and y is the measurement. Graphically,

the model can be represented as in figure (2.6) below.
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Figure 2.6: Block Diagram of State Space Representation

The Kalman Filter works by using a copy of the model (A, B, C and D) derived

from physics or techniques like system identification, and updating the state estimates

according to the following algorithm:

Algorithm 1 Kalman Filter

1: x̂−k = Fx̂k−1 + Buk−1 + w
2: P−k = FP−k−1F

T + Qk

3: Kk = P−k HT
k (HkP

−
k HT

k + Rk)
−1

4: x̂+
k = x̂−k + Kk(zk + Hkx̂

−
k )

5: P+
k = (I−KkHk)P

−
k

In algorithm 1, F is the state transition matrix where F = e(A∆t), Qk and Rk

represent the process and measurement noise covariance matrices at time k, Hk is

the measurement matrix which relates predictions to measurements, Pk is the state

covariance matrix also assumed Gaussian, and Kk is the famous Kalman Gain term

that represents filters confidence in its ability to produce accurate estimates.

Many offshoots of the Kalman Filter have been produced as people have realized

the limitations of this algorithm. The most common issue is that of representing

nonlinear dynamics. The EKF handles this issues by linearizing the state and mea-

surements models by taking the Jacobian of the nonlinear f and g with respect to
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each state variable.

The UKF is another variation to the Kalman Filter that estimates the statistics

of the states in the nonlinear system by applying a technique called the ”Unscented

Transform”. A similar and more powerful algorithm called the Particle Filter es-

timates the mean and covariance for the probability density function of the states.

Without going into a detailed derivation, it does this by initializing a set of ”parti-

cles” or distribution points that are updated with each incoming measurement. This

method has the added benefit of being able to gain accurate estimates while breaking

the Gaussian assumption.

2.1.8 Applications

2.2 Commercial and Defense Applications

Navigation systems find homes in numerous applications ranging from and not

limited to military, space, agriculture, supply chain, mining and weather prediction.

Many of these applications would benefit from migrating their current GPS infras-

tructure to a TWR one that provides improved security and configurability. Military

assets such as missiles, jets and satellites all use GPS along with other localization

algorithms to find the position and orientation of a vehicle as it traverses space. Sen-

sor fusion algorithms integrate together multiple different PnO estimates taken from

GPS, local INS, radar amongst other things to produce the best solution possible.

For example, an aircraft might have a GPS receiver and inertial-measurement unit

(IMU) on-board to capture information from both sources and post-process the in-

coming data in a way that enhances its accuracy.

Business owners in the agricultural complex desires GPS-like capabilities for their

farms and crops. Being able to make correlations between the land type, water use
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age and yield helps optimize yearly profits. Marking exact areas where bug and weed

infestations occur helps farms plan which areas to avoid when growing new crops.

The technology for self-driving tractors has also made a good deal of recent advances

[6] and relies on several sensors and GPS.

The supply chain industries such as brokerages also greatly benefit from local-

ization. Tasks such as automating fleet maintenance, scheduling and more control

over inventory are all handled with GPS. Mining applications also benefit by gaining

increased accuracy in mapping, land surveying and improved safety. Once an open

pit mine has been created, engineers can use TWR or GPS to aid in guiding drills,

bull-dozing and managing other vehicles necessary to architect a closed mine.

2.3 CHP2 Implementation

One specific system that implements TWR is the CHP2 system described in [9, 7].

CHP2 is unique in that it was designed to jointly handle positioning and communica-

tions tasks which optimizes its spectral usage. Users who are on the CHP2 network

will be able to synchronize their own local clocks to a global clock and obtain phase-

accurate ToA estimates [7].

CHP 2 has exceptional performance as well achieving ranging estimates with σ < 5

cm, a limited 10 MHz bandwidth and a condensed acquisition time that is less than

3 seconds. These aspects allow the system to host a large number of users with

no performance loss. The CHP2 processing was realized on COTS hardware which

is inexpensive and small and proves ease-of-installation for a wide range of legacy

systems.
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Chapter 3

PROBLEM OVERVIEW

TWR PnO estimation techniques provide a method by which users can upgrade

GPS dependent systems with a more flexible, secure, accurate and robust technology.

While GPS carries the advantage of being low-cost to implement, many applications

like secure network communications and air traffic management desire a localized

custom navigation solution [7]. There are also many parts of the world where GNSS

satellites are not available for use so having a local solution is necessary.

The desire to have other options for localization motivates the remainder of this

report where I seek to quantify the level of position and attitude prediction accuracy

a TWR architecture can provide. To do this, I will show how to derive the CRLB

for position and attitude in a stationary environment for the cases of 2D and 3D

geometry. After that, I will compare the derived CRLB to the performance of well-

known PnO estimation algorithms. Additionally, I will show how tracking filters

perform in comparison to TWR least squares and optimization methods for non-

stationary systems.

Several factors like GDOP and ToF play a roll in the level of uncertainty in the

derived CRLB. Therefore, Monte Carlo simulations will be performed to eliminate the

individual effects of those factors and provide an ”average” bound. Factors such as

multipath and sensor noise add additional delay and distortion to the TWR signal.

Clock jitter is also troublesome because it creates a time varying synchronization

bias between the reference and target users. The individual effects of multipath,

sensor noise and clock jitter will not be explicitly modeled but will be tied into the

simulated ToF uncertainty. Nonlinearities are apparent in non-stationary systems
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due to acceleration but will not be modeled for the sake of simplicity.

My contribution to the previously discussed body of work was to simulate the

CRLB for 2-d and 3-d position and orientation estimation, and compare those bounds

to well-known estimation algorithms. I believe this is novel because there are currently

no existing closed form derivations for performance bounds with a TWR architecture.

Furthermore, having a comparison between TWR and GPS provides designers with

more options during initial system requirement derivation and planning stages. This

makes it both interesting and challenging to formulate bounds and study the potential

benefits and drawbacks of TWR.
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Chapter 4

PERFORMANCE BOUNDS FOR POSITION AND ATTITUDE ESTIMATION

In this section, 2-D and 3-D bounds on the performance of PnO estimation will

be derived in detail. The geometry of the problem will be defined graphically and

mathematically and model assumptions made will be explained. Simulations of the

derived bounds will also be shown by varying important parameter that appear in

the calculations such as GDOP and concentration factor κ which will be explicitly

defined in the following sections.

4.1 Cramer-Rao Lower Bound on Position Estimation

4.1.1 2-D Position Bound

We start out by rigorously defining the geometry of the 2-D positioning model. Let

the N ground node antennae [g1, g2, . . . , gN ]T be 2-D Cartesian coordinates w.r.t the

origin O. For each ground node gi, let there be N prop-delay estimates [τ1, τ2, . . . , τN ]T

from the ith ground node to the target location h as shown in figure (4.1) below.

For simplicity, it’s assumed that the ith time-delay estimate τi is distributed nor-

mally according to τi ∼ N(di
c
, σ2

τi
), with di being the measured distance, c being the

speed of light in meters per second and σ2
τi

being the variance of the estimate. Math-

ematically, di = ||gi − h||1/2 which is just the 2-norm between the ground node and

target point. The variance στi of the ToF estimate heavily depends on the signals

signal-to-noise ratio (SNR) as well as other factors like multipath and distance. Obvi-

ously, lower SNRs, larger distances, and difficult channels are going to impart greater

negative effects on the estimates and increase their variance. Additionally, assuming

that the distance between gi and h is large in comparison to the size of the ground
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platform, the ToF variance will be nearly equal for each ground node. In other words,

σ2
τi

= σ2
τ , ∀ i.

Figure 4.1: 2-D System Geometry for Position Estimation [31], [27]

Recalling the definition of the CRLB from equation 2.2, we know that the variance

of our position estimate must be greater than or equal to the inverse Fisher Infor-

mation I(θ). The position estimate is a vector, so the Fisher Information becomes a

matrix [I(θ)]ij. We can calculate the Fisher Information Matrix as:

[I(θ)]ij = −E
[ ∂2

∂θi∂θj
ln p(z; θ)

]
(4.1)

and given that the distribution is Gaussian, its density can be written as:

pτ (t;h) =
1√

2πσ2
τ

exp
{
− 1

2σ2
τ

N∑
i=1

(
t− di

c

)2}
(4.2)

Using the definition of the 2-norm for di =
√

(x− xi)2 + (y − yi)2 which is the
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distance between gi and h, we can calculate entries in [I(θ)]ij as:

[I(h)]11 =
1

c2σ2
τ

N∑
i=1

(x− xi)2

d2
i

[I(h)]12 = [I(h)]21 =
1

c2σ2
τ

N∑
i=1

(x− xi)(y − yi)
d2
i

[I(h)]22 =
1

c2σ2
τ

N∑
i=1

(y − yi)2

d2
i

(4.3)

Inverting the matrix using the formula that I−1(h) = adj{I(h)}/|I(h)|, where the

adj{} is the ad-jugate operator and || is the determinant, we obtain:

σ2
p ≥

c2σ2
τ

2
∑N

i=1

∑N
i=1

(
D2

2didj

)2

 ∑N
i=1

(y−yi)2
d2i

−
∑N

i=1
(x−xi)(y−yi)

d2i

−
∑N

i=1
(x−xi)(y−yi)

d2i

∑N
i=1

(x−xi)2
d2i

 (4.4)

The above matrix has the diagonal terms as the variance in each of the (x, y)

component directions and the off-diagonal terms represent the cross-correlations. As-

suming that most of the variation is represented in the σ2
x and σ2

y components, we

can represent the 2-d position CRLB as a scalar value by taking the trace of equation

(4.4). Doing so gives:

σ2
p ≥

c2σ2
τN

2

[ N∑
i=1

N∑
j=1

( D2

2didj

)2]−1

(4.5)

Where:
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D2 =

∣∣∣∣∣∣∣
x− xi y − yi

x− xj y − yj

∣∣∣∣∣∣∣ (4.6)

The trace metric was chosen as one option but other options could include looking

at the error ellipsoids spanned by the eigenvalues of the FIM to potentially gain

additional insight.

4.1.2 3-D Position Bound

A 3-D extension to the position CRLB can be made by simply increasing the

dimension of the vector space from R2 to R3. This can be visualized by refering back

to figure (2.5) which shows the reference and target nodes defined in a 3-dimensional

frame. Recall the term di in equation (4.2) and redefine the distance to be di =√
(x− xi)2 + (y − yi)2 + (z − zi)2, or the 2-norm in R3. Once again, the ith ground

and target nodes have components gi = [xi, yi, zi]
T and h = [x, y, z]T respectively.

The FIM in 3-D is written as:

I(h) =
1

c2στ 2


∑N

i=1
(x−xi)2
d2i

∑N
i=1

(x−xi)(y−yi)
d2i

∑N
i=1

(x−xi)(z−zi)
d2i∑N

i=1
(x−xi)(y−yi)

d2i

∑N
i=1

(y−yi)2
d2i

∑N
i=1

(y−yi)(z−zi)
d2i∑N

i=1
(x−xi)(z−zi)

d2i

∑N
i=1

(y−yi)(z−zi)
d2i

∑N
i=1

(z−zi)2
d2i

 (4.7)

And as before, the CRLB is:

σ2
h ≥ I(h)−1 =

adj{I(h)}
|I(h)|

(4.8)
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Using equation (4.6) and defining the volume of 2-simplex Vi,j(a, b) = D2(a, b)/2!,

where a and b are the components of a vector in R2 and:

D2(a, b) =

∣∣∣∣∣∣∣
a− ai b− bi

a− aj b− bj

∣∣∣∣∣∣∣ (4.9)

We can calculate the adj{I(h)} = 2
(c2σ2

τ )2
A where A is defined as:

A =



N∑
i=1

N∑
j=1

Vi,j(y,z)
2

(didj)2

N∑
i=1

N∑
j=1

Vi,j(x,z)Vi,j(z,y)
(didj)2

N∑
i=1

N∑
j=1

Vi,j(x,y)Vi,j(y,z)
(didj)2

N∑
i=1

N∑
j=1

Vi,j(x,z)Vi,j(z,y)
(didj)2

N∑
i=1

N∑
j=1

Vi,j(x,z)
2

(didj)2

N∑
i=1

N∑
j=1

Vi,j(y,x)Vi,j(x,z)
(didj)2

N∑
i=1

N∑
j=1

Vi,j(x,y)Vi,j(y,z)
(didj)2

N∑
i=1

N∑
j=1

Vi,j(y,x)Vi,j(x,z)
(didj)2

N∑
i=1

N∑
j=1

Vi,j(x,y)2

(didj)2


(4.10)

Additionally, the determinant of the FIM is:

|I(h)| = 6

(c2σ2
τ )

3

N∑
i=1

N∑
j=1

N∑
k=1

( Vi,j,k
didjdk

)2

(4.11)

where geometrically, Vi,j,k is the volume of a tetrahedron with vertices h, gi, gj and

gk. This volume can be calculated using the Cayley-Menger [3] determinant which is:

Vi,j,k =
1

6

∣∣∣∣∣∣∣∣∣∣
x− xi y − yi z − zi

x− xj y − yj z − zj

x− xk y − yk z − zk

∣∣∣∣∣∣∣∣∣∣
(4.12)

Therefore, the inverse FIM is:
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I(h)−1 =
c2σ2

τ

3
A

[
N∑
i=1

N∑
j=1

N∑
k=1

( Vi,j,k
didjdk

)2
]−1

(4.13)

Once again the trace of the inverse FIM is used to easily make sense of the CRLB

performance but other metrics like singular values could also be for analysis. Using

the trace, the scalar 3-dimensional CRLB for position is:

σ2
p = Tr{I(h)−1} ≥ c2σ2

τ

3

[∑N
i=1

∑N
j=1

Vi,j(x,y)2+Vi,j(y,z)
2+Vi,j(x,z)

2

(didj)2

]
[∑N

i=1

∑N
j=1

∑N
k=1

(
Vi,j,k
didjdk

)2
] (4.14)

Notice that the scalar quantity outside of the summation in the numerator of (4.14)

is the distance variance because σ2
d = c2σ2

τ . In figure (4.2) below we show an image of

the 3-d bound using the trace metric and as expected, we see the linear relationship

between σd and σp.

Figure 4.2: CRLB for Position With 3-d Geometry Vs. Distance Estimate Variance
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The bound is also heavily dependent on the geometry of the ground and target

nodes. Using the metric of GDOP described in section 2.1.5, we can look at how

the bound is affected by relative locations of the target with respect to the ground

nodes. Recall that the GDOP is a measurement of how the physical relationship of

the geometry between the ground and target nodes affects position error. For the

scenario being studied, the GDOP can be written as:

GDOP =

√√√√√ N

2
∑N

i=1

∑N
j=1

i 6=j
∆2
i,j

=

√
2N∑M

k=1 sin
2(γk)

(4.15)

where ∆i,j = 1
2
sin(γi,j) is the area of the triangle formed by the unit vectors hgi, hgj,

γi,j is the angle between them, and M =
(
N
2

)
is the total number of unique triangles

formed from each ground and target node unit vector when i 6= j [25]. A plot

measuring how the CRLB is affected by GDOP is shown below:

Figure 4.3: CRLB for Position Measured Against Distance Variation and GDOP
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Here we see that lower GDOP improves the bound, however there are diminishing

losses when the GDOP goes above approximately 10. The bound also shows as

expected that lower GDOP is better, and GDOP ¡ 1 is ideal. Another perspective of

the GDOP, σd and σp relation is shown below by taking cuts of figure 4.3 and is more

easily comparable with figure 4.2.

Figure 4.4: GDOP Cuts of CRLB for Position Measured Against Distance Variation

4.2 Cramer-Rao Lower Bound on Attitude Estimation

4.2.1 Attitude Model

In section 4.1.1, a model for the estimation of N target nodes {h1, h2, . . . , hN}

using N ground nodes {g1, g2, . . . , gN} was shown. By defining the local distance

vectors hihj and gigj with i 6= j, we can describe the attitude estimation problem

as one of finding the rotation matrix between hihj and gigj. Here, only the angles
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between these vectors matter, so we can define normalized local distance vectors

bk = hihj/||hihj||1/2 and vk = gigj/||gigj||1/2 for k ∈ {1, 2, . . . ,M}.

Unit vector bk is assumed to be distributed with respect to a von Mises distribution

[25], parameterized by mean direction µk and concentration factor κk as:

bk ∼M(µk, κk) ; µk = Rvk (4.16)

with κ > 0, µ having a unity 2-norm, and rotation matrix R having orthogonal

columns and the property that |R| = 1. We note that when κ << 1 the von Mises

distribution reduces to a uniform distribution on a circle and doesn’t depend on R.

For other scenarios, we define the circular variance of bk as σbk = σhi + σhj , where

σhi and σhj are the deviation of the position estimate corresponding to nodes hi and

hj respectively. Using this information, the concentration κk can be calculated using

the modified Bessel functions A(·) as κk = A−1(ρk) where mean resultant length

ρk = e
−σ2

hihj
/2

.

4.2.2 Attitude in 2D

Using the definition of the von Mises distribution function with concentration

parameter κk, relative rotation θ, rotation matrix R(θ) and M unity length ground

node vectors v = {v1, v2, . . . , vM}, we can write the density of bk as:

pbk(ν, v, θ, κ) =

(
M∏
k=1

1

2πI0(κk)

)
exp

{
M∑
k=1

κkν
T
kR(θ)vk

}
(4.17)

with the term I0(·) in the denominator being a modified Bessel function of the first

kind at order 0. The second derivative of the rotation matrix R′′(θ) = −R(θ) and

the FIM can be computed as:
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I(θ) = −E

[
∂2

∂θ2
lnf(ν, v, θ, κ)

]
=

M∑
k=1

κkb
T

kR(θ)vk (4.18)

and therefore the CRLB is:

σ2
θ ≥ I−1(θ) =

1∑M
k=1 κkb

T

kR(θ)vk
(4.19)

4.2.3 Attitude in 3D

Extending the derivation of the CRLB from the previous section into R3, we can

write the modified von Mises density function as:

pbk(ν, v, θ, κ) =

(
M∏
k=1

C3(κk)

)
exp

{
M∑
k=1

κkν
T
kR(θ)vk

}
(4.20)

where as before, κ is positive or zero, the 2-norm of the mean direction vector is

unity, and C3(κ) is a normalization coefficient given by:

C3(κ) =
κ

4π sinh κ
=

κ

4π(eκ − e−κ)
(4.21)

Recall from section 2.1.4 that in contrast to the 2-dimensional rotation matrix

that’s represented by only one angle θ, the rotation matrix in 3-dimensional space

when attached to the body frame is represented by 3 angles, namely roll (α), pitch

(β) and yaw (γ). For our derivation, the rotation matrix being estimated represents

a rotation between a body frame attached to the ground nodes and another body
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frame attached to the target nodes. Using equation (2.14), the rotation matrix can

be decomposed into its individual component rotations about the principle axis as

R(θ) = R(α)R(β)R(γ), with θ = [α, β, γ]T . The FIM for 3-D attitude estimation is

therefore given as:

I(θ) =


−
∑N

i=1 ηi
∂2

∂α2R(θ)vi −
∑N

i=1 ηi
∂2

∂α∂βR(θ)vi −
∑N

i=1 ηi
∂2

∂α∂γR(θ)vi

−
∑N

i=1 ηi
∂2

∂α∂βR(θ)vi −
∑N

i=1 ηi
∂2

∂β2R(θ)vi −
∑N

i=1 ηi
∂2

∂β∂γR(θ)vi

−
∑N

i=1 ηi
∂2

∂α∂γR(θ)vi −
∑N

i=1 ηi
∂2

∂β∂γR(θ)vi −
∑N

i=1 ηi
∂2

∂γ2
R(θ)vi

 (4.22)

with ηi = κib
T
i .

Using a numerical differentiation library such as the one in MATLAB in conjunc-

tion with equation (4.8), the CRLB can be calculated for different body angles α, β

and γ. The 3-D orientation CRLB was simulated over varying position uncertainty

σp and concentration factor κ. These plots are shown below for θ = [π/6, π/6, π/6]T .

Figure 4.5: 3-D CRLB for Attitude Over Varying Position Estimate Uncertainty
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Figure 4.6: 3-D CRLB for Attitude Over Varying Concentration Factor κ

Once again, we see that the attitude CRLB linearly increases with increasing

position estimation uncertainty. Figure 4.6 on the other hand shows how σθ decreases

with increasing concentration, which is intuitive because normally concentration is

the inverse of variance. The exact relationship between concentration and position

variance is complicated however because of the Bessel relationship given by κ =

A−1(ρ) with A(·) = I1(·)/I0(·) where I1 and I0 are first and zeroth order Bessel

functions of the first kind respectively. An approximation to A−1(·) can be made

however and concentration can be approximated as:

κ̂ =
ρ(2− ρ2)

1− ρ2 ; ρ = e−σ
2
p (4.23)

where 0 ≤ ρ ≤ 1 is the mean resultant length and for completeness a graph of

(4.23) is shown below:
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Figure 4.7: Relationship Between Concentration Factor and Position Estimate
Uncertainty
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Chapter 5

POSITION AND ORIENTATION ESTIMATION

Various known position and attitude estimators are studied in detail in this section

and compared to the CRLB derived in chapter 4 using simulations. Least squares

approaches mentioned in section 2.1.6 such as IRLS and NLLS will be used to obtain

position estimates. Similarly, methods like TRIAD, QUEST, Davenport Q and OLAE

will be looked at for orientation. The outcome of this section is to provide evidence

that our derived CRLB is valid and give more confidence in using this bound for

deriving system requirements.

5.1 Theory

Let there be N ground nodes {g1, g2, . . . , gN} with known locations and N target

nodes {h1, h2, . . . , hN} we seek to estimate the position and attitude of with respect

to a local reference frame for our ground stations. Each ground node gn calculates N

ToF estimates that it uses to find the distance between itself and each of the target

locations hn.

Given these ToF estimates, many techniques have been developed to extract po-

sition and attitude using only known geometry and distance measurements. Most

PnO estimation solution in the literature come in the form of Least Squares (LS)

approaches or min/max optimization problems, therefore, more background on these

topics will be briefly discussed here before going into specific estimator details.

For the problem of obtaining position [39], lets first define a distance metric

di(h) =
√

(xi − x)2 + (yi − y)2 + (zi − z)2 (5.1)
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for the distance between exact target coordinate hi = [xi, yi, zi]
T and ground coordi-

nate g = [x, y, z]T . The measurements are noisy so the ith ground node sees distance

ri = di(h) + ni, where ni is noise caused by imperfections in the sensors, channel

effects, signal power and distance amongst other things. The noise terms are consid-

ered independent with 0 mean and variance V ar(ni) = σ2
d.

The measured distance model creates a nonlinear regression, so a linear model can

be formed by creating a common reference point [xr, yr, zr]
T and defining

dir =
√

(xi − xr)2 + (yi − yr)2 + (zi − zr)2 (5.2)

as the distance from reference point to the ith ground node and

dr(h) =
√

(x− xr)2 + (y − yr)2 + (z − zr)2 (5.3)

as the distance from reference point to target. By writing the original distance equa-

tion and including the reference points, it can be shown that:

2[(x− xr)(xi − xr) + (y − yr)(yi − yr) + (z − zr)(zi − zr)] =

dr(h)2 + d2
ir − di(h)2

(5.4)

and using this relation, a linear model can be formed by defining:

X =



1 2(x1 − xr) 2(y1 − yr) 2(z1 − zr)

1 2(x2 − xr) 2(y2 − yr) 2(z2 − zr)
...

...
...

...

1 2(xN − xr) 2(yN − yr) 2(zN − zr)


, β =



−dr(h)2 − σ2
d

(x− xr)

(y − yr)

(z − zr)


(5.5)
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and,

E(Y ) = Xβ (5.6)

where E(Yi) = d2
ir− di(h)2−σ2

d. Equation (5.6) is the basis for the following position

estimator derivations and will be frequently referred to in the next section.

Another important preliminary to the study of attitude estimators is that of stat-

ing Wahba’s problem, as many of the popular methods are varying solutions to this.

As mentioned in section 4.2.1, we can define the normalized local distance vectors

for ground and target nodes as bk = hihj/||hihj||1/2 and vk = gigj/||gigj||1/2 for

k ∈ {1, 2, . . . ,M}. We seek to find the rotation matrix R(θ) that aligns bk with vk,

with θ = [α, β, γ]T . More specifically, Wahba states the problem as finding the R(θ)

that aligns the two vectors in the least squares sense [34], and thus can be written as:

R̂ = min
R

1

2

N∑
i=1

wi||b
∗
i −Rvi||2 (5.7)

where wi is a weight applied to each term in the summation.

To wrap up this introduction, the distance estimates obtained from TWR are noisy

and that noise propagates through the position and attitude acquisition algorithms.

Therefore, estimation solutions like LS or others produces a type of ”average” position

and attitude that will always have some error.
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5.2 Techniques

5.2.1 Position Estimation Techniques

We start this section by showing the ordinary least-squares (OLS) estimator from

[39], because it is the most simple. We first form the matrix X∗ by taking the right 3

columns of the matrix X from equation (5.5). An average reference point ∆ is then

formed by taking the average x,y and z components from each of the ground nodes.

We also set Y ∗ = Y + X∗∆, and then form the linear model:

E(Y ∗) = X∗h (5.8)

which allows us to use the typical least squares solution of:

ĥ = (XT
∗ X∗)

−1XT
∗ Y ∗ (5.9)

The transformation in equation (5.8) makes it so the position vector estimate is

unbiased with covariance matrix

Cov(ĥ) = (XT
∗ X∗)

−1XT
∗ ΣX∗(X

T
∗ X∗)

−1 (5.10)

with the matrix Σ having the variance of the ith row of Y along it’s diagonal. Addi-

tionaly, it can be shown that the MSE for the OLS method is given by:

MSE(ĥ) = Tr[s2(X∗
TX∗)

−1] (5.11)

with
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s2 =
1

n− 4

N∑
i=1

(Y i −∆− Ŷ i)
2 , Ŷ i = X∗ĥ (5.12)

The iteratively reweighted least squares (IRLS) [39] and its relevant moments

follows directly from the previous OLS derivation. The uncertainty in each row of

Y is different because the estimates are independently distributed, and therefore if

covariance matrix Σ were known, the optimal linear estimation β could be found by:

ˆβopt = (XTΣ−1X)−1XTΣ−1Y (5.13)

This is made possible by initializing Σ to the identity matrix and as the name says,

iteratively updating β̂ and Σ until the estimate converges to within some tolerance.

The covariance matrix for the optimal estimate ˆβopt is given by:

Cov( ˆβopt) = (XTΣ−1X)−1 (5.14)

Similarly to the OLS estimator, it can be shown that an MSE metric for the IRLS

can be calculated with the equation:

MSE(ĥ) = Tr[X∗
TΣ−1X∗] (5.15)

We lastly talk about the NLLS estimator by using nonlinear sum of squares equa-

tion as a cost function that compares the distance measurements with a prediction

using di(h). The cost function is:

F (h) =
N∑
i=1

(
ri −

√
(xi − x)2 + (yi − y)2 + (zi − z)2

)2

(5.16)
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To solve the minimization problem using the cost function above, a nonlinear least

squares solver can be used using a method such as Levenberg-Marquardt.

Furthermore, [18] mentions that the covariance of the NLLS estimator can be

found by forming the Jacobian J(h) as:

J(h) =



∂d1(h)
∂x

∂d1(h)
∂y

∂d1(h)
∂z

∂d2(h)
∂x

∂d2(h)
∂y

∂d2(h)
∂z

...
...

...

∂dN (h)
∂x

∂dN (h)
∂y

∂dN (h)
∂z


(5.17)

and then the covariance of the estimatate is Cov(ĥ) = σ2[J(h)TJ(h)]−1 with variance

estimated using:

σ2 =
1

n− 3

N∑
i=1

[ri − di(ĥ)]2 (5.18)

One final note is that taking the trace of the covariance matrix will provide a measure

of the NLLS MSE [39].

5.2.2 Attitude Estimation Techniques

Details of four different attitude estimation schemes will be shown here in order

to provide more insight into their ability to approach the CRLB, the first of which is

called three-axis attitude determination or TRIAD [23]. Let there be 2 sets of local

direction vectors, {b1, b2} and {v1, v2}. An overdetermined system of equations can

be written for these as:

b1 = Rv1 b2 = Rv2 (5.19)
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Two triads can be constructed from these sets to create a singular equation in R by

letting:

r1 = b1 r2 =
b1 × b2

|b1 × b2|

r3 =
b1 × (b1 × b2)

|b1 × b2|

(5.20)

s1 = v1 s2 =
v1 × v2

|v1 × v2|

s3 =
v1 × (v1 × v2)

|v1 × v2|

(5.21)

and from this, we can say that there exists a rotation matrix R that satisfies:

ri = Rsi (5.22)

whose solution is:

R =
3∑
i=1

ris
T
i (5.23)

Another solution to the attitude estimation problem is written about in [4] and

called the Davenport’s Q method. We start with Wahba from equation (5.7) and

form the gain function as:

g(R) = 1− L(R) = 1− 1

2

N∑
i=1

wi||bi −Rvi||

=
N∑
i=1

wiB
TRV

(5.24)
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where the best estimate of R is the matrix that maximizes equation (2.28). By

defining the attitude profile matrix A as:

A =
N∑
i=1

wiBV (5.25)

we can simplify the gain function to g(R) = Tr(RAT ), with Tr(·) being the trace

operator. Using the trace and quaternions, the gain function and rotation matrix are

transformed into a different representation as:

g(q) = qTKq (5.26)

where q is the quaternion representation of R. The matrix K is constructed as:

K =

 σ zT

z S− σI3

 (5.27)

with substitution variables defined as:

σ = Tr(A)

S = A + AT

z =


A23 − A32

A31 − A13

A12 − A21


(5.28)

51



and I3 being the 3 identity matrix. Once K has been found, the optimal quaternion

corresponds to solving the eigenvalue problem for:

Kq = λq (5.29)

and finding the eigenvector that corresponds to K′s largest eigenvalue.

Next we discuss the quaternion estimator algorithm or QUEST shown in [22].

Similarly to Davenport-Q’s method, we form a cost function g(R) to be maximized

and make the same substitutions as equations (5.24) and (5.25). As before. the

orientation matrix R can be represented using quaternions:

R(q) = (q2 + Q ·Q)I2QQT + 2qbQcx (5.30)

where q = [q,Q]T is the scalar and vector parts of the quaternion respectively and

the b·cx operation is the skew-symmetric matrix operator that transforms a vector

v = [vx, vy, vz]
T into the matrix:

bQcx =


0 v3 −v2

−v3 0 v1

v2 −v1 0

 (5.31)

The gain function can be re-written using the quaternion rotation matrix representa-

tion and simplified into the compact form shown in equation (5.26). This time, K is

represented slightly differently from equation (5.27) and given by:

52



K =

 S− σI3 z

zT σ

 (5.32)

with the transformation of variables to S, z and σ being the same as equation (5.28).

The fundamental difference between the Davenport-Q and QUEST algorithms

is the approach used to solve the quaternion parameterized optimization problem.

Contrary to Davenport-Q, QUEST uses the approach of Lagrange Multipliers, and

defines:

g′(q) = qTKq − λqT q (5.33)

with λ being the lagrange multiplier. Given that the largest eigenvalue (lagrange mul-

tiplier) in K and it’s corresponding eigenvector give the optimal quaternion estimate

qopt, the eigenvalue equation Kqopt = λmaxqopt can be re-formulated as:

λ = σ + z y (5.34)

where y is the Rodrigues vector defined as

y =
Q

q
= X̂tan

θ

2
(5.35)

and after a few more mathematical manipulations, a 4th order expression in the

eigenvalues can be written as:
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λ4 − (a+ b)λ2 − cλ+ (ab+ cσ − d) = 0 (5.36)

with substitutions:

a = σ2 − κ

b = σ2 + zT z

c = ∆ + zTSz

d = zTS2z

σ =
1

2
Tr(S)

κ = Tr(adj(S))

∆ = |S|

(5.37)

A Newton Raphson root finding method is implemented to solve the polynomial in λ

and the optimal quaternion can be written in closed form as:

qopt =
1√

γ2 + |X|2

 X

γ

 (5.38)

with:

X = (αI + βS + S2)z

γ = (λ+ σ)α−∆

α = λ2 − σ2 + κ

β = λ− σ

(5.39)
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The last attitude estimation algorithm we will explore in this report is the optimal

linear attitude estimator or OLAE [17]. We start with the typical problem statement

from equation (2.26) and using the Cayley Transformation [17], we convert the DCM

R into its equivalent Rodrigues matrix G through the relation:

G = (I−R)(I + C)−1 = (I + C)−1(I−R) (5.40)

where G is a 3×3 skew-symmetric matrix formed using the components of Rodriguez

vector g defined in equation (5.35). By substituting equation (5.40) into equation

(2.26), we obtain the sum and difference relationships:

[g]x(bi + vi) = −(bi − vi) (5.41)

where we make a change of variables for the sum and difference components where

si
∆
= bi + vi and di

∆
= bi − vi. Using properties of the skew symmetric matrix, and

substituting si and di in equation (5.41), we get a similarly looking relationship to

equation (2.26) but in terms of the Rodriguez Vector:

[si]xg = di (5.42)

The true observation vectors bi will be noisy due to the sensor and other factors,

so we define the true measurement vector as:
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b̃i = bi + wi (5.43)

with the term w being zero mean white noise. Using equations (5.42) and (5.43) we

form the measurement error in terms of Rodriguez Vectors given by:

ei =
∣∣∣∣∣∣[si]xg − d̃i∣∣∣∣∣∣ (5.44)

and from this form a new optimization problem separate from Wahba as:

Lm =
1

2

N∑
i=1

ξi([si]xg − d̃i)T ([si]xg − d̃i) (5.45)

Where ξ are relative weights for each estimate that have the property
∑

i ξi = 1.

Expanding equation (5.45) as shown in [17], we get:

2Lm =
∑
i

ξi([si]xg − d̃i)T ([si]xg − d̃i) =

∑
i

ξi(−gT [si]x[si]xg + gT [si]xd̃i − d̃
T

i [si]xg + d̃
T

i d̃i) =

∑
i

ξid̃
T

i d̃i − gT
[∑

i

ξi[si]x[si]x
]
g − 2

[∑
i

ξd
T

i [si]x
]
g

(5.46)

and therefore:

Lm = c− gTM̃mg + 2ṽ
T
g (5.47)
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where:

c =
1

2

N∑
i=1

ξd̃
T

i d̃ ṽ =
1

2

N∑
i=1

ξ[si]xd̃i M̃m =
1

2

N∑
i=1

ξ[si]x[si]x (5.48)

The optimal Rodrigues matrix is found by differentiating equation (5.47) with respect

to g and setting equal to 0:

dLm
dg

= 2(ṽ − M̃mg) = 0 (5.49)

with solution found by solving the rigorously linear normal equation [17]:

M̃mĝ = ṽ (5.50)

Finally, using the relationship that relates quaternions and Rodrigues vectors, the

optimal quaternion representation of the attitude estimate is:

q̂opt =
q̂√
q̂
T
q̂

(5.51)

5.3 Simulations

The PnO estimators described in the previous section were simulated against their

respective CRLBs derived in chapter 4. Figure (5.1) shows variations of least squares
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estimators plotted on top of the CRLB over varying levels of uncertainty in the TWR

estimate. The estimators and CRLB were run for 20,000 trials with random noise

seeded differently on each iteration. We see from the plot below that the NLLS

estimator meets the CRLB, while the IRLS and OLS don’t quite converge. The IRLS

and OLS estimators actually have a similar level of estimation accuracy, although the

IRLS does slightly better by incorporating the adapted covariance matrix.

Figure 5.1: Performance of Position Estimators Vs. Their CRLB

Figure (5.2) shows the QUEST, TRIAD, Davenport-Q and OLAE algorithms com-

paring their performance to the CRLB over varying levels of position estimate uncer-

tainty. The estimators were run over 100,000 trials with random measurement noise

being seeded differently for each Monte-Carlo (MC) trial. We see that OLAE performs

the best, followed by a tie between QUEST and Q-Method and lastly TRIAD.
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Figure 5.2: Performance of Attitude Estimators Vs. Their CRLB

For completeness, the attitude estimators vs their CRLB were also simulated over κ
to show a different perspective on performance seen below in figure (5.3). This figure
was also simulated and averaged over 100,000 MC trials.

Figure 5.3: Performance of Attitude Estimators Vs. Their CRLB Plotted Over κ
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Chapter 6

POSITION AND ATTITUDE ESTIMATION OF A NON-STATIONARY TARGET

In this section, a brief amount of theory and simulation is shown for PnO estima-

tion using TWR when the target is non-stationary. The dynamics are modeled using

a simple application of Newtons Equations with 6 degrees of freedom. An Kalman

Filter (KF) is applied to perform state estimation, with the states being 3-D posi-

tion, velocity, acceleration, orientation and angular rate. State space matrices like

the state-transition matrix F and measurement matrix H will be derived in detail.

A MATLAB simulation was also created to show the performance for different target

trajectories. Attitude estimation will be simulated first using Euler Angles and then

quaternions which are more robust to ambiguities.

6.1 Theory

We start by deriving the non-stationary target model that will be used to explore

estimation. Figure (6.1) shows a typical setup with the set of reference nodes modeled

as known 3-D position vectors {g1, g2, . . . , gN} and desired target node position vectors

{p1, p2, . . . , pN}. Let G and P represent two users, with index i representing the ith

node for user G and j representing the jth node for user P.

60



Figure 6.1: Typical Flight Geometry for the Non-stationary PnO Estimation
Problem [27]

By employing a TWR protocol like the one modeled in chapter 4, each reference

node i calculates a ToF estimate τ for each target node j and therefore has an estimate

of the distance from i to j called di,j. This distance is also represented in figure (6.1)

with the colored arrows and can be calculated as:

di,j =

√√√√ 3∑
k=1

(gi[k]− pj[k])2 = cτi,j (6.1)

We can also define attitude in relation to an initial position in the targets body

frame by creating a reference vector πj and central reference position vector p such

that:

pj = p+ R(θ)πj (6.2)

where R(θ) is a direction-cosine matrix, and θ = [α, β, γ]T are the body frame angles

roll, pitch and yaw. This rotation can be easily extended to quaternions by using the

mapping:

61



q0 =
1

2

√
C11 + C22 + C33 + 1


q1

q2

q3

 =
1

4q0


C23 − C32

C31 − C13

C12 − C21


(6.3)

and then replacing the rotation matrix R(θ) in equation (6.2) with the 3× 3 matrix

given in equation (2.19).

6.2 Techniques

We start by showing the regular KF derivation for moving target estimation under

the discussed geometry and then mention the linearized EKF extension. We define the

Kalman Filter Markov model [27], with the state progression at time n represented

as:

x̂−n = f(x̂n−1) + wn (6.4)

and measurement model:

ẑ−n = h(x̂−n ) + vn (6.5)

Here, f and g are the nonlinear representations of the process and observation equa-

tions. We can leave the B matrix out of equation (6.4) assuming that there are no

inputs to our system. The noise components wn and vn are the process and mea-

surement noise respectively modeled using Gaussian distributions with w ∼ N(0,Σw)

and v ∼ N(0,Σv). Given the geometry and applying Newtons Equations of Motion,
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f and h can be defined like:

f =



pn = pn−1 + vn−1∆t+ an−1

2
∆t2

vn = vn−1 + a∆t

an = an−1

θn = θn−1 + ωn−1∆t

ωn = ωn−1

(6.6)

and

h =

√∑
x,y,z

[
gni − p̂

n −R(θ̂)πj
]2

(6.7)

where the relative distance metric has been used for the state-to-measurement rela-

tion. The state vector x is:

x = [x, v, a, θ, ω]T (6.8)

with p position, v velocity, a acceleration, θ orientation and ω angular rate.

The measurement covariance matrix is initialized as a diagonal matrix using the

known TWR (distance) uncertainty. The process covariance model was derived and

initialized with small uncertainty factors in order to maintain a level of controllability

throughout the filters evolution. By employing algorithm (1), over time the states

and covariance matrices converge to the true trajectory.

The above equations implemented in the Kalman Filter framework function well

for linear flight paths, but an extension is needed for nonlinear flight scenarios. An

EKF is algorithmically similar to the regular KF, however the nonlinear functions f

and h are linearized using the Jacobian. The new state transition and measurement
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matrices become:

F =
∂f

∂x

∣∣∣
x̂k−1|k−1

, H =
∂h

∂x

∣∣∣
x̂k|k−1

(6.9)

The EKF assumes that the functions f and h are differentiable but all other aspects

of the KF recursion (shown in algorithm (1)) remain the same.

6.3 Simulations

An example flight path shown in figure (6.2) was simulated and the EKF was used

to estimate and track a user with 4 nodes. The full state position vector is plotted

in dashed red to show the filters ability to accurately track the vehicles movement.

Antenna for TWR were placed 1 meter from the center of the target along the x and

y axis. We also show the ground (reference) nodes marked as ’x’ on the plot and their

geometry relative to the flight path.

Figure 6.2: Example Flight Path Showing the EKF’s Ability to Estimate a Target
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Plots of the position and attitude full state components were adopted from [27] and

plotted to show their deviation from truth. We see in figures (6.3) and (6.4) that the

filter estimates position with about 1.5 centimeters of uncertainty and attitude with

about 1.5 degrees of uncertainty. The simulated results were derived with attitude

represented as Euler Angles. As mentioned in Chapter 2, for certain orientations and

flight trajectories, Euler Angles suffer from ambiguities and Gimbal Lock that can

lead to incorrect estimates. I extended the results from [27] by implementing the

EKF using quaternions.

Figure 6.3: Full State Position Vector Vs. Truth
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Figure 6.4: Full State Attitude Vector Vs. Truth
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Chapter 7

APPLICATION: CHP2

This report wouldn’t be complete without discussing at least one implementation

of a TWR based navigation system. The CHP2 architecture presented in [7] and [8]

will be discussed here with commentary on how the derived PnO bounds and estima-

tor analysis could enhance this system.

The CHP2 architecture is considered a ”joint system” because it employs a wave-

form that was designed for simultaneously performing both positioning and communi-

cations tasks. This methodology was created in response to applications that required

both comms and localization but are limited in spectral resources. A state-of-the-art

coherent ToA estimation technique is used on CHP2 that provides ranging data with

as little as 5 cm of uncertainty.

Figure 7.1: CHP2 Waveform for a 4-antenna User. The Colored Navigation
Sequences Are Each Associated With Their Own Antenna to Provide Spatial

Distinction. The Communications Payload Drives the Tof Algorithm and Pre/Post
Ambles Are Used for Frequency and Time Synchronization [7]

A drawing of the joint waveform is shown in figure (7.1) where we can see the

preamble, payload, 2 postambles and positioning sequences. The preamble and
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postamble are used to perform frequency offset correction. The communications pay-

load feeds the ToF algorithm on the receiver and positioning sequences provide the

necessary spatial diversity for localization. In total the waveform is approximately 1

ms long, and transmit waveforms from each user area created and sent every 50 ms.

Experimental results from a flight test performed using CHP2 are shown in fig-

ure (7.2) take from [7]. A drone with the CHP2 system installed was flown around

outside and 4 ground antennas employed the TWR algorithm to estimate ToF and

therefore range. This is one huge step in the direction of getting precise localization.

The estimates have a small amount of noise but the average estimate of each antenna

appears to achieve the expected uncertainty.

Figure 7.2: Experimental Results With Setup Similar to Figure (2.5). 4 Ground
Reference Antennas Estimate the Range of a Target.

The system performance analysis done for CHP2 could benefit greatly by using

the derive CRLB when deciding which kinds of PnO estimation algorithms to con-

sider. My simulation results allow extrapolation of CHP2’s 5 cm ranging uncertainty

(0.33 ns of timing uncertainty) to show the accuracy of PnO estimation. System
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trade-offs can be easily determined and requirements derived for an enhanced CHP2

that includes navigation.

My simulated CRLB could also be used to enhance decision making when setting

up TWR applications in farming, surveying, mining, road transportation and others.

By knowing the limitations on timing (and hence position and orientation) before-

hand, one can plan ahead for things like land coverage capabilities, define network

hand-offs and hardware and software cost budgeting.
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Chapter 8

FUTURE WORK AND EXTENSIONS

I believe that several important extensions can be made to the body of work

presented here which are highlighted below.

• Extending the work on bounds to deriving bounds for a non-stationary target.

This would allow for a direct comparison between the bounds derived in Chapter

4, so that dynamic performance can better be assessed. This would also allow

for comparison between different linear and nonlinear state estimation methods

like the EKF, UKF, Particle Filter and MHE and give designers more insight

into algorithm trade-offs.

• Implementation of real-time position and attitude estimation processing on the

CHP2 platform. This would require both firmware and software updates to

the current architecture but would enhance the overall abilities of the system.

Some first steps in doing this would be to analyze the computational complex-

ity of different algorithms. Being able to map the computations to hardware

operations would allow one to figure out the amount of resources and expected

latency on hardware.

• Studying how using a nonlinear state estimator would enhance the system.

Various nonlinearities could be introduced into a more realistic motion model

such as incorporating forces and moments. Studying the impacts of those on

the EKF and then seeing how an algorithm like the Particle Filter could handle

it could enhance the usefulness of the system in different applications.
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• Reformulating the problem of non-stationary PnO estimation using a more ro-

bust attitude state representation such as quaternions. This could aid in making

non-stationary TWR system more robust under certain trajectories.
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Chapter 9

CONCLUSION

In summary, the work shown in this Thesis provides insight into bounds for the

3-D position and attitude estimation problem, how known estimators perform against

those bounds, important analysis tools for deriving bounds and the beginning of an

extension to non-stationary PnO estimation bounds and performance. I believe this

work is important and can provide engineers who design position and navigation

systems with more tools to make sound trade-offs. I also hoped to shed light on how

TWR PnO estimation is a feasible and in some applications better alternative to

legacy system like GPS due to it’s enhanced security, more configurable architecture

and decreased spectral resource needs.
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