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ABSTRACT

Understanding the evolution of opinions is a delicate task as the dynamics of how one

changes their opinion based on their interactions with others are unclear. The rise of social

media has drastically changed the conception of opinion formation as there are now a myriad

of smaller actors that steer opinions one way or the other. Therefore, opinion formation can

be argued to be an example of self-organized dynamics where large scale behaviors emerge

without a central authority similar to a flock of birds or a shoal of fish. In this dissertation

several contributions to this body of work are presented.

First, two linear models of opinion formation are studied - one stochastic in nature and

one deterministic. Both models are defined in terms of an underlying graph; the effects of

the structure of the graph on the long time behavior of the models are studied in all cases

of graph topology. Special attention is given to the emergence of a consensus among the

agents and a condition on the graph that is necessary and sufficient for convergence to a

consensus is provided.

Next, a variant of the well known bounded confidence dynamics is proposed with the

goal of inducing unconditional convergence to a consensus. The defining feature of these

dynamics which are dubbed No one left behind dynamics, is the introduction of a local

control on the agents which preserves the connectivity of the interaction network. A rigorous

demonstration that these dynamics result in unconditional convergence to a consensus is

provided and a relaxed version of the control is presented that maintains many qualitative

features of the bounded confidence dynamics.

Finally a model aimed at a better understanding of the polarization of opinions in addition

to consensus is introduced. Most models of opinion formation only include attractive forces

among the agents and only capture polarization through an echo-chamber effect. The

addition of repulsive forces is mathematically challenging as repulsion can cause divergence

i



of the model. A model which dubbed the Döppelganger model is introduced which includes

repulsive forces, show that this model remains bounded and characterize its convergence.
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Chapter 1

INTRODUCTION

How are opinions formed? What mechanisms cause individuals to think similarly or in

disparate ways? Understanding the evolution of opinions is a delicate task as the dynamics of

how one changes their opinion based on their interactions with others are unclear. Moreover,

the rise of social media has drastically changed our conception of opinion formation. Rather

than a few central outlets (e.g. TV channels, newspapers) acting as a common and external

frame of reference, there are now a myriad of smaller actors that steer opinions one way or

the other. Therefore, opinion formation can be argued to be an example of self-organized

dynamics where large scale behaviors emerge without a central authority similar to a flock

of birds or a shoal of fish [22, 79, 29, 9, 35, 118].

The idea that one’s opinion is the result of a summation of influences from other

individuals dates back to the beginnings of inquiry into social dynamics. However, it wasn’t

until the 1950s that a formulation of this idea precise enough to be amenable to mathematical

analysis appeared in [48]. Here, an individual’s opinion is modeled as a continuous value

on a one dimensional spectrum that changes based on that individual’s connections with

other individuals in a social network modeled as a directed graph. The importance that

an individual affords another’s opinion is modeled by positive weights on the edges of the

directed graph. A given individual feels a “pull” exerted on their opinion value by those

to whom it is connected which is proportional to the weight of the connection. Ultimately,

the assumption that an individual changes their opinion due to a summation of influences

is captured quite literally in these early models as an individual’s new opinion value was

modeled as a sum of the opinion value’s to those that individual is connected in the directed
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graph weighted by values defined on those connections. Several different models of this

class were studied in this period with minor differences and consensus, when all individual

opinion values converge on a single value, emerged as a ubiquitous feature [39, 56].

Despite the success of this framework at codifying assumptions about the dynamics

of social interaction, work on models of this type was sparse in the following 40 years.

From a mathematical point of view, these early models are similar in the sense that they

are all linear and all define only positive weights between individuals. From a modeling

point of view the tendency of these models to evolve to consensus is not ideal and it was

recognized [2] that assumptions that produce more varied outcomes in the same framework

would require non linear models. However, the analysis of non linear models is notoriously

complex and it was not until the late 1990s, after the advent of computing, that a detailed

study of a nonlinear model for modeling opinion dynamics was introduced by Hegselmann

and Krause in [57]. Here, the non linearity introduced is meant to formalize the assumption

that two individuals will only interact with each other in the first place if they already agree

in some sense, formally if their opinion values are within a prescribed range; the confidence

that an individual has in another is bounded. However if they do interact they do in a manner

exactly analogous to the earlier class of models. This assumption causes the formation

of clusters of individuals to be a standard phenomena, consensus is rare and much work

following was done analyzing and characterizing the observed clustering behavior. Similar

to the earlier models the structure of the interaction network is central, however in this

case that structure depends on the distribution of opinions in the network. In particular, the

observed clustering of opinions is equivalent to a fragmenting of the social network.

Following the introduction of Hegselmann-Krause model, a larger body of work analyz-

ing models in this framework began to emerge [95, 121, 80, 29, 57, 109, 14, 13]. The rise

of social networks as the ubiquitous forum for the exchange of information in our society
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and the meta data associated with these networks further motivated the continued study

of opinion formation from an agent-based modeling point of view. The defining feature

of the agent-based approach is the study of how locally defined interaction rules affect

globally observed behavior among the agents. Models of opinion formation often have the

feature that agents can only interact if they are connected in an underlying network structure.

Therefore, a hallmark of the study of these models is examining how the interplay between

the topology of the underlying network and the interaction rules affect the distribution of

opinions among the agents [85, 106, 119]. Of particular interest is how these factors can

lead to the emergence of a consensus among the agents. Models in this context have the

generic assumption that the opinion of a given agent is continuously influenced by those

to whom it is connected in the network according to relatively simple interaction rules

which are globally defined. Often these rules carry an assumption of local consensus; if

agents interact only with each other then they should agree in some sense. This assumption

can also be interpreted as saying that there are only attractive forces present among the

agents. One might assume that the attractive nature of the interactions causes the emergence

of consensus to be a ubiquitous feature of this class of models, however this is not the

case. The manner in which agents are connected in the underlying network has a large

effect on the distribution of opinions observed among the agents [85, 119]. The interplay

between the network structure and the interaction rules can often cause the analysis of

these models to be very involved; a popular strategy is to use simplifying assumptions on

the network structure such as symmetry of connections or static connections that do not

change throughout the evolution of the model [106, 109, 123, 95]. Given an interaction

rule, the second strategy could be viewed as studying a “linearization” of a model with the

same interaction rule but dynamic connections. A main takeaway from the study of these

models is that a necessary condition for the emergence of a consensus is the persistence of
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a suitable degree of connectivity in the network throughout the evolution of the dynamics.

This allows for “heterophilic” interactions; agents with disparate opinions interact and due

to the attractive nature of the interaction rules eventually agree [85].

In this dissertation several contributions to this body of work are presented and plans for

future research and preliminary results are presented. This work is unified in the viewpoint

that interplay between the underlying interaction network and the observed opinions is the

critical consideration when analyzing models of this type.

We first discuss two linear models of opinion formation; one deterministic in nature

and one stochastic. In both cases we are interested in how the structure of the graph affects

the long-time behavior of the model. We are particularly interested in conditions on the

graph that cause the opinion of every agent to converge to a consensus - i.e. every agent

converges on the same opinion in the long-time limit. Moreover we analyze if the addition

of stochasticity helps or hinders the emergence of a consensus; if consensus occurs, we

are interested in how the connectivity of the graph and stochasticity affect the speed of

convergence. We examine and characterize both models’ behavior in all possible graph

topologies: i) undirected and connected (referred to as a simple graph), ii) directed and

strongly connected, and iii) directed and weakly connected or disconnected.

In the deterministic case we find that the model converges regardless of graph structure.

In the case that the underlying graph is simple, we find that a consensus is reached that

is the initial average of opinions. Similarly, if the graph is strongly connected, but not

necessarily undirected, we again find that a consensus emerges, however it is not in general

the initial average. The most challenging case occurs when the underlying network is

only weakly connected. In general, a consensus does not form. However, we are able to

find necessary and sufficient conditions on the structure of the graph for convergence to
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a consensus regardless of the initial condition: the graph needs to have only one isolated

strongly connected component.

In the stochastic case we similarly find consensus in the case of a strongly connected net-

work using markedly different techniques in the arguments. In contrast to the deterministic

model, the stochastic model does not converge in general in the case of a weakly connected

graph. Despite this, we find that the condition that the graph have exactly one isolated

strongly connected component prevails and is equivalent to convergence to a consensus in

the stochastic case as well. We explore this link between the models further as we find that

the deterministic dynamics can be recovered in expectation from the stochastic dynamics.

We discuss speed of convergence for both the deterministic and stochastic models and

quantify it in terms of the algebraic connectivity of the graph, also known as the Fielder

number[45, 69, 70], which also happens to be the spectral gap of the operator associated

with consensus dynamics. The algebraic connectivity measures, in a sense, how well

connected the graph is and we find generally that better connection in the graph results in

faster convergence of the models. However, we find a contrast between the models as the

convergence rate depends on the number of agents in the stochastic case whereas the rate in

the deterministic case depends only on the connectivity of the graph. In short, the spectral

gap reduces drastically in the stochastic model.

We next study a class of models inspired by the Hegselmann-Krause bounded confidence

model [57] in which the connections between agents are dynamic; a connection forms

between agents when their opinions are within an interaction range. This dynamic (combined

with an attractive interaction rule) causes the formation of “clusters” of opinions in the long

time limit to be a generic behavior; consensus is rare. For this reason much of the study

of this class of models has focused on characterizing the clustering behavior [14, 36, 63,

81, 15, 71]. We take a different viewpoint and instead investigate controls on collections of
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agents [24, 99] otherwise evolving according to bounded confidence dynamics that result

in consensus. The interaction range in bounded confidence dynamics causes interactions

between agents to be “homophilic”; agents only interact with agents who are sufficiently

“similar”. This tendency causes the interaction network of a collection of agents to quickly

become disconnected and prevents a consensus from occurring despite the fact that agents

who do interact attract each other. Therefore, the controls that we impose on agents are

generally motivated by maintaining connectivity among the agents.

We investigate two different ways of augmenting the bounded confidence dynamics with

the goal of achieving consensus. The first strategy which we dub the no one left behind

dynamics imposes the rule that once agents become connected they remain connected.

We prove rigorously that under this augmentation of the bounded confidence dynamics,

connectivity of the initial interaction network is sufficient for a consensus to emerge for

agents who’s opinion can be of arbitrary dimension. If we restrict agent opinions to

being one dimensional we can quantify how fast a consensus is reached as we derive

explicit convergence rates. Here, an interesting phenomenon is observed as we find that the

convergence occurs in two stages. Before all agents are within the interaction range provided

by the bounded confidence dynamics the convergence is linear, afterwards the convergence

to consensus spontaneously becomes exponential. The preservation of connections among

pairs of agents is sufficient to preserve the connectivity of the network however it isn’t

necessary. If the existence of paths between agents is maintained then the connectivity of

the interaction network is maintained as well. The second strategy which we dub the relaxed

no one left behind dynamics takes advantage of this observation and demands that agents

who are connected by a path in the interaction network remain connected by a path. We find

numerical evidence that this less restrictive control is sufficient for consensus as well. We

also demonstrate numerically that this strategy is, in a sense, an interpolation between the
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bounded confidence dynamics and the no one left behind dynamics - most agents evolve

according to the bounded confidence dynamics and a high degree of clustering initially

occurs. However several “bridging” agents alter their trajectories in order to maintain

connectivity of the interaction network and ensure convergence to a consensus.

Finally, in a slight departure from the previous two models, we present an investigation

of a model hierarchy intended to model the food seeking behavior of an organism known

as a slimemold. While different in inspiration we believe that the microscopic model in

particular serves as an interesting example of how agent based models of opinion formation

could be extended (for example to include the possibility of repulsive forces between the

agents). Additionally, the interest in modeling slimemold behavior stems mainly from

its noted ability to act itself as a model for a host of collective phenomena; it would be

interesting to examine opinion formation in this context. Finally, the framework of deriving

a density based model from the agent based model is an approach that would be interesting

to apply more widely to agent based models of opinion formation. P. polycephalum , or

a slime mold, is an amoeboid organism that is notable for its ability to perform complex

tasks despite its relatively simple biological structure and lack of a brain. Surprisingly, slime

molds are known to be able to solve mazes, construct robust networks, and solve shortest

path and spanning tree problems [18, 92, 3, 5, 72, 11, 4, 89, 94]. The simplicity of the

slime mold organism and the complexity of its emergent behaviors have inspired research

into P. polycephalum as a model for collective behavior [64, 66, 113, 65]. A hallmark of

research in collective dynamics is complex global structure emerging as a result of relatively

simple local interactions between agents. Indeed, cellular automata models inspired by P.

polycephalum food seeking behavior have been found to be good models of other collective

phenomena such as the formation of transportation networks in a country or the “cosmic

web” of stellar material between galaxies [21, 6].
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When seeking food, P. polycephalum moves to concentrate most of its mass on food

sources - however it maintains a network of mass between food sources. In the absence of

food it begins to retract to a central mass. Past research into models of P. polycephalum

has mainly attempted to model the general food seeking behavior of physarum or its food

seeking behavior within a maze. In the first camp most of the models take a microscopic,

cellular automata approach - the slime mold is represented by a collection of particles that

evolve discretely in time, space, or both. Different interaction rules and sometimes even

different “types” of agents are employed to model different slime mold behaviors, however

almost all models include a rule that causes slime mold agents to move towards food sources

[78, 120, 77, 116, 55]. Most attempts to model the maze solving behavior of the slime

mold take a macroscopic approach. Some studies note that the P. polycephalum moves and

forms networks by moving fluid through tubules within its mass - much like an electrical

network [113, 114, 112]. These authors focus on modeling P. polycephalum as a network of

ordinary differential equations that describe the flow of P. polycephalum through network

components. Others try to be more specific and attempt to directly model the density of P.

polycephalum on each maze component. Here the maze is described as a network topology

and P. polycephalum is characterized with one dimensional partial differential equations

for chemotaxis (in particular the Keller-Segel model) defined on the edges of the network

with coupling conditions at the junctions of the maze [19, 20]. Both of these macroscopic

descriptions attempt to model the path that P. polycephalum builds between food sources

once they are located. In particular they do not attempt to model the general food seeking

behavior of the organism.

In this work we propose a model hierarchy aimed at modeling the food seeking behavior

of P. polycephalum. The main behaviors we attempt to model are aggregation of mass on

food sources while maintaining connected paths between food sources and retraction in
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the absence of food sources. We first define an agent based model that is continuous in

time and space through a system of stochastic differential equations. The evolution of each

agent is governed by three terms - an interaction term with other agents that causes agents

to aggregate, a drift term that causes agents to move towards food sources and a noise term

intended to model slime mold foraging behavior in the absence of food sources. However

any simulation of the microscopic model that includes a suitable number of agents to

accurately portray P. polycephalum behavior would be computationally intensive. Therefore,

we demonstrate under the assumption of propagation of chaos that as the number of agents

approaches infinity, the marginal distribution of each agent converges to a deterministic

density based model in the form of an aggregation-diffusion equation. This macroscopic

model includes terms that correspond to the drift, interaction and noise terms present in

the microscopic model. We then embark on an analysis of the macroscopic equation from

the point of view of modeling P. polycephalum food seeking behavior. We first discuss

a framework for choosing an appropriate interaction kernel through an analysis of the

steady states of the macroscopic model in the case that there are no food sources. Then,

we rigorously show that there is a parameter regime in which the only possible steady

state of the macroscopic model is zero and thus this regime is not suitable for modeling P.

polycephalum food seeking behavior. Finally, we simulate the macroscopic model using

the blob method for aggregation-diffusion equations presented in [28] and find that it is

necessary to scale the three main terms of the model in order to reproduce aggregation on

food sources. We then simulate the evolution of the model in different scaling regimes and

with different choices of interaction kernel and qualitatively examine which regimes result

in the main behaviors we attempt to model. We find that there are several regimes that result

in the qualitative desired behaviors.
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From a modeling point of view our approach distinguishes itself from the previously de-

scribed literature in several ways. As previously discussed, past models of P. polycephalum

behavior mainly took either a discrete agent based or macroscopic viewpoint - our approach

unifies these strategies as our macroscopic description is formally derived from the agent

based model. Additionally, most models of general P. polycephalum food seeking behavior

were from the agent based view point; our model hierarchy allows us to present a macro-

scopic description of this behavior. Finally, the macroscopic description that results is

an aggregation diffusion equation with a drift term; while known, to our knowledge such

models have not been widely studied. Aggregation diffusion equations without a drift term

are well known to exhibit “blow up” below a critical mass - we do not observe such a

phenomena in our simulations (although we do not vary the mass) - it could be an interesting

area of future research to investigate the effect of the drift term on the occurrence of blow

up.

There are many ways in which this work can be extended. In many models proposed

to describe the formation of consensus [95, 81, 80, 119, 85, 58, 39, 73], the interaction

network has a regularizing effect; it helps neighbors share a similar opinion. The underlying

assumption is that individuals can only exert attractive forces on each other. In other words

there is an assumption of local consensus, if two individuals interact they should agree in

some sense. Therefore, many existing models do not include a dynamic of disagreement,

individuals either interact and agree or do not interact at all. A natural way to model

this dynamic is by including negative weights in the interaction graph. However, naively

adding negative weights in previously proposed models usually results in a divergence of the

dynamics. A careful investigation of how to introduce repulsive forces among the individuals

in a way that is natural to the problem is required. We propose to study a model we dub

the Doppelgänger model. Intuitively, this model introduces a dynamic of disagreement
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by stating that when two agents, i and j, disagree the opinion of agent i is attracted to the

opposite opinion of that of agent j, in lieu of being repulsed by the opinion of agent j.

We study these dynamics in two main regimes. In both regimes the dynamics considered

are nonlinear, however in the pseudo-linear regime the interaction network among agents

remains fixed whereas in the fully nonlinear regime the interaction network varies according

to an interaction function similar to the formulation found in [58], however in this case the

interaction function is allowed to be negative. We demonstrate that in both regimes that

the dynamics remain bounded. Additionally, in the pseudo-linear regime we are able to

characterize the convergence of the model in terms of the static interaction network.

Another main area of future research is to combine our modeling framework with

experimental data. This is critical to the motivation of the modeling pursuits as it might be

the case that opinion dynamics as measured by social media data is too noisy of a process to

truly be modeled by dynamical systems. Further it remains to be seen if opinion dynamics

are truly an example of self organized behavior - it could be that several influencers dictate

the majority of the behavior. Experimental data are derived from social media activity such

as Twitter for which we have at our disposal a large data-set. Thus, a major challenge is to

extract opinions of users along with their interaction networks. The advent of computing

represents a major change in that landscape. There are now multiple methods to measure

the graph structures and the opinion of users using sentiment analysis [51, 75, 82, 87] and

graph clustering [108, 115, 61, 50, 74, 43, 93, 96, 68, 107]. Sentiment analysis and network

scaling have been used in concert in several studies [59, 32, 40]. Usually the aim is to use

graph clustering to identify communities within the networks and then leverage sentiment

analysis to characterize the opinions of those communities in a static way. However, less

work has been done on the dynamics of how those communities were formed and how

they may coalesce/fragment in the future. In this area, using sentiment analysis and graph
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clustering in concert to examine the change in the structure of the network and opinions of

the users over time could provide valuable insights to the interplay between those dynamics

and ultimately inform mathematical modeling efforts to further understand the more intricate

dynamics at play.

The final proposed research aim is to combine our modeling and measurement frame-

works in order to develop a strategy to mitigate polarization if it occurs. This approach is

two fold. First, we will recast our theoretical models in the language of an optimization

problem in order to develop an approach to identify the nodes in a given network who

are most important in the sense of preventing polarization. Specifically we will introduce

“moderating nodes” to the models and attempt to minimize the observed variance of opinions

by controlling how the moderating node interacts with the network. Once this theoretical

framework is developed it can be tested in the data by identifying two polarized communities

and using them as the input to the previously discussed control problem. Once susceptible

nodes are identified via the models, efforts could be made (for example by a public mod-

erating account) to prevent the fragmentation of the interaction network; for instance by

linking those users with content they would not otherwise be served by the social network

algorithms.
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Chapter 2

DETERMINISTIC VERSUS STOCHASTIC CONSENSUS DYNAMICS ON GRAPHS

The content in this chapter closely follows the content in [119]. 1In this chapter we

study two agent based models of opinion formation - one stochastic in nature and one

deterministic. Both models are defined in terms of an underlying graph; we study how the

structure of the graph affects the long time behavior of the models in all possible cases of

graph topology. We are especially interested in the emergence of a consensus among the

agents and provide a condition on the graph that is necessary and sufficient for convergence

to a consensus in both models. This investigation reveals several contrasts between the

models - notably the convergence rates - which are explored through analytical arguments

and several numerical experiments.

2.1 Consensus dynamics: a deterministic model

2.1.1 Model definition and preliminary properties

We first study the following deterministic consensus model. Many of the results in this

section concerning strongly connected networks are well known and are included for context

- see for example [33].

Definition 1 Given a collection of N agents, let si ∈ R represent the opinion of the ith agent.

The consensus model (CM) is defined by the dynamics:

s′i =

N∑
j=1

ai j(s j − si) where ai j ≥ 0. (2.1)
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In vector notation, introducing s = (s1, ..., sN)T , the dynamics can be written as:

s′ = −Ls, (2.2)

where

L =



σ1

. . . −a ji

−ai j
. . .

σN


(2.3)

and

σi =

N∑
j=1

ai j, (2.4)

where we assume (without loss of generality) that aii = 0 for all i.

For the sake of clarity of presentation we restrict opinions to being one dimensional. We

note that the consensus model can be easily extended for opinions si in Rn and that all

results discussed will still hold with analogous proofs.

If we interpret ai j as measuring the amount of influence agent j exerts on agent i, (in

particular, in this interpretation if ai j = 0 then agent j does not influence agent i) then we

can interpret the matrix L as encoding the structure of a network on which the agents are

interacting. In this interpretation, each vertex of the graph G represents an agent and an

edge from vertex i to vertex j represents that agent i is exerting influence on agent j directly,

i.e. that a ji > 0. When one agent influences another directly, the influenced agent adjusts

its opinion towards the influencer’s at a rate proportional to how much influence is being

exerted.

Remark 1 We note that L is the transpose of the Laplacian matrix of the directed graph G

(with the convention that the diagonal entries of L measure the indegree of the corresponding

vertex in G.)
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In this work we will study how different conditions on the matrix L affect the behavior

of the model. We will mostly be concerned with whether a consensus is formed among the

agents, i.e. if the opinions of every agent converge to the same value.

Definition 2 We say that the consensus model converges to a consensus if there exists

α ∈ R such that:

lim
t→+∞

s(t) = α1, (2.5)

where 1 = (1, 1, .., 1)T .

We will also be interested in convergence to a consensus that is unconditional.

Definition 3 The consensus model converges to a consensus unconditionally if a consen-

sus is reached for any choice of the initial state s(0).

Since L encodes the structure of a network, the conditions we place on L can be viewed

as conditions on the structure of G, the network on which the agents are interacting. We

will show that in the case where no extra assumptions are made about L that the model

always converges, although not necessarily to a consensus. We find that in the case where

L is irreducible that the model converges unconditionally to a consensus; if we add the

assumption that L is symmetric we find that the opinion the agents convene on is the

mean of their initial opinions. Assuming that L is irreducible is equivalent to assuming

that G is a directed graph which is strongly connected. Adding the assumption that L is

symmetric is equivalent to assuming that G is a connected undirected graph (often called

a simple graph) where every interaction between agents is mutual. However, we find that

these assumptions - while sufficient for unconditional convergence to a consensus - aren’t

necessary and can be weakened. We finally present conditions on L that are equivalent to

unconditional convergence to a consensus and are weaker then irreducibility. In terms of

G these conditions are equivalent to demanding that G be weakly connected with only one
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isolated strongly connected component. In Fig. 1, we give an illustration of these cases of

study for L and two examples of the time evolution of opinions are plotted in Fig. 2. Similar

work including nonlinearities in the case of undirected connected graphs can be found in

[106, 109].

Strongly
connected

Weakly
connected

consensus

 

consensus

consensus only convergence

(average)

graph 

graph

L with one iscc

L irreducible

L reducible

A B

C D

Figure 1: The four cases (A, B, C, D) for the structure of the network: from the strongest
assumption on L (symmetric irreducible) to a generic matrix (weakly connected or dis-
connected). A sufficient condition to reach consensus is to have L with only one isolated
strongly connected component.

Before investigating the cases discussed above we present a well known property of L.
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Figure 2: Evolution of the opinions si(t) using an irreducible symmetric L (case A Figure
1) and a reducible L (case D Figure 1) from Fig. 1. Notice that agents { 1 } and { 4 } do not
directly or indirectly influence each other.

Regardless of the coefficients ai j, L has a special structure which provides information on

its spectrum.

Proposition 1 The matrix L is a diagonal dominant matrix, its eigenvalues satisfy Re(λi) ≥

0 and no eigenvalue λi is purely imaginary except zero.

Proof

It is direct consequence of the Gershgorin theorem (see Appendix A.1).

Note also that 0 is an eigenvalue of L (i.e. λ1 = 0) since the one-vector 1 is always

an eigenvector of L since L is a row stochastic matrix. The main challenge is now to find

conditions on L such that the 0 eigenvalue is either simple or has as many eigenvectors as

its algebraic multiplicity.
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Figure 3: The spectrum of L, denoted Sp(L), is contained in the Gershgorin discs B(σi, σi).
Thus, the eigenvalues of L are either zero (λ1 in this representation) or have a real part
strictly positive.

2.1.2 Strongly connected networks (L irreducible)

We first study the case where L is assumed to be irreducible (see Fig. 1 A and B). In

terms of the network G on which the agents interact, this means that G is strongly connected.

Intuitively we are assuming that given any two agents i and j, that agent i exerts influence

over agent j (either directly or indirectly) and vice versa. Formally, in terms of L, we

introduce the following definitions.

Definition 4 Consider N agents and 1 ≤ i, j ≤ N. We say that agent i is influencing agent

j if there exists a path q1, . . . , , qk such that:

q1 = i, qk = j, and aqm,qm+1 > 0 for all 1 ≤ m ≤ k − 1. (2.6)

and we write i ∼ j.

In other words, L is irreducible if and only if for any i , j we have both i ∼ j and j ∼ i.

Definition 5 A graph G is said to be strongly connected if for any vertices i and j:

i ∼ j and j ∼ i. (2.7)
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A graph G is said to be weakly connected if for any vertices i and j:

i ∼ j or j ∼ i. (2.8)

The information about the eigenvalues of L given in Proposition 1 is not sufficient

to characterize the long-term behavior of the model. We need to further investigate the

algebraic multiplicity of the zero eigenvalue of L. Since we are assuming that L is irreducible,

we can deduce that the eigenvalue λ1 = 0 is in fact simple.

Lemma 1 If L is irreducible then the eigenvalue 0 is simple.

Proof

Apply Perron-Frobenus theorem (see Appendix A.1).

Using the properties of L stated above we can now exploit the following general fact from the

theory of ordinary differential equations to deduce that the model converges to a consensus

unconditionally in the case where L is irreducible. This result will prove useful for showing

the convergence of the model and studying consensus in the case of an arbitrary choice for

L as well.

Lemma 2 Given a linear system defined by

x′ = Ax, x(0) = x0.

Assume A has a zero eigenvalue of multiplicity m with m linearly independent associated

eigenvectors and every non-zero eigenvalue λ of A satisfies Re(λ) < 0. Then

lim
t→+∞

x(t) = u

where u is in the center subspace of A.

Proof

See Appendix A.2.
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Since in the case where L is irreducible its zero eigenvalue is simple, we obtain immediately

the convergence of the consensus model to a consensus.

Theorem 1 If L is irreducible then the consensus model converges to a consensus uncondi-

tionally.

Proof

By Proposition 1 we know that the eigenvalues of of −L satisfy Re(λi) ≤ 0. By Lemma 1

we know that 0 is a simple eigenvalue of −L associated to 1 and therefore by Lemma 2 we

can deduce that the model converges to a consensus as the center subspace of L is spanned

by 1.

2.1.2.1 Connected undirected networks (L symmetric)

We now study a well known case of when L is irreducible by adding the assumption that

L is also symmetric. Here we are implicitly assuming that every direct interaction between

individuals is mutual. We know from the last section that a consensus will be reached

unconditionally, however in this case we will show that the opinion the agents convene on is

the initial average of opinions. We note that these results have been well studied in the past;

we include them to highlight the special role that symmetry plays in the consensus model

and to contextualize results that arise in the subsequent study of the stochastic analogue to

this model - especially convergence rates. The average opinion is defined as:

s̄(t) :=
1
N

N∑
i=1

si(t). (2.9)

We first show that the average opinion is conserved by the consensus model in this case.

Lemma 3 If L is symmetric then the average opinion s̄(t) (2.9) is conserved by the consensus

model.
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Proof

Using the symmetry ai j = a ji, we find:

s̄ ′(t) =
1
N

N∑
i=1

s′i(t) =
1
N

∑
i, j

ai j(s j(t) − si(t)) = 0.

We can now show that the opinion the agents convene on is the average initial opinion and

that the convergence is exponential with rate at least λ2, the second smallest eigenvalue of L,

also known as the Fieldler number or algebraic connectivity of the graph G.

Remark 2 We will point out that we can impose a weaker condition than symmetry on L

and still maintain the conservation of the average opinion (and therefore convergence to

a consensus that is the initial average opinion). Recall that if L is not symmetric then the

graph associated to L is a directed graph. If we assume that the graph is balanced, i.e. that

L satisfies:

N∑
j=1

ai j =

N∑
j=1

a ji for all 1 ≤ i ≤ N, (2.10)

then 1 must be a left eigenvector of L associated to zero as well (equivalently a right zero

eigenvector of LT ). In this case the average opinion is conserved as:

s̄ ′(t) = 〈−Ls, 1〉 = 〈s,−LT 1〉 = 0 (2.11)

using (2.10).

However, in the following corollary we will maintain the assumption that L is symmetric in

order to guarantee that it can be diagonalized.

Corollary 1 Suppose L is irreducible and symmetric. Then the solution of the consensus

model, s(t), satisfies:

s(t)→ s̄(0) 1 as t → +∞

21



with s̄(0) the initial average opinion (2.9). Moreover, |si(t)− s̄(0)| ≤ Ce−λ2t where C depends

only on the initial condition and λ2 is the second largest eigenvalue of L.

Proof

See Appendix A.1

2.1.3 Weakly connected and disconnected networks (arbitrary L)

In this section we remove the assumption that L is irreducible. In terms of the network

associated to L, this translates to assuming that the network on which the agents interact is

merely weakly connected or disconnected. The case of weakly connected or disconnected

graphs is more delicate. In this case we are implicitly assuming that individuals, or com-

munities of individuals, may be isolated from influence from the network. Under these

assumptions on L a consensus might not always be reached. See for example the right

plot in Figure 2. However we will show that the dynamics always converge and provide a

condition on L weaker than irreducibility that is equivalent to unconditional convergence

to a consensus. Our main tool for studying the dynamics in this case is Lemma 2 and the

decomposition of L according to its strongly connected components (similar to the so-called

Frobenius normal form).

Given a weakly connected or disconnected graph we may partition its set of vertices into

strongly connected components. Two vertices i and j are in the same strongly connected

component if there exists a directed path from i to j and vice versa (i.e. i ∼ j and j ∼ i). If

we treat each strongly connected component as a vertex of a new graph G′, and notice that

this graph is necessarily directed acyclic, then by relabeling the vertices of G in a way that

agrees with the topological ordering of the vertices in G′ we can represent L in the following
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form (see Appendix A.3 and Figure 4).

L =



B1

. . . 0
Bk

* . . .

Bd


. (2.12)

Each block, Bk, on the diagonal is irreducible as they correspond to strongly connected

components of G. Notice that d denotes the number of strongly connected components, thus

when L is irreducible we have d = 1. We give an example of such a relabeling in Figure 4.

 

 

relabeling

Figure 4: An example of relabeling to obtain the block form.

Notice that by the definition of L each block Bk is diagonal dominant:

bii ≥

Nk∑
j=1, j,i

−bi j, (2.13)

where bi j are the coefficients of the matrix Bk and Nk is the total number of vertices in Bk.

We can further distinguish between blocks.

Definition 6 Assume L is given in the block form (2.12). A block Bk = (bi j) is called isolated

if it satisfies:

bii =

Nk∑
j=1, j,i

−bi j for all 1 ≤ i ≤ Nk. (2.14)
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In other words, vertices from the block Bk are only influenced by vertices in block Bk:

isolated : if i ∈ Bk and j < Bk, then j � i. (2.15)

Note however that i might influence j (i.e. i ∼ j). A non-isolated block Bk is called absorbing

if the vertices from block Bk can only influence vertices in Bk:

absorbing : if i ∈ Bk and j < Bk, then i � j. (2.16)

Note again that j might influence i (i.e. j ∼ i).

Notice that a block can be neither absorbing nor isolated. In the example from Figure 4,

the matrix L is composed of two isolated blocks and one absorbing block and has no blocks

that are neither. Isolated blocks of L correspond to isolated strongly connected components

of the graph G on which the agents interact. We now establish a correspondence between

isolated blocks and zero eigenvectors of L.

Proposition 2 If L has m isolated blocks there exist at least m linearly independent eigen-

vectors of L associated to the zero eigenvalue.

Proof

Assume that Bk is an isolated block of L and that Bk is Nk × Nk. Then, the vector 1Nk =

(1, 1, ..., 1)T of length Nk is a right eigenvector of Bk associated to the zero eigenvalue. Since

Bk is irreducible and is isolated we have by the Perron-Frobenius theorem that 1Nk is the only

zero right eigenvector of Bk (see the proof of Lemma 1). Since for any matrix the collection

of left and right eigenvalues as well as the dimensions of the corresponding eigenspaces are

equal, there must exist a unique left eigenvector of Bk associated to zero denoted ūk. We

then construct the following vector

wk = (0, . . . , 0, ūk, 0, . . . , 0)T
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where the non-zeros entries correspond the indices of the block Bk in the decomposition

(2.12). Using that Bk is isolated, we deduce that wk is a left eigenvector of L, i.e. wT
k L = 0T .

We can now repeat this argument for all isolated blocks Bk to produce a collection of

left eigenvectors wT
k of L associated to the zero eigenvalue λ1 = 0. These eigenvectors are

necessarily linearly independent as they are all nonzero in disjoint coordinates. Therefore,

since the dimensions of the left and right eigenspaces of L are equal, if there are m isolated

blocks of L there must be m linearly independent right eigenvectors of L associated to zero.

So, if L has m isolated blocks then it has at least m linearly independent zero eigenvectors.

We will eventually show that these are the only zero eigenvectors of L and deduce conver-

gence by Lemma 2; as a first step we show that non isolated blocks of L do not have a zero

eigenvalue.

Proposition 3 Suppose that Bk is a non-isolated block. Then Bk does not have a zero

eigenvalue.

Proof

Denote by bi j the components of Bk. Since Bk is a non-isolated block, there exists i0 such

that:

bi0i0 >

Nk∑
j=1, j,i0

−bi0 j.

In particular, the constant vector 1Nk = (1, . . . , 1)T cannot be a zero-eigenvector of Bk.

Suppose for the sake of contradiction that Bk had a zero eigenvector, u, and let ui be the

largest entry of u i.e. ui = |u|∞ (we assume without loss of generality that ui > 0). Then we

have:

biiui +

Nk∑
j=1, j,i

bi ju j = 0 ⇒ (−
Nk∑

j=1, j,i

bi j)ui +

Nk∑
j=1, j,i

bi ju j ≤ 0

⇒

Nk∑
j=1, j,i

bi j(u j − ui) ≤ 0.
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Since bi j ≤ 0 (for j , i) and u j − ui ≤ 0, we must have u j = ui if bi j < 0. In other words, the

coefficients of the eigenvector u are constant on the indices connected to i:

u j = |u|∞ if i ∼ j.

Iterating the argument, we deduce that u j = |u|∞ if there exists a path joining i to j. Since

Bk is irreducible we deduce that u j = |u|∞ for all j. Therefore, u = (|u|∞, . . . , |u|∞). This is a

contradiction as 1Nk is not a zero eigenvector of Bk.

Combining propositions 2 and 3 leads to the following theorem.

Theorem 2 The consensus model (2.1) converges (but not necessarily to a consensus).

Proof

We want to show that the multiplicity of the zero eigenvalue λ1 = 0 is equal to the number

of (independent) zero eigenvectors w of L. From proposition 2, we already know that there

exist m zero eigenvectors with m the number of isolated blocks. Thus, it remains to show

that the multiplicity of the zero eigenvalue is m.

Using the decomposition (2.12), the spectrum of L can be written as a union

Sp(L) =

d⋃
k=1

Sp(Bk) (2.17)

where the matrices Bk correspond to the diagonal blocks in the decomposition (2.12) (i.e.

the strongly connected components). Since only isolated blocks Bk have zero eigenvalues

(Proposition 3), the spectrum of L contains exactly m zero eigenvalues. Therefore we obtain

the convergence of the dynamics using Lemma 2.

Remark 3 In the proof of Lemma 2 (see Appendix A.2) we find that we can bound the

convergence of s(t) in terms of the spectral gap of L, denoted λ2, some 0 < ε < Re(λ2) and

some C > 0: ∥∥∥s(t)
∥∥∥ ≤ Ce−(Re(λ2)+ε)t. (2.18)
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If L is symmetric, λ2 is known as the algebraic connectivity of the graph G and is a measure

of how well connected G is. In this context the bound (2.18) can be interpreted as stating

that the consensus model converges faster if the network on which agents interact is better

connected.

We can observe from Theorem 2 that the number of zero eigenvectors of L is in cor-

respondence with the number of isolated blocks of L. This observation supplies us with a

condition on L that is equivalent to unconditional convergence to a consensus.

Corollary 2 The consensus model converges to a consensus unconditionally if and only if

L has exactly one isolated block.

Proof

The vector 1 is always a zero eigenvector of L. Since L has only one isolated block,

the eigenvalue 0 must be simple by Propositions 2 and 3. Therefore, 1 is the only zero

eigenvector of L and therefore Lemma 2 implies that the dynamics converge to a consensus

as the center subspace of L is spanned by 1.

Remark 4 Recall that isolated blocks of L correspond to isolated blocks of the graph G on

which the agents interact. We can interpret an isolated block as “leading“ the rest of the

network. Given a network with only one isolated block the consensus model implies that

nodes in an isolated block receive no influence from nodes outside of the isolated block

and since we know by Corollary 2 that the entire network reaches a consensus, we deduce

that the consensus converged to by the whole network is the consensus converged to by

agents in the isolated block. The network can fail to converge to a consensus if there are

multiple isolated blocks that converge on different opinions (See the right plot in Figure

2) - this clearly depends on the initial opinions of the agents in the network. Thus, if a

network has multiple isolated blocks the consensus model does not converge to a consensus
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unconditionally (although a consensus might still be reached if all isolated blocks happen to

converge on the same opinion).

2.1.4 Consensus as a control problem

We now slightly shift our perspective to consider a question inspired by control theory.

Given N agents with initial opinions { s1(0), ..., sN(0) } and a desired opinion s∗ ∈ Rd that

one would like every agent to converge on, we investigate if there is a way to connect the

agents in a network so that under the consensus model we have:

lim
t→+∞

s(t) = s∗1.

We can use our observations about how isolated blocks affect the behavior of the consensus

model to answer this question. For ease of notation we denote:

smax := si where |si| = max { | s1(0)|, ..., |sN(0)| } ,

smin := s j where |s j| = min { | s1(0)|, ..., |sN(0)| } .

We also note that there is no way to connect the agents to achieve the desired result if

s∗ < Conv({ s1(0), ..., sN(0) }) (the convex hull of initial opinions) as the consensus model

forces the convex hull of { s1(t), ..., sN(t) } to decrease in diameter as time evolves.

Proposition 4 Given (s1(0), ..., sN(0)) and s∗ ∈ Conv({ s1(0), ..., sN(0) }) there exists L such

that:

lim
t→+∞

s(t) = s∗1.

Proof

For ease of notation, assume

smax = s1(0) and smin = s2(0).
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We first consider the two-agent network who’s evolution is given bys′1(t)

s′2(t)

 =

−β β

α −α


smax

smin

 . (2.19)

We find that if we choose α and β such that

s∗ =
1

α + β
(βsmax + αsmin),

we have

lim
t→∞

s1(t)

s2(t)

 =

s∗

s∗

 .
So, given N agents, if we connect agents 1 and 2 with the weights found above and the

rest of the agents in a “chain”, i.e. we choose an L of the form:

L =



β −β 0 0 0 . . . 0

−α α 0 0 0 . . . 0

0 −1 1 0 . . . 0

0 0 0 −1 1 . . . 0
...

0 0 0 0 0 . . . 1


then the network on which the agents interact will only have one isolated block consisting

of agent 1 and agent 2. Our choice of weights guarantees that the opinions of agents 1 and 2

converge to s∗ and since they comprise the only isolated block, Corollary 2 guarantees that

we must have that:

lim
t→+∞

s(t) = s∗1

as desired.
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2.2 Consensus dynamics: stochastic approach

2.2.1 Introduction

We now adopt another point of view to model opinion dynamics. Rather than changing

their opinions gradually according to their neighbors, agents now “jump” their opinion to

one of their neighbors. The weights ai j now encode the probability of agent i switching

its opinion to agent j. This stochastic analogue to the consensus model has received less

attention than its deterministic counterpart studied above. Many of the same phenomena

found in the deterministic case have analogues in this case, however a contrast in convergence

rates can be observed. In the context of opinion formation, jumping models the assumption

that people rarely take into account the opinions of all of those they interact with when

deciding how to change their opinion and instead appeal to someone they view as an

authority. If we interpret the weights as encoding the influence one agent has over another,

we can interpret the model as saying that one usually adopts the opinion of the individual

who exerts the most influence over them. However this shouldn’t always be the case as

individuals will occasionally “rebel” against their prevailing local influence. Mathematically,

we will use a Poisson process of rate ai j to model this event; opinion S i “jumps” to opinion

S j at rate ai j.

(S i, S j)
rate ai j
 (S j, S j). (2.20)

The dynamics are now a continuous time Markov chain instead of a system of differential

equations. We begin by formally defining the dynamics in terms of the stochastic process S i

that describes the evolution of the opinion of agent i.

Definition 7 Consider N agents with opinion S i(t) ∈ R, t ≥ 0. Let (ai j)i j be the entries

of the adjacency matrix of the graph G on which the agents interact. For each tuple (i, j)
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with i , j, we associate an independent Poisson process N i j(t) with rate ai j. The stochastic

consensus model (SCM) is defined as:

dS i =

N∑
j=1, j,i

(S j − S i) dN i j. (2.21)

Again, for the sake of clarity of presentation we restrict opinions to being one dimensional

and we note that the stochastic consensus model can be easily extended for opinions in Rn

and that all results discussed will still hold with analogous proofs. Notice that one can write

the Poisson process as N i j(t) = N(ai j · t) where N(t) is a Poisson process of rate 1. Each

time a Poisson process N i j increases by one unit, the opinion of agent i, S i, “jumps” to S j.

We illustrate these dynamics in Figure 5 on a graph with only three nodes and two links.

deterministic 

stochastic jump

initial condition

Figure 5: Illustration of the deterministic and stochastic dynamics. The node 3 receives
influence from both node 1 and node 2. In the deterministic dynamics (2.1), the opinion
of s3 will become a weighted average of opinion s1 and s2. However, in the stochastic
dynamics (2.21), the opinion S 3 will continue switching between opinions S 1 and S 2.

The stochastic consensus model can also be written in terms of its generator. For any

pair (i, j), denote by Φi j the function:

Φi j(s1, . . . , si, . . . , s j, . . . , sN) = (s1, . . . , s j, . . . , s j, . . . , sN). (2.22)

Let S = (S 1, . . . , S N). For any smooth test function ϕ : RN → R, we have:

dE[ϕ(S)] =
∑

1≤i, j≤N, j,i

ai jE[ϕ(Φi j(S)) − ϕ(S)] dt. (2.23)
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The stochastic model can also be more simply described through its associated embedded

Markov chain. Instead of describing the continuous evolution of each opinion S i(t), we only

record the evolution of each jump:

S n
i = S i(Tn)

where Tn is the time of the nth jump. Notice that Tn+1 −Tn is an exponential random variable

with frequency σ - the rate of any jump occurring:

σ =

N∑
i=1

σi =

N∑
i=1

N∑
j=1, j,i

ai j, (2.24)

by the superposition property of independent Poisson processes. The evolution of (S n
i )1≤i≤N

is then given by a discrete Markov process described by the transition probability matrix:

pi j = P
(
(S n

i , S
n
j) (S n+1

j , S n+1
j )

)
=

ai j

σ
, (2.25)

where ai j is the rate of agent i switching to the opinion of agent j and σ given by (2.24).

The generator of this Markov chain can be described as:

E[ϕ(Sn+1)] = E[ϕ(Sn)] +
∑

1≤i, j≤N, j,i

pi jE[ϕ(Φi j(Sn)) − ϕ(Sn)]. (2.26)

Remark 5 The stochastic consensus model can be approximated and simulated by Algorithm

1 with discrete timestep ∆t. Let T be the duration of the simulation and t be the current time.

We will now investigate the long-time behavior of these dynamics and analyze how the

structure of the graph G affects the convergence.

Remark 6 Taking the expectation of the stochastic dynamics (2.21), we recover the deter-

ministic model (2.1). Indeed, denote

s̄i = E[S i(t)], (2.27)
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Algorithm 1 Consensus model (stochastic)
1: procedure Stochastic consensus
2: while t ≤ T do
3: for i ∈ {1, . . . ,N} do
4: if Unif(0, 1) < 1 − e−σi∆t then
5: Pick an agent j according to Prob{Picking agent j } =

ai j

σi

6: Set S i(t) = S j(t − 1)
7: end if
8: end for

t = t + ∆t
9: end while

10: end procedure

using that E[N i j(t)] = ai j · t [101] and that dN i j(t) is independent of S i(t) and S j(t), we

deduce:

ds̄i =

N∑
j=1, j,i

(s̄ j − s̄i)ai j dt (2.28)

which corresponds to the deterministic dynamics (2.1). Thus, we can deduce the behavior

of the deterministic model from the stochastic model using a simple Monte-Carlo method.

Conversely, the deterministic model gives information about the average behavior of the

stochastic model. We also notice that in the case that all agents are connected (ai j = 1 for

all i, j), we recover a special case of the so-called “choose-the-leader” dynamics [26, 25].

2.2.2 Convergence (in probability)

Analogous to our discussion of the deterministic consensus model, we are going to

prove that the stochastic model converges to a consensus unconditionally if the graph, G,

has only one isolated strongly connected component. However, the convergence will be

much slower than the deterministic model. The key tool is to use the notions of absorbing

states and absorbing Markov chains.
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Definition 8 (Absorbing states and absorbing Markov chain) Let Sn be a Markov chain

on a state space C. A state S ∈ C is called absorbing if pS,S = 1 – that is, the probability of

staying in S given that the chain has arrived in S is 1. The Markov chain Sn is called an

absorbing Markov chain if for any starting state S0 ∈ C, the chain can reach an absorbing

state in finitely many transitions with positive probability. A Markov chain is absorbed if it

reaches an absorbing state.

For instance, in our case, 1 = (1, 1, .., 1)T is an absorbing state. We can find sufficient

conditions on the network G for the embedded Markov chain Sn of the stochastic consensus

model to be absorbing.

Theorem 3 Assume that the adjacency matrix L = (ai j)i j has only one isolated strongly con-

nected component. Then the stochastic consensus model (SCM) converges with probability

1 to a consensus.

Proof

We are going to show the convergence of the embedded Markov chain {Sn}n from which we

can easily deduce the convergence of the continuous process {S(t)}t≥0.

Notice first that for a given initial condition S0, the embedded Markov chain Sn evolves

in a finite space C of size NN . Indeed, each component Sn
i has to be one of the initial opinion

components
(
S0

i

)
1≤i≤N

. Thus, if we can show that {Sn}n is an absorbing Markov chain, then

Sn will be absorbed with probability 1 [Theorem 11.3, [54]].

Consider now any opinion S 0
i in the isolated strongly connected component of the

graph. By assumption on the adjacency matrix L, there exists for any j a path joining i to j

(2.6). Thus, there is a strictly positive probability (i.e. pi,q2 . . . pqk−1, j where q2, . . . , qk−1 path

joining i to j) such that S k
j = S k

i = S 0
i after k steps. Iterating the argument for all j, we find

a non-zero probability that S n
j = S 0

i for all j with n finite (with a rough upper-bound of NN).

Thus, we conclude that {Sn}n is an absorbing Markov chain.
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Remark 7 From Theorem 3, we can deduce a simple proof for corollary 2 concerning the

convergence of the deterministic model. Indeed, for any ε > 0 and initial condition S0, there

exists a time T such that for any t ≥ T we have P
(
S(t) is a consensus

)
≥ 1 − ε. Taking

the expectation of the stochastic process, S(t) = E[S(t)], we deduce that S(t) converges to

the expected consensus. However notice that in using this argument we lose the rate of

convergence as we did not analyze the eigenvalues of the dynamics.

2.2.3 Decay rate for undirected graphs

Theorem 3 gives a necessary and sufficient condition for the unconditional convergence

to consensus of the stochastic model. However, we do not have any information about

the rate of convergence of the process. In the deterministic case, we have seen that the

convergence is exponential with a rate given in terms of the second largest eigenvalue of the

matrix L, λ2. We would like to investigate if one could obtain a similar explicit convergence

rate for the stochastic model. With this aim, we are going to investigate the empirical

variance of the process:

V(S (t)) =
1
N

N∑
i=1

|S i(t) − S̄ (t)|2 =
1

2N2

∑
1≤i, j≤N

|S i(t) − S j(t)|2, (2.29)

where S̄ (t) is the empirical mean:

S (t) =
1
N

N∑
i=1

S i(t). (2.30)

We will need to assume that the interactions are symmetric, i.e. that L is symmetric.

Lemma 4 Suppose that the adjacency matrix L is symmetric, then the empirical variance

V(S) (2.29) decays according to

d
dt
E[V(S)] = −

1
N2E[

∑
1≤i, j≤N

ai j|S j − S i|
2]. (2.31)
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Proof

Using the generator of the stochastic process (2.23), we find:

d
dt
E[V(S)] =

∑
1≤i, j≤N

ai jE[V(Φi j(S)) − V(S)].

Moreover, notice the following equality:

V(Φi j(s)) = V(s) +
2

2N2

N∑
k=1

(
|S k − S j|

2 − |S k − S i|
2
)
−

2
2N2 |S j − S i|

2.

Indeed, when i jumps to opinion j (i.e. Φi j(S)), all the ’(i, k)’ index become ’( j, k)’ but the

difference between opinion i and j is zero. We then deduce:

V(Φi j(S)) + V(Φ ji(S)) = 2V(S) −
4

2N2 |S j − S i|
2.

Furthermore, exploiting the symmetry ai j = a ji we get that

ai jV(Φi j(S)) + a jiV(Φ ji(S)) = (ai j + a ji)
[
V(S) −

2
2N2 |S j − S i|

2
]
.

Thus

d
dt
E[V(S)] =

∑
1≤i, j≤N

E[ai j(V(Φi j(S)) − V(S))]

= E
[∑

i< j

(
ai jV(Φi j(S)) + a jiV(Φ ji(S)) − (ai j + a ji)V(S)

)]
= −

1
N2E

[∑
i< j

(ai j + a ji)|S j − S i|
2
]

= −
1

N2E
[ ∑

1≤i, j≤N

ai j|S j − S i|
2
]

We can now deduce a lower bound for the previous equality (2.31) in terms of λ2, the

second smallest eigenvalue of the Laplacian matrix and the algebraic connectivity of the

graph G.

Lemma 5 Suppose that the Laplacian matrix L of the network G is symmetric and let λ2 be

its second smallest eigenvalue. Then:∑
1≤i, j≤N

ai j|s j − si|
2 ≥ 2λ2N · V(S). (2.32)

with V(S) the variance (2.29).
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Proof

From the above, we note that

〈LS,S〉 =

N∑
i=1

( N∑
j=1

ai j(S i − S j)
)
S i =

∑
i, j

ai j(S i − S j)S i

=
∑

j,i

a ji(S j − S i)S j =
∑

j,i

ai j(S j − S i)S j

where we use the symmetry of L. Therefore we can write

〈LS,S〉 =
1
2

(∑
i, j

ai j(S j − S i)S j +
∑

i, j

ai, j(S j − S i)S i

)
=

1
2

∑
i, j

ai j(S i − S j)(S i − S j) =
1
2

∑
i, j

ai j|S i − S j|
2.

Notice also that the empirical variance can be written in two ways:

1
2N2

∑
i, j

|S i − S j|
2 =

1
N

∑
i

|S i − S |2 =
1
N
‖S − S 1‖2,

where S is the average opinion (2.30). Since L1 = 0, we also deduce:

〈L(S − S 1),S − S 1〉 = 〈LS,S〉.

Decomposing the symmetric matrix L as L = PDPT with D = diag(0, λ2, . . . , λN), we

deduce:

〈LS,S〉 = 〈L(S − S),S − S〉

= 〈DPT (S − S), PT (S − S)〉 = 〈Dw,w〉

with w = PT (s − s). Thus,

〈LS,S〉 =

N∑
i=1

λi|wi|
2 =

N∑
i=2

λi|wi|
2 ≥ λ2

N∑
i=2

|wi|
2.

Notice that the first component w1 has to be zero as the first row of PT is α1 for some α ∈ R.

λ2

N∑
i=2

|wi|
2 = λ2

N∑
i=1

|wi|
2 = λ2‖w‖2.
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Since the matrix P preserves the norm, we have:

〈LS,S〉 ≥ λ2‖w‖2 = λ2‖S − S 1‖2 = λ2N · V(S).

Thus ∑
i, j

ai j|S j − S i|
2 = 2〈LS,S〉 ≥ 2λ2NV(S).

Using these tools we can now characterize the convergence rate of the stochastic consensus

model on a symmetric network.

Theorem 4 Assume L is symmetric and connected. Denote λ2 its second eigenvalue. Then

E[V(S(t))] ≤ e
−λ2t

N E[V(S(0))].

Proof

From the previous lemmas we observe that

d
dt
E[V(S(t))] = −

1
2N2E

 ∑
1≤i, j≤N

ai j|S j − S i|
2

 ≤ −λ2

N
E[V(S(0))].

Applying Gronwall’s lemma gives the result.

Remark 8 Thus we see that the expected value of the variance of the opinions decays at rate

λ2
N ; the dependence on the number of agents N is naturally contrasted with the deterministic

case where the decay rate is only λ2, in other words, the deterministic dynamics converge

much faster than the stochastic dynamics.

Recall that in the deterministic case studied earlier we found that in the case of a balanced

graph that the consensus converged to is the initial average of opinions. We can make a

related observation concerning the stochastic model by exploiting the fact that the average,

S̄ , is a martingale. The following corollary also gives a succinct proof of the convergence of

the stochastic dynamics in this case.
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Corollary 3 Suppose G is a balanced directed graph (2.10) and strongly connected. Then

with probability 1, the dynamics S (t) converge to a consensus opinion S ∗ at time T < ∞

and the consensus satisfies E[S ∗] = 1
N

∑N
1 S (0).

Proof

Let S̄ (t) = 1
N

∑N
i=1 S i(t) the average. Using eq. (2.23), we deduce:

dE[S̄ (t)] =
∑

1≤i, j≤N

ai jE[Φi j(S̄ (t)) − S̄ (t)] =
∑

1≤i, j≤N

ai j

N
E[S j(t) − S i(t)] = 0

since the graph is balanced (see remark 2). Therefore S̄ (t) is a martingale. Moreover, S̄ (t) is

bounded with at most N2 states (finite) and therefore there exists a stopping time T that is

finite with probability 1 such that S̄ (t)→ S̄ ∗ almost surely. Then, by the Optional Stopping

Theorem,

E[S ∗] = E[S̄ (T )] = E[S̄ (0)] = S̄ (0).

Since the graph G is also strongly connected, we know by Theorem 3 that S ∗ must be a

consensus.

2.3 Consensus dynamics: Numerical simulations

We will now present some numerical experiments to further analyze more subtle features

of both of the consensus models studied. We first examine explicitly how the algebraic

connectivity of the interaction network affects the speed of convergence in the case of a

symmetric L - recall that in both the deterministic and stochastic case that we were able

to bound the speed of convergence in terms of the algebraic connectivity. Then, we focus

on the case where there are multiple isolated blocks as we have shown in this case that a

consensus does not form unconditionally. We are interested in how the opinions of isolated
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blocks affect the distribution of opinions in absorbing components. To this end we will

examine the case of a “battle” between two isolated blocks with opinions at the extreme

ends of the possible spectrum of opinions. Each of these isolated blocks will have the same

number of connections to a central absorbing component whose internal connections are all

symmetric.

2.3.1 Algebraic connectivity and speed of convergence

Earlier in the discussion of the deterministic model we showed that we could characterize

the convergence rate of the model in terms of λ2, the eigenvalue of L with the second smallest

real part. In the case that L was symmetric (an undirected network) we could say even

more - that the rate of convergence of the dynamics was at least of of order O(e−λ2t). The

second eigenvalue λ2 is known as the algebraic connectivity of the graph G, it measures in

a sense how well the graph is connected. In this interpretation, since λ2 bounds the speed of

convergence, the dynamics converge faster if the graph is better connected. We illustrate

with several examples. We give two examples of graphs with the same number of vertices

(|V | = 20) but different adjacency matrices. In Fig. 6–left, we present a graph where each

vertex is connected with its 4 neighbors. In Fig. 6-right, the graph is composed of two

sub-graphs connected by only one link resulting in a weak connectivity. Indeed, computing

the algebraic connectivity λ2, we observe that the graph on the left has a higher value even

though it has fewer edges.

To illustrate how this affects the speed of convergence, we perform two simulations of

the dynamics starting from the same initial configuration but using the two graphs presented

in figure 6. The results are given in Fig. 7. We observe that the right figure converges

quickly to two “clusters” but then these clusters are very slow to move together. This is due
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to the weak connectivity of the graph. In Fig. 8, we estimate the variance (denoted V(t) in

the stochastic dynamics) of the opinions over time :

V(t) =
1

2N2

∑
1≤i, j≤N

|s j(t) − si(t)|2. (2.33)

The variances are decaying to zero (indicating that a consensus is forming). As expected,

the variance is decaying faster for the graph with the larger λ2 (left-figure). We also include

the evolution of the stochastic dynamics on the graph in Fig. 6–right, from the same initial

condition, in Fig. 8–left. Notice that in Fig. 8–right that the variance of the stochastic

dynamics is the slowest to decay - this is an illustration of how the stochastic dynamics slow

down the speed of convergence.

Figure 6: Examples of values of λ2 for two graphs. Notice that even though the right graph
has more edges, its algebraic connectivity λ2 is lower.

2.3.2 Outside of consensus - multiple isolated blocks

Here we examine numerically the effects of more than one isolated block on the long-

term behavior of both models. We set up the initial opinions so that each isolated block

is at each extreme of the possible spectrum of opinions and that opinions in the central

component are randomly distributed uniformly among the possible opinions.
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Figure 7: Evolution of opinions si(t) over time for the two graphs of Fig. 6. The dash line
indicates a decay with rate λ2 (worst-case scenario).
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Figure 8: Left: Evolution of opinions S i(t) for the stochastic dynamics on the graph with
λ2 ≈ .13. After t = 5, the opinions S i(t) are jumping back and force between two values.
They will eventually converge to a single value due to Theorem 3. Right: Evolution of the
variance of opinions V[S i] for the three illustrations (i.e. Fig. 7 and Fig. 8-left). The decay
is faster when λ2 is larger. Moreover, we estimate the average decay of the variance for the
stochastic dynamics E[V] (using 10,000 realization) plotted in red.

After running a simulation of the dynamics we find that the middle component now

exhibits a “gradient” of the possible opinions. Nodes close to the blue isolated block in

the sense of graph distance exhibit an opinion close to that of the isolated block, likewise

for nodes near the red isolated block. Nodes in the middle of the component exhibit an

opinion close to neutral. This shows that in the case of multiple isolated blocks that the
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a) Initial condition

b) Deterministic model (t=100)

c) Stochastic model (t=100)

Figure 9: a) Initial state of the network in the battle scenario. b) The final state of the
network in the battle scenario for the deterministic model. Nodes close to isolated blocks
exhibit an opinion close to that of the isolated block. c) The state of the network at t = 100
for the stochastic model.

graph distance of a node in an absorbing component from isolated blocks plays a role in

determining the final opinion of that node.

We now examine the analogous situation for the stochastic model using the same initial

condition. We have already seen in the theory of the model that the agents in the central

component cannot converge to a limiting opinion distribution as there are multiple isolated
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d) average of 10 realizations - stochastic model

Figure 10: d) The average of 10 realizations of the stochastic model at t = 100. Notice that
analogous to the deterministic case, that nodes close to an isolated block have an average
opinion close to the opinion of the isolated block.

blocks in the network. However, to get an idea of how the network evolves in the stochastic

case we show the state at t = 100.

Notice that similar to the deterministic case that it appears that nodes closer to an isolated

block in the graph sense are likely to have the same opinion as that isolated block. However,

this could very well be an artifact of the realization shown. To see that this phenomenon does

indeed occur in the stochastic case we recall that we have shown that while the dynamics do

not converge in this case, they are the same as the deterministic dynamics in expected value.

If we take the mean of 10 realizations at t = 100 we recover a gradient of opinions in

the central component similar to what we found in the deterministic case. This indicates

that indeed if a node is closer to an isolated block in the graph sense then it is more likely

to have the opinion of that isolated block and serves to illustrate that the dynamics of the

stochastic model coincide with the deterministic model in expected value.
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Chapter 3

BOUNDED CONFIDENCE DYNAMICS AND GRAPH CONTROL: ENFORCING

CONSENSUS

This chapter closely follows [73]. A generic feature of bounded confidence type models

is the formation of clusters of agents. In this chapter we propose and study a variant

of bounded confidence dynamics with the goal of inducing unconditional convergence

to a consensus. The defining feature of these dynamics which we name the No one left

behind dynamics is the introduction of a local control on the agents which preserves the

connectivity of the interaction network. We rigorously demonstrate that these dynamics

result in unconditional convergence to a consensus. The qualitative nature of our argument

prevents us quantifying how fast a consensus emerges, however we present numerical

evidence that sharp convergence rates would be challenging to obtain for such dynamics.

Finally, we propose a relaxed version of the control. The dynamics that result maintain many

of the qualitative features of the bounded confidence dynamics yet ultimately still converges

to a consensus as the control still maintains connectivity of the interaction network.

3.1 Bounded confidence opinion dynamics

We will consider a collection of N agents where the opinion of the ith agent is denoted

by xi ∈ R
d. We will be concerned with a class of opinion dynamics that take the form:

ẋi =

N∑
j=1

ai j(x j − xi), ai j =
Φi j∑N

k=1 Φik
with Φi j = Φ(

∣∣∣x j − xi

∣∣∣). (3.1)

Here, Φ represents the so-called interaction function and can be thought of as encoding

how much influence one agent exerts over another, i.e. if ai j , 0 then agent j is influencing

45



agent i with strength ai j. The coefficients ai j can be thought of as encoding the structure of a

directed network on which the agents interact. As the ai j’s are time dependent, the structure

of the network changes in time as well. We will refer to this network as the interaction

network and denote it by G = (V, E) where V is the set of agents. Throughout the following

we will assume that the interaction function has compact support on the interval [0, 1], that

it is positive on its support and has a minimum and maximum on this interval:

m = min
r∈[0,1]

Φ(r) , M = max
r∈[0,1]

Φ(r). (3.2)

This assumption encodes that individuals will only interact and share ideas if their opinions

are close enough to begin with. Notice that these conditions on the interaction function

allow for a discontinuity at x = 1 from above in general; a prototypical example would be

the indicator function on the interval [0, 1], i.e. Φ(r) = 1[0,1](r).

This model represents a continuous version of the bounded confidence opinion dynamics

introduced in [57]. Notice that in general ai j , a ji and thus the dynamics are not symmetric

(the center of mass is not preserved). However, if ai j > 0 then we must also have a ji > 0, in

other words if j influences i then i must influence j.

Remark 9 Notice that since the interaction coefficients ai j satisfy
∑N

j=1 ai j = 1 we can

rewrite the dynamics (3.1) as:

ẋi = xi − xi, xi =

N∑
j=1

ai jx j, (3.3)

so xi moves towards xi; the average opinion of all agents within the interaction radius of
agent i weighted by their influence on agent i (see figure 11).

In this work we will be concerned with conditions that cause the opinions of all agents to

converge to a consensus. We will see that due to the local consensus assumption, the notion

of connectivity is crucial to the formation of a consensus.
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Figure 11: The movement of an agent according to the bounded confidence dynamics (3.3).

Definition 9 We say that the configuration of agents { x1, ..., xN } is connected if for any two

agents i and j there exists a path between i and j; that is a subset { i1, ..., im } ⊆ { 1, ...,N }

such that i1 = i, im = j and:

aik ,ik+1 , 0 for all k.

Clearly, connectedness of the initial configuration is a necessary condition for the

emergence of a consensus. Due to the local consensus assumption, two agents who initially

do not have a path between them will never become connected and therefore will not

converge on the same opinion. However, connectedness of the initial condition is not

sufficient for the emergence of a consensus as the dynamics do not necessarily preserve

connectedness between two agents (see for instance figure 13-left); the dynamics (3.1) must

be modified in some manner for connectedness of the initial condition to be sufficient for

consensus.

3.2 No one left behind - enforcing consensus

3.2.1 Critical region

We now modify the dynamics (3.1) with the aim of preserving connectivity between

agents. We will distinguish between the 1-dimensional and d-dimensional cases. The

47



intuitive idea is to introduce a control on the bounded confidence dynamics that causes an

agent to alter its trajectory if it is close to disconnecting with a neighbor. With this aim in

mind we introduce the notion of a critical region associated with each agent (see also an

illustration in figure 12).

Definition 10 Fix 0 ≤ r∗ ≤ 1 and let { x1, ..., xN } ⊆ R
d be a configuration of agents. The

critical region associated with agent i is given by:

Bi = {x ∈ Rd | 1 − r∗ ≤ |x − xi| ≤ 1 and 〈xi − xi, x − xi〉 ≤ 0}. (3.4)

where xi is given by (3.3).

Figure 12: Illustration of the critical regions (3.4) in R (interval behind xi) and R2 (semi-
annulus region). The opinion xi is attracted toward the local average xi, hence moves with
velocity xi − xi. In the “No-left behind dynamics” (1), xi can only move only if there is no
one in its critical region Bi. Thus, xi freezes whereas x j is free to move in the left illustration.

3.2.2 No one left behind dynamics in R

Notice that the critical region of any agent depends on the local average that the agent

will move its opinion towards, (3.3); the critical region of an agent is always “behind” the

agent in the sense that it is always in the opposite direction of the direction of movement of
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the agent. The critical region is the main tool used to enforce connectivity preservation in

the bounded confidence dynamics (3.1). We first illustrate the main idea in one dimension.

Model 1 (1D NOLB) Consider a collection of agents with opinions { x1, ..., xN } in R. The

1-D No one left behind dynamics are given by:

ẋi = µi

(
xi − xi

)
, µi =


0 if there exists x j ∈ Bi

1 otherwise
(3.5)

where xi is the local average defined in (3.3).

The scalar µi can be interpreted as a local control on the opinion of the ith agent.

Under the dynamics given by Model 1 an agent evolves according to the normal bounded

confidence model (3.1) unless there is another agent in its critical region in which case it

does not move. In other words if the normal bounded confidence dynamics will cause an

agent’s opinion to change in such a way that it will become disconnected from one of its

neighbors then it will stop moving and not leave its neighbor behind.

Remark 10 In addition to the network defined by the interactions among agents, the critical

region allows one to impose an additional network structure on the collection of agents;

there exists a link from agent i to agent j if agent j is in the critical region of agent i. We

will refer to this network as the behind graph and denote it by GB = (V, EB) where V is the

set of agents { 1 . . .N } and EB is the set of edges:

(i, j) ∈ EB if j ∈ Bi. (3.6)

In this notation we could write (1) as:

ẋi = µi

(
xi − xi

)
, µi =


0 if (i, j) ∈ EB

1 otherwise
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Figure 13: Simulation of the opinion dynamics without and with control (resp. top and
bottom figure), e.g. solving resp. (3.3) and Model1 with r∗ = 1

2 . With the control (right), the
dynamics converge to a consensus.

Note that while the nature of bounded confidence dynamics forces the interaction

network to be undirected, the behind graph must be directed as the presence of agent j

in the behind region of agent i does not imply the opposite. Note also that if one denotes

G = (V, E) as the interaction graph (i.e. (i, j) ∈ E if ai j, a ji > 0), then the behind graph EB is

a directed subgraph of E - see Figure 14.
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Figure 14: A configuration of agents (top) and the resulting interaction graph (edge set E,
black) and behind graph (edge set EB), light blue). Note that the behind graph is a directed
subgraph of the interaction graph.

We examine the effect that the augmented dynamics have on the long time behavior of

the opinions in Figure 13 and note that for the same initial condition that normal bounded

confidence dynamics do not result in a consensus but four “clusters” of opinions whereas

the controlled dynamics preserve the connectivity of the agents and result in a consensus.

Interestingly, we find that the dynamics introduced in Model (1) are not sufficient to ensure

consensus in dimensions larger than one.

3.2.3 No one left behind dynamics in Rd

Given that the dynamics defined in Model (1) are sufficient for convergence to a consen-

sus for a connected initial configuration in one dimension (see Remark 12 and Theorem 2),

one might expect that they should be sufficient for consensus in the d - dimensional case as

well. Interestingly, this is not the case as the following example illustrates.

Example 1 We illustrate that the dynamics introduced in Model (1) do not ensure consensus

in dimension 2 - this example can clearly be generalized to larger dimensions. Consider

6 clusters of opinions located on a regular hexagon with equal sides of length d = 1 − r∗
2

with r∗ � 1. We denote the vertices of this regular hexagon as xi with i = 1, . . . , 6, and the
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number of opinions in the cluster xi as N(xi). Consider for instance, we have the following

distribution of agents (see fig. 15):

N(x1) = N(x6) = 1, N(x2) = N(x5) = 10, N(x3) = N(x4) = 100.

In this setting, all the agents have another agent in their critical region. Thus, if one uses the

same dynamics as in the one dimensional setting (1), we find µi = 0 for all i and therefore

the agents are stuck in this initial configuration. Thus, the “naive” control fails to achieve

consensus.

Figure 15: Counter-example in multi-dimension. Blue arrow is the velocity of each cluster.
In this setting, every agent has someone in its critical region Bi. Thus, the naive control in
Model 1 would prevent anyone from moving.

Clearly, in the d-dimensional case, the condition that an agent may not move if another

agent is in its critical region must be weakened in order to achieve a consensus. However,

we still want to maintain the property that an agent may not move away (and possibly

disconnect) from agents in its critical region as we know that connectivity is necessary for

consensus. With this in mind we introduce the notion of admissible velocity.

Definition 11 Let { x1, ..., xN } ⊆ R
d be a configuration of agents. The cone of admissible

velocity associated with agent i is given by:

Ci = {v ∈ Rd | 〈v, x j − xi〉 ≥ 0 for all x j ∈ Bi}. (3.7)

where Bi is the critical region (3.4) associated to agent i. If the critical region Bi is empty,

then Ci = Rd.
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Remark 11 We note that we can define the cone of admissible velocities in terms of the

behind graph introduced in Remark 10. We just have to replace x j ∈ Bi by (i, j) ∈ EB in the

definition of Ci.

Figure 16: The velocity of agent i is the projection of the desired velocity xi − xi onto the
cone of admissible velocity Ci.

We can now weaken the dynamics introduced in Model 1 by merely enforcing that the

velocity of an agent belong to its cone of admissible velocity via a projection operator [60].

Intuitively, instead of forcing an agent to stop whenever its critical region is nonempty it

can “take care” of agents in its critical region by moving closer to those agents and its local

average (if possible).

Model 2 (NOLB) Let { x1, ..., xN } ⊆ R
d be a configuration of agents. The no one left

behind (NOLB) dynamics are given by:

x′i = PCi

(
xi − xi

)
(3.8)

where xi is the average velocity defined in (3.3) and PCi : Rd → Ci is the projection operator

associated to the cone of admissible velocities Ci (3.7).

Remark 12 We note that the 1-D NOLB dynamics introduced in (1) are a special case of

the general NOLB dynamics introduced in Model 2. Indeed, in one dimension the cone of

admissible velocity is given by

Ci = {v ∈ R | (v, x j − xi) ≥ 0 ∀x j ∈ Bi}.
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Now, if Bi is empty then we must have that Ci = R and therefore the projection operator PCi

must be the identity, i.e

x′i = PCi

(
xi − xi

)
= xi − xi.

On the other hand, if there exists x j ∈ Bi (and assuming without loss of generality that

xi ≥ xi) we must have that x j ≤ xi which implies that:

Ci = { v ∈ R | v ≤ 0 } .

Since xi − xi ≥ 0 we therefore must have that

x′i = PCi

(
xi − xi

)
= 0.

We illustrate the dynamics (3.8) and its long term behavior in Figure 17. As in the

1D case, a consensus is reached after some time whereas the classical dynamics generate

multiple clusters.

We now rigorously show that augmenting the bounded confidence dynamics in this

manner is sufficient to ensure consensus in the case that the initial configuration of the

agents is connected.

3.3 No one left behind: Convergence to a consensus

3.3.1 Preservation of connectivity

A unifying feature of the classical bounded confidence dynamics and the NOLB dy-

namics is that due to the local consensus assumption they both result in a configuration of

agents { xi(t) } contracting in space. More specifically let us denote the convex hull of a
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"Classical" dynamics

"No one left behind" dynamics

Figure 17: 2D simulation of opinion dynamics without and with control (resp, top and
bottom figure), e.g. solving resp. (1) and (3.8) with r∗ = 1

2 . With the control (bottom), the
dynamics converge to a consensus.

configuration { xi(t) } by Ω(t), i.e.

Ω(t) = Conv{x1(t), ..., xN(t)}.

The agents contract in the following sense (see [63] for a proof).

Proposition 5 If { xi }i evolves according to the bounded confidence dynamics or the NOLB

dynamics then the convex hull Ω satisfies:

Ω(t1) ⊂ Ω(t0) for any t1 ≥ t0 (3.9)

The contractive nature of the dynamics implies that for at least a subsequence of times the

configuration approaches a limiting configuration thanks to Bolzano-Weierstrass theorem.

Corollary 4 There exists a limiting configuration { x∞i }i and a sequence of times (tn)n such

that tn → ∞ and xi(tn)→ x∞i as n→ ∞.
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Another consequence is that the so-called diameter of the configuration d(t) is decaying.

Corollary 5 Denote the diameter d(t) = max1≤i, j≤N |xi(t) − x j(t)|. The diameter is non-

increasing:

d(t2) ≤ d(t1) for any t2 ≥ t1.

So in both the bounded confidence model and the NOLB model, agents remain close to

each other in the sense of Proposition 5. However, we have already seen that the bounded

confidence dynamics do not converge to a consensus from a connected initial condition;

contractiveness alone is not sufficient for consensus.

The fundamental property of the NOLB dynamics (3.8) that distinguish them from the

classical bounded confidence dynamics is that they rule out the possibility of agents who are

connected later becoming disconnected as illustrated in Figures 13 and 17. The mechanism

through which the local control accomplishes this can be seen in the following result.

Proposition 6 Fix 0 ≤ r∗ ≤ 1. Suppose that at time t the opinions of agents i and j evolve

according to (3.8) and satisfy: 1 − r∗ ≤ |xi(t) − x j(t)| ≤ 1 (i.e. agent i and agent j are within

the critical distance of each other), then:

d
dt
|xi(t) − x j(t)| ≤ 0. (3.10)

Proof

As agent i and agent j are within the critical distance of each other we can assume that either

agent i is in the critical region of agent j or vice versa, otherwise we would be finished.

Without loss of generality assume that agent j is in the critical region of agent i. First notice

that:
d
dt
|xi − x j|

2 = −2〈(PCi(xi − xi), x j − xi)〉 − 2〈(PC j(x j − x j), xi − x j)〉.

Denote vi = PCi(x̄i − xi). Since j is in the critical region of agent i by assumption, it must

satisfy 〈vi, x j − xi〉 ≥ 0, therefore 〈PCi(x̄i − xi), x j − xi〉 ≥ 0. We can prove similarly that
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〈PC j(x̄ j − x j), xi − x j〉 ≥ 0 and therefore,

d
dt
|xi − x j|

2 ≤ 0.

The critical region acts as a “trap”. If the distance between two particles is less than or equal

to 1 but starts to increase they will eventually be within the critical distance of each other

and their distance cannot increase any longer.

Corollary 6 Suppose |xi(t0) − x j(t0)| ≤ 1. Then

|xi(t) − x j(t)| ≤ 1 for all t ≥ t0.

Proof

Suppose for the sake of contradiction that there exists T > t0 such that |xi(T ) − x j(T )| > 1.

Since the dynamics are continuous there must exist an exit time t1 satisfying |xi(t1) −

x j(t1)| = 1 and |xi(t) − x j(t)| < 1 for t < t1. Thus there must exist some δ > 0 such that

1 − r ≤ |xi(t) − x j(t)| ≤ 1 for t1 − δ < t < t1. Therefore, by Proposition 6 |xi(t) − x j(t)| is

decaying on this time interval, a contradiction as |xi(t1) − x j(t1)| = 1.

So, adding the control indeed prevents situations like the ones presented in Figures 13 and

17 and preserves connectivity.

Corollary 7 The dynamics (3.8) preserve connectivity, i.e. if the configuration {xi(t0)}i is

connected, then {xi(t)}i will be connected for any t ≥ t0.

We will now examine how the preservation of connectivity enforced by (3.8) leads to a

consensus.
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3.3.2 Emergence of a consensus

We will now see that under the NOLB dynamics defined in (3.8), connectedness of the

initial condition is sufficient for convergence to a consensus. In fact, this demonstrates

that connectedness of the initial condition is equivalent to emergence of a consensus as we

have previously noted that it is at least necessary. We will examine the convergence in two

cases. In the general multidimensional case we are prevented from employing traditional

ODE methods due to the discontinuous nature of the flow of the NOLB dynamics. We

find that the interplay between the contractive nature of the dynamics and the preservation

of connectivity allows us to circumvent this difficulty and deduce that a connected initial

configuration is sufficient for convergence to a consensus. However we aren’t able to say

anything in general about the rate at which the dynamics converge to a consensus. In the one

dimensional case this information is available and we derive explicit rates of convergence.

3.3.2.1 Multi Dimensional Case

We first examine the general multi dimensional case. Before proceeding to the main

results we note that in the special case that r∗ = 1 that connectivity of the initial condition

is not sufficient for convergence to a consensus; the large value of r∗ prevents some agents

who are connected from exerting influence over each other.

Example 2 For simplicity we examine the one dimensional case. Suppose that r∗ = 1 and

consider the initial configuration given by:

x1(0) = 1, x2(0) = 2, x3(0) = 3, x4(0) = 4.

Here, x1 will move towards x2 and x4 will move towards x3. However, since r∗ = 1, x2

and x3 may never move towards each other despite their connection as x1 and x4 will
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always be in their respective critical regions - see Figure 18. Additionally we note that

this example provides an illustration that the NOLB dynamics are not continuous as the

dynamics converge to a state that is not an equilibrium of the dynamics.

Figure 18: Preserving connectivity does not imply the convergence to a consensus. Here,
when r∗ = 1, the extreme points x1 and x4 will converge towards x2 and x3 respectively.
However, x2 and x3 cannot move since x1 and x4 are always in their respective critical
regions.

We will now show that the situation described in Example 2 is indeed a special case.

As long as 0 < r∗ < 1 we will see that the control is sufficient to guarantee consensus

given that the initial configuration is connected. Our main obstacle in this argument is

discontinuities in the flow caused by the definition of the critical region and the discontinuity

in the interaction function, Φ. Since this rules out many of the standard tools in ODE theory,

our argument will rely on the interplay between the contractive nature of the dynamics and

the fact that they preserve connectivity of the configuration of agents. Our strategy to show

that the NOLB dynamics result in a consensus will be to show that the limiting configuration

provided by Corollary 4, x∞, is a consensus. In general this isn’t sufficient to conclude
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that x(t) even converges, much less to a consensus. However, the contractive nature of the

dynamics allows us to say more.

We will proceed by contradiction and show that if x∞ is not a consensus then it is

possible to find a term in the sequence { x(tn) } provided by Corollary 4 that when taken as

initial condition of the dynamics results in points of Ω∞ being outside of the convex hull of

the configuration at a finite time - a contradiction of Proposition 5. We now prove the main

result.

Theorem 5 Assume r∗ < 1 and that { xi(0) }i is connected. Then if { xi(t) }i evolves according

to the NOLB dynamics (3.8) it will converge to a consensus.

Proof

If { xi }i evolves according to the NOLB dynamics then by Corollary 4 (contractiveness) we

know there exists a limiting configuration X∞ = { x∞i }i and a sequence of times (tn)n such

that tn → ∞ and xi(tn)→ x∞i as n→ ∞. Note that since by assumption X(0) is connected

we must have by Corollary 6 (preservation of connectivity) that X∞ is connected as well.

We denote by p and q the extreme points such that:

‖x∞p − x∞q ‖ = max
i j
‖x∞i − x∞j ‖.

Denote N∞p as the set of neighbors of p. The main difficulty in the proof is to handle

neighbors of x∞p at a distance exactly 1. We call them extreme neighbors and denote them

by E∞p :

N∞p = { j | ‖x∞j − x∞p ‖ ≤ 1} (3.11)

E∞p = { j | ‖x∞j − x∞p ‖ = 1}. (3.12)

We are going to investigate 3 cases detailed in figure 19.

• Case 1: no extreme neighbors E∞p = ∅.
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3 cases

case 1:

case 2:

case 3:

Figure 19: The convex hull Ω(tn) has to converge to a limit configuration Ω∞. The dynamics
converge to a consensus if Ω∞ is reduced to a single point which we prove by contradiction.
We distinguish three cases of limit configuration Ω∞ depending if the extreme point x∞p has
a so-called extreme neighbor j, i.e. |x∞p − x∞j | = 1.

If all the neighbors of x∞p are at distance 0, then the dynamics converge to a consensus.

Thus, we need to look at the case where there exists j ∈ N∞p neighbor of p at distance

0 < ‖x∞j − x∞p ‖ < 1 (the distance 1 is excluded in Case 1).

Denote Ω(t) and Ω∞ the convex hull of { xi(t) }i and { x∞i } respectively. Since the

dynamics is contracting (Proposition 5), we must have Ω∞ ⊆ Ω(t) for any t. Take now a

supporting hyperplane that is tangent to Ω∞ at the extreme point x∞p (see figure 20). More

specifically, we parametrize this supporting hyperplane using ϕp : Rd → R affine function

ϕp(x) = 〈up, x〉 + b

where the vector up and constant b are such that ϕp(x∞p ) = 0 and ϕp(x) > 0 for all x in Ω∞

where x , x∞p .

If there exists j such that 0 < ‖x∞p − x∞j ‖ < 1, then the coefficient a∞p j satisfies:

a∞p j =
Φ∞p j∑N

k=1 Φ∞pk

> 0.
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Therefore, the local average x∞p =
∑N

k=1 a∞pkx
∞
j is different from x∞p . Moreover since x∞p ∈ Ω∞,

we deduce ϕp(x∞p ) > 0.

Figure 20: If the limit configuration {x∞k }k is not a consensus, the extreme point xp(tn) will
eventually get inside the convex hull Ω∞ which gives a contradiction.

We will get a contradiction if we can show that the sequence xp(tn) once closed to x∞p

will cross the hyperplane {ϕp = 0}. Thus, we investigate the values of ϕp(xp(tn)). Its time

evolution is given by:

d
dt

[ϕp(xp(tn))] = 〈up, PCp(tn)(xp(tn) − xp(tn))〉. (3.13)

To get rid of the projection operator, we notice that the projection is actually increasing the

scalar product if up is in Cp(tn) thanks to the following lemma (the proof is in appendix).

Lemma 6 Let { xi }i ⊆ R
d and consider C = { v | 〈v, xi〉 ≥ 0 for all i }. If u is in C then:

〈PC(x),u〉 ≥ 〈x,u〉 for all x ∈ Rd. (3.14)

It remains to show that up ∈ Cp(tn). Notice that 〈x−x∞p ,up〉 ≥ 0 for all x in Ω∞ and therefore

up ∈ Cx∞p . Eventually this is true for the approximating sequence xp(tn) as well: up ∈ Cxp∗ (tn)

for tn large enough. Indeed, take any k , p. There are two cases. First case, xk(tn) → x∞p
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and therefore ‖xk(tn) − xp(tn)‖
n→+∞
−→ 0, meaning that xk(tn) will not be in the critical region

of agent p, i.e. k < Bxp(tn) (r∗ < 1). In the second case, xk(tn)→ x∞k , x∞p . Then

〈up, xk(tn) − xp(tn)〉 = 〈up, xk(tn) + x∞k − x∞p + x∞p − x∞k − xp∗(tn)〉

= 〈up, xk(tn) − x∞k 〉 + 〈up, x∞p − xp∗(tn)〉 + 〈up, x∞k − x∞p 〉

≥ −2
∥∥∥up

∥∥∥δn + 〈x∞k − x∞p ,up〉

using Cauchy-Schwarz with δn = max(‖xk(tn) − x∞k ‖, ‖xp(tn) − x∞p ‖). Since δn
n→+∞
−→ 0 and

〈x∞k − x∞p ,up〉 > 0, we conclude that: 〈up, xk(tn) − xp(tn)〉 > 0 for tn large enough, i.e.

up ∈ Cp(tn).

We can now continue our computation (3.13):

d
dt

[ϕp(xp(tn))] = 〈up, PCp(tn)(xp(tn) − xp(tn))〉

≥ 〈up, xp(tn) − xp(tn)〉

= ϕp(xp(tn) − ϕp(xp(tn)) → ϕp(x∞p ) −ϕp(x∞p ) > 0

(3.15)

by continuity of ϕp. Indeed, xp(tn)
n→+∞
−→→ x∞p since Φ has only a discontinuity at distance 1

and the case 1 assumption avoids this possibility for any coefficients apk.

We deduce a contradiction since we have two conflicting properties:

i) ϕp(xp(tn))→ ϕp(x∞p ) = 0 since xp(tn)→ x∞p , (3.16)

ii)
d
dt

[ϕp(xp(tn))] ≥ ϕp(x∞p ) > 0 for large tn. (3.17)

• Case 2: there exists an extreme neighbor (i.e. E∞p , ∅) AND there exists j such

that 0 < ‖x∞j − x∞p ‖ < 1.

In this situation, agent p might connects with a neighbor k only at infinity and thus the

local average xp(tn) might not converge to x∞p as tn → +∞. But thanks to the non-extreme

neighbor j, we are going to have a contradiction as in Case 1.
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The coefficient ap j is lower bounded at infinity since:

lim inf
n→∞

ap j(tn) ≥ lim inf
n→∞

Φ(‖xp(tn) − x j(tn)‖)
N · M

≥
m

N · M
> 0

where m and M are respectively the minimum and maximum of Φ on the interval [0, 1].

This is enough to show that, as in case 1, the derivative d
dt [ϕp(xp(tn))] is bounded below by

a positive constant (for large tn) leading to a contradiction. Indeed,

lim inf
tn→+∞

〈up, xp(tn)〉 = lim inf
tn→+∞

 ∑
k=1..N, k, j

apk〈up, xk(tn)〉 + ap j〈up, x j(tn)〉


≥ 0 +

m
N · M

〈up, x∞j 〉 > 0.

Thus, we conclude that:

lim inf
n→∞

(
ϕp(xp(tn)) −ϕp(xp(tn))

)
≥ c > 0

and we may apply the same argument as in Case 1.

• Case 3: there exists an extreme neighbor (i.e. E∞p , ∅) AND for all j ∈ N∞p ,

‖x∞p − x∞j ‖ = 0 or ‖x∞p − x∞j ‖ = 1.

This is the most delicate case since the neighbors at distance exactly one might appear

only asymptotically (i.e. at “t = ∞”). However, the assumption is also helping: a neighbor j

of p must converge to p as we will see. More precisely, by the assumption of Case 3, any

neighbor j of xp(tn) must satisfy one of the two following scenario:

1. ‖x j(tn) − xp(tn)‖
n→+∞
−→ 0

2. ‖x j(tn) − xp(tn)‖ = 1 for all n

Indeed, if there exists a time tn such that ‖x j(tn) − xp(tn)‖ < 1, then it is impossible that

‖x j(t) − xp(t)‖ = 1 at a later time t > tn (Proposition 6). Since the limit ‖x j(tn) − xp(tn)‖

cannot be in (0, 1) due to the assumption of Case 3, it must converge to zero.
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To prove that a consensus emerges, we have to rule out scenario 2: neighbors of xp(tn)

cannot stay at a distance exactly 1. Notice that this is precisely what is happening in the

counter-example of figure 18: ‖x3(t)− x2(t)‖ = 1 for all t. But in this counter-example r∗ = 1

which is not the case in the present scenario.

Let’s proceed once again by contradiction and assume that there exists j such that

‖x j(tn) − xp(tn)‖ = 1 for all tn. Denote Ep all the neighbors j of p satisfying this property.

Under such assumption, we must have: d
dt‖x j(tn) − xp(tn)‖2 = 0 and therefore:

〈PCp(tn)(xp(tn) − xp(tn)), x j(tn) − xp(tn)〉 = 0. (3.18)

A key observation is to notice that the desired velocity xp(tn) − xp(tn) converges to the

average over the neighbors in Ep. Indeed, we rewrite:

xp(tn) − xp(tn) =

N∑
j=1

ap j(tn)
(
x j(tn) − xp(tn)

)
.

If j < Ep, either ap j(tn) = 0 ( j not a neighbor of p) or x j(tn) − xp(tn)
n→+∞
−→ 0. Thus,

xp(tn) − xp(tn)
n→+∞
−→

∑
j∈Ep

a∞p j

(
x∞j − x∞p

)
. (3.19)

Moreover, a∞p j = c > 0 for all j ∈ Ep since Φ(‖x j(tn) − xp(tn)‖) = Φ(1) > 0.

We can now pass to the limit in (3.18):

〈PC∞p

( ∑
k∈Ep

c(x∞k − x∞p )
)
, x∞j − x∞p 〉 = 0, (3.20)

where C∞p is the critical region defined by:

C∞p = {v ∈ Rd | (v, x∞j − x∞p ) ≥ 0 ∀ j ∈ Ep}. (3.21)

Notice that the definition of C∞p only includes extreme neighbors (i.e. j ∈ Ep). Indeed,

the other neighbor xk converges to xp as tn → +∞. Since r∗ < 1, xk(tn) is no longer in the

critical region Bxp(tn) for tn large enough.
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Summing the previous expression over the neighbors j in Ep gives:

〈PC∞p (v), v〉 = 0 with v =
∑
j∈Ep

(x∞j − x∞p ). (3.22)

Since CC∞p is a convex cone, we deduce that:

〈PC∞p (v), PC∞p (v)〉 = 〈PC∞p (v), v〉, (3.23)

and therefore PC∞p (v) = 0.

To get a contradiction, we use once again up define from the supporting hyperplane at

x∞p (see Figure 20), we have:

〈PC∞p (v),u〉 ≥ 〈v,u〉 (3.24)

since u is in the cone C∞p . We deduce:

〈PC∞p (v),u〉 ≥
∑
j∈Ep

〈x∞j ,u〉 > 0, (3.25)

since x∞j is strictly inside the convex hull Ω∞ (p being an extreme point). This proves that

PCx∞p
(v) , 0 and concludes the proof.

3.3.2.2 1-D Case

We now investigate consensus in the special case that the dynamics are one dimensional.

We know from the previous section that consensus occurs however in this case we will

also be able to quantify the rate at which this consensus emerges. Our main tool will be

estimates on the diameter d(t). Recall from Remark 12 that in one dimension Model (2)

reduces to Model (1) - we will use the notation in the latter in the following. We will see

that the control µi causes the convergence to occur in two stages. Clearly if a consensus

emerges there must exist a time τ after which all agents are directly interacting with each
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other, that is |xi(t) − x j(t)| ≤ 1 for any i and j and t > τ; in this case the network on which

agents interact is fully connected. Before this time there necessarily exist pairs of agents

who do not interact but are merely connected by a path. We will first examine the case

where all agents are interacting - in this case the dynamics converge towards a consensus at

an exponential rate that depends on the extreme values of the interaction function.

Proposition 7 Suppose d(0) ≤ 1. Then:

d(t) ≤ d(0)e−
m
M ·t (3.26)

where m = minx∈[0,1] Φ(x) and M = maxx∈[0,1] Φ(x).

Proof

Fix t and denote p and q such that d(t) = |xp − xq|. Notice that since p and q are the two

agents with extreme opinions we must have that µp = µq = 1 as they cannot have any agents

in their critical regions. We aim to get a bound on (d2)′ in terms of d2 in order to apply

Gronwall’s lemma. By the Cauchy-Schwarz inequality we have that:

d
dt

[d2(t)] = 2(ẋp − ẋq, xp − xq) = 2
(
(xp − xq)(xp − xq) − (xp − xq)2

)
≤ 2

(
|xp − xq||xp − xq| − |xp − xq|

2
)
.

(3.28)

To obtain the bound we desire all that remains is to bound |xp − xq| above by a constant

multiple of |xp − xq|. We will exploit the fact that the local averages xp and xq must be

inside the convex hull of opinions and therefore since agents p and q are the agents with

the most extreme opinions the difference between their local averages must be smaller than

the difference between their opinions. Denote ηi = min(api, aqi) and notice that since Φ is

bounded and d(0) ≤ 1 we must have that ηi ≥
m

MN where m and M are given by (3.2). Notice
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that: ∣∣∣xp − xq

∣∣∣ =

∣∣∣∣∣∣∣∣
N∑

i=1

apixi −

N∑
i=1

aqixi

∣∣∣∣∣∣∣∣ =

∣∣∣∣∣∣∣∣
N∑

i=1

(api − ηi)xi −

N∑
i=1

(aqi − ηi)xi

∣∣∣∣∣∣∣∣
=:

∣∣∣∣∣∣∣∣
N∑

i=1

ãpixi −

N∑
i=1

ãqixi

∣∣∣∣∣∣∣∣ .
(3.30)

Let η =
∑N

i=1 ηi. We have by (3.30) that:

∣∣∣xp − xq

∣∣∣ = (1 − η)

∣∣∣∣∣∣∣∣
N∑

i=1

ãpixi

1 − η
−

N∑
i=1

ãqixi

1 − η

∣∣∣∣∣∣∣∣ := (1 − η)
∣∣∣x̃p − x̃q| (3.31)

Notice that
N∑

i=1

ãqi

1 − η
=

N∑
i=1

ãpi

1 − η
= 1, (3.32)

and therefore we must have that x̃p and x̃q are in the convex hull of { xi }
N
i=1 so necessarily we

have that |x̃p − x̃q| ≤ |xp − xq|. Therefore by (3.31) we have that |xp − xq| ≤ (1 − η)|xp − xq|

which by (3.28) implies:

d
dt

[d2(t)] ≤ 2
(
(1 − η)|xp − xq||xp − xq| − |xp − xq|

2
)

= −2η|xp − xq|
2.

(3.34)

Finally, since by definition of the weights aiq, aip and η we have that η ≥ m
M we can conclude

using (3.34) that:
d
dt

[d2(t)] = 2d(t)d′(t) ≤ −
m
M

d2(t). (3.35)

An application of Gronwall’s lemma provides the final result.

So, in the case that all agents are interacting, i.e. that |xi(t) − x j(t)| ≤ 1 for any i and

j, a consensus is reached exponentially fast at a rate that depends on the maximum and

minimum values of the interaction function. However, starting from an initial condition

that is connected does not mean that all agents are directly interacting; any two agents are

merely connected by a path. We now examine the rate of convergence for t < τ, i.e. before

all agents are interacting.
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Theorem 6 Suppose the initial condition {xi(0)}i is connected and let η = m
M·N . There exist

δ > 0 and T > 0 such that while d(t) ≥ 1, we have:

d(t) ≤ d(0) + ηδ(N · T − t). (3.36)

Thus, after t ≥ N · T + d0−1
ηδ

, the diameter is converging exponentially fast toward zero.

Proof

Denote p and q such that d(t) = xq(t) − xp(t). Suppose d(t) > 1, the case d(t) ≤ 1 has been

treated in proposition 7. We analyze the behavior of p and q separately as they do not affect

each other. We fix the two constant δ > 0 and T > 0 satisfying the two technical conditions:

δ + 2T ≤ min(r∗, 1 − r∗) (3.37)

T 2

2N2η
(
η(1 − δ − 2T ) − 2N(δ + 2T )

)
≥ δ. (3.38)

It is always possible to find such constant (see lemma 11).

We split the study of ẋp at a given time t∗ in two cases.

• Case 1: suppose there exists p1 such that δ ≤ |xp(t∗) − xp1(t∗)| ≤ 1.

In this case, we can easily deduce a lower bound for the speed of p:

ẋp =

N∑
j=1

(x j − xp)a jp ≥ (xp1 − xp)ap,p1 ≥ δη

with η = m
M·N . Thus, since we have on the other end ẋq ≤ 0, we deduce that the diameter is

decaying at a minimum speed δη.

• Case 2: |xp(t∗) − xi(t∗)| < δ or |xp(t∗) − xi(t∗)| > 1 for any i , p.

In other words, all the neighbors of p are at a distance less than δ. We cannot find a lower

bound for ẋp anymore. Instead, we show that a neighbor of a neighbor (denoted p2) will

become a new neighbor of p in a finite time less than T .

Since connectivity is preserved, there exists p1 and p2 such that: p ∼ p1, p1 ∼ p2 and
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p � p2. Therefore, we deduce (see figure )

|xp(t∗) − xp1(t∗)| ≤ δ, |xp1(t∗) − xp2(t∗)| ≤ 1, |xp(t∗) − xp2(t∗)| > 1.

By triangular inequality, we deduce that |xp1(t∗) − xp2(t∗)| ≥ 1 − δ. Let us show that after

time T , we have |xp(t∗ + T ) − xp2(t∗ + T )| ≤ 1.

Figure 21: Situation in the case 2. The extreme point xp needs xp2 the neighbor of its
neighbor xp1 to be pushed further to the right.

First, we show that ẋp2 ≤ 0 thanks to xp1 . During the time interval t ≤ T , as the velocity

|ẋi| ≤ 1 for any i, we have:

|xp1(t∗ + t) − xp2(t∗ + t)| ≥ |xp1(t∗) − xp2(t∗)| − 2 · t ≥ 1 − δ − 2T ≥ 1 − r∗,

by the assumption (3.37). As the consequence, xp1 is always in the critical region of the

agent p2. Thus, xp2 can only move left, which implies ẋp2 ≤ 0.

Second, we show that xp increases by at least δ during the period T which will imply

that p ∼ p2. The main idea is to show that xp1 is going to pull out xp. To prove it, we

compute

ẋp = µp(x̄p − xp) = 1 ·
∑

k

ap,k(xk − xp)

= ap,p1(xp1 − xp) +
∑
k,p1

ap,k(xk − xp) ≥
η

N
(xp1 − xp) + 0,

since xk − xp ≥ 0. We now need to find a lower bound for xp1 − xp. With this aim, we

compute the time derivative:

ẋp1 − ẋp = µp1(x̄p1 − xp1) − µp(x̄p − xp)

≥ (x̄p1 − xp1) − (δ + T ).
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Here, we use that ẋp1 is necessarily positive as p2 is in its critical region, thus we have a

lower bound by replacing µp1 by 1. We now also suppose that xp has not connected with

p2 (otherwise there is no need to go further) and therefore its neighbors are at a distance

bounded by δ + T on the time interval [t∗, t∗ + T ].

Following the same inequality as for ẋp, we deduce that:

x̄p1 − xp1 = ap1,p2(xp2 − xp1) +
∑
k,p2

ap1,k(xk − xp1)

≥
η

N
(1 − δ − 2T ) + (xp − xp1) ≥

η

N
(1 − δ − 2T ) − (δ + T ).

Therefore,

ẋp1 − ẋp ≥
η

N
(1 − δ − 2T ) − 2(δ + T ).

We conclude that:

xp1(t∗ + t) − xp(t∗ + t) ≥ xp1(t∗) − xp(t∗) +

∫ t

0

η

N
(1 − δ − 2T ) − 2(δ + T ) dt

≥ 0 +

(
η

N
(1 − δ − 2T ) − 2(δ + T )

)
t.

Coming back to xp, we obtain:

xp(t∗ + T ) − xp(t∗) ≥
∫ T

0

η

N
(xp1(t∗ + t) − xp(t∗ + t)) dt

≥
η

N

(
η

N
(1 − δ − 2T ) − 2(δ + T )

) T 2

2
≥ δ,

using (3.38). Therefore, at time t∗ + T , we have xp2(t∗ + T )− xp(t∗ + T ) ≤ 1, and thus p ∼ p2.

To conclude, since there is only a finite number of particles N, situations as in case 2

can only appear a finite number of time (less than N times) and thus spread over a period

less than N · T . Thus, outside these periods, the decay of d(t) satisfies ḋ ≤ −ηδ leading to

the upper-bound (3.36) which concludes the proof.
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linear decay exp. decay

Figure 22: The decay of the diameter d(t) is first linear and then exponential after the
diameter d(t) becomes less than 1.

Remark 13 Notice that we could not derive an explicit decay rate in the multi-dimension

case. Indeed, in one dimension, we exploited the property that the left behind dynamics

preserve the ordering of the agents and in particular that the diameter forming agents are

the same agents for all time (i.e. p and q are time independent). In multiple dimensions it

is possible for the diameter forming agents to change - this prevents us from applying the

techniques used in one dimension to multiple dimensions.

3.3.3 Diameter decay: numerical experiments

From the previous results, we can see that convergence to a consensus occurs in two

stages. Before the diameter d becomes less than 1 the convergence is at least linear, after

d is less than 1 the convergence becomes exponential. The estimation of the convergence

rates provided by Theorem 6 is fairly rough. We would like to explore numerically if in

practice the decay of the diameter is faster.

We perform 100 realizations of the NOLB dynamics with initial conditions for the

configuration xi taken from a uniform distribution on the interval [0, 10] (1D simulation).
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We then compute the evolution of the diameter d(t) = maxi, j |xi(t) − x j(t)| for all the

realizations. In Figure 23-left, we plot the decay of the ’median’ of the diameter (red) along

with the slowest and fastest decay (dashed blue). To measure the disparity of d(t), we also

plot the 5% and 95% quantile. We observe two phases in the decay of the diameter: initially

d(t) decays quickly and then starts to slow down until it reaches the distance 1 when it

decays exponentially fast. We notice that there are a large variation between the different

realizations. Indeed, if we denote τ the stopping time at which d reaches 1:

τ = min
t≥0
{d(t) ≤ 1}, (3.39)

then we observe that τ varies between 22 time units (fastest realization) and 50 time

units(slowest realization). Thus, finding a sharp decay rate for the NOLB dynamics seems

challenging.

Additionally, we would like to explore how the the radius, r∗, of the critical region

affects the convergence. Naively one might expect that lower values of r∗ result in faster

convergence as agents are more free to move. However, we find that this is not the case;

intuitively since lower values of r∗ allow for more freedom of movement agents can have a

higher degree of clustering which hinders the emergence of a consensus. For each value

of r∗ ranging from 0 to 1, we run 100 simulations of the NOLB dynamics and estimate the

stopping time τ (3.39). The results are plotted in Figure 23-right. We find that indeed τ is

lower for higher values of r∗. Interestingly, this effect seems to become less prominent for

r∗ ≥ 0.2.
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Figure 23: Left: diameter d(t) over time for 100 realizations (quantile representation).
Right: stopping time τ (3.39) depending on the size of the critical region r∗.

3.4 Relaxed no one left behind

In this section we will investigate whether it is possible to weaken the constraints

imposed by the NOLB dynamics and still maintain convergence to a consensus. The

critical ingredient in the argument used to show the convergence to consensus of the

NOLB dynamics was the preservation of connectivity of the entire configuration of agents.

However, the dynamics introduced in (3.8) preserve connectivity between individual agents

by Proposition 6 - once two agents begin interacting they continue to do so throughout the

evolution of the dynamics as each agent “takes care of” every agent in its critical region.

However while this is clearly sufficient to preserve connectivity of the whole configuration,

it isn’t necessary. Instead of maintaining direct connectivity between agents we need only

to maintain a path between them.

Instead of preventing all disconnections as in the NOLB dynamics, we could allow

individual agents to disconnect as long as they remain connected to a mutual neighbor - an

agent does not have to “take care” of an agent in its behind region if one of its neighbors is
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already doing so. This intuition can be made rigorous via a description using the behind

graph. We name the resulting dynamics relaxed no one left behind as we remove constraints

while maintaining (global) connectivity. It is however unclear whether the new dynamics

will lead to a faster convergence to consensus.

3.4.1 Model introduction

Before introducing the model, we formally define what we mean by a relaxed behind

graph. We recall that we denote by G = (V, E) and GB = (V, EB) respectively the interacting

graph and the behind graph. V = {1 . . .N} is the set of all N opinions while E and EB are

the edge sets defined as:

• (i, j) ∈ E if ‖xi − x j‖ ≤ 1,

• (i, j) ∈ EB if j ∈ Bi.

The behind graph EB is a directed subgraph of E (see remark 10). To define the relaxed

behind graph, we identify unnecessary edges. If two agents i and j are neighbors then it is

possible that their behind regions overlap and therefore possible that a third agent, k, might

be in both behind regions. In terms of the behind graph this means that there is an edge

from agent i to agent k and from agent j to agent k. However since i and j are neighbors,

only one of those edges needs to be present in the behind graph for the interaction graph

of the configuration of agents to remain connected; i does not need to take care of k if j

is already doing so (or vice versa). Therefore, we could remove one of those edges from

the behind graph creating a new edge set ẼB (see Figure 24); if the configuration of agents

evolves according to the NOLB dynamics in terms of the relaxed edge set ẼB the interaction

graph will still remained connected as paths between agents are maintained.

We now define formally a relaxed behind graph.

75



Definition 12 Given a configuration of agents { xi }i ⊆ R
d, their corresponding behind

graph GB = (V, EB) and interaction graph G = (V, E), we say that G̃B = (V, ẼB) is a relaxed

behind graph of GB if:

• G̃B is a subgraph of GB

• for any (i, j) ∈ E, if (i, k) ∈ ẼB then ( j, k) < ẼB.

Figure 24: An example of how the behind graph can be relaxed while still ensuring that the
interaction graph remains connected. The interaction graph is represented by undirected
and directed edges, the behind graph is represented by only the blue directed edges. Agent
3 is in the behind region of both agent 2 and agent 4 and agents 2 and 4 are connected in the
interaction graph therefore we may remove the edge from agent 4 to agent 3.

Note that the relaxed behind graph is not unique as one has degrees of freedom in which

edges are removed ((i, k) is removed or ( j, k)). However, given any full behind graph any

two relaxed behind graphs will have the same number of edges. We can now define a relaxed

version of the NOLB dynamics. Intuitively this new model is exactly the NOLB dynamics

however instead of using the full behind graph it is defined in terms of a relaxed behind

graph.

Model 3 (RNOLB) Let { x1, ..., xN } ⊆ R
d be a configuration of agents with behind graph

GB and let G̃B = (V, ẼB) be a relaxed behind graph corresponding to GB. The relaxed no
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one left behind (RNOLB) dynamics are given by:

x′i = P
C̃i

(
xi − xi

)
(3.40)

where P
C̃i

: Rd → C̃i is the projection operator associated to the cone of velocities C̃i given

by:

C̃i = {v ∈ Rd | 〈v, x j − xi〉 ≥ 0 ∀ j such that (i, j) ∈ ẼB}. (3.41)

We now present an algorithm to easily calculate the relaxed behind graph. Intuitively, at

each time, t, an order is randomly computed for the agents. Then, according to the order

each agent projects its velocity towards agents in its behind region that have not already

been projected towards by neighboring agents earlier in the order; each agent “takes care of”

agents in its behind region that have not already been taken care of by one of its neighbors.

In Figure 25 we demonstrate that under these dynamics that individual agents are indeed

allowed to disconnect however the connection of the whole configuration is maintained.

Algorithm 2 Compute relaxed behind graph
1: procedure Compute relaxed behind graph
2: Choose an order σ ∼ Unif(permutations of { 1, . . . ,N })
3: for i ∈ { 1, . . . ,N } do
4: for j ∈ { 1, . . . ,N } do
5: if (i, j) ∈ EB and there is no k such that (i, k) ∈ E and (k, j) ∈ ẼB then
6: Add (i, j) to ẼB

7: end if
8: end for
9: end for

10: end procedure

Notice that in the example of the NOLB dynamics in Figure 25 that the connectivity of

the whole configuration of agents is maintained and further that once any two agents connect

they remain connected. In particular this is true for the agents corresponding to the red and

blue trajectories. However in the RNOLB dynamics these two agents become immediately
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disconnected. Nonetheless, the connectivity of the whole configuration is maintained as the

green agent “takes care” of the blue agent and preserves the existence of a path between the

red and blue agents. Indeed, it is clear that two agents i and j connected by a path cannot

become disconnected.

Proposition 8 The RNOLB dynamics maintain connectivity of the whole configuration of

agents.

"No one left behind" dynamics Relaxed "No one left behind" dynamics

Figure 25: The NOLB dynamics do not allow the red agent to disconnect from the blue
agent (illustrated with a purple chain). The RNOLB dynamics allow this disconnection to
occur but maintain connectivity of the whole configuration.

3.4.2 RNOLB as an interpolation between NOLB and bounded confidence

In this section we conduct a numerical experiment in one dimension to demonstrate that,

in a sense, the RNOLB dynamics can be seen as an “interpolation” between the Hegselmann

Krause dynamics (3.1) and the NOLB dynamics defined in Model 2. One of the hallmarks of

the bounded confidence dynamics is the formation of clusters of opinions. The requirement

of the NOLB dynamics that agents not move if there is another agent in their critical region
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prevents the formation of clusters (see for example, Figures 13 and 17). Agents with

opinions on the interior of the convex hull of opinions always have another agent in their

critical region and are prevented from moving until the boundary of the convex hull has

contracted sufficiently close to them. We will see that the weaker conditions of the RNOLB

model allow cluster formation to occur initially while still maintaining convergence to a

consensus (for a connected initial condition).

To measure the amount of clustering in a configuration of agents we introduce a simple

metric. Let R = L/N where L is the length of the range of possible opinions and N is the

number of agents. Given a configuration of agents { xi }i and an agent in the configuration

x j, we count the number of agents who are within R of x j. We then take the average over

all agents in the configuration. We will refer to this metric as the clustering number. If

the configuration of agents is initially uniformly distributed the clustering number is 2 (in

one dimension). If agents begin to cluster the clustering number should increase as agents

begin to collect more neighbors within R. Clearly, the maximum clustering number for any

configuration is the number of agents in the configuration and if a consensus is reached that

maximum will be attained.

In the top three plots of Figure 26 we show the long term behavior of the RNOLB,

NOLB, and bounded confidence dynamics for the same initial condition. As expected,

the bounded confidence dynamics do not reach a consensus and the NOLB and RNOLB

dynamics do. Additionally, we qualitatively observe the formation of distinct clusters in the

bounded confidence dynamics and the lack of clusters in the NOLB dynamics. Interestingly,

in the RNOLB dynamics we initially observe the formation of clusters that are qualitatively

very similar to those observed in the bounded confidence dynamics. However, instead of

remaining distinct (as in the bounded confidence model) these clusters eventually merge

and a consensus is reached.
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Figure 26: The RNOLB dynamics can be seen as an interpolation between NOLB and
bounded confidence.

This qualitative observation is supported by measuring the clustering number of each

configuration as time evolves - this is plotted in the bottom left plot of Figure 26. Notice

that in the initial period of cluster formation (roughly before t = 10) that the clustering

number of the bounded confidence dynamics is the fastest to increase whereas the NOLB

dynamics is the slowest which reflects the strong formation of clusters in the bounded

confidence dynamics and weak cluster formation in NOLB. Notably, in this period the

clustering number of the RNOLB dynamics increases more slowly than the clustering

number of the bounded confidence dynamics but faster than the clustering number of the

NOLB dynamics. This supports our qualitative observation that RNOLB is in a sense an

interpolation of bounded confidence and NOLB as it has (at least initially) more clustering

than NOLB as it allows for free movement of many agents on the interior of the convex

hull, but less clustering than bounded confidence as it forces some “moderating” agents to

maintain their position in order to preserve connectivity and eventually reach consensus.

We can also observe this interpolation in the evolution of the variance of each configuration

which is shown in the bottom right plot of Figure 26. Counter-intuitively, strong clustering

causes the decay speed of the variance to reduce as agents in individual clusters can (at least
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initially) move away from each other. This effect is observed in the example in Figure 26 as

the NOLB dynamics have the fastest decay in variance, the bounded confidence dynamics

have the slowest, and the variance decay of RNOLB is faster than bounded confidence but

slower than NOLB which reflects the varying amount of clustering observed in the three

different models. We also observe that due to the higher degree of clustering, the RNOLB

dynamics are slower to converge to a consensus then the NOLB dynamics. Despite this, we

still observe exponential convergence once all agents are within the interaction range of

each other.

3.4.3 Diameter decay in RNOLB

In our previous results concerning the NOLB dynamics we show rigorously that conver-

gence to a consensus occurs in two stages; when the diameter of the configuration of agents

is greater than one the rate is linear, afterwards it spontaneously becomes exponential. Our

estimates of these rates were fairly rough and in an attempt to discover whether the rates are

faster in practice we simulated 100 realizations of the NOLB dynamics and found a large

disparity in stopping times which suggests that our estimates are unlikely to be improved.

Here, we repeat this experiment for the RNOLB dynamics in order to investigate whether

there is a similar phase transition in the convergence and disparity in stopping times.

We perform 100 realizations of the RNOLB dynamics with initial conditions drawn

from a uniform distribution on the interval [0, 10]. We then again compute the evolution of

the diameter of the configuration d(t) for all realizations and plot the decay of the median of

the diameter, the slowest and fastest decay, and the 5% and 95% quantiles. Here, we again

observe two phases of convergence with clear exponential convergence again emerging once

the diameter reaches 1. However, compared to the NOLB dynamics convergence is much
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slower and there is a much larger disparity between stopping times. The fastest evolution

reaches a diameter of 1 at ≈ 50 time units whereas the slowest evolution takes greater than

200 time units. This suggests that it will be difficult to obtain tight convergence rates in the

case of the RNOLB dynamics as well.

Figure 27: Diameter, d(t) over time for 100 realizations (quantile representation).
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Chapter 4

THE FOOD SEEKING BEHAVIOR OF SLIME MOLD: A MACROSCOPIC APPROACH

This chapter closely follows [52]. In this chapter we study a model hierarchy inspired by

the food seeking behavior of a slime mold. Starting from a particle model who’s interaction

term shares many features with the agent based models discussed in previous chapters, we

derive a macroscopic aggregation-diffusion equation for the evolution of slime mold under

the assumption of propagation of chaos in the large particle limit. We analyze properties

of the macroscopic model in the stationary case and study the behavior of the slime mold

between food sources. The efficient numerical simulation of the aggregation-diffusion

equation allows for a detailed analysis of the interplay between the different regimes drift,

interaction and diffusion.

4.1 Slime mold model derivation

We now turn our attention to a model inspired by the movement of the slimemold

organism. The main features of slime mold food seeking behavior are aggregation of mass

on food sources while maintaining a connected mass and retraction in the absence of food

sources. To model these behaviors we first introduce an agent-based model. Here, the slime

mold is represented by a swarm of N agents who’s trajectories, Xi(t) ∈ Rd, are modeled as

a system of stochastic differential equations. In the following we will refer to this model

as the microscopic model in order to reinforce the intuition that the agents represent slime

mold “particles”.

Definition 13 (Microscopic Model) Consider a collection of N agents with (random) po-
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sitions

(X1(t), ...,Xn(t)) ∈ (Rd)N . The microscopic model is given by the evolution:

dXi(t) = A∇V(Xi(t))dt + B
1

N − 1

N∑
j,i

∇W(X j(t) − Xi(t))dt +
√

CdBi(t) (4.1)

where {Bi }i are independent, standard Rd-valued Brownian motions, V,W : Rd → R

are C1 functions, {Xi(0) }i are independent and identically distributed random variables

independent of {Bi } with probability density function given by ρ0 : Rd → R, and A, B,C >

0.

We note that if we assume that ∇V and ∇W are globally Lipschitz and further if there

exists K1,K2 > 0 such that for x ∈ Rd:

|∇V(x)| ≤ K1(1 + |x|) and |∇W(x)| ≤ K2(1 + |x|),

then it can be shown [124] that (4.1) has a unique strong solution.

Intuitively, V represents the density of chemo-attractants given off by food sources. For

this reason, we usually think of V as a sum of radially symmetric, positive functions. Each

term represents the attractants emanating from a single food source. A prototypical example

would be a sum of Gaussians centered at different positions. W represents the interaction

between agents. Notice that, roughly, if ∇W(X j(t)−Xi(t)) ≈ X j(t)−Xi(t), then the interaction

causes agents to attract each other. Likewise if ∇W(X j(t) − Xi(t)) ≈ Xi(t) − X j(t), then

the agents will repel each other. As we have noted, P. polycephalum tends to maintain a

connected mass, even when aggregating around disparate food sources. Therefore, this

interaction term should cause agents to remain locally close, i.e. agents should not repel

each other at long ranges. The noise term, CdBi(t), models P. polycephalum foraging

behavior. In the absence of chemo-attractants, P. polycephalum forages by diffusing outward

from its initial position while still maintaining a connected mass. Here, in the absence of
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a food source (V = 0) the noise term should cause particles to spread from their initial

positions while the interaction term causes them to still have some propensity to remain

locally “together”.

We include the parameters A, B and C for the case that simulations of (4.1) demonstrate

the need to scale the terms’ influence on each particles trajectory to produce evolutions that

resemble P. polycephalum. However, any simulation of (4.1) that would give an accurate

picture of how (4.1) models P. polycephalum would have to use a very large number of

particles; this becomes computationally intractable. Therefore, we must find a way to

examine the behavior or (4.1), for a large number of particles, without computing the

trajectory of every particle explicitly. We will show that in the large particle limit that the

evolution of the marginal distribution of any particle is given by an aggregation-diffusion

equation. There exist computationally efficient methods for simulating such equations,

therefore we can examine the behavior of (4.1) by simulating the evolution of the marginal

density. The technique we will employ to derive an appropriate model is the assumption of

propagation of chaos; i.e. if the number of agents agents is large, the trajectories of any two

agents can be assumed to be independent as they are not likely to interact strongly. This is

true in many cases, see for example [30, 31].

Theorem 7 In the N → ∞ limit and for a given, A, B,C > 0, W,V ∈ C1(Rd) and ρ0, the

evolution of the marginal distribution of any agent evolving according to (4.1) is a solution

of the aggregation-diffusion equation

∂tρ(x, t) = A∇ ·
[
∇V(x)ρ(x, t)

]
+ B∇ ·

[
ρ(x, t)∇W ∗ ρ(x, t)

]
+ C∆ρ(x, t),

ρ(x, 0) = ρ0(x) , x ∈ Rd

under the assumption of propagation of chaos; that is for any finite group of M agents there
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exist distributions ρ1, ..., ρM on Rd such that the joint distribution ρM(x1, ..., xM, t) satisfies:

ρM(x1, ..., xM, t)→
M∏

i=1

ρi(xi, t) as N → ∞

for any time.

Proof

Consider a finite group of N agents, (Xi(t), t ≥ 0) ⊆ Rd, i = 1, ...,N evolving according to

(4.1). Let µN be the empirical distribution of the configuration of agents. That is:

µN(t) =
1
N

∑
i

δXi(t)

where δXi(t) is the Dirac measure with unit mass at Xi(t). Let F be a test function in

C∞c ((Rd)N), therefore by definition of the Dirac measure we deduce:

〈µN , F〉 =
1
N

∑
i

Fi(Xi(t))

we first derive an expression for the time evolution of the expectation of this quantity. Let

X(t) = (X1(t), ..., XN(t)). By conditioning we find

E[F(X(t + ∆t)] − E[F(X(t))]
∆t

=

∫
(Rd)N

E[F(X(t + ∆t)|X(t) = x] − F(x)
∆t

ρN(x, t)dx (4.2)

where ρN(x, t) is the joint distribution of the collection of agents. Using Ito’s Lemma (see

e.g. [124]) we can further expand the conditioned term in the above

E
[
F(X(t + ∆t))|X(t) = x

]
= F(x)

+ E
[ N∑

j=1

∫ t+∆t

t
∂x j[F(X(t))]dX j(s)|X(t) = x

]
+ E

[1
2

N∑
j,k

∫ t+∆t

t
∂x j∂xk[F(X(t))]d[Xi(s), X j(s)]|X(t) = x

]
.

(4.3)
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We first focus on the third term of (4.3). Notice that as each Xi evolves according to (4.1),

since the noise terms for disparate agents are independent, we have that:

d[Xi(s), X j(s)] =


0 if i , j

Cds if i = j
.

Therefore, the third term of (4.3) simplifies as:

E
[1
2

N∑
j,k

∫ t+∆t

t
∂x j∂xk[F(X(t))]d[Xi(s), X j(s)]|X(t) = x

]
= E

[
C

∫ t+∆t

t
∆F(X(s))ds|X(t) = x

]
.

(4.4)

Now, turning to the second term of (4.3) we find by appyling (4.1) that:

E
[ N∑

j=1

∫ t+∆t

t
∂x j

[
F(X(t))]dX j(s)|X(t) = x

]
= E

[ N∑
j=1

∫ t+∆t

t
∂x j[F(X(s))]

(
A∇V(X j(s))

)
ds|X(t) = x

]
+ E

[ N∑
j=1

∫ t+∆t

t
∂x j[F(X(s))]

( B
N − 1

∑
k, j

∇W(X j(s) − Xk(s))
)
ds|X(t) = x

]
+ E

[∑
j

∫ t+∆t

t
∂x j[F(X(s))]

(
CdB j(s)

)
|X(t) = x

]
.

(4.5)

As the stochastic integral is a martingale, we have that the last term of (4.5) is equal to 0.

As a result, by combining (4.4) and (4.5), we have that:

E
[
F(X(t + ∆t))|X(t) = x

]
= F(x)

+ E
[ N∑

j=1

∫ t+∆t

t
∂x j[F(X(s))]

(
A∇V(X j(s))

)
ds|X(t) = x

]
+ E

[ N∑
j=1

∫ t+∆t

t
∂x j[F(X(s))]

( B
N − 1

∑
k, j

∇W(X j(s) − Xk(s))
)
ds|X(t) = x

]
+ E

[
C

∫ t+∆t

t
∆F(X(s))ds|X(t) = x

]
.

(4.6)
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So, by (4.2) and the continuity of the trajectories, (4.6) implies P almost-surely that:

∂t

∫
(Rd)N

F(x)ρN(x, t)dx =

∫
(Rd)N

C∆F(x)ρN(x, t)dx

+

∫
(Rd)N

N∑
j=1

∂x j[F(x)]
(
A∇V(X j(t))

)
ρN(x, t)dx

+

∫
(Rd)N

N∑
j=1

∂x j[F(x)]
( B
N − 1

∑
k, j

∇W(X j(t) − Xk(t))
)
ρN(x, t)dx.

(4.7)

Therefore, ρN is a weak solution to the following initial value problem:

∂tρ
N(x, t) −C∆ρN(x, t) −

N∑
j=1

∂x j

[
A∇V(x j)ρN(x, t)

]
−

N∑
j=1

∂x j

[
ρN(x, t)

B
N − 1

∑
k, j

∇W(x j − xk(t))
]

= 0,

ρN(x, 0) =

N∏
j=1

ρ0(x j).

(4.8)

Using (4.8), we now compute the time evolution of the marginal distribution of one agent

in the N → ∞ limit under the assumption of propagation of chaos, that is for any finite

collection of M agents we have that their joint distribution satisfies (in a limiting sense):

ρM(x1, ..., xN , t) =

M∏
i=1

ρi(xi, t). (4.9)

In the following we consider a finite group of M particles in the N → ∞ limit. Without loss

of generality we will consider the marginal distribution, ρ(x1, t) of the first agent which is

given by:

ρ(x1, t) =

∫
(Rd)M−1

ρM(x1, ..., xM)d(x2, ..., xM)
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and therefore, by (4.8), we have that ρ(x1, t) satisfies (weakly):

∂tρ(x1, t) =

M∑
j=1

∫
(Rd)M−1

∂x j

[
A∇V(x j)ρM(x, t)

]
d(x2, ..., xM)

+

M∑
j=1

∫
(Rd)M−1

∂x j

[ B
M − 1

∑
k, j

∇W(x j − xk)ρM(x, t)
]
d(x2, ..., xM)

+

∫
(Rd)M−1

C∆ρM(x, t)d(x2, ..., xM).

(4.10)

We analyze (4.10) term by term. First, by applying (4.9) we find that∫
(Rd)M−1

C∆ρM(x, t)d(x2, ..., xM) = C∆ρ1(x1, t). (4.11)

Next, if we again apply (4.9) and integrate by parts in each term of the sum where j , 1 we

find that
M∑
j=1

∫
(Rd)M−1

∂x j

[
A∇V(X j(t))ρM(x, t)

]
d(x2, ..., xM) = ∂x1

[
A∇V(x1)ρ(x1, t)

]
. (4.12)

Similarly we deduce
M∑
j=1

∫
(Rd)M−1

∂x j

[ B
M − 1

M∑
k, j

∇W(x j − xk)ρM(x, t)
]
d(x2, ..., xM) =

∫
(Rd)M−1

∂x1

[ B
M − 1

M∑
k=2

∇W(x1 − xk)ρM(x, t)
]
d(x2, ..., xM).

(4.13)

We can simplify (4.13) further by integrating under the divergence operator and applying

(4.9), notice that:

∫
(Rd)M−1

N∑
k=2

∇W(x1 − xk)ρM(x, t)d(x2, ..., xM)

=

M∑
k=2

∫
(Rd)M−1

∇W(x1 − xk)
(
ρ1(x1, t)ρ2(x2, t), ..., ρM(xM, t)

)
d(x2, ..., xM)

=

M∑
k=2

ρ(x1, t)
∫
Rd
∇W(x1 − xk)ρk(xk, t)dxk

= (M − 1)ρ(x1, t)∇W ∗ ρ(x1, t).

(4.14)
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Hence:∫
(Rd)M−1

∂x1

[ B
M − 1

M∑
k=2

∇W(x1 − xk)ρM(x, t)
]
d(x2, ..., xM) = ∂x1

[
Bρ(x1, t)∇W ∗ ρ(x1, t)

]
.

(4.15)

Therefore, combining (4.11), (4.12) and (4.15) we have by (4.10) that the marginal of any

agent satisfies:

∂tρ(x, t) = A∂x

[
∇V(x)ρ(x, t)

]
+ B∂x

[
ρ(x, t)∇W ∗ ρ(x, t)

]
+ C∆ρ(x, t)

ρ(x, 0) = ρ0(x)
(4.16)

as desired.

As the equation derived in Theorem 7 describes how the entire collection of particles evolves

from a density standpoint, in the following we will refer to it as the macroscopic model.

Definition 14 (Macroscopic Model) The macroscopic model is given by the evolution of

the aggregation-diffusion equation

ρt(t, x) = A(∇ · (∇Vρ)) + B(∇ · ((∇W ∗ ρ)ρ)) + C(∆ρ) x ∈ Ω ⊆ Rd,

ρ(0, x) = ρ0

. (4.17)

for W,V ∈ C1(Rd) and ρ0 ∈ H1(Rd) with
∫

Ω
ρ0(x)dx = 1.

Here, V and W continue to represent the chemoattractant of food sources and the slime

mold’s propensity to aggregate respectively. In the following we will study (4.17) from the

viewpoint of using it to model P. polycephalum food-seeking behavior.

4.2 Slimemold model properties

Many questions remain about how to utilize the macroscopic equation derived in the

previous section to model a slime mold. In this section we present some analysis of
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stationary states of the equation in order to inform some of these modeling choices. First,

we investigate stationary states in the case where there is no food present as a way to gain

some information about what choice of kernel function might be reasonable. Inspired by

[88], we believe that Gaussians represent a reasonable model for stationary states of a slime

mold - however we find that Gaussian stationary states are only possible in the case that

the kernel function, W, is quadratic. Next, we investigate stationary states of the scaled

equation. We find through a fixed point argument that if the diffusion scaling parameter,

C, is sufficiently higher than A and B then that the only stationary state of the equation

is 0 (even in the presence of a food source). This suggests that when tuning the scaling

parameters that there cannot be “too much” diffusion.

4.2.1 Zero-food stationary states

In the case that there are no food sources a slime mold will “retract” to a more compact

configuration [92, 90, 91]. Often, this configuration is roughly radially symmetric. Given

that and inspired by the central limit theorem, we believe that a reasonable model for the

configuration of the slime mold in the case that there is no food could be a Gaussian. We now

investigate if there are conditions on the kernel function that are imposed by the assumption

that stationary states are Gaussian. For simplicity we work in one dimension however the

calculations are analogous in higher dimensions. In the case that there are no food sources

(4.17) becomes:

ρt = C∆ρ + B∇ · ((∇W ∗ ρ)ρ). (4.18)
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Therefore a stationary state satisfies (in the following we will ignore the scaling parameters,

A and B, as they do not change the computation):

−∆ρ = ∇ · ((∇W ∗ ρ)ρ)

which implies that

−∇ρ = (∇W ∗ ρ)ρ + D

for some constant D. Finally we have that:

∇W ∗ ρ = −∇(ln(ρ)). (4.19)

Note that (4.19) represents a general condition that zero food stationary states must satisfy.

If we assume that stationary states are Gaussian, i.e. that:

ρ(x) = β exp
(
−x2τ

)
, β, τ > 0

then by (4.19) we have that:

d
dx

[ ∫ ∞

−∞

W(x − y)β exp
(
−y2τ

)
dy

]
= −

d
dx

[
ln(β exp

(
−x2τ

)]
=⇒

∫ ∞

−∞

W ′(y)β exp
(
−(y − x)2τ

)
dy = 2xτ.

The above can only hold if W ′(y) = ay for some a ∈ R. Therefore, Gaussians are zero food

stationary states only if the interaction kernel is quadratic. Further, by plugging in ay for

W ′(y) in the above we can see that the following must hold:

βa =
2τ

3
2

√
π

(4.20)

So, for a given quadratic kernel there are a family of Gaussians that are potential zero

food stationary states (depending on the mass of the initial profile). For an illustration of
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this fact see Figure 28. Here, we simulate (4.17) in the case of no drift term using the

“blob method” for aggregation-diffusion equations introduced in [28]. We will discuss the

numerical method in more detail in the Numerics section of the paper. We choose an initial

condition representative of a slime mold aggregated around two food sources at x = 1 and

x = −1. We find in accordance with our calculation above that the mass profile appears to

converge to a Gaussian configuration. This also illustrates a modeling property of (4.17); in

the case that food sources “run out” the profile will “retract” to a central configuration.

Effectively, by starting from information about the zero food stationary state, we have

“solved” for the correct kernel. This analysis suggests an empirical method for determining

the correct kernel function from experimental data. Instead of our assumption that zero

food stationary states are Gaussian, statistical analysis of slime mold configurations in

the presence of zero food sources could provide information about the stationary state

configuration. This information could then be used to “solve” for the kernel that results in

this “correct” stationary state.

4.2.2 High diffusion stationary states

We now turn to considering stationary states of the scaled equation:

ρt = A(∇ · (∇Vρ)) + B(∇ · ((∇W ∗ ρ)ρ)) + C(∆ρ). (4.21)

We will see in a later section that the “fair” regime (A = B = C) does not result in food-

source aggregation. Therefore we are motivated to study different scalings of the terms in

(4.17). Here, we will rule out a large regime of scaling parameters by employing a fixed

point argument to show that if the diffusion parameter, C, is sufficiently larger then the drift

and interaction parameters then the only stationary state of (4.17) is 0 on bounded domains.
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Figure 28: The evolution of (4.17) in the case of a quadratic kernel with no drift term.
The initial condition is chosen to represent the state of a slime mold after it has aggregated
around two food sources at x = 1 and x = −1. Notice that the profiles appear to converge on
a central Gaussian configuration - an illustration of the fact that Gaussians are stationary
states of the equation in the case of a quadratic kernel. Here the kernel is given by W ′(x) = x,
in particular a = 1 and therefore, by (4.18), if the final configuration is gaussian its scaling

parameters, β and τ, must satisfy
√
π = 2τ

3
2

β
.

Theorem 8 Let Ω ⊆ Rd be compact and connected. For a given A, B > 0, V,W ∈

H2(Ω) ∩ L∞(Ω) and ρ0 ∈ H1
0(Ω) then for any sufficiently large C > 0, 0 is the unique

stationary state of:

ρt(t, x) = A(∇ · (∇Vρ)) + B(∇ · ((∇W ∗ ρ)ρ)) + C(∆ρm), x ∈ Ω ⊆ Rd,

ρ(0, x) = ρ0(x)

in H1
0(Ω).

Proof

Recall that ρ is a stationary state of (4.17) if:

−∆ρ =
A
C

[∇V · ∇ρ + ∆Vρ] +
B
C

[∇(W ∗ ρ) · ∇ρ + ∆(W ∗ ρ)ρ].

We define:

G(ρ) :=
A
C

[∇V · ∇ρ + ∆Vρ] +
B
C

[∇(W ∗ ρ) · ∇ρ + ∆(W ∗ ρ)ρ].
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Given ρ ∈ H1
0(Ω) we know that G(ρ) ∈ L2(Ω) and that the equation:

∆ρ̃ = G(ρ) (4.22)

has a unique solution in H1
0(Ω). Given K > 0, define H1

0(Ω,K) := { ρ ∈ H1
0(Ω) : | |ρ||H1

0
≤ K }.

It can be shown (see, for example, Theorem 4 in section 6.3 of [44]) that if ρ̃ is the unique

solution of (4.22) then the following estimate holds for some D > 0:

||ρ̃||H2 ≤ D||G(ρ)||L2 . (4.23)

Therefore, by applying the triangle inequality and Cauchy-Schwarz inequality we can see

that for a sufficiently large choice of C if ρ ∈ H1
0(Ω,K) then we must also have that the

solution to (4.22), ρ̃, belongs to H1
0(Ω,K) as well.

Define Ã : H1
0(Ω,K)→ H1

0(Ω,K) via:

Ã[ρ] = ρ̃ where ρ̃ solves (4.22).

We will show that Ã is a contraction and thus has a unique fixed point by Banach’s fixed

point theorem. Since 0 is trivially a fixed point of Ã and K is arbitrary this implies that 0 is

the only fixed point of Ã and thus the only stationary state of (4.17) . Let ρ̃1 = Ã[ρ1] and

ρ̃2 = Ã[ρ2]. We will show that there exists a 0 < γ(A, B,C) < 1 such that:

||A[ρ1] − A[ρ2]||H1
0
≤ γ(A, B,C)||ρ1 − ρ2||H1

0
.

Since Ω is bounded by assumption we have by Poincare’s inequality that:

||ρ̃1 − ρ̃2||H1
0
≤ α||D(ρ̃1 − ρ̃2)||L2(U). (4.24)

for some α > 0. Therefore since ρ̃1 and ρ̃2 are both solutions of (4.22) we must have by
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another application of the Poincare inequality that:

||D(ρ̃1 − ρ̃2)||2L2(U) ≤ |

∫
Ω

D(ρ̃1 − ρ̃2) · D(ρ̃1 − ρ̃2)dx|

= | −

∫
Ω

(G(ρ1) −G(ρ2))(ρ̃1 − ρ̃2)dx|

≤ ||G(ρ1) −G(ρ2)||L2(U)||ρ̃1 − ρ̃2||L2(U)

≤ α||G(ρ1) −G(ρ2)||L2(U)||D(ρ̃1 − ρ̃2)||L2(U).

Therefore we have that:

||D(ρ̃1 − ρ̃2)||L2(U) ≤ α||G(ρ1) −G(ρ2)||L2(U)

and by (4.24) that:

||ρ̃1 − ρ̃2||H1
0
≤ α||G(ρ1) −G(ρ2)||L2(U). (4.25)

We claim that

||G(ρ1) −G(ρ2)||L2(U) ≤ γ(A, B,C)||ρ1 − ρ2||L2(U). (4.26)

for some γ > 0 that depends only on A, B and C for a given W and V . Expanding we find

that:
||G(ρ1) −G(ρ2)||L1(U) ≤

A
C
||∇V · ∇(ρ1 − ρ2) + ∇V(ρ1 − ρ2)||L1(U)

+
B
C
||∇(W ∗ ρ1) · ∇ρ1 − ∇(W ∗ ρ2) · ∇ρ2||L1(U)

+
B
C
||∆(W ∗ ρ1)ρ1 − ∆(W ∗ ρ2)ρ2||L1(U).

(4.27)

We will continue our analysis term by term. Starting with the first term and applying the

Cauchy-Schwarz inequality we find that

A
C
||∇V · ∇(ρ1 − ρ2) + ∇V(ρ1 − ρ2)||L1(U) ≤

A
C

[
||∇V ||L2(U)||∇(ρ1 − ρ2)||L2(U) + ||∆V ||L2(U)||ρ1 − ρ2||L2(U)

]
.

(4.28)
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Now, turning to the second term of (4.27) and applying the Cauchy-Schwarz inequality we

find:

B
C
||∇(W ∗ ρ1) · ∇ρ1 − ∇(W ∗ ρ2) · ∇ρ2||L1(U) ≤

B
C

[
||∇W ∗ ρ1||L2(U)||∇(ρ1 − ρ2)||L2(U)

+ ||∇W ∗ (ρ1 − ρ2) · ∇ρ2||L1(U)

]
.

(4.29)

We will further expand the last term of (4.29). Notice that:

B
C
||∇W ∗ (ρ1 − ρ2) · ∇ρ2||L1(U) ≤

B
C
||ρ1 − ρ2||L2(U)

d∑
i=1

||Wxi ||L2(U)||ρ2,xi ||L1(U). (4.30)

Now, combining (4.29) and (4.30) we find

B
C
||∇(W ∗ ρ1) · ∇ρ1 − ∇(W ∗ ρ2) · ∇ρ2||L1(U) ≤

B
C
||∇W ∗ ρ1||L2(U)||∇(ρ1 − ρ2)||L2(U)

+
B
C
||ρ1 − ρ2||L2(U)

d∑
i=1

||Wxi ||L2(U)||ρ2,xi ||L1(U).

(4.31)

Finally, we turn to the third term of (4.27). Notice that:

B
C
||∆(W ∗ ρ1)ρ1 − ∆(W ∗ ρ2)ρ2||L1(U) =

B
C

∫
Ω

|∆(W ∗ ρ1)ρ1 − ∆(W ∗ ρ2)ρ2|dx

=
B
C

∫
Ω

|∆(W ∗ ρ1)ρ1 − ∆(W ∗ ρ2)ρ1 + ∆(W ∗ ρ2)ρ1 − ∆(W ∗ ρ2)ρ2|dx

=
B
C

∫
Ω

|∆(W ∗ (ρ1 − ρ2)ρ1) + ∆(W ∗ ρ2)(ρ1 − ρ2)|dx

≤
B
C
||∆W ∗ ρ2||L2(U)||ρ1 − ρ2||L2(U)

+
B
C
||∆W ||L2(U)||ρ1 − ρ2||L2(U)||ρ1||L1(U).

(4.32)

Now, combining our results in (4.28), (4.31) and (4.32) and applying the definition of the
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norm in H1
0(Ω) we find that:

||G(ρ1) −G(ρ2)||L1(U) ≤
A
C

[
||∇V ||L2(U)||ρ1 − ρ2||H1

0
+ ||∆V ||L2(U)||ρ1 − ρ2||H1

0

]
+

B
C

[
||∇W ∗ ρ1||L2(U)||ρ1 − ρ2||H1

0
+ ||ρ1 − ρ2||H1

0

d∑
i=1

||Wxi ||L2(U)||ρ2,xi ||L1(U)

]
+

B
C

[
||∆W ∗ ρ2||L2(U)||ρ1 − ρ2||H1

0
+ ||∆W ||L2(U)||ρ1 − ρ2||H1

0
||ρ1||L1(U)

]
:= γ(A, B,C)||ρ1 − ρ2||H1

0

(4.33)

where γ ≥ 0 and is independent of ρ1 and ρ2 as we have assumed a uniform bound on their

norms (they are members of H(Ω,K)). Therefore, if W and V are given, γ can be made

arbitrarily small if C is sufficiently larger than A and B. Additionally we have that

||G(ρ1) −G(ρ2)||L2(U) ≤ β||G(ρ1) −G(ρ2)||L1(U)

for some β > 0 and therefore

||G(ρ1) −G(ρ2)||L2(U) ≤ β||G(ρ1) −G(ρ2)||L1(U)

≤ βγ(A, B,C)||ρ1 − ρ2||H1
0
.

(4.34)

Combining (4.25) and (4.34) we obtain:

||ρ̃1 − ρ̃2||H1
0
≤ α||G(ρ1) −G(ρ2)||L2(U) ≤ αβγ(A, B,C)||ρ1 − ρ2||H1

0
.

Therefore for C sufficiently larger than A and B, the mapping Ã is a contraction as desired.

From a modeling point of view, Theorem 8 demonstrates that a sufficiently strong contribu-

tion from the diffusion term will destroy any of the qualitative behaviors we wish to capture.

We will see this explicitly in our numerical studies of (4.17) in the next section.
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4.3 Numerics: qualitative features of the slimemold macroscopic model

We now present some numerical investigations of the macroscopic model derived in the

previous section.

ρt = A(∇ · (∇Vρ)) + B(∇ · ((∇W ∗ ρ)ρ)) + C∆ρ. (4.35)

These investigations are aimed at replicating qualitative properties of slime mold move-

ment seen in [92, 90, 91], specifically aggregation around food sources while still maintain-

ing a “connected” mass. Recall that here, the function V models the density of chemoattrac-

tants dispersed by food sources. Therefore, V will always take the form of a sum of radially

symmetric positive functions where each term is centered on a food source. We simulate

(4.35) via the “blob method for aggregation-diffusion equations” introduced in [28] which

approximates (4.35) by solving the ODE:

ẋi(t) = − A(∇V(Xi)) − B(
N∑

j=1

∇W(xi(t) − x j(t))m j)

−C

 N∑
j=1

( N∑
k=1

ϕε(x j − xk)mk

)
+

( N∑
k=1

ϕε(xi − xk)mk

)−1
∇ϕε(xi − x j)m j


(4.36)

for a collection of N particles, (x1(t), ..., xN(t), t ≥ 0), who’s initial positions are a regular

grid on the domain on which we’d like to approximate (4.35) and who’s masses are given

by mi = ρ(0, Xi(0)). To recover an approximation of ρ from the positions of the particles we

convolve the particle solution with a mollifier ϕε:

ρ̄(x, t) =
∑

i

ϕε(x − Xi(t))mi.

We assume mollifiers are always of the form:

ϕε(x) =
1

(4πε2)d/2 e−|x|
2/4ε2

,
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where d is the dimension of the domain. It is shown in [28] that under some regularity and

growth conditions on W and V that ρ̄ converges to the solution of (4.35). As a first example

we will consider (4.35) in one dimension. We will take the food source to be

V(x) = −e−(1−x)2
− e−(−1−x)2

.

Therefore we can think of the food sources as being located at x = −1 and x = 1. For the

parameters of the ODE we take:

• N = 100 particles initially equally space on the interval [−2.1, 2.1], i.e. with separation

h = .042

• ε = h.99 (Mollifier parameter)

• initial mass profile given by ρ0(x) = 1
√

2πσ2
e− x2

2σ2 , σ2 = 0.0625 as in [28].

Note that as the variance of the initial profile is very small that, at the particle level, slime

mold particles have a very low probability of being found outside of [−2.1, 2.1] (initially).

In Figure 29 we perform a first simulation of (4.17) in one dimension via the blob method

in the so called “fair regime” (A = B = C = 1). Here, we choose a quadratic interaction

kernel - specifically we impose that W ′(x) = x.

Qualitatively, we do not observe aggregation of slime mold mass around food sources

to the degree present in [92]. Therefore, motivated by this example, in the following we

will attempt to modify (4.35) in order to better model slime mold food seeking behavior.

In Figure 29 we observe that diffusion appears to be the dominating effect. Therefore, in

order to examine the interplay of the diffusion term against the other two terms in (4.35)

we will employ the scaling parameters, A, B,C > 0, in order to control the contributions

from the drift term, interaction term and diffusion term respectively. Roughly we examine

two main regimes; “drift dominated” (where A > B,C) and “interaction dominated” (where
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Figure 29: The evolution of the slime mold model (4.35) in the fair regime (A = B = C).
Food source aggregation is not observed.

B > A,C). We also examine so called “competition regimes” where two scaling parameters

are equal but dominate the third. We do not examine the diffusion dominated regime as

we’ve previously seen that if A = B = C (we will refer to this as the “fair regime”) then

diffusion is the dominating effect. In each regime we examine three different interaction

kernels - quadratic, polynomial and Gaussian. We choose the same ODE parameters as in

the previous fair regime simulation.

4.3.1 Food source dominated regime

We will first examine simulations of (4.17) in the regime where the drift term (which

models attraction to the food sources) is the dominating factor. We first examine the

case where the kernel is quadratic and given by W(x) = x2

2 . Here, the kernel is purely

attractive. At the agent based level all agents exert a “pull” on other agents with a force

that is proportional to their spacial seperation. The results can be seen in Figure 30. Here,

we qualitatively observe that in the case where A = 10, B = C = 1 that we have strong
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Figure 30: The evolution of (4.17) in the drift dominated regime with kernel given by
W(x) = x2

2 . Food source aggregation occurred in two cases only one of which maintained a
connected mass.

food source aggregation however, the mass profile splits into two distinct bumps - the strong

contribution from the drift term prevents a connected mass from being maintained. In the

other three cases a connected mass is maintained and food source aggregation is observed.

However, in the two cases where C = 5 the degree of aggregation is relatively weak likely

due to the stronger contribution from the diffusion term.

Next, we examine the case where the kernel is polynomial and given by W(x) = x4

4 −
x2

2 .

Intuitively, at the particle level, this means that this kernel is attractive at long-ranges but

includes a short-range repulsion to prevent particles from becoming too close. The results

can be seen in Figure 31. Here, we observe results that are qualitatively very similarly to

the results obtained in the quadratic case. This is not surprising given that the polynomial

kernel is largely attractive and at long ranges the degree of attraction is proportional to the

separation between particles - analogous to the quadratic kernel. However in the case where
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Figure 31: The evolution (4.17) in the drift dominated regime with kernel given by W(x) =
x4

4 −
x2

2 . Strong food source aggregation is observed in two cases however neither maintains
a connected mass. Weak food source aggregation is observed in the other cases.

A = 10, B = 5,C = 1 the evolution with a polynomial kernel does not maintain a connected

mass in contrast to the evolution witha quadratic kernel. This is likely due to the short-range

repulsion that is present in the polynomial kernel. At the particle level, particles in the

middle of the domain are repelled away from each otherwhile simultaneously being pulled

by a food-source - encouraging a separation.

Finally, we examine the case where the kernel is Gaussian and given by W(x) =

ϕ.99(x) = 1
(4π·.992)1/2 e−x2/4·.992

. Here, similarly to the quadratic kernel the interaction is purely

attractive. However, unlike the polynomial the strength of attraction between two particles

is not proportional to their separation. Instead, attraction becomes stronger (but not in an

unbounded fashion) as two particles become closer and weaker as they become farther apart.

This encodes the modeling assumption that interactions should be “local” - particles who
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are physically distant from each othershould not interact strongly. The results can be seen in

Figure 32.

Here, we observe food source aggregation in every case. similarly to the polynomial and

quadratic kernels the aggregation is stronger when the contribution from the diffusion term

is small. However, similarly to the polynomial kernel a connected mass is not maintained

in either of these cases. Additionally, in the cases where a connected mass is maintained

we still observe a sharp drop off in the middle of the profile - indicating formation of a

separation. We believe that the tendency to separate in this case is caused by a combination

of the strong local interaction and the strong contribution from the food sources; particles

that start close to a food source are “trapped” and remain close to the food source as the

contribution from the food source and the local interaction reinforce each other. Then,

particles towards the center of the domain feel a pull towards food sources form both the

food source itself and the “trapped” particles.

4.3.2 Interaction dominated regime

We now examine simulations of (4.17) in the regime where the interaction term is

the strongest contribution. Again, we start with the case where the kernel function W is

quadratic and given by W(x) = x2

2 . The results can be seen in Figure 33. Here, we do not

see any food source aggregation. This can possibly be explained by the fact that in these

simulations the initial profile is Gaussian. We have previously seen that Gaussians are

stationary states for (4.17) in the case of a quadratic kernel and no drift term.

Next we examine the case where the kernel function is polynomial, of the same form as

in the food source dominated regime. The results can be seen in Figure 34. Here, analogous
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Figure 32: The evolution of (4.17) with kernel given by W(x) = ϕ.99(x) =
1

(4π·.992)1/2 e−|x|
2/4·.992

. Food source aggregation occurs in all cases, however in two cases
a connected mass is not maintained.
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Figure 33: The evolution of (4.17) in the interaction dominated regime with kernel given
by W(x) = x2

2 . Food source aggregation is not observed.
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Figure 34: The evolution (4.17) in the interaction dominated regime with kernel given by
W(x) = x4

4 −
x2

2 . Food source aggregation while maintaining a connected mass is observed
in two cases.

to the food source dominated regime we see more pronounced aggregation in the cases

where the diffusion term has the weakest contribution. However the aggregation is less

pronounced than the respective examples in the food source dominated regime due to the

stronger contribution from the interaction term. Unlike the analogous cases in the drift

dominated regime we do not observe food source aggregation in the cases where C = 5, this

is possibly due to the stronger contribution from the short range repulsion in the interaction

term.

Finally, we examine the evolution in the case of a Gaussian kernel function. The results
can be seen in Figure 35. Here, in contrast to the respective cases in the drift dominated
regime, we do not observe food source aggregation in the cases where the diffusion term
has the second largest contribution. Addtionally, unlike the analogous cases in the drift
dominated regime and the polynomial kernel in the interaction dominated regime, we do
not observe aggregation in the case where B = 10,C = 1, A = 1. We do observe aggregation
in the case where A = 5, B = 10,C = 1. However, similarly to the polynomial kernel the
effect is less pronounced than in the analogous case in the drift dominated regime. Both of
these effects are consistent with a stronger contribution from the attractive kernel.

106



0.0

0.5

1.0

de
ns

ity

A = 5, B = 10, C = 1 A = 1, B = 10, C = 5

2 1 0 1 2
position

0.0

0.5

1.0

de
ns

ity

A = 1, B = 10, C = 1

2 1 0 1 2
position

A = 5, B = 10, C = 5

0.0

0.5

1.0

1.5

2.0

2.5

3.0
time

Interaction dominated regime - gaussian kernel

Figure 35: The evolution (4.17) in the interaction dominated regime with kernel given
by W(x) = ϕ.99(x) = 1

(4π·.992)1/2 e−|x|
2/4·.992

. Food source aggregation while maintaining a
connected mass is observed in one case.

4.3.3 Competition regime

We now simulate cases where two parameters dominate in competition. The results can

be seen in Figure 36, Figure 37, and Figure 38. Interestingly, across all three interaction

kernels, pronounced food source aggregation is only observed in cases where A = B = 10.

All of these cases except one exhibit the qualitative features we wish to capture as they do

maintain a connected mass. All other cases do not result in food source aggregation. This

can be explained by the fact that in all of these cases the diffusion term has a significant

contribution. The observation that strong contributions from the diffusion term dampen food

source agregation is a general pattern that we have also observed in the other regimes and is

additionally supported by the statement of Theorem 8.

The cases in the competition regime where we do see food source aggregation also

reinforce another pattern observed across all regimes; examples that have the qualitative
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Figure 36: The evolution of (4.17) in the competition regime with kernel given by W(x) =
x2

2 . Food source aggregation is only observed in cases with a week diffusion contribution.

features we wish to capture have strong contributions from the drift term, the interaction term,

or both. However, we also find that cases in which a connected mass was not maintained

only occured where the drift term was dominant. Likewise, cases in which food source

aggregation did not occur in the absence of strong diffusion only occured in the interaction

dominated regime. These observations suggest a general modeling principal; contributions

from the drift and diffusion terms should be scaled similarly and larger than the contribution

from the diffusion term.

4.3.4 Evidence for asymptotic states and a two dimensional example

We now turn to some further numerical studies aimed at validating observations made in

the previous section. First, note that in the previous section we used a uniform simulation
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Figure 37: The evolution of (4.17) in the competition regime with kernel given by W(x) =
x4

4 −
x2

2 . Food source aggregation is only observed in cases with a weak diffusion contribution.
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Figure 38: The evolution of (4.17) in the competition regime with kernel given by W(x) =
1

(4π·.992)1/2 e−|x|
2/4·.992

. Food source aggregation is only observed in cases with a weak diffusion
contribution.
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time. Therefore, in theory some of the qualitative observations we have made could

merely be artifacts of not simulating the dynamics for long enough; its possible that

we are not observing asymptotic states of the dynamics. For example, in Figure 30 we

observe what appears to be food source aggregation with a connected mass in the regime

A = 10, B = 5,C = 1 and mass separation in the regime A = 10, B = 1,C = 1 suggesting

that the stronger interaction term in the first case helps the profile maintain connectivity.

However, if we are not truly observing asymptotic states its possible that we would observe

mass separation if we waited a longer time. In Figure 39 we perform the same simulation

as Figure 30 except the simulation time is doubled and we plot six profiles instead of four.

However, most of the six profiles are not distinguishable as they are overlapping in exactly

the same profiles as the final profiles plotted in Figure 30. Mass aggregation with a connected

profile is observed in exactly analogous fashions in the regime A = 10, B = 5,C = 1 and

mass separation is observed in both cases in the regime A = 10, B = 1,C = 1. This provides

strong evidence that we are observing asymptotic states, however to provide further support

in this direction (and to show that this phenomena does not depend on the kernel choice) we

repeat all simulations of the polynomial kernel with the longer simulation time in Figures

40, 41 and 42. We again observe exactly analogous results to the shorter simulation time in

all cases providing further support that asymptotic states are observed.

The aim of this study was to identify parameter regimes in which the derived macroscopic

model qualitatively displays slime mold food seeking behavior. For this reason we have

limited our simulations to one dimension as they are faster to compute and if a phenomena

does not appear in one dimension it will surely not manifest in two. However, for actual

application to slime mold movement (and to possibly validate the model with empirical
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Figure 39: The evolution of (4.17) in the drift dominated regime with the quadratic kernel.
The simulation time is doubled from Figure 30 and six profiles are plotted instead of four.
The same qualitative phenomena are exhibited providing evidence for the observation of
asymptotic states.

experiments) two dimensions is surely the case of interest. To illustrate that observations

made in one dimension do manifest in two dimensions we will show that mass separation

observed in one dimension is also observed in two dimensions as we feel that this phenomena

is easiest to qualitatively evaluate in the two dimensional plots. We simulate the macroscopic

model in two dimensions with the gaussian kernel in the regime A = 10, B = 5,C = 1

- the results can be found in Figure 43. In this case the dynamics were simulated in the

region [−2.1, 2.1] × [−2.1, 2.1], the food sources are located at the points (1, 0) and (−1, 0),

225 particles were used in the blob method ODE, and the initial profile is given by the

two dimensional gaussian centered at the origin with the same variance as that used in one

dimension. Analogous to the one dimensional case we observe mass separation.
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Figure 40: The evolution of (4.17) in the drift dominated regime with the polynomial
kernel. The simulation time is doubled and six profiles are plotted instead of four. The same
qualitative phenomena are exhibited providing evidence for the observation of asymptotic
states.
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Figure 41: The evolution of (4.17) in the interaction dominated regime with the polynomial
kernel. The simulation time is doubled and six profiles are plotted instead of four. The same
qualitative phenomena are exhibited providing evidence for the observation of asymptotic
states.
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Figure 42: The evolution of (4.17) in the competition regime with the polynomial kernel.
The simulation time is doubled and six profiles are plotted instead of four. The same
qualitative phenomena are exhibited providing evidence for the observation of asymptotic
states.
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Figure 43: The evolution of (4.17) in a drift dominated regime in two dimensions. Similarly
to the one dimensional case we observe mass separation
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Chapter 5

FUTURE AND ONGOING WORK

5.1 The Doppelgänger model

Our first aim in extending the work previously described is to introduce models of

opinion formation aimed at a better understanding of the polarization of opinions in addition

to consensus. As described in the previous section, most analysis of opinion formation

models has been conducted on models where only attractive forces are present among the

agents. This causes consensus to be a general phenomena. While the use social media has

increased connectivity among individuals in a sense, opinions have become more polarized

[49, 102, 8, 46, 110, 84]. This phenomenon is usually attributed to the so-called ’echo-

chamber’ effect. We claim that mathematical models could help better understand the

fine-scale details of this dynamic and as a consequence could lead to new strategies to

mitigate the effects of polarization.

5.1.1 Doppelgänger dynamics

We aim at introducing repulsion in models of opinion formation. We first aim at

extending the linear consensus dynamics (2.1) to include a dynamic of disagreement;

specifically we aim to include the possibility of edges in the interaction network with

negative weights. Denoting as before the opinion si(t) for 1 ≤ i ≤ N, we consider an

adjacency matrix A with weights ai j that could be positive and negative. As such the

consensus model might lead to an unbounded solution - the difference |s j − si| could grow to
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infinity when ai j < 0. Rather than being repulsed, we propose dynamics where the opinion

si is actually attracted to the opposite opinion of s j, i.e. −s j.

Definition 15 (pseudo-linear Doppelgänger) Given a collection of N agents, let si ∈ R

represent the opinion of the ith agent. The pseudo-linear Doppelgänger model is defined

by the dynamics

s′i =

N∑
j=1

ai js j − ‖S ‖si. (5.1)

with ‖S ‖ = ‖(s1, . . . , sN)‖ the norm of the vector of all opinions.

When ai j > 0, opinion si is attracted to s j whereas when ai j < 0 then si is attracted to

−s j. We dub the dynamics (5.2) the Doppelgänger model as each opinion si has a mirror

opinion −si that has an opposite effect. In contrast to the consensus model, the pseudo-linear

Doppelgänger model does not necessarily converge and consensus is not always stable.

We illustrate the pseudo-linear Doppelgänger dynamics numerically in Figure 44-left with

N = 20 opinions. Notice the solution does not converge to a consensus but rather to an

eigenvector of the adjacency matrix A.

The Doppelgänger model is naturally extended in a fully non-linear version by making

the weights ai, j of the adjacency matrix A dependent on the opinions. A natural choice is

to assert that the weight ai j is a function of the difference of opinion analogous to models

studied in earlier chapters.

Definition 16 (The Doppelgänger model) Given a collection of N agents, let si ∈ R rep-

resent the opinion of the ith agent. The Doppelgänger model is defined by the dynamics

s′i =

N∑
j=1

ai js j − ‖S ‖si. (5.2)

where

ai j =
φ(|s j − si|)∑
k |φ(|sk − si|)|

(5.3)
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Figure 44: Left: Evolution of the opinions si(t) for the Doppelgänger dynamics (5.1) for
a fixed adjacency matrix A = (ai j). The dynamics converge to an eigenvector of A. Right:
Doppelgänger dynamics with evolving adjacency matrix (5.2). The dynamics converge to a
polarized configuration.

for some φ : R→ R.

Notice that the interaction function φ is not always positive. We illustrate the non-

linear Doppelgänger dynamics in Figure 44-right. As long as the function φ remains

bounded, we still have that the opinions si(t) remains bounded using the inequality (5.5).

The convergence of the dynamics toward an equilibrium is more delicate, the dynamics

could very well oscillate. The investigation of the dynamics will likely mainly focus on

the interplay between the support of the function φ, the spectrum of the corresponding

adjacency matrix A and the convex hull of the configuration of opinions. For example, for

the sample choice of interaction function above the model displays a “consensus trap” - if the

convex hull of the initial configuration is sufficiently small (such that the difference between

all agent opinions lies in the set of the domain of φ where φ is positive) then consensus

is the only outcome possible. Mathematically, it will be challenging to characterize the

convergence of the dynamics depending on the matrix A (in the case of the pseudo linear

model) or the interaction function φ (in the case of the fully nonlinear model). Nonetheless,
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it is clear that the solution s(t) of the Doppelgänger dynamics remains bounded thanks to

the following result.

Proposition 9 If φ is bounded then the Doppelgänger dynamics remain bounded.

Proof

We denote by the matrix A(t) = (ai j(t))i j where:

ai j =
φ(|s j − si|)∑
k |φ(|sk − si|)|

. (5.4)

As φ is bounded by assumption there must exist C such that
∥∥∥A(t)

∥∥∥ ≤ C for any t. Therefore

we have that
1
2

d
dt
‖S ‖2 = 〈AS , S 〉 − ‖S ‖3 ≤ ‖A(t)‖ · ‖S ‖2 − ‖S ‖3

≤ C · ‖S ‖2 − ‖S ‖3
(5.5)

where 〈, 〉 is a standard scalar product and ‖A‖ the `2 matrix norm of A. Thus, the norm is

decaying when it is sufficiently large.

5.1.2 Convergence of the pseudo-linear Doppelgänger model

We now turn our attention to the pseudo-linear Doppelgänger model (5.1). Here, similar

to the consensus model, the interaction network is static and we are interested in charac-

terizing the convergence of the model in terms of the adjacency matrix of the interaction

network, A.

Theorem 9 Assume that { λ j } j are the eigenvalues of A indexed such that for any j we have

that Re(λi) ≤ Re(λ j) for any i ≤ j. Then, if s(t) of the pseudo-linear Doppelgänger dynamics

(5.1), λN > 0, and Re(λN) > Re(λN−1) we must have that

s(t)→ λNµN as t → ∞

where µN is the eigenvector of A associated to λN .
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Proof

For clarity we will work under the assumption that A is diagonalizable. An exactly analogous

argument proves the result in the general case via representing A in its Jordan canonical

form. In other words, there exists P such that:

A = PDP−1 where D =


λ1

. . .

λN


and P =


| |

µ1 . . . µ2

| |


then, if y = P−1x, then the dynamics (5.1) become:

y′(t) = Dy − ‖s‖y. (5.6)

Therefore, it is sufficient to show that yi(t)→ 0 for all i < N and that yN(t)→ λN . Now, the

solution, y is given by:

y(t) = e
∫ t

0 (D−‖s(s)‖Id)dsy(0)

= eDte−tα(t)y(0) where α(t) :=
1
t

∫ t

0

∥∥∥x(s)
∥∥∥ds

(5.7)

Now, by Proposition 9, we have that for any t,
∥∥∥y(t)

∥∥∥ ≤ C for some C. Therefore, by (5.7),

we have:

e−tα(t)
∥∥∥eDty(0)

∥∥∥ ≤ C (5.8)

additionally we have that: ∥∥∥eDty(0)
∥∥∥ ≥ eλN t|yN(0)|

which by (5.8) implies that

α(t) ≥ λN −
ln( C
|yN (0)| )

t

So, for any k < N there exists Tk such that for all t ≥ Tk we have that α(t) > Re(λk) by

assumption. So, by (5.6), we have that

yk(t) = e(λk−α(t))tyk(0)→ 0 for any k < N. (5.9)

119



It remains to show that yN → λN . By (5.9) we have that

∥∥∥s(t)
∥∥∥ = |yN(t)| + ε(t) (5.10)

where ε(t)→ 0. Therefore we have by (5.6) that the evolution of yN satisfies:

y′N = (λN − yN)yN + ε(t)yN . (5.11)

Consider the solution, ỹ, to the following initial value problem

ỹ′ = (λN − ỹ)ỹ. (5.12)

Clearly, for any choice of ỹ(0) we have that ỹ→ λN . We claim that yN → ỹ and therefore

yN converges to λN as well. First, notice that if |yN | is sufficiently small then we must have

|yN |
′ > 0. Therefore, we may assume that yN is positive without loss of generality. Now, we

have that:

d
dt

[(yN − ỹ)2] = 2(y − ỹ)(y′ − ỹ′)

= 2(yN − ỹ)2(λN − (ỹ + yN)) + 2(y − ỹ)ε(t)yN

:= 2(yN − ỹ)2γ(t) + ρ(t).

(5.13)

As yN and ỹ are bounded and ε(t)→ 0 we have that ρ(t)→ 0. Additionally, as yN is positive

and bounded away from 0 and ỹ → λN we have that there exists C < 0 and T such that

for all t > T , γ(t) < C. Therefore, we deduce by Gronwall’s inequality that yN → ỹ and

therefore yN → λN as desired.

5.1.3 Generalizations and extensions

In the non-linear Doppelgänger dynamics (5.1)(5.2), the graph depends only on the

difference of opinions s j − si. However, extreme opinions tend to be less inclined to listen to
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other opinions. Thus, it is relevant to adjust the range of interaction depending on opinion.

For instance, replacing the difference s j − si with the relative difference (s j − si)/|si|.

The Doppelgänger dynamics proposed in (5.2) is a deterministic model. It would be

interesting to define a stochastic analogue and study the correspondences between the

deterministic and stochastic framework, much like the correspondence between the linear

voter model and the classical consensus model as in [119]. As a possible stochastic analogue

we propose that rather than changing the opinion of node i, si gradually to its neighbor’s

opinion s j, the stochastic Doppelgänger model could be written as a jump process where

opinion S i(t, ω) would jump toward S j(t, ω) with intensity ai j. If the coefficient ai j is

negative, then Xi would jump to opinion −S j with intensity |ai j|. Such stochastic dynamics

lead to the following formulation:

dE[ϕ(S i(t))] =

N∑
j=1

|ai j| · E[ϕ
(
sign(ai j)S j(t−)

)
− ϕ(S i(t−))]dt. (5.14)

These dynamics necessarily converge as the number of possible opinions is decreasing in

each time step. Additionally it could be proven by a martingale argument (S i(t) remaining

uniformly bounded in time). What are conditions that cause the limit configuration to be a

consensus or a polarized configuration? Are these conditions comparable to the deterministic

model? Can we recover the deterministic model from the stochastic model in any sense?

If A is positive and the underlying graph remains connected, then a consensus occurs as

proven in [119]. Including negative weights makes the analysis more challenging.

The Twitter dataset to which we have access is very large - the number of individual

users is in the millions. Therefore it is relevant to study the Doppelgänger dynamics from a

mean field approach [12, 97, 38, 37]. This could present new avenues of analysis through

the application of the theory of Partial Differential Equations (PDEs). Denoting ρ(s, t) the

density of agents with opinion s at time t, the non-linear Doppelgänger dynamics leads to a
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transport equation of the form:

∂tρ+∇s·(G[ρ]ρ) = 0 , G[ρ](s) =

∫
y∈Rd

φ(|y−s|)yρ(y) dy −

∫
y∈Rd
|y|2ρ(y) dy

 s. (5.15)

The completely rigorous derivation of such a PDE from the interacting particle systems

(5.2) is challenging as it requires the proof of so-called propagation of chaos [111, 83, 17,

27]. In the context of deterministic dynamics, it boils down to proving the regularity of the

transport equation (5.15).

5.2 Future work: Empirical social media data - sentiment analysis and graph clustering

A main takeaway from much of the work previously described is that the interplay

between the interaction network and evolution of opinions is central; for example, in

bounded confidence dynamics clustering of opinions is equivalent to a fragmentation of the

interaction network. We propose a framework to investigate whether such a feedback loop

can be observed in real social media data.

Critical to these goals is a large source of social media data. We have access to a

large dataset that centers around the gun-control debate in the United States. Gun Debate

dataset contains nearly 24 million tweets in English about the gun control debate in the

USA between Feb 1, 2018 and Aug 23, 2018 following the Stoneman Douglas High

School shooting on February 14, 2018. There are two sides of the debate: pro-gun control

(blue camp) and anti-gun control (red camp). Tweets are posted by 3,282,592 individual

anonymized Twitter accounts. Users are classified according to a content classifier that is

trained based on most tweeted user’s labeled positions. 293,046 of the users are classified

as anti-gun control, while others are classified as pro-gun control. Almost 5 million tweets

carry anti-gun control (red) sentiment and the rest are pro-gun control (blue) represented in
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Figure 45: Schematic representation of the work proposed. In analytical work, we study
the interplay between the opinions {si}1≤i≤N and the interacting graph G leading to consensus
or polarization. In empirical investigations, experimental data are extracted from social
media using sentiment analysis (measuring opinions si) and graph clustering (extracting the
graph G). Finally, empirical data is combined with the analytical framework to investigate
strategies to mitigate polarization.

figure 46. Additionally we have access to a dataset that centers around the Brexit debate.

UK Brexit Twitter Dataset contains nearly 4 years of Twitter data from UK for the June

1, 2015 - May 12, 2019 period containing the political debates for 2016 United Kingdom

European Union membership referendum and the 2017 United Kingdom general election.

There are 2.8M Twitters (2,846,262) and 51M (51,862,627) Tweets in this dataset. Both

of these datasets are well suited to our goals as they represent issues that are “binary” in a

sense; one could place themselves on a linear scale that represents the degree to which they

support or oppose gun-control measures or Brexit.
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Figure 46: Schematic representation of the gun-control debate in the United States in 2018
using tweets from 293,046 individual anonymized Twitter accounts: pro-gun and anti-gun
control are represented in blue and red (respectively).

5.2.1 Measuring opinions si

In order to inform modeling pursuits with social media data two quantities must be

measured; the structure of the interaction network G among users and the opinion of those

users {si}1≤i≤N on a given issue. Sentiment analysis aims to measure opinion by training

machine learning algorithms to directly classify text generated by users. Given a text written

by a user i (e.g. tweet), denoted Ti, the goal is to associate a sentiment si ∈ (−1, 1) where

−1 means ’negative’, 0 ’neutral’ and +1 ’positive’. This is accomplished through training a

word embedding on a language modeling task [16, 53, 103, 104, 62, 67]:

Ti (Text) ∼∼∼∼∼∼∼B
embedding zi ∈ RD

∼∼∼∼∼∼∼B
classifier si ∈ (−1, 1). (5.16)

Learning text representations is an active and open area of research, currently the most

successful approach is to allow representations to be context dependent; the representation

of a given word changes depending on the words surrounding it in the current training

example. The key to this approach is to find a representation of text that preserves its

structure and meaning and is amenable to traditional classification techniques.

It has been shown empirically that language models with many parameters trained on
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a very large text corpus can be effectively fine tuned to a wide array of natural language

processing tasks including sentiment analysis [117, 42, 98, 105, 104, 76, 122]. This means

that once a sufficiently large language model is trained on a large collection of text it can

be further trained to effectively perform sentiment analysis with a relatively small amount

of labeled training data (a collection of texts that are labeled as ’positive’, negative’ or

’neutral’).

In order to quantify a user’s opinion si(t) on a given issue (e.g. a national election or a

noteworthy news event) using raw social media data it is clear that the most relevant part of

the data is the text that a given user generates. The issue in question (e.g. Brexit) should be

fairly narrowly defined in the sense that one can say that their alignment relative to the issue

could be placed on a linear scale (−1, 1) (with −1 meaning “disagree” and +1 “agree”).

Using sentiment analysis as described in eq. (5.16), each text Ti generated by a user

is assigned a sentiment si. The opinion of a user in question can then be computed as the

average of the opinion of their texts. In the past sentiment analysis has been done mostly

in a static manner - the data remains fixed and one sentiment measurement is done. We

propose to analyze the data in a time dependent manner by organizing it into time windows

and performing sentiment analysis only on text that occurs in each window (see figure 47).

In this way we can uncover the dynamics of changing opinions.

There are several challenges in applying the sentiment analysis pipeline previously

discussed. First and foremost to collect a dataset the size of the Brexit dataset necessitates

fairly broad scraping parameters. This allows for the possibility of noise in the dataset as

it could include tweets that are not on topic. Additionally, the Brexit debate is vast and

encompasses many sub issues, it is possible that it will be useful to focus on one or several

of these. Both of these problems necessitate developing a topic/entity analysis framework to

ensure that the data that is analyzed is as relevant as possible. Second, although we intend
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Figure 47: Left: the opinion si(t) of a user i is infered by the text posted online. Using
sentiment analysis, a text Ti (represented in orange) is scaled on a (−1, 1) axis. The opinion
si(t) is the time window averaging of these sentiments. Right: starting from a sparse graph
Graw of interating users, a dense graph G is extracted. To do so, each node i is scaled and
then a clustering algorithm is performed to create “cluster” node.

to largely use pretrained language models (as is the best practice in the field [105]), these

models require fine tuning on the sentiment analysis task. This necessitates the human

labeling of a dataset of text (labeling a collection of tweets as pro-Brexit, anti-Brexit, or

moderate towards Brexit) or an unsupervised labeling approach. While the amount of

labeled data needed is small compared to the original amount of text the language model

was pretrained on, this requirement can still be time consuming and challenging. First, care

must be taken to ensure the dataset is not biased. Secondly, it must be labeled by as many

human volunteers as possible to weed out vague examples.

5.2.2 Extracting graph G

There are many approaches to structuring raw social media data into a network G.

Almost all social networks have some sort of friendship mechanic which can be leveraged

(although this mechanic is not always mutual, for example in Twitter); an edge exists
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between users if they are friends on the platform. Additionally, all social networks have

various mechanics to allow users to interact which allows for network structures based on

one or several of the different types of interactions. For example, in Twitter there are four

main ways for users to interact with each other; they can “follow” each other, they can

“like” each other’s tweets, they can “retweet” each other’s tweets, or they can “reply” to

each other’s tweets. Any single one of these interactions could be used to define a directed

network between a group of users; there is an edge from user i to user j if they interact. In

this work, we are particularly interested in “replies” since they indicate, through sentiment

analysis, a positive or negative interaction between users, i.e. this definition of interaction

leads to an adjacency matrix ai j between users with both positive and negative weights. We

denote this raw network Graw.

A challenge to this approach is that the network Graw is usually sparse [41, 10]. Graph

clustering can be leveraged to reduce the sparsity while still maintaining the important

structures in the network. This is performed in two steps. The first step consists in

embedding each node of the graph into a latent space, i.e. a node i is assigned a value xi.

This is the process referred to as scaling [68, 93, 108, 107]. Users who are similar to each

other in terms of network structure should be placed geometrically close in the latent space.

In the second step, the embedded vectors xi are clustered using standard algorithm such as

k-means or DBSCAN [1, 7]. Thus, users are placed into discrete clusters. This approach is

also often called community detection. Each cluster can can then be regarded as a single

node in a “collapsed” network denoted G:

i node of Graw ∼∼∼∼∼B
scaling xi ∈ (−1, 1) ∼∼∼∼∼∼∼B

clustering
{C j} j clusters ∼∼∼∼∼∼∼B

collapse
G. (5.17)

This approach raises a host of research questions. Broadly how does the structure of

Graw depend on the choice of interaction network? Do different choices of interaction

network display characteristic structures (eg. the following network in twitter is known
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to display a “hub and spoke” structure due to the presence of influencers and celebrities)?

How does the choice of scaling algorithm affect the process of collapsing Graw to G? Are

particular algorithms sensitive to network structures that are characteristic of the way we

chose to define Graw? Finally, which combination of Graw definition and scaling algorithm

best resolves the dynamics of network fragmentation and coalescence over time (if they

exist)?

5.2.3 Uncovering interplay between si and ai j

We now propose a framework to study the interplay between the two measured quantities

as it is the key to understand how the distribution of opinions is likely to evolve. For example,

in the classical Hegselmann Krause model, fragmentation and coalescence in the opinion

distribution is equivalent to fragmentation and coalescence in the interaction network. Can

we observe fragmentation and coalescence over time in our measurements of si and ai j? If

so, is there a relationship between these phenomena? Does fragmentation or coalescence in

the interaction network imply the same in the observed opinion distribution? To study the

network’s effects on the opinion distribution we propose to examine if and how the change

in the difference of opinion between two users who are connected in the interaction network

depends on their current difference of opinion. Formally, given two users i and j we look

for a relationship φ such that:

(s j − si)′ = φ(s j − si). (5.18)

To establish the interaction network’s influence over the observed opinion distribution we

propose to study two quantities. Given that two users i and j are connected in the interaction

network how does the likelihood that the link between them is destroyed depend on the

current difference between si and s j? Conversely, given two users that are disconnected in
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the interaction network how does the likelihood that a link between them is created depend

on the current difference between si and s j? In this way we can determine whether there is a

feedback loop of influence between the opinion distribution and network structure as in the

models, or if one has a more dominating effect.

5.3 Future work: mitigating polarization

Learning how opinions become polarized could help us find a strategy to mitigate this

tendency. Indeed, understanding of the feedback loop between opinion and graph could

lead to new strategy to modify the time evolution. Mathematically, this leads to an optimal

control problem similar to the escaping problem in pedestrian dynamics or flocking models

[100, 86, 23, 47]. There is however a notable difference: our goal is not to steer opinions in

one way or another but rather to maintain interaction among users, i.e. keep the graph G

connected.

As a first “toy problem”, we consider the linear consensus model (2.1) and ask where to

allocate new moderators, denoted mk, to enforce the emergence of a consensus (see Figure

48). We illustrate the problem using only one moderator for simplicity but the problem can

be generalized for more moderators. Consider a moderator m∗ connected with other agents

with link αi (i.e.
∑

i αi ≤ 1). The opinion of a moderator is simply the weighted average of

its neighbors, i.e. m∗ =
∑

i ωisi with
∑

i ωi = 1. The consensus model becomes:

s′i =

N∑
j=1

ai j(s j − si) + αi(m∗ − si) =

N∑
j=1

(ai j + αiω j)(s j − si). (5.19)

Hence, the moderator changes the interaction graph with a new adjacency matrix Ã with:

ãi j = ai j + αiω j. The goal is therefore to maximize the spectral gap of the new Laplacian
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matrix L̃ leading to a saddle point problem:

max∑
i αi≤1,

∑
i ωi=1

λ2(L̃) = max∑
i αi≤1,

∑
i ωi=1

min
‖S‖=1,S⊥1

〈L̃S,S〉. (5.20)

Solving this eigenvalue problem gives information as to where to allocate the moderator in

order to optimally encourage consensus.

polarized opinions

"moderators"

disconnected graph

Figure 48: When the graph G is disconnected, the consensus model (2.1) lead to clustered
opinion formation. To mitigate the polarization, “moderators” are introduced to link dis-
connected clusters of opinions. Mathematically, the challenge is to determine to whom
moderators should be linked.

In a non-linear context such as Hegselmann-Krause model (3.1) or the Doppelgänger

model (5.2), the optimization problem is more delicate since we cannot directly infer the

interaction graph G. Instead, we have to allocate moderators with a given opinion; these

moderators act as “informed leaders” such as in a shoal of fish [34] with the goal to ensure

the preservation of connectivity. The NOLB dynamics (3.8) previously discussed are aimed

precisely at maintaining connectivity by changing the dynamics (i.e. opinions si cannot

change if it might disconnected from a neighbor s j). However, we do not expect to be able

to change the dynamics in social-interaction, only to facilitate communication. Instead, we

consider the following new dynamics with K mediators with fixed opinions mk:

s′i =

N∑
j=1

ai j(s j − si) +

K∑
k=1

αik(mk − si), ai j =
Φi j∑N

`=1 Φi` +
∑K

k=1 Φ̃ik

(5.21)
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with Φi j = Φ(
∣∣∣s j − si

∣∣∣) and Φ̃ik = Φ(|mk − si|). The optimization problem consists of

minimizing the variance of opinions over a fixed time horizon T , i.e. minimizing the

variance of {si(T )}1≤i≤N .
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Chapter 6

CONCLUSION

In this dissertation we presented three contributions to the body of work surrounding

network based models of opinion formation. In the first, we discussed consensus models in

both a deterministic and stochastic setting. In both cases we completely characterized the

convergence of the model. In the deterministic case we find that the model always converges

although not necessarily to a consensus; this contrasts with the stochastic case where we find

that the model only converges almost surely if and only if the network has only one isolated

block. We have also given conditions that are equivalent to unconditional convergence to

a consensus - isolated blocks play a critical and identical role in both cases. We find that

for both models unconditional convergence to a consensus is equivalent to the network on

which the model is defined having only one isolated block. This similarity is explained

by the fact that the deterministic dynamics can be recovered from the stochastic dynamics

in expectation. Finally, we show in the deterministic case that the rate of convergence

depends only on the algebraic connectivity of the network - the stronger the connectivity

the faster the model converges. We find a similar result in the stochastic model in the case

of symmetric networks however in this case we see that the rate of convergence is much

slower as it also depends on the number of agents.

In the second study we examined variants of the Hegselmann-Krause bounded confidence

dynamics introduced in [57]. The modifications we introduced were aimed at mitigating the

generic cluster forming behavior seen in the bounded confidence dynamics and inducing

consensus among the agents. Motivated by the attractive nature of the interaction in bounded

confidence dynamics we introduced a variant dubbed No one left behind (NOLB) that
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maintains connectivity between agents. We rigorously demonstrated that this control is

sufficient for unconditional convergence to a consensus regardless of the dimension of agent

opinions. Due to the nonlinear and discontinuous nature of the dynamics the argument

relies on the interplay between two key properties of the dynamics; contractivity and the

preservation of connectivity of the configuration of agents. In one dimension we were able to

derive explicit convergence rates that quantify how fast a consensus is reached. Additionally,

we conducted numerical experiments that suggest that tighter bounds on the convergence

rates are likely not possible. The NOLB dynamics maintain local, pairwise connectivity

between agents, however our argument for unconditional convergence to a consensus relied

only on global connectivity of the configuration of agents. Motivated by this we introduced

a second variant to the bounded confidence dynamics we dubbed Relaxed no one left behind

(RNOLB) aimed at maintaining the existence of paths between pairs of agents. We find that

while this modification still results in unconditional convergence to a consensus, it retains

more of the qualitative features of the bounded confidence dynamics; notably the emergence

of clusters in the beginning of its evolution. For this reason the RNOLB dynamics can

be regarded as an interpolation between the bounded confidence dynamics and the NOLB

dynamics. We presented numerical investigations into the variance of agent opinions and a

metric we dub the clustering number that further support this view.

Finally, in a slight departure from the previous work we presented an investigation of

another agent based model inspired by a slimemold. This model shares many features

with agent based models of opinion formation and serves as an example of how these

models could be extended as well as demonstrates a framework for studying them in a

macroscopic setting. We were principally interested in capturing the slime mold’s ability

to aggregate around disparate food sources while maintaining a connected mass. We first

presented a particle based model which includes three main features - a drift term to model
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a gradient of chemoattractant produced by food sources, an interaction term to model the

slime mold’s propensity to maintain a connected mass, and a diffusion term to model slime

mold foraging behavior. Additionally, we included scaling parameters for each of these

three terms in order to study how varying their contributions could aid in modeling P.

polycephalum. However simulating enough particles to realistically model the evolution

of slime mold would be computationally intractable. Therefore, under the assumption

of propagation of chaos we showed that in the large particle limit the evolution of the

particle model can be described by a macroscopic aggregation-diffusion equation which

can be efficiently simulated. Before embarking on simulating the equation we made some

analytical observations via analysis of the equation’s stationary states. First, we found that

in the case of no drift term that an assumption of Gaussian stationary states implies that the

interaction kernel must be quadratic and discussed how this could be used as a heuristic to

determine a kernel that realistically models P. polycephalum behavior. Then, we showed

that if the contribution from the diffusion term is sufficiently larger than the interaction and

drift terms that the only possible stationary state is 0, deeming this regime as unsuitable

for modeling P. polycephalum. We then ran a series of simulations of the macroscopic

model in order to investigate how to scale the three contributing terms and choose the

interaction kernel in order to model P. polycephalum food seeking behavior. We simulated

three different parameter regimes; a regime in which the drift term dominated, a regime in

which the interaction term dominated and a regime in which the dominating terms were in

competition. In each regime we examined three different interaction kernels, an attractive

kernel with a local interaction, an attractive kernel with long range interaction, and a kernel

that included a short range repulsion. We observed cases that reproduced connected mass

food source aggregation across all three regimes with all kernels however several general

patterns did emerge. We found that strong contributions from the diffusion term tend to
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dampen food source aggregation even in the presence of strong contributions from the other

terms. Additionally, we found that in the absence of strong diffusion, dominance of the drift

term can result in mass separation while dominance of the interaction term can prevent food

aggregation. This suggests a general modeling strategy of scaling contributions from the

drift and interaction terms similarly and larger than the diffusion term.

There are many ways in which the work discussed can be extended. First, we propose

a class of models aimed at introducing a dynamic of disagreement or repulsion to agent

based opinion formation models which previously had mainly only included attractive

forces among the agents. We dub this model the Doppelgänger model and demonstrate

that the models as defined do manage to include a repulsive dynamic while simultaneously

remaining bounded. This observation makes this class of models attractive for further

analysis. As a first application of this fact we characterize the convergence of the model

in the case of a static interaction network. Secondly, a main takeaway from much of the

theory developed in this dissertation is the centrality of the interplay between the interaction

network and opinion distribution. We propose an empirical framework aimed at uncovering

this interplay in an extremely large social media dataset to which we have access. This

framework leverages the techniques of sentiment analysis and graph clustering. Finally,

we propose an approach for leveraging modeling efforts to identify strategies to mitigate

polarization in social networks. This approach recasts the models into an optimization

problem aimed at efficiently distributing moderators with the purpose of maintaining the

structure of the interaction network and preventing the formation of echo chambers.
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A.1 Results concerning symmetric and strongly connected networks

Proposition 10 The matrix L is a diagonal dominant matrix, its eigenvalues satisfy Re(λi) ≥
0 and no eigenvalue λi is purely imaginary except zero.

Proof
The diagonal entries of L satisfy σi =

∑
j, j,i ai j where ai j > 0, thus summing over each

row will give zero and we deduce that L is diagonal dominant. By the Gershgorin disc
theorem the eigenvalues λi are contained in the closed discs B(σi, σi) (see Fig. 3). Thus,
the eigenvalues λi are either 0 or have a real part strictly positive. Moreover, 0 is always
an eigenvalue of L as the constant vector 1 = (1, . . . , 1)T is always an eigenvector of L
associated with the eigenvalue λ = 0.

Lemma 7 If L is irreducible then the eigenvalue 0 is simple.

Proof
By Proposition 1 we have that the real parts of the eigenvalues of L are all nonnegative
and there are no purely imaginary eigenvalues. We also note that 0 is an eigenvalue of L
of at least multiplicity one because it is associated to 1. Consider the matrix D = L − cId
where c ∈ R and notice that λ = a + ib is an eigenvalue of L if and only if λ̂ = a − c + ib
is an eigenvalue of D. Therefore, since 0 is an eigenvalue of L we must have that −c is an
eigenvalue of D. If we choose c such that:

c > max
i

b2
i + a2

i

2ai
,

we have that: √
(ai − c)2 + b2

i < c for all i.

Therefore −c is the eigenvalue of largest modulus of D and since D is irreducible we have
by the Perron-Frobenius theorem that −c must be simple and since the eigenvalues of D are
in a one to one correspondence with the eigenvalues of L we must have that 0 is a simple
eigenvalue of L as desired.

Corollary 8 Suppose L is irreducible and symmetric. Then the solution of the consensus
model, s(t), satisfies:

s(t)→ s̄(0) 1 as t → +∞.

with s̄ the average opinion (2.9). Moreover, |si(t) − s̄(0)| ≤ Ce−λ2t where C depends only on
the initial condition and λ2 is the second largest eigenvalue of L.

148



Proof
The consensus model is a linear system, therefore its solution is given by:

s(t) = e−tLs0

where s0 = (s1(0), ..., sN(0))T . Note that since 1 is an eigenvector of L corresponding to the
eigenvalue 0, it is also an eigenvector of e−tL corresponding to the eigenvalue of 1. Therefore
we may write:

s(t) − s̄(0)1 = e−tL(s0 − s̄(0) 1). (A.1)

Also note that since L is diagonal dominant and symmetric that there exists P such that

L = PDP−1 (A.2)

where D = diag(0, λ2, λ3, ...) and P is the matrix composed of the eigenvectors of L. Since
L is symmetric these eigenvalues are real. By Proposition 1 and Lemma 1 there is exactly
one zero eigenvalue and λi is strictly positive for 2 ≤ i ≤ n. We now define:

y(t) := P−1(s(t) − s̄(0) 1),

this is the difference between the opinion at time t and the average opinion represented in
the diagonal coordinate system. Notice that:

y′(t) =
d
dt

[P−1(s(t) − s̄(0) 1)] = Dy(t).

Therefore, since this is an uncoupled system of linear equations we must have that:

yi(t) = yi(0)e−λit.

So for i ≥ 2 we must have that yi(t) → 0 as t → +∞ exponentially with rate at least λ2.
To conclude, it remains to show that y1(t) = 0. Using that the eigenvectors of L form an
orthogonal basis, the entry y1(t) is given by:

y1(t) = 〈s(t) − s̄(0) 1 ,
1
‖1‖
〉 = s̄(t) − s̄(0) = 0

since the mean value s̄(t) is preserved over time.

A.2 Convergence of linear systems

Lemma 8 Given a linear system defined by:

x′ = Ax , x(0) = x0.
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Assume A has d distinct eigenvalues and a zero eigenvalue of multiplicity m with m linearly
independent associated eigenvectors. If for all λi ∈ Sp(A) with i > m we have that Re(λi) < 0
then

lim
t→+∞

x(t) = u

where u is in the center subspace of A, Ec.

Proof
For ease of notation we will write

Spec(A) = { λ1, .., λd }

where mi is the algebraic multiplicity of λi. We will also write that λ1 = 0. We know that
given λi that we may find mi linearly independent generalized eigenvectors of A, { v1

λi
, ..., vmi

λi
}.

The generalized eigenspace corresponding to λi is given by Eλi = span { v1
λi
, ..., vmi

λi
} and by

the generalized eigenspace decomposition theorem we can find a basis of Rd consisting of
generalized eigenvectors of A. Therefore, we may write:

Rd =

d⊕
i=1

Eλi . (A.3)

We know by the fundamental theorem of linear systems that the solution to the system is
given by:

x(t) = eAtx0.

By (A.3) we may write:

x0 = e1 + ... + ed

where for each 1 ≤ i ≤ d we have ei ∈ Eλi . Notice that since we are given that there are
m1 distinct eigenvectors associated with λ1 = 0 that for each w ∈ Eλ1 we have that Aw = 0.
Consequently we have that A|Eλ1

= 0 which implies that A|Eλ1
= 0 for each t ∈ R. Taking the

matrix exponential of both sides yields

etA|Eλ1 = Id for each t ∈ R.

Therefore we must have that

eAtx0 = eAte1 + ... + eAted

= etA|Eλ1 e1 + ... + etA|Eλd ed

= e1 + etA|Eλ2 e2 + ... + etA|Eλd ed.
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We now claim that for any i ≥ 2:

lim
t→+∞

etA|Eλi ei = 0.

Since we are writing x0 with respect to the basis of generalized eigenvectors of A we have
that

A|Eλi
= λiId + Ni

where NI is nilpotent. Consequently

etA|Eλi ei = et(λiId+Ni)ei

= etRe(λi)etIm(λi)i(Id + tNi + ... +
1
k!

tkNk
i )ei

≤ C1etRe(λi)(Id + tNi + ... +
1
k!

tkNk
i )ei

with C1 > 0. Therefore, since Re(λi) < 0 and every coordinate of (Id + tNi + ... + 1
k! t

kNk
i )ei

is polynomial in t we must have that there exist C > 0 and 0 < ε < −Re(λi) such that∥∥∥∥etA|Eλi ei

∥∥∥∥ ≤ Ce(Re(λi)+ε)t → 0 as t → +∞. (A.4)

We deduce that for i ≥ 2:

lim
t→+∞

etA|Eλi ei = 0

which implies

lim
t→+∞

eAtx0 = lim
t→+∞

e1 + etA|Eλ2 e2 + ... + etA|Eλd ed = e1.

Since e1 ∈ Ec we have that limt→+∞ x(t) ∈ Ec as desired.

A.3 Decomposition into strongly connected components

Lemma 9 If L is the Laplacian of a directed graph G = (V, E) then by relabeling vertices L
can be represented:

L =



B1

B2 0
B3

* . . .

Bk


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Proof
We may partition the vertex set of G, V , into its strongly connected components
{U1, . . . ,Uk }, so that:

V = ]k
i Ui.

If we consider the set {U1, . . . ,Uk } as the vertex set of a new graph G∗ with edge set E∗

given by:

(Um,Un) ∈ E∗ if there exists u ∈ Um and v ∈ Un with (u, v) ∈ E. (A.5)

Then the graph G∗ is a directed acyclic graph as G has been partitioned into strongly
connected components; if a cycle existed all vertices included in the cycle would represent
the same strongly connected component of G by (A.5) contradicting the partition of V into
strongly connected components. Therefore there exists a topological ordering ≤∗ on the
vertex set of G∗. This ordering is given by:

Um ≤
∗ Un if (Um,Un) ∈ E∗.

We only need to label the vertices of V in such a way that they respect the topological
ordering. Then, this labeling of V produces L in the desired form.

A.4 Projection lemma

Lemma 10 Let { ui }i ⊆ R
d and consider C = { v | 〈v, ui〉 ≥ 0 for all i }. If u is in C then

〈PC(x), u〉 ≥ 〈x, u〉 for all x in Rd.

Proof
PC(x) is by definition the solution to the minimization problem:

minimize f (y) =
1
2
‖y − x‖2

subject to gi(y) = 〈y, ui〉 ≥ 0

Since C is closed and convex there exists a unique minimizer y∗ and since the constraints
are linear the Karush-Kuhn-Tucker conditions imply that:

∇ f (y∗) =
∑

i

λi∇gi(y∗)

where λi ≥ 0. Therefore:

y∗ = x +
∑

i

λiui

which implies by definition of C that:

〈PC(x), u〉 = 〈x +
∑

i

λiui, u〉 = 〈x, u〉 +
∑

i

λi〈ui, u〉 ≥ 〈x, u〉

as desired.
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A.5 1-D decay inequality

Lemma 11 For any 0 < r∗ < 1, η > 0 and N > 0, there exist T > 0 and δ > 0 such that:

δ + 2T ≤ min(r∗, 1 − r∗) (A.6)
T 2

2N2η
(
η(1 − δ − 2T ) − 2N(δ + 2T )

)
≥ δ. (A.7)

Proof
We let δ = T 3 and show that for T > 0 sufficiently small both equations are satisfied. Indeed,
the substitution leads to:

T 3 + 2T ≤ min(r∗, 1 − r∗) (A.8)
1

2N2η
(
η(1 − T 3 − 2T ) − 2N(T 3 + 2T )

)
≥ T (A.9)

Since min(r∗, 1 − r∗) > 0 and T 3 + 2T
T→0
−→ 0, there exists T1 > 0 such that (A.8) is satisfied

for 0 < T ≤ T1. Similarly, for the equation (A.9), we notice that

1
2N2η

(
η(1 − T 3 − 2T ) − 2N(T 3 + 2T )

) T→0
−→

η2

2N2 > 0.

Therefore, there exists T2 > 0 such that (A.9) is satisfied for 0 < T ≤ T2. Taking
T = min(T1,T2) and δ = T 3, we deduce a solution to (3.37)-(3.38).
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