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ABSTRACT

Artificial Intelligence, as the hottest research topic nowadays, is mostly driven

by data. There is no doubt that data is the king in the age of AI. However, natural

high-quality data is precious and rare. In order to obtain enough and eligible data

to support AI tasks, data processing is always required. To be even worse, the data

preprocessing tasks are often dull and heavy, which require huge human labors to deal

with. Statistics show 70% - 80% of the data scientists’ time is spent on data integration

process. Among various reasons, schema changes that commonly exist in the data

warehouse are one significant obstacle that impedes the automation of the end-to-

end data integration process. Traditional data integration applications rely on data

processing operators such as join, union, aggregation and so on. Those operations are

fragile and can be easily interrupted by schema changes. Whenever schema changes

happen, the data integration applications will require human labors to solve the

interruptions and downtime. The industries as well as the data scientists need a new

mechanism to handle the schema changes in data integration tasks. This work proposes

a new direction of data integration applications based on deep learning models. The

data integration problem is defined in the scenario of integrating tabular-format data

with natural schema changes, using the cell-based data abstraction. In addition, data

augmentation and adversarial learning are investigated to boost the model robustness

to schema changes. The experiments are tested on two real-world data integration

scenarios, and the results demonstrate the effectiveness of the proposed approach.
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Chapter 1

INTRODUCTION

Artificial Intelligence (AI) has been investigated by researchers for several years.

In recent, successful AI researches on Machine Translation1, facial recognition2, au-

tonomous driving3, and so on have changed our daily life profoundly. However, on the

downside of AI, with the development of machine learning, especially in the era of

deep learning, the size of deep learning models, as well as the size of data required

to support the model training process, is unprecedentedly inflated. For example,

GPT-3 (Brown et al. 2020), the largest language model developed so far, is built

with 175 billion parameters and has been trained on a dataset with the size of more

than 45 TB. The nature of deep learning makes it a heavily data-dependent task.

On the other hand, we were never been in a crisis of data shortage. In fact, large

amounts of data are generated every single day, through every daily activity and

transaction. Unfortunately, most of the data generated are unmanaged, noisy, and

scattered, which could not provide reliable sources for deep learning models training.

Before any implementation of AI tasks, data processing tasks, such as data discovery,

data cleaning, data integration and so on, are always needed.

Most of the data processing tasks are maintained and monitored by human labors,

1http://nlpprogress.com/english/machine_translation.html

2https://ai.google/responsibilities/facial-recognition/

3https://waymo.com/
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approaches like crowdsourcing4 are utilized to gather labor sources and have been

recognized widely in AI area. However, considering the thirst of data for AI tasks

and the low efficiency of human labors, crowdsourcing can not be the final answer.

An alternative solution that minimizes human interventions is urgently needed to

accelerate the process.

1.1 Challenges in Data Integration

Today, data is generated and distributed from various sources, with all kinds

of formats, sizes, and contents. If data scientists want to conduct researches using

certain data, it is not easy work for them to find just one table, with exactly all

the contents they needed, a combination of different sources is required to collect

the eligible data. Data integration is then proposed, in the early 1980s (Heimbigner

and McLeod 1985), to solve the problem. Most of the solutions for data integration

aim to find a mapping between source and target entities so that the source data

schema can be converted into a unified global schema. Figure 1 shows an overview

of a typical data integration task. For relational data, data integration could be

as simple as a join operation, which combines two tables that share similar keys,

but with different column contents. However, data integration is not always an easy

task, it was reported in 2018 that data scientists spent 80%-90% efforts in the data

integration process (Abadi et al. 2020) (Stonebraker, Ilyas, et al. 2018). The frequent

changes and updates of data schema impact the data integration pipeline and cause

system downtimes, and is always the main pain point that requires tremendous human

resources involved in data integration. Schema changes are often caused by software

4https://www.mturk.com/
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Figure 1. An overview of a typical data integration task

evolution that is pervasive and persistent in agile development (Howard 2011), or the

diversity in data formats due to the lack of standards (Campbell et al. 2016).

The research topic of handling schema change for data managed in relational

databases, NoSQL databases, and multi-model databases is well-studied. The funda-

mental idea of them is to capture the semantic mappings between the old and the

new schemas so that the legacy queries can be transformed and/or legacy data can be

migrated to work with the new schemas. There are two general approaches to capture

the semantics mappings: (1) To search for the queries that can transform the old

schema to the new schema (An et al. 2007) (Fagin et al. 2009) (Shen et al. 2014). (2)

To ask the database administrators (DBAs) or application developers to use a domain-

3



specific language (DSL) to describe the schema transformation process (Bernstein and

Melnik 2007) (C. Curino et al. 2013) (Moon et al. 2009) (Scherzinger, Klettke, and

Störl 2013). However, these approaches are not applicable to open data, including

publicly available CSV, JSON, HTML, and unstructured text files, as well as the

potential schema changes that will happen in the future, since neither the history of

schema changes nor the future of schema changes for these data can be recorded or

predicted. It is an urgent need to handle such types of schema changes that minimize

application interruptions and human interventions. Otherwise, with the rapid increase

demands of data in the era of Big Data and Artificial Intelligence, it is unavoidable

to waste a huge amount of time and human resources in manually handling the data

integration application downtimes incurred by schema changes.

In the next section, we will illustrate a motivating example to further explain the

application scenario of this work.

1.2 Motivating Example: COVID-19 Data Analysis

We start with a simple AI task. Assume a group of researchers plans to conduct

a coronavirus outbreak analysis task. In order to avoid biases and errors, various

factors need to be taken into consideration, like the number of COVID-19 confirmed

case, recovered case, the change rate of population movement, and so on. However,

one single data source only covers a part of the data needed, for example, COVID-19

data is maintained by medical organizations like Centers for Disease Control and

Prevention (CDC), while the population mobility data is only provided by technology

companies like Google. An integration of two or more data sources is required to get

the target dataset.
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Just as we mentioned before, Johns Hopkins University (JHU) is one of the

organizations that maintain the worldwide coronavirus cases, the data is updated

on a daily basis as a set of CSV files in their CSSE data repository5. During their

daily updates, the schema changes, which could be the main bottleneck of the data

integration task we proposed, happened frequently. We discovered several types of

schema changes exist in the COVID-19 data repository. The changes include attribute

name changes, attribute addiction and removal, attribute type changes, key changes.

To handle one version of the schema change, data scientists have to hand-write code

to process these data. However, the hand-write code can be easily broken by another

version of schema change. This requires human efforts not only to write the processing

code, but also to fix those issues. Even a separate data repository is maintained by

data scientists to clean the original COVID-19 data into unified format 6. In this

work, we take this real-world scenario as one of our test cases, to better illustrate

and validate our proposed approach. We will discuss more details in the following

chapters.

1.3 Uninterruptible Integration of Schema Changed Data.

We use an example to illustrate how fragile the data integration pipeline is when

schema change happens. Figure 2 shows a data integration task based on simple

Python code. It utilizes APIs from Pandas DataFrame7 to join two CSV files into

5https://github.com/CSSEGISandData/COVID-19

6https://github.com/Lucas-Czarnecki/COVID-19-CLEANED-JHUCSSE

7https://pandas.pydata.org/docs/reference/frame.html
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Figure 2. Data integration on two CSV files using Python code

Note: Table Ratings_V2 is a schema-changed version of table Ratings.

one, simply based on their key. However, once the schema of one CSV file changes,

such as the attribute name updates from tconst to titleId, the Python script will no

longer work and requires human effort to debug and fix it. Each time such schema

changes happened, extra labor will be needed.

In the past few years, Deep Learning (DL) (LeCun, Bengio, and Hinton 2015)

has become the most popular topic in machine learning and artificial intelligence,

and has deeply impacted a lot of research areas, such as computer vision, speech

recognition, natural language processing, and so on. In recent years, many works
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of database systems and applications investigate the utilization of deep learning to

facilitate parameter tuning (Li et al. 2019) (Van Aken et al. 2017) (Zhang et al. 2019),

indexing (Ding et al. 2020) (Kraska et al. 2018), partitioning (Zou et al. 2020), query

optimization (Krishnan et al. 2018), and so on. While deep learning cannot guarantee

100% correctness, in the context of data integration tasks, errors are tolerable as long

as most of the data is correct. This offers an opportunity for applying deep learning to

data integration tasks. Our central hypothesis is: if we train neural network models to

simulate and replace the programmer’s hand-coded data integration application, the

neural network models can be more robust and adaptable to schema changes than the

fixed code, thus an uninterruptible integration pipeline will always work, no matter

when and how often the schema changes happened.

In this work, we discuss and investigate the utilization of deep learning models to

solve the data integration tasks, we abstract the data using a cell-level representation,

we illustrate that our proposed approach works well in such data abstractions.

1.4 Chapter Organization

The organizations of this paper are summarized as follows. Chapter 2 discusses

the previous works related to our problems, background knowledge utilized in this

work will be explained. In Chapter 3, we investigate the stage of problem formulation,

as well as the solution of the problem. In Chapter 4, we illustrate and explain the

main design of our solution. In Chapter 5, we cover the model training process, the

results are given and discussed. At last, Chapter 6 gives the conclusion and proposes

the future works.
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Chapter 2

RELATED WORKS AND BACKGROUND

In this chapter, we will first discuss the related works that exist in the database

area. Background knowledge of deep learning models utilized in this work will also be

explained briefly.

2.1 Related Works in Database

2.1.1 Schema Evolutions

Schema evolution in relational database, XML, JSON and ontology has been an

active research area for a long time (Doan and Halevy 2005) (Rahm and Bernstein

2006). One major approach is through model (schema) management (Bernstein

2003) (Bernstein and Rahm 2000) and to automatically generate executable mapping

between the old and evolved schema (Velegrakis, Miller, and Popa 2004) (Yu and Popa

2005). While this approach greatly expands the theoretical foundation of relational

schema evolution, it requires application maintenance and may cause undesirable

system downtimes (Curino, Moon, and Zaniolo 2008). To address the problem,

Prism (Curino, Moon, and Zaniolo 2008) is proposed to automate the end-to-end

schema modification process by providing DBAs a schema modification language

(SMO) and automatically rewriting users’ legacy queries. However, Prism requires

data migration to the latest schema for each schema evolution, which may not be

practical for today’s Big Data era. Other techniques include versioning (Moon et
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al. 2008) (Sheng 2019), which avoids the data migration overhead, but incurs version

management burden and significantly slows down query performance. There are

also abundant works discussing the schema evolution problem in NoSQL databases,

Polystore or multi-model databases (Hillenbrand et al. 2019) (Holubová, Klettke, and

Störl 2019) (Störl, Klettke, and Scherzinger 2020).

2.1.2 Data Discovery

Data discovery is to find related tables in a data lake. Aurum (Fernandez, Abedjan,

et al. 2018) is an automatic data discovery system that proposes to build enterprise

knowledge graph (EKG) to solve real-world business data integration problems. In

EKG, a node represents a set of attributes/columns, and an edge connects two similar

nodes. In addition, a hyperedge connects any number of nodes that are hierarchically

related. They propose a two-step approach to build EKG using LSH-based and

TF-IDF-based signatures. They also provide a data discovery query language SRQL

so that users can efficiently query the relationships among datasets. Aurum is mainly

targeting at enterprise data integration. In recent, numerous works are proposed

to address open data discovery problems, including automatically discovering table

unionability (Nargesian et al. 2018) and joinability (Zhu et al. 2019) (Zhu et al. 2016),

based on LSH and similarity measures. Nargesian and et al. (Nargesian et al. 2020)

propose a Markov approach to optimize the navigation organization as a DAG for

a data lake so that the probability of finding a table by any of attributes can be

maximized. In the DAG, each node of navigation DAG represents a subset of the

attributes in the data lake, and an edge represents a navigation transition. All of

these works provide helpful insights from an algorithmatic perspective and system
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perspective for general data discovery problems. Particularly, Fernandez and et

al. (Fernandez, Mansour, et al. 2018) propose a semantic matcher based on word

embeddings to discover semantic links in the EKG.

2.1.3 Data Cleaning

The problem of data cleaning usually comes with two phases, identify the dirty

data, and repair it. Chu and et al. (Chu et al. 2016) summarize and compare two

ways that were widely used in data cleaning, the rule-based approaches that rely

on integrity restriction (IR), and the statistical methods which take advantage of

machine learning. ED2 (Neutatz, Mahdavi, and Abedjan 2019) utilize a two-stage

active learning that can automatically learn the correct labels of samples, when lack of

enough information, they proposed that their approach can reduce the dependence of

user labeled samples. HoloClean (Rekatsinas et al. 2017) proposed to unify various data

signals and information such as integrity restriction, data duplication and quantitative

statistics, to construct a factor graph, then the factor graph is used to predict the

right value of variables that needs to be fixed.

2.1.4 Schema and Entity Matching

Traditionally, to solve the data integration problem for data science applications,

once related datasets are discovered, the programmer will either manually design

queries to integrate these datasets, or leverage a schema matching tool to automatically

discover queries to perform the data integration. There are numerous prior-arts in

schema matching (Gottlob and Senellart 2010) (Kimmig et al. 2018) (Miller, Haas, and
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Hernández 2000) (Alexe et al. 2011), which mainly match schemas based on metadata

(e.g., attribute name) and/or instances. Entity matching (EM) (Christen), which is to

identify data instances that refer to the same real-world entity, is also related. Some

EM works also employ a deep learning-based approach (Ebraheem et al. 2017) (Kasai

et al. 2019) (Konda 2018) (Mao et al. 2017) (Thirumuruganathan et al. 2018) (Zhao

and He 2019). Mudgal and et al. (Mudgal et al. 2018) evaluate and compare the

performance of different deep learning models applied to EM with three types of

data: structured data, textual data, and dirty data (with missing value, inconsistent

attributes and/or miss-placed values). They find that deep learning doesn’t outperform

existing EM solutions on structured data, but it outperforms them on textual and

dirty data. In addition, to apply schema matching to heterogeneous data sources, it is

important to discover schemas from semi-structured or non-structured data. Wang

and et al. (Wang et al. 2015) proposed a schema discovery mechanism for JSON data,

among other related works (DiScala and Abadi 2016) (Mior et al. 2017).

2.2 Deep Learning in Natural Language Process

In recent several years, Natural Language Processing (NLP) has benefited several

major advancements from the fast development of deep learning models. Sequence

models like Recurrent Neural Network (RNN) (Elman 1990) are enhanced by novel

mechanisms like Long Short-Term Memory (LSTM) (Hochreiter and Schmidhuber

1997) and Gated Recurrent Unit (GRU) (Cho et al. 2014). Attention mechanism

was then applied to sequence model and proved to be successful (Bahdanau, Cho,

and Bengio 2014) (Luong, Pham, and Manning 2015). In the very recent, the

newly proposed Transformer (Vaswani et al. 2017), a model which takes advantage
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of the attention mechanism while discards the complicated and inefficient sequence

architecture, has already changed the NLP world. The Transformer model and

its variations achieve state-of-the-art (SOTA) performance on various NLP tasks,

including Machine Translation (MT) (Edunov et al. 2018) (X. Liu et al. 2020),

Question Answering (QA) (Radford et al. 2018), Natural Language Inference (NLI) (Y.

Liu et al. 2019) and so on.

2.2.1 Word Embedding

Deep learning models take numerical vectors or matrices as input. In computer

vision, images can be decomposed to pixels and then converted to numerical values,

thus the whole images can be represented by matrices. However, there is no natural way

to convert text data to numerical values. From the statistical perspective, approaches

like Term Frequency Inverse Document Frequency (TF-IDF) (Ramos et al. 2003) tries

to use the frequency of word existing in the corpus to represent each word, the higher

frequency will be assigned with larger values. This approach is less effective since

it loses extra information like the co-occurrence tendency among words, which is a

common case in natural language. On the other hand, people investigate to model

this problem from the learned perspective. We will cover several word embedding

methods based on learned model in the following content.

2.2.1.1 Word2vec

Word2vec (Mikolov et al. 2013) is a learned-based approach that utilized a two-

layer neural network to learn the representation of words. To be more specific, the
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vector representation of one word is affected by its context words. One imperfection of

Word2Vec is that it only considers the vector representation in word level, for example,

one word with different forms (e.g., ’run’ & ’running’) is not considered as similar

during its learning process.

2.2.1.2 fastText

fastText (Bojanowski et al. 2016) improves the method of Word2vec by considering

the vector representation further in the character level. For example, the word

running is treated as a group of separated characters (run, unn, nni, nin, ing),

therefore its similarity with the word run can be discovered. On the other hand, the

length of the characters can be set during the training process, which brings more

adaptation for various text sources.

2.2.1.3 WordPiece

WordPiece (Wu et al. 2016) is a subword tokenization tool that is primarily used

by Transformer models. In order to solve the problem with Out-Of-Vocabulary (OOV)

words, WordPiece is designed to separate a single OOV word into several subwords or

characters, and then trained with a deep LSTM model. During the training process,

parallel training including data parallelism and model parallelism were applied to

reduce the training time latency.
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2.2.2 Basics of Bi-LSTM

Bidirectional Long Short-Term Memory (Bi-LSTM) is modified and improved from

Recurrent Neural Network (RNN), it improves the training stability and performance

by solving the vanishing gradients problem (Pascanu, Mikolov, and Bengio 2013). In its

design, each hidden state in RNN that only does a linear combination of previous state

and current state is replaced by a LSTM unit, while each LSTM unit is constructed by

three different gates, input gate, forget gate and output gate. In order to collect the

information from both sides of an input sentence, a backward LSTM layer is added

after the forward LSTM layer. At last, the output of forward layer and backward

layer will be concatenated to form the model output. Figure 3 shows the overview

architecture of a typical Bi-LSTM model.
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Figure 3. Typical architecture of a Bi-LSTM model

Note: The representation of input words (i.e., subwords, characters, etc.) may vary
when using different approaches of word segmentation.
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The LSTM architecture is mathematically defined as follows in (Goldberg 2016):

sj = RLSTM(sj−1, xj) =[cj;hj]

cj =cj−1 ⊙ f + g ⊙ i

hj =tanh(cj)⊙ o

i =σ(xjW
xi + hj−1W

hi)

f =σ(xjW
xf + hj−1W

hf )

o =σ(xjW
xo + hj−1W

ho)

g =tanh(xjW
xg + hj−1W

hg)

yj = OLSTM(sj) =hj

(2.1)

in which

sj ∈ R2·dh , xi ∈ Rdx , cj, hj, i, f, o, g ∈ Rdh , W x◦ ∈ Rdx×dh , W h◦ ∈ Rdh×dh ;

While xj represents the input vector in position j, i represents the input gate, f

represents forget gate, o represents the output gate.

2.2.3 Architecture of Transformer

Unlike the sequence model, the Transformer model takes advantage of the Encoder-

Decoder architecture as well as the attention mechanism. Figure 4 illustrates the

architecture of Transformer model that was proposed originally (Vaswani et al. 2017).

At first, a learned embedding layer is used to transform the input sentence to embedding

vectors; positional embeddings are then added along with the word embeddings and
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then pass through the encoder (decoder) blocks. Different from the self-attention

used in encoder block, the masked self-attention is applied in decoder block to get the

sequence only from the forward direction, since the ground truth of the latter words

may affect the prediction results of former words.

The original Transformer model was only proposed to solve Machine Translation

tasks, while researchers investigate to extend a pretrained version of the model to more

scenarios. We will discuss it in the next subsection. In the next part, the mechanism

of self-attention will be discussed.
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Figure 4. Transformer model architecture

Source: Vaswani et al. (2017)
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2.2.3.1 Self-Attention

The self-attention mechanism, which is the key component of the Transformer

model, is based on an assumption that, if the model takes more focus on a smaller

but more important part that is useful for current prediction, instead of considering

the entire input sequence, it can largely promote the effectiveness and correctness of

the large and deep models. The self-attention takes three components as input, query

Q, key K, and value V; The main idea is to map the query to a set of key-value pairs,

the more likely the query and the key, the more weight the corresponding value will

be assigned. The output is then produced by the weighted values. The equation for

computing the output is defined as:

Attention(Q,K, V ) = softmax(
QKT

√
dk

)V (2.2)

2.2.4 Architecture of BERT

Bidirectional Encoder Representations from Transformers (BERT) (Devlin et

al. 2018) is a successful extension of Transformer model. Unlike the early investigations

that only trained and implemented the model on Machine Translation tasks, later

works proposed to pretrain the transformer model on a huge but task-irrelevant

dataset, and then fine-tuning the stored pretrained model on the target dataset (a.k.a.

Transfer Learning), which is proved to be effective on various NLP tasks (Radford et

al. 2018) (Howard and Ruder 2018). BERT, as its name, is formed only by the encoder

block, and takes the input sequence from both forward and backward directions. To

solve the same problem that met in the original Transformer model, instead of using

the masked self-attention layer, BERT designs to randomly masked out several words
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in input sequence, and then tries to predict the masked tokens during the pretraining

process.

The implementation of BERT mainly includes two steps, an unsupervised pretrain-

ing process and a supervised fine-tuning process.

2.2.4.1 Pretraining

Before directly applying the BERT model to the target scenario, the barebone

model needs to be pretrained on a huge volume of corpus to get initialized. Firstly,

the input sentence is converted to tokens by using WordPiece tokenizer, such process

is named tokenization. Before getting input into the model, 15% of the whole tokens

are randomly chosen to be masked out, among them (1) 80% will be replaced by

[MASK] token; (2) 10% will be replaced by a random token; (3) the rest of 10% will

keep unchanged.

The pretraining process is designed to cover two objectives.

• Masked Token Prediction Predict the [mask] token based on its neighbor

tokens.

• Next Sentence Prediction Some NLP tasks (e.g., Question Answering, Natu-

ral Language Inference) aim to predict the relationship between two sentences.

The next sentence prediction is designed to help the model to learn a better

understanding of sentence relationships.
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2.2.4.2 Fine-tuning

A pretrained model works well, but only on the particular dataset, especially on

those that have been seen during the training process. This is far away from satisfactory

since once the dataset or target downstream tasks change, all the resources and time

cost on the previous pretrained model are wasted. The fine-tuning process is designed

to maximize the use of the pretrained models. Based on the feature of new input

samples, the model tries to adjust its learned weight and thus has a better adaptation

to the new dataset. A common way to implement the fine-tuning is simply adding a

fully connected (FC) layer and softmax layer after the output of pretrained model.

This design makes the fine-tuning process fast and low-cost. Ideally, for every different

type of dataset or downstream task, we can fine-tuning a unique model, based on the

same pretrained model. The fine-tuned BERT models obtain SOTA performance on

various downstream tasks.
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Chapter 3

PROBLEM FORMULATION AND STUDY

Data integration requests usually come from the researchers and users who were

not familiar with the basic knowledge of database systems. We formulate our data

integration problem as a real-world request of integration task required by non-experts.

Users only have to provide the schema of their expected target dataset, and the

candidate sources dataset they want to extract content from. Figure 5 shows the

overview of our formulation of the data integration problem.

3.1 Problem Formulation

3.1.1 Preliminary Assumption

Firstly, even though the source datasets may have heterogeneous formats such

as CSV, JSON, text, etc., it is a relatively easy work to parse those data to tabular

format. We assume that in a typical data integration scenario that converts a set of

source datasets into one target dataset, each of the source datasets will be preprocessed

to a tabular table with clearly defined keys and attributes. On the other hand, the

target dataset defined by each integration task must be tabular too. In this situation,

each cell in the target dataset can be uniquely identified by its row identifier and

attribute name.
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Figure 5. Data Integration: modeling the mapping from source repository to target
table

3.1.2 Problem Statement

We address the problem of data integration with schema changes as follows: Given

a fast-evolving data repository S = {Snij ∈ Sn|∀Sn ∈ S}, where Sn represents the

n-th table that extracts from the repository through a data parsing process, with a

clearly defined schema. For each data integration request, the user input specifies the

expected target table schema, with number of p attributes A = {aj}(0 ≤ j ≤ p), as well

as a length of q attributes array Ak = [ak0, ..., a
k
q ] that serves as key. The user further

denotes a set of existing possible key values in the target table as R = {Ri}(0 ≤ i ≤ n).

Based on the aforementioned conditions, we aim to predict data sample Snij (we

further abstract the sample Snij based on various data granularities) based on its

key value Sni and attribute value Snj to its target position [Ri, Aj] using the model

f{Snij → (Ri ∗ Aj) |∀i ∈ [0, n],∀j ∈ [0, p]}. Samples from source tables that

{Snij|i ̸∈ [0, n] ∨ j ̸∈ [0, p]} will be taken as discard.
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3.2 Problem Study

3.2.1 Modeling Data Integration as Prediction Task

We start from the hypothesis proposed before: The deep learning models will be

more robust to the schema changes than traditional rule-based integration systems,

thus the data integration pipeline won’t be easily interrupted by schema changes. We

support our idea by starting with several discoveries.

First, the traditional data integration application actually tries to encode the

mapping relationship between the entities in the source datasets and the entities in

the target datasets, such non-linear relationship is usually represented through a set of

data processing operators such as join (including 1-1 join and 1-many join), aggregate,

filter, projection, union, and so on. On the other hand, modern deep learning models,

especially supervised learning, also aim to learn the non-linear relationship between

the input sample features and the assigned labels. It is natural thinking to replace

the traditional operator-based data integration, using deep learning models. In this

work, we will demonstrate that a broad class of data integration programs consisting

of these operators can be formulated as a predictive problem and modeled using

state-of-the-art neural network models.

Second, we find the data integration application code based on data processing

operators will be easily interrupted by schema changes. However, the neural network

models are used to handle the variety and can be further trained with robustness to

handle most types of schema changes. The feature-label representation of a predictive

problem is significantly more flexible than the fixed input formats expected by each

data processing operator in a dataflow computation graph. For example, if several
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related source datasets are denormalized into a wide dataset, it will interrupt a

program that contains a join operation of the original source datasets. While it won’t

affect a neural network model, in which each training sample could represent a cell

(or higher granularity like a multi-cell and a tuple), which is the smallest granularity

of data elements that is parsable from a source dataset, such as a field in a CSV

or tabular file, a leaf node in a JSON object, or a token in a free text file. The

needed data processing operators become different, while the features (e.g., contexts)

of each source cell remain the same after such denormalization. In addition, data

augmentation, where various pre-defined schema changes can be generated and added

to training data, and adversarial learning, where perturbations are added during the

training process, could be utilized to make the model robust to schema changes.

3.2.2 Modeling Source Data with Various Data Granularity

No matter what initial format the source dataset is, we convert it to tabular

tables based on the data parsing process, as we illustrated before. Then the tabular-

format source dataset can be viewed as a set of samples, during the model training

process. We observed potentially at least five candidate abstractions of the samples

for the prediction problem formulation: dataset-based, object-based, supercell-based,

attribute-based, and cell-based. Figure 6 illustrates an example of various levels of

representations.

We find it almost impossible to collect sufficient training data represented at the

dataset-level, thus we will not discuss the dataset-level representation in the rest of

the paper.

For object-based abstraction, each training sample represents an object, and labels
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Use scenario: COVID-19 outbreak prediction
Global_Mobility_Report.csv

Country_
Region

Sub_Re
gion_1

Sub_Re
gion_2

... Date Retail Grocery

US South
Carolina

Abbeville 
county …

3/20/
2020

-35 19

US South
Carolina

Aiken
county …

3/20/
2020

-19 15

03-20-2020.csv
Date Admin2 Province_

State
Country
_Region

Confirmed Recovery …

3/20/20
20

Abbeville SC USA 63 0 …

3/20/20
20

Aiken SC USA 13 0 …

Target Table
Time Subregion Region Confirmed

_cases
Recovery
_cases

Grocery 
_mobility

Retail_
mobility

03-20-
2020

South
Carolina

US 76 0 17 -27

Integration

3

Dataset-level

Attribute-levelObject-level

Cell-level

SuperCell-level

Figure 6. In this example, we define five level of abstractions: dataset-based,
object-based, supercell-based, attribute-based, and cell-based.

specify how the object is mapped to the target table, e.g., which target rows the

object is related to, how each attribute in the object is mapped to the attributes in

the target table, and the aggregation function of each target attribute. The problem

is that at this coarse granularity, too many labels need to be introduced, which will

greatly reduce the prediction accuracy, as to our observation.

For attribute-based abstraction, each training sample represents an attribute in

a source dataset. Some attributes exist in only a few objects, while some attributes

are shared by most of the objects. Labels are used to indicate how a source attribute

is mapped to a target attribute. Although a predictive problem in this abstraction

can reveal the joinable or unionable attributes and can facilitate simple equi-join and

union, and can easily perform attribute projection tasks. Unfortunately, it cannot

express many other data processing logics such as filtering, aggregation, and join

with complicated predicates, because these operations require information regarding

individual objects, which are missing in this abstraction. In addition, if the task is

simply to tell the mapping relationship between source and target attributes, using

locality sensitive hashing to compute a signature for each attribute based on all of its
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values will be more straightforward than a deep learning approach, as demonstrated

in many data discovery researches (Miller 2018) (Zhu et al. 2019).

Given the shortcomings of the above abstractions, we decided to adopt a multi-level

granularity-based abstraction. The first is the cell-based abstraction, where a cell is

the value of an attribute in an object, and it is the smallest parsable unit of data.

Each cell in the source datasets is described using features extracted from its context,

including the attribute name of the cell, and the non-numerical attribute values in the

object, such as the categorical values, and self-growing values. The prediction labels

associated with each cell include three parts: the cell’s key identifier in the target

table, its column identifier in the target table, and the aggregation functions that will

be applied to all cells mapped to the same position (e.g., sum, average, max, min,

replace old values, discard new values).

Secondly, we chose another supercell-based abstraction, which sightly enlarged

the granularity compare to cell-based abstraction. A supercell is a group of cells

that always show up together in the source table and always be mapped together

in the target table. For example, attribute Confirmed and Recovery that shown

in Figure 7, are considered as a supercell in the data abstraction. The information

needed to construct the supercell abstraction, for example, which attributes are more

likely to show up together, how many attributes should be included in the supercell,

is provided by each data integration request.

The coarser-grained of the representations, the fewer times of inferences are required,

and the more efficient the prediction is. However, a coarser-grained representation

also indicates that the prediction task is more complex and harder to train a model

with acceptable accuracy, because a training sample will be larger and more complex

than other fine-grained representations, and the mapping relationship to learn will
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naturally become more complicated. We will flexibly leverage the trade-off between

the time overhead and performance.

3.2.3 Handling Schema Changes

Schema changes in RDBMS (C. A. Curino et al. 2008) (Sjøberg 1993),

XML/JSON (Moro, Malaika, and Lim 2007), NoSQL stores (Scherzinger and

Sidortschuck 2020), ontology (Stojanovic 2004), and object-oriented databases (Baner-

jee et al. 1987), have been well characterized. We identify a number of schema changes

that will interrupt user programs, such as dimension pivoting, attribute ordering

change, key ordering change, removal of irrelevant attributes, removal of irrelevant

datasets, denormalization, normalization, renaming of attributes, reformatting of cell

values, key expansion, and so on. Our cell-based representation will not be affected by

dimension pivoting, attribute ordering change, denormalization, and normalization of

datasets, because the context for a cell remains the same in these cases. Therefore, a

model trained with our proposed representation is by its nature robust to these types

of schema changes. There remain four types of schema changes that will confuse our

proposed model: (1) the renaming of attributes; (2) reformatting of cell values; (3)

key expansion; (4) key ordering changes.

To address the problems, we inject corresponding perturbations to augment training

data so that the training process is aware of and can be robust to these schema changes.

The details of data augmentation will be discussed in Chapter 4.
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Chapter 4

SYSTEM DESIGN: DATA INTEGRATION BASED ON DEEP LEARNING

MODELS

In this chapter, we present and explain the details of our proposed method based

on deep learning models. As shown in Figure 7, during the training stage, the

existing data sources at earlier timestamp will be used as training dataset, with data

augmentation applied. While during the inference stage, even if the data sources have

been changed through many times of evolutions, the trained models are still robust

enough to handle them.

4.1 Applicable Data Integration Scenario

We start from the data integration scenarios we mainly focus on, COVID-19 data

and Machine Log data. These two are real-world datasets that have either been

through frequent schema evolutions during the development of data repository, or

have been covered with natural schema variations because of the various data sources.

Based on that, we considered them as applicable integration scenarios to validate our

proposed approach. We will explain each of these datasets in the following content.

4.1.1 COVID-19 Data Integration

As described in the motivating example, in this scenario, we try to integrate
two independent data sources, the coronavirus data repository maintained by Johns
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Figure 7. Overview: Data integration based on deep learning models

Note: Different timestamps or positions represent different versions of dataset that
are affected by schema changes or schema variations.

Hopkins University (JHU)8, and the Google mobility data9. The former dataset
records the trend of COVID-19 cases with times, sorted by the geographical locations
worldwide, and the latter one mainly contains the changes of human activities during
the period of COVID-19, also sorted by similar geographical information. It is intuitive
to integrate these two datasets based on the information they shared but not identical.
The shared attribute that exists in both datasets, geographic information, can be
treated as the join key, if we describe this data integration in the context of database
join operation. However, since the shared keys are not in the same level of geographical
information, as well as the schema changes happen frequently in COVID-19 data
repository, as shown in Figure 8, it is impractical to use a simple join operation in
this scenario.

8https://github.com/CSSEGISandData/COVID-19

9https://www.google.com/covid19/mobility
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(a) Examples of schema updates for COVID-19 dataset

(b) Number of schema changes that happened in COVID-19 dataset

Figure 8. During the development of COVID-19 data repository, schema changes
happened frequently and continuously

Table 1 shows the basic schema of COVID-19 and Google mobility data. Due

to the versioning updates and the changing of data usage, we also observed various

schema evolutions include but not limited to attribute name changes (e.g., Longitude

→ Long_), addition and removal of attributes (e.g., from six attributes to fifteen

attributes), attribute type changes (e.g., date formats), key changes (e.g., from

country/region, province/state to country_region, province_state, admin2.

Table 2 shows the schema changes we covered in the COVID-19 data integration

scenario. We choose the dataset with the earlier version of schema as the training

samples, the dataset after several rounds of schema evolutions as the testing samples.

We use this scenario to validate the effectiveness of the deep learning based approach

against natural schema changes that happened in data repositories.
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Table 1. Schema of COVID-19 and Google Mobility dataset

Dataset Key (Row Identifier) Attributes
COVID-19 Case Province/State,

Country/Region
Last Update, Confirmed,
Deaths, Recovered,
Latitude, Longitude

Google Mobility Data country_region,
sub_region_1,
sub_region_2

retail, grocery, parks,
transit, workplaces,
residential

Note: The full attribute name for Google Mobility Data table:
retail: retail_retail_and_recreation_percent_change_rom_baseline;
grocery: grocery_and_pharmacy_percent_change_from_baseline;
parks: parks_percent_change_from_baseline;
transit: transit_stations_percent_change_from_baseline;
workplace: workplaces_percent_change_from_baseline;
residential: residential_percent_change_from_baseline.

Table 2. Attribute changes exist in COVID-19 data table

Training Data Inference Data
Province/State Province_State
Country/Region Country_Region

/ Admin2
Last Update Last_Update
Confirmed Confirmed

Deaths Deaths
Recovered Recovered
Latitude Lat

Longitude Long_
Recovered Recovered

Note: Change of attribute Admin2 is in fact key expansion rather than attribute
addition.

4.1.2 Machine Log Data Integration.

Cluster monitoring tools integrate various performance metrics of a cluster

of devices by periodically running the device-local API, such as an omnipresent
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“top“ command. However, when new types of platforms or devices are involved,

hardware/software heterogeneity can cause problems. For example, CPU utilization

is called “CPU_usage_user” in macOS, “cpu_user“ in Android, and “Cpu_us” in

Linux. Therefore, the tool cannot work with these new types of systems without

additional coding efforts. This problem is prevalent in machine or sensor data inte-

gration, where devices of different models and manufacturers may use different data

schemas to describe similar information. We named this scenario as machine log data

integration. To be specific, we collect the log data of machine performance using “top”

command on three different platforms, Linux, Android and macOS. Each platform’s

data comes with similar content but various representations, which also impede the

use of traditional rule-based data integration.

Table 3 shows the basic schema of machine log data on different platforms. The

representation of key on all three datasets keeps the same, which is the timestamp

of each machine log data generated. While the difference in attribute name and its

corresponding value are the main challenges that need to be solved by our proposed

deep learning based approach.

Table 4 compares the difference of attribute names across three platforms. In

this scenario, data shared with the same timestamp need to be combined. Instead

of natural schema changes that happen during the time, the schema variations exist

across different machine platforms. Because of that, we chose the data generated

on macOS and Linux as our training samples, and the data comes from Android to

be the inference samples. The deep learning based approach also needs to prove its

feasibility on the variation of schemas.
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Table 3. Schema of machine log data on three platforms

Data Source Key (Row Identifier) Attributes
macOS time Load_Avg, Processes_total,

Processes_running, Processes_sleeping,
CPU_usage_user, CPU_usage_sys,
CPU_usage_idle, PhysMem_unused,
PhysMem_used

Linux time load_average, Tasks_total, Tasks_running,
Tasks_sleeping, Tasks_stopped,
Tasks_zombie, Cpu_us, Cpu_sy,
Cpu_ni, Cpu_id, Cpu_wa, Cpu_hi,
Cpu_si, Cpu_st, Mem_MiB_total,
Mem_iB_free, Mem_MiB_used,
Mem_MiB_buff, Swap_MiB_total,
Swap_MiB_free, Swap_MiB_used

Android time Tasks_total, Tasks_running,
Tasks_sleeping, Tasks_stopped,
Tasks_zombie, cpu_user, cpu_sys,
cpu_nice, cpu_idle, cpu_sirq,
Mem_total, Mem_free, Mem_used,
Mem_bufferes, Swap_total, Swap_free,
Swap_used

4.2 Classification Tasks

In our proposed deep learning based approach, we model the entire data integration

task as three independent classification tasks, as shown in Figure 9. Key prediction

and attribute prediction are similar to traditional classification tasks, designed to

classify the join keys and columns for each sample. Aggregation mode prediction is

only used in COVID-19 data scenario since the keys are coming with different levels in

different datasets. For example, COVID-19 dataset consists of a 2-level key including

information about country and state, while the 3-level key in Google Mobility data
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Table 4. Comparison of the different schema for machine log data

Training Data Inference Data
macOS Linux Android
time time time

Load_Avg load_average /
Processes_total Tasks_total Tasks_total

Processes_running Tasks_running Tasks_running
Processes_sleeping Tasks_sleeping Tasks_sleeping

/ Tasks_stopped Tasks_stopped
/ Tasks_zombie Tasks_zombie

CPU_usage_user Cpu_us cpu_user
CPU_usage_sys Cpu_sy cpu_sys

/ Cpu_ni cpu_nice
CPU_usage_idle Cpu_id cpu_idle

/ Cpu_wa /
/ Cpu_hi /
/ Cpu_si cpu_sirq
/ Cpu_st /
/ Mem_MiB_total Mem_total

PhysMem_unused Mem_iB_free Mem_free
PhysMem_used Mem_MiB_used Mem_used

/ Mem_MiB_buff Mem_bufferes
/ Swap_MiB_total Swap_total
/ Swap_MiB_free Swap_free
/ Swap_MiB_used Swap_used

comes up with country, state and county. This requires aggregation operations when

conducting the data integration task.

4.2.1 Key (Row Identifier) Prediction

In order to complete a data integration task, it requires us to join two tables

together based on their shared keys. In the context of deep learning models, we design

the key prediction that helps categorize and locate the join key in source and target
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(a) Overview of data integration on COVID-19 data

(b) Example of Key Index Prediction

(c) Example of Column (attribute) Prediction

(d) Example of Aggregation Mode Prediction

Figure 9. Green frames annotate the position of keys in the table and data samples,
the label represents the index of keys in the whole samples; Red frames annotate
columns in the table and data samples, the label represents the different class of
columns; Yellow frames annotate the rows need to be aggregated in the table and
data samples, the label represents various aggregation modes (summation, average,
etc.). The label shown may not be the same as the real training process.
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tables. To be specific, we try to classify the key of each sample, thus the keys in each

source table as well as in the target table that belong to the same class can be mapped

together, even if the schema changes are involved in the source data. As we discussed

before, the label representation for keys can be formatted in two ways: (1) based on

the index (position) of the key in the supercell-based object. (2) based on the key

value itself.

Since the values of key in machine log dataset, time, are unlimited and self-growing

when new data is generated, it is impractical to use key values to identify different

keys. Based on that, we will mainly take COVID-19 dataset as an example to explain

the difference between these two concepts.

4.2.1.1 Key Prediction Based on Value

With this design, the label will be based solely on the content of key values, keys

that represent the same content will be signed with the same label (even though

their actual value might be different due to the scheme changes or variations). This

value-label mapping will be learned during the training process, and further schema

changes can be handled by the models trained with robustness. In this case, we

utilize a cell-level abstraction of the training and testing samples, so that the input

of the deep learning models is a word sequence with the format as [key: key value,

attribute: attribute]. However, there exist problems in this design of prediction task.

For example, the key value in the table can be continuous or self-growing, such as the

datetime, growing IDs, phone number, and so on. If we take these keys as training

labels, it causes poor accuracy, as the testing labels will never be seen in the training
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process. To solve the problem, for the key label, we provide another option that uses

the position of the key in the source cell features to indicate it.

4.2.1.2 Key Prediction Based on Index

In the situation that the number of classes for keys in samples could be too large,

or self-grew when new data participated in the data integration, the key-label mapping

based on value is unfeasible. In this design, we categorize the keys with two steps.

At first, instead of directly classifying the key itself, we care more about the position

of the key among the whole sample with the supercell-level abstraction. After we

identify the right position of the key, a parsing phase is used to map the key from the

source to target table. If the representation of keys keeps the same between source

and target, the mapping operation happens naturally, based on key values. Otherwise,

a similarity-based approach can be used to pair the key. To be specific, we embed the

text sequence of keys into vectors using word/sentence embedding tools, and compute

the similarity pairwise between the source keys and target keys.

In this case, we construct the input with the format as [key: key value, attribute

1: attribute 1 value, attribute 2: attribute 2 value, ...].

4.2.2 Attribute (Column) Prediction

The key prediction is designed to handle the scenario that two tables have the same

key values, no matter what the attributes are, which is more like the join operation.

In addition, we design the attribute prediction task to simulate the union operation
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so that the same attribute in two source tables can be mapped together in the target

table.

Since the number of attributes is limited in the source or target dataset, we will

simply predict the attribute based on its value. The attributes that are newly added

from the schema change and were not shown in the target table, will be taken as

discard.

We model the attribute prediction task with two different data granularities. For

supercell-level data abstraction, one sample covers more than one attribute, thus

the prediction becomes a multi-label classification task, while for cell-level data

abstraction, it is a simpler single-label classification since one sample (cell) only

contains one attribute. We will discuss the difference between these two abstractions

shown in experiment results in the next chapter.

4.2.3 Aggregation Operation Prediction

One of the schema changes we observed in COVID-19 dataset is key expansion.

To be specific, the geographic information that forms the key of COVID-19 dataset

comes with multiple levels and the number of levels changes during the time. At the

initial schema of COVID-19 dataset, only nation/region level and state/province level

information is covered, while during the version updating, a lower level of county

information is added in the table as a part of the key. In order to integrate data

with key expansion changes, the aggregation operation needs to be done so that

all the rows with low-level counties belonging to the same high-level state will be

aggregated as one. The aggregation operations vary depending on the context of

attributes. For example, the operation for attribute Confirmed is an addition, since
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all the confirmed cases under counties need to be added together to get the confirmed

cases for the whole state. On the other hand, the operation for attribute residents is

average, since it represents the percentage change of resident activity. The aggregation

information for each dataset and attribute is extracted from: (1) We parse the data

integration application code with join operations to get the information including

whether the aggregation exists in this scenario or not, as well as which aggregation

mode should be chosen; (2) We specify the aggregation information together with

the source dataset, thus when an incoming integration request requires such source

dataset, the aggregation prediction can be done. We further propose to augment the

training data with hierarchical relationships, we will discuss the details of it in the

data augmentation part.

The data abstraction for aggregation prediction task is based on cell-level, the

input is formalized with the same format of key value prediction: [key: key value,

attribute: attribute value].

4.2.4 Performance Acceleration

The above-mentioned approach requires multiple inferences over each cell, which

incurs significant overhead. However, we observe that many open datasets are in

certain formats so that each row or record has the same structure, and the key is

always in the same position, such as CSV files, or performance logs. Therefore, we only

need to parse and make column identifier inferences on the cells of one tuple, while

the learned mapping is directly applicable to the cells in other tuples. Furthermore,

the key index prediction only needs to be performed on one cell, as all cells in the

same tuple share the same key. This will significantly reduce the overhead.
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4.3 Data Augmentation

Automatically searching random perturbations to represent potential schema

changes and adding these perturbations to augment the training data is an effective

way of increasing the amount of training data and boosting model performance.

Inspired by the progress that data augmentation achieved in NLP area (Feng et

al. 2021) (Wei and Zou 2019), we propose to add specially designed perturbations to

our training data, to improve the robustness of training models to schema changes.

Each of our training samples consists of several attribute name-attribute value

pairs that describe one unit of the data abstraction (object, supercell and cell), and

form as a plain sentence. To address the attribute name change and value format

change challenges, We propose: (1) for each sentence randomly sampled following a

uniform probability distribution, to add new sentences by replacing the word using

synonyms extracted from synonyms dictionaries, such as Thesaurus (Zhang, Zhao, and

LeCun 2015) and customized synonym dictionary based on expert’s domain knowledge;

(2) for each word randomly sampled, to diversify the form of words leveraging the

stemming and prefixing words generated by Natural Language Toolkit (NLTK)10. To

address the key ordering change, for each training sample randomly sampled, we

randomly change the position of the key in the feature vector. To address the key

expansion change, in the features for each training sample that is randomly sampled,

we look for a categorical attribute that can be expanded into an array of sub-level

concepts (e.g., Arizona is flattened into an array of counties in Arizona) leveraging the

hierarchical relationships in ontology databases such as Google Knowledge Graph11,

10https://www.nltk.org

11https://developers.google.com/knowledge-graph
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then we add new training samples by flattening this training sample into a list of

sub-level training samples with summation aggregation function (e.g., the numbers of

confirmed, death, and recovered COVID-19 cases of all counties belonging to Arizona

need to be summed up respectively before being mapped to the target table). For

example, a source training sample (“AZ“, “confirmed”, 33) will be replaced by a set of

new training examples such as (“AZ“, “Maricopa”, “confirmed“, 13, add) and (“AZ”,

“Pima“, “confirmed”, 20, add) in the training data as perturbations. Figure 10 shows

several data augmentation examples.

(a) Synonyms Replace

(b) Word Stemming and Prefix

(c) Hierarchical Relationship

Figure 10. Examples of data augmentations added to source dataset
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Chapter 5

EVALUATION AND EXPERIMENT RESULTS

5.1 Environment Setup

Our evaluation focuses on two unmanaged data integration scenarios: COVID-19

data integration, and machine log integration, as we illustrated in Chapter 5. We

train and test the Transformer model with PyTorch12, and the Bi-LSTM model with

TensorFlow 13, both using a Google Colab14 instance that has installed one P100 GPU

with 25.5 GB GPU memory. The key value/index predictions are trained with 50

epochs, while the column/aggregation action predictions are trained with 60 epochs.

5.2 Model Training and Hyperparameters

5.2.1 Training and Testing Dataset Construction

In order to construct the training and testing dataset we need in the experiment,

we first extract the source data from JHU COVID-19 repository and Google Mobility

data website, both of them are CSV files. In addition, we generate the machine log

data from three different operating systems, Linux, macOS and Android, which are

12https://pytorch.org/

13https://www.tensorflow.org/

14https://colab.research.google.com/notebooks/intro.ipynb
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Figure 11. We further parse the original data through the segmentation and data
cleaning stage to construct the training dataset.

Note: The numerical values are kept in COVID-19 dataset since they were only a
small proportion. While we remove all the numerical values in Machine log dataset as
their existences affect the results.

all plain text. We manually parse these data to tabular format with clearly specified

schema to construct the source tables and target tables in each scenario.

Since the original data extracted from the source data tables contain irrelevant

symbols and contents like dash, slash, numerical numbers and so on, we parse the

source and target data through a data segmentation and cleaning phase so that both

the training and testing data are formed by the word sequences. Figure 11 shows an

example that parses the original samples to training samples based on word sequences.

After we parse the data samples to the format of word sequence, we utilize data

augmentation to inject perturbations into the training dataset. We already explained

the construction of our data augmentation approaches in the previous content, thus

we will not cover the details here.

For Bi-LSTM model, we utilize a fastText model that pretrained on a larger source

data (for example, we use the COVID-19 data generated from March 1st, 2020 to

March 20th, 2020 as the training corpus for fastText model), as the embedding layer

that converts the word sequence to numerical vectors. For Transformer model, a
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pretrained word tokenizer 15 is used to convert the word sequence to tokens, and

the token sequences are further handled by the model to learn a reasonable vector

representation. The noteworthy thing here is, since both the word embedding and

tokenization tools include the mechanism of Out-Of-Vocabulary (OOV) words, not all

words in the original samples are converted to the vectors or tokens, some numerical

values, as well as the uncommon words that only exist a few times, will be taken as

noises during the converting and learning process.

In summary, the training data for COVID-19 integration scenario, includes 33,

174 samples collected from the JHU COVID-19 data on March 20th, 2020, while

the testing data includes 49, 410 collected on later dates of March 23rd, 2020. The

training data for machine log integration scenario, includes 60, 000 samples collected

from the Linux and macOS platform, while the testing data includes 17, 000 collected

from the Android platform.

5.2.1.1 Data Labeling

For each independent prediction task, we construct an independent label space

based on the dataset. Table 5 illustrates the number of labels assigned to COVID-19

and Machine Log data integration scenarios. Key-index prediction is built based

on the supercell-level sample abstraction, the length of supercell used in COVID-19

dataset is 6, and 8 in Machine Log data. COVID-19 dataset contains 2804 different

key values, thus the number of labels based on key values is 2804. Besides, COVID-19

dataset and Machine Log dataset covers 12 and 21 attributes respectively. Only 2

aggregation modes, summation and average, are included in the COVID-19 dataset.

15https://huggingface.co/bert-base-uncased
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Table 5. Number of labels assigned to COVID-19 and Machine log training dataset,
with different prediction tasks

Prediction Task COVID-19 dataset Machine Log dataset
index-based key prediction 6 8
value-based key prediction 2804 /
column prediction 12 21
aggregation mode prediction 2 /

Note: The value-based key and aggregation mode prediction are not applicable to
Machine Log dataset.

5.2.2 Model Description

For the experiment tested on Bi-LSTM model, we choose to embed the input

samples using a pretrained fastText model under skip-gram mode, with the embedding

size of 150. For both forward and backward LSTM layers, the hidden size is chosen as

512, and the hidden size of 256 for the following fully connected layer. The model

was trained using Adam Optimizer (Kingma and Ba 2014) and Dropout (Srivastava

et al. 2014) with the rate ρ = 0.8. The model training is tuned with the learning rate

η = 0.0001 and batch size b = 64.

For Transformer model, we adopted the pretrained tokenizer from BERT (’bert-

base-uncased’). We construct our transformer model using 12 encoder blocks, for each

with 8 attention heads, and the hidden size of 128 (L=12, H=128, A=8). The model

was also trained using Adam Optimizer and Dropout with rate ρ = 0.9. We set the

learning rate with η = 0.0001 as well as the batch size with b = 64

For each data integration task, we used three independent but identical Bi-LSTM

and Transformer models to train three independent prediction tasks (for Machine Log

dataset we just use two).
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5.3 Evaluation Results

Table 6. Testing accuracy using Transformer model, without data augmentations

Task Accuracy F1 Score Precision Recall
COVID-19:
index-based key prediction 87.18% 0.8743 0.9057 0.9394
COVID-19:
value-based key prediction 100% 1 1 1
COVID-19:
column prediction 100% 1 1 1
COVID-19:
aggregation operation prediction 100% 1 1 1
Machine-log:
index-based key prediction 93.32% 93.32% 93.32% 93.32%
Machine-log:
value-based key prediction / / / /
Machine-log:
column prediction 82.35% 0.8235 0.8235 0.8235

Note: The value-based key prediction is not applicable due to the self-growing key.
The accuracy is computed based on cell-level samples, rather than object-level. All
the metrics are calulated using the ’macro’ average method

Table ?? shows the experiment results get on Transformer and Table 7 shows the

results on Bi-LSTM, both are generated without any data augmentation injected in

the training dataset.

We compute all the metrics including accuracy only based on the cell-level samples,

which means that

accuracy =
correct predicted cells

total number of cells in the table

On the other hand, accuracy can also be computed based on object-level (row-level)

samples, which means that only if all cells in one object are predicted correctly, the

object will be counted as correct.
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By comparing the results get from two models, we discover that the transformer

model that makes use of attention mechanism can achieve better accuracy as well as

other performance metrics than the Bi-LSTM model in column prediction tasks for

the COVID-19 case, and better results in key predictions for machine log case. On the

other hand, the results demonstrate the effectiveness of training separate models to

predict row index labels, column identifier labels, and aggregation actions respectively.

They also verify our assumption that it is possible to use deep learning models to

solve the data integration process.

Table 7. Testing accuracy using Bi-LSTM model, without data augmentations

Task Accuracy F1 Score Precision Recall
COVID-19:
index-based key prediction 87.47% 0.8747 0.8747 0.8747
COVID-19:
value-based key prediction 88.46% 0.8846 0.8846 0.8846
COVID-19:
column prediction 86.10% 0.861 0.861 0.861
COVID-19:
aggregation operation prediction 100% 1 1 1
Machine-log:
index-based key prediction 45.15% 0.4515 0.4515 0.4515
Machine-log:
value-based key prediction / / / /
Machine-log:
column prediction 82.35% 0.8235 0.8235 0.8235

Note: the value-based key prediction is not applicable due to the self-growing key.
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5.3.1 Comparison of Results on Different Granularity of Data Abstraction

We proposed to abstract the data samples in different granularities in the previous

chapter. In the experiment part, We evaluate the results using two different levels of

data granularity, cell abstraction and supercell abstraction.

Table 8. Testing accuracy on Transformer model, based on different data granularity

Task Accuracy F1 Score Precision Recall
COVID-19:column prediction
(supercell based) 95.55% 0.9864 0.9887 0.9841
COVID-19:column prediction
(cell based) 100% 1 1 1
Machine-log:column prediction
(supercell based) 50.1% 0.7344 0.792 0.6844
Machine-log:column prediction
(cell based) 82.35% 0.8235 0.8235 0.8235

Table 8 and Table 9 compare the two abstractions on performance and time

overhead, trained on Transformer model.

Table 9. Time overhead on Transformer model, based on different data granularity

Task Training Time Inference Time
COVID-19:column prediction
(supercell based) 6 min 21 s 3.4 s
COVID-19:column prediction
(cell based) 40 min 12 s 24 s
Machine-log:column prediction
(supercell based) 18 min 43 s 2 s
Machine-log:column prediction
(cell based) 37 min 40 s 10 s

Note: Inference time is measured by inferencing the whole table.
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Table 10. Testing accuracy on Bi-LSTM model, based on different data granularity

Task Accuracy F1 Score Precision Recall
COVID-19:column prediction
(supercell based) 81.50% 0.8745 0.8774 0.8716
COVID-19:column prediction
(cell based) 86.10% 0.8610 0.8610 0.8610
Machine-log:column prediction
(supercell based) 40.05% 0.6875 0.7353 0.6455
Machine-log:column prediction
(cell based) 82.35% 0.8235 0.8235 0.8235

Table 10 and Table 11 show the comparison results that trained on Bi-LSTM

model.

With supercell abstraction, one sample covers multiple attributes and their value,

thus the column prediction becomes a multi-label prediction task, and that causes

model performance loss, compare to single label prediction within cell abstraction.

On the other hand, since one sample cover more attributes, the number of samples

parsed as the training dataset is less, the time overhead for model training and

inference is less for supercell abstraction. In certain circumstances, we can make a

tradeoff between performance and time overhead. For example, when the inference

latency is a priority in the data integration process, we choose supercell abstraction

to parse the training and inference data.

5.3.2 Performance Improvement with Data Augmentation

In COVID-19 dataset scenario, we use testing data extracted from the real-world

JHU database with four types of schema changes: attribute name changes, attribute

value format changes, key expansion, and key ordering changes. For the machine
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Table 11. Time overhead on Bi-LSTM model, based on different data granularity

Task Training Time Inference Time
COVID-19:column prediction
(supercell based) 3 min 42 s 3.7 s
COVID-19:column prediction
(cell based) 18 min 29 s 18.4 s
Machine-log:column prediction
(supercell based) 2 min 27 s 4.1 s
Machine-log:column prediction
(cell based) 5 min 37 s 6.3 s

log scenario, the testing data only contains attribute name changes, attribute value

format changes, and key ordering changes. For both evaluation scenarios, we observed

significant accuracy improvement for handling schema changes by augmenting the

training data (w/ perturbation-1 and w/perturbation-2) as illustrated in Figure 12,

compared to the model trained without perturbations. Perturbation-1 is based on

synonyms extracted from Google knowledge graph, NLTK stemming, and prefix;

Perturbation-2 is based on synonyms extracted from a customized domain-specific

dictionary, NLTK stemming, and prefix. The percentage of perturbations represents

the sampling probability in the training dataset.

5.4 Extra Study

We have also done some extra studies to compare and thus improve the performance

of deep learning based data integration. We investigated to model data integration

as other types of prediction tasks, as well as using other approaches to improve the

model robustness.
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(a) COVID-19 Data (b) Machine Log data

Figure 12. We added the perturbation with 6 different percentage, 1%, 10%, 20%,
50%, 90% and 100%. The results are also compared to the group without
perturbations added.

5.4.1 Next Word Prediction Based on Pretrained Bert Model

Next word prediction is a task that proposed in the published paper of BERT (De-

vlin et al. 2018), the task is designed to take more consideration about the relationship

and context between words, when training the language model, thus improving the

model performance.

In the training process, several words will be masked out as [mask] randomly

in the training dataset, and the model is required to predict every [mask] based on

its context, position and so on. In general, it tries to recover an incomplete text by

predicting all the masked out words.

In the data integration task, we modeled one of the column prediction tasks

as the next word prediction task, where during the training process, we add the
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Figure 13. Modeling column prediction as next word prediction task. The training
dataset is augmented with masked out samples. In inference stage, testing samples
with [mask] is being predicted to get the real attribute name.

attribute name at a fixed position of the whole sentence (i.e, as the last word in

the sentence), and we augment the training dataset by randomly replacing words

including the attribute name to [mask]. After the model training process, the [mask]

corresponding to attribute names will be predicted correctly. Figure 13 illustrates the

modeling of next word prediction task.

The result is shown in Table 12. However, this method can not be generalized. In

our training samples, the number of different words, or the text richness, is limited,

which means the label space for predicting the [mask] is limited, this makes the task

of next word prediction on our dataset easier and less powerful, compared to the

natural English text. Due to the time limit, we will leave this investigation as future

work.

Table 12. Testing accuracy for Next Word Prediction on Transformer Model

Task Accuracy
Machine-log:column prediction
(cell based) 82.53%
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5.4.2 Boosting Model Robustness using Adversarial Learning

Adversarial learning is first proposed in Computer Vision area to boost the model

robustness against malicious attacks or erroneous samples (Goodfellow, Shlens, and

Szegedy 2014). The original training samples were added with adversarial perturba-

tions, before they got input into the training process, and thus making the models

more robust to malicious attacks or noisy samples.

Recently, massive works investigated the effectiveness of adversarial learning on

NLP tasks (Miyato, Dai, and Goodfellow 2016) (Sato et al. 2018) (Michel et al. 2019).

Since in computer vision, the image is represented by the value of each pixel and

the adversarial perturbations can be simply a few pixels’ values that are added to

the whole image. While this is very different in the context of NLP, where training

samples are usually plain text that consists of words, numbers and symbols. In order

to add adversarial perturbations on NLP dataset, there are two popular methods:

• Text data can be converted into vectors through an embedding layer before they

got into the model. The adversarial perturbations can be generated based on

the embedded text vectors, just like it does in image pixel values.

• The perturbation will only be considered at the higher level of words, in which

the words in the text can be replaced by others, so that the prediction results

change completely. This requires an efficient mechanism to search the right

perturbations from the word space, that maximize the loss function. Compare

to the embedding perturbations, this method keeps the semantic context since

the perturbations added will always correspond to real words.

On the other hand, since text samples are embedded into value vectors before they

got into the models, the perturbations can also be generated based on the embedding
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vectors, the easiest way is adding a regularization on each embedding vector, so that

the value keeps in a reasonable range. However, this method does not consider the

semantic context during each perturbation, since the perturbed samples may no longer

correspond to a real word or number. For the data integration task, we utilized the

former method to generate adversarial perturbations based on the embedding vector

of training samples.

Adversarial learning can be seen as a Min-Max optimization problem. First, we

try to identify the worst as well as the optimal perturbation r + adv that maximizes

the loss function ≤, as shown in the following equation:

radv = argmax
r≤ϵ

[ℓ(X+r, Y,W)] (5.1)

where r is the perturbation added to input X, and W is the fixed weight of the

model. ϵ is a tunable parameter that limits the norm of perturbation r. However, it

is infeasible to calculate or even estimate radv using Equation 5.1 directly. Instead,

we can only approximate the value by using the following equations:

radv =ϵ
g

||g||2
, g = ∇wℓ(X, Y,W) (5.2)

where g is the gradient of the loss function ℓ.

The perturbation sample is generated by Xadv = X + bmradv, which is similar to

the scenario of schema changes that happened in the original data. On the other hand,

the perturbation bmradv is bounded by parameter ϵ, and the optimal value of ϵ can

be tuned by approximating the difference between original samples So and schema

changed samples Sp. We will use Vo and Vp to represent the embedding vector for

each of them.

55



Figure 14. Value distribution of the difference between original samples and schema
changed samples

We calculated the difference value V = Vo − Vp between original samples and

schema changed samples, the value distribution of the vector V is shown in Figure

14. Since 95% of the value are distributed in the interval of [-0.476, 0.476], we set

ϵ = 0.476 in our experiment of adversarial learning.

We adopted the Bi-LSTM model with the same parameters, we trained the model

with column prediction on Machine Log data. The result is shown in Table 13. The

result is not satisfied, since we didn’t do much tuning with other hyperparameters,

as well as the problem of adversarial learning itself. We will also leave this as future

work.
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Table 13. Testing accuracy on Bi-LSTM Model with Adversarial Perturbations

Task Accuracy F1 Score Precision Recall
Machine-log:column prediction
(cell-based) 0.1176 0.1176 0.1176 0.1176
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Chapter 6

CONCLUSION AND FUTURE WORKS

6.1 Summary

In this paper, we investigated the data integration problem with schema changes

based on deep learning models. In particular, we studied the problem with the

assumption that, the source datasets are or can be converted to tabular-format data,

and the target table will be specified with clear schema by each integration request.

We utilized a cell-based representation to abstract the tabular data as data samples

with labels that can be effectively learned by the deep learning models. We conducted

experiments on two different data abstractions: cell-level abstraction and supercell-

level abstraction. We also summarized the common types of schema changes existed

in the real-world data sources that interrupt the data integration task. We proposed

a novel way to model the data integration task as several prediction tasks, including

key prediction, attribute prediction and aggregation mode prediction. Besides that,

we proposed to use two deep learning models, Bi-LSTM and Transformer to validate

the effectiveness of our approach. We further made the trained model more robust to

potential schema changes by leveraging data augmentation and adversarial learning,

thus the data integration pipeline won’t be interrupted frequently in the near future.

Our proposed approach works well on two real-world data integration scenarios, each

of which covers light-weighted schema changes samples.
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6.1.1 Limitations

Our current work still has many limitations, including but not limited to: (1)

The adaptivity to various raw data formats. Our current approach is built on the

hypothesis that both source data and target data should be tabular format or can

be converted to tabular format with clearly defined schemas. This requires extra

human labors to check the source data and execute the conversion step; (2) Human

efforts are needed to generate the training dataset. The training dataset is constructed

manually for every data integration task, it is not generalized enough at this moment;

(3)Limitations in our proposed key prediction tasks. The value-based key prediction

cannot work with the self-growing key, and has a poor performance when the label

space of key values is huge. The indexed-based key prediction approach cannot work

with the schema change of new column addition, since after the addition, the index of

key goes beyond the trained index spaces; (4) Model robustness with schema changes.

Our current testing scenarios only cover limited schema changes, which may not be

adaptable to all applications; (5) Performance comparison to attribute-based data

abstraction. We observed the existence of attribute-based data abstraction in our

source dataset, which might be more effective in predicting column mappings than the

cell-based data abstraction, while we did not investigate deeply with this approach.

The work included in this thesis is a part of a project that aims to develop a fully

automatic end-to-end data integration system. We didn’t cover works like automatic

training sample generation, model reusing, and so on in this thesis. We believe that

the conclusion got from this work can be a guideline that leads to more research

investigations on using deep learning models to solve the data integration problems.
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In summary, our contribution in this work can be generalized as following two

points, we proposed:

• A novel solution of data integration tasks based on deep learning models that

significantly reduces system downtime;

• A robust modeling of current data integration processes that involve tabular

data with schema changes.

6.2 Future Work

The researches on data integration have been done for years, while there is still no

perfect solution that automates the whole data integration pipeline, from the initial

stage of related data discovery (Miller 2018), to the final data assembly stage. We

present some future works that could improve our works that have been done in this

paper, as well as some promising research directions:

• In database area, a complete system is important and essential, to being rec-

ognized as a successful product. Our current work can be improved by but

not limited to: (1) proposing a mechanism that manages the model training,

fine-tuning and reusing; (2) adding a data parsing function after the output of

model to assemble data into target dataset based on the predicted label. On the

other hand, the investigation on adversarial learning can be continued. Schema

changes and variations that happen in source data are unpredictable, we still

need a more robust model to guarantee the accuracy of output target data.

• Supervised learning has become the past in deep learning area, recent work (Wu

et al. 2021) investigates the problem of entity matching using weak supervised

learning, as for supervised learning, the lack of data samples with high-quality
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labels is the main bottleneck. This problem also exists in data integration

tasks, which we proposed as the problem of self-growing key. It is promising to

investigate unsupervised learning for data integration tasks, as the well-labeled

dataset is precious and rare, while low-quality datasets will hugely impact the

performance of models.
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