
Exploration of Algorithms Related to Independent Sets of

Steiner Triple Systems

by

Zhaomeng Wang

A Dissertation Presented in Partial Fulfillment
of the Requirements for the Degree

Master of Science

Approved April 2021 by the
Graduate Supervisory Committee:

Charles Colbourn, Chair
Andrea Richa
Zilin Jiang

ARIZONA STATE UNIVERSITY

May 2021



©2021 Zhaomeng Wang

All Rights Reserved



ABSTRACT

In combinatorial mathematics, a Steiner system is a type of block design. A

Steiner triple system is a special case of Steiner system where all blocks contain 3

elements and each pair of points occurs in exactly one block. Independent sets in

Steiner triple systems is the topic which is discussed in this thesis. Some properties

related to independent sets in Steiner triple system are provided. The distribution of

sizes of maximum independent sets of Steiner triple systems of specific order is also

discussed in this thesis. An algorithm for constructing a Steiner triple system with

maximum independent set whose size is restricted with a lower bound is provided.

An alternative way to construct a Steiner triple system using an affine plane is also

presented. A modified greedy algorithm for finding a maximal independent set in a

Steiner triple system and a post-optimization method for improving the results yielded

by this algorithm are established.
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Chapter 1

INTRODUCTION

A Steiner system is a type of a block design which is a topic in combinatorial

design. Combinatorial design theory is the part of combinatorial mathematics that

deals with the existence, construction and properties of systems of finite sets whose

arrangements satisfy generalized concepts of balance and/or symmetry. Modern

applications are found in a wide gamut of areas including finite geometry, algorithm

design and analysis, networking and cryptography [1].

A Steiner system with parameters t, k, n written S(t, k, n), is an n-element set S

together with a set of k-element subsets of S (called blocks) with the property that

each t-element subset of S is contained in exactly one block. An S(2, 3, n) is called a

Steiner triple system, and its blocks are called triples.

A Steiner triple system of order n, or STS (n) for short, is a pair (X, T ), where X

is a set of elements, |X| = n, called points and T is a set of 3-element subsets of X

called triples, with the property that each (unordered) pair of points belonging to X

occurs in exactly one triple in T .

A partial Steiner triple system is a set system (V,B) in which every block has size

three, and every pair of points from V is contained in at most one block. Such a set

system is denoted PSTS(n), where n = |V |.

By the definition of Steiner triple system, it is easy to obtain that the total amount

of triples in an STS of order n is n∗(n−1)
6

. An STS (n) exists if and only if n ≡ 1 or 3

(mod 6) [2].

A Fano plane (Figure 1) is an example of STS(7). Each line (no matter straight
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or not) that goes through 3 points can be interpreted as a triple in the STS, because

any pair of points is contained in exactly one line.

Figure 1: The Fano Plane

An independent set in a STS S = (X, T ) is a subset I ⊆ X with the property

that no triple in T is contained in I. A maximal independent set is an independent

set I ⊆ X with the property that for any x ∈ X \ I, there exists a triple T ∈ T

such that I ∪ {x} contains T . A maximum independent set is an independent set

I ⊆ X with the property that there does not exist an independent set M ⊆ X where

|M | > |I|. The independence number of S, denoted α(S), is the size of the maximum

independent set of S.

A STS(9) is shown in Figure 2. The triangles whose three edges are of same color

are the triples of the STS. The set {1, 3, 4, 9} is an independent set since none of

{1, 3, 4}, {1, 3, 9}, {1, 4, 9}, {3, 4, 9} is in a triangle with three edges of same color.

Moreover, this set is also a maximal and maximum independent set. One can try add
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any point of {2, 5, 6, 7, 8} to this set. There is always a triple being contained in the

new set.

Figure 2: A Steiner triple system of order 9

Let (V ,B) and (W ,D) be two triple systems. Let φ : V 7→ W be a one-to-

one mapping. Under φ, every triple B = {x, y, z} ∈ B maps to a triple φ(B) =

{φ(x), φ(y), φ(z)}. If φ preserves the triples, i.e. D = {φ(B) : B ∈ B}, then φ is an

isomorphism from (V ,B) to (W ,D). The two systems are isomorphic if there is an

isomorphism from one to the other, and are nonismorphic otherwise.

Let NN(n) denote the number of nonisomorphic STS(n)s, and let ND(n) denote

the number of distinct STS(n)s. Aleksejev [3] obtained the lower bound that

NN(n) ≥ n
n2

12
−O( n2

log(n)
)
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Since NN(n) ≤ ND(n), we have

ND(n) ≥ n
n2

12
−O( n2

log(n)
)

Doyen and Valette [4] established an upper bound for ND(n).

Let (V,B) be an STS(n). Place an arbitrary total order ≺ on V , and let @ be

the total order on
(
V
2

)
defined by {u, v} @ {x, y} whenever u ≺ v, x ≺ y, and either

v ≺ y, or v = y and u ≺ x. For each triple Bi = {x, y, z} ∈ B, call the first pair in Bi

in the order @ the representative pair, Pi. Now order the blocks B1, ..., Bb of B so that

Pi @ Pi+1 for 1 ≤ i < b. For 1 ≤ i ≤ b, let xi be the element for which Pi ∪ {xi} = Bi.

Form the b−tuple (x1, ..., xb). Since every distinct STS(n) leads to a distinct b−tuple

in this way, ND(n) does not exceed the number of ways to form a b−tuple of elements

from V , not using either of the first two elements under ≺.

Hence,

ND(n) ≤ (n− 2)
n2

6

Not only the amount of distinct Steiner triple systems for a specific order is huge,

the independence numbers of them are also varied. [5]. Define

βmax(n) = max {α(S) : S is an STS(n)}

βmin(n) = min {α(S) : S is an STS(n)}

4



An early result of Sauer and Schönheim [6] determines that

βmax(n) =

 (n+ 1)/2 if n ≡ 3, 7(mod 12)

(n− 1)/2 if n ≡ 1, 9(mod 12)
(1.1)

For the minimum independence number, Phelps and Rödl [7] proved that

c1
√
n log n ≤ βmin(n) ≤ c2

√
n log n, for all n ≥ n0(c2)

where c1 is an absolute constant, c2 is any constant greater than 4 and n0(c2) is a

constant dependent on the choice of c2.

In the following chapter, we discuss the distribution of independence numbers for

a given order.

Finding large independent sets of Steiner triple systems has applications on

labelling problem. A labelling of S is a bijection l : X → {0, 1, ..., n − 1}. For

each triple T ∈ T , let sum(T ) to be the triple-sum
∑

x∈T l(x). Then, the following

functions are defined [8].

1. Themin-sum of the STS with respect to l is given by min∑(T ) ,minT∈T sum(T )

2. The max-sum of the STS with respect of l is given by max∑(T ) ,

maxT∈T sum(T )

5



3. The difference-sum of the STS is given by ∆∑(T ) , max∑(T )-min∑(T )

To find a relatively good labelling l of S which makes the difference-sum of S small,

finding two large disjoint independent sets would seem to be useful in this situation.

Label one independent set with low values and the other one with high values. For

the remaining points which are not chosen to be in an independent set, label with

mid-range values. This strategy ensures that no triple gets a small sum and also no

triple gets a large sum. Thus, no triple can appear in the low-valued independent set

and no triple is contained in the high-valued independent set. Hence, the min-sum

would be high and the max-sum would be low [9].

Given this observation, we then focus on the approaches for finding a maximum

independent set in an arbitrary Steiner triple system.

6



Chapter 2

DISTRIBUTION OF SIZES OF MAXIMUM INDEPENDENT SETS

In this section, we first present the hill-climbing algorithm for constructing a

random Steiner triple system and a modified algorithm for constructing a STS whose

independence number is restricted with a lower bound.

After discussing the algorithm, we then demonstrate the experimental results of

the distribution of sizes of maximum independent sets for some orders.

2.1 A hill-climbing algorithm for constructing a Steiner triple system

Hill-climbing is a mathematical optimization technique which belongs to the family

of local search in numerical analysis. Basically, it is an iterative algorithm which starts

with an arbitrary solution to a problem and then attempts to find a better solution

by iteratively making a non-decreasing change to the solution. By the definition, it

is easy to comprehend that hill-climbing is able to find optimal solutions for convex

problems. For other problems, it will find only local optima which are not necessarily

the best possible solution out of all possible solutions.

The hill-climbing algorithm for Steiner triple systems, which is introduced by

Stinson[10]. One can find the description of the algorithm in [11] The problem

description can be written as follows.
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Instance: A positive integer v ≡ 1 or 3 mod 6

a finite set V, |V | = v

Find: the maximum value of |B|

subject to (V,B) is a PSTS(v)

Given v and V , define the universe, X, to consist all sets of blocks B such that

(V,B) is a PSTS(v). Hence, any set B ∈ X is a feasible solution. Thus, an optimal

solution is a feasible solution of size equal to v(v − 1)/6.

The main heuristic of this hill-climbing method is SWITCH. The heuristic

SWITCH transforms any PSTS(v) into a different PSTS(v), such that the size of

the system either remains the same or is increased by one.

The description of hill-climbing algorithm is as follows.

Algorithm 1 Hill-climbing algorithm for constructing a Steiner triple system
Input: an integer n congruent to 1 or 3 mod 6

Output: a set of triples T

1: Form a set V containing n points

2: Initialize an empty set T

3: Initialize a counter C = 0

4: While the amount of triples is less than n∗(n−1)
6

and C is less than a big value

depending on n

5: C = C + 1

6: Let {a, b} be an available pair which is not contained in a triple.
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7: Randomly choose a point c such that {a, c} is not contained in a triple. If there

is no such a point, choose a pair of points again.

8: If {b, c} is already contained in a triple, then delete the triple which contains

it. Let {a, b, c} form a new triple T and add it to T .

9: Otherwise, directly form a new triple T with a, b and c. Add it to T

10: If the total amount of triples is n∗(n−1)
6

, return T ; Otherwise, return Fail

The Step 4-9 performs exactly what SWITCH does.

In each iteration, the algorithm either directly form a new triple or delete an old

triple and construct a new one. Hence, in each iteration, the amount of constructed

triples does not decrease. However this algorithm sometimes fails to return a Steiner

triple system.

For example, for order 15, the algorithm form 25 triples defined by {a, 5 + b, 10 +

((a+ b) mod 5)} for 0 ≤ a, b ≤ 4. Starting from this point, it should only succeed in

adding 6 more triples. Because the triples that can be added are only from 0,1,2,3,4 or

5,6,7,8,9 or 10,11,12,13,14 respectively. And for each of these three subsets, it can only

form two more triples. Since, the total amount of triples of order 15 is 15 ∗ 14/6 = 35,

the algorithm will never reach this value as it should.

In order to compute the independence number of an arbitrary Steiner triple system,

a program for applying integer programming (IP) solver to get the optimal solution of

independent set in an arbitrary Steiner triple system is implemented.

The IP formulation for the problem of computing the size of maximum independent

set in a Steiner triple system S = (X, T ) is as follows. (a reader who is unfamiliar

with the basic definitions of integer programming is advised to read the relevant

section in [12])

9



max
|X|∑
i=1

xi

s.t.
∑
vi∈T

xi ≤ 2 for each T ∈ T

xi ∈ {0, 1} for each vi ∈ X

For an arbitrary Steiner triple system with order 61 or less, the program is able to

yield the solution in 5 minutes.

Next, we show some bar graphs about the distributions of independence numbers

of Steiner triple systems of specific orders constructed using the hill-climbing method

introduced previously.

Figure 3: The distribution of order 25 with 1000 samples
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Figure 4: The distribution of order 37 with 1000 samples

Figure 5: The distribution of order 39 with 1000 samples

Figure 6: The distribution of order 43 with 1000 samples
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Figure 7: Table 17.2 from Triple Systems [5]

As you can see in the graphs, the distributions concentrate on one or two values

that is far away from the maximum independence numbers. Hence, we implemented

following algorithms to construct Steiner triple systems with restricted independence

number. One can check Figure 7 which is from [5] showing the independence numbers

of Steiner triple systems from order 7 to order 45 for a comparison.

2.2 Algorithm for constructing a Steiner triple system whose independence number

is restricted with a lower bound

One can find a brief introduction of this algorithm in [5]. There is an interesting

phenomenon about the results yielded by this algorithm. One can check Figure 12 and

notice that when the input lower bound is relatively small, the independence number

of the system constructed by this algorithm is greater than the lower bound while

when the input lower bound is close to the maximum one, the independence number

of the system constructed by this algorithm is exactly equal to the lower bound.
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Algorithm 2 Algorithm for constructing a Steiner triple system whose independence

number is restricted with a lower bound
Input: an integer n congruent to 1 or 3 mod 6 and an integer k

Output: a set of triples T

1: Form a set V = {v0, v1, v2, ..., vn−1} containing n points

2: Initialize an empty set T

3: For each pair {vi, vj} where 0 ≤ i < j < k, construct a triple {vi, vj, v(j+i)%(n−k)+k}

4: Run the original hill-climbing algorithm on the remaining pairs. Whenever

encounter a case that breaking a triple which contains points vi and vj where

i, j < k is needed, skip this iteration and reselect a pair to deal with.

5: When the total amount of triples is n∗(n−1)
6

, return T

Let k be an integer which satisfies 0 < k ≤ βmax(n).

Theorem 1.1: Step 3 is able to construct k∗(k−1)
2

triples and any two of them

have at most one point in common.

Proof. For two pairs {vi, vj} and {va, vb} where i = a and j 6= b, i + j 6= a + b

and |b− j| < k. For the case that i 6= a and j 6= b, the theorem is obviously held.

Theorem 1.2: Any pair of {vi, vj} where 0 ≤ i < j < k is within a triple with a

point whose index is greater than or equal to k.

Proof. (j + i)%(n− k) ≥ 0, so (j + i)%(n− k) + k ≥ k

13



Theorem 1.3: Algorithm 2 yields a STS whose independence number is not

less than k

Proof. Since any three points whose indexes are less than k are not in a triple,

the set {v0, v1, v2, ..., vk−1} is an independent set.

This algorithm is not always able to terminate and return a STS. But as the

experiments we did, the case that the algorithm falls into an endless loop rarely

happens.

2.3 Algorithm for constructing a Steiner triple system using an affine plane

In this section, we introduce an algorithm for constructing a STS using an affine

plane. The idea was presented by De Brandes and Rödl [13] which is used to

establish the bounds for the minimum independence number. So, we suspect that

the independence number of the system constructed by this algorithm might have an

independence number that is close to the minimum independence number.

An affine plane is a system of points and lines that satisfy the following axioms:

1. Any two distinct points lie on a unique line.

2. Each line has at least two points.

3. Given any line and any point not on that line there is a unique line which

14



contains the point and does not meet the given line.

4. Given a point and a line, there is a unique line which contains the point and is

parallel to the line.

A finite affine plane of order n satisfies the following conditions:

1. Each line contains n points

2. Each point is contained in n+ 1 lines

3. There are n2 points in all

4. There is a total of n2 + n lines

Next, we will illustrate an algorithm for constructing an affine plane of prime

order.

Algorithm 3 Algorithm for constructing an affine plane of prime order
Input: a prime number n

Output: a collection of sets of size n (that is n2 + n lines)

1: Maintain an empty set L

2: Construct two tables of operations. Both of them are of size n ∗ n One is for

addition and the other is for multiplication. For the addition table, the element

on (i, j) where 0 ≤ i, j < n is (i+ j)%n. For the multiplication table, the element

on (i, j) where 0 ≤ i, j < n is (i ∗ j)%n.

3: For each pair (a, b) where 0 ≤ a, b < n

15



4: Initialize an empty set L

5: For each x in range [0, n− 1]

6: Compute y = a ∗ x+ b using the operations predefined and store x ∗ n+ y

(using normal addition and multiplication) to L

7: add L to L

8: For each x in range [0, n− 1]

9: Initialize an empty set L

10: For each y in range [0, n− 1]

11: store x ∗ n+ y to L

12: add L to L

13: Return L

Theorem 1.4: Algorithm 3 is able to construct n2 + n lines.

Proof. There are n2 different pairs as coefficients. And the Step 8-12 forms n

lines. Thus, the algorithm constructs n2 + n lines in total.

Theorem 1.5: Any two lines constructed by Algorithm 3 have at most one

point in common.

Proof. The addition table has no repeated element in each row or column.

Therefore, any two lines of the form y = a ∗ x+ b are parallel or intersect on one point.

(An idea of a formal proof could be found in [14])

Next, we will introduce how to construct a STS(n2) using an affine plane of order

16



n and an STS(n).

Algorithm 4 Algorithm for constructing a STS(n2) using an affine plane of order n

and an STS(n).
Input: an affine plane A of order n and an STS(n), S0 where n ≡ 1 or 3 mod 6

Output: a set of triples T for an STS(n2), S

1: Initialize an empty set T

2: Sort each triple in S0

3: For each line L in A

4: Sort L

5: For each triple T in S0

6: Form a triple P = {L[T [0]], L[T [1]], L[T [2]]} and add this triple to T

7: Return T

Theorem 1.6: T contains n2∗(n2−1)
6

triples.

Proof. With Step 3, 4, 5, 6, each line forms n∗(n−1)
6

triples. There are n2 + n lines

in total. n∗(n−1)
6
∗ (n2 + n) = n2∗(n2−1)

6

Theorem 1.7: T is a valid collection of triples for an STS(n2).

Proof. By the definition of affine plane, each pair of points appears in at most

one line. With Step 3, 4, 5, 6 and Theorem 1.6, each pair of points in the affine

plane appears in exactly one triple in the resultant collection T .

Hence, running Algorithm 3 and Algorithm 4 is able to construct an affine

plane of prime order p (except 1 and 3) and then construct a Steiner triple system of

17



order p2. However, to construct an affine plane of order which is not a prime number

is more complicated.

In mathematics, a finite field or Galois field is a field that contains a finite number

of elements. As with any field, a finite field is a set on which the operations of

multiplication, addition, subtraction and division are defined and satisfy certain basic

rules. The tables that Algorithm 3 forms are examples of finite fields.

We will briefly introduce how to construct a non-prime field. Before heading into

the method, we will first introduce an essential terminology.

In mathematics, an irreducible polynomial is a polynomial that cannot be factored

into the product of two non-constant polynomials.

Given a prime power q = pn with p prime and n > 1, the field GF (q) can be

constructed in the following way. One first chooses an irreducible polynomial P

in GF (p)[X] of degree n. Then the quotient ring GF (q) = GF (p)[X]/(P ) of the

polynomial ring GF (p)[X] by the ideal generated by P is a field of order p.

Similarly, an affine plane of non-prime order n can also be used to construct a

Steiner triple system. If n ≡ 1 or 3 mod 6, then it is a valid input for Algorithm 4.

One might be curious about if there is a way to construct a Steiner triple system

whose order is less than n2 using an affine plane of order n. The answer is yes. Take

affine planes of order 9 as example. The following method is capable to construct a

STS(63).

1. Randomly choose two disjoint lines in the affine plane and delete the 18 points

such that there are 7 lines with 9 points and 81 lines with 7 points.
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2. Construct a STS(9) and a STS(7) using the hill-climbing algorithm

3. Copy the STS(9) to each of the 7 lines with 9 points and copy the STS(7) to

the 81 lines with 7 points.

4. Merge the resultant triples

With these steps, one can obtain a STS(63)

The general algorithm is as follows.

Algorithm 5 Algorithm for using an affine plane to construct an STS with order

less than the square of the order of the affine plane
Input: two prime powers a, b congruent to 1 or 3 mod 6 where a > b

Output: a set of triples for a STS(a ∗ b)

1: Initialize an empty set T

2: Construct an affine plane A of order a

3: Delete all the points in a− b disjoint lines in A to get b lines of size a and a2 lines

of size b

4: Place an STS(a) on each lines of size a and an STS(b) on each lines of size b to

form triples and add to T .

5: Return T
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Figure 8: The finite fields of addition and multiplication for order 7

Figure 9: The finite fields of addition and multiplication for order 9
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Figure 10: A comparison between the independence numbers of STS(49)s constructed
by the hill-climbing method and the independence numbers of STS(49)s constructed

with the use of affine planes of order 7
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Figure 11: A comparison between the independence numbers of STS(63)s constructed
by the hill-climbing method and the independence numbers of STS(63)s constructed

with the use of affine planes of order 9

As you can observe from Figure 10 and Figure 11, it seems that the algorithm is

not able to yield a system with an independence number that is close to the minimum

independence number for order 49 and order 63. In our opinion, the reason is that

the bound of the minimum independence number is an asymptotic bound. So it may

not work on the small orders.

2.4 Algorithm for constructing a Steiner triple system with maximum independence

number

This algorithm is also introduced in [5]

Algorithm 6 Algorithm for constructing an STS with maximum independence

number
Input: an integer n congruent to 3 or 7 mod 12

Output: a set of triples for a STS(n) with maximum independence number

1: Maintain a set V = {v0, v1, ..., vn−1}

2: Construct an S0=STS(n−1
2

)
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3: Initialize an empty set T

4: For each vi where n+1
2
≤ i ≤ n− 1

5: Form a triple {vi, vn−1
2
, vi−n+1

2
} and add to T

6: For each vi where n+1
2
≤ i ≤ n− 1

7: Form a ordered set C of size n− i− 1 where C[j] = v(j+i−n)%n−1
2

8: For each vj where i+ 1 ≤ j ≤ n− 1

9: Form a triple {C[(j − i)%n−1
2

], vi, vj} and add to T

10: Return T

Theorem 1.8: Algorithm 6 is able to construct a STS of order n whose inde-

pendence number is n+1
2

Proof. The proof that the resultant collection of triples is valid for an

STS(n) is similar to the proof of Theorem 1.1. Any two points in the set

{vn−1
2
, vn+1

2
, ..., vn−1} are in a triple with a point in the set {v0, v1, ..., vn−3

2
}. Therefore,

the set {vn−1
2
, vn+1

2
, ..., vn−1} is an independent set.

Below are the figures which show the independence numbers of Steiner triple

systems constructed by Algorithm 2.

As you can see in Figure 12, when the lower bound is less than the value that

the distribution concentrates on, the algorithm yields systems with the independence

number equal to the concentrated value. However, when the lower bound is greater

than the concentrated value, the algorithm is only able to yield systems with the

independence exactly equal to the bound.
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Figure 12: The independence numbers of Steiner triple systems constructed by
Algorithm 2

This phenomenon suggests that Steiner triple systems of a specific order tend

to have independence numbers around the mid-range value. But we cannot claim

that the amount of Steiner triple systems with mid-range independence number are

significantly more than the amount of systems with lower or higher independence
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number since the hill-climbing method does not guarantee to construct every distinct

system with same probability.

From the experiments we did on systems of order 51, the set of independence

numbers of this order should include {17, 18, 19, 20, 21, 22, 23, 24, 25, 26}.

For order 55, the set of independence numbers of this order should include

{18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28}.
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Chapter 3

A MODIFIED GREEDY ALGORITHM FOR FINDING MAXIMAL

INDEPENDENT SETS AND A POST-OPTIMIZATION ALGORITHM

3.1 Current approaches

In this section, we will introduce two current approaches for finding a maximal

independent set in an arbitrary Steiner triple system. The first one is a naive greedy

method. The other treats Steiner triple systems as hypergraphs and apply probabilistic

method to solve the problem.

3.1.1 A Naive Greedy Method

This approach was established in a paper by Erdös and Hajnal [15]. Consider a

Steiner triple system STS(n), denoted S = (X, T ). The steps of this algorithm is as

follows.

Initialize I = ∅. Iteratively add points to I from X until there is no point available

to be chosen (i.e., for any x ∈ X \ I, {x} ∪ I contains a triple from T ).

According to the definition, I is a maximal independent set. Hence, for each

x ∈ X \ I, there exists at least one triple Tx ∈ T with x ∈ Tx and Tx ⊂ I ∪ {x}.
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Because Tx * I, |Tx ∩ I| = 2. More importantly, for any x, y ∈ X \ I, where x 6= y,

we have |Tx ∩ Ty| ≤ 1. Then these two inferences imply that |X \ I| = n− |I| ≤
(|I|
2

)
.

Therefore, we obtain an inequality n−|I| ≤ |I|∗(|I|−1)
2

. Hence, we have |I| ≥ b
√

2nc.

3.1.2 A Probabilistic Method

A randomized algorithm is an algorithm that employs a degree of randomness as

part of its logic [16].

A hypergraph is a generalization of a graph in which an edge can join any number

of vertices. A k-uniform hypergraph is a hypergraph such that all its hyperedges have

size k.

In usual hypergraph terminology, a hypergraph is uncrowded iff it has no cycles of

length 2,3 or 4.

The hypergraph representation of a Steiner triple system S = (X, T ) is the com-

pletely determined 3-uniform hypergraph G = (X, T ), where X is the vertex set and

T is the hyperedge set of G.

The method introduced in [17] treats a Steiner triple system as a 3-uniform

hypergraph and uses randomized algorithm to yield an uncrowded hypergraph from

the original one in order to apply the efficient derandomized version [18] of Ajtai’s

algorithm [19] for obtaining independent sets in k−uniform uncrowded hypergraphs.

The bound of the size of an independent set I obtained in time O(n2) by this method

is

|I| ≥ c
√
n lnn
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3.2 A modified greedy algorithm

A greedy algorithm is any algorithm that follows the problem-solving heuristic of

making the locally optimal choice at each stage. In many problems, a greedy algorithm

does not usually produce an optimal solution, but nonetheless, a greedy heuristic

may yield locally optimal solutions that approximate a globally optimal solution in a

reasonable amount of time.

The algorithm we present is an iterative algorithm which chooses a point to add

to the resultant set at each iteration.

Before presenting the algorithm, we will first give some definitions which are used

in the algorithm description.

A point is chosen if it is in the resultant set.

An available point is a point that no triple contains it and any two chosen points.

An unavailable point is a point that there exists a triple which contains it and two

chosen points.

An active triple is a triple T ∈ T such that all elements in T are available to

choose.

A semi-active triple is a triple T ∈ T such that exactly one element in T is chosen

and other two elements are available to choose.

An inactive triple is a triple T ∈ T such that two elements in T are chosen.
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The algorithm can be described as follows.

Algorithm 7 Algorithm for finding a maximal independent set in a Steiner triple

system by iteratively choosing the point which makes least points to be unavailable
Input: a Steiner Triple System S = (X, T )

Output: a maximal independent set I

1: Initialize I = ∅, A = X

2: While A 6= ∅

3: Choose an available point which is contained in minimum number of

semi-active triples. Call this point a. If there is a tie, randomly pick one of

candidates. (Candidates are the points which are contained in minimum number

of semi-active triples)

4: A = A \ ({x|x ∈ A, x and a are in a semi-active triple} ∪ {a})

5: I = I ∪ {a}

6: return I

Apparently, in each iteration, it excludes the points which are within triples with

the newly chosen point and the points that have already been chosen. Hence, those

points will never be chosen in the result. Moreover, the algorithm terminates when

there is no available point to choose. Therefore, this algorithm is able to find a

maximal independent set.

Let n be the order of the input Steiner triple system. The running time of this

algorithm is O(n3) when it recomputes the minimum number of semi-active triples

in each iteration.

A key observation is that in the first iteration, there is no point in the chosen

set. Hence, adding any point would not make any point other than itself unavailable.

In the second iteration, since there is only one point in the chosen set, then adding
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any point would just make exactly one point unavailable. Therefore, in the first two

iterations, we may want to apply an extra rule to determine which two points should

be chosen.

An experiment that we have tried is to select the first two points based on their

cycle structures.

According to the definition of Steiner triple system, two triples can have at most

one element in common. So, for any two points in a Steiner triple system, the pairs in

the triples that contain the two points (except the triple that contains both of the

two points) form some cycles.

Figure 13: The 4-cycle

Theorem 2.1 The amount of pairs that a cycle contains must be even. [5]
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Proof. Let a, b be two points in a Steiner triple system. Then a cycle formed by

the pairs are within the triples which must alternatively include a or b but not both.

Therefore, the amount of triples must be even.

Theorem 2.2 The minimum amount of pairs that a cycle contains is 4. [5]

Proof. Suppose, there is a cycle with two pairs. Then these two triples that

contain the pairs must have two elements in common which contradicts the definition

of Steiner triple system.

There is an interesting property of 4-cycles.

Suppose the two points we choose are i and j and there is a 4-cycle

{{i, v1, v2}, {j, v2, v3}, {i, v3, v4}, {j, v4, v1}}.

At the third iteration of the algorithm, it may pick one point among {v1, v2, v3, v4}.

Consider it picks v1. Then v2 and v4 are going to be unavailable. So, for the next

iteration, the candidate is v3. The triples that contain it and a chosen point also

contain v2 and v4. Hence, it will just make one more point be unavailable in this

round. Therefore, in the next iteration, there are n-7 available points.

For the cycles with larger sizes, this case can not happen. The two triples, where

one of them contains i and a newly added unavailable point and the other contains

the j and another newly added unavailable point, do not share a common point so

that it will always add two points to be unavailable in this round. Hence, in the next

iteration, there are n-8 available points.

Hence, a 4-cycle provides a choice that results more available points in the fourth

iteration.
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Inspired by this observation, we did some experiments on the performance of this

modified greedy approach where the first two points are selected based on the amount

of 4-cycles.

Check Figure 14 and 15 for some experimental results. The optimal solutions are

computed by IP solver. The average solutions of the modified greedy algorithm and

the original greedy algorithm are computed by taking average of 100 runs.

Figure 14: A comparison on the performances of modified greedy algorithm and the
original one on STS(51)

The modified greedy algorithm appears to be able to find nearly optimal solution

for the systems whose independence number is relatively low. But for the systems

with higher independence number, this improved greedy algorithm may not be capable
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Figure 15: A comparison on the performances of modified greedy algorithm and the
original one on STS(55)

to yield a solution close to the optimal one. For all the test cases that we tried, the

modified greedy algorithm yields better solutions than the original greedy algorithm.

3.3 A post-optimization algorithm

As you can observe from the experimental results of the performance of the modified

greedy algorithm, the computed values are only 1 or 2 less than the optimal solution

in some cases. So we figured out an exchange method to find improvement for the

results from the modified greedy algorithm.

Before presenting the algorithm, we will first give some definitions which are used

33



in the algorithm description.

Denote I is the resultant independent set by the modified greedy algorithm.

A point vi is called a candidate if there is only one triple Ti = {va, vb, vi} where

va, vb ∈ I.

The post-optimization algorithm is as follows.

Algorithm 8 Algorithm for finding candidates for post-optimization
Input: a Steiner Triple System S = (X, T ) and an independent set I

Output: a collection E of 3-tuples of the form T = (vci , vcj , v) where vci , vcj are the

two points to swap in and v is the point in I to swap out.

1: Initialize an empty set E

2: Find candidate points and add the candidate points to a set C

3: For each pair of points {vci , vcj} where vci , vcj ∈ C

4: If Tci ∩ Tcj 6= ∅, add (vci , vcj , v) to E where v ∈ Tci ∩ Tcj

5: return E

The time complexity of Algorithm 8 is O(|I|2), since there are |I| ∗ (|I| − 1)/2

triples in total to check. For Step 3,4, the total amount of the corresponding triples

is less than or equal to |I| ∗ (|I| − 1)/2. Therefore, Algorithm 8 is able to terminate

in O(|I|2) time.
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Algorithm 9 The post-optimization algorithm
Input: a Steiner Triple System S = (X, T ) and an independent set I

Output: a modified independent set I

1: Run Algorithm 8 to obtain a set E of 3-tuples.

2: Randomly choose one tuple T ∈ E and swap in T [0], T [1] to I and swap out T [2]

from I.

3: If there exists a point vi ∈ I such that {T [0], T [1], vi} ∈ T , remove vi from I.

4: Keep doing Step 1,2,3 until the set E from Step 1 is empty.

5: return I

One can check the following example to understand the algorithm.

The set of triples of an STS(19) is as follows.

{{0, 1, 16}, {0, 2, 3}, {0, 4, 11}, {0, 5, 9}, {0, 6, 8}, {0, 7, 18}, {0, 10, 12}, {0, 13,

15}, {0, 14, 17}, {1, 2, 18}, {1, 3, 7}, {1, 4, 5}, {1, 6, 15}, {1, 8, 11}, {1, 9, 12}, {1,

10, 17}, {1, 13, 14}, {2, 4, 16}, {2, 5, 10}, {2, 6, 14}, {2, 7, 15}, {2, 8, 12}, {2, 9, 13},

{2, 11, 17}, {3, 4, 12}, {3, 5, 6}, {3, 8, 17}, {3, 9, 15}, {3, 10, 13}, {3, 11, 18}, {3, 14,

16}, {4, 6, 13}, {4, 7, 10}, {4, 8, 15}, {4, 9, 17}, {4, 14, 18}, {5, 7, 8}, {5, 11, 16}, {5,

12, 14}, {5, 13, 17}, {5, 15, 18}, {6, 7, 17}, {6, 9, 16}, {6, 10, 18}, {6, 11, 12}, {7, 9,

14}, {7, 11, 13}, {7, 12, 16}, {8, 9, 18}, {8, 10, 14}, {8, 13, 16}, {9, 10, 11}, {10, 15,

16}, {11, 14, 15}, {12, 13, 18}, {12, 15, 17}, {16, 17, 18}}

The independent set computed by the modified greedy algorithm is

{12, 11, 18, 10, 7, 17, 8}. A tuple for doing the swap is (4, 5, 7) where 4 and 5

are candidate points, because {7} = {4, 7, 10} ∩ {5, 7, 8}. Since {4, 5} ⊆ {1, 4, 5} and

1 is not contained in the independent set, 4 and 5 are eligible to be swapped in when

7 is swapped out. Hence, the improved independent set is {12, 11, 18, 10, 17, 8, 4, 5}.
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Theorem 2.3 The resultant set after making exchange in each iteration is still

an independent set

Proof. Each point to swap in is only contained in one triple with two chosen

points. Also the two corresponding triples for the two points to swap in share one point

which is exactly the point to swap out. Moreover, since the point in the independent

set which is contained in a triple containing both two points to swap in will also be

removed according to the algorithm, the resultant set is always an independent set.

Theorem 2.4 The post-optimization algorithm is able to yield an independent

set whose size is no less than the original resultant independent set.

Proof. In each iteration, the post-optimization algorithm either swaps in 2 points

and remove 1 point from the independent set or swaps in 2 points and remove 2 points

from the independent set. Hence, the size of the independent set is never decreased.

One can check Figure 16, 17, 18 for the performance of this post-optimization

algorithm. The Steiner triple systems are generated by the hill-climbing algorithm.

The optimal solutions are computed by IP solver.

As you can see in the figures, this post-optimization algorithm is not always able to

find an increment to the original resultant independent set computed by the modified

greedy algorithm. Some more alternative approaches are raised in the following

chapter.
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Figure 16: The performances of the post-optimization algorithm (1)
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Figure 17: The performances of the post-optimization algorithm (2)
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Figure 18: The performances of the post-optimization algorithm (3)
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Chapter 4

SUMMARY AND FUTURE WORKS

4.1 Summary

In this thesis, we first introduce the traditional hill-climbing algorithm to construct

a random Steiner triple system. Observing from the distributions of independence

numbers of systems constructed by the hill-climbing algorithm, it appears that the

distributions concentrate only on one or two mid-range values, so we present an

algorithm for constructing systems with independence numbers restricted by a lower

bound. Furthermore, we also provide algorithms for constructing a STS using an

affine plane and an efficient algorithm for constructing an affine plane of prime order.

Next, we illustrate an improved greedy algorithm to find approximately maximum

independent set and an exchange algorithm to do potential post-optimization. The

modified greedy algorithm appears to be able to find nearly optimal solution for the

systems whose independence number is around the relatively lower value. But for the

systems with higher independence number, this modified greedy algorithm may not be

capable to yield a solution close to the optimal one. The post-optimization algorithm

can sometime find an increment to the independent returned by the improved greedy

algorithm.

40



4.2 Future works

4.2.1 Some more strategies for the improvement of the post-optimization

Instead of iteratively searching for a 2 for 1 or 2 for 2 swap, it is also worthy to

consider about a general method to find a swap so that m points are swapped out

and n points are swapped in where m < n.

4.2.2 Applying the Algorithm for Finding a Maximum Independent Set in a Bipartite

Graph

Consider a situation that some points have been chosen into the potential inde-

pendent set. Denote the set as I.

Then, E = {{u, v}|{u, v, x} ∈ T where x ∈ I and u, v /∈ I} is a set of pairs of

remaining available points. By the definition of independent set of Steiner triple

system, for each {u, v} ∈ E, at most one point can be selected. (There might be a

case that some triples where none of the points inside them has been chosen)

Hence, the problem at the ideal circumstance becomes a problem of finding a

maximum independent set in a bipartite graph.

Consider a bipartite graph G = (A ∪B,E).
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Let ν(G) denote the minimum cardinality of a vertex cover in G and γ(G) denote

the maximum cardinality of a matching in G.

Consider a graph G′ = (A ∪B ∪ {s, t}, E ∪ {{s, a}|a ∈ A}) ∪ {{b, t}|b ∈ B} with

unit edge capacities.

It is easy to notice that γ(G) is the maximum number of internally disjoint s-t-

path and ν(G) is the minimum number of vertices whose deletion disconnect s and

t. Menger proved that γ(G) = ν(G) in 1927 [20]. γ(G) is also equal to the value of

maximum flow from s to t. Thus, we can find a vertex cover in a bipartite graph with

minimum cardinality in polynomial time.

Denote the vertex cover of minimum cardinality as C. Since, an independent

set with maximum cardinality in G is (A ∪B) \ C, then we can certainly obtain an

independent set with maximum cardinality in a bipartite graph in polynomial time.

Therefore, if we could find an effective method to select some points in advance

such that the resulting graph is a bipartite graph, we would have a polynomial time

algorithm for solving the remaining problem. If there seems no efficient way to reduce

the original one to a bipartite graph, we can also try to firstly ignore some triples

and rule out some points after obtaining a solution from the bipartite graph with the

restriction of those ignored triples.

The accuracy of the result yielded by this idea is also worthy to investigate.

4.2.3 The NP-completeness of Finding Independent Set in Steiner Triple System

The decision variant of the problem which is to find a maximum independent set
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in a Steiner triple system is that given a Steiner triple system S = (X, T ) and an

integer k, is there an independent set I ⊆ X such that |I| ≥ k. Call the decision

variant F .

An NP-complete problem is believed that there is no polynomial time algorithm

for solving it. To prove the NP-completeness of F , we need to show that

a) F is in NP

b) An NP-complete problem is polynomial time reducible to F [21]

Showing a) is easy. Given a potential solution, a set of vertices I, we can verify if

it is a correct solution by checking

1. I ⊆ X

2. |I| ≥ k

3. there does not exist a triple T ∈ T such that T ⊆ I

This process can be done in polynomial time. Hence, the problem is in NP.

It would be of interest to figure out a reduction to prove b) and establish the

NP-completeness of this problem.
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