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ABSTRACT

In recent years, there has been an increasing need for effective voltage controls

in power systems due to the growing complexity and dynamic nature of practical

power grid operations. Deep reinforcement learning (DRL) techniques now have been

widely explored and applied to various electric power operation analyses under differ-

ent control structures. With massive data available from phasor measurement units

(PMU), it is possible to explore the application of DRL to ensure that electricity is

delivered reliably. For steady-state power system voltage regulation and control, this

study proposed a novel deep reinforcement learning (DRL) based method to provide

voltage control that can quickly remedy voltage violations under different operating

conditions. Multiple types of devices, adjustable voltage ratio (AVR) and switched

shunts, are considered as controlled devices. A modified deep deterministic policy

gradient (DDPG) algorithm is applied to accommodate both the continuous and dis-

crete control action spaces of different devices. A case study conducted on the WECC

240-Bus system validates the effectiveness of the proposed method. System dynamic

stability and performance after serious disturbances using DRL are further discussed

in this study. A real-time voltage control method is proposed based on DRL, which

continuously regulates the excitation system in response to system disturbances. Dy-

namic performance is considered by incorporating historical voltage data, voltage rate

of change, voltage deviation, and regulation amount. A versatile transmission-level

power system dynamic training and simulation platform is developed by integrat-

ing the simulation software PSS/E and a user-written DRL agent code developed in

Python. The platform developed facilitates the training and testing of various power

system algorithms and power grids in dynamic simulations with all the modeling ca-

pabilities available within PSS/E. The efficacy of the proposed method is evaluated

based on the developed platform. To enhance the controller’s resilience in addressing
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communication failures, a dynamic voltage control method employing the Multi-agent

DDPG algorithm is proposed. The algorithm follows the principle of centralized train-

ing and decentralized execution. Each agent has independent actor neural networks

and critic neural networks. Simulation outcomes underscore the method’s efficacy,

showcasing its capability in providing voltage support and handling communication

failures among agents.
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Chapter 1

INTRODUCTION

1.1 Background

Power system resilience [2; 3] and reliability are vital to the economic viability of

society. The US-Canada power system outage on August 14, 2003 cost 10 billion US

dollars [4]. More and more essential services, such as electrical transportation, rely

on electricity, so it is of great importance to guarantee power system stability and

dynamic performance [5; 6].

With the increasing integration of utility-scale renewable energy and distributed

energy resources [7; 8; 9; 10; 11], such as wind and solar, the power system variability

has further increased due to the nonlinearity and unpredictable consumer patterns

of these new types of resources and loads, which reduces the system inertia and

leads to faster dynamics [12; 13; 14]. More loads interfaced with the system through

electronics converters and the growing capacity of the High-Voltage Direct Current

(HVDC) system also contribute to the complexity of the power grid [15; 16; 17; 18].

The system operation requires real-time monitoring and control to respond to

unexpected dynamic changes at both the demand and supply sides [19; 20]. When the

system undergoes a large disturbance, such as an abrupt change in load or generation,

grid operators are often faced with the challenge of maintaining the system bus voltage

magnitudes within secure ranges and can be overwhelmed with the task of dispatching

generation to maintain the power balance and relieve transmission congestion, leaving

them insufficient bandwidth to attend to voltage violations. In addition, the increased

energy exchange requirement has impacted power system security [21], resulting in
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the system operating closer to its security limits in some instances. These factors

enhance the chances of power system instability and pose severe challenges to real-

time voltage control [4]. Advanced control techniques are needed to ensure that

electricity is transmitted and delivered reliably and avoid negative economic and

societal results.

Phasor measurement units (PMUs) [22], which work as communication and mea-

surement devices, make it possible to transfer synchronized dynamic data across power

systems. The advanced communication infrastructure in power systems, computation

structure, and power system devices provide the possibility for the implementation of

the advanced control methods. Hence, online stability prediction [23] and corrective

control can be achieved [24].

Artificial intelligence (AI) [25; 26; 27] techniques have matured and are being ap-

plied to various power system applications, representing a significant advancement

in how we manage and optimize power grids. AI plays an important role in ad-

dressing the system operation and control challenges by enhancing the power system

performance, resilience, and robustness of system stability. This data-driven technol-

ogy opens possibilities to design power system control by learning and updating the

control action and policies.

1.2 The Development of Artificial Intelligence Implementation in Power Systems

The concept of AI was first proposed in the 1950s to 1960s when researchers were

trying to mimic human intelligence [25]. Early machine learning (ML) [28] arose and

mainly focused on theories like perceptron and decision trees to implement into rule-

based systems. In the 1970s to 1980s, challenges arose in AI research, leading to a

heightened focus on expert systems, which were used in the fields of medicine and

finance. Later in the 1990s to 2000s, AI technology underwent a resurgence driven
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by advancements in computational capabilities and the increased availability of data,

which contributed to the development of machine learning. The Supervisory Control

and Data Acquisition (SCADA) [29] systems began to be implemented by power

utilities for power grid remote monitoring and control. These systems established the

groundwork for the digitization of data within power systems.

After the 2000s, various algorithms and neural networks became more advanced

and widely used, ushering in a new era of data-driven across different domains, from

medicine and finance to manufacturing and transportation. Deep learning [30], a

subset within the realm of machine learning, started to gain recognition as neural

networks developed and the availability of Graphics Processing Units (GPUs) enabled

faster computational processing. Meanwhile, ML was applied to power systems in

predicting equipment failures and recommending maintenance actions [31].

With more implementation of ML to power systems, utilities began building data

management systems to store and preprocess the increasing data. Then, ML algo-

rithms were used to identify power system unusual operation patterns or faults in

real-time data, including dynamic state estimation and event detection. As PMUs

that offers synchronized measurements of electrical quantities were integrated into

power grids, high-resolution data was available, and wide-area monitoring and situa-

tional awareness were further analyzed based on ML models.

With the growth and expansion of the power grid, the penetration of renewable

energy sources is increasing[32]. ML models were utilized to address the challenges in

resource integration, providing innovative schemes to predict the pattern of renewable

energy generation, optimize energy storage, and enhance grid stability. ML models

play a significant role in demand response, which provides information to utilities and

customers in response to supply energy and pricing fluctuations. The distribution

of electricity within a smart grid can be optimized by ML algorithms, and energy
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efficiency is enhanced.

Reinforcement Learning (RL) [33] has emerged to be a powerful tool for power

grid operation and control. The RL agents are able to make decisions based on

real-time data and power system feedback and can autonomously adjust various grid

parameters to ensure grid normal operation, minimize energy losses, and enhance

system efficiency. Deep Reinforcement Learning (DRL) [34] represents a state-of-the-

art method that combines RL with deep neural networks, enabling agents to manage

more complex grids and challenging scenarios. The integration of DRL is shifting the

approaches to manage the electrical grids.

1.3 Previous Research on Power System Voltage Control

In recent years, the demand for robust and reliable voltage control methods in

power systems has surged considerably due to the growing complexity and dynamic

nature of practical power grid operations.

Early approaches to regulating the voltages have mainly relied on utility-owned

devices in power systems, such as transformers equipped with tap changers [35], shunt

reactors and shunt capacitors [36], automatic voltage regulators (AVRs) [37], static

var compensators (SVCs) [38],and flexible alternating current transmission system

(FACTS) devices [39]. On-load tap changers (OLTCs) are typically built-in high-

voltage power transformers to adjust the transformer turns ratio. The OLTCsc can

be adjusted manually or automatically to regulate the output voltage to maintain it

within the desired range. Adjustable-voltage-ratio(AVR) transformers have been re-

ported in [40], where the voltage ratios can be adjusted quickly and continuously using

magnetic flux valve(MFV) based characteristics. Achieving the optimal configuration

for the device typically involves tackling mixed-integer programs, generally known to

be NP-hard. In [41] and [42], a semidefinite relaxation heuristic was employed to op-
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timize the tap positions. Control rules founded on heuristics were formulated in [43]]

and [44]. Nonetheless, it is worth noting that these methods may entail substantial

computational requirements and may not ensure optimal performance.

Smart power inverters, like PV and wind turbines, are equipped with integrated

computing and communication modules. These modules can be instructed to modify

their reactive power output. Determining the optimal settings for controlling the

inverters’ reactive power output is a non-convex optimal power flow problem, as

discussed in [45]. To address challenges related to renewable energy variability and

communication obstacles, such as delays and packet loss, there have been growing

studies on stochastic, online, decentralized, and localized reactive control approaches

[46; 45; 47; 48; 49; 50; 51].

Excitation system control is of significant importance in maintaining generators’

voltages and can impact power system dynamic stability directly[52]. Excitation con-

trol is considered to be one of the most economical and effective methods for main-

taining voltage and dynamic performance enhancement[53]. Numerous excitation

control methods have been conducted in terms of voltage regulation considering sys-

tem dynamic stability after disturbances. A decentralized nonlinear voltage controller

is proposed in [54] to achieve both voltage regulation and system stability improve-

ment. Global control(GC) where a stable controller is used for the fault period and a

voltage controller is activated for voltage level regulation in [55]. Different controllers

need to be switched at different operating stages to guarantee a satisfactory volt-

age level and system dynamic performance. Lyapunov-function-based methods can

achieve voltage regulation and dynamic stability control simultaneously by designing

the excitation control without switching[56]. A Lyapunov-based decentralized control

(LBC) is proposed in [57] to enhance power system dynamic performance by simulta-

neously controlling the excitation and governor systems. The time-derivative of the
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Lyapunov function is designed by the feedback control of synchronous generators, and

voltage deviation is considered as the feedback variable to realize voltage regulation

as well as dynamic performance improvement. The majority of these model-based

methods have been claimed to achieve promising performance. However, they rely

heavily on accurate information of power system topology and parameters. Further-

more, power systems are experiencing uncertainties of load changes and contingencies

and it is quite challenging to apply the above model-based methods. Therefore, a volt-

age regulation method that is flexible and scalable to the application and operational

uncertainties needs to be developed.

1.4 Previous Research on DRL-based Power System Steady State Control

Artificial intelligence (AI) techniques are now being applied to various power sys-

tem applications in order to solve control or data-related problems[58]. These early

study efforts include [59] on reactive power and voltage control, [60] on power system

stability control, [61] on load-frequency control, and [62; 63; 64] on the electricity

price prediction. These data-driven, model-free methods are particularly well-suited

for highly non-linear and high-dimensional power systems, especially with the avail-

ability of phasor measurement units (PMUs) that enable the synchronized transfer of

dynamic data across the grid.

Advanced control schemes for enhancing power system stability based on AI meth-

ods have been developed, and the recent success of reinforcement learning (RL) has

shown promise in addressing various power system challenges. An RL agent can be

trained to respond instantaneously to a range of system operating conditions based

on knowledge obtained by interacting with the power system environment during the

training process. Therefore, a real-time application based on RL is possible.

Q-learning, a conventional RL method, has been utilized in [65] and [66] to learn
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a reactive power optimal control scheme and keep the voltage within the normal

range. Reference [67] proposed a fully automated energy management system (EMS)

algorithm based on RL, which learns how to make optimal decisions for consumers.

A novel EMS formulation based on a request inventory model using Q-learning is

proposed in [68]. It balances energy cost and the delay in energy usage in the same

way that the consumer would, but without the consumer having to make the decision.

Q-learning was also adopted in [69] for optimal tap setting of on-load tap changers of

step-down transformers (connecting electric distribution systems with the rest of the

system) to control the distribution system voltages under uncertain load dynamics.

Reference[70] proposed a control scheme of active power generations to prevent system

cascading failure based on Q-learning. The controller operates in the system’s normal

state and takes actions in the form of preventive control to make adjustments in case

of cascading failure when the system suffers large disturbances.

However, conventional RL methods only work in environments with discrete and

finite state and action spaces and thus are not suitable for large, complex problems,

such as real-time control problems for large-scale power systems. To overcome this

disadvantage, deep reinforcement learning (DRL) has been developed by researchers,

which utilizes powerful deep neural networks as function approximators that enable

high-dimensional feature extraction. Reference [71] proposed a two-time-scale voltage

control scheme, including fast inverter control and switching of shunt capacitors at a

slower time control based on the Deep Q-Network (DQN) algorithm. Reference [58]

applied DQN and Deep Deterministic Policy Gradient (DDPG) for subsystem volt-

age control and found that DDPG performed better with sufficient training scenarios.

Reference [59] adopted multi-agent deep deterministic policy gradient (MADDPG),

which is a multi-agent continuous actor-critic-based algorithm, to realize voltage reg-

ulation among different regional zones based on power flow data. These works focused
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on the steady-state performance of the system,

1.5 Previous Research on DRL-based Power System Dynamic Control

There have been many explorations and attempts in the area of steady-state volt-

age control based on reinforcement learning, however, ignoring the influence of the

dynamic behaviors in the transient process when subjected to a disturbance. Ref-

erence [72] proposed the scheme of two coordinated wide-area damping controllers

(CWADCs) for damping low-frequency oscillations (LFOs) based on DRL. While it

learns by a pre-prepared data set and does not realize on-line training and imple-

mentation. References [73] and [74] addressed transient stability issues to keep the

system in synchronism by controlling power system components, such as wind tur-

bines and generators. Approximate Dynamic Programming (ADP) is used in [73]

to optimize the closed-loop performance of a wind-integrated power grid by provid-

ing supplementary damping control. Another study[74] proposed a wide-area control

architecture that includes a local supervised PSS control and an RL-based global

wide-area control, which ensures coherent damping of local and inter-area oscillations

using a priority scheme. In [75], the authors used DRL methods to implement dy-

namic braking and under-voltage load shedding for power system emergency control.

While these methods have been tested on the IEEE 39-bus system or the 68-bus

system, practical regional power grids are larger and more complex, which need sig-

nificant information exchange between DRL agents and the power grid environment,

especially considering the dynamic performance and real-time control application.

1.6 Research objectives and Aims

To address the challenges discussed above, a data-driven control framework with

multiple types of control devices is proposed to support system voltage regulation
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following disturbances. Two types of control devices are considered - transformers

capable of continuously adjusting voltage ratios and shunt capacitors taking discrete

switching actions. Although transformer taps are generally adjusted in a slow and

discrete manner, the quick and continuous change of voltage ratios can be achieved

using the magnetic flux valve (MFV)[40]. A modified DDPG algorithm is applied

to accommodate both the continuous and discrete controls of different devices while

maintaining the ability to provide control in a large action and state space. During

each training period, a reward function is defined to evaluate the effectiveness of

the control actions—the ratio of the controlled transformers and the group size of

the switched shunts. Compared with past studies, this work has developed a DRL

framework where both the continuous and discrete controls collaborate to conduct

power system voltage regulation. In this framework, a well-trained agent can control

multiple equipment instantaneously under different operating conditions and provide

quick and effective operational assistance when voltage violations occur.

For power system dynamic control, this dissertation aims to propose a real-time

voltage control framework that continuously regulates the excitation system based on

DRL. The dynamic performance attributes are considered to include dynamic stabil-

ity factors that may influence power system operation in practical power grids. The

voltage control function is achieved by adjusting the generators’ excitation system

under system disturbances. The DDPG algorithm, which deals with continuous ac-

tion spaces, is used in this report to continuously control the voltage reference of the

generator excitation system. To focus on the dynamic process, a transmission-level

dynamic power system training and simulation platform is built based on the com-

mercial power system software package PSS/E and user-written code in Python. By

using DRL, this study proposes a controller that allows generators to change their

reactive power output within specified limits in real-time, enabling the system to sat-
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isfy operational requirements and provide voltage support in response to disturbances

or load changes.

1.7 Main Contribution of this work

This work aims to address some of the key issues identified in the current literature.

The main contribution of this study is:

1. A data-driven control framework with multiple types of control devices is pro-

posed to support system voltage regulation following a disturbance. Two types

of control devices are considered - transformers capable of continuously adjust-

ing voltage ratios and shunt capacitors taking discrete switching actions.

2. A modified DDPG algorithm is applied to accommodate both the continuous

and discrete controls of different devices while maintaining the ability to provide

control in a large action and state space.

3. A DRL framework where both the continuous and discrete controls collaborate

to conduct power system voltage regulation is developed.

4. A novel real-time voltage control method based on DRL is proposed, which

not only regulates and controls the voltage but also considers the dynamic per-

formance of the power system after the control implementation. By leveraging

DRL algorithms, the proposed method achieves improved dynamic performance,

addressing the challenges of practical power grids characterized by large size,

complexity, and real-time control requirements.

5. A transmission level power system dynamic training and testing platform is

built in this study using a combination of a commercial power system software

package PSS/E and a user-written DRL agent code developed in Python. This
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platform provides a versatile environment that enables the training and test-

ing of various power system algorithms in different power grid environments.

The platform supports different scenarios that enable the simulation of various

system conditions.

6. A large-scale power system is tested and verified based on the dynamic training

and testing platform to investigate the control performance for large power

grids. The platform’s ability to handle large and complex dynamic power system

environments further ensures the practicality and effectiveness of the tested

methods in real-world scenarios.

7. A dynamic voltage control method employing the Multi-agent DDPG algo-

rithm is proposed to enhance the controller’s resilience in addressing commu-

nication failures. Centralized training and decentralized execution features of

Multi-agent DDPG enable independent actor and critic neural networks for the

controller. After being well trained, each agent possesses the capability to au-

tonomously generate control commands utilizing only local information, which

significantly improves the robustness of the control method.

1.8 Report Organization

The rest of the report is organized as follows:

• Chapter 2 gives a brief review of the concepts and mathematical formulations

relevant to DRL. The first section includes the basic concepts of deep neural

networks, different activation functions, and the relevant theory of neural net-

work training. The theoretical background of DRL is introduced in section 2.

Section 3 further introduces the theory and formulation of DDPG.

• Chapter 3 presents the DRL-based steady-state voltage control using multiple
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control devices. The formulations for building the multi-device voltage control

problem into a Markov Decision Process are introduced first. Following this,

the definitions of state space, action space, and reward functions are presented.

The discretization for the action space of switched shunts to be implemented in

the DDPG algorithm is discussed. The training platform and the data interac-

tion between the DRL agent and the power system environment are presented.

Finally, simulations are conducted for the result analysis.

• Chapter 4 discusses the DRL-based excitation control considering the system’s

dynamic performance. The power system dynamic operation control is first

discussed. The DRL formulations, which include the state space, action space,

and the design of the reward functions for the system dynamic voltage control,

are further presented. The dynamic simulation platform is introduced in detail

for the DRL agent training. The simulation results are analyzed to demonstrate

the effectiveness of the proposed method.

Chapter 5 discusses a dynamic voltage control method employing the Multi-

agent DDPG algorithm. The Markov Game theory is first introduced. The

detailed algorithm of the Multi-agent DDPG algorithm is then discussed in

detail. The design of action, state, and reward function are discussed and

finally simulations based on different test systems are analyzed.

• Chapter 6 concludes the report and provides the potential for the future work

of this study.
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Chapter 2

DEEP REINFORCEMENT LEARNING THEORY BACKGROUND

2.1 Deep Neural Networks

2.1.1 Artificial Neural Networks

Artificial neurons are the basic function component or building nodes in a neural

network, the mathematical model of which is inspired by the biological neurons found

in the human brain. A neural network is a group of algorithms representing the

underlying relationship among data similar to the brain. It can learn to perform

tasks from examples of data. When the input changes, the neural networks are able

to give the best result without redesigning the output procedure when neural networks

are well-trained [76].

In a neural network, multiple inputs will be given, and a weighted sum of these

inputs will be connected with an activation function to produce an output, as shown

in Figure 2.1. Each input is associated with a weight, determining its importance in

the computation. The weighted sum of inputs, often denoted as z, is computed as

[76]:

z =
n∑
i=1

(wi · xi) + b,

where wi are weights, xi are inputs, n is the number of inputs, and b is a bias term.

The structure of the neural network includes 3 types of layers [76]:

• Input layer — This layer refers to the first layer of nodes in the neural network

and will receive the initial raw data that is input to the system. It passes the

data directly to the hidden layer, where the data is multiplied by the first hidden
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Figure 2.1: Structure of neural networks.

layer’s weights.

• Hidden layers — Hidden layers are intermediate layers between the input and

output layers, where all data processing is done. They are key components in

the neural network to extract information and learn complex tasks.

• Output layer — The output layer inputs the processed data and produces the

final result for neural networks.

2.1.2 Activation Functions

Under the above structure, the network represents a linear relationship between

the input and the output even after applying a hidden layer. The activation function

does the non-linear transformation to the input, making it capable of learning more

information. The activation function will introduce non-linearity into the output of

a neuron.

Various non-linear activations are in use, such as Sigmoid, ReLU(Rectified Linear
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Unit), Tanh (Hyperbolic Tangent), Leaky ReLU, and Softmax [77].

The sigmoid function can output only positive values between 0 and 1 which is

often used in the output layer for binary classification problems. The formulation can

be described as [77]

f(z) =
1

1 + e−z
(2.1)

The function is plotted as an ’S’-shaped Curve, as shown in Figure 2.2. The small

changes in z would bring about large changes in the value of f(z) when z is around

0, so the predicted result would easily be 1 if the value is greater than 0.5 and 0

otherwise.

Figure 2.2: The Sigmoid activation function.

The ReLU function returns the value of the positive inputs and 0 for negative

inputs, as shown in Figure 2.3. It is defined as [77]

f(z) = max(0, z) (2.2)
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Figure 2.3: The ReLU activation function.

The ReLU function is the most widely used activation function and is usually

used in the hidden layer of the neural network. Since it is simpler in mathematical

structures, Relu learns faster due to its simplicity and effectiveness and does not

saturate.

The Tanh function is described as [77]

f(z) =
ez − e−z

ez + e−z
(2.3)

As shown in Figure 2.4, the Tanh function squashes the output between -1 and 1

and is usually used in hidden layers of a neural network. The mean of its output is

0 or very close to it, hence helping in centering the data by bringing the mean close

to 0. It works better than Sigmoid and is mathematically shifted from the Sigmoid

function.

The Leaky ReLU solves the ’dying ReLU’ problem since the output is zero for all
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Figure 2.4: The Tanh activation function.

negative inputs in ReLU activation function. It is formulated as follows [77]

f(z) =


z if z > 0

αz if z ≤ 0(2.4)

where α is a small positive hyperparameter, which allows a small gradient for

negative inputs for the Leaky ReLU activation function, the curve of the Leaky ReLU

can be seen in Figure 2.5 where α is set as 0.01.

The Softmax function is a type of Sigmoid function that is used in the output

layer for multi-class classification problems where probability distribution to define

the class of each input is obtained [77].

Activation functions form the core components responsible for information pro-

cessing and feature extraction within the network. They introduce non-linearity into

neural networks, which allows them to learn intricate patterns among massive data

and solve complex problems.
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Figure 2.5: The Leaky ReLU activation function.

2.1.3 Feedforward and Backpropagation

Given a neural network architecture, the training process is to teach the network

to make accurate predictions or classifications by updating its internal parameters

(weights) based on the available training dataset.

The neural network training process starts from the initialization of the network’s

parameters (weights) in each layer with small random values. After initialization, the

input data is propagated through the network’s layers to generate predictions, which

is called forward pass [76]. The forward pass computes the predictions by multiplying

the weight vector with the given input vector through all layers and passing the sum

of the product in every layer through the activation function.

The result of the forward pass is compared to the ground truth through loss

calculation using loss functions. The loss function is utilized to quantify how different
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the network’s predictions are from the ground truth values. The loss function can

be a single function, such as mean square error, mean absolute percentage error, and

cross-entropy, as well as a combination of several functions tuned by hyperparameters.

The foundational goal in neural network training is to minimize the loss function,

achieved by backpropagation [76]. Backpropagation includes gradient computation,

backward propagation, and parameter (weights) updates. The gradient of the loss

with respect to the output of the last layer is computed using calculus and the chain

rule. The computed gradient is then propagated backward through the network from

the output layer to the input layer. In each layer, the gradient is adjusted based on the

layer’s parameters (weights) and the activation function’s derivative. The adjusted

gradients in each layer are utilized to update the corresponding parameters (weights)

in that layer. The updates are based on the selection of optimization algorithms, such

as gradient descent.

In each training iteration (epoch), forward pass, loss calculation, and backpropa-

gation are performed sequentially to minimize the difference between prediction and

the ground truth. The network’s performance is periodically evaluated on a sepa-

rate validation dataset to monitor progress and prevent overfitting. If the network

performs well on the validation data, training can stop.

2.1.4 Gradient Descent

Gradient descent is an iterative optimization algorithm in training neural networks

and minimizing the loss or cost functions. The model parameters are interactively

adjusted in the direction of the steepest decrease in the cost function. Figure 2.6

shows the gradient descent iteration.

The iteration process is described as follows [76]:

• Calculate the gradient value of the cost function to the model parameters. The
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gradient is the direction and magnitude that the cost value decreases most.

• Subtracting a learning rate of the gradient from the value of the model param-

eters to update the parameters into the latest value.

• Repeat the above steps until the criterion is met. The criterion can be a pre-

defined number of iterations or the cost function converging to a minimum.

Figure 2.6: Diagram of gradient descent.

2.2 Deep Reinforcement Learning

Reinforcement learning is a subfield of artificial intelligence (AI) that deals specif-

ically with training agents to make a sequence of decisions in dynamic environments

to maximize a cumulative reward.

RL agent learns by interacting with the environment and making sequential de-

cisions through a trial-and-error process. During the training process, the learned

policy is continuously evaluated to guide the agent toward adjusting its control pol-
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Figure 2.7: Interaction between RL agent and environment.

icy in the right direction. The RL agent aims to maximize the value of a reward

function that is carefully designed to capture the objectives of the task. The agent

explores different actions and extracts information about the state representations of

the environment in real-time or through simulation to achieve this goal. If an action

results in an increase in the reward value, the agent reinforces the trend of the action;

otherwise, the action is attenuated. By adding various event scenarios to the data set,

the RL agent can be fully trained to learn a behavior that yields maximum rewards.

The environment follows the Markov Decision Process (MDP). The formulation

is defined as a finite MDP[78], M :

M ∈ (S,A, P,R, γ) (2.5)

which includes a continuous or discrete state space S and action space A. The envi-

ronment transition probability P maps a state-action pair at time t to a probability

distribution over possible next states. A reward R is given for each state-action pair

and a discount factor γ ∈ [0, 1] is used to balance immediate and future rewards.

Figure 2.7 illustrates the interaction between the RL agent and the environment.

At each step t, the agent observes the current state st from the environment and

selects an action at based on its current policy. The agent obtains a reward rt based

on its action and state, and the environment transitions to a new state st+1. This
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process is repeated iteratively with the agent continuously updating its policy based

on the observed states, actions, and rewards until a preset number of episodes is

reached to end the training.

The agent aims to choose the optimal action given the current state to achieve

the maximum accumulated discounted reward Rt over time:

Rt =
T∑
i=t

γi−tri (2.6)

where T is the time step. The key concept in searching for the optimal policy is

evaluating the state-value function V and the action-value function Q, which is also

known as the Q-function. The state-value function evaluates the goodness of a state

for an agent under policy π, as shown in (2.7)

V π(s) = E[Rt|st = s] (2.7)

The Q-function Q(s, a) represents the expected cumulative future discounted reward

for an agent under policy π and estimates the value of performing a certain action at

in a given state st:

Qπ(st, at) = E[Rt|st = s, at = a] (2.8)

The Q-function is updated by the recursive relationship in the Bellman equation[79]:

Qt+1(s, a) = E[R + γmaxa′Qt(s
′
, a

′
)|s, a] (2.9)

The Bellman equation will eventually converge to the optimal solution Q∗(s, a) as the

iterations proceed if the states follow the Markov property.

2.3 Deep Deterministic Policy Gradient Algorithm

DDPG is a reinforcement learning algorithm that is well-suited for continuous

action spaces. It uses an actor-critic structure that concurrently learns a Q-function

(modeled by the critic neural network) and a policy (modeled by the actor neural net-

work). To improve the stability of the approach, DDPG utilizes a copied actor neural

22



network and critic neural network to calculate the target values, which are periodi-

cally updated with the weights from the main neural networks to ensure consistency.

In total, DDPG includes four networks to estimate the policy and value function:

actor, target-actor, critic, and target-critic. Equation (2.10) is used to update the

critic Q(s, a) value.

Q
(s,a)
j+1 = Q

(s,a)
j + α[Rj + γmaxQ

(s
′
,a

′
)

j −Q(s,a)
j ] (2.10)

where α is the learning rate, γ is the discount rate, and Q
(s

′
,a

′
)

j represents the target

critic neural network.

The control action is obtained from the actor neural network, which enables DDPG

to handle a continuous action space in a practical large-scale system. The actor neu-

ral network uses a parameterized actor function to determine a deterministic action

based on the system states. During training, the policy π is updated in the direction

suggested by the critic neural network to maximize the expected reward by taking

steps in the direction of ∇θµJ with respect to the actor parameters. It is formulated

as:

∇θµJ =
1

N

∑
∇aQ(s, a)|s=sj ,a=µ(sj)

∇θµµ(s|θµ)|s=sj (2.11)

where J is the starting distribution, µ(s|θµ) is the parameterized actor function, and

θµ is the policy neural network parameter.

The weights of the target neural networks are periodically updated using a soft

update method: θ
′ ← ρθ + (1− ρ)θ

′
, where ρ is a fraction weight that lies between 0

and 1.

During the action exploration, a decaying noise is added to the policy to improve

the agent’s ability to explore the range of actions available to solve the environment:

µ
′
(sj) = µ(sj|θµj ) + ξj (2.12)
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where ξj+1 = rd ∗ ξj and rd is the decay rate.

Both the critic and actor are approximated with parameterized neural networks.
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Chapter 3

DEEP REINFORCEMENT LEARNING BASED VOLTAGE CONTROL USING

MULTIPLE CONTROL DEVICES

3.1 Problem Formulation for Multi-device Voltage Control

For voltage control, AVR transformers and switched shunts are considered con-

trolled devices that provide reactive power support. The control objective is to find

a policy that simultaneously determines the ratios of the transformers and the group

size of the switched shunts that are in service to minimize the voltage deviation from

the normal range. The states, actions, and rewards are defined below under the

DDPG-based control framework.

3.1.1 Definition of States

Different measurements obtained by meters are usually used as the system states

to represent the system’s operating condition. Voltage magnitudes have been widely

used for reactive power and voltage control problems, they are the direct indicators of

the system conditions, and other electrical statuses can be somehow reflected in the

voltage change[59], [80], [81]. This report also considers the bus voltage magnitudes

as states.

3.1.2 Definition of Action Space

For voltage control using AVR transformers and switched shunts, the control ac-

tions are defined as a vector of the transformer ratios and the group size of the

switched shunts. The DDPG algorithm considers a continuous action space, the con-
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tinuous transformer ratio atf = [atf1, atf2, ..., atfntf
]T can be directly controlled as part

of the action. However, the switched shunts are controlled by the group which is dis-

crete. In order to control multiple types of devices, the discretization for the actions of

the switched shunt should be done for further implementation of the DDPG algorithm.

Table 3.1 shows how the continuous actions of the switched shunts are discretized and

implemented. Al and Au represent the lower and upper bounds of the continuous ac-

tion space, L is the entire group of the switched shunts, g is the group value of

the switched shunts in service. When actions as = [as1, as2, ..., asns ]
T of the switched

shunts are generated by the DDPG agent, the values in the different ranges defined in

Table 3.1 correspond to different groups that should be connected to the system. As

a result, the total action space is formed by a = [atf1, atf2, ..., atfntf
, as1, as2, ..., asns ]

T ,

where ntf and ns are each the number of transformers and switched shunts under the

control of the DDPG agent, respectively.

Table 3.1: Switched Shunt Action Discretization

as Group in

Service

(Al, Al + Au−Al

L
) g = 1

(Al + Au−Al

L
, Al + 2 ∗ Au−Al

L
) g = 2

... ...

(Al + (n− 1) ∗ Au−Al

L
, Alo +

n ∗ Au−Al

L
)

g = n
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3.1.3 Reward Function

The reward function rt is designed to evaluate the effectiveness of the control

actions when they are implemented. To restore the voltage level under control, the

reward is designed to motivate the controller to reduce the deviation of the bus

voltage magnitude from the bus reference value Vref . As shown in (3.1), if the system

power flow diverges after applying the control action, a significant negative reward

will be imposed. Otherwise, with less bus voltage deviation, the reward will become

larger according to the first term of (3.1) in the case of system convergence. The

reward function guides the controller to regulate its actions to reach better states.

Additionally, we hope to reach the goal with less regulation so that the second term

in (9) reflects the amount of regulation required in the control process. In (9), aref is

usually the initial setting of the controlled parameter; c1 and c2 are weights selected

based on the expert knowledge of the system as well as outcomes of the trials and

errors[? ].

rt =


Huge penalty, power flow diverges

−c ∗
∑
i

∆vi(t)− c2 ∗
∑
j

∆aj(t), otherwise
(3.1)

The definition of ∆v and ∆a are given in (3.2)-(3.3).

∆vi(t) = |vi(t)− Vref | (3.2)

∆aj(t) = |aj(t)− aref | (3.3)

where i is the number of the state observed, and j is the action dimension, which

corresponds to the number of controlled transformers and switched shunts.
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Figure 3.1: Actor neural network structure

Figure 3.2: Critic neural network structure

3.1.4 Neural Network Architecture

The neural network structures adopted for the DDPG algorithm in this study

are shown in Figure 3.1 and Figure 3.2. Both actor and critic neural networks have

two hidden layers, which are connected with activation functions. The actor neural

networks adopt Relu and Tanh activation functions and critic networks adopt Relu

as the activation function.

3.2 Implementation of the DDPG-based Voltage Control Method

The overall implementation of the DDPG-based multiple devices voltage control

is described in Algorithm 1 [79]. The power flow results generated by PSS/E for

different scenarios of system load demand are used as the training data. Indices

of M and T are each the episode number of training and the step number that

indicates the maximum iteration count of each episode, respectively. At the start of

the training process, four neural networks with different sets of random weights and
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Algorithm 1 DDPG-based algorithm for multiple devices voltage control

input : system voltage states

output: AVR transformer ratio and switched shunt group size

1 Initialize the critic network Q, Q′ and actor network µ, µ′ with random weights θ,

θ′ ← θ and φ, φ′ ← φ.

2 Initialize the experience replay buffer D.

3 for episode 1 to M , do

4 Initialize the environment and obtain initial state S0

5 Initialize a random process N for action exploration

6 for step 1 to T , do

7 Select action at = µ(st|θ+Nt) according to the current policy and exploration

noise

8 Execute action at, observe rt and next state st+1

9 Store transition ( st, at, rt, st+1) in D

10 Sample a random minibatch of B transition ( sj, aj, rj, sj+1) from D

11 Compute the critic target:

12 yj = Rj + γQ′(sj+1, µ
′(sj+1|θµ

′
)|θ′

)

13 Update the critic Q-function by gradient descent using:

14 L=1/N
∑

j(yj −Q(sj, (aj|θQ))2

15 Update the target networks as:

16 ∇θµJ = 1
N

∑
∇aQ(s, a)|s=sj ,a=µ(sj)

∇θµµ(s|θµ)|s=sj

17 Update the network parameters:

18 θ
′ ← ρθ + (1− ρ)θ

′
, φ

′ ← ρφ+ (1− ρ)φ
′

the replay buffer size are initialized. For each episode, the power flow is solved to

obtain the initial states (bus voltage magnitudes). In other words, this initializes the
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Figure 3.3: Simulation platform for training DRL algorithm in power system envi-

ronment

environment. A loop for a defined number of steps per episode begins with the action

generated by the actor-network. The action is implemented in the power system

environment by adjusting the transformer ratios and changing the dispatched group

size of the switched shunts, as realized through the Python API with PSS/E. The

training of these episodes terminates when no more voltage violations are detected,

or the power flow diverges. Then, another episode is initiated. The structure of the

simulation and training platform is shown in Figure 3.3. The agent learns from this

repetitive process and keeps updating the parameters of the critic and actor neural

networks by maximizing the accumulated reward that was designed to adjust the

policy that generates actions until the maximum limit on episode M is reached.

3.3 Case Study

The proposed approach is verified on a WECC 240-bus system. The detailed

configuration of this system can be found in [82]. The effectiveness of the proposed

DDPG-based voltage control method is tested under different scenarios of load levels.

The training data are generated from feasible power flow solutions considering reason-

able constraints. The process for generating the power flow files is as follows. Starting

with a base case, each load is randomly perturbed to vary in the range of 80 % to 120
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% of the base case load using PSS/E. Then, to balance the power generation and load,

generators are re-dispatched and their active power is adjusted based on a specified

reserve requirement. All generators are adjusted simultaneously to compensate for

the power imbalance where the output change of each generator is in proportion to

its reserve capacity. Then the power flow is solved and the convergence is checked.

Feasible power flow cases will be saved and added to the training data set. The de-

sired voltage normal range is conservatively set to 0.98-1.02pu in this study, which

can also be adjusted according to the system requirement. The maximum number

of training episodes is set to 9000 with randomly selected power flow files generated

based on the above description. Another set of 1000 cases is randomly chosen for

testing. The maximum step number, which indicates the maximum iteration count

of each episode during training, is set to 50.

3.3.1 Simulation parameters

The training parameters are crucial to the convergence of the algorithm. Gener-

ally, as shown in Table 3.2, the hyperparameters include the learning rate for both

actor and critic networks, the discount rate γ, batch size, memory capacity, and train-

ing step. Exploration noise, which is used to enrich the training exploration, is also

an important parameter that influences learning performance.

The learning rate determines the learning speed of the agent. The larger the

learning rate is, the faster the agent will learn, but this could also lead to oscillations

and result in a loss of the optimal solution. A smaller learning rate can make the

learning process more precise but the drawback is the learning speed is slower. The

process could be easily trapped into an overfitting situation. Generally, the learning

rate is set to the range of 0.01-0.001. We used a learning rate of 0.001 due to the

good performance during training.
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Table 3.2: Training Parameters

Hyper parameters Parameter values

Layer 2, 2 (actor, critic)

Activation Function ([ReLU, Tanh], [ReLU, ReLU])

Units of MLP per Layer 32

Learning Rate Actor 0.001

Learning Rate Critic 0.001

Discount rate γ 0.9

Batch Size 128

Memory Capacity 10000

Max Step 50

Exploration Noise 1.6

The discount rate essentially determines how much the reinforcement learning

agent cares about rewards in the distant future relative to those in the immediate

future. If it is set as 0, the agent will only learn about actions that produce an imme-

diate reward. If it is set as 1, the agent will evaluate every action based on the total

sum of all the future rewards. Most actions do not have long-lasting repercussions

and need to be traded off to avoid irrelevant information. The discount rate is set as

0.9 in the training conducted and it provides satisfactory results.

The batch size indicates the number of training examples utilized in one iteration.

Since the number of states and actions is not large in our case, the batch size is set as

128. The memory capacity is the capacity of the datasets that the agent will randomly

sample from to train the network. It is used to break the correlation between different

data to avoid inefficient learning. A value of 10,000 memory capacity is suitable for
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Figure 3.4: The controlled area of the WECC 240-bus system

a 128-batch size.

The step interval is set as 1 second, so the maximum step setting as 50 means every

round of dynamic simulation will last 50 seconds after the disturbance is introduced.

A 5-second initialization time is set so the total simulation will be 55 seconds for each

episode.

Exploration noise is used to introduce more explorations during the training pro-

cess, which will enrich the data set during the information exchange with the power

system environment. The exploration noise is set by trial and error and a final value

of 1.6 is obtained.

3.3.2 Case I: Voltage Control with Transformers Only

Since voltage control is a local problem, two transformers of the WECC 240-bus

system Figure 3.4 are controlled to perform actions, and voltages of bus 6510 and

the 6104 are observed. The action bound is set to 0.5-1.5, which corresponds to

the lower and upper limits of the transformer ratio. Figure 3.5 and Figure 3.6 show

the training and testing results. The blue line is the actual agent reward; the black

line is the smoothed average reward that shows the reward trend; the red scatter in
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Figure 3.6 represents the steps each episode takes to correct the voltage violations.

At the start of the training, the reward is negative and small, the agent is not capable

of outputting the appropriate control actions, and power flows diverge easily. The

divergence will terminate the episode so that the agent only takes small incremental

steps in the first 2300 episodes. With the training is proceeding, the agent gradually

finds the right action policy, resulting in the reward having an upward tendency and

finally reaching a high level, the episodes of these cases usually end due to reaching

the maximum number of steps or with voltage violations being resolved. Figure 3.7

shows the bus voltages after each episode. After the reward increases significantly,

the voltages are eventually restored within the range of 0.98-1.02pu. However, this

process takes some long steps, as shown in the red scatter data in Figure 3.5. During

testing (last 1000 episodes), the average of the agent’s steps is 24.282.

Figure 3.5: Rewards with transformers controlled only
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Figure 3.6: Number of steps with transformers controlled only

Figure 3.7: Bus voltages with transformers controlled only
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3.3.3 Case II: Voltage Control with Transformers and switched shunt combined

Case II controls multiple types of devices with the DDPG-based agent, including

two transformers and a switched shunt with five 100-MVar blocks. The switched

shunt is connected to bus 6104. The action bound is set as 0.5-1.5. Figure 3.8 to

Figure 3.10 show the results of Case II. The reward has an upward tendency and the

value is closer to zero after being well trained. Compared with Case I, the performance

of Case II shows a more stable convergence. The voltages can be regulated within

the defined range of 0.98-1.02pu. Compared with Figure 3.5, Figure 3.8 demonstrates

that the agent, which controls both the transformers and switched shunt, takes fewer

steps to resolve the voltage violation.

Figure 3.8: Rewards with transformers and switched shunt
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Figure 3.9: Number of steps with transformers and switched shunt

Figure 3.10: Bus voltages with transformers and switched shunt

37



During the testing, the agent takes an average of 1.536 steps to remove the vi-

olation. In Case II, the voltages of 94.7% of the testing cases can be regulated to

the defined range within one step under the combined control of transformers and

switched shunts. Meanwhile, in Case I, only 28.1% of scenarios can achieve volt-

age recovery within one-step control. The results demonstrate that the control of

the DDPG-based agent using multiple devices can significantly improve the voltage

control performance compared with the single device control.

3.4 Conclusions

This work proposes a DDPG-based voltage control scheme when the power sys-

tem undergoes abrupt changes in the generation or load. Multiple voltage control

devices are considered by the DDPG agent. The continuous and discrete actions are

combined to showcase the proposed control method’s capability to incorporate both

continuous and discrete device types. The well-trained DDPG-based agent achieves

robust performance in eliminating voltage violations with quick actions for differ-

ent operating conditions. The proposed approach can make full use of the reactive

power resources with different response characteristics to provide more reliable volt-

age support. Simulations on the WECC 240-Bus system verify the effectiveness of

the proposed method.
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Chapter 4

REAL-TIME EXCITATION CONTROL CONSIDERING SYSTEM DYNAMIC

PERFORMANCE

4.1 Power System Dynamic Operation With Excitation System

A dynamical system is a complex system where the behavior evolves over time,

and the power system is an example of such a system. It involves interactions between

subsystems with an enormous number of variables that are constantly changing during

operation. Thus, the dynamic process of power grid operation possesses a highly non-

linear characteristic, which is essentially a process of sequential decision-making. In

the event of a disturbance, it becomes essential to take appropriate control measures

to ensure optimal control while considering power system stability, control cost, and

variation of the dynamic variables of the power grid. This decision-making process can

be described as a Markov decision process (MDP)[75] and solved by DRL algorithms,

which will be discussed in more detail in Section III.

As for the action for the control of the excitation system, numerous parameter-

setting methods have been discussed by researchers. However, the parameters are

usually set as a constant before the generators are put into operation, which results

in inflexibility and underutilization of reactive power[83]. To address this issue, DRL

can be implemented to continuously optimize the excitation system parameters in

real time during system operation. This allows the DRL algorithm to interact with

the power system environment, exchange information, and learn the control policy of

highly non-linear power systems without requiring detailed power grid model infor-

mation.
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4.2 Power System Model During Dynamic Operation

The dynamic process of power grid operation possesses a highly non-linear charac-

teristic, which is essentially a process of sequential decision-making under uncertainty.

The power system model can be formulated as follows[75]:

P : min

∫ Tc

T0

C(xt,yt, st)dt (4.1)

subject to

ẋ : f(xt,yt, dt, st) (4.2)

0 = f(xt,yt, dt, st) (4.3)

xmint ≤ xt ≤ xmaxt , ∀t ∈ [T0, Tc] (4.4)

ymint ≤ yt ≤ ymaxt ,∀t ∈ [T0, Tc] (4.5)

amint ≤ at ≤ amaxt ,∀t ∈ [T0, Tc] (4.6)

where xt denotes dynamic state variables in the power system; yt represents the

algebraic states in the power system, such as the voltage of the buses of the power

grid; at is the control action of the power system, such as generator regulation; dt

represents the system disturbance or fault that occurs during system operation; T0

and Tc represent the time horizon of this dynamic process.

Equation (4.1) represents minimizing the total cost of the corrective control, in-

cluding the cost of control actions and the control effectiveness in terms of system

states (the control effectiveness can be reflected by system states). Equation (4.2) de-

scribes the dynamic system model, such as the behavior of generators and the relevant

control systems. Equation (4.3) represents the power system constraints that describe

the power balance between generators, loads and transmission branches. Equation

(4.4)-(4.6) are the operational constraints of the system’s dynamic states, algebraic
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states, and control actions. Equations (4.1) - (4.6) together describe the optimal

decision-making model during power system operation[75; 84].

4.3 Definition of Action, State and Observation

Voltage magnitudes are commonly used to represent the operating condition of a

power system in reactive power and voltage control problems, since other electrical

statuses in system operation can be appropriately reflected in the voltage change[59;

80; 81]. Partial states in DRL algorithms can still work well for streaming valuable in-

formation, allowing for flexibility in data measurement and communication[59]. Thus,

this study adopts bus voltage magnitudes as the observation states in the Markov de-

cision process.

The control actions are defined as a vector of excitation system voltage reference

values of the controlled generators. Each element of this vector is updated continu-

ously.

The power system environment state transition is realized by a set of differential

algebraic equations from (4.2) and (4.3). The limits on the value of the voltage refer-

ences of the excitation system defined in (4.6) are considered in the definition of the

action space by a predefined range of minimum and maximum values in considering

the reactive power regulation capacity of each generator.

4.4 Definition of Reward

4.4.1 Consider voltage magnitude deviation and regulation cost

The reward function rt is designed to evaluate the effectiveness of the control

actions at each training step. To restore the voltage level under the control of the

DRL agent, the reward is designed to motivate the agent to reduce the deviation of
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the observed bus voltage magnitude from the reference value Vref . As shown in (4.7),

if the system diverges after applying the control action, a significant negative reward

will be imposed. Otherwise, with less bus voltage deviation, a smaller negative value

will be added to the reward at each training step according to the first term of (4.7)

in the case of system convergence. This results in a larger accumulated reward after

each training episode composed by a predefined amount of steps. The reward function

will gradually guide the agent to regulate its actions to reach better states. Besides

the voltage magnitude level, we hope to reach the goal with less regulation cost, so

the second term considers the amount of regulation during the control process, aref is

the initial setting of the controlled parameter. c1 and c2 are the weights of these two

parts, and they are chosen based on the expert knowledge of the system as well as

trial and error selection[75]. The definition of ∆v and ∆a can be seen in (4.8)-(4.9).

rt =


Huge penalty, power system diverges

−c1 ∗
∑
i

∆vi(t)− c2 ∗
∑
j

∆aj(t), otherwise
(4.7)

∆vi(t) = |vi(t)− vref | (4.8)

∆aj(t) = |aj(t)− aref | (4.9)

4.4.2 Consider voltage magnitude deviation, regulation cost and historical voltage

data

Power systems possess significant inertia. The dynamic process of the system

during system operation is sequential, which means the current state of the system is

affected by both the control actions as well as the previous system states. Significant

information lies in the massive historical state data for an operating power grid or

a given simulation. For voltage control problems, historical information can be pro-

vided by observing the history of bus voltage magnitudes. Therefore, the historical
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voltage magnitude data is added to the input to help the DRL agent learn a more

accurate policy to cope with system disturbances. The reward function considering

the historical data is formulated as (4.10):

rt =



Huge penalty, power system diverges

−c1 ∗
∑
i

∆vi(t)− c2 ∗
∑
j

∆aj(t)−

c3 ∗
t∑

t−ct

∑
i

∆vh−i(t), otherwise

(4.10)

∆historyk(t) = |vhistoryk(t)− Vref | (4.11)

where ∆vhistory−i is the historical voltage magnitude difference of bus i with bus

reference value Vref , ct is the historical time range considered for a certain past time

during system operation, and c3 is the weight related to the historical data in the

reward function.

4.4.3 Consider voltage magnitude deviation, regulation cost, historical voltage

data, and voltage rate of change

During the system’s dynamic evolution and control implementation after a dis-

turbance or load change, the dynamic performance is also of significant importance.

In order to avoid system oscillations and voltage fluctuations so as to facilitate the

system voltage recovery in a more stable fashion, both the rates of voltage changes

and their historical values are considered in the reward function (4.12) to guide the

agent to generate a control policy that is able to aid in the recovery of the system

voltage with more desirable dynamic performance. The reward function considering

43



both voltage historical data and voltage rate of change is shown as (4.12):

rt =



Huge penalty, power flow diverges

−c1 ∗
∑
i

∆vi(t)− c2 ∗
∑
j

∆aj(t)−

c3 ∗
t∑

t−ct

∑
i

∆vh−i(t)−

c4 ∗
t−∆t∑
t−ct

∑
i

vh−i(t)− vhi−i(t−∆t)

∆t
, otherwise

(4.12)

where c4 is the weight related to the rate of voltage change in the reward function, ∆t

is the time interval of every learning step in the training process. When applied to a

practical power system, ∆t could be the data sampling time step of the measurement

device.

4.5 Simulation Platform Development and Implementation

The overall implementation of the DDPG-based real-time excitation system con-

trol is described in Algorithm 2. A transmission-level power system dynamic simu-

lation and training platform is developed for the training and implementation of the

algorithm in the power system dynamic simulation environment. The time-domain

simulation software Siemens-PTI PSS/E is used as the power system simulator to

conduct power system dynamic simulations and emulate the power grid environment.

PSS/E provides application programming interfaces (APIs) with Python, which can

communicate the power system simulation environment to the DRL agent in real time

to exchange information, as shown in Figure 4.1.
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Algorithm 2 Deep Deterministic Policy Gradient algorithm for Real-time Dynamic

Voltage Control

input : power system environment states

output: control action applied to the power system environment

19 Initialize the critic network Q, Q′ and actor network µ, µ′ with random weights θ,

θ′ ← θ and φ, φ′ ← φ.

20 Initialize the experience replay buffer D.

21 for episode 1 to M , do

22 Initialize the environment and obtain initial state S0

23 Initialize a random process N for action exploration

24 for step 1 to T , do

25 Select action at = µ(st|θ+Nt) according to the current policy and exploration

noise

26 Execute action at, observe rt and next state st+1

27 Store transition ( st, at, rt, st+1) in D

28 Sample a random minibatch of B transition ( sj, aj, rj, sj+1) from D

29 Compute the critic target:

30 yj = Rj + γQ′(sj+1, µ
′(sj+1|θµ

′
)|θ′

)

31 Update the critic Q-function by gradient descent using:

32 L=1/N
∑

j(yj −Q(sj, (aj|θQ))2

33 Update the target networks as:

34 ∇θµJ = 1
N

∑
∇aQ(s, a)|s=sj ,a=µ(sj)

∇θµµ(s|θµ)|s=sj

35 Update the network parameters:

36 θ
′ ← ρθ + (1− ρ)θ

′
,

37 φ
′ ← ρφ+ (1− ρ)φ

′
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Figure 4.1: Simulation platform for training DRL algorithm in the power system

environment.

Figure 4.2 shows the training procedure and the data interaction between the

power system simulator and DRL agent in the training platform. The blue and pur-

ple blocks represent the actions conducted in PSS/E and Python, respectively. The

two software elements constantly exchange information using the application pro-

gramming interface (API) in training. The green arrows show the interaction data

flow between them. Power flow and dynamic model files are prepared to perform

power system dynamic simulation. At the start of the training process, four neural

networks with different sets of random weights and the replay buffer size are initial-

ized. For each episode, the power flow is solved, and dynamic simulation is initialized

based on the selected study case. The disturbance is randomly introduced, and the

initial states are obtained for each training episode, in which one round of dynamic

simulation begins. A loop for a predefined number of steps per episode starts with

the action generated by the DRL agent. The action then will be sent to the power

system simulator and implemented in PSS/E by adjusting the voltage reference input

of the excitation system. Then, the dynamic simulation will be run for one training

step interval to update the states of the power system environment, and the most up-

dated states are sent back to the DRL agent. The reward will be calculated based on

the system observation to evaluate the performance of the learned policy. The data

will be collected and stored after each round of interaction between the power system
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Figure 4.2: Data flow of the simulation platform for training DRL algorithm in power

system environment.

simulator with the objective of further training. The DRL agent will then learn and

update the parameters of the neural networks based on the observation data. An-

other round of learning begins until reaching the predefined number of steps, and then

another episode is initiated. The agent learns from this repetitive process and keeps

updating the parameters of the critic and actor neural networks by maximizing the

accumulated reward that was designed to adjust the policy of the action generation

until the maximum limit on the episodes is reached.

For each training time step interval in the platform, the dynamic simulation will

run for one time step to update the system states, and there will be one round of

interaction between the power system simulator (PSS/E) and DRL agent (Python),
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during which data exchange happens.

This training platform is based on power system dynamic simulation (both power

flow data and dynamic data are required) and is used for the emulation of the real-

time power system operation environment. Dynamic characteristics of systems can

be observed by continued interaction and data exchange during detailed time-domain

simulations. Different power system control problems can be addressed by applying

and testing various state-of-the-art DRL algorithms based on this platform across a

range of power grid simulations varying in scale.

4.6 Simulation and Results

The IEEE 9-bus system[85] and the 2000-bus Texas synthetic grid systems[86;

87; 88] are used as the test systems, based on which time-domain simulations are

conducted and interfaced with the DDPG controller. All the case studies, including

training and testing, were performed in the simulation environment based on the

platform described in Section IV.

4.6.1 Simulation Parameters

With careful tuning by trial and error, the set value of the training parameters

are shown in Table 4.1. The learning rates for both the actor and critic are set

as 0.001 with a 0.9 discount rate. The batch size, which indicates the number of

sampled training data utilized from the reply buffer in one iteration, is set as 128 in

considering the number of states and actions space in this study. A value of 10,000

memory capacity is adopted to adapt for a 128-batch size. Exploration noise is set as

3 to introduce explorations that can enrich the data set.

Both actor and critic neural networks have two hidden layers, which are connected

with activation functions. The actor neural networks adopt Relu and Tanh activation
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Table 4.1: Training Parameters

Hyper parameters Parameter values

Layer 2, 2 (actor, critic)

Activation Function ([ReLU, Tanh], [ReLU, ReLU])

Units of MLP per Layer 32

Learning Rate Actor 0.001

Learning Rate Critic 0.001

Discount rate γ 0.9

Batch Size 128

Memory Capacity 10000

Max Step 50

Exploration Noise 3

functions, and critic networks adopt Relu as the activation function. Each layer

includes 32 units to store and update the data.

The training step interval is set as 1 second, which means the power grid environ-

ment will exchange information with the DDPG agent, send current states, and get

action commands every 1 second. The maximum step number, which indicates the

maximum iteration count of each episode during training, is set to 50. The dynamic

simulation will first run for 5 seconds to provide the initial states to start the training

in each episode. Then, the disturbance is added at 5s. Therefore, each round of

dynamic simulation will run for 55 seconds in total in every episode.
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4.6.2 IEEE 9-Bus System

The IEEE 9-bus system includes three generators and nine buses, as shown in

Figure 4.3. The system parameters are shown in Table 4.2. Generator 1, a hydraulic

unit with the salient-pole generator model GENSAL, is connected to slack bus 1.

Generators 2 and 3 are steam turbines with the round-rotor synchronous generator

model GENROU. They are controlled by the DDPG agent to participate in voltage

control. All three generators are equipped with an IEEE type 1 excitation system

model (IEEET1) and an IEEE standard governor model (IEESGO). The maximum

action output is set as 1.3. Different load models can be applied to the system. In

the simulation of this report, the system loads include an active power component of

constant current load and a reactive power component of constant impedance load.

All loads are located on buses 5, 6, and 8. The reactive power load is randomly

perturbed as the disturbance, which results in around 3% - 5% voltage fluctuations.

The desired voltage normal range is conservatively considered as 0.98-1.02pu in this

study, so the voltage reference in (4.8) and (4.11) is set as 1.00 pu to guide the DRL

agent to control the voltage within the set range.
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Figure 4.3: IEEE 9-bus test system.

Table 4.2: Parameters of the IEEE 9-bus system

Bus Number Voltage(kV) Generator

Output(MVA)

Load (MVA)

1 16.5 247.5 /

2 18 192 /

3 13.8 128 /

4 230 / /

5 230 / 125 + j50

6 230 / 90 + j30

7 230 / /

8 230 / 100 + j35

9 230 / /
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Case 1: Considering voltage magnitude deviation and regulation cost

The agent is trained with the reward function of (4.7) that considers bus voltage

magnitude deviation and generator regulation cost. Figure 4.4 shows the moving

average reward finally reaches a satisfactory level after 2000 episodes of training. The

DDPG agent is applied to the system after being well-trained for testing by adding

load disturbance at 5s to induce voltage changes. The test results, depicting the

response to a 90 MVar reactive power load increase, are illustrated in Figure 4.5 and

Figure 4.6.

Figure 4.4: Case 1 of IEEE 9-bus system: Average reward.
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Figure 4.5: Case 1 of IEEE 9-bus system: Voltage of bus 8 and bus 5 with and without

DRL agent.
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Figure 4.6: Case 1 of IEEE 9-bus system: Generator voltage reference commands

from DRL agent.

Under generator control with constant exciter parameters, the system bus volt-

age magnitudes are significantly impacted and keep decreasing after the disturbance,

which puts the system at high risk of losing stability. With the DDPG agent partic-

ipating in the voltage control, bus voltages can be regulated to normal levels. The

change of the excitation system voltage reference value of the two controlled gen-

erators can be seen in Figure 4.6. Generator 3 provides full voltage support after

detecting the disturbance, and generator 2 is responsible for the voltage regulation

in real time according to the system operating. The two generators cooperate under

the control of the DDPG agent to help the system restore voltage.
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Case 2: Consider voltage deviation, regulation cost and historical voltage

data

To further analyze the impact of historical data on agent control performance, we

trained the DDPG agent with the reward function (12) that considers historical volt-

age data, bus voltage magnitude, and generator regulation cost. ct in (4.10) is set as

5, meaning the last 5 seconds of data are considered. After 2000 episodes of train-

ing, the moving average reward shown in Figure 4.7 reached and maintained a high

level. After the training converges, the DDPG controller is implemented in the dy-

namic simulation of the system. This test simulation involves introducing the same

90 MVar reactive load change, enabling a comparison with case 1. The results of

Figure 4.8 show that the DDPG agent’s control policy considering historical voltage

data can provide support to the system, helping it recover to a normal voltage level.

It’s worth noting that in case 2, the bus voltage recovered faster with fewer oscil-

lations, which demonstrated better dynamic performance compared to case 1. This

Figure 4.7: Case 2 of IEEE 9-bus system: Average reward.
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Figure 4.8: Case 2 of IEEE 9-bus system: Voltage of bus 8 and bus 5 with and without

DRL agent.
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provides evidence that historical data can provide valuable information to the DDPG

agent, improving its policy accuracy in managing voltage oscillations and fluctuations

during system operation.

Case 3: Consider voltage deviation, regulation cost, historical voltage data

and rate of change of voltage

To explore the impact of the rate of voltage change data on the DDPG agent’s per-

formance, further training using the reward function in (4.12) is conducted. This

function considers the rate of voltage change in historical data, which is calculated

using the previous and present voltage values. For the preceding 5 seconds of historical

data, there are four rates of voltage change data for each controlled bus. Following the

completion of training, which is shown in Figure 4.9, the DDPG controller is tested

with a reactive power load increase of 90 MVar as well. As shown in Figure 4.10, the

results demonstrate that the agent can effectively support the system voltage recovery

Figure 4.9: Case 3 of IEEE 9-bus system: Average reward.
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Figure 4.10: Case 3 of IEEE 9-bus system: Voltage of bus 8 and bus 5 with and

without DRL agent.

to the desired range in a more stable manner.
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Figure 4.11: Case 1 to Case 3 comparison of IEEE 9-bus system: Voltage of bus 8

and bus 5.

In the analysis of the DDPG agent’s dynamic control performance, different types

of information in the reward functions are analyzed in Case 1 through Case 3. Fig-

ure 4.11 shows a comparison of the voltage control performance when the DDPG

agent is tested with the same disturbance. The solid curve of Case 3, which consid-

ers both historical voltage data and voltage rate of changes, exhibits the smoothest
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Figure 4.12: Case 4-Voltage of bus 5 when a disturbance occurs at bus 5.

voltage curve with the least fluctuation under the control of the DDPG controller.

Additionally, Case 3 is capable of regulating and recovering the voltage faster due to

the controller’s ability to more accurately predict voltage changes based on dynamic

features learned during training. The agent provided with extra information on the

rate of voltage change can generate more effective actions to not only control the

voltage level but also achieve better dynamic control performance.

Case 4: Simulation with the randomly selected location of the disturbance

The disturbance of Case 1 to Case 3 is located at bus 8. This section analyzes the

scenario with randomly selected disturbance locations. The disturbance is randomly

added to bus 5, bus 6, and bus 8 with random load change amount. Only voltage

magnitude and regulation cost are considered in this scenario, which uses (4.7) as

the reward function. After the agent is well trained, the test results are shown in

Figure 4.12 and Figure 4.13. We can see from the results that the voltage can still be

recovered with the random location of the disturbance. This scenario is more likely to
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Figure 4.13: Case 4-Voltage of bus 6 when a disturbance occurs at bus 5

happen in the real power grid since faults always appear with significant uncertainty.

4.6.3 Texas 2000-Bus Synthetic Test System

To evaluate the effectiveness of the proposed DRL-based dynamic voltage control

method on a more realistic system, simulations are conducted on the Texas 2000-bus

synthetic power system, which is a large-scale representation of an actual power grid.

This serves as a crucial step to test the proposed control method and the training

platform.

The whole 2000-bus power test system is synthetic and has four voltage levels of

500/230/161/115 kV. The total generation capacity in this system is 98GW with a

load of 67GW and 19GVAr. The heavily loaded area is in southeast Texas around

the Houston area and the Northern part of the Texas grid.

In Figure 4.14, the structure of the Texas 2000-bus synthetic power system is de-

picted, where disturbances are introduced in the heavily loaded Houston area (high-

lighted in red) to simulate scenarios with voltage issues. Among the generators, 7098
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Figure 4.14: Diagram of disturbance area of 2000-bus system.

and 7099 are well-suited as controlled generators due to their large capacity and am-

ple reactive power capability. As generator 7098 is connected to the swing bus of the

system, generator 7099 is selected as the controlled generator, along with generator

7310, which is located at a short electrical distance from the Houston area. These

two generators are chosen as the controlled generators for this case study. Generators

7099 and 7310 are both represented with the GENROU generator model. Genera-

tor 7099 employs an IEEET1 exciter model and IEEE type 1 speed-governing model

(IEEEG1). While generator 7310 utilizes the ESST4B exciter model and a general

turbine-governor model(GGOV1). The system includes the same load model as the

9-bus system. To train and evaluate the controller’s response to voltage changes,

system disturbances are induced by altering the reactive power loads.

Parameter adjustments for the Texas 2000-bus system

Dynamic simulations are conducted based on this data and an oscillation is found in

the system when no disturbance is added, as seen in Figure 4.15. This indicates that

a suitable initial condition was not determined for the time domain simulation. As a
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result, some system parameters or control settings can be erroneous.

Figure 4.15: Diagram of disturbance area of 2000-bus system.

Figure 4.16: Diagram of disturbance area of 2000-bus system.

To remedy this problem and make preparations for the agent training, the ap-

propriate parameter(s) of the test system is adjusted. The test case was simulated

in post PSS/E and PSLF, which have excellent initial condition analysis capability
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for dynamic initialization. According to the warning information that PSS/E and

PSLF provided, we adjusted the maximum limit of the governor and the excitation

system, and this reduced the oscillation. Generator 6216 greatly influences system

stability. The lead and lag time constant and “Vrmax” of generator 6216’s excitation

system were further adjusted to appropriate values. As a result, the initialization is

successful and a flat run indicating this is obtained, as shown in Figure 4.16. The

following training and testing simulations are based on this corrected data.

Case 1: Considering voltage magnitude deviation and regulation cost

The simulation begins with the base case that utilizes equation (4.7) as the reward

function, which considers voltage magnitude and regulation cost. After training the

DDPG agent, as shown in Figure 4.17, where the reward reaches a high level, the

agent is tested and the results are shown in Figure 4.18 to Figure 4.19. The results

indicate that the agent can improve the voltage to a satisfactory level compared to the

Figure 4.17: Case 1 of the 2000-bus system: Average reward.
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Figure 4.18: Case 1 of the 2000-bus system: Voltage of bus 7068 with and without

DRL agent.

conventional control mode. When a 230 MVar reactive load increases at 5s, the agent

can detect the voltage change and generate commands to improve the generators’

output immediately. The voltage of bus 7068 is shown in Figure 4.18 and Figure 4.19

as the voltage level representative for analysis. The voltage is restored to a normal

level in about 2 seconds after the disturbance, and the generators can continuously

regulate the excitation systems to achieve real-time voltage control in the recovery

process. The two generators can respond quickly to voltage fluctuations under the

control of the DDPG agent, which performs well in both situations of quick voltage

control during sudden disturbances and minor voltage regulation in the process of

system recovery.
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Figure 4.19: Case 1 of the 2000-bus system: Generator voltage reference commands

from DRL agent.

Case 2: Consider voltage deviation, regulation cost, historical voltage data

and rate of change of voltage

Various reward functions are employed for the DDPG controller in the Texas 2000-bus

system, including considering historical voltage deviation and adding voltage rate of

change in addition to the base case. The simulation results with the same load distur-

bance as case 1 are presented in Figure 4.20. The addition of voltage rate of change
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Figure 4.20: Comparison of 2000-bus system test results

in the reward function leads to voltage recovery with a smoother curve, compared to

the basic case and the case that includes historical voltage deviation. These two cases

exhibit minor voltage oscillations and deviations, which do not exhibit satisfactory

dynamic performance, though the voltage level has recovered to the normal level.

The reward function, which includes the voltage rate of change can guide the agent

to achieve a maximum reward value and mitigate the oscillations, which improves the

system’s dynamic performance during control.

Case 3: Simulation with randomly selected location of disturbance

A random disturbance at buses 7219, 7306 and 7069 is introduced, respectively. Only

voltage magnitude and regulation cost are considered. After the agent is well trained,

the test results are shown in Figure 4.21 and Figure 4.22. We can see from the results

that the voltage can still be supported with a random disturbance. The voltage is not

completely restored to around 1 pu, but it still can help improve the system voltage,
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which is also very important to the safe operation of the system.

Figure 4.21: Case 3: Voltage of bus 7219 when a disturbance occurs at bus 7219

Figure 4.22: Case 3: Voltage of bus 7306 when a disturbance occurs at bus 7306

Case 4: Simulation with more severe disturbance

A larger disturbance with 280MVar load change is introduced into the system to

fully test the effectiveness of the proposed controller. The voltage curve compared
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Figure 4.23: Case 4: Voltage compare between Case 1 and Case 4

Figure 4.24: Case 4: Voltage reference command of the excitation system for generator

7099

with Case 1 of 230MVar load change can be seen in Figure 4.23, and the red curve

is the voltage with 280MVar load change, which decreased more compared to the

green curve of Case 1 after the disturbance is added into the system at 5 seconds.

The excitation system voltage reference values of the two controlled generators can
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Figure 4.25: Case 4: Voltage reference command of the excitation system for generator

7310

Figure 4.26: Case 4: Trend of the two generators voltage reference command

be seen in Figure 4.24 and Figure 4.25. The voltage curve (green one) is also re-

tained in the figure to make the results more intuitive. It can be observed that after

the voltage drop, the controller will output high value commands to make the two
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generators provide better voltage support to the system after a serious disturbance.

The voltage can be improved and can finally reach nearly 1 pu under the control of

the controller. The controller will keep monitoring and regulating the system voltage

during the whole dynamic simulation. The output commands from the controller are

also presented in Figure 4.26, which shows the trends of the whole control time range.

From all the results presented, it is seen the controller can effectively provide support

and precisely help the system restore voltage.

4.7 Conclusions

This study proposes a DRL-based data-driven excitation control scheme to realize

real-time voltage regulations. The voltage control problem is formulated as a Markov

Decision Process that considers historical voltage data and the voltage rate of change

information besides the voltage deviation and regulation cost, which leads to better

dynamic performance during voltage recovery after disturbances. The development

of a dynamic simulation training and test platform provides a reliable environment

for the training and testing of different scales of systems regarding various control

problems based on DRL algorithms. The results show that the proposed DRL-based

dynamic voltage control method outperforms conventional voltage control methods

in terms of faster and more accurate voltage control without relying on complex

system models. The method demonstrates promising dynamic performance and can

be readily generalized to large-scale power systems, which has the potential to be

applied in practical power systems for real-time voltage control.
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Chapter 5

MULTI-AGENT DECENTRALIZED EXECUTION REAL-TIME EXCITATION

CONTROL

5.1 Markov Games

The reinforcement learning agent acquires knowledge by engaging with the en-

vironment and making sequential decisions through a process of trial and error.

Throughout the training, the acquired policy undergoes constant evaluation, guid-

ing the agent to refine its control strategy in the optimal direction. The multi-agent

environment could be extended from the Markov Decision Process(MDP) to a Markov

game. A Markov game for N agents is a tuple < N,S,A,R,P > where N is a set

of agents indexed 1, ..., N . S represents state space of N-agents. A = [A1, ..., AN ]

represents the action space of N-agents. P : S × A1 × ... × AN → S is a stochastic

transition function. R contains stage reward r for each agent and agent N obtains

stage reward rN as a function of the state and action rN : S × AN → < and each

agents N wants to maximize its own total expected return by

RN = E

[
+∞∑
t=0

γtrtN

]
(5.1)

5.2 Decentralized Actor Centralized Critic Multi-Agent DDPG

The multi-agent learning algorithm needs to consider the algorithm’s robustness.

As in Fig. 5.1, the algorithmic framework of the centralized critic with the decen-

tralized actor is shown, where the information from all the critic neural networks can

be used to ease the training for each actor agent. Different from centralized DDPG,

which shares the same critic and actor neural network, multi-agent DDPG utilizes all
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Figure 5.1: The schematic of MADDPG[1]

the observations and actions of all agents that have independent neural networks to

update the critic network during the training by:

L (θN) = Es,a,r,s′
[
(QπN

N (s, a1, ..., aN)− y)2]
y = rN + γQ

π′
N
N (s′, a′1, ..., a

′
N)
∣∣∣
a′N=π′

N (sN )

(5.2)

Then, based on the centralized critic network, the decentralized action network is

updated by

∇θNJ (θN) = E{s,a}∼D[∇θNπN (aN | sN)QπN
N (s, a1, ..., aN)] (5.3)

The training process is detailed in Algorithm 3.
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Algorithm 3 Multi-Agent Deep Deterministic Policy Gradient algorithm for Real-

time Dynamic Voltage Control

input : power system environment states

output: control action applied to the power system environment

38 Initialize the critic network Q, Q′ and actor network µ, µ′ with random weights θ,

θ′ ← θ and φ, φ′ ← φ.

39 Initialize the experience replay buffer D.

40 for episode 1 to M , do

41 Initialize the environment and obtain initial state S0

42 Initialize a random process N for action exploration

43 for step 1 to T , do

44 Select action at = (a1t, ..., aNt) according to the current policy and exploration

noise

45 Execute action at, observe rt and next state s′ Store transition ( st, at, rt, s
′)

in D

46 for agent 1 to N , do

47 Sample a random minibatch of B transition ( sj, aj, rj, s
′) from D

48 Compute the critic target:

49 y=rN + γQ
π′
N
N (s′, a′1, ..., a

′
N)
∣∣∣
a′N=π′

N (oN )

50 Update the critic Q-function by gradient descent using:

51 L(θN) = Es,a,r,s′
[
(QπN

N (s, a1, ..., aN)− y)2]
52 Update the target networks as:

53 ∇θNJ (θN) = E{s,a}∼D[∇θNπN (aN | oN)QπN
N (s, a1, ..., aN)]

54 Update the network parameters:

55 θ
′ ← ρθ + (1− ρ)θ

′
,

56 φ
′ ← ρφ+ (1− ρ)φ

′
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5.3 Definition of Action, State and Reward

5.3.1 Definition of Action and State

Similar to Chapter 4, this study also adopts bus voltage magnitudes as the ob-

servation states in the Markov game since voltage stability is the problem we are

discussing.

The control actions are defined as the excitation system voltage reference values

of the controlled generators. Different from the centralized DDPG, in which the

actions are defined as one vector of multiple generators but share the same neural

network, each control action of the multi-agent DDPG has an independent actor

neural network. Each generator is controlled by an actor to output the action, which

means every action is an independent vector within its own actor neural network.

5.3.2 Definition of Reward

The reward function rt has the same structure as in Chapter 4, as shown in (5.4).

The voltage variation, the action regulation amount, the history voltage data, and

the rates of voltage changes are considered in the reward function to accommodate

both the final voltage regulation level and the dynamic performance of the controller.

rt =



Huge penalty, power flow diverges

−c1 ∗
∑
i

∆vi(t)− c2 ∗
∑
j

∆aj(t)−

c3 ∗
t∑

t−ct

∑
i

∆vh−i(t)−

c4 ∗
t−∆t∑
t−ct

∑
i

vh−i(t)− vhi−i(t−∆t)

∆t
, otherwise

(5.4)
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∆vi(t) = |vi(t)− Vref | (5.5)

∆aj(t) = |aj(t)− aref | (5.6)

where c1, c2 and c3 are the weights of each part. The definition of ∆v and ∆a

is given in (5.5)-(5.6). ∆t is the time interval of every learning step in the training

process.

5.4 Simulation and Results

The test systems are the IEEE 9-bus system and the 2000-bus Texas synthetic

grid systems as well, which is the same as Chapter 4. All the case studies, including

training and testing, were performed in the simulation environment based on the

platform described in Section IV.

5.4.1 Simulation Results of IEEE 9-Bus System

Case 1: Voltage Control Performance

The agent is trained and Figure 5.2 illustrates that the moving average reward ulti-

mately reaches a satisfactory level after 2000 training episodes. This indicates that

the performance of the agents, evaluated using the designed reward function, is com-

mendable. Generators 2 and 3 are under the control of different agents, with each

agent possessing independent critic and actor neural networks to execute control ac-

tions. A disturbance is introduced at 5 seconds to induce voltage changes.

76



Figure 5.2: Training average reward of IEEE 9-bus system.

Figure 5.3: Case 1 of IEEE 9-bus system: Voltage of bus 5 and Vref command for

Generator 2.
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Figure 5.4: Case 1 of IEEE 9-bus system: Voltage of bus 6 and Vref command for

Generator 3.

The test results depict the system’s response to a 90 MVar reactive power load

increase in the IEEE 9-bus system, as illustrated in Figure 5.3 and Figure 5.4. A

comparison of system performance with and without the MADDPG agents is pre-

sented.

In the scenario where only a constant voltage reference is applied in the excitation

system, represented by the dotted line in Figure 5.3 and Figure 5.4, the system

experiences a decrease in voltages following oscillations. Moreover, it fails to recover

to the normal level after the disturbance.

However, when MADDPG agents are introduced, a significant increase in voltage

reference commands is observed as the system voltage decreases during the distur-

bance. The controlled generators respond dynamically, providing crucial support that

leads to an improvement in voltages. Subsequently, the controlled generators continue

to regulate the output in real time, effectively maintaining the voltage level around

one pu.
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The results demonstrate that the MADDPG controller effectively enhances and

sustains system voltage during disturbances, showcasing its capability to respond and

adapt to challenging voltage disturbance conditions.

Case 2: With Time-Varying Load Changes

To conduct a thorough evaluation of control performance in the face of dynamic

load fluctuations, we introduce varying load changes following the initial disturbance

in the dynamic simulation. In particular, after the initial 50 MVar load change,

an additional 30 MVar load change at 20 seconds and a subsequent 20 MVar load

change at 35 seconds are introduced. This sequence of load variations provides a

comprehensive scenario to assess the system’s resilience and the effectiveness of the

control mechanisms in adapting to evolving and dynamic conditions.

The test results illustrating bus voltage and MADDPG control commands can be

observed in Figure 5.5 and Figure 5.6. With time-varying disturbances, the system

voltage remains supported consistently under the control of MADDPG agents, effec-

tively responding to each disturbance event. The agents exhibit prompt and precise

detection of system voltages, enabling timely adjustments to maintain a stable voltage

level.

In contrast, the scenario with constant voltage reference commands fails to sup-

port system voltage effectively; the voltage continuously decreases, posing a threat

to the stability of the system. The comparison underscores the performance of the

MADDPG-controlled system, emphasizing its capacity to respond accurately to dy-

namic conditions, which decreases the risk of voltage instability under varying dis-

turbances.
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Figure 5.5: Case 2 of IEEE 9-bus system: Voltage of bus 5 and Vref command for

Generator 2.

Figure 5.6: Case 2 of IEEE 9-bus system: Voltage of bus 6 and Vref command for

Generator 3.
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Figure 5.7: Training average reward of Texas 2000-bus system.

5.4.2 Simulation Results of Texas 2000-Bus Synthetic Test System

Simulations are executed on the Texas 2000-bus synthetic power system to assess

the efficacy of the multi-agent DDPG controller in handling larger systems. Three

distinct scenarios, encompassing instances of communication failure, are thoroughly

examined to demonstrate the robustness and effectiveness of the proposed control

policy.

Case 1: Voltage Control Performance

The voltage control performance is evaluated in this case. Firstly, the multi-agent

DDPG agents are trained, and the result is shown in Figure 5.7, where the reward

can finally stabilize at a high level. Then, the controller is implemented into the

Texas 2000-bus system with load disturbance. The results can be seen in Figure 5.8

to Figure 5.9.
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Figure 5.8: Case 1 of 2000-bus system: Voltage of bus 7068 and Vref command for

Generator 7099.

Figure 5.9: Case 1 of 2000-bus system: Voltage of bus 7306 and Vref command for

Generator 7310.

The results demonstrate that both generators, each under the control of distinct

agents, can effectively respond to the voltage drop during disturbances to provide
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Figure 5.10: Case 2 of 2000-bus system: Voltage of bus 7068 and Vref command for

Generator 7099.

timely support. Within just 2 seconds after the fault, the voltage is restored to

approximately 1 per unit, and this level is consistently maintained during the system

operation. The two controlled generators keeps regulating the system voltage in real-

time, precisely adjusting the voltage reference values generated by the multi-agent

DDPG agents during system operation. The voltage recovery is achieved without

unnecessary fluctuations. In contrast to conventional excitation system control with

a constant voltage reference, the multi-agent DDPG controller significantly enhances

the voltage level. The proposed control strategy not only ensures a rapid recovery

from disturbances but also maintains a stable voltage level, highlighting its superiority

in improving system performance.

Case 2: With Communication Failure in One Generator

The multi-agent DDPG control adopts centralized training and decentralized exe-

cution in its control structure. This signifies that each distributed agent generates
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Figure 5.11: Case 2 of 2000-bus system: Voltage of bus 7306 and Vref command for

Generator 7310.

control commands based only on local information after the agent is well-trained.

Simulations conducted under both multi-agent DDPG and centralized DDPG are

visually represented in Figure 5.10 through Figure 5.11, providing a comparative

analysis of their performance under distinct control settings.

In the multi-agent DDPG configuration, independent critic and actor neural net-

works are employed for each agent. Conversely, the centralized DDPG utilizes shared

critic and actor neural networks across all agents. A noteworthy scenario is intro-

duced where a communication failure occurs in the actor neural network responsible

for controlling the generator G7310, leading to the inability to transmit critic neural

network information to the actor during the control process.

In Figure 5.10 and Figure 5.11, the solid black curves represent the system voltage

under the control of the multi-agent DDPG, while the dotted curves depict the sys-

tem voltage when controlled by the centralized DDPG. Additionally, the blue curve

represents the reference voltage command generated by the centralized DDPG con-
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troller. When a communication failure occurs between the actor and the critic in

the centralized DDPG configuration, the affected actor lacks real-time system status

information, rendering it unable to output commands normally. Consequently, the

voltage reference for the G7310 excitation system remains unchanged and fails to

adapt to system voltage fluctuations, as shown in Figure 5.11.

In contrast, the multi-agent DDPG continues to operate normally despite the com-

munication failure. Relying only on local information, it produces control commands

unaffected by the disrupted communication link. Consequently, the system’s voltage

is effectively recovered and maintained. With the centralized DDPG controller now

only controlling G7099, the voltage support is constrained, leading to a lower voltage

level, as illustrated in Figure 5.10 and Figure 5.11.

This comparison underscores the resilience of the multi-agent DDPG approach,

showcasing its ability to enhance control system robustness during communication

failures. The decentralized execution with centralized training proves advantageous

in maintaining effective control even in communication failure scenarios, thereby high-

lighting the robustness of the proposed multi-agent DDPG architecture.

Case 3: With Communication Failure in One Generator at 20s

To assess controller performance in the face of communication failures during system

operation, simulations involving communication failure of agents controlling the gen-

erator G7310 at 20 seconds are conducted. The outcomes of both multi-agent DDPG

and centralized DDPG are depicted in Figure 5.12 and Figure 5.13.

Upon a load change disturbance at 5 seconds, both multi-agent DDPG and cen-

tralized DDPG promptly respond to the voltage drop, providing system support that

increases bus voltages. However, when communication failure is induced at 20 sec-

onds, the centralized DDPG agent stops to output valid commands, causing the
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Figure 5.12: Case 3 of 2000-bus system: Voltage of bus 7068 and Vref command for

Generator 7099.

voltage reference for G7310 to revert to its default value, the same with the system’s

initial setting, as shown in Figure 5.13. With only G7099 fully controlled by the

DDPG agent, there is a modest drop in bus voltages due to limited voltage support.

In contrast, the multi-agent DDPG controller remains unaffected by the com-

munication failure, continuously delivering sustained voltage support throughout the

control process. It’s noteworthy that even in the absence of communication failure,

the multi-agent DDPG exhibits superior voltage support. The voltage level is higher

than the centralized DDPG control from 7 seconds to 16 seconds, as evidenced by the

results in both Figure 5.12 and Figure 5.13. This underscores the inherent robustness

and efficacy of the multi-agent DDPG approach, not only in handling communica-

tion failures but also in consistently providing stronger voltage support under normal

operating conditions.
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Figure 5.13: Case 3 of 2000-bus system: Voltage of bus 7306 and Vref command for

Generator 7310.

5.5 Conclusions

This study introduces a dynamic voltage control method, leveraging the multi-

agent DDPG algorithm, which operates on the principle of centralized training and

decentralized execution. In this approach, each agent is equipped with independent

actor neural networks responsible for generating generator control commands and

critic neural networks that assess the performance of these commands. After training,

each agent is capable of independently generating control commands using only local

information. Simulation results underscore the effectiveness of the multi-agent DDPG

controller, demonstrating its proficiency not only in offering voltage support but also

in adeptly managing communication failures among distinct agents. This approach

showcases the system’s adaptability and robustness, emphasizing its potential for

enhancing dynamic voltage control in power systems.
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Chapter 6

CONCLUSION AND FUTURE WORK

This research work deals with voltage control problems both in steady state and

dynamic control processes based on DRL method.

In the first approach, a voltage control strategy based on DDPG for managing

changes in load within a power system is proposed. The approach takes into account

multiple voltage control devices, and it seamlessly integrates both continuous and

discrete actions to demonstrate its adaptability across various device types. Through

extensive training, the DDPG-based agent exhibits remarkable resilience in rectifying

voltage violations under diverse operating conditions. This novel approach effectively

harnesses the various available reactive power resources, each with its unique response

characteristics, to enhance the dependability of voltage support.

The second control method is used for dynamic simulation. An innovative data-

driven excitation control approach based on Deep Reinforcement Learning (DRL)

to achieve real-time voltage regulation is proposed. The voltage control challenge

by formulating is addressed as a Markov Decision Process, incorporating historical

voltage data, voltage rate of change information, voltage deviation, and regulation

cost. This comprehensive approach enhances dynamic performance during voltage

recovery following disturbances. To facilitate experimentation and evaluation across

various system scales and control scenarios using DRL algorithms, we have developed

a dynamic simulation training and testing platform. The results demonstrate that the

proposed DRL-based dynamic voltage control method surpasses conventional meth-

ods in terms of both control speed and accuracy, bypassing the need for intricate

system models. This method exhibits promising dynamic performance and holds the
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potential for widespread adoption in practical, real-time voltage control applications

for large-scale power systems.

The third approach leverages the Multi-agent DDPG algorithm, which operates

by centralized training and decentralized execution. In this approach, each agent is

equipped with independent actor neural networks responsible for generating genera-

tor control commands and critic neural networks that assess the performance of these

commands. After training, each agent is capable of independently generating control

commands using only local information. Simulation results underscore the effective-

ness of the Multi-agent DDPG controller, demonstrating its proficiency not only in

offering voltage support but also in adeptly managing communication failures among

distinct agents.

To further develop the ideas and approaches that have been presented in this

work, some of the potential research areas could be improved as follows:

• The expansive potential of the deep reinforcement learning controller allows for

the enlargement of both control scope and action diversity, facilitating the in-

clusion of a wider array of controlled devices. Moreover, the neural network’s

capabilities can be augmented, empowering it to effectively process and manage

a more substantial volume of information, thereby enhancing its overall perfor-

mance and adaptability. This opens up possibilities for a sophisticated and

versatile system that can efficiently control an extensive range of devices.

• DDPG stands out as a sophisticated deep reinforcement learning algorithm

characterized by its accommodation of continuous action spaces. However, it

exhibits sensitivity to the training dataset, leading to increased training require-

ments.

To mitigate this challenge, it’s worthwhile to explore alternative deep reinforce-
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ment learning algorithms. Notably, algorithms like Proximal Policy Optimiza-

tion (PPO) and Soft Actor-Critic (SAC) offer enhanced training stability and

should be considered as promising alternatives.
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