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ABSTRACT

Platform business models have become pervasive in many aspects of the economy,

particularly in the areas experiencing rapid growth such as retailing (e.g., Amazon and

eBay) and last-mile transportation (e.g., Instacart and Amazon Flex). The popularity

of platform business models is, in part, due to the asset-light prospect which allows

businesses to maintain flexibility while scaling up their operations. Yet, this ease of

growth may not necessarily be conducive to viable outcomes. Because scalability in a

platform depends on the intermediary’s role it plays in facilitating matching between

users on each side of the platform, the efficiency of matching could be eroded as growth

increases search frictions and matching costs. This phenomenon is demonstrated in

recent studies on platform growth (e.g. Fradkin, 2017; Lian and Van Ryzin, 2021; Li

and Netessine, 2020).

To sustain scalability during growth, platforms must rely on effective platform

design to mitigate challenges arising in facilitating efficient matching. Market design

differs in its focus between retail and last-mile transportation platforms. In retail

platforms, platform design’s emphasis is on helping consumers navigate through

a variety of product offerings to match their needs while connecting vendors to a

large consumer base (Dinerstein et al., 2018; Bimpikis et al., 2020). Because these

platforms exist to manage two-sided demand, scalability depends on the realization of

indirect network economies where benefits for users to participate on the platforms

are commensurate with the size of users on the other side (Parker and Van Alstyne,

2005; Armstrong, 2006; Rysman, 2009). Thus, platform design plays a critical role in

the realization of indirect network economies on retail platforms.

Last-mile transportation platforms manage independent drivers on one side and

retailers on the other, both parties holding flexibility in switching between platforms.

High demand for independent drivers along with their flexibility in work participation
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induces platforms to use subsidies to incentivize retention. This leads to short-

term improvements in retention at the expense of significant increases in platforms’

compensation costs. Acute challenges to driver retention call for effective compensation

strategies to better coordinate labor participation from these drivers (Nikzad, 2017;

Liu et al., 2019; Guda and Subramanian, 2019). In addition to driver turnover,

retailers’ withdrawal can undermine the operating efficiency of last-mile transportation

platforms (Borsenberger et al., 2018). This dissertation studies platforms’ scalability

and operational challenges faced by platforms in the growth.
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Chapter 1

SCALABILITY IN PLATFORMS FOR LOCAL GROCERIES: AN EXAMINATION

OF INDIRECT NETWORK ECONOMIES

Abstract

Despite a significant rise in consumer interest in local foods, supply constraints limit

access to these products in many markets. Online platforms for local foods may help

solve these constraints. However, to our knowledge, there is no empirical research on

the economic viability of these platforms. We study this problem by analyzing a two-

sided platform subject to indirect network effects. If present, these effects will create

a virtuous cycle where consumers’ demand for products sold through the platform

rises in the number of vendors and suppliers’ demand for product distribution through

the platform increases in consumer demand. In the case of our study’s platform,

analyses reveal the existence of indirect network effects, as consumers prefer a variety

of local vendors and vendors derive greater surplus from greater consumer demand.

Therefore, platforms like the one we analyze may serve as viable alternatives for the

commercialization of local foods, and could provide greater access to these products.

Importantly, however, our analysis also reveals the existence of not only non-linearities

in the strength of indirect network effects, but also non-monotonic effects. Non-

monotonicity derives from consumers’ attraction to the platform marginally decreasing

in the number of local vendors and from the existence of marginally increasing costs

as more of these vendors join in. As a result, indirect network economies are subject

to a cap imposed by the number of vendors participating in these platforms. Through
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counterfactual simulations, we evaluate the magnitude of this constraint and offer

recommendations on how to minimize its impact.

1 Introduction

Increasing demand for locally-produced foods continues to place new strains on

food supply chains traditionally designed to widely distribute mass-produced national

brands (Voight, 2013; Hesterman and Horan, 2017). Local foods appeal to consumers

due to their perceived quality and freshness (Thilmany et al., 2008; Bond et al., 2009)

and a sense that they are easier to trace to their source, are more environmentally

sustainable, and contribute to the local economy in a positive way (Carpio and

Isengildina-Massa, 2009; Toler et al., 2009). Nevertheless, despite this rise in demand,

supply constraints limit access to local foods in many markets (Tippins et al., 2002).

Historically, local foods were first available only through direct-to-consumer channels

(i.e., specialty stores, farmers’ markets, restaurants, and roadside stands), but direct

channels are not available in all markets (Hardesty, 2008). Once consumers’ demand

for local foods became apparent, traditional grocery chains, such as Walmart (Bloom

and Hinrichs, 2017), scrambled to meet this demand by stocking more local products.

However, these chains typically stock only a limited product selection, tend to negotiate

prices and inventory-management terms that are not economically viable for smaller,

local producers, and require these suppliers to navigate multiple layers of intermediaries

and distribution centers to supply different stores (Swanson, 2013; Gunders and Bloom,

2017; Tongarlak et al., 2017; Zuurbier, 1999; Mena et al., 2011). Consequently, many

local-vendor relationships soon fail; witness the mass de-listing of local food products

by Tesco in 2015 (Leyland, 2015; Willis et al., 2016). In this paper, we consider an

alternative, Internet-based platform model that bypasses traditional retailers, and
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leverages the same fundamental economic forces that drive similar models such as

those involving mobile apps, gaming, music, and video.

This model differs from others also based on the Internet and used by more

established online retailers, such as Fresh Direct. Although these retailers are also

able to source fresh foods directly from small specialty vendors using disintermediated

supply chains (Cattani et al., 2007; Richards et al., 2017; Stewart et al., 2018), they

have yet to be able to solve the geographic disconnect that exists between vendors of

local products, and the critical mass of the consuming market, much of which lives

in major urban centers, such as New York City (Low and Vogel, 2011). Therefore,

although online grocery retailing models can be effective in disintermediating food

supply chains, they do not offer complete solutions to consumers’ lack of direct access

to local food vendors located in the same areas where consumers live.

Emerging, second-generation models based on Internet platforms may provide a

solution to this challenge (Horst et al., 2011; Matson et al., 2013; Richards et al.,

2017). In these models, the platform typically exists solely to connect producers of

local foods to consumers in a geographically proximate area. Serving as an aggregator

for local foods, the platform provides a means by which producers can distribute their

goods in their own local markets and consumers in those markets can obtain easy

access to these products through direct delivery. Yet, despite a growing interest in

such Internet-enabled food hubs, no research has examined their economic viability.

Although there are a number of platforms that are attempting to move fresh food

directly from local producers to consumers, e.g., Farmhouse (farmhousedelivery.com)

and Farm Runners (Farmrunners.com), these firms have yet to generate the kind of

growth in their local supply base that would suggest they will be a real alternative to
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traditional grocery channels for local foods. 1 In this paper, we provide an empirical

analysis of transaction data from one Internet-based local food platform in order to

test whether or not the underlying conditions for long-term scalability exist. In doing

so, we not only provide new insights as to whether this type of second-generation

model is economically viable, but also examine whether it can grow to include a

substantial number of local vendors in the market. That is, we establish whether the

viability of growth in this type of platform is constrained in the number of vendors

participating in the platform.

Our study focuses on a platform that uses a model commonly observed in the

industry. In this model, participating consumers first order products from an array

of local vendors and pay prices set by the platform. Upon receiving the orders, the

platform then uses its own vehicles and employees to pick up the items from the vendors

and deliver them to consumers. Therefore, the primary benefit of a platform such as

this is that it reduces transaction costs between consumers and vendors, and provides

these parties low-cost access to local grocery inventories and distribution services (i.e.,

product pickup from the vendors and delivery to end consumers), respectively. That

is, the economic viability of the platform depends, in part, on reducing frictions (i.e.,

transaction costs and search costs) involved in matching consumer demand for items

in local vendors’ inventories with local vendors’ demand for the distribution of these

inventories to consumers. Perhaps more important, however, are the more subtle

indirect network effects.

The platform in our study is considered to be a “pure platform” in the sense that

it exists to manage two-sided demand: Consumers demand a variety of products from

vendors, and vendors demand distribution to the largest possible number of consumers.

1Although online platforms in these markets have been operational for 7 years on average, most of
them (70%) include fewer than 40 local vendors in their supply base (USDA Local Food Directories,
2020).
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Therefore, viability depends on the realization of indirect network economies between

consumers on one side of the platform and vendors on the other (Rochet and Tirole,

2006; Rysman, 2009). Because the platform is two-sided, the strength of any indirect

network effects will rise in (1) the economic gains available for vendors from using

the platform to distribute their inventory to satisfy greater consumer demand, and

(2) the utility consumers receive from buying from a larger number of vendors and,

hence, a greater variety of local items to choose from. Indirect network effects create a

virtuous cycle in which demand from consumers supports a larger number of vendors

on the platform, and more vendors will attract greater consumer demand (Tucker and

Zhang, 2010). Stronger indirect network effects, therefore, generate more surplus for

consumers participating on the platform and for vendors that choose to distribute

their products through the platform.

By studying this phenomenon, we contribute to the emerging operations manage-

ment (OM) literature on platforms (see Benjaafar and Hu, 2020 and Chen et al., 2020

for a review) and to research examining the role of platforms in the management of

supply chains (e.g., Parker and Anderson, 2002). This is because the platform we

analyze must compete with grocery stores, specialty stores, and farmers’ markets for

supply and demand within the same geographical market. Therefore, our evaluation

of indirect network economies in this setting is based on the surplus available to the

platform in equilibrium. Among recent studies that estimate indirect network effects

that are most similar to ours (Chu and Manchanda, 2016; Li and Netessine, 2020;

Zhou et al., 2020), none allow for the observation that indirect network effects arise

as a result of an equilibrium in the interaction between buyers and sellers on the

platform.

This distinction is important. For example, while Chu and Manchanda (2016)

explain both buyer and seller behavior independently on a marketplace in terms of
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utility-based models, the marketplace does not choose prices and variety based on

its profit-maximization behavior conditional on consumer demand. Our approach,

on the other hand, ensures that the indirect network effects we estimate are fully

consistent with each set of agents optimizing their respective objective functions based

on their expectations of the other side’s decisions. Essentially, the model by Chu and

Manchanda (2016) is a reduced-form explanation of indirect network effects, while

ours accounts explicitly for the endogeneity of each side.

At the core of our study is an empirical model that is similar in spirit to others

used in analyses of indirect network effects in marketing and economics by Nair

et al. (2004), Kaiser and Wright (2006), and Richards and Hamilton (2018), but

also extends these analyses in two ways. First, our evaluation of the strength of

the indirect network effects depends on the competitive conduct of the platform in

equilibrium, since monopolistic conduct could effectively neutralize indirect network

effects by internalizing them (Weyl, 2010). In our model, the platform’s pricing

decisions are conditioned on the equilibrium between consumer demand for local

foods and supplier demand for distribution, and on the equilibrium responses by the

platform’s competitors. As the platform’s conduct deviates from perfect competition,

then its pricing decisions will increasingly absorb the indirect network effects as profit

to the platform owner (Weyl, 2010). The results from our model show that the

platform’s conduct does deviate from perfect competition, absorbing some of the

available indirect network effects.

Second, our study considers non-linearities and non-monotonicity in the extent

to which consumer demand rises in the number of vendors on the platform and vice

versa. While prior work on indirect network effects has documented how two-sided

demand can generate surplus for different platforms (e.g., Rochet and Tirole, 2003;

Rysman, 2004; Parker and Van Alstyne, 2005), it has assumed that indirect network
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effects are either linear or nonlinear but monotonic. We, on the other hand, consider a

more realistic case in which a platform’s indirect network effects may not be inherently

unlimited. That is, we analyze whether indirect network effects continue unabated as

the platform’s scale increases by considering nonlinear and non-monotonic network

effects. This is another contribution our paper makes to the literature. Although prior

studies contribute theoretical models that account for these conditions (Halaburda

et al., 2017), we are not aware of research that has modeled them empirically.

Our analysis of indirect network economies is structural in the sense that we evaluate

the available platform surplus for participating vendors as a nonlinear function of

consumer demand and the attraction of consumers to the platform as a nonlinear

function of the number of vendors. The use of this structural approach represents

another contribution of our study to the body of research on platforms in the OM

literature, which typically uses empirical methods that rely on quasi-randomization

and exogenous sources of variation in the data to characterize nonlinear indirect

network economies (e.g., Li and Netessine, 2020). Our structural approach offers the

opportunity to understand why nonlinear indirect network economies occur in the

first place.

We find that there are substantial indirect network effects in an Internet-based

local food platform such as the one in our study. That is, we find that consumer

demand increases in the number of vendors participating in the platform, and vice

versa. Therefore, a platform like the one we analyze may constitute a viable alternative

for the commercialization of local grocery food to consumers and could offer a solution

to consumers’ limited access to local food vendors through supply chains involving

grocery retailers, specialty stores, and farmers’ markets.

However, we also find that the indirect network effects in the platform are nonlinear

in the number of participating vendors and that these effects are non-monotonic. Thus,
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the network effects we document do not increase without bound and there is an

economic limit to the platform’s scale. First, we observe that having too many

vendors can erode the utility consumers derive from the platform. As a result, indirect

network economies at the platform will be subject to negative cross-side externalities

when the number of participating vendors grows too large. Second, we find that

indirect network effects are subject to negative same-side externalities on the supply

side because increases in the number of participating vendors can yield marginally

increasing costs in fulfilling consumer demand at the platform. 2

Alleviating these negative externalities will allow the platform to give more local

vendors an opportunity to market their inventories outside traditional local channels

and grocery chains. Therefore, we conclude our paper by carrying out two differ-

ent counterfactual simulations directed at achieving this goal. The first simulation

addresses the negative cross-side externalities by increasing consumers’ preferences

for local food vendors through improvements in the platform’s search and recom-

mendations capabilities. The second simulation addresses the negative same-side

externalities by offsetting the marginal costs at the platform through the use of govern-

ment subsidies promoting the provision of local grocery foods. These counterfactual

simulations allow us to identify the number of suppliers in equilibrium under linear

and nonlinear indirect network effects and evaluate the magnitude of the limitations

on the platform’s indirect network effects imposed by non-linearities.

We find that the number of vendors in equilibrium under nonlinear indirect network

effects is significantly lower than the number of vendors under linear effects, suggesting

that the growth of online platforms for local grocery food is subject to significant

2Cross-side externalities refer to the externalities exerted on one side of the platform by agents from
the other side of the platform, while same-side externalities refer to the externalities created by
the impact from one side of the platform on agents from the same side of the platform (Eisenmann
et al., 2006).
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nonlinear indirect network economies. These non-linearities explain why, despite the

fact that a number of platforms have engaged in moving fresh food directly from

local producers to consumers, they have yet to dominate the provision of local foods

replacing the traditional grocery channels. Therefore, although a platform business

model can help connect local growers and consumers in a more efficient way, the

fact that local vendors are usually highly differentiated means that the scope for any

technology solution faces real economic constraints. Although the counterfactuals we

propose lessen these constraints, they do not necessarily eliminate them.

The remainder of the paper proceeds as follows. In the next section, we review the

literature and develop a set of testable hypotheses. We then describe our platform

setting in Section 3 , as well as the data. In Section 4 , we present the model, the

empirical specification, and identification strategy underlying our data analysis. In

Section 5 , we present the results from both the empirical estimation exercise as

well as the counterfactual simulations. We close in Section 6 with our conclusions,

implications for practice and policy, and opportunities for future research.

2 Literature and Theoretical Background

Our study is relevant to the literature at the intersection of operations management,

information systems, and marketing. Part of this research focuses on studying the

design and growth of online platforms specialized in the sale and/or rental of durable

goods in the media, electronics, automotive, home furnishings, and toys/games cate-

gories (e.g., Parker and Van Alstyne, 2005; Fraiberger and Sundararajan, 2015; Zhu and

Liu, 2018) as well as in secondary markets (Dhanorkar, 2018; Richards and Hamilton,

2018; Bimpikis et al., 2020). Another part focuses on the design and growth of online

platform operations involving services in the lodging and passenger-transportation

industries (e.g., Zervas et al., 2017; Allon et al., 2018).
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Underlying these studies is a recognition that, for indirect network economies to

emerge, a platform must ensure that participants on both of its sides obtain enough

value from their involvement. Often, doing this requires the platform to generate

a surplus substantial enough to be able to allocate shares of this surplus that are

sufficiently large to participants to entice them to join and still leave a residual

adequately large to cover the platform’s costs and generate a positive rate of return

(Armstrong, 2006). As a result, the higher the surplus available at the platform, the

easier it is to generate large enough shares to motivate participants to join (Evans

and Schmalensee, 2010, 2016).

Platforms can realize this surplus by reducing frictions involved in matching

their members. The more extensive the frictions are addressed by the platforms

and the greater their success in reducing them, the larger their available surplus

(Evans and Schmalensee, 2016). In the case of local food platforms, these frictions

are substantial. For one, there is a high degree of heterogeneity among consumers

and vendors since the former often exhibit a high level of variability in taste and the

latter typically specialize in producing and selling a limited range of distinct items.

Moreover, exchanges between consumers and vendors are often subject to short time

constraints since most consumers looking to buy these products are willing to allocate

only a small fraction of their time to find them. Under these time limitations, search

costs involved in matching consumers and vendors take on greater relevance. Finally,

these matches are subject to information asymmetry because consumers are generally

unable to assess the quality of the products offered by the vendors prior to completing

their exchanges with them. Consequently, these matches are subject to a non-trivial

failure rate.

In addition to the availability of a sufficiently large surplus, the emergence of

indirect network economies depends on the platform attracting a sufficiently large
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number of members on either one of its sides to make participants on the other side

to want to join in (Rochet and Tirole, 2006; Rysman, 2009). Only by scaling up both

sides — the buying side and selling side — will the platform be able to generate

marginal reductions in matching costs conducive to maximizing its surplus. Therefore,

the platform’s viability will depend on whether the surplus available to members

participating on one side of the platform rises in the number of members participating

on the other side and vice versa.

This phenomenon has been observed in platforms involving inventory liquidation

auctions (Bimpikis et al., 2020) as well as in platforms for ride-hailing services (Kabra

et al., 2016). However, the evidence is not uniform. For instance, a study of an online

platform for short-term home rentals showed that an increase in the platform’s supply

side led to a lower rate of successful matchings (Li and Netessine, 2020). Moreover,

evidence from an online platform matching freelance labor with local demand points

to the existence of constant returns to the scale on the platform (Cullen and Farronato,

2020). In the case of a local grocery food platform, evidence to support the existence

of indirect network economies is contingent on an equilibrium outcome between

the vendor side and the consumer side of the platform, which has not been taken

into consideration in any of the work discussed above. Yet, this equilibrium is a

necessary condition to quantify indirect network economies in the growth of local

grocery platforms because the growth on either side of these platforms is endogenous

to the growth on the other side (Caillaud and Jullien, 2003; Hagiu, 2009). That is,

consumers join in the platform based on their expectations regarding the number of

available vendors and vendors participate in the platforms based on their expectations

of consumer demand.

It is unclear that under this equilibrium there will be a presence of indirect network

economies at a local food platform. First, the strength of indirect network effects at
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such platform will depend on the competitive conduct of the platform in equilibrium,

since this conduct could effectively neutralize the growth potential associated with

indirect network externalities (Weyl, 2010). In this setting, the platform’s pricing

decisions are conditioned on the equilibrium between consumer demand for local

foods and supplier demand for distribution, and on the equilibrium responses by the

platform’s competitors. As the platform’s conduct deviates from perfect competition,

then its pricing decisions effectively internalize, and increasingly neutralize, any indirect

network effects that may be present (Weyl, 2010). Therefore, the strength of indirect

network effects depends on whether the platform’s conduct deviates from perfect

competition, in which case it can undermine the platform’s growth potential due to

indirect network externalities.

Second, increases in the demand allocated by consumers to the platform may not

be sufficient to generate an increase in surplus that will draw more local vendors. This

is because scalability in this type of platform is subject to added costs unique to the

food industry. For one, food is unlike media, technology, advertising, or any of the

other canonical platform products in that the object of the exchange (food) is difficult

to store and transport, and expires relatively quickly. Furthermore, scalability in a

local food platform is uniquely complex because the supply of food is seasonal and

wholesale prices tend to be unusually variable (due to the relative inelasticity of both

the supply of and demand for food).

Finally, scalability in a local focal platform involves users on the consumer side

who care about buying products sourced from vendors located near their homes. In

this environment, growth trends in demand and supply have a strong geographical

coupling, making it difficult for the platform to reach a critical participation mass

in equilibrium subject to indirect network economies on both of its sides (Evans

and Schmalensee, 2010). Theoretical models have analyzed this phenomenon while
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requiring that users make their decisions to join either side of the platform in a single

period (Caillaud and Jullien, 2003) or across different periods (Hagiu, 2006). These

models suggest that to the extent that a platform is able to exploit these indirect

network economies, it should indeed be able to scale up. Whether this is observable

in a local food platform is subject to the various considerations discussed previously,

in which case we could hypothesize that:

Hypothesis 1: Indirect network economies are present in the growth of online plat-

forms for local grocery food.

Another consideration is that indirect network economies in a local food platform

may not necessarily grow linearly in the number of members participating in a platform

(Rochet and Tirole, 2003; Parker and Van Alstyne, 2005; Rochet and Tirole, 2006).

There may be instances in which adding too many members to one side of a platform

will impose negative externalities on the platform. Rysman (2004) and Chu and

Manchanda (2016) are among the few authors who have studied empirically this

phenomenon. They found that, in the case of consumer search, utility exhibits

marginally decreasing returns in the variety of options consumers have available to

choose from. OM scholars have studied this phenomenon but only through stylized

analytical models (Halaburda et al., 2017), which obviously cannot substantiate

whether consumers’ utility will exhibit marginally decreasing returns in the number

of local food vendors participating in a platform. In theory, it is possible that an

abundance of vendor choices will make it harder for consumers to find optimal food

supply options. This is because when consumers are exposed to too many choices,

they will engage in wasteful search and will often end up settling for suboptimal

consumption decisions, including not purchasing at all (Iyengar and Lepper, 2000;

13



Kuksov and Villas-Boas, 2010; Arnosti et al., 2021). If so, these negative cross-side

externalities may limit the number of vendors that can participate in the platform.

Moreover, because adding vendors will increase exponentially the complexity

of the network of locations where the platform will source food from, distribution

costs will increase non-linearly in the number of vendors. This phenomenon is a

reflection of negative same-side externalities among vendors in the platform and is

similar to that described by Bhargava et al. (2013) to model analytically the costs of

commercialization of products subject to network effects in demand (e.g., electric cars,

video game consoles) and by Jiang and Tian (2016) and Tian and Jiang (2018) to

model analytically the costs in the manufacturing and distribution of durable goods

for collaborative consumption through a platform. The implication is that matching

outcomes may become exceedingly more costly for the platform as the number of

affiliated vendors increases because the cost of distribution incurred by the platform

marginally increases in the number of vendors. As a result, these negative same-side

externalities will limit the number of vendors that can participate in the platform.

From these arguments, we hypothesize below the existence of nonlinearities in

indirect network economies imposed by two different types of externalities driven by

the number of participating vendors in local food platforms:

Hypothesis 2a: The growth of online platforms for local grocery food is subject to

nonlinear indirect network economies imposed by negative cross-side externalities as

the number of participating vendors increases.

Hypothesis 2b: The growth of online platforms for local grocery food is subject to

nonlinear indirect network economies imposed by negative same-side externalities as

the number of participating vendors increases.
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3 Methodology

Our study uses data obtained during a period of 129 weeks, starting in 2008 at

the time of the platform’s inception, until 2011. We selected a 129-week period after

the platform’s inception because most of the growth in participation on the supply

side occurred within this period of operation. Since the majority of the vendors that

ended up participating on the platform had already signed up by week 90, our focus

on this period of analysis allowed us to ameliorate potential biases in our evaluation

caused by right-censoring in the data.

3 .1 The Platform

From the start, managers at the platform focused on satisfying consumers’ demand

for local food because they knew that while consumers had developed a preference for

these products, shopping for them across a wide variety of local vendors entailed a

substantial amount of effort. Therefore, they saw an opportunity to use the platform

to give consumers access to these products while significantly reducing their fixed

shopping costs. The platform focused on a market in the Southeastern US where

sources of local food were relatively close to consumers who would be interested in

using the platform to buy from them. The market had 100,000 households, an annual

population growth rate of almost 1%, and a population density of about 4,000 people

per square mile. The median income per household was just over $64,000 and 25% of

households had children under the age of 18 living with them. Since its launch, the

platform took on the responsibility of collecting the products ordered by consumers

directly from vendors and delivering these products to consumers. In turn, the vendors

became responsible for picking the products consumers ordered through the platform

and have them packed and ready for pick up on the morning after they received the
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orders. Once the platform collected all products from vendors, it assembled the orders

and dispatched them for delivery to consumers in the afternoon. This ensured that

consumers received their deliveries the day after they ordered through the platform.

Management also recognized that consumers preferred purchasing local groceries

if the platform could meet at least some of their shopping needs for groceries from

national vendors familiar to consumers. Therefore, to gain initial traction among

consumers at the time it launched, the platform made available products from eight

national vendors along with products from ten local vendors. The distinction between

national and local vendors is a function of the vendors’ locations (i.e., where their

products originate) relative to the platform’s market area. For example, Eggland’s

Best is considered a national vendor because its products originated from locations

far removed from the market area where the platform operated. On the other hand,

a vendor such as Meadow Run Farms is considered a local vendor since its products

originated at a location in close proximity to the market area served by the platform.
3

Soon after its launch, the platform continued expanding the number of participating

local vendors while maintaining the number of national vendors essentially unchanged.

While the number of local vendors increased over time until leveling at around 65 by

week 90, the national vendor base remained essentially unchanged during our data

collection period. As the number of local vendors continued increasing during this

period, management kept updating a list of these vendors and prominently displayed

it on the front page of the platform’s online site.

3This characterization is based on that used by the US Congress in the 2008 Farm Act, which
considers food transported less than 400 miles, or that is sold within the state where it is grown, to
be locally sourced (Darby et al., 2008; Martinez, 2010).
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3 .2 Data description

Our data consist of 34, 327 consumer-level transactions on the platform from

September of 2008 until March of 2011. For each transaction, the data included

the consumer’s identification number as well as a description, count, and price for

each product purchased, along with the cost paid by the platform to the vendors

for each product. The transaction data also included the date of the purchase, the

dollar amount in coupons the consumer used to make the purchase, and whether

the consumer was paying for the delivery of the order through an optional delivery

subscription program available through the platform. Furthermore, the transaction

data included detailed information on the vendor selling each item. This information

was also available to consumers on the platform’s website. For each item, the website

displayed the name of the vendor and indicated whether the vendor was local to

the market. For instance, collard greens sourced from a local vendor (Meadow Run

Farms) carried a label that read “Meadow Run Farms Produce-Local No-Spray Collard

Greens”. The use of labels advertising the name of the vendors and specifying whether

the vendors were local to the market not only allowed the platform to inform consumers

explicitly of the products’ provenance, but also gave consumers the ability to filter

their search for products available on the platform to include only those supplied by

local vendors.

From these data, we built Figure 1 to illustrate the change in the composition of

the platform’s vendor base: While the number of local vendors increased steadily over

time until leveling at week 90, the national vendor base changed only slightly in weeks

8, 49, and 79. To control for the changes in the national vendor base, we used the first

period (week 1 to week 7) as the base level and assigned a dummy to the second (week

8 to 48), the third (week 49 to 78), and the last period (week 79 to 129), respectively.
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In a two-sided platform like the one in our study, indirect network economies would

create a virtuous cycle in which an increase in consumer demand at the platform

would facilitate an increase in the number of suppliers participating on the platform

and vice versa. Figure 1 provides visual evidence that both the number of consumers

and the number of vendors on the platform are positively related. Although this is

an indication that indirect network economies may exist in the platform, it fails to

properly measure consumer demand as well as to account for potential endogeneity

between consumer demand and the number of vendors at the platform as well as

other confounding effects that may contribute to explain this relationship. In the next

section, we expand on the econometric model we used to account for these issues.

Figure 1: Size of vendor and consumer base by week

4 Econometric Model

We use a structural model in which we estimate consumer weekly demand at

the platform in the first stage, and the marginal effect of an increase in consumer

demand on the number of local vendors in the second stage. By endogenizing both

the consumer demand and the supply of local groceries on the platform, we estimate

the strength of participation on each side of the platform and identify the presence
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of indirect network economies along with the number of vendors at the observed

equilibrium.

To model consumer weekly demand at the platform, we follow the same approach

as Nair et al. (2004) and Richards and Hamilton (2018) and use a simulated maximum

likelihood estimation of the joint probability of each consumer shopping on the platform

on a weekly basis (in Section 4 .1) and of the number of items purchased by the

consumer (i.e., the basket size) given the consumer’s choice of shopping on the platform

during a particular week (in Section 4 .2). The probability of purchasing is driven by

considerations of need and state dependence, while basket-size demand is driven more

by volume-demand. Both the probability of choosing the platform and the basket size

depend on the number of local vendors participating on the platform and the price of

items sold through the platform. However, because these determinants may correlate

with unobserved demand shocks, we use a control function approach (which we detail

in Section 4 .3) to account for their potential endogeneity. 4

The modeling approach reflects the following sequential decision process of con-

sumers. In a given week, a consumer first decides whether or not to make a purchase

on the platform. As consumers seek to match their specific preferences on the platform,

the probability of finding an ideal match increases at a decreasing rate as there are

diminishing marginal returns to variety (Mehta et al., 2003; Draganska and Jain, 2005;

Richards et al., 2015; Chu and Manchanda, 2016). Therefore, we expect to see a

4We chose a control function approach over a two-stage least squares (2SLS) approach because the
former constitutes a superior approach to obtaining an instrumental variable estimator (Chan et al.,
2020). In a standard case where an endogenous variable appears linearly, the control function will
lead to the usual 2SLS estimator (Wooldridge, 2015). However, in the case of a nonlinear model
(as is the case in our paper), the control function approach is at an advantage relative to the 2SLS
approach because the key exclusion assumption for a valid instrumental variable is not restricted
to its zero correlation with the error term but to its conditional independence. This conditional
independence allows the control function to be included in the regression estimation in a flexible
manner rather than in a pre-specified function form, such as that based on the linear projection of
the endogenous variable on the instrumental variable in the 2SLS approach (Petrin and Train, 2010).
Therefore, compared to 2SLS, the control function is a superior approach to tackle endogeneity in
the estimation of our paper’s nonlinear equations on the demand side.
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nonlinear impact of variety on the probability of choosing whether to purchase. The

consumer then decides how many units to buy in a basket. Conditional on having

made the decision to purchase, the second-stage basket-size decision reflects more

“traditional” volumetric concerns (i.e., the demand curve from economic principles)

and not the diminishing marginal probability of achieving a preference match (Bucklin

et al., 1998; Ailawadi et al., 2007). In this sense, there is no reason to expect the same

nonlinear relationship between variety and quantity-purchased as we expect at the

purchase-incidence stage.

By aggregating the product of purchase incidence and the expected number of

items purchased per basket across all consumers per week, we obtain a predictive model

of weekly platform demand, which we then use to estimate a model of equilibrium

product provision at the platform per week (in Section 4 .4). The goal of this model

is to examine how local vendors respond to increases in consumer demand at the

platform. We estimate this model using a generalized method of moments (GMM)

with instruments to address the potential endogeneity of the surplus and the number of

participating local vendors. This approach is consistent with that used by Villas-Boas

and Zhao (2005) and Richards and Hamilton (2015). We expand in Section 4 .4 on

the use of these instruments as well.

4 .1 Purchase Incidence Model

We model the number of orders on the platform each week, t, as the product of

the total number of consumers visiting the platform and the probability that each

consumer purchases on the platform in that week. This probability depends on

platform attributes that include one of our primary variables of interest, the number

of local vendors participating in the platform, Nt. In week t, consumers choose to

either purchase on the platform or purchase elsewhere (or not at all). In the literature,
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the latter correspond to an outside option with a utility of zero (Berry et al., 1995;

Villas-Boas and Zhao, 2005).

When consumer h visits the platform and purchases products from the platform

in week t, she obtains a utility given by:

Uht = γZht − αpt + βXt + f(Nt) + εht, (1)

where pt denotes the average price of products available on the platform and εht is

an iid random error term. The utility function contains a vector Xt of time-related

variables. The vector contains a variable counting the number of weeks since the

platform’s inception (WEEK ) in order to control for longitudinal growth in demand

and a dummy variable (BREAK ) indicating whether a given week, t, occurs during

times of the year when consumers typically leave for vacation (between Memorial

Day and Labor Day and between Christmas Day and New Years’ Day). 5 Since

consumers’ value of time is lower during these periods, we expect to observe a lower

Uht during these weeks. The vector also contains the dummy variables that identify

the periods in our analysis during which the size of the national vendor base remained

constant. We expect to observe a different value of Uht in each of these periods.

The utility function also includes a vector, Zht, of consumer need-based variables,

or variables that proxy the likelihood that in-home inventories of certain items may

be running low. The first of these variables corresponds to a lagged quantity (LQ)

measure of the number of items in the consumer’s most recent purchase on the platform.

We expect that a higher LQ will have a negative effect on the utility of purchasing at

the platform during a given week. The vector also includes a measure of inter-purchase

time (IPT ), in weeks, corresponding to the interval between the most recent purchase

on the platform by the consumer and the current week, t. IPT reflects the level of
5We include the time trend in the purchase incidence model to control for state-dependence such as
inertia, learning or habituation that our other measures do not capture.
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loyalty that consumers have formed towards the platform and therefore as it increases,

the utility of purchasing is likely to decrease. Furthermore, the vector includes a

consumption rate (CR) measure equal to the total number of items purchased by the

consumer on the platform during our observation period divided by the number of

weeks the consumer stayed active on the platform. Thus, we implicitly assume that

consumers do not know about the platform before their first transaction and choose

not to shop at the platform again after their last transaction. We expect a consumer

with a high CR to be more likely to regard the platform as his or her primary source

for groceries and this will imply a higher utility of purchase (Bell et al., 1998; Briesch

et al., 2009).

The Zht vector also includes a measure that captures the type of delivery payment

plan (DPP) that consumers chose in order to have their platform purchases delivered

to them. Although the platform did not offer rush deliveries during our period of

analysis, it did provide consumers with the option to pay in advance a membership

fee to be eligible for an unlimited number of deliveries on a monthly basis. Consumers

who chose not to use the membership plan had to pay for delivery every time they

ordered on the platform. The measure we included in the Zht vector differentiates

between consumers who chose the membership plan and consumers who chose to pay

for delivery every time they purchased on the platform. We expect to observe a higher

utility for consumers who chose the membership plan than for consumers who did not.

The former are likely to have a higher utility than the latter.

Recall from Hypothesis 2a that vendor variety available on the platform may

have a nonlinear effect on consumer utility. We capture this effect by following Dra-

ganska and Jain (2005) and Richards and Hamilton (2015) and use a quadratic form

f (Nt) = θ1hNt + θ2hNt
2 to define the attraction for consumers to the platform as a

nonlinear function of the number of local vendors on the platform. The derivation of
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this subutility function can be found in both Draganska and Jain (2005) and Richards

and Hamilton (2015). Furthermore, it accounts for the possibility of unobserved

heterogeneity among consumers’ preferences for vendor variety on the platform. There-

fore, it allows the consumer-level parameters capturing the effects of Nt and N2
t in

Equation (1) to vary across consumers such that:

θ1h = θ1 + σ1ν1 ν1 ∼ N(0, 1) (2)

θ2h = θ2 + σ2ν2 ν2 ∼ N(0, 1), (3)

where θ1h and θ2h are normally distributed with mean of θ1 and θ2. Consumer

heterogeneity in the preference for vendor variety is distributed according to a normal

distribution with zero mean and standard deviation of σ1 and σ2, which we introduce

to the model explicitly by standardizing two random variables, ν1 and ν2, such

that ν1 ∼ N(0, 1) and ν2 ∼ N(0, 1). Hence, the parameters σ1 and σ2 capture the

heterogeneous consumers’ preferences for vendor variety.

Each week, a consumer decides whether to buy from the platform or not. We

assume the unobserved consumer tastes in Equation (1) follow a Type I extreme

value distribution, so each consumer’s decision is described by a logit probability

distribution. Therefore, the probability of purchase incidence for consumer h in week

t is given by:

Pr (inc) =
exp

(
γZht − αpt + βXt + θ1hNt + θ2hNt

2
)

1 + exp
(
γZht − αpt + βXt + θ1hNt + θ2hNt

2
) . (4)

Because we account for unobserved consumer heterogeneity in the preferences for

vendor variety in Equations (2) and (3), the logit model in Equation (4) does not have

a closed-form solution. Therefore, we integrate over the distributions of θ1h and θ2h

in Equation (4) by taking 100 Halton random draws from their distribution (Train,

2009). Then, from the first and second order effects for Nt estimated in this solution,
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we can determine how consumers’ likelihood of purchasing on the platform changes

with the number of local vendors.

4 .2 Basket Size Model

The dependent variable in the basket size model corresponds to the number of

items that a consumer buys. We model this quantity decision as zero-truncated

Negative Binomial, following the approach used in Greene (2003). This decision is

conditional on the consumer’s purchasing on the platform. Therefore, given that a

consumer h, makes a purchase on the platform in week t, the probability of purchasing

qht = 1, 2, . . . , n units is written as:

P (Qht = qht|Qht > 0) = exp (−λht) (λht)qht

(1− exp (−λht)) qht!
, (5)

where λht = exp (ψh0 + ψppt + ψnNt + ψIIht) is the purchase rate of consumer h on the

platform in week t. Conditional on the consumer having chosen to make a purchase,

basket size is likely to decrease in pt. Furthermore, following Richards and Hamilton

(2018), we assume that basket size is likely to increase in Nt and vary with the vector

Iht. This vector includes the consumer need-based variables introduced in Section 4 .1,

as well as a variable that accounts for consumers’ use of promotional programs at the

platform, as reflected in the dollar amount consumers used in coupons (COUPON)

provided by the platform as part of their purchases in week t. Finally, ψ is a vector of

parameters to be estimated and exp (.) ensures that the purchase rate will be non-

negative. As in the purchase incidence model, we allow for unobserved heterogeneity

over consumers by allowing the intercept term to be normally distributed such that

ψh0 = ψ0 + ψ1v3, v3 ∼ N(0, 1), where v3 is an independent and standardized random

variable.
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We considered using a Poisson distribution to model consumers’ basket size deci-

sions. However, this distribution proved to be too restrictive for this purpose because

it assumes that the mean of the estimated basket size is equal to its variance. In

our setting, this assumption does not hold due to over dispersion among basket size

observations. Specifically, in a Poisson model the relationship between mean and

variance is: V ar [qht|p,N, I] = E [qht|p,N, I], whereas in a negative binomial model

the relationship is: V ar [qht|p,N, I] = E [qht|p,N, I] +αE [qht|p,N, I]2 which indicates

that the variance is greater than the mean when α is greater than zero. Following

Cameron and Trivedi (1990), we performed a t-test to verify whether the mean of the

estimated basket size is equal to its variance. The results from this test led us to reject

the null hypothesis, and conclude that overdispersion is indeed a feature of our data.

Because the Negative-Binomial-P’s density function in Equation (6) is unrestricted,

we can estimate its parameters, α (overdispersion) and Q (form), from the data:

P (Qht = qht|p,N, I) =
Γ
(
Tλht

Q + qht
)

Γ
(
Tλht

Q
)

Γ (qht + 1)

(
Tλht

Q

Tλht
Q + λht

)Tλht
Q (

λht

Tλht
Q + λht

)qht

.

(6)

In this model, T is an estimate of 1
α
. If α approaches 0, the Negative Binomial-P will

collapse to Poisson. If Q = 0 or Q = 1, the functional form becomes a Negbin2 or a

Negbin1, respectively.

4 .3 Demand Estimation and Identification

We estimate the parameters in the purchase incidence model and basket size model

jointly through a simulated maximum likelihood estimation procedure (Train 2009).

This approach is based on the following simulated log-likelihood (SLL) function:
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SLL =
H∑
h=1

ln

{
1
R

R∑
r=1

T∏
t=1

[Prht(inc)P (Qht = qht|Qht > 0)]yht [1− Prht(inc)](1−yht)
}
,

(7)

where yht equals 1 if consumer h chooses to buy on the platform in week t or 0 otherwise.

As we mentioned above, we allow individual-specific parameters θ1 and θ2 in the utility

function and ψ1 in the basket size function to vary randomly across consumers and,

thus, we use Halton draws from the population distribution for r = 1, 2, . . . , R. This

procedure has been used in the literature to improve estimation efficiency (Train 2009).

We observed little difference in the parameter estimates after more than 100 draws.

In structural models such as this, identification is aided by non-linearity in the

functional forms for each part, but is not guaranteed due to the presence of clear

endogeneity. Specifically, the number of participating vendors and the price of groceries

in the purchase incidence and basket size models may be correlated with unobserved

shocks affecting consumers’ demand, violating the conditions necessary for their

assumed exogeneity. Therefore, to address these predictors’ potential endogeneity,

we used a control function approach (Petrin and Train, 2010) with two instrumental

variables (IVs). We instrument price with a well-accepted cost shifter: the wholesale

cost incurred for every product sold on the platform. It is well known that wholesale

cost correlates strongly with price. Moreover, because the platform was an extremely

small player relative to other firms, particularly grocery retailers, that sold similar

products to consumers, its wholesale costs are highly likely to be mean-independent

of demand shocks. Therefore, we retained the residual of this regression as a price

control, which is unobserved and not explained by the observed choice characteristics

and the IV, and included it in Equations (4) and (6).
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We carefully evaluate the validity of wholesale cost as an IV to ensure it satisfies

both the inclusion and exclusion restrictions. First, the inclusion restriction ensures

that the IV is correlated with the explanatory endogenous variable. To that end, we

test for the strength of our instrument using an F-test from the first-stage instrumental-

variables regression (Staiger and Stock, 1997; Stock et al., 2005). As shown in the

appendix, the F-statistic (29,887.35 and 29,885.94) and R2 values (0.87 and 0.87)

obtained in the first-stage IV regression of price on wholesale cost and the exogenous

explanatory variables in the purchase incidence and basket size models, suggest that

wholesale cost is not a weak instrument for price. Second, the exclusion restriction

ensures that the IV is not correlated with the error term in the estimation equation.

Exclusion restrictions cannot be validated through formal statistical tests, as the

error term is unobserved, but must be supported by theoretical or empirical evidence

from previous research (Ho et al., 2017). In this regard, wholesale costs have been

commonly used as instruments in the empirical literature studying grocery sales

to consumers (e.g., Chintagunta, 2002; Sriram and Kalwani, 2007). The exclusion

restriction for using wholesale cost also has theoretical support not only because the

platform was an extremely small player relative to its competitors, but also because the

food supplier sector tends to be relatively competitive, which suggests that wholesale

price more closely reflects the marginal cost of production (Ailawadi et al., 2010).

Marginal cost, in turn, is clearly independent of demand shocks (Villas-Boas, 2007;

Nakamura and Zerom, 2010). 6

6Nakamura and Zerom (2010) cited a few early empirical studies that assume manufacturer-
Stackelberg in vertical strategic interactions, which implies greater manufacturer power. But
it also cited more recent research showing how the dominance of retailers’ strategies selling differen-
tiated products such as private label products has shifted bargaining power to retailers. Retailer
concentration, private label, and hard-discounter entry mean that wholesale prices have become
highly competitive over the past couple of decades.
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The instrument we chose for the number of local vendors participating on the

platform consists of weekly volume of food items shipped by local vendors from the

area where the platform’s market is located to other parts of the country. This

instrument exploits inherent variations in the availability of products for sale at the

platform from local vendors as a result of their preset commitments in traditional

channels, as well as weather conditions and other biological factors that are largely

beyond the purview of managers at the platform. We further validate why the volume

of food items shipped by local vendors is a good instrument. First, it reflects the

supply of local foods in a much larger market than the one that generates the data in

our study (i.e., the entire US). In this sense, our instrument reflects a similar logic to

Hausman et al. (1994) and DellaVigna and Gentzkow (2019), who argue that because

retail prices are set on a national level, they are exogenous to demand in any particular

market. In our case, supplies are determined by national considerations, so they must

be mean independent of the weekly demand shocks of individual consumers on the

platform of a small market. Second, because shipment volumes reflect local vendors’

preset commitments in traditional channels and planting decisions for most products

are made many weeks, sometimes months, in advance of the shipment data, they

cannot be contemporaneously correlated with shocks in demand for a specific item

(Ahumada and Villalobos, 2009). Thus, the shipment volumes in this instrument are

exogenous to weekly demand shocks at the platform but will correlate negatively with

the weekly number of vendors participating on the platform.

Our measure of weekly shipments consists of weekly volumes (in 10, 000 lb. units)

recorded by the US Department of Agriculture’s (USDA) Agricultural Marketing

Service for a variety of produce shipments sent from the area where the market served

by the platform during our period of analysis is located (https://www.ams.usda.gov/).

We then used these data to create an index for each of the 129 weeks in our analysis
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corresponding to the straight sum of all weekly shipment volumes for the top 15 items

sold on the platform during our period of analysis. Specifically, to create the index,

we added the weekly produce shipment volumes (in 10, 000 lb. units) matching the

top selling items on the platform. Because of the large amount of products offered

through the platform, matching each product with every item recorded in the USDA’s

shipment volume reports becomes intractable. Therefore, the shipment volumes of the

top selling items constitute a more reliable reflection of the overall outbound volumes

from the market. The F-statistic (31,558.49 and 31,186.52) and R2 values (0.88 and

0.88) we obtained when we ran the first-stage IV regression using this index in both

the purchasing incidence and basket size models provide confirmation that the index

is not a weak instrument (Staiger and Stock, 1997). Please refer to the appendix.

4 .4 Equilibrium of Supply Provision

In this stage of the analysis, we model the number of local vendors and their

product prices on the platform. Our modeling approach is consistent with Weyl (2010)

as it emphasizes the importance of estimating indirect network effects, conditional

on equilibrium responses from firms that co-exist in a competitive industry. To that

end, we estimate first-order conditions derived from profit-maximizing behavior by

the platform, assuming oligopolistic competition. Although our first-order conditions

are derived from a static setting, they capture outcomes of coordinating Nash equi-

libria (Cachon, 2003). Implicitly, static Nash equilibria assume that the equilibrium

prices and number of local vendors reflect rational expectations among platform

stakeholders. That is, the dynamics are subsumed in their correct expectations as to

how the game is going to evolve if played out repeatedly, over time. Recent analytical

studies that have applied the static equilibrium model to derive indirect network
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economics in two-sided markets indicate that this can be generalized to a dynamic

setting (Halaburda et al., 2017; Benjaafar et al., 2020).

When the platform launched in 2008, it became one of the first online grocery

platforms operating in the US. Therefore, most of its competition for a share of the local

foods’ market it served came not from other platforms but from traditional grocery

retailers, specialty stores, and farmers’ markets. As such, we model the platform’s

choice of price and the number of local vendors as a Bertrand-Nash equilibrium in

both variables. 7 Following the empirical game described by Richards and Hamilton

(2015, 2018), management chooses each week the number of local vendors that will

participate in the platform and the prices for the products sold through its website. 8

Focusing only on our single platform, the profit equation is given by:

πt = E [Qt] (pt − ct)− g (Nt) , (8)

where E[Qt] is the expected platform demand aggregated from the demand estimation.

E[Qt] corresponds to the product of the market size (measured as the population of

households in the market), the average probability of purchasing, and the expected

item count in an individual basket. pt is the average price on the platform in week t

and ct denotes the marginal retailing costs for the platform. We estimate ct from the

data as ct = kWt + ζt. In this function, Wt is a vector of cost shifters comprising the

average wholesale cost incurred by the platform when paying to the vendors for the

items sold every week as well as retail hourly wages and utilities’ costs collected from
7In the model, we implicitly capture the extent of competition between the focal platform and its
competitors as absorbed by the outside option in the demand model.

8This is consistent with common practice among local grocery platforms, including the one in our
study. Based on this practice, the platform sets prices via a markup over wholesale prices charged
by local vendors, and this markup determines the selling prices charged to consumers. However,
the price at the platform will affect not only consumers’ probability of purchasing and the size of
their baskets but also the surplus to be allocated to local vendors and these vendors’ decision to
participate on the platform. As a result, the pricing and the number of participating vendors at
the platform are also an outcome of the model’s equilibrium, not just the result of decisions by the
platform.
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the US Bureau of Labor Statistics during our period of analysis and ζt is a random

supply shock.

Finally, g (Nt) are the costs the platform incurs matching consumers and vendors.

These include distribution costs as well as subsidies and other incentives paid to vendors

for every transaction with consumers. To model these costs, we use a quadratic function

defined as g (Nt) = δ0Nt+ 1
2δ1N

2
t to account for the possibility of g (Nt) being a convex

function, per Hypothesis 2b.

The platform’s economic surplus is determined by both pt and Nt, so the first

order conditions (FOCs) in prices and number of participating local vendors become:

∂πt
∂pt

= E [Qt] + ∂E [Qt]
∂pt

(pt − ct) (9)

∂πt
∂Nt

= ∂E [Qt]
∂Nt

(pt − ct)−
∂gt
∂Nt

. (10)

Solving for price and number of local vendors and dropping the time subscripts for

clarity gives:

p = c− ϕ (∆p)−1E[Q] (11)

N = − 1
δ1

∆N (∆p)−1E [Q]− δ0

δ1
, (12)

where ∆p and ∆N correspond to the expected-quantity-derivatives with respect to the

average platform retail price and the number of participating local vendors, respectively.

While ∆P will be negative, ∆N will be positive. In turn, ϕ is a parameter that captures

the platform’s competitive conduct form (Besanko et al., 1998; Richards and Hamilton,

2006). If the estimate of ϕ converges to 1, the platform’s conduct is consistent with

Bertrand-Nash rivalry. On the contrary, if the estimate of ϕ converges to 0, the

platform’s conduct approximates perfect competition. In the latter case, none of the

available indirect network effects are absorbed by the platform (Weyl, 2010).

As indicated by Equation (12), the reduced form of the size of the platform’s local

vendor base is a function of the product of the expected local food quantity that
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consumers demand at the platform, E [Q], and the expected-quantity derivatives with

respect to retail price, ∆p, from Equation (11), and with respect to the number of

local vendors on the platform, ∆N . Because, in equilibrium, the marginal cost of

expanding the size of the local vendor base equals the marginal surplus (corresponding

to the product of E [Q], ∆p, and ∆N in Equation (12)), a positive estimate of 1
δ1

in Equation (12) would imply that adding an additional local vendor increases the

platform’s surplus available to the vendors and that expanding the size of the local

vendor base is beneficial. This result would provide evidence to support Hypothesis

1. Moreover, based on the estimate of 1
δ1
, we will also be able to simulate the number

of vendors at the platform’s observed equilibrium. To determine value for the latter,

we first estimate 1
δ1

along with the other parameters in Equations (11) and (12) and

then use these estimates to solve simultaneously for the number of local vendors in

Equation (12) and the price in Equation (11).

Note that both ∆p and ∆N are likely to be endogenous since they may correlate

with unobservable supply shocks that may influence decisions by management at

the platform regarding pricing and the composition of participating local vendors,

respectively. Therefore, we chose lagged values of ∆p and ∆N as IVs for these variables,

since they reflect demand-side shocks but are also mean independent of the residuals of

the platform’s prices and supplier-base size. As shown in the appendix, the F-statistic

(183.64 and 214.59) and R2 values (0.88 and 0.77) for the equations based on these

IVs suggest that none of them can be characterized as weak. In the next section, we

present the results we obtained from estimations using both IV and non-IV models to

demonstrate the endogeneity biases in our structural system.
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5 Results

We present the results we obtained from the structural model of demand and

supply provision in three parts. First, we will review the summary statistics from

the data for the variables of interest in the model (in Section 5 .1). We will then

present the results from the demand stage involving purchase incidence and basket

size (in Section 5 .2). These results provide the basis to evaluate consumers’ demand

on the platform as a function of the number of participating vendors. Finally, we will

present the results from the supply stage (in Section 5 .3). From these results, we will

be able to test Hypothesis 1 by quantifying the marginal effect on the platform’s

surplus from expanding the number of participating local vendors while controlling for

the simultaneous effects of platform prices and demand on the size of the platform’s

local vendor base. Moreover, we will be able to estimate the number of participating

vendors in the observed equilibrium and whether the indirect network effects in the

platform are nonlinear in the number of participating vendors. The results from this

analysis will provide the basis to test Hypothesis 2a and Hypothesis 2b through

counterfactual simulations of variations in cross-side and same-side externalities (in

Section 5 .4)

5 .1 Summary Statistics

Table 1 presents the variable descriptions and summary statistics from the data.

One of our primary variables of interest, the number of local vendors, varies from

a low of 10 to a high of 65 over the period of analysis. In contrast, the number of

national vendors maintains a minimal variation, ranging from 8 to 12 during the

sample period. The high level of variation in the number of local vendors relative to
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that in the number of national vendors suggests that the effect of the number of local

vendors is well identified.

Table 1: Summary statistics and variable descriptions
Variable Description Mean Std. Dev. Min. Max.

Number of Local Vendors The number of local vendors available on the platform per week 40.58 19.75 10 65

Number of national vendors The number of national vendors available on the platform per week 10.23 0.94 8 12

Average price Average price of all items offered on the platform per week 3.64 0.33 2.91 4.35

Choice The binary choice to purchase from the platform (1= Yes, 0= No) 0.29 0.46 0 1

Basket Size The number of items purchased per basket per order, per week 27.17 19.50 1 239.00

Wholesale Cost Average wholesale cost of all items offered on the platform per week 3.22 0.29 2.52 4.03

Coupon Amount (COUPON) The dollar amount in coupons used per order per order, per week 0.59 2.67 0.00 102.78

Consumption Rate (CR) The ratio of total purchased quantity to the number of active weeks per order, per week 8.9 10.21 0.08 104.28

Inter-Purchase Time (IPT) The number of weeks since last purchase per order, per week 7.84 11.68 1 97.00

Vacation Week (BREAK) The week includes times of the year when consumers typically leave for vacation (1= Yes, 0= No) 0.30 0.46 0 1

Delivery Payment Plan (DPP) Order placed by consumers with delivery subscription membership (1= Yes, 0= No) per order, per week 0.04 0.20 0.00 1

Furthermore, the statistics in Table 1 suggest that there is enough variation in

the data to identify the key demand parameters at the platform. Table 1 shows that

consumers purchase a wide range of basket sizes since the number of items purchased

(i.e., the number of SKUs multiplied by the number of units per SKU) per basket varies

from 1 to 239 and has an average of 27.17. Table 1 also shows that consumers have an

average consumption rate of 8.9 items per week which varies from a low of 0.08 items

to a high of 104.28 items per week. The large variation in basket sizes and weekly

consumption rates points to a possible presence of consumer heterogeneity where some

consumers use the platform to fulfill a substantial proportion of their grocery needs

while others shop at the platform occasionally to top off their traditional grocery

purchases. This observation is also reflected in the statistics for the binary variable

measuring consumers’ choices to buy at the platform. On average, consumers buy at

the platform 30% of the time, assuming a weekly shopping cycle. Moreover, according

to the standard deviation for this variable, this frequency varies substantially across

consumers.
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Finally, the averages for product prices ($3.64) and costs ($3.22) in Table 1 give a

sense of these variables’ orders of magnitude. Moreover, the difference between these

two averages gives an indication of how large the markups are on the platform. Table 1

also offers insights into consumers’ average use of delivery membership plans and

coupons at the platform. Almost, 5% of consumer purchases per week use the delivery

membership plan. Moreover, on average, consumers use $0.59 dollars in coupons per

purchase, per week.

5 .2 Structural Model: Demand Stage

We first used simulated maximum likelihood to jointly estimate purchase incidence

and basket size in the demand stage of the structural model. As explained in Sections 4

.1 and 4 .2, we used a logit approach to model consumers’ decisions to purchase at the

platform and a Negative Binomial approach to model consumers’ basket-size decisions

once consumers have decided to purchase at the platform. Table 2 presents the results

from our analyses across three different model specifications, labeled in Table 2 as

Model 1, Model 2, and Model 3, respectively. Table 2 also lists the labels we use to

identify the predictors in our discussion below.

Contrasting the Specifications in Models 1–3

The results from the first specification (in Model 1) do not control for consumer

heterogeneity or account for any sources of endogeneity of either platform price or

the number of participating local vendors. The results from the second specification

(in Model 2) account for endogeneity through the control functions for price and the

number of participating local vendors in Section 4 .3. Because the estimated effects

for the predictors in the basket size model are conditional on the effects estimated in

the purchase incidence model, we include the controls for price and number of local
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Table 2: Demand estimation
Model 1 Model 2 Model 3

Purchase Incidence Estimate Std. Err. Estimate Std. Err. Estimate Std. Err.

Constant -1.5340*** 0.3737 -1.4304*** 0.3966 -1.4301*** 0.3966

Average Price -0.2323*** 0.0702 -0.3564*** 0.0799 -0.3564*** 0.0799

Number of Local Vendors θ1 0.0718*** 0.0143 0.1104*** 0.0163 0.1104*** 0.0163

Number of Local Vendors σ1 -0.0003 0.0002

Squared Number of Local Vendors θ2 -0.0011*** 0.0002 -0.0010*** 0.0002 -0.0010*** 0.0002

Squared Number of Local Vendors σ2 -1.94E-06 3.75E-06

Lagged Quantity (LQ) -0.0027*** 0.0009 -0.0027*** 0.0009 -0.0027*** 0.0009

Inter-Purchase Time (IPT) -0.0681*** 0.0018 -0.0685*** 0.0018 -0.0685*** 0.0018

Consumption Rate (CR) 0.0707*** 0.0018 0.0740*** 0.0019 0.0740*** 0.0019

Delivery Payment Plan (DPP) 0.4584*** 0.0599 0.3963*** 0.0615 0.3964*** 0.0615

Vacation Week (BREAK) -0.2083*** 0.0382 -0.2006*** 0.0398 -0.2003*** 0.0398

Week Dummy 1 -0.5576** 0.2535 -0.6241** 0.2528 -0.6239** 0.2528

Week Dummy 2 -1.0411*** 0.2977 -0.9571*** 0.2971 -0.9566*** 0.2971

Week Dummy 3 -0.5502* 0.3177 -0.6354** 0.3168 -0.6352** 0.3168

Week (Trend) 0.0152*** 0.0014 -0.0078 0.0052 -0.0078 0.0052

Price Control 1.0330*** 0.2114 1.0337*** 0.2115

Number of Local Vendors Control -0.0514*** 0.0105 -0.0514*** 0.0105

Basket Size

Constant 3.3623*** 0.1039 2.9006*** 0.1191 2.9004*** 0.1195

Average Price -0.1969*** 0.0287 -0.0876*** 0.0324 -0.0879*** 0.0325

Number of Local Vendors 0.0079*** 0.0005 0.0087*** 0.0005 0.0088*** 0.0005

Lagged Quantity (LQ) 0.0090*** 0.0002 0.0090*** 0.0002 0.0090*** 0.0002

Inter-Purchase Time (IPT) 0.0007 0.0010 0.0006 0.0010 0.0005 0.0010

Delivery Payment Plan (DPP) 0.2612*** 0.0151 0.2682*** 0.0148 0.2680*** 0.0149

Coupon Amount (COUPON) 0.0170*** 0.0005 0.0172*** 0.0005 0.0172*** 0.0005

Vacation Week (BREAK) -0.0263** 0.0133 -0.0233* 0.0132 -0.0235* 0.0133

Price Control -0.1958** 0.0953 -0.1967** 0.0954

Number of Local Vendors Control -0.0137*** 0.0011 -0.0137*** 0.0011

ψ1 0.0021 0.0056

T 0.0456*** 0.0074 0.0410*** 0.0065 0.0421*** 0.0067

Q 1.2576*** 0.0491 1.2962*** 0.0485 1.2884*** 0.0484

N 34327 34327 34327

LL -58711.71 -58591.20 -58590.31

AIC/N 3.422 3.415 3.415

Notes: ***, **, and * denote statistical significance at the 1%, 5%, and 10%.
Model 2: Controls for endogeneity of price and number of local vendors.
Model 3: Controls for both endogeneity and consumer heterogeneity.
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vendors in both the purchase incidence and basket size models to remove any biases

caused by these predictors’ endogeneity. Finally, the third specification (Model 3)

adds random consumer level parameters to the second specification in order to account

for consumer heterogeneity.

With a couple of exceptions, a comparison of the results across all model specifi-

cations reveals a high degree of consistency in the signs, magnitude, and statistical

significance among the parameter estimates corresponding to the predictors’ effects.

These exceptions are the parameter estimates of the effects of local vendor base

size and price obtained from the first specification relative to those obtained in the

other two specifications. The discrepancies in these estimates are likely the result of

unaccounted biases caused by endogeneity in the first specification.

We find that the coefficients corresponding to the number of local vendors when

we control for endogeneity in the second and third specifications of the purchase

incidence (θ1 = 0.1104, p < 0.01 in Model 2 and Model 3) and the basket size models

(0.0087, p < 0.01 in Model 2 and 0.0088, p < 0.01 in Model 3) are of the expected

sign and statistically significant. Moreover, these coefficients are higher than those

obtained without control functions in the first specification of the purchase incidence

(0.0718, p < 0.01) and the basket size models (0.0079, p < 0.01). This indicates a

downward bias in the estimated coefficient for the effect of local vendors on consumers’

demand when no endogeneity is taken into account.

Similarly, although the coefficients for price obtained from all three specifications

of the purchase incidence and the basket size models are of the expected sign and

statistically significant, their values in the second and third specifications differ

markedly from those of the coefficients in the first specification. In the purchase

incidence model, the coefficient in the first specification (−0.2323, p < 0.01) has a

value that exceeds those obtained for this coefficient in the other two specifications
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(−0.3564, p < 0.01 in Model 2 and Model 3). This suggests that the estimate of

the effect by price on purchase probabilities is upward biased without correcting for

price endogeneity at the platform. In the basket size model, on the other hand, the

coefficient for price in the first specification (−0.1969, p < 0.01) is lower than those in

the other two specifications (−0.0876, p < 0.01 in Model 2 and −0.0879, p < 0.01 in

Model 3), suggesting a downward bias in the estimate of the effect by price on basket

size without correcting for price endogeneity. 9

Based on these considerations, the estimates in the second and third specifications

are better suited than those in the first specification to evaluate the purchase incidence

and basket size models. Nevertheless, when we compare the results obtained from the

second and third specifications for the purchase incidence and basket size models, we

observe that those from the former specification are more parsimonious than those

from the latter. This is because the scale parameter corresponding to the linear effect

by the number of participating local vendors in the third specification of the purchase

incidence model is not statistically significant (see coefficients for σ1 and σ2 in Table 2

for Model 3). Moreover, the value obtained for ψ1 in the third specification of the

basket size model is of very low magnitude (0.0021) and not statistically significant.

Finally, the likelihood ratio test reveals that Model 3 does not fit the data better than

Model 2 (P value = 0.6193), making it more appropriate to use the estimates from

the second specification in our interpretation of the results.

9The unobservables in the utility from purchasing on the platform are positively correlated with the
observed price as indicated by the positive estimate of the price control. This is consistent with
the literature: because the platform sets the price, the unobservables in this model are typically
“appealing” attributes that are positively correlated with consumers’ willingness to make a purchase
on the platform (Villas-Boas and Winer, 1999). In contrast, conditional on controlling for bias in
the price estimate, the basket-size effect is capturing the relationship between price and quantity.
Therefore, as shown by the negative estimate of the price control, the unobservables in the basket
size are expected to be negatively correlated with price by first principles, namely the law of demand.
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Interpreting the Results in the Purchase Incidence and Basket Size Models

In the second specification of the purchase incidence model, the estimated effect of price

is negative and statistically significant (−0.3564, p < 0.01), reflecting a downward

slope of the demand curve with respect to price, as expected. In particular, a 1%

increase in price at the platform decreases the likelihood of purchasing by 0.9897%. 10

In addition, the estimated first order effect for the number of local vendors is positive

and significant (0.1104, p < 0.01). However, the negative and statistically significant

estimate for the quadratic term for number of local vendors (−0.0010, p < 0.01)

suggests that this likelihood is concave in the number of local vendors. Evaluated

at the mean values, a 1% increase in the number of local vendors in the platform

increases consumers’ likelihood of purchase by 1.0232% (based on a marginal effect

estimation of 0.5976%).

The estimates of consumers’ need-based effects are largely consistent with our

expectations. As expected, the likelihood of purchasing at the platform during a vaca-

tion week is negative and statistically significant (−0.2006, p < 0.01). Furthermore,

those consumers previously enrolled in the platform’s delivery membership program

have a higher likelihood of purchasing at the platform in the future (0.3963, p < 0.01).

According to the marginal effects obtained, the likelihood of purchasing at the platform

decreases by 3.55% in vacation weeks while the choice by consumers to sign up for a

delivery membership leads to an increase of 7.83% in this probability.

Moreover, a consumer’s historic rate of consumption has a positive and significant

effect on the likelihood of purchasing at the platform (0.0740, p < 0.01). This implies

that, as expected, as a consumer’s average consumption rate increases by one unit,

10The elasticity of price is calculated as ∂Pr(inc)
∂p × p

Pr(inc) , where the marginal effect of price is
obtained as ∂Pr(inc)

∂p = −αPr(inc)(1− Pr(inc)). The elasticity and the marginal effect of other
explanatory variables in the purchase incidence model are also calculated in this way.
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the probability of this consumer purchasing at the platform goes up by 1.3381%. In

addition, the number of items purchased by consumers in their most recent order has a

negative and statistically significant effect (−0.0027, p < 0.01), suggesting that, after

controlling for consumers’ average expenditure rates at the platform, those individuals

who purchased one additional unit in their most recent transaction at the platform are

0.0495% less likely to purchase in week t. However, this negative effect is small relative

to the positive marginal effect by consumption rate. Additionally, the estimated

purchase interval effect is negative and statistically significant (−0.0685, p < 0.01),

suggesting that for each additional week in the time interval since a consumer’s most

recent purchase at the platform, the consumer is 1.2387% less likely to make a future

purchase at the platform. This result implies that consumers’ purchase behaviors at

the platform are driven by loyalty such that the longer the time between purchases,

the less likely it is that consumers will purchase at the platform in the future.

Turning to the results in the second specification of the basket size model, we find

that the estimated effect of price is negative and statistically significant (−0.0876, p <

0.01), reflecting a downward slope in the demand curve with respect to price, as

expected. According to the elasticity value (−0.3190) obtained from the price effect

estimate, a 1% increase in price at the platform yields a 0.3190% decrease in basket

size. 11 The estimated effect by the number of local vendors participating in the

platform (0.0087, p < 0.01) suggests an elasticity of 0.3548. This implies that a 1%

increase in the number of local vendors increases the basket size by 0.3548%.

In addition, we obtained positive and significant estimations for the effects on

basket size by (1) the dollar amounts in coupons used by consumers per order, per week

and (2) consumers’ prior enrollment in the platform’s delivery membership program

11The elasticity of price is calculated as ∂λht
∂p ×

p
λht

, where the marginal effect of price is obtained as
∂λht
∂p = λhtψp. The elasticity and the marginal effect of other explanatory variables in the basket

size model are also calculated in this way.
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(0.0172, p < 0.01 and 0.2682, p < 0.01 respectively). According to our marginal effect

estimations, a one dollar increase in the value of coupons used by consumers yields an

increase of 0.4095 items per week in basket size, and consumers’ choice to subscribe

for delivery memberships increases basket size by 6.2779 units. The magnitude of

the latter effect suggests that subscribed consumers use the platform to fulfill a far

greater amount of their grocery demand and therefore purchase a larger basket size

conditional on the purchase incidence.

Finally, we obtained a positive and statistically significant estimate for the effect on

basket size by the number of items purchased by consumers in their most recent order

(0.0090, p < 0.01). This implies that given the choice of shopping at the platform, a

consumer’s basket size will increase by 0.2143 units in relation to each additional unit

purchased in the most recent order. This effect is different to the one estimated in

the purchase incidence model, where the effect is negative and statistically significant

(−0.0027, p < 0.01), suggesting that those individuals who made larger purchases as

part of their most recent transactions at the platform are less likely to purchase in the

future. Combined, these opposite effects further imply that a cumulative effect by a

consumer’s patronage influences her decision on the size of her orders at the platform.

This decision differs from that of buying at a traditional grocery store, which depends

negatively on the lagged quantity related to consumers’ inventory levels at home.

5 .3 Structural Model: Supply Provision Stage

In this stage of the structural model, we quantify the marginal effect on the

platform’s surplus from expanding the number of participating local vendors while

controlling for the simultaneous effects of platform prices and demand on the size of

the platform’s local vendor base. The demand effect follows from aggregating at the

market level the results obtained in the first stage of the structural model. From the
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analysis in the first stage, we know that expanding the number of local vendors in the

platform is conducive to increasing demand. However, for a virtuous cycle of indirect

network effects to emerge, local vendors must also value increases in demand harnessed

through the platform. Results in the second stage showing a positive marginal effect

on the platform’s surplus caused by an expansion in the number of participating local

vendors would provide evidence, consistent with Hypothesis 1, suggesting that local

vendors do obtain value from increases in demand channeled through the platform.

Because the analysis in the supply-provision stage tests for the effects of price and

the number of participating local vendors in equilibrium, we analyzed Equations (11)

and (12) jointly while using a GMM estimation with instruments to address potential

endogeneity. As pricing and number of local vendors are determined simultaneously,

we estimate these two equations jointly. Table 3 presents the results from this

estimation approach (GMM with instruments) as well as those from a nonlinear

seemingly unrelated regression (SUR) estimation that makes no attempt to account

for endogeneity.

Although the signs and statistical significance of the estimated parameters are

consistent across both estimation approaches, there are quite a few differences in the

magnitudes of the parameters in Equation (11). Therefore, we chose to focus our

analysis on the results from the GMM estimation model with instruments since these

results account for endogeneity of system equations. Note that because the statistics

commonly used to evaluate goodness of fit in regression models (e.g., R2) are not

available for GMM (Olivares and Cachon, 2009), we used Hansen’s J statistic to test

the specification of this model. The intuition behind the J statistic is that if the

proposed specification is a true process of relating the endogenous and exogenous

variables, then the conditional moments used in the model must match the observed

sample asymptotically. Because this statistic is not statistically significant ( χ2 =
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3.2535, P value = 0.1966), we conclude that our model is correctly identified, and

the instruments taken together as a group are valid (Hansen and Singleton, 1982;

Mukhopadhyay et al., 1997; Hall, 2005).

Table 3: Supply provision
Model 1: Nonlinear SUR Model 2: GMM(IV)

Average Price Estimate Std. Err. Estimate Std. Err.

Constant -2.917*** 0.796 -2.109*** 0.798

Wholesale Cost 0.953*** 0.049 1.034*** 0.053

Cost of Utility 0.527*** 0.142 0.328** 0.162

Hourly Retail Wage 0.205*** 0.058 0.138** 0.058

Retail Margin (Conduct Parameter ϕ) 0.066*** 0.013 0.079*** 0.016

Number of Local Vendors

Constant -31.754*** 2.871 -32.306*** 3.110

Marginal Value Local Vendors ( 1
δ1
) 0.086*** 0.016 0.086*** 0.018

N 128 127

R2LLF/G 0.72 n.a.

Notes: ***, **, and * denote statistical significance at the 1%, 5%, and 10%.
Model 1: Nonlinear seemingly unrelated regression.
Model 2: GMM estimation with instruments.

All parameter estimates are of the expected sign. We first refer to the estimation

of the ϕ coefficient. The results show that this coefficient (0.079, p < 0.01) is positive

and statistically different from zero. This suggests that the platform’s pricing behavior

deviates from perfect competition and that the platform can leverage consumers’

preference for local vendors in pricing. In doing so, the platform absorbs some of the

available indirect network effects (Weyl, 2010). We then refer to the estimation of the
1
δ1

coefficient in the model to quantify the marginal value of expanding the number of

local vendors participating in the platform. According to the value estimated for this

coefficient (0.086, p < 0.01), bringing in an additional local vendor to the platform

has a marginal value of $0.086 per item in the platform’s assortment. This benefit
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is substantial since it accounts for 20.47% of the platform’s average gross margins

per item ($0.42 as shown in the summary statistics). Moreover, based on an average

of 27 items per basket purchased at the platform, adding a local vendor increases

the profit of an average order by $2.32 ($0.086/item × 27 items). Therefore, the

platform could afford to incentivize a local vendor to join with an average $2.32 bonus

for each order. Furthermore, because we obtain this estimate in equilibrium, this

incentive value would be agreeable to the vendor. In all, these results provide support

for Hypothesis 1.

To conclude this section, we use the values of the parameter estimates from the

pricing and number of local vendor equations in Table 3 to simulate the number of

local vendors in a new equilibrium that maximizes the platform surplus. According

to our analysis, this number corresponds to 40.58 vendors, which is lower than the

number of local vendors (65, per Figure 1) available to participate in the platform.

This inequality is the result of non-linearities in the platform’s indirect network effects

imposed by increases in the number of participating vendors in equilibrium. To raise

this number of vendors without detriment to indirect network economies, the platform

could improve its search and recommendations capabilities in order to increase the

utility consumers derive from local vendor variety so that more vendors may benefit

from joining in. This would help alleviate any negative cross-side externalities that

may affect the demand at the platform when the number of participating vendors

grows too large. Alternatively, the platform could increase local vendor participation

without eroding indirect network economies by subsidizing its distribution costs with

support from government plans, including the USDA Local Food Promotion Program.

This would help ameliorate any negative same-side externalities on the supply side that

may be caused by marginally increasing costs in the number of vendors participating

in the platform. The next section presents two counterfactual simulations of these
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strategies to identify the number of vendors in equilibrium under nonlinear indirect

network effects and contrast this number against that obtained in equilibrium under

linear network effects as a result of both simulations. The gap in the number of

vendors observed after contrasting both equilibria in each simulation constitutes the

basis to test Hypotheses 2a and 2b.

5 .4 Counterfactual Simulation

The first simulation addresses negative cross-side externalities by increasing con-

sumers’ preferences for local food vendors in the basket size model in the demand

stage. This may involve improvements in the platform’s search and recommendations

capabilities focusing on increasing the value consumers have for additional vendor

variety, particularly for lesser known vendors. To implement the counterfactual analy-

sis, we simulate datasets by varying by 5%, 10%, 15%, and 20% the parameter ψn,

representing consumer preferences for the number of local vendors in the basket size

model in the demand stage. We then simulate the number of vendors in the new

equilibria from these scenarios under nonlinear indirect network effects and compare

these numbers with those under linear indirect network effects. The gap between

the implied equilibria emerging under linear versus nonlinear indirect network effects

determines whether the growth of online platforms for local grocery food is subject

to nonlinear indirect network economies due to negative cross-side externalities, per

Hypothesis 2a.

To simulate the equilibria for the scenarios, we use the structural parameters

obtained from the consumer demand and supply provision stages to solve for the

number of local vendors and prices simultaneously and compute the implied basket

size (Draganska and Jain, 2005; Bonnet et al., 2013). Moreover, the simulation focuses

on the periods after the number of local vendors has reached 40, the number of
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vendors observed in equilibrium without any intervention, to ensure that the effects

of changing preferences are estimated on stable equilibria under nonlinear and linear

indirect network effects, respectively.

Table 4 presents the results from the counterfactual simulation under nonlinear

and linear indirect network effects (top and bottom panel respectively). The results

under both conditions show that a higher degree in consumer preferences for greater

local vendor variety makes it possible for the platform to attract larger basket sizes

and to increase the number of participating local vendors. However, only under

linear conditions are the size of the baskets and the number of local vendors elastic

with respect to the degree of consumers’ preferences for local vendor variety. For

instance, under linear conditions, a 15% rise in the degree of preference for local vendor

variety respectively increases the platform’s average basket size and the number of

participating vendors by 38.03% and 19.41% (to an average of approximately 71

vendors). On the other hand, this same increase in preferences for vendor variety

under nonlinear conditions respectively increases the average basket size and the

number of local vendors at the platform by only 9.54 % and 2.27% (to an average of

approximately 60 vendors). Based on these differences, we can infer that the growth

of online platforms for local grocery food is subject to significant nonlinear indirect

network economies due to negative cross-side externalities, per Hypothesis 2a.
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Table 4: Changes in the number of local vendors and basket size after increasing
consumers’ preference for local vendors

Increase in

preference

parameter

Number of Local Vendors Basket Size

Mean percent Std. Dev. of Mean percent Std. Dev. of

Mean change percent change Mean change percent change

(%) (%) (%) (%) (%)

Under Nonlinear

Indirect Network

Effects

5 59.20 0.75*** 0.20 12.00 3.06*** 0.22

10 59.63 1.51*** 0.43 12.38 6.23*** 0.46

15 60.07 2.27*** 0.70 12.77 9.54*** 0.73

20 60.5 3.04*** 1.06 13.18 12.97*** 1.02

Under Linear

Indirect Network

Effects

5 67.91 14.41 13.21 14.68 25.60 22.01

10 69.03 16.30 11.12 14.95 30.12* 17.74

15 70.91 19.41* 10.33 15.52 38.03* 22.64

20 70.82 19.52*** 8.99 15.34 39.9 25.63
Notes: ***, **, and * denote statistical significance at the 1%, 5%, and 10%.
Mean percentage change in the number of local vendors=100× N∗

∆ψn−N
N .

Mean percentage change in basket size=100× E(Q)∗
∆ψn−E(Q)
E(Q) .

The second simulation addresses negative same-side externalities on the supply

side by offsetting the marginal costs at the platform through the use of public subsidies

promoting the provision of local grocery foods. Such subsidies would allow the platform

to obtain lower rents from participating vendors without compromising its profitability,

for example. To implement the counterfactual analysis, we simulate datasets by

reducing the marginal cost of the platform in increments of 5%. Moreover, we focus

again on the periods after the number of local vendors has reached 40, the number of

vendors observed in equilibrium without any intervention, to ensure that the effects

from reducing marginal costs are estimated on stable equilibria under nonlinear and

linear conditions. Table 5 presents the effects on the number of local vendors and

prices in equilibrium obtained from this simulation under nonlinear and linear indirect

network effects (top and bottom panel respectively).
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Table 5: Changes in the number of local vendors and prices after lowering
marginal costs

Decrease in

Marginal

Cost

Number of Local Vendors Price

Mean percent Std. Dev. of Mean percent Std. Dev. of

Mean change percent change Mean change percent change

(%) (%) (%) (%) (%)

Under Nonlinear

Indirect Network

Effects

5 59.17 0.76 0.61 3.61 -4.44*** 0.11

10 59.57 1.51 1.21 3.44 -8.87*** 0.22

15 59.97 2.27 1.79 3.27 -13.29*** 0.33

20 60.38 3.04 2.35 3.10 -17.72*** 0.44

80 65.69 12.74* 7.73 1.11 -70.52*** 1.56

85 66.18 13.62* 8.10 0.95 -74.91*** 1.64

90 66.69 14.52* 8.46 0.78 -79.29*** 1.71

Under Linear

Indirect Network

Effects

5 67.96 14.58 13.32 3.64 -3.39*** 1.25

10 69.15 16.68 10.98 3.47 -7.82*** 1.14

15 70.67 19.33*** 8.89 3.31 -12.20*** 1.12

20 72.12 21.92*** 7.16 3.14 -16.59*** 1.07
Notes: ***, **, and * denote statistical significance at the 1%, 5%, and 10%.
Mean percentage change in the number of local vendors=100× N∗

∆mc−N
N .

Mean percentage change in price=100× p∗
∆mc−p
p .

As shown in Table 5, increases in the number of local vendors are more responsive

to the simulated effects under linear than under nonlinear conditions. While the

number of participating vendors increases by an average of 19.33% (to about 71

vendors) following a 15% cut in marginal costs under linear conditions, achieving

this same increase in vendors would require a decrease in excess of 90% in marginal

costs under nonlinear conditions, which is not realistic. Furthermore, under linear

conditions, increasingly larger cuts in marginal costs decrease equilibrium prices at an

absolute rate below that observed for increases in the number of local vendors. For

instance, a 15% cut in marginal cost yields a decrease in equilibrium prices of 12.20%

which is well below the 19.33% increase in the number of local vendors obtained

from this simulation. This does not occur under nonlinear conditions. In this case,

48



reductions in marginal costs do not increase the number of local vendors at a rate large

enough to offset the rate of decrease in equilibrium prices. Put differently, the rate of

increase in the number of vendors under nonlinear conditions is not large enough to

raise consumer demand in order to offset the reductions in equilibrium prices. These

growth differences under linear and nonlinear conditions, provide evidence consistent

with Hypothesis 2b, suggesting that the growth of online platforms for local grocery

food is subject to significant nonlinear indirect network economies attributable to

negative same-side externalities.

6 Conclusion

Despite a significant rise in consumer interest in local grocery foods, the supply of

these products has remained constrained by inefficiencies that have made consumers’

access to them difficult. In this paper, we evaluate the economic viability of a two-sided

platform model to contribute a solution to this challenge. According to the findings

obtained from this model, consumer demand increases in the number of vendors

participating in the platform and vice versa, making it possible for its surplus to

expand by simultaneously growing both sides of the platform. This suggests that

a platform model constitutes a viable alternative for the commercialization of local

groceries to consumers and could offer a solution to consumers’ limitations in accessing

these products.

We study this phenomenon through an empirical analysis of indirect network

economies in an online platform providing consumers access to grocery food sourced

from local vendors in the US. Using a structural model, we estimate the strength of

participation on each side of the platform based on observations involving matches

between grocery food offerings from local vendors and consumers’ demand for these

items. Our results from the demand side show that consumers’ demand is increasing
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and concave in the number of local vendors participating in the platform. Thus, an

increase in the number of local vendors has a positive effect on consumer choice but

this effect diminishes as the number of local vendors increases. In addition, our results

from the supply side show that, conditional on demand, incorporating one additional

local vendor provides positive incremental surplus to the platform in equilibrium.

Thus, the expansion of the number of local vendors causes a rise both in consumer

demand and equilibrium surplus, which is a clear indication that indirect network

economies are present in the growth of this platform.

However, we determined that there is a fixed number of local vendors that imposes

a cap on the indirect network economies at work at the platform. This suggests

that for online food platforms exploiting indirect network effects, the number of

participating vendors mitigates the strength of these network economies. As a result,

indirect network economies in these platforms are not inherently linear and do not

always continue unabated as the platforms scale up. We also perform counterfactual

simulations directed at alleviating these non-linearities so that more local vendors

can participate in the platform. Such simulations involve improvements in consumer

search and vendor recommendations that could reduce frictions in transactions and

thus increase the value of consumers’ preferences for variety among vendors. They

also involve subsidizing the increasing marginal costs the platform incurs as it expands

its supply base. Results from counterfactual simulations show that these strategies

can increase vendor variety at the platform without detriment to indirect network

economies. However, they also show that the non-linearities in indirect network effects

that exist at the platform hamper severely these strategies’ effectiveness in increasing

the number of vendors participating at the platform.
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6 .1 Implications for Practice and Policy

Increasing the scope of the vendor base in a local-grocery platform can make it

much easier for the platform to lock in the available consumer base on its other side.

This is an important consideration since local-grocery platforms are not subject to

the direct network effects often observed among users and developers participating

in platforms involving technology products (e.g., software, mobile apps, etc.) and

services (e.g., cloud computing). As a result, local-grocery platforms do not have the

same competitive lock-in seen in these platforms. Additional implications regarding

platform seeding strategies can be gleaned if we contrast a local-grocery platform’s

effectiveness in attracting vendors by exploiting indirect network economies rooted in

consumers’ preferences for local foods versus exploiting indirect network economies

rooted in the marginal costs incurred as the vendor base expands. According to

our evidence, the benefits enjoyed by consumers from local vendor variety appear to

outweigh the benefits gained by local vendors from greater consumer demand. In

the end, consumers are charged for the benefits of accessing a variety of vendors, but

vendors are not. This is why, to expand the number of local vendors, the platform

needs to induce a higher willingness to join from consumers.

This can be realized by providing consumers with a higher value in accessing a

greater variety of local vendors through improvements in consumer search, vendor

recommendations, and other initiatives intended to reduce frictions in matching

consumers with vendors’ offerings. Traditionally, local-grocery platforms’ emphasis on

these initiatives has been limited (Berti et al., 2017; Bielaczyc et al., 2020). Many of

these platforms have chosen to interact with consumers through uniform interfaces

based on subscription-based applications that provide little room for customization

(e.g., deliverybizpro.com and localfoodmarketplace.com). Our results show that it
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is critical for these platforms to expand on these interfaces to implement initiatives

designed to reduce search frictions encountered by consumers when navigating through

product offerings from local vendors. Implementing these initiatives will alleviate the

negative externalities surrounding these platforms and will give more local vendors an

opportunity to market their inventories outside traditional local channels and grocery

chains.

Another avenue to expand the number of vendors in a local-grocery platform

involves the use of government subsidies to offset the marginal costs of product

distribution to consumers. Despite a growing interest in using this type of policy

to expand local food markets, subsidies made available by the government remain

limited. Consider, for instance, that the 2020 USDA Local Food Promotion Program

awarded only 17% of its total annual $13.5 million fund in the form of subsidies to help

expand six online platforms across the country. Limitations in these amounts may

be the result of a lack of awareness among policy makers of the important role that

subsidies play in supporting the growth of local-grocery platforms. Our results provide

evidence that these subsidies can help these platforms overcome expansion hurdles

by offsetting increasing costs in fulfilling consumer demand as these platforms grow

their supply base. With these subsidies, platforms are expected to generate stronger

indirect network effects and therefore a greater surplus for not only participating

vendors but also consumers purchasing on the platforms.

With a greater surplus, a local-grocery platform can sustain its growth even after

subsidies end. Opportunities to direct these subsidies to generate this type of growth

abound in the US, given that most platforms across the country involve small supply

bases. Therefore, it is important for policy makers to evaluate these platforms and

prioritize those that will generate the greatest social welfare from these subsidies. Of

particular interest are platforms that serve consumers in markets with limited access
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to local groceries, platforms where vendors have a greater opportunity to differentiate

their products, or platforms with high distribution costs.

6 .2 Opportunities for Future Research

Our study provides scholars with several opportunities for additional research. First,

concerning trackability, our analysis is based on static Nash equilibria that assume

that equilibrium prices and the number of local vendors reflect rational expectations

among platform stakeholders. That is, the dynamics are subsumed in their correct

expectations as to how the game is going to evolve if played out repeatedly, over

time (Benjaafar et al., 2020; Halaburda et al., 2017). Future research could explore

platforms’ dynamic decisions in pricing and the number of local vendors to assess our

results in relation to the effects based on a dynamic setting.

Second, we simulate how platforms can alleviate negative cross-side and same-

side externalities through improvements in platforms’ search and recommendations

capabilities and the use of subsidies. Assuming improvements in platforms’ search

capabilities are implemented and more policy subsidies do become available for

platforms, we expect there will be opportunities for future research to evaluate the

impact of these strategies using field data. This evaluation may involve a comparison

between different applications designed to improve search versus recommendations

for consumers or comparisons in the use of subsidies among vendors across different

product categories.

Finally, our data describes the operations of an online food platform over the

course of only two-and-a-half years. Future research could study the operations

for this type of platform over a longer period of time to analyze the evolution of

indirect network economies in the long run. This analysis may offer additional insights

into different indirect network effects brought about by the number of participating
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vendors as platforms become more mature. For example, it is possible that the indirect

network effects of adding more vendors vary across product categories in the platform,

particularly if the opportunities for product differentiation are significantly greater in

some categories than in others. If the benefit of having additional vendors is more

pronounced for some categories, then the platform should invest more resources in

expanding the vendor base in these categories as they can generate a greater benefit.

54



Chapter 2

STRUCTURAL ESTIMATION OF DRIVER ATTRITION IN A LAST-MILE

DELIVERY PLATFORM

Abstract

We consider the question of how to better manage turnover among independent

drivers who transport parcels for last-mile delivery platforms. Although driver attrition

in these platforms is both costly and difficult to manage, there is little understanding

of the processes responsible for this attrition. We collaborate with a last-mile delivery

platform to build a structural model that enables us to estimate the effects of key

predictors of drivers’ decisions to continue or leave the platform. For this estimation,

we apply a dynamic discrete-choice framework in a two-step procedure that accounts

for unobserved heterogeneity among drivers while circumventing the use of approxi-

mation or reduction methods commonly used to solve dynamic choice problems in the

operations domain. Drivers are compensated using a combination of base payments

that reward drivers’ productivity and supplementary payments that subsidize drivers

with subpar productivity. We find that base pay has a greater effect on drivers’

retention. Furthermore, the marginal effects of both base and supplementary pay

diminish with drivers’ tenure at the platform, but the latter diminishes much faster

than the former. We also show that drivers’ ambivalence between quitting and staying

at the platform affects the effectiveness of compensation as a lever to manage attrition.

This effectiveness is at its highest when drivers are “on the fence” between leaving and

remaining at the platform. In addition, we find significant heterogeneity among drivers

in their non-pecuniary taste for the jobs at the platform and a significantly greater
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probability of retention among drivers with greater taste for these jobs. Last-mile

delivery platforms can leverage our results to improve driver retention. Through coun-

terfactual analyses, we offer recommendations on how platforms can cost-effectively

improve retention by changing the allocation of funds between base and supplementary

pay.

1 Introduction

Online retail sales have grown rapidly over the past two decades to account for

almost 20% of all retail revenue in the U.S. (Keyes, 2017). To keep pace with this

growth while maintaining flexibility, a number of last-mile distribution service providers

(e.g., OnTrac, Quiqup, TForce, USPack) have resorted to using platform models based

on independent drivers who own and operate the vehicles that make deliveries on

behalf of online retailing firms. Alas, high demand for these drivers coupled with

the flexibility they enjoy in leaving one service provider’s platform for another has

exposed these organizations to high levels of turnover among this workforce (Straight,

2018). Because drivers act as the providers’ brand image in the eyes of customers, not

only is losing them expensive, it also negatively affects customers’ perceptions of these

companies. In addition, excessive driver turnover can put these companies at risk of

exhausting qualified driver resources (Mims, 2019).

Given that attrition is a significant problem for last-mile delivery providers, what

then are managers at these companies to do? One option is to identify the factors

responsible for attrition and then develop policies that would ameliorate this problem.

Although prior research (e.g., Steel, 2002; Hom et al., 2017; Moon et al., 2018; Emadi

and Staats, 2020) has identified a variety of factors that are important predictors

of attrition, it has yet to do so in the context of last-mile delivery service providers
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operating based on platform models. Moreover, although recent studies (e.g., Cachon

et al., 2017; Allon et al., 2018; Liu et al., 2019; Benjaafar et al., 2020) have examined

staffing challenges in transportation platforms, they have focused exclusively on

platforms devoted to the transportation of passengers and have given no consideration

to attrition in those platforms. Through our examination of drivers’ attrition processes

in a platform devoted to the delivery of online retail orders to consumers, we contribute

to addressing this gap in the literature.

As a setting to study attrition, we focus on TForce Logistics, a provider of last-mile

delivery services operating a platform of drivers who work as independent contractors

delivering parcels annually for a variety of online retailers. Our study benefits from

access to a unique dataset and an in-depth understanding of workforce challenges at

TForce gained from field visits and interviews with managers, recruiters, dispatchers,

and drivers. Historically, attrition among drivers has been a constant challenge at

TForce as well as elsewhere in the industry. Annual driver turnover rate across the

industry has been increasing for the better part of the last decade to approach the

100 percent mark a couple of years ago (Straight, 2018).

In order to examine attrition at TForce, we model drivers’ decisions to leave the

platform over time. When drivers join the platform, they bring with them their

own vehicles and commit to a weekly schedule to work moving forward in one of

the metropolitan areas served by the platform. TForce assigns to every new driver

a delivery route available in these areas. Drivers will typically serve only this route

during their tenure at the platform. Drivers may leave the platform at any time after

the start of their work. The only requirement is that they give TForce a week’s notice

before their departure. Therefore, drivers will make decisions to leave or stay at the

platform on a weekly basis.
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The utility of drivers from staying or leaving the platform depends upon their

compensation, their effort (i.e., hours driven) necessary to earn this compensation,

their length of tenure at the platform, and their non-pecuniary taste for the job.

Drivers’ compensation at TForce is comprised of a “base” and a “supplementary”

payment, received on a weekly basis. The former is a piece-rate payment: it is a

function of the number of parcels (or pieces) that drivers deliver along the routes

assigned to them when they join TForce. As the number of pieces delivered increases,

the base compensation drivers receive for serving the routes increases. Therefore, this

compensation rewards with higher earning rates ($/hour driven) those drivers who

are more productive in delivering all the pieces assigned to the different stops located

along their routes.

Although the routes assigned to the drivers generally remain fixed over the drivers’

tenure, exogenous variations in consumer demand induce frequent changes in the

number of pieces delivered and in the location of the delivery stops along the routes.

Therefore, drivers’ earning rates obtained from base compensation will exogenously

increase in the number of pieces but decrease in the distance between the stops along

the routes. Furthermore, earning rates from base compensation will increase in drivers’

tenure at TForce. Because routes assigned to drivers generally remain fixed over the

drivers’ tenure, the amount of experience that drivers accumulate on the job will

contribute to decreasing their effort (i.e., hours driven) in making deliveries. As this

effort decreases, earning rates from base compensation increase.

TForce’s supplementary compensation is meant to subsidize new drivers as they

gain experience and become more productive in their routes. 12 This compensation

is set up to lift the earning rates new drivers obtain from their base compensation up

12In some instances, supplementary payments also compensate drivers when exogenous variations
in consumer demand in their routes impose unusual work requirements in the form of attended
deliveries, special handling conditions, long hauls, etc.
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to a level comparable to the rates earned historically by more experienced drivers. As

driver’s tenure increases, TForce decreases the drivers’ supplementary compensation.

Whether the rate of decrease in this compensation is too slow or too fast will depend

on the drivers’ non-pecuniary affinity for the job. Ideally, TForce could gauge how

long to maintain supplementary payments in place and how high these payments

should be while taking into consideration drivers’ non-pecuniary taste for the job.

However, non-pecuniary taste is a priori unobservable and, thus, it is not possible

to characterize it before drivers join TForce. Thus, TForce’s compensation may

ultimately be ineffective in maximizing drivers’ retention.

Our goal is to develop a model that will allow us to understand the factors that

influence driver retention and evaluate compensation strategies that address the

challenges TForce faces in retaining drivers during their tenure at its platform. To

that end, we analyze drivers’ decisions to leave or stay at the platform via a dynamic

choice model in which drivers maximize their utility of staying or leaving over their

tenure at TForce. We use a structural model to evaluate the drivers’ decisions to stay

or leave as a function of their weekly compensation (from base and supplementary

pay), the effort they must put in to obtain this compensation every week (as a function

of hours and miles per stop driven), their length of tenure at the platform, and their

non-pecuniary taste for the job. We estimate structural parameters using nearly six

years of weekly payroll data. In addition, we identify the properties of the model,

derive comparative statics results, and conduct counterfactual analyses to assess the

effectiveness of alternative retention policies.

Our paper offers important contributions to methodology, theory, and practice.

Methodologically, our paper contributes the first study in the operations management

domain to estimate a dynamic choice model using a two-step framework that makes

estimation feasible without having to resort to approximation or reduction methods
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that are commonly used to solve dynamic choice problems in the literature (i.e.,

artificially discretizing the state space or approximating the conditional value function).

Moreover, we develop our framework using both analytical-based comparative statics

and simulation-based counterfactual analyses to evaluate policy implications for

retention. To address the challenge of having a large state space, we follow the

framework originally proposed by Hotz and Miller (1993) that makes estimation feasible

by helping ease computational burden in the analysis without the need to compress

the state space. For the application of this framework, we use a two-step algorithm by

Arcidiacono and Miller (2011) in order to account for unobserved heterogeneity among

decision makers (e.g., TForce drivers). In the first step, we estimate the parameters

of the state transition probability functions and the conditional choice probability

function. Then, in the second step, we use these results to estimate the structural

parameters of drivers’ utility from leaving and staying at the platform.

Our paper also contributes to theory relating to job turnover. The labor economics

literature has examined factors that influence employee retention, including the seminal

paper by Jovanovic (1979). This work presents a theory, based on the “job-matching

hypothesis,” that helps explain the observed phenomenon that a worker’s probability

of job separation tends to decrease in tenure. Prior to employment, the match between

a worker and a job is subject to imperfect information. As time on the job increases,

the quality of the match is revealed, those with a poor match leave the job, and

thus the probability of quitting decreases with tenure. We find support for the job

matching hypothesis at TForce. In particular, drivers’ utility increases with tenure,

and consequently, the probability of quitting decreases with tenure. Moreover, our

paper builds on this theory by exposing factors that influence the sensitivity of a

worker’s decision to stay or quit to changes in compensation. We find that sensitivity

depends on the worker’s non-pecuniary taste for the job as well as the product of
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two factors: (1) the worker’s marginal utility of compensation, and (2) the worker’s

degree of ambivalence toward a decision to either quit or remain at the platform. It

is likely not surprising that marginal utility of compensation matters, though it is

important to recognize that different forms of compensation are valued differently.

More significantly, however, is the role of ambivalence, which is measured as the

product of quit and stay probabilities. Sensitivity is increasing in ambivalence. The

key observation is that a worker’s ambivalence toward a job, which could be measured

and influenced over time by a firm, affects the leverage of compensation for retaining

workers. This is a general result that holds when a worker’s utility from continuing

with a firm is linear in incentives.

Through our estimates from the structural model, we also contribute to practice by

exposing a number of managerial insights. First, we find that drivers’ non-pecuniary

value for the job affects their likelihood of staying at the platform. According to our

results, 40.40% of drivers have a high value for the job and therefore are more likely

to stay relative to the other 59.60% of drivers who have a low value. Compared to

drivers in the former group, those in the latter group receive higher supplementary pay

(56.31% higher, on average) and yet have average lengths of tenure that are more than

three times shorter. Thus, while supplementary pay may incentivize these drivers to

stay at the platform, it may also keep them from learning about their true productivity

until later in their tenure, at which point they will decide to leave the platform.

Second, we find that base pay is more important for driver retention than sup-

plementary pay. A $100 increase in weekly base compensation raises drivers’ rate of

retention by 32.94%, whereas the same increase in supplementary compensation yields

only a 20.91% increase in retention. Moreover, we find that this gap is largest for

drivers who require lower supplementary payment amounts. Thus, base pay is more
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effective at increasing retention than supplementary pay, particularly among more

productive, less subsidized drivers.

Third, as alluded to above, we find that retention becomes less sensitive to

compensation over time. Moreover, because this phenomenon is more pronounced

for supplementary pay, it implies that supplementary compensation programs have a

greater risk of becoming ineffective for retention if supplementary payments remain

too high long after drivers have joined the platform.

Building on these insights, we use counterfactual interventions to evaluate differ-

ent compensation strategies that address the challenges TForce faces in promoting

retention. We show how to improve retention without increasing compensation costs

by shifting part of the compensation drivers receive through supplementary pay to

base pay. Since drivers value base pay more than supplementary pay when making

decisions to stay at TForce, a shift in compensation from supplementary pay to base

pay improves retention at the platform. We also show how TForce can maximize

retention by not only shifting compensation from supplementary pay to base pay but

also by increasing the supplementary payment amounts received by drivers whose

supplementary compensation lags that of other drivers in the platform.

2 Literature Review

Our work is related to four streams of literature. The first comprises labor

economics studies of worker attrition (see Ashenfelter and Card, 2010, for a review). A

prominent hypothesis in this literature argues that a worker’s probability of continuing

at a job increases in tenure due to a higher value in the matching between the worker

and the job (as reflected in greater worker productivity and higher earnings). This

hypothesis, commonly known as the “job-matching hypothesis,” is rooted in the work

of Jovanovic (1979) and has been applied to a variety of business sectors, including the
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long-distance truckload segment of the for-hire trucking industry (Hoffman and Burks,

2020). Jovanovic (1979) argues that the evaluation of a match between a worker and

a job prior to the start of employment is subject to imperfect information. This is

because jobs are akin to “experience goods” (in the terminology of Nelson (1970)) and,

therefore, the only way for a worker to determine the true value of the match with a

job is to experience it. As the worker’s experience at the job increases, the arrival of

new information about the job will allow the worker to form a more accurate valuation

of the match with the job. The worker will leave the job if the value of the match

is revealed to be low. Moreover, the probability that this will occur is a decreasing

function of the worker’s tenure at the job. Our study of drivers’ decisions to quit

or remain at the platform builds on this work because drivers are forward-looking

in making these decisions and maximize their utility of staying or leaving over their

tenure at the platform. Therefore, drivers will choose to extend their tenure at their

job if their matching value with the job is higher than their utility from quitting the

job.

The second area of related work includes studies in the fields of management and

psychology looking at factors linked to worker attrition (see Hom et al., 2017, for a

review). Among these factors, studies have identified correlates of attrition such as

workers’ compensation and job demands in a variety of employment settings, including

trucking (Shaw et al., 1998; De Croon et al., 2004) and warehousing (Gardner et al.,

2011). Rarely, however, have studies in these fields considered these factors jointly

as a system to explain workers’ decisions to leave or remain at an organization nor

have they analyzed dynamical worker attrition phenomena. This is despite calls from

scholars for research that addresses this deficiency in the literature (Mitchell and

James, 2001; Steel, 2002). Through the development and empirical application of a
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dynamic choice model explaining the attrition process of drivers during their tenure

at a platform, we contribute to fill this gap in the literature.

The third literature stream includes studies that examine compensation schemes

that incentivize drivers to vary their work effort in passenger transportation (or “ride-

sharing”) platforms. For instance, Chen (2016) uses surge-pricing data from Uber

to examine elasticity in the number of hours that drivers commit to working at the

platform relative to the compensation they receive. The results show there is positive

elasticity among drivers. Allon et al. (2018) also find support for the existence of a

positive elasticity in labor supply compensation using data from a different ride-sharing

platform. According to their analysis, drivers are more likely to commit more working

hours when offered higher financial incentives. More recently, Guda and Subramanian

(2019) show how platforms can strategically use surge pricing to incentivize drivers

to work more hours in market zones where the number of drivers is insufficient to

serve passengers. Similarly, Liu et al. (2019) show how a platform can use bonuses

to incentivize workers to allocate more labor hours to the platform at the expense of

its competitors. To our knowledge, no study has examined drivers’ decisions to leave

these platforms permanently. We address this gap in the literature, within the context

of last-mile deliveries of online retail orders to consumers.

The fourth stream of literature includes work in operations management that has

used structural estimation to manage schedules in healthcare operations (Olivares

et al., 2008), model customer attrition in call center queues (Akşin et al., 2013), and

model demand by airline passengers (Li et al., 2014) and by consumers in the retail

industry (Musalem et al., 2010). Other work has examined labor attrition in business

process management (BPM) contact centers and in manufacturing plants (Moon et al.,

2018; Emadi and Staats, 2020) using a structural estimation of optimal stopping

models similar to the one we use in our paper. We not only apply our model to a

64



new setting and apply a two-step estimation approach that is new to the operations

management literature, but also evaluate effects on attrition of different forms of

payments over workers’ tenure. That is, rather than drawing inferences on attrition

from compensations based on fixed hourly or annual payments, we are able to estimate

effects by payments that reward workers’ productivity (as a function of base compen-

sation) and payments that subsidize workers’ efforts (as a function of supplementary

compensation).

3 Data, Descriptive Statistics, and Preliminary Evidence

We investigate turnover taking place among drivers involved mainly in the delivery

of online orders for Office Depot and Staples. We focused on the delivery of orders for

these retailers because they accounted for a large percentage (47%) of pieces delivered

by TForce at the time we conducted our study. Additionally, these two retailers

have similar route characteristics and consistency in the type of products delivered

in the routes as well as among the consumers (e.g., commercial businesses, hospitals,

educational institutions) who receive their products. Drivers assigned to these two

retailers also operate similar vehicles (delivery vans). Moreover, none of the routes

from these two retailers had abnormal profiles, e.g., involved no long-haul services.

This gives us a pool of drivers and routes that allows for a more reliable assessment of

compensation and efforts in our model. In this section, we first present the details of

our dataset along with the descriptive statistics. We then conduct a series of analyses

to provide preliminary evidence of our structural model.

3 .1 Data and Descriptive Statistics

Our analysis spans the period between January 1, 2014 and August 31, 2019. The

analysis focuses on 15,293 observations from 396 drivers receiving at least 80% of
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their compensation from deliveries made for Office Depot and Staples across nine U.S.

metropolitan areas with different traffic and weather characteristics as well as a range

of working conditions in the TForce facilities (i.e., the branches) where drivers pick

up their orders for distribution. 13 These drivers represent the majority of workers

who made deliveries for Office Depot and Staples during the period of analysis. The

drivers worked at TForce for at least three weeks, ensuring we are able to generate a

minimum number of observations to simulate each driver’s state transition. Moreover,

the drivers joined TForce on or after the start of our sample period (January 1,

2014) and the last driver to join did so three months prior to the end of the analysis

period (May 25, 2019). This allows us to avoid an initial conditions problem typically

observed in dynamic models with unobserved heterogeneity when initial periods are

not available in the data as well as to reduce potential biases in our analysis caused

by right censoring in drivers’ tenure length.

All the deliveries made by the drivers in their metro areas were same-day or next-

day deliveries. In each of the metro areas, the drivers arrived at the TForce branch to

pick up the parcels for the routes assigned to them when they joined TForce. After

picking up the parcels, the drivers then made their deliveries along their assigned routes.

In some weeks, drivers did not work due to illness or other personal reasons. Apart

from this, their work varied from one day to another depending on the orders required

for delivery along their routes by Office Depot and Staples’ consumers. The routes

assigned to the drivers when they joined TForce generally remained fixed over their

tenure at the platform and, within these routes, deliveries involved regular stops at

institutional (hospitals, schools, government agencies) and commercial (office buildings,

retail establishments) locations that generally remained unchanged over drivers’ tenure.

13The nine metropolitan areas are: Los Angeles, Orlando, New York, Philadelphia, Houston, Chicago,
Detroit, Minneapolis—Saint Paul, and Atlanta. TForce had only one branch in each of these areas
during our period of analysis.
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Therefore, the variations in the routes centered mainly around the number of pieces

and the distances between stops in the routes, and these are determined exogenously

by demand from Staples and Office Depot’s customers. Appendix B (Part 1 ) provides

evidence that routes’ assignments are exogenous with respect to drivers’ experience

and that they do not depend on the base and supplementary compensations received

previously by the drivers.

As we mentioned before, drivers were required to give TForce one week’s notice

before their departure. Upon drivers’ leaving the platform, TForce recorded their

date of termination. As shown at the bottom of Table 6, 299 drivers had left the

platform by the end of the period of analysis. Of these, 254 lasted 50 weeks or less

while 290 lasted 100 weeks or less. Figure 2 illustrates the relationship that exists

between the length of time drivers work for TForce and the probability of drivers

leaving the company. We observe that the probability of drivers leaving TForce

decreases significantly during their tenure. Additionally, drivers’ length of tenure

appears not to depend on whether drivers joined the platform during its annual peak

or regular demand seasons. Specifically, as we show in Part 2 of Appendix B, tenure

length appears not to be shorter among drivers who joined TForce during its annual

peak demand season (from November to January), when the need for drivers may be

more urgent. Furthermore, this part of the appendix provides evidence that drivers’

decisions to leave the platform were not likely to occur simultaneously with decisions

to leave by other drivers. Therefore, it is unlikely that drivers’ decisions to leave

affected other drivers’ decisions to continue at the platform.

Drivers received compensation from TForce on a weekly basis corresponding to a

base and a supplementary payment. The base payment corresponds to a set percentage

of base revenue TForce received from the retailers for the routes assigned to the drivers

every week. This revenue was negotiated in advance between TForce and the retailers
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Figure 2: Probability of drivers leaving TForce
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Table 6: Descriptive statistics
Variables

Mean Std. Dev. Prob. Quit Base Pay
Supplement

Hours Distance
Number Miles per

N(Measured Weekly) Pay Stops Stop

Prob. Quitting 0.02 0.138 15293

Base Pay 821.137 431.313 -0.126*** 15293

Supp. Pay 136.938 160.487 -0.037*** -0.068*** 15293

Hours 31.521 12.679 -0.136*** 0.684*** 0.102*** 15293

Distance 454.813 345.216 -0.081*** 0.426*** 0.158*** 0.496*** 15293

Number Stops 150.942 79.090 -0.132*** 0.732*** -0.044*** 0.742*** 0.453*** 15293

Miles per Stop 3.347 2.911 0.017** -0.003 0.131*** 0.003 0.548*** -0.219*** 15293

Tenure 45.812 47.867 -0.058*** 0.123*** -0.125*** -0.035*** 0.025*** 0.144*** -0.043*** 15293

Tenure (in weeks) [1,50] (51,100] (101,253]

Number Drivers Quit 254 36 9

Cummul. Drivers Quit 254 290 299

whose deliveries made up the routes. It is a function of the number of pieces delivered

in the routes. A higher number of pieces yields a larger base compensation. In turn,

drivers who are more productive in delivering these pieces will obtain higher earning

rates ($/hour driven).

Neither the revenue TForce received from the retailers nor the compensation

drivers received from TForce were subject to any sort of dynamic pricing policies

similar to those observed in other platforms such as Uber. Nevertheless, TForce did

receive from retailers pre-negotiated surcharges for routes that involved deliveries with
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unusual demands from drivers (in the form of attended deliveries, special handing

conditions, etc.). Every week, drivers received as part of their supplementary pay all

the surcharges attached to the routes assigned to them.

In addition to compensating drivers who are assigned routes with unusual re-

quirements, supplementary payments included a weekly subsidy that new drivers

received as they gained experience. Therefore, these payments decreased in drivers’

tenure. TForce had a preset starting value for the weekly subsidy drivers received

upon joining the platform. This value corresponded to a set percentage of the weekly

base revenue TForce received from the retailers for the routes assigned to the drivers.

This percentage decreased during the drivers’ tenure at TForce depending on the

branch and the month of the year. Upon onboarding, drivers knew that they were

subsidized with a supplementary payment set to decrease in tenure. However, they

were not privy to the details about the subsidy’s starting value or its rate of decrease

over time.

Table 6 lists the descriptive statistics for the weekly base and supplementary

payments per driver. It also includes the statistics for tenure (in weeks), the probability

of quitting every week, as well as the weekly number of hours worked, the distance

and miles per stop, and the number of stops serviced by each driver. On average, the

probability of a driver quitting in any given week during her tenure at TForce is 2%.

During tenure, a driver receives average weekly base and supplementary payments

worth $821.14 and $136.94, respectively. To earn this income, the driver must work

31.52 hours per week and travel a distance of 454.81 miles to 150.94 locations. The

standard deviations in Table 6 also reveal a great deal of variance among weekly

payments, number of hours worked, distance traveled, and number of stops serviced by

drivers. Although drivers generally made deliveries consistently in the same routes and

based on the schedules agreed upon when they entered the platform, their deliveries
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spanned locations and recipients that changed exogenously over time depending on the

recipients’ demand. This generated a great deal of variability in the routes assigned

to them on a weekly basis, along with the drivers’ payments and efforts.

Table 6 also reports the correlation coefficients among the variables in our analysis.

As shown by these coefficients, the probability of drivers’ quitting has a negative

correlation with the length of tenure, consistent with the negative slope observed in

Figure 2. Moreover, supplementary pay decreases with tenure. Table 6 also shows that

base payment correlates highly with the number of stops in the routes. Recall that

base payment is directly a function of the weekly base revenue that TForce receives

from the routes assigned to the driver. In turn, this revenue depends on the number

of pieces in those routes. Because the number of pieces increases directly with the

number of stops in the routes, base payment will correlate positively with the number

of stops.

3 .2 Preliminary Evidence of Structural Model and Results

We first use a semi-parametric survival model to investigate the effects of compensa-

tion and efforts on drivers’ decisions to quit. The advantage of a semi-parametric over

a parametric survival model is that it allows us to estimate the effects of explanatory

variables without making any assumption on the shape of the baseline hazard (Cox,

1972). The main purpose is to use this model to explore the relationship between

base and supplementary pay and the probability of drivers’ quitting the platform. We

estimate a Cox proportional hazard model of quitting of the form:

λ(t,X) = exp(Xβ)λ0(t), (13)

where λ0(t) is the baseline hazard. A set of explanatory variables X includes weekly

base pay, weekly supplementary pay, weekly hours worked, weekly miles driven per

stop, driver’s age, metro area fixed effects, and month fixed effects. The variation
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of the data does not allow us to identify the driver fixed effects, but we cluster the

standard errors at the driver level.

Table 7: Estimation results for Cox proportional hazard model
(1) (2)

Estimate (Std. Err.) Estimate (Std. Err.)

Base pay (week/$100) -0.343*** (0.033) -0.349*** (0.034)

Supplementary pay (week/$100) -0.103** (0.050) -0.101** (0.050)

Hours /10 0.087 (0.086) 0.099 (0.087)

Miles per stop 0.034*** (0.011) 0.033*** (0.011)

Age -0.007 (0.006)

LL -2463.918 -2463.131

obs 15293 15293

Number of drivers 396 396
Notes: (1) Standard errors are in parentheses; (2) *, ** and *** denote statistical significance at 10
percent, 5 percent and 1 percent levels, respectively; (3) to avoid numerical overflows caused by large
values, base pay and supplementary pay are scaled down by a factor of 1/100 and hours and tenure
are scaled down by a factor of 1/10.

Columns (1) and (2) in Table 7 present the results obtained after estimating the

model with and without driver’s age among the explanatory variables. Because these

columns yield a similar log-likelihood value and the coefficient for age in Column

(2) is statistically non-significant, we interpret our results based on estimates from

the more parsimonious specification in Column (1). The estimated effects of both

base pay and supplementary pay are negative and statistically significant, suggesting

that drivers with lower compensation have a higher chance of quitting. Moreover,

the results indicate that the effect of base pay is greater than that of supplementary

pay as the estimated absolute value for the base pay coefficient is higher than the

absolute value estimated for the supplementary pay coefficient (|−0.343| > |−0.103|).

In addition, the estimated coefficient for miles per stop is positive and statistically
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significant, showing that a decrease in route density (i.e., longer distances per stop)

increases the chance of quitting.

The semi-parametric survival model only considers the factors that affect the

drivers’ current utility of quitting. However, drivers’ decisions to quit or stay at

the platform also depend on drivers’ future payouts. Upon onboarding, drivers

know that they are subsidized with a supplementary payment that will decrease over

time. Figures 3(a) and 3(b) illustrate this phenomenon. To plot these figures, we

used the results obtained from a local polynomial regression with an Epanechnikov

kernel with a bandwidth of 5 weeks. However, to produce Figure 3(a), we collapse

supplementary payments to the weekly mean before using local polynomial smoothing,

while to produce Figure 3(b), we collapse supplementary payments to the weekly

median. Moreover, in addition to a decrease in weekly supplementary pay, drivers

Figure 3: Decrease in weekly supplementary pay
(a) Means
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expect to see an increase in their earning rates ($/hour driven) from the weekly base

compensation they receive as their tenure increases and they become more productive.

This is illustrated by the results of a polynomial regression of the relationship between

tenure and earning rates from base compensation (using weekly means in Figure 4(a)

and weekly medians in Figure 4(b)).
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Figure 4: Increase in earning rates from weekly base pay
(a) Means
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Table 8: Impact of change in compensation on quitting
Estimate (Std. Err.)

Percentage change in base pay -0.006* (0.003)

Percentage change in supplementary pay 0.001 (0.002)

Base pay (week$100) -0.230*** (0.044)

Supplementary pay (week$100) -0.257*** (0.074)

Hours /10 -0.142 (0.114)

Miles per stop 0.038* (0.023)

Tenure -0.014*** (0.003)

obs 10,625

LL -759.4

Number of drivers 396
Notes: (1) Standard errors are in parentheses; (2) *, ** and *** denote statistical
significance at 10 percent, 5 percent and 1 percent levels, respectively; (3) to
avoid numerical overflows caused by large values, base pay and supplementary
pay are scaled down by a factor of 1/100 and hours and tenure are scaled down
by a factor of 1/10; (4) observations with a percentage of compensation change
greater than the 95th percentile are excluded from the analysis.

Building on these driver expectations, we investigate how changes in base and

supplementary payments affect drivers’ decisions to leave or remain at the platform.

To do so, we first calculate the percentage changes in the drivers’ weekly base pay and

supplementary pay relative to those in the previous week. Then, we use a logistic model
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to regress drivers’ decisions to quit on the percentage changes in their two forms of

payment, while controlling for the weekly levels of base and supplementary payments,

the weekly amounts of hours and miles per stop driven, metro area fixed effects, and

month fixed effects. As shown in Table 8, the coefficient for the percentage of change

in weekly base pay is negative and statistically significant, while the coefficient for

the percentage of change in weekly supplementary pay is not statistically significant.

This suggests that changes in base pay play an important role in drivers’ decisions

to leave or stay at the platform—drivers who observe an increase in base pay have a

lower probability of leaving the platform.

These preliminary findings suggest that drivers make decisions to leave or remain

at the platform as a function of their base and supplementary compensation as well as

the variations in these amounts over time. Therefore, similar to Chung et al. (2014)

and Emadi and Staats (2020), we consider drivers as forward-looking decision makers

who evaluate their utility of staying at the platform based on not only their current

compensation but future compensation expectations.

4 The Model

In this section, we lay out a model for drivers’ decisions to leave or remain at

the platform. As illustrated in Figure 5, we model these decisions using an optimal

stopping framework in a dynamic discrete choice (leave versus stay) context. The

standard methods for solving dynamic discrete choice models involve calculating the

value function explicitly which can be computationally prohibitive. Conditional choice

probability estimators, introduced by Hotz and Miller (1993), provide a tractable

alternative to these full solution methods by exploiting the mappings from the value

functions to the probabilities of observing particular choices.
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As noted in the previous section, drivers are made aware that their payments

will change over time and we find empirical evidence that drivers are sensitive to

changes in payments. Accordingly, drivers are considered to be forward-looking and

take expected future utility into account when making their decisions to quit or stay.

By using a dynamic discrete choice model we can account for the possibility that

drivers maximize their utility of leaving or staying at the platform over their tenure

at the platform, rather than solely during the current period, t. At the end of each

week t, an individual driver i working in metro area j must decide whether to stay

at the platform for one more week or quit at the end of the week. The decision of a

driver is denoted by dit = k ∈ {0, 1}, where dit = 1 when choosing to stay and dit = 0

when choosing to leave. The driver makes the decision by comparing the utility from

staying with the utility from quitting over his planning horizon of T periods, as shown

in Figure 5.

Figure 5: Decision process at the end of week t

Driver i
completes
routes

Driver i receives base
and supplementary pay

Driver i forms expectations
on his future earnings and
effort and decides to quit
or stay for another week

Assuming an additive random utility model, the driver i’s per-period utility flow

from serving metro area j from decision dit = k ∈ {0, 1} in week t is given by

Uijkt = uk(Xijt) + εijkt. (14)

We assume the error term εijkt is i.i.d. Gumbel distributed and captures the choice-

specific transitory shock. Xijt is a vector of state variables capturing weekly compen-

sation (base and supplementary pay), hours worked, miles driven per stop, and tenure.

As reported in Section 5 , our estimation strategy initially assumes that the drivers

and the researchers share full information regarding the state variables. It then relaxes

75



this assumption by adding to the model controls for unobserved heterogeneity among

drivers.

The individual drivers make the sequence of choices {dit}Tt=0 to maximize the

expected present value of utility over the planning horizon of T periods

V (Xij0) = max
dit

E

[
T∑
t=0

βt1(dit = k)(uk(Xijt) + εijkt)
]
, (15)

where Xijt is observed in the data while the shock, εijkt, is known only to the driver.

The driver forms her expectation over the uncertain future states and uncertain future

shocks. 1(dit = k) is an indicator function and β ∈ (0, 1) denotes the discount factor.

The optimization problem in Equation (15) can be rewitten as a Bellman equation in

the recursive form

V (Xijt) = max
k∈{0,1}

{uk(Xijt) + εijkt + βE [V (Xijt+1)|Xijt, dit = k]}. (16)

Equation (16) completely summarizes drivers’ optimal behaviors from week t onward

with a per-period utility function and a future expected utility component. The

per-period utility from staying at the platform is
(17)u1(Xijt) = θ0 + θ1Wijt + θ2Iijt + θ3Hijt + θ4Dijt + θ5Tijt + θξj + θηt,

where Wijt is the weekly base pay and Iijt is the weekly supplementary pay; Hijt is the

number of hours worked in a week; Dijt denotes the route density measured as miles

per stop; and Tijt is the week of tenure. Furthermore, we include in Equation (17) the

metro area fixed effect denoted by θξj to control for any effects due to idiosyncrasies

in the metro area where the drivers work. A vector of month dummy variables, θηt,

captures seasonal effects that may have an impact on the utility of staying at the

platform. Because only differences in utility matter and as a standard assumption for

the outside option, we normalize the mean utility a driver obtains from quitting as

zero and denote u0(dit = 0, Xijt) = 0 (Arcidiacono and Miller, 2011; Arcidiacono and

Ellickson, 2011).
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For dit = 1, we rewrite Equation (16) to denote the value function of staying at

the platform in terms of model primitives

V1(Xijt) = u1(Xijt) + εij1t + βE [p0(Xijt+1)V0(Xijt+1) + p1(Xijt+1)V1(Xijt+1))] . (18)

Value function, Vk(.), is the driver’s state-dependent optimal utility over the

remainder of the planning horizon given decision dit = k ∈ {0, 1}. The probability

that driver i decides to stay at the platform for another week is denoted as p1(.) and

p0(.) = 1 − p1(.) is the probability that driver i decides to quit. More specifically,

p1 (Xijt+1) and p0 (Xijt+1) denote the probability that driver i stays or quits at the

platform in week t+ 1 given state Xijt+1. We see in Equation (18) that the driver’s

optimal value function of staying depends on the future utility evaluated over all

possible uncertain states in week t + 1, given a decision to stay in week t, and a

per-period utility of staying, u1(Xijt), defined in Equation (17).

For dit = 0, we rewrite Equation (16) to denote the value function of quitting the

platform in terms of model primitives

V0(Xijt) = u0(Xijt) + εij0t +
T∑

s=t+1
βs−tE(u0(Xijs) + ε̃ij0s). (19)

Note that choosing dit = 0 implies dis = 0 for all week s > t because quitting is a

terminating action and, once it is chosen, a driver’s decision problem is no longer

dynamic. In addition, because we normalize the per-period utility of quitting, u0(Xijt),

to zero, the value function for quitting only includes the driver’s expected idiosyncratic

term over the future periods.

A conditional choice probability estimator makes use of the one-to-one mapping be-

tween the difference in choice-specific conditional value functions and the probabilities

of making a choice (Hotz and Miller, 1993). Therefore, to derive the conditional choice

probabilities estimator, we need to formulate the differenced value functions across
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two choices as a function of the conditional choice probability. We start by defining

the conditional value function as vk(Xijt) ≡ Vk(Xijt)− εijkt. The choice-specific error

term εijkt is identically and independently drawn from a Gumbel distribution, with

the location and scale parameters normalized to 0 and 1, respectively. The difference

between two Gumbel random variables is a logistic random variable (Train, 2009),

thus

p0(Xijt) = Pr(ε̃ij1t − ε̃ij0t ≤ v0(Xijt)− v1(Xijt)) = 1
1 + ev1(Xijt)−v0(Xijt)

(20)

from which we invert to express the difference in the conditional value of each decision

as the log ratio of probability of quitting and probability of staying

v0(Xijt)− v1(Xijt) = log
(

p0(Xijt)
1− p0(Xijt)

)
. (21)

In Appendix C, we further show that the difference in the conditional value functions

can be expressed as

v1(Xijt)− v0(Xijt) = u1 (Xijt)− β
∫

log [p0 (Xijt+1)] f (Xijt+1|Xijt) dXijt+1. (22)

Note that the difference in conditional value functions contains only one future

component, the one-period ahead conditional choice probabilities, p0 (Xijt+1), which

correspond to the probabilities of choosing the terminal choice, i.e., quitting the

platform in week t + 1. This features a one-period ahead property where the only

future value needed is the drivers’ probability of quitting evaluated at all possible

one-period ahead states (Arcidiacono and Ellickson, 2011). We use Equation (22) in

our estimation strategy as described in the next section.

5 Estimation Strategy

In this section, we expand on the strategy we use to estimate the parameters in the

dynamic choice model of driver turnover. We use a two-stage approach that obviates
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the need to solve the dynamic problem repeatedly. In the first stage, we estimate the

state transition functions and the conditional choice probabilities. Then, in the second

stage, we take these results as given to estimate the structural parameters. 14 Note

that although estimating the model in stages does not affect the consistency of the

estimates, it does reduce efficiency. We compute the standard errors using subsample

bootstrap methods, where we resample the data 200 times to reestimate the model

and construct a bootstrap distribution of the estimates (Chung et al., 2014; Murphy,

2018).

5 .1 Step 1: Conditional Choice Probabilities and State Transitions Estimation

We use a flexible logit model to estimate the first-stage conditional choice prob-

abilities of the decision to quit. The flexible logit model has been extensively used

in the literature to estimate conditional choice probabilities (e.g., Arcidiacono and

Miller, 2011; Yoganarasimhan, 2013; Huang and Smith, 2014; Fang and Wang, 2015).

The model contains second order polynomials of base pay, supplementary pay, hours

worked, density, tenure, and interactions among base pay, supplementary pay, hours

worked, density, and tenure as well as metro area dummies and month dummies. This

flexible structure is similar to the specification used by Ellickson et al. (2012) and is

intended to capture as much information as possible to reflect the conditional choice

probabilities. Appendix D presents these results.

Next, we estimate the parameters of transition probability functions, f (Xijt+1|Xijt).

Some of the components of the state variables are time-invariant (metro areas) or

will transition deterministically (tenure), which simplifies the transition probability

14This estimation approach has been extensively used in the marketing and economics literatures (e.g.,
Misra and Nair, 2011; Chung et al., 2014; Murphy, 2018).
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function. We estimate the transitions of the remaining components of state variables

following the equations detailed in Appendix D.

5 .2 Step 2: Estimation of Structural Parameters

Finally, we simulate
∫

log [p0(Xijt+1)] f (Xijt+1|Xijt) dXijt+1 using the coefficients

of transition probability functions, f (Xijt+1|Xijt), the empirical distributions of the

state variables, and the conditional choice probabilities, p0 (Xijt+1). The estimation

procedures are detailed in Appendix E. We take
∫

log [p0(Xijt+1)] f (Xijt+1|Xijt) dXijt+1

as given and estimate the structural parameters of the dynamic choice model, θ, based

on the following log likelihood function

LL(θ) =
I∑
i=1

log
[
T∏
t=1
Lit(dit | Xijt, θ)

]
. (23)

5 .3 Unobserved Heterogeneity

The likelihood function using Equation (23) is based on the assumption that there

are no unobservable preferences among individual drivers. As we discussed before, this

is unreasonable because drivers are likely to differ unobservedly in their non-pecuniary

preferences for the job. Thus, we assume that there is unobserved heterogeneity in

drivers’ non-pecuniary taste for the job drawn from a mass-point distribution (Keane

and Wolpin, 1997; Heckman and Sedlacek, 1985). This will allow us to explain those

cases in which drivers with higher compensations decide to leave early, while drivers

with lower compensations decide to stay, for example.

We address the presence of unobserved heterogeneity in drivers’ taste for the job

by assuming that there are two types of drivers with πr being the proportion of the

rth type in the sample. Types are time-invariant which are known by the individual

drivers but are not observed by the researchers. In the estimation, the utility of staying

is allowed to differ by an unobserved Type variable reflecting persistent non-pecuniary
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taste for the job. Type enters Equation (17) and the per-period utility of staying

becomes u(Xijt, si). When a driver belongs to the first category (r = 1), type equals 0

(si = r − 1 = 0), and when she belongs to the second category (r = 2), type equals 1

(si = r − 1 = 1).

The probability of a driver being a particular type r is given by

qir = πr
∏T
t=1 Lit(dit | Xijt, θ, si = r − 1)∑2
r=1 πr

∏T
t=1 Lit(dit | Xijt, θ, si)

. (24)

The log likelihood function we use to estimate the structural parameters follows

the mixture distribution

LL(θ, π) =
I∑
i

log
[ 2∑
r=1

πr
T∏
t=1
Lit(dit | Xijt, θ, si = r − 1)

]
. (25)

Note that the parts of the log likelihood function are no longer additively separable.

However, Arcidiacono and Jones (2003) show that the Expectation-Maximization

(EM) algorithm can reintroduce the additive separability at the maximization step.

We use the EM algorithm following the two steps: first, at the expectation step, we

calculate the expected log likelihood function given the conditional probabilities at

the current parameter estimates; second, at the maximization step, we maximize the

expected likelihood function holding the conditional probabilities fixed. We repeat

the process until the results converge. As the EM algorithm allows us to return the

additive separability, the expected log likelihood function here is given by

LL(θ, π) =
I∑
i=1

2∑
r=1

T∑
t=1

qir log [Lit(dit | Xijt, θ, si = r − 1)] . (26)

We can now proceed with the estimation in stages. In the first stage, we estimate

the parameters of the state transition probability functions. Because the transition

probability functions do not depend on the type (si), they can be consistently estimated

in the first stage. In the second stage, we recursively compute and update the
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conditional choice probabilities, p0(si = r−1|Xijt), the population probability of being

a type (πr), and the structural parameters θ. The estimates of the state transition

probability functions from the first stage are taken as given to calculate the next

period’s future continuation values in connection with the updated conditional choice

probabilities in each iteration. For the detailed iterations of EM algorithm, we refer

readers to Arcidiacono and Miller (2011).

6 Results

Table 9 (Column (1)) reports the structural parameter estimates we obtained after

evaluating drivers’ decisions while taking into account their unobserved heterogeneity

in their non-pecuniary taste for the job among drivers. Appendix F presents an

analysis of the model’s two-stage estimation performance by comparing the predicted

value of quitting with the realized value of quitting observed in the data. This appendix

also presents the results from different tests we conducted to evaluate the robustness

of the results in Table 9 relative to a variety of discount factors and with respect to a

variety of models excluding parameters with non-significant effects in Table 9 and in

the conditional choice probability results in Appendix D.

As expected, the estimated parameters for base and supplementary pay effects in

Table 9 are positive and statistically different from 0 (p < 0.01), while the estimated

parameter for the miles per stop effect is negative and statistically different from 0

(p < 0.01). Moreover, according to Table 9, the estimated value for the type effect

coefficient is positive and statistically different from 0 (p < 0.01), indicating that

unobserved heterogeneity in the taste for the job affects drivers’ decisions to stay.

Specifically, compared to type 1 drivers, type 2 drivers have a higher taste for the job

and thus are more likely to stay.
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Comparing the log-likelihood value obtained for the model specification in Table 9’s

Column (1) with that obtained for a specification ignoring heterogeneity in drivers’

taste for the job (Column (2)), we can infer that the former specification is a better fit

for the data than the latter. A comparison of the values estimated for the parameters

for all the effects in Column (1) against those estimated in Column (2) also shows

a fair amount of consistency, with the exception of tenure’s effect. While the values

estimated for the parameters for tenure’s effect are positive across both specifications

in Columns (1) and (2), only the value for the parameter when heterogeneity is ignored

is statistically significant. Therefore, tenure’s positive effect on retention is contingent

on drivers’ non-pecuniary taste for the job. This is intuitive, since drivers with longer

tenure tend to be the ones who like the job better and are likely to stay longer after

controlling for compensation (per the positive and significant value estimated for the

parameter for type’s effect in Column (1) in Table 9).

Table 10 reports the summary statistics for both types of drivers. The type 1

subsample, consisting of 59.60% of the drivers has, on average, 19 weeks of tenure

which is more than 3 times shorter than the 75 weeks of tenure among the type 2

subsample consisting of 40.40% of drivers. Type 1 drivers receive a slightly lower base

pay ($808.273 versus $827.173 per week) but work more hours (32.766 versus 30.922

hours). After dividing the base pay by the number of hours worked, we find type

1 drivers receive a lower hourly pay ($24.668 versus $26.750) indicating that type 1

drivers are less productive than type 2 drivers. However, the average type 1 driver

receives a higher weekly supplementary pay ($168.300 versus $121.816) while traveling

similar miles per stop than the average type 2 driver (3.469 versus 3.289 miles per

stop).

These results imply that drivers’ non-pecuniary taste for the job plays an important

role in their decisions to stay at the platform. The results also imply that TForce’s
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Table 9: Estimation results with unobserved heterogeneity

With Type Without Type
(1) (2)

Estimate (Std. Err.) Estimate (Std. Err.)

Constant 0.312 (0.353) 0.461*** (0.191)

Base pay (week/$100) 0.127*** (0.030) 0.121*** (0.025)

Supplementary pay (week/$100) 0.094*** (0.035) 0.100** (0.028)

Hours /10 -0.011 (0.067) -0.042 (0.057)

Miles per stop -0.074*** (0.011) -0.076*** (0.010)

Tenure (week/10) 0.023 (0.017) 0.038*** (0.009)

Type 0.331*** (0.162)

Type 1 (percent) 0.596

Type 2 (percent) 0.404

LL -1210.024 -1280.307

obs 15293 15293

Number of drivers 396 396
Notes: (1). Standard errors are in parentheses; (2) *, ** and *** denote statistical significance
at 10 percent, 5 percent and 1 percent levels, respectively; (3) to avoid numerical overflows caused
by large values, base pay and supplementary pay are scaled down by a factor of 1/100 and hours
and tenure are scaled down by a factor of 1/10; (4) The model uses a discount factor of 0.9957
which corresponds to a 0.8 annual discount rate and is consistent with that used previously in the
literature (e.g., Hoffman and Burks, 2020).
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Table 10: Summary statistics for the two types

Type 1 Type 2

Type 0.596 0.404

Base pay (week) 808.273 827.173

Supplementary pay(week) 168.300 121.816

Hours 32.766 30.922

Miles per stop 3.469 3.289

Length of Tenure (week) 19.208 75.314
Notes: The population probability of each type is the
estimated value for πr; drivers are classified into a type
based on the value estimated for qir (i.e., driver i is type
1 if qi1 > 0.5).

supplementary pay may not be as effective in retaining drivers compared to its base

pay. As shown in Column (1) in Table 9, the estimated value for the parameter

corresponding to the supplementary pay effect is lower than the value estimated

for the parameter corresponding to the base pay effect (0.094 vs. 0.127). 15 In

Appendix G, we re-estimate the structural parameters in Column (1) assuming the

base payments are endogenous and find that the estimated effect of the base payments

on driver retention represents a conservative lower bound. In the next two sections,

we assess these implications more formally using comparative statics and simulations

of counterfactual interventions of the empirical model estimated in the context of our

industry partner’s operations.

7 Compensation Implications for Retention during Tenure

Our evaluation first considers the extreme where the drivers’ discount factor β = 0.

In this case, intuition may suggest that any changes in the state vectors that increase

15The estimated values for these two parameters are statistically different at a 0.5% level, according
to a likelihood ratio test.
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drivers’ deterministic utility from continuing relative to quitting and should increase

their probability of staying, p1. The following proposition confirms this intuition

(please refer to Appendix H for the proofs for this proposition as well as for those

presented later in the paper).

Proposition 7 .1 Suppose drivers are myopic (i.e., β = 0).

For any x ∈ {Wijt, Iijt, Hijt, Dijt, Tijt} :

(i) ∂p1 (Xijt)
∂x

= p0 (Xijt) p1 (Xijt)
∂u1

∂x

(ii) ∂p1(Xijt)
∂x

> 0 if and only if ∂u1

∂x
> 0.

For example, ∂p1 (Xijt)
∂Wijt

= θ1p0 (Xijt) p1 (Xijt),
∂p1 (Xijt)
∂Iijt

= θ2p0 (Xijt) p1 (Xijt) .

Recall the following notations: p1 (Xijt) is the probability of staying with the

platform and u1 (Xijt) is the deterministic component of driver utility from staying.

The weekly base pay is denoted as Wijt and θ1 is its coefficient, while Iijt is the weekly

supplementary pay and θ2 is its coefficient. When β = 0, all future components in

p1 disappear and only the per-period utility, u1, remains. Proposition 1 allows for a

complete and exact analysis of the effect of changes in any states on driver turnover

and the average length of employment.

While Proposition 1 applies to a setting where drivers are myopic, our modeling

approach accounts for drivers who are forward looking when making their decisions to

leave or stay at the platform. In this case, the discount factor β ∈ (0, 1) and, therefore,

the future components are no longer zero. The probability of deciding to continue in

the current week, given state Xijt is

p1 (Xijt) = 1(
1 + ev0(Xijt)−v1(Xijt)

) , (27)
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where vk (Xijt) ≡ Vk (Xijt)− εijkt is the conditional value function. In light of Propo-

sition 1, we may expect that changes in the state in week t leading to an increase in

the utility u1 will cause the probability of staying, p1, to increase. However, this may

not be necessarily the case because a change in Xijt can affect the future states, which

in turn can affect the value of v1 (Xijt) consisting of not only the per-period utility u1

in week t but also the expected optimal utility from week t+ 1 onward. Recall that

the state variables in week t+ 1, given state Xijt in week t can be expressed as 16

Xijt+1 =
(
ϕW

(
Wijt, Tijt+1, ς̃

W
t+1

)
, ϕI

(
Iijt, Tijt+1, ς̃

I
t+1

)
, ϕH

(
Hijt, Tijt+1, ς̃

H
t+1

)
, ϕD

(
Dijt, Tijt+1, ς̃

D
t+1

))
.

If the state transition function ϕ is non-decreasing in the state variable x ∈ {Wijt, Iijt,

Hijt, Dijt, Tijt}, then the directional effect of changes in x on the probability of

continuing is unambiguous. This result is formalized below. We define v(1)
1 = v1 − u1

(i.e., the value function from period t+ 1 onward conditional a decision to continue in

period t).

Proposition 7 .2 Suppose drivers are forward-looking (i.e., β ∈ (0, 1)). For any

x ∈ {Wijt, Iijt, Hijt, Dijt}:

(i) ∂p1 (Xijt)
∂x

= p0 (Xijt) p1 (Xijt)
∂u1

∂x
+ ∂v

(1)
1
∂x



(ii) Suppose ∂ϕ
∂x
≥ 0. Then ∂p1

∂x
> 0 if and only if ∂u1

∂x
> 0.

Proposition 2 also indicates that the effects caused by changes in any of the states on

the probability of staying depend on the product of p1 and p0 and the marginal effects

of the state variable on both per-period utility (u1) and the expected optimal utility

from the t + 1 week onward (v(1)
1 ). Thus, all else being equal, an increase in either

16Note that the transition of tenure is deterministic, i.e., Tijt+1 = Tijt + 1.
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base pay or supplementary pay has the greatest effect when drivers are “on the fence”

between staying or quitting (p1 × p0 is maximized when p1 is 50%) and the effect is

smaller when drivers are more inclined to either staying or quitting. For example, a

$100 increase in base (or supplementary) compensation raises the likelihood of drivers’

staying at the platform by 17.02% (or 8.46%) when drivers’ probability of staying

with TForce is 50%. This same $100 increase in compensation raises the likelihood of

drivers’ staying by only 2.48% for base pay and 1.23% for supplementary pay when

drivers’ predilection to remain at TForce increases to 96.20%. 17 Connecting this

result to the two different driver types (in Table 9), we infer that type 1 drivers may

be more indifferent between leaving versus staying at TForce than type 2 drivers and,

therefore, are more sensitive to changes in compensation. Furthermore, regardless of

their types, drivers’ indifference between staying or leaving will decrease with tenure

as they learn about the matching quality with the job at the platform. Therefore,

compensation effects are most pronounced earlier in tenure. A special condition could

arise for some unpopular jobs that have a retention rate of less than 50% at the

beginning of tenure. In this case, p1 × p0 increases first and then decreases in tenure.

For these jobs, compensation effects will be more pronounced during the mid-stages

of tenure.

From Proposition 2, we can also evaluate the effect of drivers’ tenure at TForce

as well as the effect of tenure on the sensitivity of retention to compensation. We

first evaluate ∂p1 (Xijt)
∂Tijt

at the mean values of all state variables using the conditional

choice probabilities in our estimation procedure. Then, to gauge the effects of tenure

17These results are obtained from evaluating
(
∂u1

∂x
+ ∂v

(1)
1
∂x

)
at the mean values of state variables

with the parameters in Table 24. For tenure, we use a value of 3 weeks, corresponding to the
shortest duration at TForce among drivers. The probability of staying, p1, takes either a value
of 50% when drivers are “on the fence” or a value of 96.20%, corresponding to the estimated
probability of drivers’ remaining at TForce in week 3.
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on the sensitivity of retention to compensation, we calculate the changes (in percentage

terms) in the marginal probability of staying with respect to base pay ∂p1 (Xijt)
∂W

and

supplementary pay ∂p1 (Xijt)
∂I

, respectively, due to an increase in tenure. We find that

the marginal effect of tenure is positive. For example, a ten-week increase in tenure

leads to an increase of 0.05% in the probability of staying. We also find that the same

ten-week increase in tenure lowers the effect of base and supplementary pay on the

probability of staying by 7.51% and 19.62%, respectively. 18 Therefore, retention

becomes less sensitive to compensation over time.

Having examined the effects of changes in state variables on retention in the

myopic and the forward-looking case, we next consider whether the probability of

staying, p1, is more sensitive to changes in one state variable versus another, e.g.,

base pay vs. supplementary pay. For the case of β = 0, this type of question can

be easily answered using Proposition 1. For example, if ∂u1

∂x1
>
∂u1

∂x2
≥ 0 for some

x1 ∈ {Wijt, Iijt, Hijt, Dijt} and x2 ∈ {Wijt, Iijt, Hijt, Dijt}, then an increase in x1 leads

to a greater increase in the probability that a driver continues than an increase in

x2. The situation is much more complex for the case of β > 0. The key reason is

that a change in the state variable in the current period affects random future states

through the state transition and, in turn, optimal future decisions and the conditional

valuation function, v1, at each realized state. However, under certain conditions it

is possible to draw conclusions on the relative sensitivity of p1 to changes in state

variables.

The next proposition applies to a general model with streamlined notation that

we summarize below. We suppress the driver (i) and region (j) subscripts, and we

let the time period parameter t also denote the tenure of the decision maker (Tijt

18To calculate these values, we compare the percentage decrease in the marginal probability of staying
from week 45 (the average value of tenure) to week 55 for base and supplementary payments,
respectively. Except for tenure, all other state variables are evaluated at their means.
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in our model above). The state vector in period t is Xt = (X1t, . . . , Xnt, t) which is

comprised of n + 1 state variables, the first n of which evolve randomly over time

via an AR(1) process. The state transition functions are ϕ1, . . . , ϕn+1. Given state

variable Xkt in period t for k ∈ {1, . . . , n}, the random state in the next period is

X̃kt+1 = ϕk
(
Xkt, t, ζ̃kt

)
,

where
(
ζ̃1t, . . . , ζ̃nt

)
are iid random variables. The state transition function for time

(ϕn+1) increments the period by one, i.e., ϕn+1 (t) = t+ 1. The normalized utility (net

of ε) from continuing in period t is

u1 (Xt) = θ0 + θ′Xt where θ = (θ1, . . . , θn+1) ,

and u0 (Xt) = 0. With this notation, the decision-maker’s problem in period t is

V (Xt) = max
k∈{0,1}

{uk (Xt) + εkt + v
(1)
k (Xt)},

where

v
(1)
0 (Xt) = γβ

(
1− βT−t−1

1− β

)

v
(1)
1 (Xt) = βE

[
v1
(
X̃t+1

)
|Xt, dt = 1

]
.

Proposition 7 .3 Suppose drivers are forward-looking (i.e., β ∈ (0, 1)), and the

transition functions ϕi for state variables i and j are linear:

If ∂u1

∂Xit

>
∂u1

∂Xjt

> 0 and ∂ϕi
∂Xit

>
∂ϕj
∂Xjt

> 0, then ∂p1

∂Xit

>
∂p1

∂Xjt

.

Proposition 3 characterizes the relative sensitivity for states with linear state

transition functions, as is the case for state variables H and D in our model. The

result reveals that the probability of staying is more sensitive to the state variable

which has a greater effect on per-period utility and also a higher correlation with its

lagged value in the transition function relative to the other state variable. However,
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this result is not assured to hold for a nonlinear state transition function (e.g., as in

W and I). Therefore, we numerically evaluate the sensitivity of retention to base pay

and supplementary pay. In particular, we calculate the marginal probability of staying

with respect to base pay and supplementary pay being evaluated at two different levels

including high and low (denoting respectively 75% and 25% fractiles).

Figure 6: Marginal probability of staying by tenure: base pay (W ) and supplementary
pay (I)

As shown in Figure 6, the probability of staying is more sensitive to base pay than to

supplementary pay. This gap is largest for productive, less subsidized drivers (∂p1/∂W :

High W/Low I vs. ∂p1/∂I : High W/Low I) and smallest for highly subsidized and

unproductive drivers (∂p1/∂W : Low W/High I vs. ∂p1/∂I : Low W/High I). There-

fore, while supplementary pay may incentivize drivers to stay longer in the platform, it

may also keep unproductive drivers from learning about their true productivity until

later in their tenure, at which point they will decide to leave the platform. Figure 6

also shows that the sensitivity of retention to base pay and to supplementary pay

decreases in tenure, with sensitivity to supplementary pay decreasing faster than

sensitivity to base pay.
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Proposition 4 expands on the results from Proposition 3 by showing how changes

in the state transition coefficients affect the probability of retention in subsequent

weeks. Let σik be a parameter in the state i transition function ϕi. Consider the

following condition: ∂ϕi
∂σik

≥ 0 for all feasible values of the state variables Xit in any

period t. This condition holds in our model because state variables are nonnegative.

In other settings, it may be possible that the sign of a state variable could be both

positive and negative (i.e., the sign is not restricted), in which case Proposition 4 does

not apply.

Proposition 7 .4 If ∂ϕi
∂σik

≥ 0 for all feasible values of the state variable Xit in any

period t, then the sign of ∂p1

∂σik
matches the sign of ∂u1

∂Xit

.

To interpret the implications from Proposition 4, we consider a change in which

supplementary pay decreases at a faster rate with tenure. The state transition function

for supplementary pay is ϕI = (Iijt)σI2 eσI1+σI3(Tijt+1)+ζj+φt+1+ςI
t+1 (see Appendix D)

and u1 is increasing in tenure (see Table 9). Therefore, from Proposition 4, if σI3

decreases (i.e., supplementary pay decreases at a faster rate), then the probability of

a decision to stay decreases.

The results from Propositions 3 and 4 suggest that a supplementary payment

program can maintain an artificially high level of retention among type 1 drivers with

low levels of productivity for the duration of this program. Because these drivers are

ill-suited for the job, they will likely end up leaving when the supplementary payment

program ends. Unfortunately, it is difficult to identify these drivers before they start

their work and, as a result, it is easy for supplementary payment programs to end up

allocating money in retaining the wrong type of drivers. According to our propositions,

this will be particularly evident in supplementary payment programs that last too

long or that pay out excessively high supplements, particularly at the expense of base
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payments. In the next section, we use counterfactual analyses to examine the insights

from Propositions 3 and 4 in the context of our industry partner’s empirical model.

Our goal is to analyze how TForce could address its attrition challenges as a function

of variations in supplementary and base compensations received by drivers for their

work at the platform.

8 Counterfactual Analyses

We first evaluate compensation effects on retention by simulating a counterfactual

intervention in which drivers’ base and supplementary payments increase on a week-

by-week basis during drivers’ tenure. The goal is to compare the effects on retention

caused by increases across both forms of compensation and the evolution of these

effects during drivers’ tenure. We then simulate a series of counterfactual interventions

to provide insights into how our partner could improve its current payment program

to increase driver retention as a function of supplementary and base payment costs.

8 .1 Compensation Improvement Effects on Retention

We simulate a counterfactual intervention in which drivers’ base and supplementary

payments increase by $100 one week at a time during tenure. That is, both forms of

compensation increase by $100 starting in the third week of drivers’ tenure, 19 then

in the fourth week, and so on and so forth. The changes in the probability of staying

in week t are simulated as
∑It
i=1 p1

(
X ′ijt

)
−∑It

i=1 p1 (Xijt)∑It
i=1 p1 (Xijt)

, where It is the observed

number of drivers’ decisions in week t. X ′ijt is equal to the vector Xijt, but with the

base pay or the supplementary pay used in X ′ijt set to its baseline value used in Xijt

plus $100. Our approach is consistent with that by Kang et al. (2015) and Ransom

19We start in the third week because no driver in our sample left TForce during the first two weeks
of tenure.
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(2021) in that it considers interventions that are in effect for only one time period

(i.e., one week) at a time. By restricting the interventions to occur only one period

at a time, we can recover the counterfactual conditional choice probabilities without

solving the full model via backward recursion while benefiting from the computational

advantages of the conditional choice probabilities approach (Arcidiacono and Ellickson,

2011).

Figure 7: Compensation improvement effects on retention
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Figure 7 presents the results of the counterfactual analysis for the base and

supplementary payment effects on the probability of staying at TForce during tenure.

These results show that retention is more sensitive to increases in base pay than to

increases in supplementary pay. While drivers’ increase in base pay leads to a total

increase of 32.94% in the retention rate during tenure (with a weekly average of 0.69%

and a standard deviation of 0.25%), the same increase in supplementary pay leads to

an overall increase in the retention rate of 20.91% (with a weekly average of 0.44%
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and a standard deviation of 0.23%). Thus, in making decisions to stay at TForce,

drivers value base pay more than supplementary pay. Moreover, Figure 7 shows that

increases in the retention rate caused by higher supplementary and base pay decrease

in tenure. Therefore, the impact of base pay and supplementary pay on drivers’ utility

of staying decreases as tenure increases.

8 .2 Payment Program Policies and Their Effects on Retention

Having examined the effects of supplementary and base payments on retention, we

focus on three counterfactual interventions in TForce’s compensation program in order

to improve driver retention as a function of supplementary and base payment costs.

Figure 8 presents the results of the counterfactual analyses of these interventions. In

the first intervention, we shift compensation from supplementary pay to base pay

and reduce the spread of values of weekly supplementary pay by bringing the two

tails of these values’ distribution closer to the mean. To that end, we set a target

for the weekly supplementary pay at the 60th percentile of the supplementary pay

($120) received by drivers in the third week of tenure. 20 We then calculate the

difference between the average supplementary payment drivers receive in their third

week of tenure and the supplementary pay target (∆= $170 - $120 = $50). The value

of ∆ corresponds to the amount to be added to or subtracted from every driver’s

supplementary payment received every week, depending on whether this payment

amount is below or above the $120 target. Therefore, if a driver’s supplementary pay

in the fifth week of tenure equals $100, we adjust this amount to $150. However, if this

amount equals $180, we adjust it to $130. Moreover, in the latter case, we shift the

20We chose this supplementary compensation target for the intervention to ensure that drivers’
expectations on their future payments stay close to the primitives in the transition probabilities.
We also chose the third week of tenure for this intervention since drivers do not start leaving TForce
until after their first two weeks at the platform.
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amount subtracted from the driver’s supplementary pay to the driver’s base pay for

that week. In doing so, we increase the emphasis placed by compensation on rewarding

drivers’ productivity. According to the results from the analysis of this intervention,

the cumulative probability of retention at the platform increases by 14.82% during

the drivers’ tenure. However, such improvement in retention expands compensation

costs only by 3.04%.

Figure 8: Results of counterfactual analyses of compensation interventions
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The second intervention is a variation on the first one. We again subtract ∆ from

the driver’s weekly supplementary pay when this amount is higher than the target and

then shift this surplus to the driver’s weekly base pay. However, if the supplementary

payment amount is below the target, we leave this amount as well as the base payment

amounts unchanged. In the end, this intervention does not change compensation

expenses for TForce. However, because it shifts compensation from supplementary

to base payments, it increases the cumulative probability of retention during drivers’

tenure by 3.57%.
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The third intervention is a variation on the second one: It subtracts ∆ from the

driver’s weekly supplementary pay when this amount is higher than the target but

does not shift this surplus to the driver’s weekly base pay. Instead, the platform

retains this surplus. As a result, the compensation costs go down by 7.75%, but the

cumulative retention probability decreases greatly by 4.33%, which makes the 60th

percentile an impractical supplementary target for this intervention. Therefore, we

instead increase the value of the target to the 75th percentile in order to obtain a

decrease of 3.11% in compensation costs without undermining retention.

Table 11: Summary of compensation strategies and counterfactual analysis results
across interventions

Supplementary Target as a

Percentile of 3rd Week

Supplementary Payments

Shift Weekly Surplus

in Supplementary Pay to

Weekly Base Pay

Eliminate Weekly

Deficit in

Supplementary Pay

Change in

Cumulative

Retention Rate

Change in

Compensation

Costs

1 60th Percentile ($120) Yes Yes + 14.82% + 3.04%

2 60th Percentile ($120) Yes No + 3.57% 0.00%

3 75th Percentile ($280) No No 0.00% -3.11%

Table 11 summarizes the insights from the counterfactual analyses of the three

interventions. Essentially, the second intervention provides the option of improving

retention by 3.57% without increasing compensation costs. On the other hand, the

third intervention provides the option of reducing compensation costs by 3.11% without

eroding drivers’ retention rate. The first intervention constitutes an intermediate

option as it improves retention by 14.82% while also increasing compensation expenses

by 3.04%. For a platform facing challenges in retaining drivers, the latter intervention

is appealing because it offers a higher improvement in retention than that obtained

from the other two interventions. The downside of this intervention is that it carries

with it greater compensation costs. A question that arises is whether these additional

expenditures are justified by the improvement in retention they afford. On one hand,

a 3.04% increase in compensation expenses will increase TForce’s payroll by $279,100
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over the course of one year. 21 On the other hand, a 14.82% increase in the

cumulative probability that drivers will stay at the platform will save TForce $521,223

annually in recruiting costs for new drivers and in the costs incurred from subsidizing

these drivers through supplementary payments as they climb their learning curve. 22

Therefore, because this intervention offers TForce a yearly rate of return of 86.75%

($521,223/$279,100 = 1.8675), it is clearly beneficial for the organization.

9 Conclusion

Research on transportation platforms in the operations management literature

has focused mainly on how to balance supply and demand in these systems. As such,

much of this work has considered topics ranging from worker allocation and scheduling

policies, to the management of incentives, to the design of transaction mechanisms.

This paper expands this research in a new direction by considering drivers’ decisions

regarding their continuity in these platforms. In so doing, it contributes to the field

a better understanding of the dynamics involved in drivers’ behavioral responses to

their working conditions in these systems.

21To obtain the $279,100 value, we calculate the difference between the total amount TForce spent
on compensation as shown in the data and the amount it would have spent under the intervention
during the first 50 weeks of drivers’ tenure.

22We obtain the $521,223 value in four steps. First, we determine the number of additional drivers
TForce would have retained by the 51st week of tenure due to a 14.82% increase in its retention
rate. This number corresponds to 37 drivers and is equal to the product between 14.82% and the
number of drivers who had left the platform by the end of week 50 under normal conditions (254
drivers in Table 6). Second, we estimate the costs saved from not having to recruit new drivers
to replace the 37 additional drivers retained. These costs are approximately 16% of each driver’s
annual base payment of $41,057 (50 weeks × 821.14/week, per Table 6) or $6,569.12 per driver
($243,057 for all 37 drivers). The 16% share is consistent with that used to estimate turnover costs
in other studies (Boushey and Glynn, 2012). Third, we estimate the costs saved from not having
to subsidize through supplementary payments any new drivers to replace the 37 additional drivers
retained. Per driver, these costs are equal to the average supplementary payment observed over
the first 50 weeks of tenure ($7,518/driver). Across all 37 drivers, these costs are equal to $278,166.
Finally, we add the total cost saved in recruiting costs from not having to recruit new drivers to
replace the 37 additional new drivers retained ($243,057) and the costs saved from not having to
subsidize through supplementary payments any of these new drivers during their first 50 weeks of
tenure ($278,166) to obtain $521,223 in savings.
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Through our collaboration with TForce Logistics, a provider of last-mile delivery

services operating a platform connecting drivers, online retailers, and consumers, we

study drivers’ decisions to leave or remain at the platform throughout the length of

their tenure at the platform. To perform this evaluation, we build a structural model

that incorporates into a dynamic discrete choice framework several key predictors of

these decisions. These include multiple forms of monetary compensation (through

base and supplementary payments), the efforts by drivers to earn these compensations,

the length of drivers’ tenure at the platform, and the non-pecuniary taste drivers have

for the job.

Our model provides an integrated structure to study driver turnover in last-mile

delivery platforms. We consider not only the compensation that drivers obtain for their

productivity, but also the subsidies they receive as they ramp up their productivity

during their early stages of tenure. Moreover, the dynamic choice framework we use

in our model enables us to examine the strategic behavior of drivers in their decisions

to quit or continue working at the platform. Specifically, our analysis goes beyond the

utility drivers obtain in the current period from their choices to leave or stay at the

platform to consider their expected future utility of these choices (a forward-looking

behavior).

We find that higher compensation, including both base and supplementary pay,

increases drivers’ probability of staying at the platform. However, compared to

supplementary pay, base pay has a greater effect on drivers’ retention. While a $100

increase in weekly base compensation raises drivers’ rate of retention by 32.94%,

the same increase in supplementary compensation yields only a 20.91% increase in

retention. Moreover, we find that this gap is largest for drivers who require lower

supplementary payment amounts. Thus, base pay is more effective at increasing

retention than supplementary pay, particularly among more productive, less subsidized

99



drivers. These findings are important because they provide a foundation to design

compensation programs that are more effective at retaining drivers. Traditionally,

research on platforms has not considered the different forms of payments we examine

in their design of workers’ compensation programs. Our research shows this can lead

to erroneous assumptions about the effectiveness of compensation as a lever to increase

retention.

We also show that drivers’ ambivalence between leaving and staying at the platform

affects the effectiveness of compensation as a lever to manage attrition. The effective-

ness of base and supplementary pay in contributing to driver retention decreases as

drivers develop a stronger predilection toward either leaving or staying at the platform.

This decrease in effectiveness is significant. When drivers are indifferent between

leaving and staying, a $100 increase in base (or supplementary) compensation will

raise the likelihood of drivers’ staying at TForce by 17.02% (or 8.46% in the case

of supplementary pay). However, when the bias for quitting or staying increases to

96.20% from the indifference point, this same increase in compensation will raise the

likelihood of drivers staying at the platform by only 2.48% (for base pay) and 1.23%

(for supplementary pay). This finding is important because research on platforms

has typically assumed that the compensation workers receive for their contributions

is independent of their degree of ambivalence between leaving and staying at the

platforms.

Our results also underscore the role of drivers’ tenure in their attrition process. It

is known that work experience affects operational outcomes, which in our case involve

drivers’ decisions to leave or stay at the platform. According to our findings, the

probability of drivers’ leaving the platform decreases in their tenure. Moreover, the

effect of base and supplementary pay on retention decreases in tenure and this rate of

decrease is faster for supplementary pay. While a ten-week increase in tenure boosts
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the rate of retention by 0.05%, it also lowers the effect of base and supplementary pay

on retention by 7.51% and 19.62%, respectively. Thus, retention becomes less sensitive

to compensation over time. Moreover, because this phenomenon is more pronounced

for supplementary pay, it implies that supplementary compensation programs have a

greater risk of becoming ineffective at retention if supplementary payments remain

too high long after drivers have joined the platform.

Our study also puts a structure around the effects on attrition introduced by drivers’

unobserved non-pecuniary taste for the jobs at the platform. We find that about 40.40%

of drivers have a high unobserved non-pecuniary value for these jobs and thus are

less likely to quit, whereas 59.60% have a low unobserved value. Compared to drivers

in the former group, those drivers in the latter group receive higher supplementary

pay (56.31% higher, on average) and yet have average lengths of tenure that are more

than three times shorter. Thus, the fit that exists between drivers and jobs is an

important predictor of attrition at the platform. Our model disentangles the effects of

this predictor in the context of TForce.

Finally, we perform counterfactual analyses to arrive at different recommendations

on how TForce could address its attrition challenges as a function of variations in

supplementary and base compensations received by drivers for their work at the

platform. We show how TForce could improve drivers’ retention rate by 3.57%

without increasing compensation costs or how it could reduce compensation costs by

3.11% without eroding the retention rate. We also show how TForce could increase

its retention rate by a significantly higher margin (14.82%) at minimal additional

compensation costs (3.04%). This work can serve as an empirical blueprint for other

platforms facing similar challenges as TForce’s. It can also serve as the basis for

studies in other platforms that rely on the crowdsourcing of labor and where the
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attrition of this labor carries significant downsides including higher recruiting costs

and lost productivity.
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Chapter 3

AN ANALYSIS OF OPERATING EFFICIENCY AND PUBLIC POLICY

IMPLICATIONS IN LAST-MILE TRANSPORTATION FOLLOWING AMAZON’S

VERTICAL INTEGRATION

Abstract

We examine how Amazon’s decision to vertically integrate its retail platform

and last-mile delivery operations can lead to anti-competitive outcomes as a result

of a deterioration in the operating efficiency in the routes served by a last-mile

transportation firm. Based on an operational analysis of the last-mile transportation

firm, we find that Amazon’s decision to vertically integrate increases significantly the

mileage necessary to deliver parcels in the ZIP code areas where this integration occurs.

Moreover, this increase is significantly amplified by the remoteness and proportion

of fast deliveries in these areas. These effects translate, on average, into $1.36 in

additional costs necessary to cover extra vehicular and labor expenditures per parcel

delivered. Because at the root of these outcomes are interactions among multiple

organizations with significant market power asymmetries, we expand on a variety of

potential anti-competitive service and pricing outcomes stemming from the impact of

Amazon’s vertical integration on the last-mile delivery firm’s costs. We then put forth

different public policy remedies that could be implemented to address these sources of

anti-competitiveness in the last-mile delivery industry.
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1 Introduction

Because of its scale and labor intensity, last-mile transportation represents one of

the costliest functions performed in Internet retail supply chains. This has prompted

several major retailers to seek greater control over this function by vertically integrating

it into their e-commerce platforms. For instance, in 2017, Target acquired last-mile

delivery firm, Shipt, for $550 million and rolled out its service across its stores and

those of other retailers nationwide (Target Corp., 2017). In that same year, Amazon

launched its own in-house service to deliver its own orders as well as the orders of

third-party sellers, which account for over 60% of sales in its platform (Kenney and

Zysman, 2020).

These vertical integration moves have given rise to a vigorous debate in academia (Bam-

berger and Lobel, 2017; Borsenberger et al., 2018) and industry (Jansen, 2019; Berman,

2020) over these retailers’ misuse of market power in the last-mile transportation

industry. While the public policy literature has traditionally considered horizontal

integration in the e-commerce industry as anti-competitive, it has provided mixed

insights on vertical integration’s competitive effects (Khan, 2016, 2019). On one hand,

vertical integration may generate benefits, such as lower transaction costs and the

elimination of successive monopolies or oligopolies and the double marginalization

these entail. However, vertical integration may deprive competing firms of essential

inputs, which could decrease their efficiency and preclude them from contesting the

market altogether.

This issue is particularly relevant in the last-mile transportation industry. Major

retail platforms, particularly Amazon’s, have a significant market power in their focal

industry (i.e., e-commerce), which gives them monopsony-like power over last-mile

delivery firms. Consider, for instance, that e-commerce deliveries account for over 60%
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of all parcels transported annually by last-mile transportation firms in the United

States and orders from Amazon’s retail platform contribute to generating almost half

of this volume (Laseter et al., 2018; Duggan, 2020). With such a dominant position,

Amazon can deprive last-mile transportation firms of essential delivery volumes and/or

cherry-pick its deliveries to decrease the operational efficiency and profitability of

these firms (Borsenberger et al., 2018).

In this study, we seek to examine the operating effects of Amazon’s 2017 decision to

integrate its retail platform and last-mile delivery operations and the implications these

effects may have on the last-mile transportation industry. As part of this integration,

Amazon shifted the fulfillment of its third-party sellers’ orders away from last-mile

transportation firms that had traditionally provided this service and put it under the

domain of Amazon’s own in-house service. Given their dependence on Amazon to

market and stock their products, third-party sellers had little say on this move. At

the same time, the move effectively deprived last-mile carriers of the stream of parcels

from third-party sellers, thereby undermining the operational efficiency in their routes.

Our examination of this erosion in efficiency focuses on the reductions in density

experienced in one of these carriers’ routes as a result of Amazon’s vertical integration.

In the transportation economics literature, marginal decreases in outputs (e.g., tonnage,

passengers, and parcels) relative to inputs (e.g., mileage) over a given network of routes

are reflective of lower density and, therefore, lower efficiency (Braeutigam, 1999). As

such, in our setting, we evaluate changes in the number of miles drivers must travel to

deliver each parcel in their routes before versus after Amazon’s vertical integration.

An increase in the mileage per parcel delivered following Amazon’s integration will be

reflective of lower density in the routes and, consequently, lower efficiency.

We evaluate parcel deliveries across 664 ZIP code areas in the United States. We

find that, on average, route densities in each of these areas decreased by 88 percent
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following Amazon’s vertical integration. That is, the average number of miles drivers

traveled to deliver each parcel in these areas increased 88 percent once Amazon merged

its retail platform and last-mile delivery operations. We also find that this phenomenon

is more prominent among routes located in hard-to-reach ZIP code areas. On average,

the reductions in density caused by Amazon’s vertical integration expand by 0.859

percent for every 1 percent increase in the distance necessary to reach these areas.

We also find that reductions in density after Amazon’s vertical integration depend on

the speed of service consumers’ demand across the areas where the routes are located.

Reductions in density are 5.45 percent higher for every 1 percent increase in the share

of fast (i.e., same day) deliveries relative to slower deliveries in these areas.

These findings have important implications regarding the effects that Amazon’s

vertical integration may have on competition in the last-mile transportation industry.

In the system we analyzed, an 88 percent increase in the mileage required for parcel

deliveries translates, on average, into $40.93 in additional costs necessary to cover extra

vehicular and labor costs per route (which corresponds to an additional $1.36/parcel).

In areas that are more expensive to serve (either because of their remoteness or

speed of service), these additional costs are even greater. To incentivize Amazon

not to vertically integrate and thereby prevent an increase in their costs, last-mile

transportation firms, like the one in our study, may opt to decrease the fulfillment rates

they charge Amazon (or increase the rates charged to Amazon’s retail competitors).

This cross-subsidization strategy, however, can distort competition by giving a powerful

platform like Amazon’s an advantage, since Amazon will pay significantly lower rates

than those paid by its retail rivals (Dobson and Inderst, 2008). Another strategy

may involve limiting the speed of service offered by the last-mile delivery carrier in

the areas where Amazon’s integration occurred in order to ameliorate the negative

impact of this integration on the carrier’s operating costs. This strategy, however,
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can also distort competition by making it more difficult for Amazon’s retail rivals to

hire last-mile carriers offering high speeds of service. Our paper expands on these

potential anti-competitive outcomes.

Ultimately, these outcomes follow from interactions among multiple organizations

with significant market power asymmetries, often found in transportation systems,

including the one analyzed in this study. Because existing government policies have

been mainly concerned with ensuring that prices in these systems remain low and

outputs high, they have not been as involved in overseeing market power dynamics

that may ultimately be responsible for these prices and outputs (Khan, 2016). Based

on our results, we conclude the paper with suggestions for initial policy improvements

that address this oversight within last-mile transportation systems, in general.

2 Literature and Theory Background

As an industry, last-mile transportation has been the subject of wide-ranging

research in operations management (OM). This research has examined routing (Gurvich

et al., 2019; Voccia et al., 2019; Vareias et al., 2019), dispatching and scheduling

operations (Agatz et al., 2011; Yang et al., 2016), revenue management (Agatz et al.,

2013; Cao et al., 2018), service quality (Rabinovich and Bailey, 2004; Rabinovich,

2007), and the use of infrastructure for consumer interactions (Han et al., 2019) and

order consolidation (Rougès and Montreuil, 2014; Castillo et al., 2018; Deng et al.,

2021). Little research, however, has studied last-mile transportation operations in the

context of online retail platforms. In this context, research has mainly focused on the

crowdsourcing of drivers for deliveries (Qi et al., 2018; Fatehi and Wagner, 2021; Ta

et al., 2018). To our knowledge, no studies have evaluated vertical integration effects

leading to potential competition concerns involving last-mile transportation firms in

those platforms. Our paper contributes to addressing this scarcity in the literature.
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Our paper also contributes to the growing literature on online platform design.

Prior research in this literature has investigated critical design factors that affect online

platform performance, such as market thickness and matching efficiency (Nikzad, 2017;

Li and Netessine, 2020; Bimpikis et al., 2020), pricing mechanisms (Bai et al., 2018;

Cachon et al., 2019), subsidy policies (Benjaafar et al., 2020; Allon et al., 2018), and

governance (Jiang et al., 2011; Zhu and Liu, 2018; Parker and Van Alstyne, 2018). We

focus on platforms in the Internet retail industry. A platform in this industry creates

value by facilitating interactions among different groups of economic agents (i.e.,

sellers, consumers, and last-mile delivery operators) located on three different sides of

the platform. Greater participation by agents on one side of the platform increases

the value of the platform to agents on another side (e.g., Rochet and Tirole, 2006;

Armstrong, 2006; Evans and Schmalensee, 2016). As a platform grows in size, however,

its pursuit of vertical integration strategies may give rise to potential anti-competitive

concerns (Crémer et al., 2019; Shapiro, 2019).

Recent research on vertical integration and firm boundaries in the strategic manage-

ment and public policy literature has considered this phenomenon (Zhu and Liu, 2018;

Wen and Zhu, 2019; Nooren et al., 2018). However, this has not been the case in the

OM domain. OM studies have mainly focused on analyzing how vertical integration

can ameliorate hold-up concerns imposed by incomplete contracts (e.g., Rabinovich

et al., 2007; Park and Ro, 2011; Perols et al., 2013; Steven et al., 2014). In our context

involving Amazon’s platform, these concerns are generally less salient since most

last-mile transportation firms are smaller than Amazon. Moreover, these firms cannot

rely on vertical integration to stop a dominant platform like Amazon’s from offering

similar services. Therefore, if Amazon vertically integrates its platform, it will likely

obtain a more favorable position to exploit its power and strengthen its competitive
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position in the market where last-mile transportation firms compete. (Alimonti et al.,

2020).

These arguments are based on economic structuralism theories of leverage and

foreclosure. While the former theory argues that a firm can use its dominance in one

market to extend its power to another (Kessler and Stern, 1959), the latter contends

that the firm can use its power in one market to actively deny rivals in an adjacent

market access to an essential input originating in the former market (Rey and Tirole,

2007). Therefore, by vertically integrating into its last-mile delivery side, a platform

like Amazon’s could relegate transportation firms to see route densities decrease in

the markets they serve. Eventually, those firms may choose to compete only in those

markets where route densities still make it possible for them to operate efficiently –

albeit with only those orders that are outside the purview of the platform (Borsenberger

et al., 2018). This would leave entire markets subject to less competition in the

provision of last-mile delivery services to consumers, thereby compromising the ability

of competing retailers or other platforms to contest demand in those markets and

ultimately undermining consumer welfare (Alimonti et al., 2020; Zurel and Scorca,

2020; Singh et al., 2021). Moreover, as these markets become less attractive to last-mile

delivery firms, drivers may see a reduction in their range of employment and salary

opportunities.

We expect that routes affected by vertical integration will exhibit lower densities

in markets comprising increasingly remote geographical areas. Relative to other

locations, these areas require drivers to travel longer distances (deadheads) to reach

them. This leaves shorter amounts of time available to assemble routes with high

delivery counts and still meet the time constraints imposed by the delivery dates

promised to consumers. A similar situation is evidenced in areas where deliveries must

take place under tight time constraints. Consider, for instance, same-day deliveries.
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Because this type of delivery carries tighter time constraints relative to other delivery

types (e.g., next day), routes in areas with a higher proportion of fast deliveries will

exhibit lower densities.

Thus, as formulated in the hypothesis statements below and illustrated in Figure 9,

the decision to vertically integrate a platform into its last-mile delivery side may

translate into lower densities in the routes operated by a last-mile delivery firm in

those market areas where the integration occurred. Furthermore, we expect that this

decrease in density will be significantly greater in markets comprised of hard-to-reach

areas and areas with a greater proportion of fast deliveries.

Figure 9: Research framework
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Last-Mile Transportation
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Hypothesis 3: A retail platform’s vertical integration into its last-mile delivery side
decreases the densities in the routes operated by a last-mile transportation firm in the
areas where the integration occurred.

Hypothesis 4a (b): The remoteness of (proportion of fast deliveries in) the areas
served by a last-mile transportation firm amplifies the negative effect on the densities
of the routes in those areas caused by a retail platform’s vertical integration into its
last-mile delivery side.

3 Empirical Methodology

To perform our empirical evaluation, we must first identify a setting conducive

to generating a valid estimation of changes in the density of routes across different

areas in the United States before versus after Amazon’s move to tie its retail platform
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and last-mile delivery operations in 2017. To this end, we collaborate with a last-mile

delivery firm that operated in various areas across the country that experienced

Amazon’s vertical integration in that same year. In the remainder of this section, we

expand on our research setting and provide details about our data, empirical design,

and modeling specification.

3 .1 Empirical Setting

In 2017, the last-mile carrier delivered parcels for more than 200 retailers, including

Costco, IKEA, Office Depot, Staples, as well as Amazon. The firm offered two types

of deliveries (same-day and next-day) for all retailers. The data we obtained spans all

deliveries carried out by the firm across 7,737 ZIP code areas in the United States. 23

These are among the wealthiest and most populated areas in the country (there are

34,097 ZIP code areas in the U.S. where the firm in our study could operate). U.S.

household wealth and population follow a Pareto distribution across ZIP code areas,

where approximately 20% of the ZIP code areas account for 72% of total household

wealth and 68% of total household population. Naturally, last-mile delivery firms like

the one in our study, will focus their operations on those ZIP code areas that are

wealthier and more populated because this is where they can assemble routes with

higher density (parcels/mile). The remaining areas are typically served by firms like

the U.S. Postal Service.

Our study focuses on 664 ZIP code areas where Amazon vertically integrated

in 2017. These areas account for 70% of Amazon’s weekly parcels delivered by the

23Please note that the firm does not perform deliveries for all retailers in every ZIP code area it
served. In addition, the number and the mix of retailers requiring deliveries in each ZIP code area
vary over time.
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last-mile firm’s drivers in 2017. 24 They also account for approximately 30% of the

total weekly number of parcels delivered and 40% of the total weekly number of stops

made by the firm’s drivers across all 7,737 ZIP code areas served by the firm prior

to Amazon’s vertical integration. As shown in Table 12, the ZIP code areas where

Amazon vertically integrated are distributed across 7 different regions. Table 12 also

shows the dates when Amazon vertically integrated in each of these regions. Our focus

is on evaluating the effect of these events on the density of the routes across the ZIP

code areas in these regions.

Table 12: Regions, ZIP code areas, and Amazon’s vertical integration dates
Regions Amazon Vertical Integration Date Number of ZIP Code Areas

San Diego 11-Feb-17 62

East Los Angeles 18-Feb-17 152

West Los Angeles 18-Mar-17 101

Chicago 25-Mar-17 143

Central Florida (Orlando and Tampa) 06-May-17 117

Sacramento 19-Aug-17 49

Stockton 18-Nov-17 40

3 .2 Data and Variable Measurements

For each region, we assembled a panel of daily delivery routes collected from the

last-mile transportation firm. The firm allocated parcels to these routes based on their

delivery addresses and promised delivery time windows. It then assigned each route to

a driver working on-demand as an independent contractor and paid by the number of

parcels delivered in the route. In total, the panel we assembled includes 1,725 drivers

24We excluded from our analysis 124 ZIP code areas where the firm’s drivers made deliveries for
Amazon in 2017 but did not experience Amazon’s vertical integration until 2018 (18 areas) or had
yet to experience Amazon’s integration as of 2019 (106 areas). We also excluded 177 ZIP code areas
where Amazon vertically integrated in 2017 but in which the last-mile delivery firm performed
deliveries for Amazon only sporadically prior to vertical integration. We cannot include these areas
in our analysis because we are unable to use them to register reliable measurements over time.
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and 2,184 routes across the 664 ZIP code areas in our sample. It accounts for 28%

of the total drivers (1,725 out of 6,225) and 37% of the routes available (2,184 out

of 5,858) in the firm in 2017. For each route, we obtained the name of the driver

responsible for the route, the address of the facility where the driver picked up the

parcels for delivery (henceforth referred to as the hub), the address and time of delivery

for each parcel following the sequence of deliveries, and the delivery service type for

each parcel (same-day delivery or next-day delivery).

We used these data to measure the outcome variable (route density) and the

moderators (proportion of fast deliveries and remoteness) for each ZIP code area

every week. To measure route density, we first estimated the total number of parcels

delivered and the miles traveled in every route (from hub to final delivery in the route).

We then identified the number of parcels delivered and mileage traveled in each ZIP

code area visited by every route. Note that the mileage in each ZIP code area included

the deadhead distance traveled to reach the ZIP code area (either from a hub or from

another ZIP code area).

Finally, we aggregated across routes the mileage traversed and the number of

parcels delivered in each ZIP code area every week. As stated in Equation (28), the

ratio of these two measures corresponds to the average weekly mileage per piece 25

delivered along the routes in each ZIP code area. This ratio (yi,t) is the reciprocal of

the route density for ZIP code area i in week t. 26 As yi,t increases, route density

decreases.

yi,t =
∑l=7
l=1

∑k=K
k=1

∑n=N
n=1 dknl∑l=7

l=1
∑k=K
k=1 pkl

, (28)

where, for a route k in ZIP code area i on day l in week t, dknl is the distance to reach

delivery stop n from the previous stop in the route. Since dknl measures the distance of

25The terms “piece” and “parcel” are used interchangeably in the rest of the document.
26We drop the underscripts t and i from the right hand side of Equation (28) for notation simplicity.
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the incoming arc to delivery stop n from the previous stop in route k, it includes both

the deadhead distance traveled to reach ZIP code area i and the distance between

stops within ZIP code area i. Finally, pkl is the total number of parcels delivered in

route k in ZIP code area i on day l in week t.

We measured the weekly proportion of fast deliveries in each ZIP code area (FDi,t)

by taking the ratio between the number of same-day delivery parcels in the area and

the total number of parcels delivered in the area every week. We then measured

remoteness for each ZIP code area on a weekly basis (RMi,t) by first calculating the

distance between the centroid of the ZIP code area and the hub where each of the

routes visiting the area originated every week. We then took a weighted average of

these distances using as weights the percentage of parcels delivered by each hub to

the area during that week:

RMi,t =
H∑
h=1

(
ph∑h=H
h=1 ph

)
dh, (29)

where, dh is the distance between the centroid of the ZIP code area i and the hub h.
27

3 .3 Empirical Design

For our analysis, we use a quasi-experimental design with a treatment application

corresponding to Amazon’s decision to vertically integrate its last-mile deliveries across

the different ZIP code areas in our sample. The ideal design to identify the effects

of this treatment application would randomly assign Amazon’s vertical integration

to ZIP code areas in an experiment and track the responses of the outcome variable

(yi,t) over time. Because such an experiment is obviously unrealistic, we used a

quasi-experimental design instead to compare the ex-post responses to the treatment

27We drop the underscripts i and t from the right hand side of Equation (29) for notation simplicity.
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application of affected ZIP code areas to counterfactual ex-ante responses in similar

but unaffected ZIP code areas. The goal is to compare ZIP code areas with similar

expectations over the distribution of future paths, but with different realizations due

to the timing of the treatment application.

To that end, we construct counterfactuals to treated ZIP code areas using control

ZIP code areas that experience the same treatment but a few weeks in the future. As

such, our two experimental groups consist of a treatment group composed of ZIP code

areas that experience Amazon’s vertical integration first, on day w, and a matched

control group composed of ZIP code areas that experience the same treatment soon

after, on day w + ∆.

This “look ahead” approach has been used by other authors to overcome selection

biases in assembling control and treatment groups in quasi-experimental designs similar

to ours (Hwang and Park, 2016; Fadlon and Nielsen, 2019; Lim et al., 2021). Since

this approach enables us to include in the control group those ZIP code areas that

experience integration right after the ZIP code areas in the treatment group, the areas

in the former group differ from those in the latter mainly in the timing of Amazon’s

integration. Figure 10 illustrates this approach. Consider first Amazon’s integration

in the ZIP code areas in San Diego and East Los Angeles. This integration constitutes

the treatment application (on day w). In our analysis, we will evaluate route density

in the ZIP code areas in these regions during the three weeks immediately before

the date when the treatment application took place (February 11 in San Diego and

February 18 in East Los Angeles) and the four weeks immediately after. We will then

compare the change in route density in these ZIP code areas before versus after the

treatment application against the change observed in route density in the ZIP code

areas in the control group during the same period of time. The ZIP code areas in
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the control group correspond to those in West Los Angeles and Chicago. Amazon’s

vertical integration in these regions did not occur until after March 18, 2017.

Figure 10: Quasi-experimental design
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We follow the same approach for our analysis involving the ZIP code areas in the

other regions in Table 12. To study the effect of Amazon’s integration in the ZIP

code areas in West Los Angeles and Chicago on March 18 and 25, respectively, we

evaluate route densities in the ZIP code areas in these regions during the three weeks

immediately before March 18 and March 25 and the four weeks immediately after. We

then compare the change in route densities in these ZIP code areas before versus after

these two dates against the change observed in route density during the same period

of time in a control group made of the ZIP code areas in Central Florida, Sacramento,

and Stockton where Amazon’s integration occurred after May 6. We then perform the

same analysis for Amazon’s integration on May 6 in the ZIP code areas in Central

Florida region by using a control group made of the ZIP code areas in Sacramento

and Stockton where Amazon’s integration occurred after August 19.

3 .4 Modeling Specification

To evaluate the effects caused by Amazon’s decision to vertically integrate its

last-mile deliveries, we specify a difference-in-differences (DID) estimator that captures

the impact of Amazon’s integration on route density based on the following regression
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specification:

yi,t = αi + τt +
∑
r∈R

γrintegration
r
i,t × treati + Si,t + εi,t. (30)

In this regression, εi,t is an error term reflecting Gaussian random shocks on the

dependent variable, yi,t. Recall that this variable corresponds to route density for ZIP

code area i in week t. αi is a vector of ZIP code area fixed effects. τt is a vector of

week fixed effects. Si,t denotes the weekly number of stops in each ZIP code area. We

include this covariate to account for time-varying amounts in the number of deliveries

and drivers across ZIP code areas. treati denotes an indicator for whether a ZIP code

area belongs to the treatment group. We define integrationri,t as a dummy variable

relative to Amazon’s integration date w:

integrationri,t =


1, if t is r weeks after integration

0, otherwise
, (31)

where, r < 0 denotes the relative week leading to Amazon’s integration and r > 0 de-

notes the relative week lagging after Amazon’s integration (r ∈ R = {−3,−2, 1, 2, 3, 4}).

We use r = −1 as the baseline. Consistent with other applications (e.g., Lim et al.,

2021; Burtch et al., 2018) using the two-way fixed effects approach, we cannot estimate

the first-order effects for treati and integrationri,t, because after including the ZIP

code area and week fixed effects, the coefficient for treati is absorbed by the ZIP

code fixed effects and the coefficient for integrationri,t is absorbed by the week fixed

effects. The key parameters of interest are γr which estimate each week’s treatment

effect relative to the week leading up to Amazon’s integration (r = −1). A benefit of

using this specification is that it enables us to examine the parallel trends assumption

(Angrist and Pischke, 2008). If the treatment and control groups are comparable in

the absence of the shock, these groups will follow a parallel trend before Amazon’s
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integration takes place in the treatment ZIP code areas. In this case, we expect to see

non-significant effects for all γr when r < 0.

To quantify mean treatment effects, we use the following standard DID equation:

yi,t = αi + τt + δintegrationi,t × treati + Si,t + εi,t. (32)

In this regression, integrationi,t is a binary indicator for Amazon’s integration and

it takes 1 in all the weeks following Amazon’s integration and 0 otherwise. The

parameter δ represents the average treatment effect of Amazon’s integration on ZIP

code areas’ outcomes.

Finally, we augment the DID model in Equation (32) by including the moderating

factors in Zi,t and interacting them with the treatment effect:

yi,t = αi + τt + (δ0 + δ1Zi,t) integrationi,t × treati + δzZi,t + Si,t + εi,t, (33)

where Zi,t is the average weighted distance between each starting hub to the centroid

of the ZIP code area i in week t when studying the remoteness moderator (RMi,t

in Equation (29)) or the proportion of fast deliveries in ZIP code area i in week t

when studying the fast deliveries moderator (FDi,t). The moderating effect on route

density is captured by the main parameter of interest δ1, which is referred to as the

difference-in-differences-in-differences (DDD) estimate (Gruber, 1994; Lim et al., 2021;

Babar and Burtch, 2020). Note that the first-order effect for the moderator, Zi,t,

is identified because it varies by week and ZIP code areas and, therefore, it is not

absorbed by ZIP code area or week fixed effects. This effect is captured by δz.

Finally, we expand Equation (33) by including the two moderators simultaneously

and integrating them with the treatment effect:

yi,t = αi + τt +
(
δ0 + δ1

>Zi,t

)
integrationi,t × treati + δz>Zi,t + Si,t + εi,t, (34)
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where Zi,t is a (column) vector of moderators which include remoteness (RMi,t) and

proportion of fast deliveries (FDi,t). The moderating effects are captured by a (column)

vector of coefficients δ1.

4 Estimation Results

Table 13 presents the descriptive statistics for our key variables during the weeks

before and after the treatment application. Before the treatment application, the

control and treatment ZIP code areas exhibit similar route density averages (1.44 vs.

1.32 miles per piece). After the treatment application, the average route density in the

control ZIP code areas experienced no significant change. The average mileage per piece

registered in the routes in these ZIP code areas was 1.41 miles per piece (compared to

1.44 miles per piece prior to treatment). On the other hand, the average route density

registered across the treatment ZIP code areas decreased significantly. The average

mileage per piece observed across these areas went from 1.32 miles per piece prior

to treatment to 2.40 miles per piece after treatment. Moreover, the results from a

two-sample t-test during the weeks after treatment show that the average mileage per

piece registered for the routes in the treatment areas is significantly higher than the

average mileage per piece registered for the routes in the control areas (t-statistic=8.39).

Therefore, the route density in the treatment areas became significantly lower than

the route density in the control areas after Amazon’s integration.

To visualize the reduction in route density in response to Amazon’s integration, we

plot the average measures recorded for route density for the control and treatment ZIP

code areas during each week before and after the treatment application. As shown in

Figure 11, mileage per piece immediately increases for the treatment ZIP code areas

and the differences between treatment and control ZIP code areas due to this increase

are consistently significant across the 4 weeks after the treatment application.
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Table 13: Summary statistics for treatment and control groups
Treatment Group Control Group

Before Integration After Integration Before Integration After Integration

Time-Variant Variables Mean Std. dev Mean Std. dev Mean Std. dev Mean Std. dev

Average Mileage per Piece 1.32 1.04 2.40 5.34 1.44 1.12 1.41 1.16

Number of Stops 231.48 212.12 80.22 116.89 277.12 212.04 244.83 205.29

Remoteness (Miles) 16.26 8.41 16.05 8.87 16.95 8.29 16.59 8.38

Proportion of Fast Deliveries 0.33 0.21 0.23 0.27 0.39 0.19 0.37 0.20

Figure 11: Effects of Amazon’s integration on route density
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The absolute values of the t-statistics comparing route densities between treatment
and control ZIP code areas for each week are reported in parentheses.

We expand on these preliminary results by testing for the existence of parallel

trends prior to the treatment application. The goal is to verify that route densities

in the control and treatment ZIP code areas evolved in parallel prior to Amazon’s

decision to vertically integrate in the latter areas. We perform the parallel trends

test using Equation (30) and report the results in Table 14. The table displays the
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estimates for γr, the vector of coefficients for the interaction between the treatment

application indicator and the number of weeks relative to the treatment application.

Recall that we measured the time relative to the treatment application using indicators

for the number of weeks before and after Amazon’s integration, from −3 to +4 weeks.

The estimates for γr capture week r’s treatment effect relative to the week right before

integration (r = −1). Column (1) includes the estimates obtained while controlling for

ZIP code area fixed effects and week fixed effects (αi and τt). The estimates in Column

(2) are obtained while additionally controlling for the weekly number of stops in each

ZIP code area (Si,t). Since, as indicated in Table 14, the R2 value is higher for the

specification in Column (2), we will focus on this specification for the interpretation

of the results.
Table 14: Relative time model of the effects of Amazon’s integration on route density

(1) (2)

Estimate Std. Err. Estimate Std. Err.

3rd week before Amazon integration (γ−3) -0.039 (0.067) -0.046 (0.071)

2nd week before Amazon integration (γ−2) 0.047 (0.060) 0.033 (0.058)

1st week after Amazon integration (γ1) 1.020*** (0.180) 1.071*** (0.225)

2nd week after Amazon integration (γ2) 1.221*** (0.225) 1.278*** (0.265)

3rd week after Amazon integration (γ3) 1.013*** (0.260) 1.070*** (0.313)

4th week after Amazon integration (γ4) 1.264*** (0.260) 1.313*** (0.301)

Observations 7,798 7,798

R-squared 0.3361 0.3362

Week FE Yes Yes

Service area FE Yes Yes

Control (Si,t) No Yes

Notes: 1. Robust standard errors are clustered at ZIP code level.
2. *, ** and *** denote statistical significance at 10 percent, 5 percent and 1 percent levels, respectively.
3. Specification in Column (2) includes as a predictor the weekly number of stops in each ZIP code area
(Sit).

Prior to Amazon’s integration, the estimates for γr in Column (2) are statistically

non-significant, indicating that estimates of route density in the control and treatment

ZIP code areas are not different systematically from each other. However, after
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integration, these estimates become positive and statistically significant. This suggests

that the average mileage per piece across the treatment ZIP code areas increased after

Amazon’s integration relative to the average across the control ZIP code areas. Put

differently, route densities in ZIP code areas affected by Amazon’s vertical integration

decreased in relation to the densities in those areas unaffected by this integration.

Based on the value estimated for γ1, drivers traveled, on average, 1.071 more miles

for every piece delivered in those routes located in treatment ZIP code areas during

the first week after Amazon’s vertical integration. The values for γ2, γ3, and γ4 suggest

that the increases in miles per piece delivered were 1.278 miles in the second week,

1.070 in the third week, and 1.313 in the fourth week. Using Table 13’s overall average

mileage per piece for the treatment ZIP code areas before Amazon’s integration

as the baseline (1.320 miles/piece), these mileage increases translate into 81.14%

(1.071/1.320), 96.82% (1.278/1.320), 81.06% (1.070/1.320), and 99.47% (1.313/1.320)

weekly reductions in route density, respectively.

Table 15 reports the DID estimates for the treatment application effect on route

density using Equation (32). The table reports these estimates following the same

approach used in Table 14. The results obtained are consistent with those in Table 14.

The value estimated for δ across the two specifications is positive and statistically

different from zero, suggesting that the average number of miles per piece delivered

in the routes located in the treatment ZIP code areas increased significantly after

Amazon’s vertical integration in those areas. On average, these routes experienced an

increase of 1.173 miles per piece delivered after Amazon’s vertical integration. This

corresponds to an 88.86% (1.173/1.320) increase, relative to the average mileage per

piece registered pre-treatment (1.320 miles/piece), thereby supporting Hypothesis 3.
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Table 15: Average effects of Amazon’s integration on route density
(1) (2)

Estimate Std. Err. Estimate Std. Err.

Integration × Treat (δ) 1.113*** (0.189) 1.173*** (0.247)

Observations 7,798 7,798

R-squared 0.3357 0.3359

Week FE Yes Yes

Service area FE Yes Yes

Control (Si,t) No Yes
Notes: 1. Robust standard errors are clustered at ZIP code level.
2. *, ** and *** denote statistical significance at 10 percent, 5 percent and 1 percent
levels, respectively.
3. Specification in Column (2) includes as a predictor the weekly number of stops in
each ZIP code area (Sit).

4 .1 Heterogeneity Effects

Table 16 reports the DID estimates for the treatment application effect on route

density based on Equations (33) and (34). The estimates in Columns (1) to (4)

account for the moderating effects of ZIP code area remoteness and proportion of

fast deliveries separately using Equation (33). The estimates in Columns (5) and (6)

account for these moderating effects simultaneously using Equation (34). Since the

R2 values obtained for the specifications in Columns (5) and (6) are higher than those

for the specifications in the other columns, we will focus on these columns for the

interpretation of the results.

The results show that an increase in remoteness of a ZIP code area amplifies the

negative impact of Amazon’s integration on route density, consistent with Hypothesis

4a. As we include ZIP code area fixed effects as part of our specification, this effect

has a within-ZIP code area interpretation (Fitzmaurice et al., 2012; Miller et al., 2018).

Specifically, every one-mile increase in our weekly measure of remoteness for each
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ZIP code area amplifies by 0.069 miles Amazon’s average vertical integration effect

in the area’s route density. This translates into a 0.859%
(

0.069× 16.430
1.320

)
decrease

in density for every 1% increase in the weighted distance between each treatment

ZIP code area and its hubs. 28 The proportion of fast deliveries also amplifies the

impact of Amazon’s integration, consistent with Hypothesis 4b. In particular, for

every one percentage point increase in the proportion of fast deliveries in a ZIP code

area, the mileage per piece in the area increases by 0.072. 29 This translates into a

5.45% (0.072/1.320) decrease in route density. 30

Table 16: Heterogeneity effects of Amazon’s integration on route density
(1) (2) (3) (4) (5) (6)

Integration × Treat (δ) 0.175 0.185 -0.519* -0.461* -1.707** -1.695**

(0.479) (0.478) (0.294) (0.253) (0.701) (0.671)

Integration × Treat

× Remoteness 0.058* 0.058* 0.069** 0.069**

(0.034) (0.034) (0.031) (0.031)

Integration × Treat

× Proportion of Fast Deliveries 6.957*** 6.985*** 7.206*** 7.210***

(1.753) (1.776) (1.806) (1.823)

Remoteness (Miles) 0.034 0.034 0.036 0.036

(0.057) (0.057) (0.050) (0.050)

Proportion of Fast Deliveries -0.555 -0.592 -0.722 -0.727

(0.623) (0.634) (0.616) (0.631)

Observations 7,798 7,798 7,798 7,798 7,798 7,798

R-squared 0.343 0.343 0.406 0.407 0.416 0.416

Week FE Yes Yes Yes Yes Yes Yes

Service area FE Yes Yes Yes Yes Yes Yes

Control (Si,t) No Yes No Yes No Yes
Notes: 1. Robust standard errors are clustered at ZIP code level.
2. *, ** and *** denote statistical significance at 10 percent, 5 percent and 1 percent levels, respectively.
3. Specifications in Columns (2), (4), and (6) include as a predictor the weekly number of stops in each ZIP code
area (Sit).

28The average for this distance is 16.430 miles.
29Note that the proportion of fast deliveries is a percentage and therefore its coefficient is interpreted
as a unit change in miles per piece with a 100 percentage point change in the percentage of same-day
deliveries.

30These results are consistent with those obtained after logging remoteness and proportion of fast
deliveries.
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Having evaluated the average moderating effects by the level of remoteness and

the proportion of fast deliveries, we next assess the magnitude of the decrease in

route density evaluated at the interquantile range of these two moderators. This

will allow us to understand which moderator is more detrimental to route density

following Amazon’s decision to vertically integrate. Figure 12 plots the marginal effect

of Amazon’s integration on the increase in mileage per parcel at the 25th, 50th, and

75th percentiles of each moderator while holding the other one equal to its mean value.

As shown in the figure, the rate of increase in mileage per parcel is steeper across the

different quartiles in the proportion of fast deliveries compared to the rate of increase

across the quartiles in the level of remoteness. As the level of remoteness changes

from the 25th percentile (10 miles) to the 75th percentile (21 miles), the increase in

the mileage per parcel rises from 1.36 to 2.10, whereas the increase in the mileage per

parcel rises from 0.3 miles per parcel to 2.92 miles per parcel as the proportion of fast

deliveries changes from the 25th percentile (12%) to the 75th percentile (48%).

Figure 12: Decrease in route density varying with remoteness and proportion of fast
deliveries
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(b) Proportion of fast deliveries
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Note: The graphs are generated based on estimates in Table 16 with a confidence interval at the
95% level. The marginal effects are evaluated at the interquartile values of each moderator while
holding the other one equal to its mean. The x-axis labels display the value of each moderator at the
25th, 50th, and 75th percentiles. For example, at the 25th percentile, remoteness is 10 miles and the
proportion of fast deliveries is 12%. All estimates are statistically significant at the 1% level.
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4 .2 Robustness Tests

Although the approach we use to define the treatment and control groups has

been well established to overcome selection biases, we re-estimated the values of

the coefficients in Tables 14-16 while using alternative approaches based on two

different propensity score procedures (propensity score weighting and propensity score

matching). In both of these procedures, we calculate propensity scores that measure

the similarities among different attributes between the ZIP code areas in the treatment

and control groups. The goal is to maximize the similarity between the treatment

and control groups conditional on the distribution of these attributes across the ZIP

code areas in these groups (Rosenbaum and Rubin, 1983). The attributes we used

for each ZIP code area include operational variables consisting of average miles per

piece, remoteness, and proportion of fast deliveries, as well as demographic variables

consisting of the number of households, the median annual household income, the

number of retail establishments, and the number of accommodation and food service

establishments. We obtained the measurements for the former two demographic

attributes from the US Census Bureau American Community Survey (2017) and for

the latter two from the US Census Bureau County Business Patterns (2016). We

present the results obtained from the propensity score weighting and propensity score

matching procedures in Appendix I and J, respectively. As shown in these appendices,

the findings we obtained in this section are consistent with those obtained using both

matching procedures.

As part of our robustness tests, we also consider the potential for false significance

of our estimates by examining whether the observed reduction in route density caused

by Amazon’s integration occurred purely by chance. Therefore, we examine how the

DID estimation performs on placebo events, where treated ZIP code areas and the
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week when Amazon’s integration took place are chosen at random (Lonati et al.,

2018). We first draw a week at random from a uniform distribution among the weeks

beginning on February 4, February 11, February 18, March 11, March 18, March 25,

April 29, May 06, and May 13 and then code Amazon’s integration placebo as 1 for

the chosen week and all the following weeks. 31 Second, we select half of the ZIP code

areas at random and designate them as the treatment group. We then estimate the

DID parameter of the placebo events using Equation (32). Following Bertrand et al.

(2004), we repeated this procedure 50 times, each time drawing a new placebo week

of Amazon’s integration and the treated ZIP code areas at random. We present the

results in Figures 23a, 23b, and 23c of Appendix K, each corresponding to a result from

the placebo tests based on the analyses using no propensity score procedures, using

propensity score weighting, and using propensity score matching, respectively. We

found that only 3 of the 150 placebo models across the figures produced a coefficient

that is statistically different from zero at the 5% significance level.

5 Discussion

Our findings carry important implications for the operating costs in the trans-

portation system we analyzed. Below, we quantify the impact on operating costs

caused by decreases in route density after Amazon’s integration and how this impact

is amplified by the remoteness and the proportion of fast deliveries of a ZIP code

area. We then expand on a variety of potential anti-competitive service and pricing

outcomes stemming from these impacts on costs and put forth different public policy

31We chose to use placebo events in these weeks to ensure having enough observations before and
after these events. As the integration in the ZIP code areas in the treatment groups occurred
in three separate months (February, March, and May of 2017), the pool of weeks eligible for a
placebo event for a particular ZIP code area is based on the month of the area’s treatment date.
For example, for the treatment groups with the treatment dates in February, the weeks eligible
for placebo events are those beginning on February 4, February 11, and February 18 while for the
treatment groups with treatment dates in March, the weeks eligible are those beginning on March
11, March 18, and March 25.
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remedies that could be implemented to address these sources of anti-competitiveness

in the last-mile delivery industry.

5 .1 Impacts on Operating Costs

For each ZIP code area, operating costs will increase as a result of reductions in

route density, which is measured as ∆y = ∆integration
y + ∆RM

y + ∆FD
y . The first term

is the average decrease in route density in a ZIP code area, ∆y, following Amazon’s

integration without considering the moderating effects. The second and third terms

correspond to the average decrease in route density amplified by the level of remoteness

and the proportion of fast deliveries in the ZIP code area. Based on the estimates in

Table 15, ∆y is 1.173 miles per piece without considering the moderating effects. When

the moderating effects are accounted for, the decrease in route density is measured as

∆y = −1.695 + 0.069× RM + 7.210× FD (based on the estimates in Column 6 of

Table 16).

The increase in operating costs is a product of the decrease in route density and the

operating cost per mile (i.e., ∆c = ∆y×cost per mile). Based on a standard operating

cost rate of $0.535/mile per commercial vehicle and a labor rate of $0.628/mile

per driver, 32 we calculate the operating cost per mile as $1.163 ($0.535/mile +

$0.628/mile). Therefore, the increase in operating costs is ∆c = ∆y × $1.163.

On average, the increase in costs following the vertical integration of Amazon’s

platform across the ZIP code areas in our sample equals $1.36 per piece (∆c = ∆y×

cost per mile = $1.173 miles/piece × $1.163/mile). As the increase in the operating

costs depends on the values of remoteness and proportion of fast deliveries per ZIP

32The operating cost rate of $0.535/mile is obtained from the Internal Revenue Service (2017). It
includes depreciation, insurance, repairs, tires, maintenance, and gas. To obtain the labor rate
of $0.628/mile, we assume an average driving speed of 40 mph and an average driver salary of
$25/hour, consistent with compensation at Amazon (2020).
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code area, we also evaluate ∆c across different percentiles for these two variables.

We considered percentiles at three different levels: high (75th percentile), medium

(50th percentile), and low (25th percentile). For the high percentile level, the values

for remoteness and proportion of fast deliveries are 21 miles and 48%, respectively.

For the medium and low percentile levels, the values are: 15 miles and 31%, and

10 miles and 12%, respectively. Figure 13 presents the average estimations for ∆c

(including the 95 percent confidence intervals) across different percentile combinations

for remoteness and proportion of fast deliveries. We also provide a summary of these

results in Table 17 on a per-parcel and per-route basis (assuming that, on average,

drivers deliver 30 parcels per route).

Figure 13: Cost increase by service quality
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(1) All estimates are significantly different from 0 (p < 0.01), except for -0.13 (not significantly
different from 0 at p = 0.592). (2) High, medium, and low levels of remoteness correspond to values at
the 75th percentile (21 miles), 50th percentile (15 miles), and 25th percentile (10 miles), respectively.
High, medium, and low levels in the proportion of fast deliveries correspond to values at the 75th
percentile (48%), 50th percentile (31%), and 25th percentile (12%), respectively.
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Table 17: Operating cost impact of Amazon’s vertical integration
Total increase in operating cost

(vehicular cost + labor cost)Combinations in the Levels of

Remoteness and Proportion of Fast Deliveries
Increase in miles per parcel ∆y

per parcel ∆c per route

Average (without moderating effects) 1.173*** $1.36 $40.93

High&High 3.25*** $3.77 $113.10

Low&High 2.51*** $2.91 $87.30

Med&Med 1.62*** $1.88 $56.40

High&Low 0.63*** $0.73 $21.90

Low&Low -0.11 $-0.13 -$3.90

*,** and *** denote statistical significance at 10 percent, 5 percent and 1 percent levels, respectively.

5 .2 Potential Service Outcomes Caused by Increases in Costs Following Amazon’s

Integration

Based on Figure 13 and Table 17, we obtain the largest ∆c value ($3.77 per

parcel, significantly different from 0) when using high values (75th percentile) for

both variables (remoteness and proportion of fast deliveries) and the lowest ∆c value

(-$0.13 per parcel, not significantly different from zero) when using low values (25th

percentile) for both variables. These findings suggest that to mitigate detrimental

cost effects caused by the reduction in route density following Amazon’s integration,

the last-mile delivery firm may be compelled to reduce its service levels in terms of

fast delivery and reach to remote areas affected by this integration. This strategy is

comparable to that involving reductions in store network density implemented by-brick

and-mortar retailers after their introduction of superstore formats that allowed them

to obtain scale economies in their store deliveries (Holmes, 2001). 33

We are also able to compare the average value of ∆c obtained when using a

low percentile value for remoteness and a high percentile value for proportion of

33We thank an anonymous reviewer for pointing this out.
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fast deliveries against the average ∆c value obtained when using a high value for

remoteness and a low value for proportion of fast deliveries. As shown in Figure 13,

the average value for ∆c is substantially larger for the former case than for the latter

scenario ($2.91 vs. $0.73 per parcel). This suggests that, following Amazon’s vertical

integration, offering a high proportion of fast deliveries in affected ZIP code areas

becomes more expensive than serving a higher proportion of affected remote ZIP code

areas.

Figure 14: Iso-cost curve for zero cost increase
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All proportions of fast delivery estimates are significantly different from 0 (p < 0.01), except for
3.29% (not significantly different from 0 at p = 0.262).

Figure 14 reinforces this point. It shows the percentile levels of remoteness and

corresponding proportions of fast deliveries per ZIP code area that result in a zero

cost increase (∆c), following Amazon’s vertical integration. The figure shows that to
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prevent a cost increase across different percentile levels of remoteness, the proportion

of fast deliveries per ZIP code area needs to be maintained at a low level (from 3.29%

for a ZIP code area with a 75th percentile level of remoteness to 13.55% for a ZIP

code area with a 25th percentile level of remoteness). Therefore, mitigating increases

in costs following Amazon’s vertical integration will require severely restricting the

speed of service available across ZIP code areas. This, in turn, will make it more

difficult for Amazon’s retail rivals to rely on last-mile carriers in order to compete

based on fast deliveries to consumers.

5 .3 Potential Pricing Outcomes Caused by Increases in Costs Following Amazon’s

Integration

The significant magnitudes we observed for the increases in costs caused by the

integration of Amazon’s platform also carry important pricing implications for the

industry where our focal last-mile delivery firm competes. Consider the following

scenarios that the firm faces before and after Amazon’s platform integration.

• Pre-Integration: Let the average unit cost of fulfillment be denoted by c, the

average number of parcels delivered for Amazon (resp., non-Amazon retailers)

be NA (resp., NNA), and the average unit price charged to Amazon (resp.,

non-Amazon retailers) be rA (resp., rNA). The firm’s profit is as follows:

Πpre = NA (rA − c)︸ ︷︷ ︸
Profit from Amazon

+ NNA (rNA − c)︸ ︷︷ ︸
Profit from non-Amazon retailers

.

• Post-Integration: The average cost of fulfillment increases by ∆c; thus, c→ c+∆c.

The firm’s profit is as follows:

Πpost = NNA (rNA − (c+ ∆c)) .
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For fixed rNA, the firm’s profit decreases by NA(rA − c) +NNA∆c: The first term is

the direct profit from Amazon, and the second term is the strategic externality that

Amazon’s vertical integration creates on non-Amazon deliveries. The firm has one of

two solutions:

• Uniform Pricing (no price discrimination across retailers based on market share):

If the firm follows a uniform pricing strategy, then, Amazon’s exit leads to an

increase in c. This eventually leads to an increase in rNA. That is, every retailer

is charged a higher price.

• If the firm is allowed to price differentiate retailers based on their volumes, by

comparing the two profits, we have:

rA − c︸ ︷︷ ︸
Firm’s unit margin from Amazon’s deliveries

≥ −NNA

NA

∆c︸ ︷︷ ︸
Cross-Subsidization of Amazon’s deliveries by non-Amazon retailers

.

That is, the firm may incur a lower profit margin (or even a loss) on Amazon’s

deliveries, so as to encourage Amazon to participate. The maximum loss that the firm

is willing to incur is the RHS: the product of relative market shares, NNA

NA
, and the

increase in the fulfillment cost due to Amazon’s exit, ∆c. Let cA denote Amazon’s

own cost of fulfillment. For Amazon’s participation to be rational, we require:

cA ≥ rA,

Rearranging these inequalities, we get,

cA ≥ rA ≥ c− NNA

NA

∆c.

Therefore, the firm may charge Amazon a lower rate to incentivize participation, but

increase the rate it charges to other retailers. That is, Amazon’s deliveries will be

cross-subsidized by other retailers.
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5 .4 Public Policy Implications

Cross-subsidization can distort competition by giving a powerful platform like

Amazon’s an advantage, since Amazon will pay significantly lower rates than those paid

by its retail rivals. Competitive distortions can also result from last-mile transportation

firms’ decisions to curtail their levels of service in order to limit increases in costs

brought about by Amazon’s vertical integration into their industry. Despite the

evidence this paper presents about these potential distortions, existing antitrust policy

has been mainly concerned with ensuring that prices in these systems remain low and

outputs high, without getting involved in overseeing market power dynamics that may

ultimately be responsible for these prices and outputs (Khan, 2016). It is possible

that the economics of the last-mile transportation industry bear responsibility for

these power dynamics, in which case there are at least two approaches public policy

experts could consider. One approach is to promote industry governance through

competition. This may involve the use of policing forms of vertical integration that

dominant e-commerce platforms, like Amazon’s, can use for anti-competitive purposes.

The other approach is to exploit the economic advantages that large platforms,

including Amazon’s, may bring to the table while regulating their ability to exploit

their power. Our results show that Amazon’s platform is sufficiently powerful to induce

discriminatory pricing among last-mile transportation firms in these markets and to

limit their ability to offer high service levels. Unlike monopolistic firms, Amazon

may maintain the shipping and handling prices its platform charges to consumers

low, obscuring its market power (Foer, 2014). However, Amazon can choose to

operate its platform as a monopsony, whose buying power allows it to induce last-mile

transportation firms to price their services discriminatorily in Amazon’s favor. In this

sense, Amazon may choose not to operate its platform as a monopolist and extract
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rents from consumers. Instead, it may choose to use its buying power to squeeze

surplus from last-mile delivery firms participating in its platform (Dube et al., 2020).

A platform like Amazon’s presents a unique form of private power that manifests

in its ability to set not just the terms of access to the platform itself but also the

prices and returns for last-mile delivery firms and third-party sellers participating in

the platform. While a monopolist’s power is based on its control over the production

and pricing of a particular good, a platform’s power stems from its position as an

intermediary controlling the relationships of the agents participating on its different

sides (i.e., the last-mile delivery firms and third-party sellers). Once a platform reaches

a critical mass, agents on one side of the paltform can become vulnerable to the

platform’s control over agents on the other side (Rahman, 2015).

How can public policy agencies monitor this phenomenon? Agencies have often

relied on complaints filed by affected parties laying out antitrust cases emphasizing

harm to consumers. At the end of 2019, a third-party seller participating in Amazon’s

platform filed such a complaint. In it, the seller accused Amazon of forcing it to use

Amazon’s in-house delivery services even though the rates for these services exceeded

by as much as 35% of those available through outside last-mile delivery firms. This, in

turn, forced the seller to increase the prices of the products it sells on the platform by

12%. According to the complaint, Amazon pushes sellers to use its services because

doing so will make it more likely that their items will be listed prominently in the

search results on Amazon’s site. Moreover, third-party sellers who choose to use

Amazon’s services have the advantage of never being penalized by Amazon for delivery

errors involving their products. This is not the case for sellers who choose to use

outside services. These sellers are exposed to penalties, including being kicked out of

the platform, for incurring delivery mistakes (Soper, 2019).
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This particular complaint garnered significant attention because it laid out a case

that emphasized harm to consumers – the traditional basis for antitrust cases in the

U.S. Without any evidence of consumer harm, Amazon’s use of its platform’s market

power to induce last-mile transportation firms to price their services discriminatorily

in its favor or cut down their levels of service may not draw the same amount of

attention unless it can be shown that such effects on last-mile transportation firms

erode competition and consumer welfare (Hochstadt et al., 2020).

What remedies are available to ameliorate outcomes harmful to consumer welfare

and competition? Based on theoretical models, Qin et al. (2020, 2021) show that

in-house delivery services by a platform like Amazon’s can maximize consumer surplus

when the orders being delivered are sold directly by the platform owner (i.e., Amazon).

Third-party sellers’ use of in-house delivery services to fulfill their orders is not

conducive to maximizing consumer surplus because it does not guarantee a high level

of service quality to consumers. Lai et al. (2018) also found through a theoretical

model that by inducing third-party sellers to use its services available through the

Fulfillment by Amazon (FBA) program, Amazon can blunt the sellers’ ability to

compete with Amazon on prices. In addition, according to Sun et al. (2020), the use

of these services by third-party sellers increases their exposure to product returns by

consumers participating on the platform. It is possible that these phenomena will also

apply to Amazon’s in-house delivery services.

Regulating Amazon’s ability to exploit its platform’s power may involve applying

an “essential facilities doctrine” whereby last-mile transportation firms are granted

access to delivering parcels from third-party sellers participating in the platform.

This doctrine has been previously applied to ensuring access to networks in the

communication and transportation industries (Lao, 2009; Ducci, 2020). Therefore,

considering efforts by retailers like Amazon to leverage their platforms to dominate the
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last-mile transportation industry, it may make sense to apply this doctrine to ensure

last-mile transportation firms have access to delivering the parcels from third-party

sellers participating in these platforms. This access becomes particularly relevant for

the delivery of parcels in areas that are expensive to serve, either because they are

difficult to access or because they require faster deliveries.

Future research can shed further light on these issues. For instance, it is yet to be

determined how the impact we observed following the vertical integration by Amazon’s

platform compares to that caused by the integration of other retailers’ platforms, such

as Target’s. It is also unclear how this impact will hold in the long run. Because this

form of vertical integration is a relatively recent phenomenon there is limited data

available to estimate long-term effects. Furthermore, limited data access prevents

us from evaluating the effects caused by Amazon’s decision to vertically integrate

its platform across more last-mile delivery firms. As more data on this phenomenon

becomes available, future research may assess our results in relation to the effects on

the operations of other last-mile delivery firms caused by decisions by Amazon, as

well as other retailers, to vertically integrate their platforms.

In addition, research could empirically explore alternative motivations behind these

platforms’ entry into the last-mile transportation industry. For example, Borsenberger

et al. (2018) provide analytical evidence that these platforms are more likely to deploy

their own delivery networks in areas that are less costly to serve while leaving other

areas open to last-mile delivery firms. They also show that integration focused solely

on less expensive areas is more likely to have a negative effect on welfare than full

integration. Empirical research could examine whether in fact these motivations are

present among platforms operated by retailers such as Amazon. It is possible that

these platforms may be able to integrate into more expensive areas only if they are

able to include a markup in the delivery rates in these areas.
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Finally, research could evaluate how various policy remedies could mitigate potential

negative externalities of vertical integration. The increases in the mileage per parcel

delivered that we observe by our study’s last-mile transportation firm following

Amazon’s vertical integration may lead to greater greenhouse gas (GHG) emissions

in the areas where these deliveries take place. Who bears responsibility for these

externalities? The literature offers no clear answers. Obviously, these environmental

costs would not arise but for Amazon’s decision to vertically integrate its platform.

Therefore, one could argue that Amazon should bear responsibility for these costs.

At the same time, however, one could assign responsibility for these costs to existing

route operators, such as the last-mile transportation firm in our study, since these

costs are generated by the GHG emissions from the operators’ own routes. Another

issue is how to regulate these responsibilities. Imposing emission penalties on the

parties responsible for environmental costs may not be effective from a system-wide

perspective because these penalties can depress output below optimum social welfare

levels (Sim et al. 2019). Instead, regulators may consider using incentive programs that

subsidize firms’ efforts to reduce environmental costs (Drake et al., 2016). For instance,

according to operators in the last-mile transportation industry, these programs have

been very effective in reducing the upfront capital costs incurred in replacing gas/diesel

vehicles with electric ones in their fleets. They have also contributed to offset part of

the costs of ownership of electric vehicles (Leung and Peace, 2020). Clearly additional

research is necessary to address these concerns.

6 Conclusion

In this paper, we examine how Amazon’s decision to vertically integrate its retail

platform and last-mile delivery operations can lead to anti-competitive outcomes

as a result of a deterioration in the operating efficiency in the routes served by a
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last-mile delivery firm. Through our analysis, we provide an initial benchmark of

the effects on efficiency in the last-mile delivery industry caused by the vertical

integration of platforms owned by Amazon and other retailers. Moreover, we provide

a basis to highlight possible anti-competitive implications for the industry caused

by these platforms’ decisions to vertically integrate. In so doing, we help inform

the ongoing debate surrounding antitrust concerns about these platforms and their

market power. 34 Finally, we identify opportunities for future research, including the

investigation of the potential rise of negative externalities following these platforms’

vertical integration.

34Some of these concerns were recently aired in Congress. Please refer to: Hearings, Online Platforms
and Market Power, Part 6: Examining the Dominance of Amazon, Apple, Facebook, and Google,
U.S. House Judiciary Committee, Subcommittee on Antitrust, Commercial, and Administrative
Law (July 29, 2020).
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We report the control function estimations for the purchase incidence and basket

size models in Tables 18 and 19 as well as the first stage results for the supply provision

model in Table 20.

Table 18: Control function approach first stage results-purchase incidence
Dep.Var.: Average Price Dep.Var.: Number of local vendors

Variable Estimate Std. Err. Variable Estimate Std. Err.

Constant .290*** .007 Constant .813*** .117

Wholesale Cost .989*** .002 Ship Volume -0.016*** .0003

Vacation Week (BREAK) .032*** .001 Squared Ship Volume .14E-04*** .65E-07

Inter-Purchase Time (IPT) -0.0001*** .14E-05 Inter-Purchase Time (IPT) .01*** .002

Delivery Payment Plan (DPP) -0.003 .002 Delivery Payment Plan (DPP) .345*** .138

Consumption Rate (CR) -0.0001* .88E-05 Consumption Rate (CR) -0.066*** .003

Lagged Quantity (LQ) .22E-05 .43E-05 Lagged Quantity (LQ) .0002 .002

Week .002*** .29E-05 Week .517*** .001

Squared Week -0.15E-05*** .72E-07 Vacation Week (BREAK) -0.642*** .068

N 34,327 34,327

F-Statistics 29887.35 31558.49

R2 0.87 0.88

Table 19: Control function approach first stage results-basket size
Dep.Var.: Average price Dep.Var.: Number of local vendors

Variable Estimate Std. Err. Variable Estimate Std. Err.

Constant .289*** .007 Constant .698*** .118

Wholesale Cost .989*** .002 Ship Volume -0.016*** .0003

Lagged Quantity (LQ) .19E-06 .99E-05 Squared Ship Volume .14E-04*** .27E-06

Inter-Purchase Time (IPT) -0.0001** .08E-05 Lagged Quantity (LQ) -0.020*** .002

Delivery Payment Plan (DPP) -0.004* .002 Inter-Purchase Time (IPT) .018*** .002

Counpon Amount (COUPON) .0003 .0002 Delivery Payment Plan (DPP) .705*** .135

Week .002*** .25E-05 Coupon Amount (COUPON) .042*** .010

Squared Week -0.17E-05*** .67E-07 Week .513*** .001

Vacation Week (BREAK) .032*** .001 Vacation Week (BREAK) -0.624*** .069

N 34,327 34,327

F-Statistics 29885.94 31186.52

R2 0.87 0.88
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Table 20: GMM first stage results
Dep.Var.:Retail Margin Dep.Var.: Marginal Value Local Vendors

Variable Estimate Std. Err. Variable Estimate Std. Err.

Wholesale Cost -0.218** .093 One Period Lagged Marginal Value Local Vendors .544*** .094

Cost of Utility .371 .359 Two Period Lagged Marginal Value Local Vendors .430*** .106

Hourly Retail Wage .210 .194 Constant .750 .991

One Period Lagged Retail Margin .568*** .080

Two Period Lagged Retail Margin .574*** .095

Constant -2.876 .749

N 126 126

F Statistics 183.64 214.59

R2 0.88 0.77

Notes: ***, **, and * denote statistical significance at the 1%, 5%, and 10%.

Instruments in each equation are highlighted in bold type.
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160



Part 1 provides evidence that the routes’ assignments are exogenous with respect to

drivers’ experience and that they do not depend on changes in base and supplementary

compensations received previously by the drivers. Part 2 provides an overview of

the distribution of the months of the year when drivers joined the platform as well as

evidence that tenure length is not shorter among drivers who joined TForce during

its annual peak demand season (from November to January). Furthermore, Part 2

provides evidence that drivers’ decisions to leave the platform were not likely to occur

simultaneously with decisions to leave by other drivers. Therefore, it is unlikely that

drivers’ decisions to leave affected other drivers’ decisions to continue at the platform.

1 ROUTE ASSIGNMENTS RELATIVE TO DRIVERS’ EXPERIENCE AND

CHANGES IN SUPPLEMENTARY AND BASE COMPENSATIONS

According to the data, 75% of all drivers in the sample received route assignments

that had no variations during their tenure at the platform. For the other 25% of

drivers, weekly route assignments varied sporadically to include new neighborhoods

relative to those in these drivers’ assignments during the preceding week. As shown in

Figure 15, route assignment variations for the drivers in the latter group took place

most commonly during the drivers’ early stages of tenure at the platform. For instance,

while the routes originally assigned to 32 drivers upon joining TForce changed in their

second week at the platform, such assignment changes applied to only 25 drivers in

week 3. This number continued decreasing in drivers’ tenure. By week 50, only two

drivers’ route assignments registered changes with respect to their assignments in

the preceding week. Therefore, assignments appear to be exogenous with respect to

drivers’ experience at the platform since changes in these assignments become less

likely as drivers accumulate more weeks at the platform.
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We also examine whether route assignments for a particular week vary depending

on changes in the base and supplementary payments drivers received during the

preceding week. To that end, we first calculate the percentage changes in drivers’

weekly base and supplementary payments relative to the payments they received in the

previous week and lag these percentage changes by one period relative to each weekly

route assignment. We then use a dummy variable to specify whether weekly route

assignments change relative to those in the preceding week. This dummy variable

takes a value of 1 if there was a change and a value of 0 otherwise. Finally, we use a

logistic model to regress the dummy variable on the lagged percentage changes in the

two forms of payment received by drivers. We report the results in Table 21, where

Column (1) controls for month and metro area fixed effects, while Column (2) controls

for month and driver fixed effects. 35 As Table 21 shows, the effects for both lagged

percentage changes in base and supplementary pay are statistically non-significant at

a 10% level. Therefore, we find no evidence to suggest that drivers are more likely

to receive different route assignments depending on variations in weekly base and

supplementary payments received previously.

35Note that after controlling for driver fixed effects, we must exclude those drivers who did not
experience any change in their route assignments. Because a fixed-effects analysis relies only on
within-driver variation, there is no within-driver variation on the dependent variable for these
drivers (i.e., the dependent variable is zero every week).
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Figure 15: Number of changes in route assignment by drivers’ tenure
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Table 21: Impact of change in compensation on route assignment
(1) (2)

Dep.Var.: Change in Route Assignment Estimate (Std. Err.) Estimate (Std. Err.)

Lagged percentage change in base pay 0.000 (0.000) 0.000 (0.000)

Lagged percentage change in supplementary pay -0.000 (0.000) 0.000 (0.000)

Observations 11,987 3,995

Month FE Yes Yes

Metro Area FE Yes No

Driver FE No Yes

2 DRIVER ATTRITION ANALYSIS

We first provide an overview of the distribution of the time of the year when

drivers joined the platform across the nine metro areas in our study. As shown in

Figure 16, drivers’ starting dates at the platform are distributed fairly uniformly across

all months of the year. There are variations in this distribution but they appear to

depend largely on the metropolitan area where drivers work.
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Figure 16: Number of drivers by starting month of the year
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Table 22: Drivers’ starting month and tenure length
Dep. Var.: Length of Tenure Estimate (Std Err.)

February 3.846 (10.939)

March 0.230 (10.203)

April 4.059 (10.422)

May 1.212 (10.858)

June 13.976 (11.067)

July 2.290 (9.984)

August 8.334 (10.029)

September -6.236 (9.322)

October 26.647** (10.393)

November 33.777*** (11.211)

December 8.697 (10.769)

Observations 396

R-squared 0.096

Metro Area FE Yes

164



We also investigate whether drivers who joined the platform during its annual

peak demand season (from November to January) have shorter lengths of tenure. To

that end, we use the length of drivers’ tenure as a dependent variable and regressed it

on drivers’ starting months at the platform, taking January as the base. As Table 22

shows, the length of tenure for drivers who started between February and September

and during the month of December is not statistically different from the length of

tenure for drivers who started in January. Moreover, drivers who started in October

and November have longer tenure lengths than drivers who started in January. Thus,

we found no evidence to suggest that length of tenure is shorter among drivers who

joined TForce during its annual peak demand season.

Figure 17: Number of drivers in a metro area leaving the platform in the same month
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Finally, Figure 17 provides evidence that drivers’ decisions to leave the platform

were not likely to occur simultaneously with decisions to leave by other drivers. This

figure includes the frequency distribution of the number of drivers in the same metro

area who decided to quit the platform in the same month during our period of analysis.

In total, 299 drivers quit the platform before the end of this period and, as shown in

165



Figure 17, 96 of these drivers quit in a month when no other drivers in the same metro

area left the platform. Moreover, this figure shows that 88 drivers quit in a month

when only one other driver in the same metro area also departed the platform, while

60 did so in a month when only two other drivers in the same metro area also quit. In

total, 82%
(

96+88+60
299 × 100

)
of all the drivers who left the platform during our period

of analysis did so during a month in which no more than 2 other drivers in the same

metro area also decided to leave the platform. Therefore, it is unlikely that drivers’

decisions to leave affected other drivers’ decisions to continue at the platform. This is

not very surprising, particularly because any influence on these decisions is limited

to drivers working in the same metro area and, in each of these areas, drivers work

independently serving routes typically assigned to them when they join the platform.
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Recall that we defined the conditional value function as vk(Xijt) ≡ Vk(Xijt)− εijkt.

Then, we can rewrite Equation (18) in Section 4 as

V1(Xijt) = u1(Xijt) + εij1t

+ βE [p0(Xijt+1)(v0(Xijt+1) + ε̃ij0t+1) + p1(Xijt+1)(v1(Xijt+1) + ε̃ij1t+1))]

= u1(Xijt) + εij1t + βE[p0(Xijt+1)ε̃ij0t+1 + p1(Xijt+1)ε̃ij1t+1

+ p1(Xijt+1)(v1(Xijt+1)− v0(Xijt+1)) + v0(Xijt+1)],

(35)

where the second equality exploits the relationship that p0(Xijt+1) = 1− p1(Xijt+1).

Using the relationship shown in Equation (22) in Section 4 that the difference between

value functions v1 − v0 is equal to log
(

p1

1− p1

)
and applying the law of iterated

expectations, Equation (35) becomes

V1(Xijt) = u1(Xijt) + εij1t + βEXijt+1

[
p0(Xijt+1)ε̃ij0t+1 + p1(Xijt+1)ε̃ij1t+1

+ p1(Xijt+1) log
(

p1(Xijt+1)
1− p1(Xijt+1)

)
+ v0(Xijt+1)|Xijt+1

]

= u1(Xijt) + εij1t + EXijt+1

[
V0(Xijt) + p0(Xijt+1)E[ε̃ij0t+1|Xijt+1, d

∗
t+1 = 0]

+ p1(Xijt+1)E[ε̃ij1t+1|Xijt+1, d
∗
t+1 = 1] + p1(Xijt+1) log

(
p1(Xijt+1)

1− p1(Xijt+1)

) ]
.

(36)

Next, we derive the conditional expectation of Gumbel random variables

E
[
ε̃ij1t+1|Xijt+1, d

∗
t+1

]
and E

[
ε̃ij0t+1|Xijt+1, d

∗
t+1

]
. Recall that εijkt are i.i.d. Gumble

variables with location and scale parameters 0 and 1. The probability density and

cumulative distribution functions of εijkt are

g(z) = e−ze−e
−z

, z ∈ (−∞,∞)

G(z) = e−e
−z

, z ∈ (−∞,∞).
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Therefore,

E
[
ε̃ij1t+1|Xijt+1, d

∗
t+1

]
= 1
p1

∫ ∞
−∞

ε1g(ε1)G(ε1 + v1 − v0)dε1

= 1
p1

∫ ∞
−∞

ε1g(ε1)G
(
ε1 + log

(
p1

1− p1

))
dε1

= 1
p1

∫ ∞
−∞

ε1e
−ε1e−e

−ε1e
−e−

(
ε1+log

(
p1

1−p1

))
dε1

= 1
p1

∫ ∞
−∞

ε1e
−ε1e−e

−ε1

(
1+e

−(log( p1
1−p1 ))

)
dε1

= 1
p1

∫ ∞
−∞

ε1e
−ε1e−e

−ε1(1+( p1
1−p1 ))

dε1

=
∫ ∞
−∞

ε1
e−ε1

p1
e

e−ε1
p1 dε1.

Note the second equality exploits the fact that v1 − v0 is equal to log
(

p1
1−p1

)
. Next,

we let x = e−ε1
p1

. Then ε1 = − log(p1x), dx = − e−ε1
p1
dε1, ε1 = −∞ =⇒ x = ∞,

ε1 =∞ =⇒ x = 0. Therefore, by change of variables

E
[
ε̃ij1t+1|Xijt+1, d

∗
t+1

]
=
∫ ∞

0
log(p1x)e−xdx = −

∫ ∞
0

(log(p1)+log(x))e−xdx = γ−log p1,

(37)

where γ is Euler constant (≈ 0.577), the mean of a standard Type I extreme value

distribution (McFadden, 1974).

Similarly,

E
[
ε̃ij0t+1|Xijt+1, d

∗
t+1

]
= 1
p0

∫ ∞
−∞

ε1g(ε0)G(ε0 + v0 − v1)dε0

= 1
p1

∫ ∞
−∞

ε0g(ε0)G
(
ε0 + log

(
p0

1− p0

))
dε0

= γ − log p0.

(38)
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Note that, we can write V0(Xijt) introduced in Equation (19) in Section 4 as

V0(Xijt) = u0(Xijt) + εij0t +
T∑

s=t+1
βs−tE [u0(Xijs) + ε̃ij0s]

= εij0t + E[ε̃ij0s]
T∑

s=t+1
βs−t

= γ

(
β − βT−t

1− β

)
,

(39)

then, V0(Xijt+1) as

V0(Xijt+1) = γ

(
β − βT−t−1

1− β

)
. (40)

Next, we substitute (37) - (40) into (36) and integrate over possible states in week

t+ 1

V1(Xijt) = u1(Xijt) + εij1t

+ βEXijt+1

[
γ

(
β − βT−t−1

1− β

)
+ (1− p1(Xijt+1))[γ − log(1− p1(xijt+1))]

+ p1(Xijt+1)
[
γ − log(p1(Xijt+1)) + log

(
p1(Xijt+1)

1− p1(Xijt+1)

)] ]

= u1(Xijt) + εij1t + βEXijt+1

[
γ

(
β − βT−t−1

1− β

)
+ γ − log(1− p1(Xijt+1))

]

= u1(Xijt) + εij1t + β

(
γ

(
1− βT−t−1

1− β

)
− log(p0(Xijt))f(Xijt+1|Xijt)dXijt+1

)
.

(41)

Finally, we take the difference between choice-specific conditional value function

using Equation (41) and Equation (39) to obtain Equation (22) as shown in Section 4

v1(Xijt)− v0(Xijt) = V1(Xijt)− V0(Xijt)− εij1t + εij0t

= u1(Xijt)− β
∫

log(p0(Xijt))f(Xijt+1|Xijt)dXijt+1.
(42)
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DETAILS OF FIRST-STEP ESTIMATION
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We assume the state transition probabilities follow an AR(1) process. The forecast-

ing shocks to the one-period ahead state variables, denoted by ς(.)
t , are assumed to be

normally distributed and independent over time. The state variables of efforts include

miles per stop and number of hours. When drivers forecast their future expected

density of routes, Dijt, they use the last week’s density of routes, Dij,t−1, tenure Tijt,

metro area fixed effects ζj and month fixed effects φt. A similar specification is used

for the forecast of hours, Hijt.

Dijt = σD1 + σD2Dij,t−1 + σD3Tijt + ζj + φt + ςDt (43)

Hijt = σH1 + σH2Hij,t−1 + σH3Tijt + ζj + φt + ςHt . (44)

We assume that drivers forecast their base pay logWijt based on the last week’s

logWij,t−1, tenure Tijt, squared tenure T 2
ijt, metro area fixed effects ζj and month fixed

effects φt. Following a standard Mincerian wage equation (Mincer, 1974), we use

logged wage and introduce the squared term of tenure to capture the concave shape

of experience-productivity profile. The transition of supplementary pay (log Iijt) has

a similar specification except for not having the squared term. The reason is that

supplementary pay is expected to decrease in tenure monotonically.

logWijt = σW1 + σW2 logWij,t−1 + σW3Tijt + σW4T
2
ijt + ζj + φt + ςWt (45)

log Iijt = σI1 + σI2 log Iij,t−1 + σI3Tijt + ζj + φt + ςIt . (46)

Table 23 shows the empirical results of the state transition probability functions using

the specifications in Equations (43) to (46). Table 24 reports results from a flexible

logit model to estimate the conditional choice probabilities of quitting in the first

stage (see Section 5 .1).
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Table 23: Transition probability
Parameter Description Estimate (Std. Err.)

Log base pay

Lag log base pay One week lagged of log base pay 0.635*** (0.006)

Tenure (week/10) 0.018*** (0.005)

Tenure (week/10) 2 -0.0007** (0.0003)

Constant 2.364*** (0.056)

R2 0.511

Log supplement pay

Lag log supplement pay One week lagged of log supplement pay 0.725*** (0.006)

Tenure (week/10) -0.013*** (0.002)

Constant 1.215*** (0.057)

R2 0.434

Hours

Lag hours (/10) One week lagged of hours worked 0.593*** (0.007)

Tenure (week/10) -0.006*** (0.002)

Constant 1.425 *** ( 0.042)

R2 0.436

Mile per stop

Lag mile per stop One week lagged of mile per stop 0.701*** (0.006)

Tenure (week/10) -0.001 (0.004)

Constant 0.775*** (0.065)

R2 0.515

Notes: (1) Standard errors are in parentheses; (2) *, ** and *** denote statistical significance at 10 percent, 5

percent and 1 percent levels, respectively; (3) metro area and month fixed effects are included for all transition

equations and results are omitted here; (4) hours and tenure are scaled down by a factor of 1/10.
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Table 24: Conditional choice probability

Variables Estimate (Std. Err.)

Constant -2.334*** (0.389)

Base pay -0.531*** (0.101)

Base pay2 0.013*** (0.003)

Supplementary pay -0.338** (0.146)

Supplementary pay2 0.034*** (0.011)

Hours 0.519* (0.283)

Hours2 -0.033 (0.069)

Miles per stop 0.280*** (0.055)

Miles per stop2 -0.007*** (0.002)

Base pay × Supplementary pay 0.033*** (0.010)

Base pay × Hours -0.009 (0.034)

Base pay × Miles per stop 0.014** (0.006)

Supplementary pay × Hours -0.083* (0.049)

Miles per stop × Hours -0.090*** (0.025)

Miles per stop × Supplementary pay -0.031* (0.018)

Tenure -0.153** (0.062)

Tenure2 -0.001 (0.004)

Base pay × Tenure 0.006 (0.008)

Supplementary pay × Tenure 0.029** (0.014)

Hours× Tenure 0.003 (0.026)

Miles per stop × Tenure -0.000 (0.005)

LL -1195.070

Notes: (1) Standard errors are in parentheses; (2) *, ** and *** denote sta-
tistical significance at 10 percent, 5 percent and 1 percent levels, respectively;
(3) metro area and month fixed effects are included for all transition equa-
tions and results are omitted here; (4) to avoid numerical overflows caused
by large values, base pay and supplementary pay are scaled down by a fac-
tor of 1/100 and hours and tenure are scaled down by a factor of 1/10; (5)
conditional choice probabilities are based on the probability of quitting (the
terminal choice)
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All the estimates of the state transition probability functions and conditional

choice probability function are known at this point. Using these estimates, we can

now simulate the value of the one-period ahead conditional choice probabilities. We

then present the estimation process first without considering unobserved heterogeneity

and then while taking unobserved heterogeneity into account.

Step 1 Simulate the one period ahead state variables: Xijt ∈ (Wijt, Iijt, Hijt, Dijt):

Dijt = σD1 + σD2Dij,t−1 + σD3Tijt + ζj + φt + ςDt

Hijt = σH1 + σH2Hij,t−1 + σH3Tijt + ζj + φt + ςHt

Wijt = (Wij,t−1)σW 2 eσW 1+σW 3Tijt+σW 4(Tijt)2+ζj+φt+ςW
t

Iijt = (Iij,t−1)σI2 eσI1+σI3Tijt+ζj+φt+ςI
t ,

where (ς̃Dt , ς̃Ht , ς̃Wt , ς̃It ) are the iid standard normal random variables reflecting the

empirical distribution of their corresponding state variables.

Step 2 without unobserved heterogeneity:

Calculate
∫

log [p0 (Xijt+1)] f (Xijt+1|Xijt) dXijt+1 by simulation similar to the ap-

proach used in Huang and Smith (2014), Murphy (2018), and Ransom (2021). We

integrate the logged one-period ahead conditional choice probabilities over the empirical

distribution of state variables using Monte Carlo methods:

∫
log p0

(
ςDt+1, ς

H
t+1, ς

W
t+1, ς

I
t+1

)
dF

(
ςD, ςH , ςW , ςI

)
≈ 1
D

D∑
d=1

log p0
(
ςDd , ς

H
d , ς

W
d , ς

I
d

)
,

(47)

where
(
ςDt+1, ς

H
t+1, ς

W
t+1, ς

I
t+1

)
are the vectors of shocks to the forecasting of their corre-

sponding state in week t+1. We draw D draws from the standard normal distribution,

plugging them into the conditional choice probabilities. We then take the average of
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the conditional choice probabilities value and multiply it by β. Next, we can take

p0 (Xijt+1) as given and estimate the structural parameters using a simple logistic

regression specification.

We now turn into the estimation that considers unobserved heterogeneity. In this

case, the step 1 remains the same, but step 2 is more involved which is discussed as

follows:

Step 2 with unobserved heterogeneity: Recall that type si be a dummy variable

which takes 0 (si = r − 1 = 0) when a driver belongs to the first category, and 1

(si = r−1 = 1) when she belongs to the second category. Then, we let the initial guess

of population probabilities be π1 = {π1
1, π

1
2} = {0.5, 0.5} and the starting values of

structural parameters θ = (θ1, . . . , θ5) be the estimates obtained from the estimation

without controlling for unobserved heterogeneity.

Step 3 Update the probability of a driver being a certain type qir:

q2
ir = π1

r

∏T
t=1 Lit(dit | Xijt, θ

1, π1, si = r − 1)∑2
r=1 π

1
r

∏T
t=1 Lit(dit | Xijt, θ1, π1, si = r − 1)

∀ r. (48)

Then, we average qir over the total number of drivers to update the population

probabilities of types:

π2
r =

∑I
i=1 q

2
ir(r|Xijt, θ

1, π1)
I

∀ r. (49)

Step 4: Numerically update β
∫

log [p0 (Xijt+1, si)] f (Xijt+1|Xijt) dXijt+1 for each type

r similar to the approach used in Step 2 without unobserved heterogeneity. Next,

plug this value into the choice probability and update the structural parameters by

maximizing:

θ2 = arg max
I∑
i=1

T∑
t=1

2∑
r=1

q2
ir × log

[
Lit(dit | Xijt, θ

1, si = r − 1)
]
. (50)

Finally, use the new estimates of θ2, go back to step 2 with unobserved heterogeneity

and update the qir and continue to repeat steps 3-4 until the estimates of θ and π

converge.
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Below, we evaluate the dynamic choice model’s two-stage estimation performance

by comparing the predicted value of quitting with the realized value of quitting

observed in the data. To that end, we used the estimates of the structural parameters

in Column (1) in Table 9 to simulate 1,000 times the predicted value of quitting.

We then plotted the predicted quit hazard with the data-based quit hazard using

an Epanechnikov kernel with a bandwidth of 20 weeks (see Figure 18). Both the

model-predicted and data-based quit hazard are decreasing in tenure. Although the

hazard rates as a function of tenure are consistent across, the model predicts the

quit hazard better in the early stages of tenure than in the latter periods. This is

likely driven by the smaller number of observations in the latter periods because most

drivers do not stay at the platform for more than 50 weeks (as shown in Table 6, 260

out of 396 drivers quit within the first 50 weeks of their tenure).

Figure 18: Model fit: Quit hazard

0 50 100 150 200 250

Tenure(Week)

0

0.01

0.02

0.03

0.04

0.05

P
ro

b
a

b
ili

ty
 o

f 
Q

u
it
ti
n

g

Data

Model

We also present the results of a test we conducted to evaluate the robustness of our

main results relative to the discount factor. Therefore, we used two alternative values
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Table 25: Structural estimation results with types and discount factors
Discount factor=0.9 Discount factor=0.8

(1) (2)

Estimate (Std. Err.) Estimate (Std. Err.)

Type 0.332** (0.141) 0.385*** (0.141)

Constant 0.494 (0.359) 0.658* (0.358)

Base pay (week/$100) 0.130*** (0.029) 0.134*** (0.029)

Supplementary pay(week/$100) 0.103** (0.047) 0.111** (0.047)

Hours (/10) 0.010 (0.079) 0.041 (0.079)

Miles per stop -0.074*** (0.015) -0.073*** (0.015)

Tenure (week/10) 0.033 (0.022) 0.040* (0.022)

Type 1 0.652 0.663

Type 2 0.348 0.337

LL -1225.059 -1225.656

obs 15293 15293

Number of drivers 396 396
Notes: (1) Standard errors are in parentheses; (2) *, ** and *** denote statistical significance at
10 percent, 5 percent and 1 percent levels, respectively; (3) to avoid numerical overflows caused by
large values, base pay and supplementary pay are scaled down by a factor of 1/100 and hours and
tenure are scaled down by a factor of 1/10.

(0.90 and 0.80) to replace the discount factor of 0.9957 we used to generate these

results. As shown in Table 25, the signs and magnitudes of the parameter estimates

remain largely consistent regardless of the value chosen for the discount factor.

Next, we address two potential concerns over the results of the structural estimation

in Column (1) in Table 9. The first concern is that Table 9’s structural estimates of

state variables such as tenure and hours are not statistically significant. However, they

are still included in the first stage to obtain conditional choice probabilities. To address

this concern, we exclude tenure and hours from the state vector and re-estimate the

model. The results from this alternative model (in Tables 26 and 27) remain consistent

with the main results. However, the evaluation of the alternative model’s performance

reveals that the model does not predict the value of quitting well especially during
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the latter stages of tenure, as shown in Figure 19. This underscores the importance of

controlling for hours and tenure in predicting drivers’ probability of quitting.

Table 26: Structural estimation results with types excluding tenure and hours as
state variables

Variables Estimate (Std. Err.)

Constant 0.093 (0.356)

Base pay (week/$100) 0.139*** (0.016 )

Supplementary pay(week/$100) 0.104** (0.044)

Miles per stop -0.048*** (0.016)

Type 0.332** (0.144)

Type 1 0.659

Type 2 0.341

LL -1210.052

obs 15293

Number of drivers 396

Notes: (1) Standard errors are in parentheses; (2) *, ** and *** denote
statistical significance at 10 percent, 5 percent and 1 percent levels,
respectively; (3) to avoid numerical overflows caused by large values,
base pay and supplementary pay are scaled down by a factor of 1/100
and hours and tenure are scaled down by a factor of 1/10.

The other concern is that not all the estimates of conditional choice probabilities

are statistically significant and using these estimates to simulate conditional choice

probabilities may lead to overfitting. Conditional choice probabilities are inverted as a

selection correction term in the second stage estimation to adjust for the fact that the

choice made may not be optimal (Ellickson et al., 2012; De Groote and Verboven, 2019).

In the past, studies have predicted these probabilities by including all estimates, both

significant and non-significant, obtained from flexible specifications (e.g., Arcidiacono

and Miller, 2011; Yoganarasimhan, 2013; Chung et al., 2014). Although our analysis is

consistent with this approach, we evaluated the robustness of our results by excluding

the non-significant parameters when simulating the conditional choice probabilities.
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Table 27: Summary statistics for the two types excluding tenure and hours as state
variables

Type 1 Type 2

Type 0.659 0.341

Base pay (week) 819.235 822.415

Supplementary pay (week) 156.578 123.738

Hours 32.755 30.692

Miles per stop 3.426 3.295

Length of Tenure (week) 21.344 84.685
Notes: The population probability of each type is the esti-
mated value for πr; drivers are classified into a type based
on the value estimated for qir (i.e., driver i is type 1 if
qi1 > 0.5).

Figure 19: Model fit of quit hazard excluding tenure and hours
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Therefore, we excluded all estimates of the flexible logit model that are statistically

non-significant along with the non-significant estimates of metro area and month fixed

effects. Table 28 presents the results. The estimates in Table 28 are consistent with

those in Table 9. The only difference is that type is not statistically significant.

Table 28: Structural estimation results with types excluding non-significant estimates
from simulated conditional choice probabilities

Variables Estimate (Std. Err.)

Constant 0.096 (0.360)

Base pay (week/$100) 0.117*** (0.028)

Supplementary pay(week/$100) 0.081* (0.047)

Hours (/10) -0.054 (0.077)

Miles per stop -0.076*** (0.015)

Tenure (week/10) 0.085*** (0.021)

Type 0.209

(0.148)

Type 1 0.523

Type 2 0.477

LL -1239.830

obs 15293

Number of drivers 396

Notes: (1) Standard errors are in parentheses; (2) *, ** and *** denote
statistical significance at 10 percent, 5 percent and 1 percent levels,
respectively; (3) to avoid numerical overflows caused by large values,
base pay and supplementary pay are scaled down by a factor of 1/100
and hours and tenure are scaled down by a factor of 1/10.
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APPENDIX G

ENDOGENEITY ISSUES AND INSTRUMENTAL VARIABLES

184



In this appendix, we address potential endogeneity concerns in our setting. The

endogeneity issues are primarily caused by the base payments that compensate drivers

for their productivity. In particular, the base payments depend on the number of

parcels delivered and drivers of high ability are more likely to complete deliveries for

a high number of parcels which yields a large base payment. The endogeneity arises

because drivers’ ability is unobserved to us and, more importantly, it tends to be

correlated with their decisions to quit or stay at the platform. For example, drivers of

high ability are also those with attractive outside options and hence are more likely

to quit the platform. Consequently, overlooking this issue may lead to a downward

biased estimate of the effect of the base payments on driver retention. To account

for the potential endogeneity of the base payments, we employ a control function

approach with instrumental variables (IVs).

Ideal IVs for the base payments should be highly correlated with the base payments

and affect drivers’ likelihood of staying only through the base payments. Following

Stafford (2015), our IV strategy is based on the exogenous weekly variations in weather

in the areas where drivers performed deliveries. The idea is that the fluctuations in

weather conditions have an impact on the difficulty of making deliveries which in

turn affects the number of parcels delivered by drivers and hence their base payments.

On the other hand, conditional on the base payments, the fluctuations in weather

conditions are unlikely to affect drivers’ decisions to quit or stay at the platform. To

that end, we collected county-level daily weather measures from the U.S. National

Climatic Data Center. 36 The key measures of weather consist of the daily maximum

and minimum temperature and daily precipitation. We take the average of the daily

values for each weather measure over a week period to obtain its corresponding weekly

36The data can be accessed at the website of the National Oceanic and Atmospheric Administration:
http://www.ncdc.noaa.gov/oa/ncdc.html.
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value. We then assign the values of weekly maximum and minimum temperature and

weekly precipitation to the driver-week observations based on the county where the

drivers made deliveries in a week.

We carefully evaluate the validity of weather as IVs to ensure they satisfy both the

inclusion and exclusion restrictions. To validate the inclusion restriction, we test for

the strength of the IVs using an F -test from the first-stage IV regression (Staiger and

Stock, 1997; Stock et al., 2005). As shown in Table 29, the F -statistic (684.24) and

R2 values (0.538) obtained in the first-stage IV regression of the base payments on

maximum and minimum temperature, precipitation, and the exogenous explanatory

variables in the utility of staying suggest that these IVs are not weak. Second, the

exclusion restriction ensures that the IVs are not correlated with the error term in

drivers’ utility of staying. In our setting, weather conditions are exogenous transitory

shocks that are unlikely to influence drivers’ permanent decision to quit or stay at the

platform. This is in line with the seminal work of Farber (2005), studying the labor

supply decisions of taxi drivers, which shows that weather shocks, such as rainfall, do

not directly explain drivers’ probability of stopping driving in a day.

Our two-stage approach in estimating the structural parameters makes it possible

to adopt an IV method to address the potential endogeneity. Although IV methods

are widely used to address endogeneity in static models, it is not the case in dynamic

models. The main reason is that the traditional approach to estimating dynamic

models requires the computation of continuation value functions by fully solving the

dynamic problem. When the continuation values depend on an endogenous state

variable, the use of IV methods can further increase complexity and computational

burden, making the dynamic model intractable (Kalouptsidi et al., 2021). As we use

the two-stage approach that obviates the need to fully solve the dynamic problem,

we are able to apply the IV method in a tractable way into our dynamic model. In
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Table 29: Control function approach first stage results
Dep.Var.: Base pay (week/$100)

Variables Estimate (Std. Err.)

Max. temperature 0.058*** (0.007)

Min. temperature -0.073*** (0.007)

Precipitation 0.030 (0.134)

Supplementary pay (week/$100) -0.342*** (0.016)

Hours /10 2.338*** (0.020)

Miles per stop 0.023*** (0.008)

Tenure (week/10) 0.128*** (0.005)

obs 15,293

R2 0.538

F -statistic 684.24
Notes: (1) Instruments are highlighted in bold type. (2) Both month
and metro area fixed effects are included in the first stage regression
and the estimates of the fixed effects are omitted in this table.

particular, our IV approach is similar to those used in the recent studies that explore

the two-stage framework (e.g., De Groote and Verboven, 2019; Diamond et al., 2019).

In the first stage, we simulate the state transition probability functions, the conditional

choice probability function, and the probability of a driver being a type as detailed in

Section 5 . In this stage, we also implement the control function method by regressing

the base payments on the IVs to obtain the residuals (Imbens and Wooldridge, 2007;

Wooldridge, 2015). In the second stage, we include the residuals as controls in the

utility of staying to estimate the structural parameters.

We report the structural parameter estimates obtained after controlling for en-

dogeneity of the base payments in Table 30. We find that the coefficient of base

payments is of the expected sign and statistically significant (p < 0.01). Moreover, the

coefficient is higher compared to that obtained without controlling for this endogeneity

as reported in Column (1) of Table 9 (0.470 vs. 0.127). This indicates a downward

bias in the estimated coefficient for the effect of base payments on drivers’ likelihood
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of staying when no endogeneity is taken into account. The coefficient of the control

function is negative and statistically significant (-0.344, p < 0.05), suggesting that the

unobserved terms are negatively correlated with drivers’ likelihood of staying. Both

results point to evidence that our estimated value for the effect of base payments

on drivers’ retention in the main estimation represents a conservative lower bound.

The values of the coefficients for the remaining state variables are highly consistent

with those obtained without control function, except for the constant term which

was non-significant without control function but is now negative and statistically

significant (-2.122, p < 0.01).

Table 30: Estimation results with control function
Variables Estimate (Std. Err.)

Type 0.320** (0.140)

Constant -2.122** (1.053)

Base pay (week/100 $) 0.470*** (0.143)

Supplementary pay (week/100 $) 0.099** (0.047)

Hours /10 -0.009 (0.078)

Miles per stop -0.075*** (0.015)

Tenure 0.021 (0.023)

Control function -0.344** (0.141)

LL -1207.054

obs 15293

Number of drivers 396

Standard errors are in parentheses, *, ** and *** denote
statistical significance at 10 percent, 5 percent and 1 percent
levels, respectively.
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APPENDIX H

PROOFS OF PROPOSITIONS
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Proof of Proposition 1. We differentiate with respect to x ∈ {Wijt, Iijt, Hijt, Dijt, Tijt}

to obtain

∂p1 (Xijt)
∂x

= e−u1(Xijt)(
1 + e−u1(Xijt)

)2
∂u1

∂x
= p0 (Xijt) p1 (Xijt)

∂u1

∂x
.

The first term is positive, and thus the sign of ∂p1 (Xijt)
∂x

is determined by the sign of
∂u1

∂x
. �

Proof of Proposition 2. Let

q (Xijt) = 1(
1 + ev0(Xijt)−v1(Xijt)

) .
Recall that

v1 (Xijt) = u1 +
T∑

s=t+1
βs−tE[v1(Xijt+1)], (51)

and that v(1)
1 (= v1 − u1) is defined as the conditional value function from period t+ 1

onward conditional a decision to continue in period t. Substituting it into (27) and

implicitly differentiating with respect to x

∂p1 (Xijt)
∂x

= ∂q (Xijt)
∂x

= ∂q

∂(v0 − v1)
∂(v0 − v1)

∂x

= ∂q

∂(v0 − v1)

∂v0

∂x
− ∂v

(1)
1
∂x
− ∂u1

∂x

 . (52)

Note that
∂q

∂(v0 − v1) = − ev0−v1

(1 + ev0−v1)2 < 0. (53)

Recall that v0 is the expected optimal utility in weeks t through T given a decision to

quit in the current week t without the error term, i.e., v0(Xijt) = γ

(
β − βT−t

1− β

)
(see

(39)). Therefore,
dv0

dx
= 0. (54)
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Substituting into the above to obtain part (i),

∂p1 (Xijt)
∂x

= ev0(Xijt)−v1(Xijt)(
1 + ev0(Xijt)−v1(Xijt)

)2

∂u1

∂x
+ ∂v

(1)
1
∂x

 = p0 (Xijt) p1 (Xijt)
∂u1

∂x
+ ∂v

(1)
1
∂x

 .
Suppose that x = Wijt so that the presentation of the following arguments is less

abstract (the arguments similarly apply to other values of x). Recall that, ϕW

is a function of Wijt, tenure Tijt, and the iid standard normal random variables

ς̃W capturing forecasting shocks to the one-period ahead state variable Wijt+1 (see

Appendix D for details) . Since u0 = 0, we concentrate on the change in u1 as Wijt

increases. Suppose

∂ϕ (Xijt)
∂Wijt

=
∂ϕW

(
Wijt, Tijt, ς̃

w
t+1

)
∂Wijt

≥ 0.

Therefore, any future state is increasing in the state variable Wijt in period t, i.e.,

∂Wijt+s

∂Wijt

≥ 0 for any s ≥ 1.

Then from
∂u1 (Xijt+s)

∂Wijt

= ∂u1 (Xijt+s)
∂Wijt+s

× ∂Wijt+s

∂Wijt

it follows that ∂u1 (Xijt+s)
∂Wijt

≥ 0 if and only if ∂u1 (Xijt+s)
∂Wijt+s

> 0.

Let us recap and summarize the implications of the above under the assumption
∂ϕ

∂x
≥ 0 for some state variable x ∈ {Wijt, Iijt, Hijt, Dijt}. If ∂u1

∂x
< 0, then the

deterministic utility u1 in any future state is decreasing in state variable x. Thus, it is

impossible for v(1)
1 to be increasing in x, i.e., ∂u1

∂x
< 0 implies ∂v

(1)
1
∂x
≤ 0. Similarly,

∂u1

∂x
> 0 implies ∂v

(1)
1
∂x
≥ 0. Thus,

∂p1

∂x
= ev0−v1

(1 + ev0−v1)2

∂u1

∂x
+ ∂v

(1)
1
∂x

 > 0 if and only if ∂u1

∂x
> 0. �
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Proof of Proposition 3. Without loss of generality we set i = 1 and j = 2. From

Proposition 2,

∂p1 (Xt)
∂Xit

= ev0(Xt)−v1(Xt)

(1 + ev0(Xt)−v1(Xt))2

 ∂u1

∂Xit

+ ∂v
(1)
1

∂Xit

 , i ∈ {1, 2}, (55)

we rewrite linear state transition function as

ϕi (Xit, t, ζit) = σ0i + σ1iXit + σ2it+ ζit+1. (56)

By supposition,
∂u1

∂X1t
= θ1 > θ2 = ∂u1

∂X2t
> 0 (57)

∂ϕ1

∂X1t
= σ11 > σ12 = ∂ϕ2

∂X2t
. (58)

We see from (55) and (57) that a proof of Propostion 3 is complete if we can show that

∂u1

∂X1t
>

∂u1

∂X2t
implies ∂v

(1)
1

∂X1t
≥ ∂v

(1)
1

∂X2t
. (59)

The above holds for t = T because v(1)
1 (XT ) = v

(1)
0 (XT ) = 0. We begin by show that

(59) holds for the case of t = T − 1, i.e., there is one period remaining after the current

period. We then show that the result continue to hold for t < T − 1. For the reminder

of the proof, we assume
∂u1

∂X1t
>

∂u1

∂X2t
. (60)

Suppose that t = T − 1. Then

v
(1)
1 (XT−1) = βE

[
V
(
X̃T

)
|XT−1, dT−1 = 1

]
= βE

[
max{ε̃0T , u1

(
X̃t

)
+ ε̃1T}|XT−1

]
.

(61)

Recall that

u1
(
X̃T

)
= θ0T + θ′



σ01 + σ11X1T−1 + σ21 (T − 1) + ζ̃1T

...

σ0n + σ11XnT−1 + σ2n (T − 1) + ζ̃nT

T


. (62)
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Let ζt = (ζ1t, . . . ζnt) , εt = (ε0t, ε1t),

ϕ (Xt, ζt+1) = (ϕ1 (X1t, t, ζit+1) , . . . , ϕn (Xnt, t, ζnt+1) , ϕn+1 (t))

Ω0 (ζ, ε|XT−1) = {(ζ, ε) : ε0 ≥ u1 (ϕ (XT−1, ζ)) + ε1}

Ω1 (ζ, ε|XT−1) = {(ζ, ε) : ε0 < u1 (ϕ (XT−1, ζ)) + ε1}

(63)

i.e., Ω0 (ζ, ε|XT−1) is the set of realizations of random variables
(
ζ̃T , ε̃T

)
for which it

is optimal to quit in period T , and Ω1 (ζ, ε|XT−1) is the set of realizations of random

variables
(
ζ̃T , ε̃T

)
for which it is optimal to continue in period T . With this notation,

we can rewrite (61) as

v
(1)
1 (XT−1) = β

 ∫
Ω0(ζ,ε|XT −1)

ε0dG (ζ, ε) +
∫

Ω1(ζ,ε|XT −1)

(u1 (ϕ (XT−1, ζ)) + ε1) dG (ζ, ε)

 .
Let ei denote an n + 1 dimensional vector with the ith element equal to 1 and 0

elsewhere, e.g., e2 = (0, 1, 0, . . . , 0) . Let ∆ be a positive value. We will next show that

v
(1)
1 (XT−1 + ∆e2)− v(1)

1 (XT−1) ≤ v
(1)
1 (XT−1 + ∆e1)− v(1)

1 (XT−1) for any ∆ > 0

and that this inequality implies ∂v
(1)
1

∂X2T−1
≤ ∂v

(1)
1

∂X1T−1
. Note that

u1 (ϕ (XT−1 + ∆e2, ζ)) =u1 (ϕ (XT−1, ζ)) +
(
∂u1

∂X2T

)(
∂ϕ2

∂X2T−1

)
∆

= u1 (ϕ (XT−1, ζ)) + θ2σ12∆

< u1 (ϕ (XT−1, ζ)) + θ1σ11∆ (see(57) and (58))

= u1 (ϕ (XT−1 + ∆e1, ζ)) .

(64)
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Therefore,

v
(1)
1 (XT−1 + ∆e2)

=β

 ∫
Ω0(ζ,ε|XT −1+∆e2)

ε0dG (ζ, ε) +
∫

Ω1(ζ,ε|XT −1+∆e2)

(u1 (ϕ (XT−1 + ∆e2, ζ)) + ε1) dG (ζ, ε)


≤ β

 ∫
Ω0(ζ,ε|XT −1+∆e2)

ε0dG (ζ, ε) +
∫

Ω1(ζ,ε|XT −1+∆e2)

(u1 (ϕ (XT−1 + ∆e1, ζ)) + ε1) dG (ζ, ε)


≤ β

 ∫
Ω0(ζ,ε|XT −1+∆e1)

ε0dG (ζ, ε) +
∫

Ω1(ζ,ε|XT −1+∆e1)

(u1 (ϕ (XT−1 + ∆e1, ζ)) + ε1) dG (ζ, ε)


= v

(1)
1 (XT−1 + ∆e1) .

The first inequality follows from (64). The second inequality follows from the

definition of Ω0 (ζ, ε|XT−1 + ∆e1) and Ω1 (ζ, ε|XT−1 + ∆e1) that are sets of realizations

associated with each optimal decision (quit or continue) for a given state. From

v
(1)
1 (XT−1 + ∆e2) ≤ v

(1)
1 (XT−1 + ∆e1) (65)

for any ∆ > 0, it follows that

lim∆→0
v

(1)
1 (XT −1+∆e2)−v(1)

1 (XT −1)
∆ = ∂v

(1)
1

∂X2T −1
≤ ∂v

(1)
1

∂X1T −1
= lim∆→0

v
(1)
1 (XT −1+∆e1)−v(1)

1 (XT −1)
∆ .

(66)

Now suppose that t = T − 2. Note that

ϕ (Xt + ∆ei, ζ) = ϕ (Xt, ζ) + σ1i∆ei (see (56) and (63)). (67)
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Therefore,

v
(1)
1 (XT−2 + ∆e2)

= β



∫
Ω0(ζ,ε|XT −2+∆e2)

(ε0 + βE [ε̃0T ]) dG (ζ, ε)

+
∫

Ω1(ζ,ε|XT −2+∆e2)

u1 (ϕ (XT−2 + ∆e2, ζ)) + ε1

+ v
(1)
1 (ϕ (XT−2 + ∆e2, ζ))

 dG (ζ, ε)



=β



∫
Ω0(ζ,ε|XT −2+∆e2)

(ε0 + βγ) dG (ζ, ε)

+
∫

Ω1(ζ,ε|XT −2+∆e2)

u1 (ϕ (XT−2 + ∆e2, ζ)) + ε1

+ v
(1)
1 (ϕ (XT−2, ζ) + σ12∆e2)

 dG (ζ, ε)


see (67)

≤β



∫
Ω0(ζ,ε|XT −2+∆e2)

(ε0 + βγ) dG (ζ, ε)

+
∫

Ω1(ζ,ε|XT −2+∆e2)

u1 (ϕ (XT−2 + ∆e1, ζ)) + ε1

+ v
(1)
1 (ϕ (XT−2, ζ) + σ11∆e1)

 dG (ζ, ε)



≤β



∫
Ω0(ζ,ε|XT −2+∆e1)

(ε0 + βγ) dG (ζ, ε)

+
∫

Ω1(ζ,ε|XT −2+∆e1)

u1 (ϕ (XT−2 + ∆e1, ζ)) + ε1

+ v
(1)
1 (ϕ (XT−2, ζ) + σ11∆e1)

 dG (ζ, ε)


= v

(1)
1 (XT−2 + ∆e1) .

(68)

for any ∆ > 0. The first inequality follows from (58), (64), and (65). The second

inequality follows from replacing the optimal decisions in period T − 1 conditioned

on state XT−2 + ∆e2 in period T − 2 with optimal decisions conditioned on state

XT−2 + ∆e1. Therefore,

lim∆→0
v

(1)
1 (XT −2+∆e2)−v(1)

1 (XT −2)
∆ = ∂v

(1)
1

∂X2T −2
≤ ∂v

(1)
1

∂X1T −2
= lim∆→0

v
(1)
1 (XT −2+∆e2)−v(1)

1 (XT −2)
∆ .

Thus, by induction, the result holds for t = T − τ for any τ ∈ {1, . . . , T − 1}. �

195



Proof of Proposition 4 . We rewrite Equation (27) using our streamlined notation

p1 (Xt) = 1
(1 + ev0(Xt)−v1(Xt))

and implicitly differentiate with respect to state transition parameters σi

∂p1 (Xt)
∂σi

= ev0(Xt)−v1(Xt)

(1 + ev0(Xt)−v1(Xt))2

∂u1 (Xt)
∂σi

+ ∂v
(1)
1 (Xt)
∂σi


= ev0(Xt)−v1(Xt)

(1 + ev0(Xt)−v1(Xt))2
∂v

(1)
1 (Xt)
∂σi

,

(69)

(i.e., u1 drops out because it only depends on the current state, and not the future

states that are influenced by σi). We define

Ω0 (ζ, ε|Xt) = {(ζ, ε) : ε0 ≥ u1 (ϕ (Xt, ζ)) + ε1 + v
(1)
1 (ϕ(Xt, ζ))}

Ω1 (ζ, ε|Xt) = {(ζ, ε) : ε0 < u1 (ϕ (Xt, ζ)) + ε1 + v
(1)
1 (ϕ(Xt, ζ))}

i.e., Ω0 (ζ, ε|Xt) is the set of realizations of random variables
(
ζ̃t+1, ε̃t+1

)
for which it

is optimal to quit in period t+ 1 and Ω1 (ζ, ε|Xt) is the set of realizations of random

variable
(
ζ̃t+1, ε̃t+1

)
for which it is optimal to continue in period t + 1. Then the

conditional valuation function can be expressed as

v
(1)
1 (Xt) =β



∫
Ω0(ζ,ε|Xt)

(
ε0 + βE

[
T−t−1∑
s=2

βs−1ε̃0t+S

])
dG (ζ, ε)

+
∫

Ω1(ζ,ε|Xt)

(
u1 (ϕ (Xt, ζ)) + ε1 + v

(1)
1 (ϕ (Xt, ζ))

)
dG (ζ, ε)

 .

From the definition of Ω0 (ζ, ε|Xt) and Ω1 (ζ, ε|Xt), it follows that the two integrands

form a piecewise continuous function over realizations of
(
ζ̃t+1, ε̃t+1

)
. To clarify this

point, we rewrite the above as

β

 ∫
Ω0(ζ,ε|Xt)

h1 (ζ, ε, σik) dG (ζ, ε) +
∫

Ω1(ζ,ε|Xt)

h2 (ζ, ε, σik) dG (ζ, ε)

 ,
where h1 (ζ, ε, σik) = ε0+E

[∑T−t−1
s=2 βs−1ε̃0t+S

]
= u1 (ϕ (Xt, ζ))+ε1+v(1)

1 (ϕ (Xt, ζ)) =

h2 (ζ, ε, σik) at all (ζ, ε) ∈ {(ζ, ε) : ε0 = u1 (ϕ (Xt, ζ)) + ε1 + v1 (ϕ (Xt, ζ))}. Therefore,
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the partial derivative of v(1)
1 (Xt) with respect to σik is obtained purely from the partial

derivatives of the integrands, i.e.,

v
(1)
1 (Xt) =β



∫
Ω0(ζ,ε|Xt)

∂

∂σik

(
ε0 + βE

[
T−t−1∑
s=2

βs−1ε̃0t+S

])
dG (ζ, ε)

+
∫

Ω1(ζ,ε|Xt)

∂

∂σik

(
u1 (ϕ (Xt, ζ)) + ε1 + v

(1)
1 (ϕ (Xt, ζ))

)
dG (ζ, ε)


= β

 ∫
Ω1(ζ,ε|Xt)

∂u1 (ϕ (Xt, ζ))
∂σik

+ ∂v
(1)
1 (ϕ (Xt, ζ))

∂σik

 dG (ζ, ε)

 .
Note that

∂u1 (ϕ (Xt, ζ))
∂σik

= ∂u1 (Xt+1)
∂Xit+1

ϕ (Xt, ζ)
∂σik

∂v
(1)
1 (ϕ (Xt, ζ))

∂σik
= ∂v

(1)
1 (Xt+1)
∂Xit+1

ϕ (Xt, ζ)
∂σik

.

Substituting the above into Equation (69)

∂p1 (Xt)
∂σik

= ev0(Xt)−v1(Xt)

(1 + ev0(Xt)−v1(Xt))2β

 ∫
Ω1(ζ,ε|Xt)

 ∂u1

∂Xit+1
+ ∂v

(1)
1

∂Xit+1

 ∂ϕ (Xt, ζ)
∂σik

dG (ζ, ε)

 .
Finally, as shown in the proof of Proposition 2

∂u1 (Xt+1)
∂Xit+1

> 0 implies ∂v
(1)
1 (Xt+1)
∂Xit+1

≥ 0

∂u1 (Xt+1)
∂Xit+1

< 0 implies ∂v
(1)
1 (Xt+1)
∂Xit+1

≤ 0.

Therefore, if ∂ϕi
∂σik

≥ 0, then the sign of ∂p1 (Xt)
∂σik

matches the sign of ∂u1

∂Xit+1
. �
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APPENDIX I

PROPENSITY SCORE WEIGHTING
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Our use of the inverse propensity score weighting (PSW) procedure follows Abadie

(2005). A key advantage of this procedure is that it allows us to utilize the full sample

without being restricted to an equal number of treated and control ZIP code areas.

This procedure also improves comparability between the treatment and control groups

by assigning more weight to ZIP code areas in a group that are more similar to those

in the other group. In particular, the weight assigned to each ZIP code area i is:

Weighti = treati
p

p(Xi)
+ (1− treati)

1− p
1− p(Xi)

, (70)

where treati is a binary variable equal to 1 if the ZIP code area experienced Amazon’s

integration and 0 otherwise. p is the unconditional probability of belonging to the

treatment group while p(Xi) is the probability conditional on the vector of individual

ZIP code area attributes Xi. 37 As shown in Figure 20, the estimated propensity

scores across the treatment and control groups overlap the most in the middle of the

distribution, meaning these ZIP code areas are very similar in terms of their observed

characteristics. The PSW procedure we used increases the weight of the observations

of these ZIP code areas in the analysis relative to those in the left tail.

37 We dropped 6 ZIP code areas for which the demographic covariates were missing.

199



Figure 20: Propensity score weighting
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The figure shows the kernel density of the estimated propensity score across
the treatment and control groups. It is calculated by using estimates from the
likelihood of a ZIP code area belonging to the treatment group.

Table 31: Propensity score covariate balance test
Unweighted Sample Propensity Score Weighted

Estimate Std. Err. t-statistic Estimate Std. Err. t-statistic

Mileage per Piece -0.130 0.058 -2.254 -0.005 0.036 -0.127

Remoteness (Miles) -0.762 0.491 -1.552 -0.069 0.289 -0.240

Proportion of Fast Deliveries -0.065 0.011 -5.940 -0.002 0.007 -0.325

Number of Households 447.539 372.845 1.200 21.648 215.484 0.100

Median Annual Household Income 4,137.847 1,749.839 2.365 -199.955 1,036.694 -0.193

Number of Retail Establishments 7.178 4.621 1.553 -0.263 2.712 -0.097

Number of Accommodation and Food Services 7.368 3.482 2.116 -0.003 2.029 -0.002

To validate the PSW approach, we perform a balance test to evaluate whether

the covariates are statistically different between the treatment and control ZIP code

areas. We regress each covariate in the vector of Xi as a dependent variable on the

treatment group indicator treati, using Weighti as the regression weight. The idea

is that if the means of a covariate are equal across the treatment and control ZIP
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code areas, the estimate of treati should be statistically non-significant. We report

the estimate of treati for each covariate in the three right-most columns in Table 31.

As a comparison, we perform the same regression without weighting the sample and

report the estimates on the left side of the table. The estimates of the covariates are

all statistically significant when using the unweighted approach (as shown in the left

columns), whereas the estimates obtained using weights are nonsignificant at a 0.05

level. This indicates that weighting observations based on Weighti in Equation (70)

indeed eliminates the differences in average characteristics between the treatment and

control ZIP code areas.

Figure 21 and Tables 32-34 summarize the results based on the PSW method for

the analyses included in Section 4 of the paper in Figure 11 and Tables 14-16. As

shown in Tables 32-34, the estimates for the coefficients are consistent with those

reported in Tables 14-16 in the main paper.

Figure 21: Effects of Amazon’s integration on route density-propensity score weighted
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The absolute values of the t-statistics comparing route densities between treatment and control ZIP
code areas for each week are reported in parentheses.
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Table 32: Relative time model of the effects of Amazon’s integration on route
density-propensity score weighted

(1) (2)

Estimate Std. Err. Estimate Std. Err.

3rd Week before Amazon Integration (γ−3) -0.235 (0.160) -0.247 (0.160)

2nd Week before Amazon Integration (γ−2) -0.086 (0.163) -0.109 (0.164)

1st Week after Amazon Integration (γ1) 1.110*** (0.179) 1.201*** (0.189)

2nd Week after Amazon Integration (γ2) 1.402*** (0.194) 1.503*** (0.205)

3rd Week after Amazon Integration (γ3) 1.180*** (0.196) 1.281*** (0.206)

4th Week after Amazon Integration (γ4) 1.468*** (0.202) 1.550*** (0.209)

Observations 7,735 7,735

R-squared 0.396 0.397

Week FE Yes Yes

Service area FE Yes Yes

Control (Si,t) No Yes

Notes: 1. Robust standard errors are clustered at ZIP code area level.
2. *, ** and *** denote statistical significance at 10 percent, 5 percent and 1 percent levels, respectively.
3. Specification in Column (2) includes as a predictor the weekly number of stops in each ZIP code area
(Sit).

Table 33: Average effects of Amazon’s integration on route density-propensity score
weighted

(1) (2)

Estimate Std. Err. Estimate Std. Err.

Integration × Treat (δ) 1.352*** (0.283) 1.449*** (0.362)

Observations 7,735 7,735

R-squared 0.396 0.396

Week FE Yes Yes

Service area FE Yes Yes

Control (Si,t) No Yes
Notes: 1. Robust standard errors are clustered at ZIP code area level.
2. *, ** and *** denote statistical significance at 10 percent, 5 percent and 1 percent
levels, respectively.
3. Specification in Column (2) includes as a predictor the weekly number of stops in
each ZIP code area (Sit).
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Table 34: Heterogeneity effects of Amazon’s integration on route density-propensity
score weighted

(1) (2) (3) (4) (5) (6)

Integration × Treat (δ) 0.223 0.275 -0.590 -0.505 -1.996** -1.953**

(0.553) (0.561) (0.380) (0.325) (0.890) (0.843)

Integration × Treat

× Remoteness 0.068* 0.068* 0.080** 0.079**

(0.040) (0.039) (0.038) (0.038)

Integration × Treat

× Proportion of Fast Deliveries 7.768*** 7.810*** 8.053*** 8.068***

(2.334) (2.364) (2.400) (2.424)

Remoteness (Miles) 0.019 0.019 0.025 0.025

(0.066) (0.066) (0.058) (0.058)

Proportion of Fast Deliveries -0.573 -0.629 -0.780 -0.801

(0.688) (0.705) (0.689) (0.709)

Observations 7,735 7,735 7,727 7,727 7,735 7,735

R-squared 0.402 0.402 0.461 0.461 0.469 0.469

Week FE Yes Yes Yes Yes Yes Yes

Service area FE Yes Yes Yes Yes Yes Yes

Control (Si,t) No Yes No Yes No Yes
Notes: 1. Robust standard errors are clustered at ZIP code area level.
2. *, ** and *** denote statistical significance at 10 percent, 5 percent and 1 percent levels, respectively.
3. Specifications in Columns (2), (4), and (6) include as a predictor the weekly number of stops in each ZIP code
area (Sit).
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APPENDIX J

PROPENSITY SCORE MATCHING
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Rather than using regression weights to eliminate the differences in the covariates

between the treatment and control ZIP code areas, the propensity score matching

(PSM) procedure uses a one-to-one matching without replacement between the ZIP

code areas. To implement this procedure, we follow Son et al. (2019). Specifically,

we employ, for the matching procedure, a standard caliper size which is 0.2 times

the standard deviation of the propensity scores. This yields a subsample consisting

of 300 ZIP code areas in the treatment group and 300 matching ZIP code areas in

the control group. We verify our matching performance by using a t-test to compare

the group means of the covariates after matching and report the results in Table 35.

The values of the t-statistics confirm that, after matching, the differences between

the group means for the covariates are not statistically different from zero at the 0.05

level of significance. We then use the matched ZIP code areas to plot the differences

in the weekly route density in Figure 22. As shown in this figure, the differences in

the weekly average measures of route density are consistently significant only after the

treatment application. We also repeat the analyses to estimate the coefficients, as in

Tables 14-16 in the paper. As shown in Tables 36-38, the coefficients estimated using

the PSM procedure are consistent with those reported in Tables 14-16 in the paper.

Table 35: Covariate balance test after propensity score matching
Treatment Group Control Group

Mean Mean t-statistic (Diff)

Mileage per Piece 1.418 1.355 -0.875

Remoteness (Miles) 16.541 16.712 0.244

Proportion of Fast Deliveries 0.379 0.358 -1.404

Number of Households 12,068.437 11,950.087 -0.237

Median Annual Household Income 67,655.893 68,363.603 0.300

Number of Retail Establishments 98.057 98.213 0.026

Number of Accommodation and Food Services 74.793 76.047 0.268
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Figure 22: Effects of Amazon’s integration on route density after propensity score
matching
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The absolute values of the t-statistics comparing route densities between treatment and control ZIP
code areas for each week are reported in parentheses.

Table 36: Relative time model of the effects of Amazon’s integration on route density
after propensity score Matching

(1) (2)

Estimate Std. Err. Estimate Std. Err.

3rd Week before Amazon Integration (γ−3) 0.070 (0.192) 0.066 (0.184)

2nd Week before Amazon Integration (γ−2) 0.226 (0.226) 0.219 (0.205)

1st Week after Amazon Integration (γ1) 1.440*** (0.386) 1.464*** (0.482)

2nd Week after Amazon Integration (γ2) 1.792*** (0.435) 1.818*** (0.523)

3rd Week after Amazon Integration (γ3) 1.612*** (0.564) 1.638** (0.670)

4th Week after Amazon Integration (γ4) 1.802*** (0.513) 1.824*** (0.602)

Observations 4,200 4,200

R-squared 0.360 0.360

Week FE Yes Yes

Service area FE Yes Yes

Control (Si,t) No Yes

Notes: 1. Robust standard errors are clustered at ZIP code area level.
2. *, ** and *** denote statistical significance at 10 percent, 5 percent and 1 percent levels, respectively.
3. Specification in Column (2) includes as a predictor the weekly number of stops in each ZIP code area
(Sit). 206



Table 37: Average effects of Amazon’s integration on route density after propensity
score matching

(1) (2)

Estimate Std. Err. Estimate Std. Err.

Integration × Treat (δ) 1.561*** (0.345) 1.598*** (0.471)

Observations 4,200 4,200

R-squared 0.360 0.360

Week FE Yes Yes

Service area FE Yes Yes

Control (Si,t) No Yes
Notes: 1. Robust standard errors are clustered at ZIP code area level.
2. *, ** and *** denote statistical significance at 10 percent, 5 percent and 1 percent
levels, respectively.
3. Specification in Column (2) includes as a predictor the weekly number of stops in
each ZIP code area (Sit)

Table 38: Heterogeneity effects of Amazon’s integration on route density after
propensity score matching

(1) (2) (3) (4) (5) (6)

Integration × Treat (δ) 0.192 0.089 -0.633 -0.597 -2.905* -3.004*

(0.843) (0.846) (0.632) (0.540) (1.668) (1.592)

Integration × Treat

× Remoteness 0.086 0.088 0.124* 0.125*

(0.061) (0.060) (0.067) (0.066)

Integration × Treat

× Proportion of Fast Deliveries 7.915** 7.935** 8.796*** 8.767**

(3.083) (3.139) (3.399) (3.431)

Remoteness (Miles) 0.089 0.089 0.064 0.064

(0.077) (0.077) (0.070) (0.070)

Proportion of Fast Deliveries -1.118 -1.144 -1.845 -1.802

(1.029) (1.072) (1.155) (1.196)

Observations 4,200 4,200 4,200 4,200 4,200 4,200

R-squared 0.375 0.375 0.418 0.418 0.438 0.438

Week FE Yes Yes Yes Yes Yes Yes

Service area FE Yes Yes Yes Yes Yes Yes

Control (Si,t) No Yes No Yes No Yes
Notes: 1. Robust standard errors are clustered at ZIP code area level.
2. *, ** and *** denote statistical significance at 10 percent, 5 percent and 1 percent levels, respectively.
3. Specifications in Columns (2), (4), and (6) include as a predictor the weekly number of stops in each ZIP
code area (Sit).
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APPENDIX K

RANDOM IMPLEMENTATION TESTS
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Figure 23: Random implementation test of average treatment effects
(a) With no propensity score analysis
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(b) Using propensity score weighting
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(c) Using propensity score matching
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Placebo intervention dates and treatment were randomly assigned 50 times. Each
point estimate and its 95% confidence intervals correspond to an estimation result
of the average treatment effect using Equation 32. The coefficient and confidence
interval for the true data are represented on the far right (ranking 51).
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