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ABSTRACT

This dissertation aims to study the electron and spin transport, scattering in two

dimensional pseudospin-1 lattice systems, hybrid systems of topological insulator and

magnetic insulators, and molecule chain systems.

For pseudospin-1 systems, the energy band consists of a pair of Dirac cones and a

flat band through the connecting point of the cones. First, contrary to the conditional

wisdom that flatband can localize electrons, I find that in a non-equilibrium situation

where a constant electric field is suddenly switched on, the flat band can enhance the

resulting current in both the linear and nonlinear response regimes compared to spin-

1/2 system. Second, in the setup of massive pseudospin-1 electron scattering over a

gate potential scatterer, I discover the large resonant skew scattering called super skew

scattering, which does not arise in the corresponding spin-1/2 system and massless

pseudospin-1 system. Third, by applying an appropriate gate voltage to generate a

cavity in an α-T3 lattice, I find the exponential decay of the quasiparticles from a

chaotic cavity, with a one-to-one correspondence between the exponential decay rate

and the Berry phase for the entire family of α-T3 materials.

Based on the hybrid system of a ferromagnetic insulator on top of a topological

insulator, I first investigate the magnetization dynamics of a pair of ferromagnetic

insulators deposited on the surface of a topological insulator. The spin polarized

current on the surface of topological insulator can affect the magnetization of the

two ferromagnetic insulators through proximity effect, which in turn modulates the

electron transport, giving rise to the robust phase locking between the two magne-

tization dynamics. Second, by putting a skyrmion structure on top of a topological

insulator, I find robust electron skew scattering against skyrmion structure even with

deformation, due to the emergence of resonant modes.

The chirality of molecule can lead to spin polarized transport due to the spin
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orbit interaction. I investigate spin transport through a chiral polyacetylene molecule

and uncover the emergence of spin Fano resonances as a manifestation of the chiral

induced spin selectivity effect.

ii



To my parents, Dewei Wang and Yanzhi Li.

iii



ACKNOWLEDGMENTS

First, I am full of gratitude to my advisor Prof. Ying-Cheng Lai, who gives me

guidance about the research direction, has discussion with me about problems I met,

and continuously supports me over the past five years. Without Prof. Lai’s help,

I cannot achieve this. His deep insights and enthusiasm for physics have influenced

and inspired me. His regular schedule also inspires me to form good habit. I cannot

forget his care for me in everyday life and his help whenever I met difficulties in ASU.

And he also gives me so much advice and help in my future career. I have learned a

lot and feel very happy under his supervision.

I am also grateful to Prof. Hongya Xu, who was a post-doc in Prof. Lai’s group

before. He is very knowledgable about the new research and I learned a lot from the

discussions with him. I am so fortunate to have him giving me detailed guidance

and discussion. And I own too much to Prof. Liang Huang, my master’s advisor in

Lanzhou University, who keeps in touch with me in my PhD time and offers me help

and encourages me when I met problems both in research and life.

I have a good time in our Chaos group, we discuss with and learn from each other,

help each other, play and gathering together, many great memories. I thank students

in our group, Dr. Lei Ying, Dr. Guanglei Wang, Dr. Lezhi Wang, Dr. Junjie Jiang,

Dr. Zhidan Zhao, Mr Chendi Han and Mr Lingwei Kong, and visiting students Dr

Huawei Fan, Dr. Yu Meng, Ms. Chun Zhang, Dr. Rui Xiao, Dr. Shijie Zhou and

other visiting Professors and students. And I cannot forget their care for me. I also

want to thank my roommate Zhongxing Zeng, who is always considerate and gives

me help.

I want to give special thanks to my committee members, Prof. Hongbin Yu, Prof.

Chao Wang, Prof. Yuji Zhao, as well as the previous committee members Prof. Cun-

iv



Zheng Ning, Prof. Vladimiro Mujica, Prof. Richard Kiehl, Dr. Nicholas D. Rizzo for

their precious time as well as invaluable comments and advices.

Finally, I would like to express my deepest thankfulness to my family, especially to

my beloved parents, who give all their love to me and support me in all my pursuits.

v



TABLE OF CONTENTS

Page

LIST OF TABLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xi

LIST OF FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xii

CHAPTER

1 INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1 Electron Transport and Scattering in Pseudospin-1 Dirac-Weyl Sys-

tems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Electron Transport and Scattering in Hybrid Systems of Topologi-

cal Insulators and Magnetic Structures . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.3 Electron and Spin Transport in Chiral Molecules . . . . . . . . . . . . . . . . . . 8

1.4 Outline of This Thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2 NONEQUILIBRIUM TRANSPORT IN THE PSEUDOSPIN-1 DIRAC-

WEYL SYSTEM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.2 Pseudospin-1 Hamiltonian and Current . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.3 Weak Field Regime: Enhancement of Interband Current . . . . . . . . . . . 15

2.4 Strong Field Regime: Enhancement of Intraband Current . . . . . . . . . . 20

2.5 Current-Electric Field Characteristics for Pseudospin-1 System . . . . . 26

2.6 Discussions and Outlook . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

2.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

2.8 Supplementary Notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

2.8.1 Analytic Calculation of the Interband Current . . . . . . . . . . . . . 30

3 SUPER SKEW SCATTERING IN TWO-DIMENSIONAL DIRAC MA-

TERIAL SYSTEMS WITH A FLAT BAND . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

vi



CHAPTER Page

3.2 Scattering Hamiltonian and Analytic Cross Sections for a Circular

Potential . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3.3 Emergence of Super Skew Scattering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

3.3.1 Circular Scatterer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

3.3.2 Elliptic Scatterer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

3.4 Skew Resonant Scattering and Anomalous Hall Effect in Experi-

mental Massive Pseudospin-1 Lattice Systems . . . . . . . . . . . . . . . . . . . . . 50

3.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

3.6 Supplementary Notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

3.6.1 Simplification of Pseudospin-1 Skew Scattering Formula . . . . 59

3.6.2 Massive Pseudospin-1/2 Scattering from a Circular Poten-

tial Scatterer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

3.6.3 Transport Cross Sections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

3.6.4 Effect of Varying Incident Angle for the Case of an Elliptical

Scatterer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

3.6.5 Unitary Transformation Between the Effective Hamiltonians

of Single Dirac-cone Dice and Lieb Lattices . . . . . . . . . . . . . . . . 65

3.6.6 Topological Effect on Super Skew Scattering . . . . . . . . . . . . . . . 67

4 CHAOS BASED BERRY PHASE DETECTOR . . . . . . . . . . . . . . . . . . . . . . . 73

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

4.2 Hamiltonian and Dirac Electron Optics . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

4.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

4.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

4.5 Supplementary Notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

vii



CHAPTER Page

4.5.1 The Band Structure and Wave-vectors Across the Potential

Step . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

4.5.2 Survival Probability Distribution of α-T3 Quasiparticles in

Different Energy Regimes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

4.5.3 Comparison Between the Decay of Survival Probability for

Pseudospin-1/2 and Pseudospin-1 Quasiparticles . . . . . . . . . . . 91

5 PHASE LOCKING OF A PAIR OF FERROMAGETIC NANO-OSCILLATORS

ON A TOPOLOGICAL INSULATOR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

5.2 Model and Solution Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

5.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

5.4 Indication on Experimental Realization of Phase Locking . . . . . . . . . . 109

5.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

5.6 Supplementary Notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

5.6.1 Iterative Calculation Procedure for Coupled Magnetization

Dynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

5.6.2 Electron Spin Density Calculation in One FMI/TI Heterostruc-

ture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

5.6.3 Solutions of Quantum Tunneling of Dirac Electrons Through

Double FMI Barriers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

6 SCATTERING OF DIRAC ELECTRONS FROM A SKYRMION: EMER-

GENCE OF ROBUST SKEW SCATTERING . . . . . . . . . . . . . . . . . . . . . . . . . 126

6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

6.2 Model and Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

viii



CHAPTER Page

6.3 Emergence of Robust Resonant States in Scattering from Skyrmion. 132

6.3.1 Short Wavelength Regime - Resonant Vortices and Edge

Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132

6.3.2 Long Wavelength Regime - Resonant Modes Near the Bound-

ary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137

6.3.3 Further Demonstration of Strong Skew Scattering from a

Skyrmion Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139

6.4 Partial-wave Decomposition Based Analysis . . . . . . . . . . . . . . . . . . . . . . . 142

6.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148

6.6 Supplementary Notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150

6.6.1 Multiple Multipole (MMP) Method for Scattering of Dirac

Electrons on the Top of a TI from a Magnetic Structure . . . . 150

7 FANO RESONANCE IN MOLECULAR TRANSPORT . . . . . . . . . . . . . . . . 156

7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156

7.2 Model and Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157

7.3 Spin Fano Resonance in Chiral Molecules . . . . . . . . . . . . . . . . . . . . . . . . . 159

7.4 Degeneracy enhanced spin Fano resonance . . . . . . . . . . . . . . . . . . . . . . . . 166

7.5 Effect of Coupling Strength on Resonance Width . . . . . . . . . . . . . . . . . . 169

7.6 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171

7.7 Supplementary Notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173

7.7.1 Quasidegeneracy and Level Separation for Different Values

of the Molecular Twist Angle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173

ix



CHAPTER Page

7.7.2 Criteria for Identifying Contribution to Spin Fano Reso-

nance as Due to a Single Level or Two Quasidegenerate

Levels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177

7.7.3 Spin Polarization for a Chiral Molecule of N = 37 Carbon

Atoms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177

7.7.4 Length and Angle Dependence of Peak Spin Polarization

Resonance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178

REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179

APPENDIX

A PUBLICATIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 203

x



LIST OF TABLES

Table Page

3.1 Summary of the Scaling of the Peak Value of Skew and Transport

Scattering Cross Sections with the Scatterer Strength V R. . . . . . . . . . . . . 64

7.1 Identification of One or Two-level Contribution to Spin Fano Resonance176

xi



LIST OF FIGURES

Figure Page

2.1 Interband Current in Pseudospin-1 and Pseudospin-1/2 Systems . . . . . . . 16

2.2 Origin of Interband Current in the Pseudospin-1 System . . . . . . . . . . . . . . 18

2.3 Interband Current Distribution in the Momentum Space . . . . . . . . . . . . . . 19

2.4 Enhancement of Intraband Current in the Strong Electric Field Regime 20

2.5 Further Evidence of Enhancement of Intraband Current in the Pseudospin-

1 System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.6 Numerical Evidence of Pair Creation Mechanism for the Intraband

Current . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.7 Current Density Distribution in the Momentum Space . . . . . . . . . . . . . . . . 25

2.8 Current-Electric Field Characteristics of Pseudospin-1 System at t̃ = 5 27

3.1 Schematic Illustration of Massive Pseudospin-1 Particle Scattering . . . . . 35

3.2 Contrasting Behaviors Arising from the Scattering of Massive Pseudospin-

1 and That of Pseudospin-1/2 Quasiparticles from a Circular Gate

Potential Scatterer in the Klein Tunneling Regime . . . . . . . . . . . . . . . . . . . . 40

3.3 Resonant State and Current Distribution for Massive Pseudospin-1

Scattering from a Circular Potential Barrier . . . . . . . . . . . . . . . . . . . . . . . . . . 42

3.4 Scaling of the Resonant Skew Scattering Cross Section Peak Value with

the Strength of the Circular Scatterer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

3.5 Skew Cross Section Versus Energy E for Scattering of Massive Dirac

Quasiparticles from an Elliptic Gate Potential Barrier . . . . . . . . . . . . . . . . 46

3.6 Resonant State and Current Distribution for Massive Pseudospin-1

Scattering from an Elliptical Potential Barrier . . . . . . . . . . . . . . . . . . . . . . . 48

3.7 Scaling of The Peak Value of Skew Scattering Cross Section with the

Strength of an Elliptical Electrical Potential Scatterer . . . . . . . . . . . . . . . . 49

xii



Figure Page

3.8 Schematic Illustration of an Experimentally Feasible, Finite Size Lat-

tice System for Massive Pseudospin-1 Scattering . . . . . . . . . . . . . . . . . . . . . 51

3.9 Hall and Longitudinal Voltages of Massive Pseudospin-1 Particles through

a Finite Lieb Lattice Device Defined by an Externally Applied Electri-

cal Potential . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

3.10 Density and Current Distribution Associated with Resonant States . . . . 55

3.11 Resonant Transport Cross Section for Massive Pseudospin-1 Scattering

from a Circular Potential Barrier in the Klein Tunneling Regime . . . . . . 68

3.12 Resonant Transport Cross Section Versus Energy for Scattering from

an Elliptical Potential . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

3.13 Resonant Skew and Transport Scattering Cross Sections for an Ellip-

tical Scatterer for Different Incident Angles . . . . . . . . . . . . . . . . . . . . . . . . . . 70

3.14 In-plane Current Density and Pseudospin-z Distribution for Different

Incident Angles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

3.15 Energy Band Structures of Lieb Lattice under Two Gap-opening Mech-

anisms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

4.1 Schematic Illustration of an α-T3 Cavity and the Energy Dispersion

Relation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

4.2 Semiclassical Decay of Quasiparticles from a Cavity in an α-T3 Lattice 80

4.3 Dependence of the Semiclassical Exponential Decay Rate from a Chaotic

Cavity on the Effective Refractive Index and the Detection of the Berry

Phase . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

4.4 Schematic Plot of the Band Structures and Wave-vectors Across Po-

tential Step with Different Refractive Indexes . . . . . . . . . . . . . . . . . . . . . . . . 86

xiii



Figure Page

4.5 Survival Probabilities from Integrable and Chaotic Cavities for 0 <

E < V0/2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

4.6 Survival Probabilities from Integrable and Chaotic Cavities for 0 <

V0 < E. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

4.7 Survival Probability from Integrable and Chaotic Cavities in the V0 <

0 < E Energy Regime . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

5.1 Schematic Illustration of Two FMIs on the Top of a TI . . . . . . . . . . . . . . . 96

5.2 Phase Locking Between the Magnetization Vectors of Two FMIs . . . . . . 101

5.3 Robustness of Phase Locking for Different Parameter Settings . . . . . . . . . 102

5.4 Phase and Anti-phase Locking Between a Pair of Coupled FMIs . . . . . . . 103

5.5 Trajectories of the Magnetization Unit Vectors . . . . . . . . . . . . . . . . . . . . . . . 105

5.6 Magnetization Trajectories in the Spherical Coordinate with Respect

to Energy Distribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

5.7 Electron Energy Band Structure for the Case Where the Magnetization

Vector Is in the z Direction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

5.8 Effective Magnetic Field by Spin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

5.9 A Schematic Illustration of Distinct Quantum Transport Regions for

Calculating the Effective Coupling Field . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

5.10 Phase Locking Between the Two Coupled FMIs in the Presence of

Quantum Interference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

5.11 The Parameter Range for Phase Locking . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

5.12 Iterative Calculation Procedure for Coupled Magnetization Dynamics . . 125

6.1 Schematic Illustration of Electron Scattering from a Skyrmion Struc-

ture in a Thin FMI Film Deposited on the Top of a TI . . . . . . . . . . . . . . . 131

xiv



Figure Page

6.2 Skew Scattering and Transport Cross Sections Versus Incident Electron

Energy in the Short Wavelength Regime . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135

6.3 Probability and Current Density Distribution for Selected Vortex States135

6.4 Wavefunction Probability and Current Density Distribution Associated

with Selected Edge States . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137

6.5 Characteristics of Dirac Electron Scattering from a Magnetic Skyrmion

in the Long Wavelength Regime . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138

6.6 Wavefunction Probability and Current Density Distributions for Se-

lected States for Scattering in the Long Wavelength Regime . . . . . . . . . . . 139

6.7 Effects of Varying Mass on Dirac Electron Scattering in the Short

Wavelength Regime . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140

6.8 Probability Density Distribution for Selected States in the Circular

and Stadium-shaped Structure for Different Masses in the Short Wave-

length Regime . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141

6.9 Skew Scattering for Different Mass Values of the Magnetic Structure

in the Long Wavelength Regime . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142

6.10 Probability Density Distribution for the States Corresponding to the

Minimum of the Skew Scattering Cross Section in Circular and Stadium-

shaped Magnetic Structures in the Long Wavelength Regime . . . . . . . . . . 143

6.11 Partial Wave Decomposition Coefficients as a Function of Total Angu-

lar Momentum for a Circular Magnetic Structure in the Short Wave-

length Regime . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146

xv



Figure Page

6.12 Transmitted and Reflected Partial Wave Coefficients as a Function of

the Total Angular Momentum for a Circular Magnetic Structure in the

Long Wavelength Regime . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147

6.13 A Schematic Illustration of the Basics of the MMP Method . . . . . . . . . . . 151

7.1 A Chiral Molecule and CISS Effect . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157

7.2 Spin Fano Resonance in a Chiral Molecule . . . . . . . . . . . . . . . . . . . . . . . . . . . 165

7.3 Spin Fano Resonance in a Chiral Molecule Associated with Near De-

generate Levels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167

7.4 Near Degeneracy Enhanced Spin Fano Resonance . . . . . . . . . . . . . . . . . . . . 169

7.5 Effect of Molecule-lead Coupling Strength on Electronic and Spin Trans-

port . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170

7.6 Fano Resonance Width and Peak Values Versus the Molecule-lead Cou-

pling Strength . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171

7.7 Single Level or Two Quasidegenerate Levels Contributing to a Fano

Resonance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174

7.8 Near-degeneracy Enhanced Spin Fano Resonance . . . . . . . . . . . . . . . . . . . . . 175

7.9 Length and Angle Dependence of the Peak Value of Spin Polarization

Resonance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176

xvi



Chapter 1

INTRODUCTION

1.1 Electron Transport and Scattering in Pseudospin-1 Dirac-Weyl Systems

Solid state materials, due to the rich variety of their lattice structures and in-

trinsic symmetries [1, 2], can accommodate quasiparticles that lead to quite uncon-

ventional and interesting physical phenomena. The materials and the resulting ex-

otic quasiparticles constitute the so-called “material universe.” Such materials range

from graphene that hosts Dirac fermions [3] to 3D topological insulators [4, 5] and

3D Dirac and Weyl semimetals [6, 7], in which the quasiparticles are relativistic

pseudospin-1/2 fermions. Recently, Dirac-like pseudospin-1 particles have attracted

much attention [8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25,

26, 27, 28, 29, 30, 31, 32, 33], which are associated with a unique type of energy

band structure: a pair of Dirac cones with a flat band through the conical connecting

point. Materials that can host pseudospin-1 particles include particularly engineered

photonic crystals [22, 13, 16, 17, 19], optical dice or Lieb lattices with loaded ul-

tracold atoms [8, 9, 10, 12, 34], and certain electronic materials [14, 15, 20, 21]. In

contrast to the Dirac cone system with massless pseudospin-1/2 particles that ex-

hibit conventional relativistic quantum phenomena, in pseudospin-1 systems an array

of quite unusual physical phenomena can arise, such as super-Klein tunneling as-

sociated with one-dimensional barrier transmission [9, 11, 22], diffraction-free wave

propagation and novel conical diffraction [13, 17, 16, 19], unconventional Anderson

localization [35, 36, 27], flat-band ferromagnetism [18], unconventional Landau-Zener

Bloch Oscillations with flat bands [37], and peculiar topological phases under external
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gauge fields or spin-orbit coupling [12, 38, 39, 40, 32].

Quantum transport beyond the linear response and equilibrium regime is of great

practical importance, especially with respect to device development. There have

been works on nonlinear and non-equilibrium transport of relativistic pseudospin-1/2

particles in Dirac and Weyl materials. For example, when graphene is subject to a

constant electric field, the dynamical evolution of the current after the field is turned

on exhibits a remarkable minimal conductivity behavior [41]. The scaling behavior

of nonlinear electric transport in graphene due to the dynamical Landau-Zener tun-

neling or the Schwinger pair creation mechanism has also been investigated [42, 43].

Under a strong electrical field, due to Landau-Zener transition a topological insula-

tor or graphene can exhibit a quantization breakdown phenomenon in the spin Hall

conductivity [44]. More recently, non-equilibrium electric transport beyond the linear

response regime in 3D Weyl semimetals has been studied [45]. In these works, the

quasiparticles are relativistic pseudospin-1/2 fermions arising from the Dirac or Weyl

system with a conical type of dispersion in their energy momentum spectrum. The

aim of Chapter 2 is to present the phenomenon of enhanced non-equilibrium quantum

transport of pseudospin-1 particles.

Electronic scattering in Dirac material systems have been extensively studied [46,

47, 48, 49, 50, 51, 52, 53, 54, 55, 56]. For example, a study of the scattering of

massless pseudospin-1/2 Dirac electrons by a circular potential barrier revealed [54]

that, for a scatterer of small radius, the scattering cross sections are dominated by

quantum resonances but, for a large scatterer, the classical picture of reflection and

refraction of rays applies, leading to phenomena such as caustics, rainbow, and critical

scattering. In massless pseudospin-1 particle scattering from a circular potential

barrier, phenomena such as revival resonances, perfect caustics as induced by super-

Klein tunneling, and universal low-energy isotropic transport can arise [24], which do
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not occur in pseudospin-1/2 scattering systems.

In pseudospin-1/2 or pseudospin-1 materials, opening a gap can lead to intriguing

phenomena such as the Anomalous Hall Effect (AHE), a fundamental transport be-

havior that occurs in solids with a broken time-reversal symmetry in a ferromagnetic

phase due to spin-orbit coupling [57]. For example, QAHE (Quantum Anomalous

Hall Effect) in graphene was predicted in the presence of Rashba spin-orbit coupling

and an exchange field generated by Fe absorbed on top of graphene or by proxim-

ity coupling to an antiferromagnetic insulator [58, 59], where the exchange splitting

is about 70 meV. AHE in single-layer graphene exchange-coupled to an atomically

flat yttrium iron garnet (YIG) ferromagnetic thin film or to a magnetic nanopar-

ticle array was realized in experiments [60, 61]. Light induced AHE in monolayer

graphene driven by ultrafast pulses of circularly polarized light was discovered ex-

perimentally [62] and explained theoretically [63], whose physical origin lies in light

induced topological nontrivial Floquet-Bloch bands. In addition, there were studies

on the extrinsic spin Hall effect induced by resonant skew scattering through spin-

orbit coupling in graphene decorated by adatoms [64]. For pseudospin-1 systems,

there are multiple mechanisms to open a gap: added on-site energy [9], introducing

dimerization term [40, 65], intrinsic spin-orbit coupling [12, 65], or staggered flux

phases on the kagome lattice [66]. The unconventional topological phases related to

the gap was also investigated [40, 12, 65], and anomalous chiral edge states and in-

gap edge states were discovered in massive pseudospin-1 systems [30, 31]. Bounded

electronic states were found in a gapped pseudospin-1 system with a centrally sym-

metric potential well and a regularized Coulomb potential induced by the charged

impurities [67]. The phenomenon of super-Klein tunneling can occur even for mas-

sive pseudospin-1 particles [68]. Unconventional quantum Hall effect was studied in

gapped pseudospin-1 systems with an infinite degeneracy of zero-energy Landau levels

3



lifted into a series of bands [69]. Quantum scattering in massive pseudospin-1 systems

have not been systematically studied, especially with respect to skew scattering as

related to AHE. The purpose of Chapter 3 is to fill this gap.

Advances in physics, chemistry, materials science and engineering have led to

the discoveries of new materials at an extremely rapid pace, e.g., the various two-

dimensional Dirac materials [70, 71, 72]. These materials host a variety of quasiparti-

cles with distinct physical characteristics including the Berry phase. Berry phase is a

fundamental characteristic of the quasiparticles of the underlying quantum material.

When a system is subject to a cyclic adiabatic process, after the cycle is completed,

the quantum state returns to its initial state except for a phase difference - the Berry

phase [73, 74, 75]. In general, the exact value of the Berry phase depends on the

nature of the quasiparticles and hence the underlying material. For example, the

Berry phases in monolayer graphene [76, 77] and graphite bilayers [78] are ±π and

2π, respectively. In α-T3 lattices, for different values of α, the Berry phases associated

with the quasiparticles are distinct [79]. To be able to detect Berry phase for a new

material would generate insights into its physical properties for potential applications.

Conventionally, this can be done using the principle of Aharonov-Bohm interference.

For example, an atomic interferometer was realized in an optical lattice to directly

measure the Berry flux in momentum space [80]. Graphene resonators subject to an

external magnetic field can be used to detect the Berry phase [81, 82]. Specifically,

for a circular graphene p-n junction resonator, as a result of the emergence of the π

Berry phase of the quasiparticles (Dirac fermions) when the strength of the magnetic

field has reached a small critical value, a sudden and large increase in the energy

associated with the angular-momentum states can be detected. In photonic crystals,

a method was proposed to detect the pseudospin-1/2 Berry phase associated with

the Dirac spectrum [83]. In such a system, the geometric Berry phase acquired upon
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rotation of the pseudospin is typically obscured by a large and unspecified dynamical

phase. It was demonstrated [83] that the analogy between a photonic crystal and

graphene can be exploited to eliminate the dynamical phase, where a minimum in

the transmission arises as a direct consequence of the Berry phase shift of π acquired

by a complete rotation of the pseudospin about a perpendicular axis. In chapter 4,

utilizing the α-T3 lattice as a paradigm, we find that, in the Dirac electron optics

regime, the semiclassical decay of the quasiparticles from a chaotic cavity can be

effectively exploited for detecting the Berry phase.

1.2 Electron Transport and Scattering in Hybrid Systems of Topological Insulators

and Magnetic Structures

TIs are quantum materials with surface states residing in the bulk insulating

gap [4, 5]. The edge states are topologically protected and are robust against non-

magnetic disorders due to a strong spin-momentum locking. The electron motions on

the surface follow the 2D linear dispersion with a single band-touching Dirac point

and are described by the Dirac equation. In spite of the strong spin-momentum lock-

ing, the surface electronic states are sensitive to magnetic perturbations. That is, the

electrons will be scattered off upon encountering a magnetic structure on the surface

of the TI.

Quite recently, spin-torque and spin-Hall nano-oscillators [84] have gained atten-

tion for their potential applications in various non-Boolean computing [85] including

image processing [86], associative memory, pattern recognition [87, 88, 89], and spa-

tiotemporal wave computing [90]. In general, the ability to control and manipulate

magnetization dynamics is essential to developing spintronic memory, logic, and sens-

ing nanodevices. A mechanism that has been extensively studied theoretically and

experimentally is spin-transfer torque [91, 92], which is based on the transfer of the
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spin angular momentum between a spin current flow and the local magnetization of a

ferromagnetic layer. The mechanism can be exploited to develop, e.g., switching and

steady precession of spin torque oscillators (STOs) [93, 94]. The dynamics of preces-

sion of a single STO provide the basis for synchronizing a number of STOs [95, 96, 97],

which has applications such as microwave power generation and sensing. Phase lock-

ing of two STOs has been achieved experimentally in spin torque devices with multiple

nanocontacts, in which the magnetization in all the nanocontact regions can be locked

at the same phase via a propagating spin wave [98, 99, 100]. Phase locking of STOs

through coupled electrical circuits has also been studied in an array of STO nanopillars

that can be electrically connected in series or in parallel [101, 102, 103, 104, 105, 106].

In this case, the AC current produced by each individual oscillators leads to feedback

among the STOs, thereby realizing synchronization. In addition, synchronization can

be achieved through magnetic dipolar coupling in perpendicular-to-plane polarized

STOs [107]. Local synchronization between vortex-based STOs interacting with each

other can occur through the mediation of closely spaced antivortices [108]. Recently,

spin Hall effect [109, 110, 111, 112] has been exploited to experimentally realize syn-

chronization of STOs driven by a pure spin current through microwave driving [113],

and a method to synchronize multiple STOs without requiring any external AC exci-

tation has been proposed [114]. Existing studies on STOs have been focused primarily

on nanocontact spin valves and magnetic tunnel junction pillar structures. While the

junction structures appear more promising for microwave power generation because of

their high junction resistance and larger magnetoresistance, nanocontact spin valves

are more promising for mutual phase-locking among multiple STOs because of their

better interdevice coupling geometry [98, 99, 100, 115].

The interaction between the topological surface states and magnetic materials in a

quasi-one dimensional setting has been studied [116, 117, 118] where, due to the spin-
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momentum locking, the exchange coupling between the magnetization and the surface

electronic states can lead to intriguing phenomena such as anomalous magnetoresis-

tance and unconventional transport behaviors [119, 120]. The interaction can also

lead to nonlinear or even chaotic dynamics in the evolution of magnetization of the

FMI [121, 122]. For example, complicated dynamics can emerge in the magnetization

switching due to a Hall-current-induced effective anisotropic field [123, 124, 125, 116]

and steady self-oscillations can arise in an FMI/TI heterostructure [126, 127, 128].

Motivated by the growing interest in exploiting topological quantum materials for

achieving novel charge transport and efficient electrical control of magnetization in

spintronics applications, in Chapter 5, we investigate the possibility to realize phase

locking of nanoscale magnetic oscillators coupled via some topological mechanism,

e.g., through a topologically protected current.

Beside of the the common ferromagnetic insulator, there is another very interest-

ing magnetic structure called skyrmion, which is a particle-like magnetic excitation

with a swirling topological 2D spin texture, i.e., the spin at the core and the spin

at the perimeter point are in opposite directions [129, 130, 131, 132]. The small

size of the skyrmions and the possibility of moving them with electrical currents of

small density (∼ 105A/m2) make them promising candidates for spintronic storage or

logic devices [129, 130]. Skyrmions have been experimentally observed in chiral mag-

nets [133, 134] as a result of the competition between the Dzyaloshiskii-Moriya (DM)

interactions, Heisenberg exchange, and Zeeman interactions. It has been demon-

strated that metallic skyrmions can be driven by spin transfer torque (STT) from the

electric current [135, 136, 137]. Optical skyrmion lattices have been achieved in an

evanescent electromagnetic field [138]. In addition, the topological spin Hall effect

has been demonstrated in which a pure transverse spin current is generated from a

skyrmion spin texture [139, 140, 141, 142, 143].
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Efforts in improving thermal efficiency and better manipulating skyrmions have

led to the “marriage” between skyrmion and TI, where skyrmions arise on the surface

of a TI. Electric charging of magnetic vortices on the surface of a TI was investi-

gated [144], and the confinement state in the skyrmion structure on the surface of a

TI was discovered, paving the way to driving skyrmion motion using an applied elec-

tric field [145]. Electron skew scattering induced by the skyrmion structure on the TI

surface was also studied [55]. Quite recently, the combination of two skyrmions with

opposite winding numbers, called skyrmionum in an FMI/TI heterostructure was ob-

served in the physical space [146, 147, 148]. Theoretically, fluctuation-induced Néel

and Bloch skyrmions on the surface of a TI have been predicted [149]. In Chapter 6,

we study the electron scattering from a magnetic skyrmion structure.

1.3 Electron and Spin Transport in Chiral Molecules

When electrons pass through a complex chiral molecule, the phenomenon of chiral-

induced spin selectivity (CISS) can arise [150], where the electrons acquire a certain

degree of spin polarization due purely to the intrinsic chirality of the molecule itself.

The phenomenon opens the possibility of manipulating the spin degree of freedom of

electrons in quantum biological systems. CISS has attracted growing attention, both

experimentally [151, 152, 153, 154, 155, 156, 157, 158, 159] and theoretically [160,

161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171, 172, 173]. The phenomenon

has been observed in DNA [151, 152, 153], protein(bacteriorhodopsin) [154, 155],

oligopeptides [156, 157], and helicenes [158, 159]. CISS is remarkable because the

underlying complex molecular system does not possess any intrinsic magnetization

that would otherwise affect the spin-dependent responses. Because of the lack of in-

ternal magnetism, a theoretical description of CISS must include spin-orbit coupling

(SOC) [174]: a weak relativistic effect on the order of a few meV. Consequently,
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in order to achieve appreciable spin polarization, some cumulative effect is necessary,

which can be achieved in a complex molecule. In particular, during transport through

a large molecule, an electron will encounter, visit, and pass through many atoms. At

each encounter where the electron orbits the nucleus, the spin-orbit interaction de-

pends on the orbital orientation, which leads to weak spin polarization. For a large

chiral molecule such as DNA, there is a preference in the orbital orientation so the

effects on the spin polarization from the many atoms on the electron’s way through

are cumulatively enhanced, leading to the phenomenon of CISS. To understand CISS

has remained to be a theoretical challenge. A theorem based on the Onsager recip-

rocal principle states that the CISS effect vanishes when thermally averaging over

all electron states. However, if the incoming electrons are generated optically, as in

experiments, this null result will not arise because of the nonthermal character of the

electrons [172].

In electronic transport through mesoscopic, solid-state systems, various resonances

in experimental quantities such as conductance and scattering cross sections can arise

and are described by the universal Fano formula [175, 176]. In terms of spin transport,

resonances in the spin polarization arising from the edge of a zigzag graphene nanorib-

bon was studied using the nonequilibrium Green’s function formalism within the

framework of density functional theory [177]. Quite recently, a Fano formula charac-

terizing the resonances associated with spin transport was derived [178]. In quantum

biology, there were studies of Fano resonances in molecular charge transport [179, 180].

For example, control of electron transport through Fano resonances in molecular wires

was investigated using a first-principle approach, where the resonances are induced

and can be controlled by the side groups attached to the molecule [181]. Control of

quantum interference in T-shaped molecules was investigated theoretically [182], and

it was found that a Fano resonance can lead to a giant thermal power [183]. Fano
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resonances can also arise from Andreev reflection in molecular wires [184]. Recent

experiments have exploited conformal control of quantum interference to modulate

single molecule charge transport [185]. In Chapter 7, we investigate spin transport

through a chiral polyacetylene molecule and uncover the emergence of spin Fano

resonances as a manifestation of the chiral induced spin selectivity (CISS) effect.

1.4 Outline of This Thesis

In Chapter 1, we give the introduction and background for the systems and phe-

nomena we investigate. The aim of Chapter 2 is to present the phenomenon of

enhanced non-equilibrium quantum transport of pseudospin-1 particles. In Chapter

3, quantum scattering in massive pseudospin-1 systems is systematically studied, es-

pecially with respect to skew scattering as related to AHE. In chapter 4, utilizing

the α-T3 lattice as a paradigm, we find that, in the Dirac electron optics regime,

the semiclassical decay of the quasiparticles from a chaotic cavity can be effectively

exploited for detecting the Berry phase. In Chapter 5, we investigate the possibility

to realize phase locking of two nanoscale magnetic oscillators coupled via the electron

on the surface of topological insulator. In Chapter 6, we study the electron skew

scattering from a magnetic skyrmion structure. In Chapter 7, we investigate spin

transport through a chiral polyacetylene molecule and uncover the emergence of spin

Fano resonances as a manifestation of the chiral induced spin selectivity (CISS) effect.
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Chapter 2

NONEQUILIBRIUM TRANSPORT IN THE PSEUDOSPIN-1 DIRAC-WEYL

SYSTEM

Solid state materials hosting pseudospin-1 quasiparticles have attracted a great deal

of recent attention. In these materials, the energy band contains of a pair of Dirac

cones and a flat band through the connecting point of the cones. As the “caging” of

carriers with a zero group velocity, the flat band itself has zero conductivity. However,

in a non-equilibrium situation where a constant electric field is suddenly switched

on, the flat band can enhance the resulting current in both the linear and nonlinear

response regimes through distinct physical mechanisms. Using the (2+1) dimensional

pseudospin-1 Dirac-Weyl system as a concrete setting, we demonstrate that, in the

weak field regime, the interband current is about twice larger than that for pseudospin-

1/2 system due to the interplay between the flat band and the negative band, with

the scaling behavior determined by the Kubo formula. In the strong field regime, the

intraband current is
√

2 times larger than that in the pseudospin-1/2 system, due

to the additional contribution from particles residing in the flat band. In this case,

the current and field follows the scaling law associated with Landau-Zener tunneling.

These results provide a better understanding of the role of the flat band in non-

equilibrium transport and are experimentally testable using electronic or photonic

systems.

2.1 Introduction

In this chapter, we study the transport dynamics of pseudospin-1 quasiparticles

that arise in material systems with a pair of Dirac cones and a flat band through their
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connecting point. Under the equilibrium condition and in the absence of disorders,

the flat band acts as a perfect “caging” of carriers with zero group velocity and hence

it contributes little to the conductivity [186, 187, 188]. However, as we will show in

this paper, the flat band can have a significant effect on the non-equilibrium transport

dynamics. Through numerical and analytic calculation of the current evolution for

both weak and strong electric fields, we find the general phenomenon of current

enhancement as compared with that associated with non-equilibrium transport of

pseudospin-1/2 particles. In particular, for weak field, the interband current is twice

as large as that for pseudospin-1/2 system due to the interference between particles

from the flat band and the negative band, the scaling behavior of which agrees with

that determined by the Kubo formula. For strong field, the intraband current is
√

2 times larger than that in pseudospin-1/2 system, as a result of the additional

contribution from the particles residing in the flat band. In this case, the physical

origin of the scaling behavior of the current-field relation can be attributed to Landau-

Zener tunneling. Our findings suggest that, in general, the conductivity of pseudospin-

1 materials can be higher than that of pseudospin-1/2 materials.

2.2 Pseudospin-1 Hamiltonian and Current

We consider a system of 2D noninteracting, Dirac-like pseudospin-1 particles sub-

ject to a uniform, constant electric field applied in the x direction. The system is

described by the generalized Dirac-Weyl Hamiltonian [24, 10]. The electric field,

switched on at t = 0, can be incorporated into the Hamiltonian through a time-

dependent vector potential [41, 42, 43, 44, 45, 189, 190, 191]: A(t) = [A(t), 0, 0],

where A(t) = −EtΘ(t). The resulting Hamiltonian is

H = vF{Sx[px − qA(t)] + Sypy}, (2.1)
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where vF is the Fermi velocity of the pseudospin-1 particle from the Dirac-like cones,

q = −e (e > 0) is the electronic charge, S = (Sx, Sy, Sz) is a vector of matrices with

components

Sx =
1√
2


0 1 0

1 0 1

0 1 0

 , Sy =
1√
2


0 −i 0

i 0 −i

0 i 0

 , Sz =


1 0 0

0 0 0

0 0 −1

 .
The three matrices form a complete representation of pseudospin-1 particles, which

satisfy the angular momentum commutation relations [Sl, Sm] = iεlmnSn with three

eigenvalues: s = ±1, 0, where εlmn is the Levi-Civita symbol. However, they do not

follow the Clifford algebra underlying spin-1/2 particles. The corresponding time

dependent wave equation reads

i~∂tΨp(t) = HΨp(t). (2.2)

Under the unitary transformation

U =


1
2
e−iθ − 1√

2
e−iθ 1

2
e−iθ

√
2

2
0 −

√
2

2

1
2
eiθ 1√

2
eiθ 1

2
eiθ


with tan θ = py/[px− qA(t)], we can rewrite Eq. (2.2) in the basis of adiabatic energy

as

i~∂tΦp(t) =
[
Szεp(t) + Sx

√
2C0(t)

]
Φp(t), (2.3)

where Φp(t) = U †Ψp(t) = [αp(t), γp(t), βp(t)]
T and C0(t) = ~v2

FpyeE/
√

2ε2p(t), εp =

vF
√

(px − eEt)2 + p2
y. Initially at t = 0, the negative band is assumed to be fully

filled: Φp(t = 0) = [0, 0, 1]T . From the equation of motion, we obtain the current op-

erator in the original basis as Jx = −e∇pH = −evFSx. In the transformed adiabatic
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energy base, the current operator is

Jx = −evF (Sz cos θ − Sy sin θ). (2.4)

We thus have the current density for a certain state as

〈Jx〉p(t) = −evF
{

cos θ[|αp(t)|2 − |βp(t)|2]

−
√

2 sin θRe[iαp(t)γ
∗
p(t) + iγp(t)β

∗
p(t)]

}
. (2.5)

In Eq. (2.5), the first term is related to the particle number distribution associated

with the positive and the negative bands, which is the intraband or conduction cur-

rent. The second term in Eq. (2.5) characterizes the interference between particles

from distinct bands, which is related to the phenomenon of relativistic Zitterbewegung

and can be appropriately called the interband or polarization current.

To assess the contribution of each band (i.e., the positive, flat, or negative) to

the interband current, we seek to simplify the current expression. Through some

algebraic substitutions, we get

∂t|αp(t)|2 = 2Re[αp(t)∂tα
∗
p(t)],

∂t|γp(t)|2 = 2Re[γp(t)∂tγ
∗
p(t)].

From the Dirac equation (2.3), we have

~αp(t)∂tα∗p(t) = iεpαp(t)α
∗
p(t) + iC0αp(t)γ

∗
p(t),

~γp(t)∂tγ∗p(t) = iC0γp(t)α
∗
p(t) + iC0γp(t)β

∗
p(t),

which gives

Re[iαp(t)γ
∗
p(t)] =

~
2C0

∂t|αp(t)|2,

Re[iγp(t)β
∗
p(t)] =

~
2C0

[
∂t|αp(t)|2 + ∂t|γp(t)|2

]
. (2.6)

14



Using the total probability conservation |αp|2 + |γp|2 + |βp|2 = 1, we finally arrive at

the following current expression

〈Jx〉p(t) = −evF
{vF (px − eEt)

εp(t)

[
2|αp(t)|2 + |γp(t)|2 − 1

]
− εp(t)

vF eE

(
2∂t|αp|2 + ∂t|γp|2

)}
, (2.7)

where the third term in the first part that is independent of particle distribution

vanishes after an integration over the momentum space.

For convenience, in our numerical calculations we use dimensionless quantities,

which we obtain by introducing the scale ∆ that is a characteristic energy of the

system. The dimensionless time, electric field, momentum, energy, and coefficient are

t̃ = ∆t/~,

Ẽ = evF~E/∆2,

p̃ = vFp/∆,

ε̃ =
√

(p̃x − Ẽt̃)2 + p̃2
y,

C̃0 = Ẽp̃y/
√

2[(p̃x − Ẽt̃)2 + p̃2
y],

respectively. The dimensionless current J̃ can be expressed in units of e∆2/vF~2π2.

2.3 Weak Field Regime: Enhancement of Interband Current

In the weak field regime, the intraband current can be ignored compared to inter-

band current due to the less number of conducting particles (see Appendix B or refer

to psedospin-1/2 case [42, 43]). In particular, the interband current for a certain

state can be expressed as

J interp =
εp(t)

E
[2∂t|αp|2 + ∂t|γp|2],

where, for pseudospin-1/2 particles, the interband current has only the first term [43].

The additional term [εp(t)/E]∂t|γp|2 is unique for pseudospin-1 particles. To reveal the
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Figure 2.1: Interband current in pseudospin-1 and pseudospin-1/2 systems.
(a) Evolution of the total current to electric field ratio J̃/Ẽ with time t̃ for pseudospin-
1 and 1/2 systems for a fixed electric field Ẽ = 0.0004, where the dashed lines denote
the theoretical values π2/2 and π2/4 for the pseudospin-1 and pseudospin-1/2 systems,
respectively. The yellow and green lines represent the respective numerical results.
(b) The total current J̃ versus the electric field Ẽ for time t̃ = 2 for the two systems.
Comparing with the pseudospin-1/2 system, the interband current in the pseudospin-
1 system is greatly enhanced.

scaling behavior of the interband current and to assess the role of the positive and the

flat bands in the current, we impose the weak field approximation: |p| =
√
p2
x + p2

y �

eEt everywhere except in the close vicinity of the Dirac point, which allows us to

obtain an analytic expression for the interband current. Under the approximation,

the coefficients εp and C0 become εp ≈ vFp and C0 ≈ ~pyeE/(
√

2p2), which are time

independent. Substituting these approximations into Eq. (2.3), we obtain the three

components of the time dependent state Φp(t) as

αp(t) =
1

2
[cosωt+m2

0(cosωt− 1)− 1], (2.8)

βp(t) =
1

2
[cosωt− 2m0 sinωt−m2

0[cosωt− 1] + 1], (2.9)

γp(t) =
1 +m2

0

2C0

[−i~ω sinωt− εp(cosωt− 1)]. (2.10)

The interband current contains two parts:

Jαp = 2
εpC

4
0ω

E(ε2p + 2C2
0)2

(2 sinωt− sin 2ωt), (2.11)
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and

Jγp = 2
εpC

2
0ω

E(ε2p + 2C2
0)2

(ε2p sinωt+ C2
0 sin 2ωt), (2.12)

which correspond to contributions from the positive and the flat bands, respectively,

where ω =
√
ε2p + 2C2

0/~. For sufficiently weak field such that the off diagonal term

is small compared with the diagonal term in Eq. (2.3), we have ε2p � 2C2
0 , i.e.,

v2
Fp

2 �
p2
y

p2

~2e2E2

p2
.

In this case, the contribution from the positive band is nearly zero and the flat band

contribution is

Jγp ≈ 2
ε3pC

2
0ω

E(ε2p + 2C2
0)2

sinωt ≈ e2~E
sin2 θ

p2
sin

vFpt

~
. (2.13)

The total positive band contribution over the momentum space is negligibly small,

so the flat band contributes dominantly to the total interband current:

Jinter =
1

π2~2

∫∫
e2~E

sin2 θ

p
sin

vFpt

~
dθdp

=
e2

2~
E =

e∆2

vF~2π2
· π

2

2
Ẽ. (2.14)

The dimensionless current is given by

J̃ =
π2

2
Ẽ. (2.15)

To verify the analytical prediction Eq. (2.14), we calculate the interband current

by numerically solving the time dependent Dirac equation (2.3). For comparison,

we also calculate the current for the pseudospin-1/2 system both numerically and

analytically. The results are shown in Fig. 2.1. For the numerical results in Fig. 2.1(a),

the momentum space is defined as p̃x ∈ [−8, 8] and p̃y ∈ [−8, 8] and the integration

grid has the spacing 0.0002. In Fig. 2.1(b), we use the same momentum space grid

for Ẽ = 0.0001, 0.0002, 0.0004 but for Ẽ = 0.0008, 0.0016, 0.0032, the ranges of the
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Figure 2.2: Origin of interband current in the pseudospin-1 system. (a)
Ratio between interband currents from the pseudospin-1 and pseudospin-1/2 systems
as a function of time for electric field strength Ẽ = 0.0004, (b) the current ratio
versus Ẽ for fixed time t̃ = 2. The black dashed lines are theoretical results, and
the red and blue lines are for flat band and positive band, respectively. These results
indicate that, for the pseudospin-1 system, the flat band is the sole contributor to the
interband current.

momentum space are doubled. From Fig. 2.1(a), we see that the interband current for

both pseudospin-1 and pseudospin-1/2 cases are independent of time. That is, after

a short transient, the interband current approaches a constant. From Fig. 2.1(b),

we see that the current is proportional to the electric field E for both pseudospin-1

and pseudospin-1/2 particles (with unity slope on a double logarithmic scale), but

the proportional constant is larger in the pseudospin-1 case. While in the weak field

regime, the scaling relation between the interband current and the electric field is

the same for pseudospin-1 and pseudospin-1/2 particles, there is a striking difference

in the current magnitude. In particular, the interband current for the pseudospin-1

system is about twice that for the pseudospin-1/2 counterpart, as revealed by both

the theoretical approximation Eq. (2.14) and the numerical result [corresponding

to the dashed and solid lines in Fig. 2.1(a) respectively]. The interband current

in the pseudospin-1 system is thus greatly enhanced as compared with that in the

pseudospin-1/2 system.
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Figure 2.3: Interband current distribution in the momentum space: (a)
pseudospin-1 system and (b) pseudospin-1/2 system. The time and electric field
strength are t̃ = 2 and Ẽ = 0.0128 respectively.

Intuitively, the phenomenon of current enhancement can be attributed to the ex-

tra flat band in the pseudospin-1 system: while the band itself does not carry any

current, it can contribute to the interband current. Indeed, the theoretical results in

Eqs. (2.11) and (2.12) indicate that the flat band contributes to the total interband

current, while the positive band contributes little to the current. To gain physical

insights, we numerically calculate three currents: the positive and flat band currents

from the pseudospin-1 system, and the current from the pseudospin-1/2 system. Fig-

ure 2.2 shows that the ratio of the flat band current and the pseudospin-1/2 current is

two, while the ratio between the positive band and pseudospin-1/2 currents is nearly

zero, indicating that in the pseudospin-1 system, almost all the interband current

originates from the flat band.

To better understand the phenomenon of interband current enhancement in the

pseudospin-1 system, we calculate the current distribution for both pseudospin-1 and

pseudospin-1/2 systems in the momentum space, as shown in Fig. 2.3. We see that

the area in the momentum space with significant current is larger for the pseudospin-

1 case, although the current magnitude is almost the same near the Dirac point

for both systems. This is indication that the flat band can contribute substantially
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more current because the Landau-Zener transition “gap” Py for the pseudospin-1

system is small compared to that for the pseudospin-1/2 system. Mathematically,

with respect to the single state current expression (2.13) for the pseudospin-1 system,

the corresponding one state contribution for the pseudospin-1/2 system is

Jhalfp ≈ e2~E
2

sin2 θ

p2
sin (

2vFpt

~
). (2.16)

The integration of current over the entire momentum space gives the factor 2 of

enhancement for the pseudospin-1 system as compared with the pseudospin-1/2 sys-

tem. This implies that quantum interference occurs mainly between particles from

the negative and flat bands due to the small gap between them.

Figure 2.4: Enhancement of intraband current in the strong electric field
regime. Intraband current and contributions from distinct bands (a) versus time for
Ẽ = 0.8192, where the black dashed lines represent the analytical values 2(

√
2 − 1),

2, 2
√

2 (from bottom) and (b) versus electric field at time t̃ = 10 (for six values of
the electric field: Ẽ = 0.2048, 0.4096, 0.8192, 1.6384, 3.2768.

2.4 Strong Field Regime: Enhancement of Intraband Current

In the strong field regime, the intraband current dominates (see Appendix B)

and has the form of the first term in Eq. (2.7). The transition probabilities for the
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positive, flat and negative bands are given, respectively, by [192]

n+
p = Θ(px)Θ(eEt− px) exp(−

πvFp
2
y

~eE
), (2.17)

n0
p = Θ(px)Θ(eEt− px)

· 2
[
1− exp(−

πvFp
2
y

2~eE
)
][

exp(−
πvFp

2
y

2~eE
)
]
, (2.18)

n−p = Θ(px)Θ(eEt− px)
[
1− exp(−

πvFp
2
y

2~eE
)
]2

, (2.19)

subject to the momentum constraint: (px, eEt− px)� |py|. The transition probabil-

ities are essentially the pair production or transition probabilities in the generalized

three-level Landau-Zener model. Substituting Eqs. (2.17) and (2.19) into Eq. (2.5)

(or equivalently Eq. (2.7)) and integrating its first term over the momentum space,

we obtain the positive-band contribution to the intraband current with conducting

electrons (or partially filled electrons) populated from the filled bands

J+ =
evF
~2π2

∫∫
vF (eEt− px)

εp(t)
· |αp(t)|2dpxdpy

≈ evF
~2π2

∫ eEt

0

dpx

∫ px

−px
|αp(t)|2dpy

≈ evF
~2π2

∫ eEt

0

dpx

∫ +∞

−∞
|αp(t)|2dpy

=
e2

~π2

√
evF
~
E3/2t (2.20)

=
e∆2

vF~2π2
Ẽ3/2t̃. (2.21)

Meanwhile, we get the contribution from the initially filled negative band with holes

left by the electrons driven into the positive band and flat band as well

J− = (2
√

2− 1)
e2

~π2

√
evF
~
E3/2t (2.22)

=
e∆2

vF~2π2
(2
√

2− 1)Ẽ3/2t̃. (2.23)
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So, in general, the conducting hole based intraband current J− can be formally at-

tributed to two parts, i.e.

J− = J−positive + J−flat, (2.24)

where the first term accounts the holes left by electrons finally driven into the positive

band only while the second term is associated with the hole concentration induced

by the flat band. Apparently, we have J−positive = J+. As such, the so-called flat band

induced current results from the hole concentration it induces in the dispersive band

and reads

J−flat = J− − J+ =
e∆2

vF~2π2
2(
√

2− 1)Ẽ3/2t̃. (2.25)

With both the conducting electrons and corresponding holes taken into account, the

dispersive positive band based current is obtained as

Jpositive = J+ + J−positive = 2 · e
2

~π2

√
evF
~
E3/2t (2.26)

= 2 · e∆2

vF~2π2
Ẽ3/2t̃, (2.27)

which alone is the same amount as the total current generated for the pseudospin-1/2

system in strong field regime. The total intraband current in the presence of the flat

band (for the pseudospin-1 system with an additional flat band) is

J intra = J+ + J− = Jpositive + J−flat

= 2
√

2
e2

~π2

√
evF
~
E3/2t (2.28)

=
e∆2

vF~2π2
2
√

2Ẽ3/2t̃. (2.29)

The intraband current scales with the electrical field as E3/2 and scales linearly

with time, which are the same as those for the pseudospin-1/2 system [43]. However,

for the pseudospin-1 system, the magnitude of the intraband current is larger: there
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Figure 2.5: Further evidence of enhancement of intraband current in the
pseudospin-1 system. (a) The ratio of the intraband currents in the pseudospin-1
and pseudospin-1/2 systems versus time t̃ for Ẽ = 0.8192. (b) The current ratio
versus Ẽ for t̃ = 10.

is an enhancement factor of
√

2 as compared with the pseudospin-1/2 system. Since

the positive band contribution is the same as for the pseudospin-1/2 system, the

enhancement is due entirely to the flat band contribution.

We now provide numerical evidence for the phenomenon of intraband current en-

hancement in the pseudospin-1 system. Figures 2.4(a) and 2.4(b) show the intraband

current versus time t̃ and electric field strength Ẽ, respectively, where the momentum

space grid is px ∈ [−16, 16] and py ∈ [−16, 16] with spacing 0.002 in (a) and the mo-

mentum space range is increased according to the increase in the electric field strength

in (b). We see that the intraband current scales with E as E3/2t - the same as for

the pseudospin-1/2 system [43, 42]. There is good agreement between the numerical

results and the theoretical predictions Eqs. (2.21-2.29).

To provide further confirmation of the enhancement of the intraband current, we

calculate the ratio between the currents from the pseudospin-1 and pseudospin-1/2

systems versus time for certain electric field, as shown in Fig. 2.5(a). The ratio versus

the electric field for a given time is shown in Fig. 2.5(b). We see that, in the long time

regime, under a strong electric field the total intraband current for the pseudospin-
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Figure 2.6: Numerical evidence of pair creation mechanism for the in-
traband current. The ratio of particle number distribution for pseudospin-1 and
pseudospin-1/2 systems (a) versus time t̃ for Ẽ = 0.8192 and (b) versus Ẽ for t̃ = 10.

1 system is about
√

2 times the current of the pseudospin-1/2 system. However,

the positive band currents are approximately the same for both systems. The extra

current in the pseudospin-1 system, which is about 0.4 times the contribution from

the positive band, is originated from the flat band. These numerical results agree well

with the theoretical predictions. The physical mechanism underlying the intraband

current enhancement is the Schwinger mechanism or Landau-Zener tunneling. Note

that, in Fig. 2.5, the transition of an electron from the negative to the flat bands does

not contribute to the intraband current, as the process leaves behind a hole in the

negative band that contributes to the net current.

If the intraband current is generated by pair creation through Landau-Zener tun-

neling, the number of created particles should be consistent with the current be-

haviors. To test this, we numerically calculate the particle number distribution in

different bands and plot the ratio between the numbers of particles for pseudospin-1

and pseudospin-1/2 systems versus time and the electric field, as shown in Fig. 2.6.

For the pseudospin-1 system, the number of particles created in the positive band

is approximately the same as that created in the upper band in the pseudospin-1/2
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Figure 2.7: Current density distribution in the momentum space. (a,b)
For pseudospin-1 and pseudospin-1/2 systems, respectively, the distributions of the
current density in the momentum space for t̃ = 20 and Ẽ = 0.0512. When the
momentum gap value Py is large, the flat band can enhance the current.

system, and the number of particles in the flat band is only about half of that in the

positive band. Note that, for the positive band, it is necessary to count the particle

number twice as both electrons and holes contribute to the transport current. How-

ever, for the flat band, only holes contribute to the current. We see that, for each

band, the particle number distribution is consistent with the current distribution,

providing strong evidence that the intraband current results from pair creation in the

negative band. In fact, under the strong field approximation, the intraband current

is the particle distributions in the positive and flat bands multiplying by the constant

evF , as current is due to electron and hole transport.

We also calculate the current density distribution in the momentum space for a

fixed time and electric field strength, as shown in Fig. 2.7. We see that the current

distribution range in the Py direction is wider for the pseudospin-1 system than for

the pseudospin-1/2 system. However, the current distribution near Py = 0 is approx-

imately the same for the two systems, and the current decays in the py direction. In

addition, there is a current cut-off about p̃x = Ẽt̃ along the px axis. All these features

of the current density distribution can be fully explained by the theoretical formulas
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(2.17-2.19). The general result is that the flat band can enhance the current when

the “gap” Py is large.

2.5 Current-Electric Field Characteristics for Pseudospin-1 System

In general, for carriers following a given multi-band dispersion relation such as the

particular three band profile investigated in this work, contributions to the current are

always from two parts i.e. the intraband current and interband current. Physically,

the intraband current is proportional to the number of the electrons (holes) within an

unfilled (occupied) band while the interband current is subject to the rate of change

of the number characterizing the interband interference. It follows from Eq. (2.7) that

the former is quantified by the transition amplitudes while the latter depends on their

rate of change. In the weak driving field, the transition amplitudes (probabilities)

between the occupied band and the empty band and hence the number of electron-

hole generation are always so small that the resulting intraband current is rather weak,

while their rate of change leading to the interband current have a different scenario.

By calculation, it quantitatively turns out that the particle generation number based

intraband current is negligible compared with its rate of change based interband

current at weak field and becoming dominant as the field strength increasing. So,

in weak field regime, the interband current dominates, while in strong field case, the

interband current is overwhelmed by intraband ones, as the scaling factor of current-

field relation changing from 1 to 1.5. The numerical results are shown in Fig. 2.8.

2.6 Discussions and Outlook

In our linear dispersion model, the interband current will be overwhelmed by

intraband current with increasing electric field or evolution time. When it comes to
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Figure 2.8: Current-electric field characteristics of pseudospin-1 system at
t̃ = 5. The dominant contribution to the total current changes from interband to
intraband, with the scaling factor of the current-field relation changing from 1 to 1.5.

the real materials, the effective Dirac-like Hamiltonian description only works around

the degeneracy (Dirac) point as it should be, which will intrinsically impose a time

upper bound on the valid simulation. Since the models we consider do not provide a

channel of dissipation, the time range of applicability of our model in lattice model is

essential. The time range is approximately the time required for the electric field to

shift the momentum across the Brillounin zone, i.e., ∆px = eEt ≈ ~/a with a being

characteristic lattice constant, so in real materials, our results valid up to the time

scale t ∼ ~
eEa

, which is similar to the time scale of pseudospin-1/2 model applied to

graphene and in which the Bloch oscillation set in with period tB ∼ ~
eEa

[42]. So,

under the time restriction Ẽt̃ < ~vF
∆a

(in dimensionless form as used in this paper),

our results can be obtained experimentally by tuning the characteristic energy ∆ of

the designed system.

If the whole band structure for real materials is taken into account, basically

Bloch oscillations will set in under external electric fields when t & tB, i.e., the

electron distribution oscillates along a certain range of lattice sites. For that case, the
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present Dirac-like Hamiltonian is incapable while a full tight-binding Hamiltonian

HTB(p) characterizing the multiband structure associated with a particular lattice

configuration is expected to work, e.g. for the Dice or T3 lattice with intersite distance

a and hopping integral t, it reads

H
(dice)
TB (p) =


0 hp 0

h∗p 0 hp

0 h∗p 0

 , (2.30)

hp = −t
(

1 + 2 exp (3ipya/2) cos(
√

3pxa/2)
)
. (2.31)

It has been argued in a previous work [42] based on a two-band tight-binding model for

the honeycomb lattice that, at these later times around tB, Bloch oscillations appear.

Similar investigations on the later time behavior and the Bloch oscillation issue in

such a generalized three band system with the extra flat band are still much less.

We note that in a recent letter [37], a strikingly tunable/engineered Bloch oscillation

with the flat band under some perturbation is reported in a quasi-one dimensional

diamond lattice. It is interesting and open how it will behave in a more intricate two

dimensional case.

For a particular lattice configuration associated with real materials, band anisotropy

say the trigonal warping will generally arise when entering the energy range relatively

far from the Dirac-like points at the later times. In that case, interesting direction

dependent transport behavior is very likely. Some concrete lessons of driving direction

resolved Bloch oscillation and Zener tunneling can be learned from existing studies for

the two-band systems with a so-called ‘semi-Dirac’ spectrum (a hybrid of the linear

and quadratic dispersion) [193, 194]. It is still unclear how it particularly looks like

in the presence of the flat band and relevant dispersion anisotropy, which we think

itself deserves further studies beyond the current Dirac-like approximate expansion.
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2.7 Conclusion

We investigate non-equilibrium transport of quasiparticles subject to an external

electric field in the pseudospin-1 systems arising from solid state materials whose

energy band structure constitutes a pair of Dirac cones and a flat band through the

conical connecting point. Since the group velocity for carriers associated with the flat

band is zero, one may naively think that the flat band would give no contribution to

the current. However, we find that the current in the pseudospin-1 system is generally

enhanced as compared with that in the counterpart (pseudospin-1/2) system. In

particular, in the weak field regime, for both systems the interband current dominates

and is proportional to the electric field strength and is independent of time. However,

the interference between quasiparticles associated with the flat and the negative bands

in the pseudospin-1 system leads to an interband current whose magnitude is twice

the current in the pseudospin-1/2 system. In the strong field regime, for both types of

system the intraband current dominates and scales with the electric field strength as

E3/2 and linearly with time. We find that the current associated with carrier transition

from the negative to the positive bands is identical for both types of system, but the

flat band in the pseudospin-1 system contributes an additional term to the current,

leading to an enhancement of the total intraband current. The general conclusion is

that, from the standpoint of generating large current, the presence of the flat band in

the pseudospin-1 system can be quite beneficial. Indeed, the interplay between the

flat band and the Dirac cones can lead to interesting physics that has just begun to

be understood and exploited.
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2.8 Supplementary Notes

2.8.1 Analytic Calculation of the Interband Current

In the weak field regime, we can expand Eq. (2.3) as

i~∂tαp(t) = εpαp(t) + C0γp(t), (2.32)

i~∂tγp(t) = C0[αp(t) + βp(t)], (2.33)

i~∂tβp(t) = −εpβp(t) + C0γp(t). (2.34)

Applying the time differential operator i~∂t to Eqs. (2.32) and (2.34), we get

i~∂t(i~∂tαp(t)) = εpi~∂tαp(t) + C0i~∂tγp(t), (2.35)

i~∂t(i~∂tβp(t)) = −εpi~∂tβp(t) + C0i~∂tγp(t), (2.36)

and, hence,

−~2∂2
t αp(t)− ~2∂2

t βp(t) = [αp(t) + βp(t)][ε
2
p + 2C2

0 ]. (2.37)

From Eqs. (2.32) and (2.34), we have

i~∂tαp(t)− i~∂tβp(t) = εp[αp(t) + βp(t)]. (2.38)

Defining xp(t) = αp(t) +βp(t), and yp(t) = αp(t)−βp(t), we get, from Eqs. (2.37) and

(2.38), respectively, the following relations:

d2xp
dt2

+
ε2p + 2C2

0

~2
xp = 0, (2.39)

dyp
dt

=
εp
i~
xp. (2.40)

Solving Eq. (2.39), we get

xp(t) = A cosωt+B sinωt,
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where A and B are constant, and ω =
√

(ε2p + 2C2
0)/~2. Using the initial condition

that the negative band is fully filled: (Φp(t = 0) = [0, 0, 1]T ), we have xp(t = 0) =

A = 1. From Eq. (2.40), we have

yp(t) =
εp
i~ω

[sinωt−B cosωt] + d.

Using the initial condition, we get yp(t = 0) = −m0B+d = −1, where m0 = εp/(i~ω),

d = m0B − 1, which leads to

αp(t) =
1

2
(x+ y) =

1

2
[cosωt+B sinωt+m0(sinωt−B cosωt+B)− 1],

βp(t) =
1

2
(x− y) =

1

2
[cosωt+B sinωt−m0(sinωt−B cosωt+B) + 1].

Substituting the expressions of αp(t) and βp(t) into Eqs. (2.32) and (2.34), we obtain

an expression for γp(t). Using γp(t = 0) = 0, we have B = −m0 and, hence,

αp(t) =
1

2
[cosωt+m2

0(cosωt− 1)− 1], (2.41)

βp(t) =
1

2
[cosωt− 2m0 sinωt−m2

0[cosωt− 1] + 1], (2.42)

γp(t) =
1 +m2

0

2C0

[−i~ω sinωt− εp(cosωt− 1)]. (2.43)
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Chapter 3

SUPER SKEW SCATTERING IN TWO-DIMENSIONAL DIRAC MATERIAL

SYSTEMS WITH A FLAT BAND

The phenomenon of super scattering was previously found to arise in massless

pseudospin-1 two-dimensional Dirac material systems with a flat band. Here we re-

port the phenomenon of super skew scattering of massive pseudospin-1 quasiparticles,

which does not arise in the corresponding massless system. In particular, the scatterer

is electrically generated with a certain geometric shape, and the mass is induced by

gap opening between the Dirac cones. Even for a circular scatterer, the occurrence

of resonant states inside it can induce a sizable anomalous Hall current, which is

associated with the gap opening. The striking finding is that, a significant reduction

in the scatter size and/or the potential height does nothing to weaken the skew scat-

tering and, for certain resonant states, even tends to strengthen the scattering. This

phenomenon of super skew scattering in Dirac materials with a flat band is in stark

contrast to the scattering of massive pseudospin-1/2 quasiparticles from the same

configuration, where skew scattering is significantly weaker and a reduction in the

scatterer strength can quickly diminish it. The phenomenon is established analyti-

cally for the case of a circular scatterer in the framework of continuum Hamiltonian,

and is found to be robust for an elliptical scatterer, which is solved numerically by

adopting the multiple-multipole method to massive pseudospin-1 scattering. Cal-

culations of the electronic transport properties in the Lieb lattice system reveal the

occurrence of a large anomalous Hall current as well, paving the way for experimental

observation and test of super skew scattering. Because of the “skew” nature that is

absent in massless pseudospin-1 systems, the phenomenon of super skew scattering

32



in massive systems can be exploited for applications in novel electronic or photonic

Hall devices.

3.1 Introduction

Notwithstanding the existing work, quantum transport and scattering in massive

pseudospin-1 systems have not been systematically studied, especially with respect

to skew scattering as related to AHE. The purpose of this Chapter is to fill this gap.

In particular, we investigate massive pseudospin-1 wave scattering from a finite size

electrostatic potential barrier (realized by a proper gate voltage in experiments) in the

deep subwavelength regime where the scatterer size is smaller than the wavelength.

We find the occurrence of resonant modes inside the potential domain, associated with

which is a quite appreciable skew scattering (Hall) current. The peak Hall current

value obeys a scaling law with the potential properties. To test the robustness of

the Hall current, we numerically study an elliptic potential barrier and find that the

resonance-induced scattering peaks persist. In fact, due to breaking of the rotational

symmetry, two sets of peaks emerge. For comparison, we also study the scattering of

massive pseudospin-1/2 particles but find a vanishingly small Hall current as the result

of absence of any resonant states. To test the feasibility of experimental observation of

this “super-skew-scattering” phenomenon uncovered using a continuum Hamiltonian

for pseudospin-1 wave scattering, we employ a finite size Lieb lattice device with

a barrier generated by a gate potential, where gap opening is induced through the

mechanisms of dimerization or spin-orbit coupling. We find that the resonant states

leading to a large Hall current peak persist, which is particularly pronounced in the

dimerization case. These findings have potential applications in AHE based devices.
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3.2 Scattering Hamiltonian and Analytic Cross Sections for a Circular Potential

The 2D scattering system of massive pseudospin-1 quasiparticle from a scalar

potential barrier of a given geometric shape is schematically illustrated in Fig. 3.1.

The barrier shape is defined by the potential function V (r), where r represents the

position in the plane. The continuum massive pseudospin-1 Hamiltonian with a single

Dirac point can be written as

H = ~vFS · k + ∆Sz + V (r), (3.1)

where vF is the magnitude of the group velocity associated with the Dirac cone,

k = (kx, ky) denotes the wave vector, and ∆ is the size of the energy gap between

the flat and upper (lower) bands. The vector of matrices, S = (Sx, Sy), along with

the third matrix Sz, forms a complete representation of spin-1 quasiparticles with

the angular momentum commutation relations: [Sl, Sm] = iεlmnSn. The free-space

energy-momentum dispersion relations in the presence of the energy gap ∆ and a

constant scalar potential V are

E = V, (3.2)

E = ±
√
~2v2

F (k2
x + k2

y) + ∆2 + V, (3.3)

as illustrated in Fig. 3.1(a).

The scattering process can be fully characterized by a number of cross sections:

the differential, total, transport and skew cross sections, denoted as dσ/dθ, σ, σtr

and σskew, respectively. For the case of a circular, constant potential barrier, these

cross sections of pseudospin-1 system can be calculated analytically. In particular,

let V and R be the height and radius of the 2D potential barrier, respectively. The

potential function is given by

V (r) = VΘ(R− r), (3.4)
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Figure 3.1: Schematic illustration of massive pseudospin-1 particle scattering. (a)
The energy-momentum dispersion relations in distinct spatial regions. (b) 2D scat-
tering from a scatterer formed by a scalar gate potential.

where Θ is the Heaviside function. The generalized Pauli matrices Sx, Sy, and Sz for

spin-1 quasiparticles are

Sx =
1√
2


0 1 0

1 0 1

0 1 0

 , Sy =
1√
2


0 −i 0

i 0 −i

0 i 0

 , (3.5)

and

Sz =


1 0 0

0 0 0

0 0 −1

 . (3.6)

The Hamiltonian matrix in the polar coordinates is

H = −~vF√
2
·


−
√

2(∆+V )
~vF

e−iθ(i∂r + 1
r
∂θ) 0

eiθ(i∂r − 1
r
∂θ)

−
√

2V
~vF

e−iθ(i∂r + 1
r
∂θ)

0 eiθ(i∂r − 1
r
∂θ)

−
√

2(−∆+V )
~vF

 , (3.7)
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Because of the circular geometry of the electric potential scatterer, the total angular

momentum

l = −i~∂θ + ~Sz(= 0,±1,±2, . . .

is conserved. The partial wave component corresponding to l is

ψl(r) =


u1e

i(l−1)θ

u2e
ijθ

u3e
i(l+1)θ

 , (3.8)

which enables a reduction of the Dirac equation Hψ = Eψ to the following radial

differential equation:

−~vF√
2


−
√

2(∆+V−E)
~vF

i( ∂
∂r

+ l
r
) 0

i( ∂
∂r
− l−1

r
) −

√
2(V−E)
~vF

i( ∂
∂r

+ l+1
r

)

0 i( ∂
∂r
− l

r
) −

√
2(−∆+V−E)

~vF

 ·


u1

u2

u3

 = 0. (3.9)

The corresponding eigenfunction is

ψl = C


sτF

τ
l−1(kτr)e

−iθ

i
√

2ντF
τ
l (kτr)

tτF
τ
l+1(kτr)e

iθ

 eilθ, (3.10)

where

kτ =
√

(E − Vτ )2 −∆2/~vF , (3.11)

sτ = −(∆− Vτ + E)~vFkτ , (3.12)

ντ = (∆ + Vτ − E)(∆− Vτ + E), (3.13)

tτ = −(∆ + Vτ − E)~vFkτ , (3.14)

with τ = I or II denoting the exterior or interiors regions of the potential barrier,

respectively. In the exterior region of the potential barrier, F I
l (kIr) = Hl(kIr) is the
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Hankel function of the first kind. In the potential region, F II
l (kIIr) = Jl(kIIr) is the

Bessel function. Employing the method of partial wave decomposition, we can write

the incident wave in the spinor spherical wave basis as

Ψin =
N√

2

∑
l

il−1


sIJl−1(kIr)e

−iθ

i
√

2νIJl(kIr)

tIJl+1(kIr)e
iθ

 eilθ, (3.15)

and the reflected wave as

Ψref =
N√

2

∑
l

il−1Al


sIHl−1(kIr)e

−iθ

i
√

2νIHl(kIr)

tIHl+1(kIr)e
iθ

 eilθ, (3.16)

with Jl(x) and Hl(x) being the Bessel and Hankel functions of the first kind, respec-

tively. The transmitted wave inside the potential region is

Ψtr =


ψII1

ψII2

ψII3

 =
N√

2

∑
l

il−1Bl


sIIJl−1(kIIr)e

−iθ

i
√

2νIIJl(kIIr)

tIIJl+1(kIIr)e
iθ

 eilθ. (3.17)

The total wavefunction outside the scattering region (r > R) is given by

ΨI = Ψin + Ψref =


ψI1

ψI2

ψI3

 (3.18)

=
N√

2

∑
l

il−1


sI [Jl−1(kIr) + AlHl−1(kIr)]e

−iθ

i
√

2νI [Jl(kIr) + AlHl(kIr)]

tI [Jl+1(kIr) + AlHl+1(kIr)]e
iθ

 eilθ.

Utilizing the boundary conditions

ψI2(R, θ) = ψII2 (R, θ), (3.19)

ψI1(R, θ) + ψI3(R, θ) = ψII1 (R, θ) + ψII3 (R, θ), (3.20)
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we can obtain the coefficients Al and Bl with the formula given in Appendix 3.6.1.

In the far field, i.e., r � R, the spinor wave function can be written as

ΨI = N


− sI√

2

−νI
tI√

2

 eikr cos θ +N


− sI√

2
e−iθ

−νI
tI√

2
eiθ

 f(θ)√
r
eikr. (3.21)

The reflected wave can be simplified as

Ψref = N
∑
l

−ilAl
√

2

πkIr
ei(kIr−

lπ
2
−π

4
)


− sI√

2
e−iθ

−νI
tI√

2
eiθ,

 eilθ (3.22)

where we have used the approximate formula for the Hankel function of the first kind

for x� 1:

Hν(x) ≈
√

2

πx
ei(x−

νπ
2
−π

4
). (3.23)

This way, we obtain an explicit form for the function f(θ) as

f(θ) = −e
−iπ/4
√

2πk

∞∑
l=−∞

2Ale
ilθ. (3.24)

The differential, total, transport, and skew cross sections are given by

dσ

dθ
= |f(θ)|2 =

2

πk
|
∑
l

Ale
ilθ|2, (3.25)

σ =

∫ 2π

0

|f(θ)|2dθ =
4

k

∑
l

|Al|2, (3.26)

σtr =

∫ 2π

0

|f(θ)|2(1− cos θ)

= σ − 4

k

∑
l

<[AlA
∗
l+1], (3.27)

σskew =

∫ 2π

0

dθ|f(θ)|2 sin θ

=
4

k

∑
l

=[A∗lAl+1], (3.28)

respectively, with k =
√
E2 −∆2/~vF .
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3.3 Emergence of Super Skew Scattering

3.3.1 Circular Scatterer

Far Field Behavior

We first study a circular scatterer whose scalar potential barrier is defined by Eq. (3.4).

As shown in Sec. 3.2, due to the circular symmetry, the Dirac-Weyl equation can

be analytically solved to yield the various scattering cross sections. For example,

the skew scattering cross section is given by Eq. (3.28), which is determined by the

coefficients Al in the partial wave expansion. The formulas for these coefficients are

quite sophisticated, posing an obstacle to understand the basic scattering physics.

To gain insights, we focus on the weak scattering regime where the size of the

scatterer is smaller than the electron wavelength: kIR � 1, V R/~vF � 1, and

kIIR � 1. In this regime, the formulas for Al and then for σskew can be simplified.

Figure 3.2(a) shows σskew versus the incident electron energy for V R = 0.256 (with

radius R = 1) and normalized mass R∆ = 0.064. The choice of the value of V R can

be arbitrary in a wide range to give qualitatively similar results. We set R∆ = V R/4

for convenience. It can be seen that σskew exhibits three resonant peaks, one wide but

relatively low and the two others narrow but high, for energy about V0/2, indicating

strong skew scattering near this energy value. The occurrence of skew scattering is

indicative of the emergence of AHE for massive pseudospin-1 electrons scattered by

an electric gate potential. In contrast, for pseudospin-1/2 scattering from the same

configuration, no such resonant peaks in σskew arise and its overall values are much

smaller than those for pseudospin-1 scattering in the entire energy interval, as shown

in Fig. 3.2(b).

Associated with the wider resonant peak in Fig. 3.2(a), the skew scattering is
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Figure 3.2: Contrasting behaviors arising from the scattering of massive pseudospin-
1 and that of pseudospin-1/2 quasiparticles from a circular gate potential scatterer
in the Klein tunneling regime where the particle energy is about half of the potential
height. The mass of the quasiparticles is ∆ = 0.064 and the gate potential is V =
0.256. (a) Skew scattering cross section σskew for massive pseudospin-1 quasiparticles
versus incident energy, where resonant peaks arise. (b) The corresponding plot for
pseudospin-1/2 scattering, where no resonant peaks occur and the values of σskew
are much smaller than those in (a) in the entire energy range. (c) Magnification of
the first resonant peak in (a), where the red solid and blue dashed curves are the
numerical and analytic results, respectively. (d) The corresponding magnification for
pseudospin-1/2 scattering with the same legends as in (c). (e) Magnification of the
second resonant peak in (a). (f) The corresponding magnification for pseudospin-1/2
scattering.
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mainly contributed to by the interference between the l = 0 and l = 1 states. Focusing

on the corresponding terms in Eq. (3.28), we get

σskew ≈
4

k
=[A0A

∗
1] ≈ πkR2V

2

E2

(V − E)(E −∆) + 2∆E

V (E + ∆)
, (3.29)

which is plotted as the dashed curve in Fig. 3.2(c), where the peak value is over 0.6.

This analytic prediction agrees reasonably well with the numerical curve. The second

(narrow and higher) peak in Fig. 3.2(a) is due to the interference between the l = 1

and l = 2 states. Focusing on this particular interference channel, we get

σskew ≈
4

k
=[A1A

∗
2] ≈ − 4

π

V − E + ∆

V

ln γkR
2

k
, (3.30)

with ln γ ≈ 0.577 being the Euler’s constant, which is plotted as the blue dashed

curve in Fig. 3.2(e). In comparison with the numerical curve (red solid), we observe

a close resemblance between them, with a small difference in the peak position. In

this case, the peak value of σskew is quite large, which is strong evidence for the

emergence of super skew scattering. The details of the derivation and approximation

of the analytic scattering formulas are given in Appendix 3.6.1.

For scattering of massive pseudospin-1/2 quasiparticles, the analytic formula for

the skew scattering cross section is (details in Appendix 3.6.2)

σskew =
4

k

∑
l

=[AlA
∗
l+1] ≈ 4

k
=[A0A

∗
1] = −π

2

8

V 3∆

k
(E2 −∆2), (3.31)

which agrees well with the numerical result, as shown in Figs. 3.2(d) and 3.2(f) for

the same energy intervals as in Figs. 3.2(c) and 3.2(e), respectively. In stark contrast

to the scattering of pseudospin-1 quasiparticles, there are no resonant peaks and the

value of σskew is about 4× 10−4, which is over three orders of magnitude smaller than

those of the former.
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Figure 3.3: Resonant state and current distribution for massive pseudospin-1 scat-
tering from a circular potential barrier. (a) Probability density distribution of the
first pseudospin-1 resonant state for E = 0.1234, and (b) the current density and
spin-z density distributions, where the in-plane current is labeled by the white ar-
rows and the out-of-plane pseudospin-z component is represented by the color map.
(c) Probability density distribution for the second resonant state for E = 0.1276. (d)
The corresponding current density and spin-z density distributions, with the same
legends as in (b). (e) Probability density distribution of pseudospin-1/2 system for
energy E = 0.128, and (f) the corresponding current and spin-z density distributions.
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Near-field Scattering Behavior

To reveal the near-field behavior, we calculate the probability and current distribu-

tions of the states corresponding to the first (wide) and second (narrow) resonant

peaks in Fig. 3.2(a). The probability distribution can be written as P = Ψ†Ψ, where

Ψ = (ψ1, ψ2, ψ3)T is the wavefunction for points inside and outside the potential area,

respectively, as given by Eqs. (3.17) and (3.18). The probability current operator is

Ĵ = ∇pH = vF (Sx, Sy), so the probability current density can be obtained as

J = (Jx, Jy)

= vF
√

2[Re(ψ∗1ψ2 + ψ∗2ψ3), Im(ψ∗1ψ2 + ψ∗2ψ3)]. (3.32)

The probability density distribution of the spin-z component is given by

〈σz〉 = |ψ1|2 − |ψ3|2. (3.33)

The results for the first peak are shown in Figs. 3.3(a) and 3.3(b) for the peak

in Fig. 3.2(c) for energy E = 0.1234. It can be seen that the quasiparticles are

mainly confined inside the potential area with a clockwise current, and the spin-

z component is positive inside and negative outside. By further investigating the

wavefunction form in Eqs. (3.17) and (3.18), we find that the main contribution

to this probability distribution is the partial component of the angular momentum

channel l = 1. As a result, the probability distribution is approximately circularly

symmetric. The corresponding results for the second peak are shown in Figs. 3.3(c)

and 3.3(d) for E = 0.1276. This resonance state is mostly confined about the edge

area of the potential with a clockwise current inside and a counterclockwise current

outside, and the spin-z component has different signs inside and outside the barrier.

Moreover, the electron density is much larger than that associated with the first

resonant state. We find that the main contribution to this state comes from the
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partial component of l = 2. In contrast, for pseudospin-1/2 quasiparticles, there

is neither concentration of the probability density in the potential region nor that

for the current, as shown in Figs. 3.3(e) and 3.3(f), indicating an absolute absence

of any resonant scattering behavior. This lack of resonance is further confirmed

by checking the partial component contributions, where a number of low angular

momentum states contribute to this probability distribution. That is, pseudospin-

1/2 quasiparticles effectively “see” no potential with near zero scattering.

Emergence of Super Skew Scattering - Scaling of Skew Cross Section with

Scatterer Strength

The analytical formulas for the skew scattering cross section for pseudospin-1 and

pseudospin-1/2 quasiparticles [Eqs. (3.29-3.31)], together with the numerical support

in Fig. 3.2, suggest certain scaling relationship between the cross section and the

strength parameter V R of the scatterer. Figure 3.4 shows, on a log-log plot, the

peak value of the effective skew scattering cross section σskew/R versus V0R for three

cases: pseudospin-1/2 scattering (blue) and resonant scattering associated with the

first (red) and second (green) resonances in pseudospin-1 scattering [in Figs. 3.2(c)

and 3.2(e), respectively]. Note that there are no peaks in the skew scattering cross

section for pseudospin-1/2 particle, so we choose the energy to be E = V/2. In all

three cases, there is a reasonably good agreement between the analytic predictions

and the numerical results. For pseudospin-1/2 scattering (blue), the maximum value

of σskew/R decreases rapidly as the strength of the scatterer is reduced: σskew/R ∼

(V R)5, which is characteristic of conventional quantum or light scattering. However,

corresponding to the first resonance of pseudospin-1 scattering (red), the decrease in

the value of the skew cross section is much slower with σskew/R ∼ V R, indicating

persistent super skew scattering when the scatterer is continuously weakened. The
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Figure 3.4: Scaling of the resonant skew scattering cross section peak value with the
strength of the circular scatterer. The red circles and green diamonds represent the
numerical results for the first and second resonances of pseudospin-1 scattering, and
the blue triangles are the corresponding results for pseudospin-1/2 scattering. The
lines of the same colors are the theoretical predictions (not fittings). As the strength
of the scatterer is weakened, the maximum value of the skew cross section decreases
fast for pseudospin-1/2 scattering, but not so for pseudospin-1 scattering. In fact,
for the second resonance peak in pseudospin-1 scattering (green), the skew scattering
tends to intensify slightly as the scatterer becomes weaker. This scaling behavior
signifies the emergence of super skew scattering of pseudospin-1 quasiparticles.

surprising phenomenon occurs for the second resonance of pseudospin-1 scattering

(green), where skew scattering tends to intensify even as the scatterer strength is

reduced, implying the presence of a large anomalous Hall current. A summary of

the scaling of the peak value of skew and transport scattering cross section with the

scatterer strength V R is given in Table 3.1 of Appendix 3.6.3.

3.3.2 Elliptic Scatterer

To test the robustness of resonant skew scattering for pseudospin-1 quasiparticles

against geometric deformations, we consider an elliptical potential barrier. In this
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case, the scattering cross sections cannot be obtained analytically, and we use the

multiple multipole method developed for treating the scattering of spin-1 and spin-

1/2 particles from scatterers of an arbitrary geometric shape [30, 56].
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Figure 3.5: Skew cross section versus energy E for scattering of massive Dirac quasi-
particles from an elliptic gate potential barrier: (a) pseudospin-1 and (b) pseudospin-
1/2. The uniform mass value is ∆ = 0.064 and the gate potential is V = 0.256 inside
the elliptic barrier.

Far-field behavior. For comparison, we use the same values of the potential and

mass as for the case of a circular scatterer: V = 0.256 and ∆ = 0.064, and set the area

of the ellipse to be identical to that of the circle. Here, the ratio of the semi-minor axis

b to the semi-major axis a is set to 0.6. The incident plane wave comes from the left to

the right along the major axis of the ellipse. As shown in Fig. 3.5(a), for pseudospin-1

scattering, four resonant peaks arise in the pertinent energy interval: two wide and

two narrow peaks, where one pair of wide-narrow peaks have their energy less than
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V/2 and the other pair larger than V/2. This should be compared with the case of a

circular scatterer where the pair of resonant peaks have their energies approximately

equal to V/2. The difference in the locations of the resonances notwithstanding, the

occurrence of skew resonant scattering is robust against geometric deformations of

the scatterer.

For pseudospin-1/2 scattering, no resonant peak exists in the skew scattering cross

section, as shown in Fig. 3.5(b), which is similar to the case of a circular scatterer.

Near-field behavior. Figure 3.6 shows the distributions of the probability, cur-

rent, and the out-of-plane component of the pseudospin for the four resonant states

in Fig. 3.5(a) and for the corresponding pseudospin-1/2 scattering. The probability

distribution for the first, wide resonant state is shown in Fig. 3.6(a), where the elec-

tron is uniformly distributed inside the potential region. Figure 3.6(b) shows that the

current exhibits a vortex structure and is in the counterclockwise direction along the

right and left edges of the barrier. It is this unidirectional current distribution that

leads to the AHE. Figure 3.6(b) also shows that the z-component of the pseudospin

is positive inside the barrier and negative outside. The probability distribution of the

fourth wide resonant state is similar to that of the first state, as shown in Fig. 3.6(g),

where the quasiparticles concentrate inside the barrier. The current is still coun-

terclockwise, which forms vortices around the up and down parts of the barrier, as

shown in Fig. 3.6(h). In addition, the z-component of pseudospin is negative inside

the barrier region, in contrast to that associated with the first resonance. The cor-

responding results for the second and the third narrow resonance peaks are shown

in Figs. 3.6(c-f), where the directions of the current for the two cases are the same.

For the second peak, the current vortices occur at the four edges of the barrier (up,

down, left, and right), while for the third peak, the vortices are in the up-left/right
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Figure 3.6: Resonant state and current distribution for massive pseudospin-1 scat-
tering from an elliptical potential barrier. (a,c,e,g) Probability density distribution
for the pseudospin-1 resonant state for E = 0.094, 0.1198, 0.1357, and 0.1569, respec-
tively. (b,d,f,h) The corresponding current density and spin-z density distributions,
where the in-plane current is labeled with the arrows and the out-of-plane z com-
ponent of the pseudospin is color represented. (i) Probability density distribution
for pseudospin-1/2 scattering from an elliptical scatterer for E = 0.128 and (j) the
corresponding current and pseudospin-z distributions.
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and down-left/right corners. The pseudospin-z directions are opposite for the two

narrow resonance states. For pseudospin-1/2 scattering, no resonant states occur,

nor do current vortices, as shown in Figs. 3.6(i) and 3.6(j), leading to near zero values

of the skew scattering cross section.
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Figure 3.7: Scaling of the peak value of skew scattering cross section with the
strength of an elliptical electrical potential scatterer. The cross section is normalized
by R, the radius of the circle with the same area as the ellipse, and the scatterer
strength is V R (R = 1). The blue up-triangles, red circles, orange down-triangles, and
green squares are the data points associated with the four skew scattering resonances
in Fig. 3.5(a), respectively, from small to large energies. The red, green and blue
lines are the theoretical results for circular scatterer, which serve as a reference. For
pseudospin-1 quasiparticles, for all four resonant states, as the scatterer strength is
reduced, the maximum value of the skew cross section decreases little, signifying super
skew scattering. For pseudospin-1/2 quasiparticles (blue diamonds and dashed line),
the maximum decreases rapidly and algebraically with the scatterer strength, which
is typical of conventional quantum or light scattering.

Persistence of super skew scattering. Figure 3.7 shows the peak values of the

four skew scattering resonances in Fig. 3.5(a) versus the scatterer strength. The

data points from the four resonant states are nearly identical and, as the scatterer
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is weakened (by reducing the barrier height or its size, or both), the decrease in the

peak cross section values roughly follow the scaling of σskew/R ∼ V R, similar to the

behavior of the first peak in the circular-potential case, which is indicative of super

skew scattering that persists even when the circular potential barrier is deformed.

In contrast, for pseudospin-1/2 quasiparticles, the maximum value of the skew cross

section is small and decreases rapidly with the scatterer strength, as for the case of a

circular barrier in Fig. 3.4. It is worth noting that skew scattering is robust against

not only deformations of the scatterer shape, but also variations in the incident angles

due to the resonant vortices formed about the potential area. (Further evidence is

provided in Appendix 3.6.4.)

3.4 Skew Resonant Scattering and Anomalous Hall Effect in Experimental Massive

Pseudospin-1 Lattice Systems

The results in Secs. 3.2 and 3.3 are from the effective, continuum Hamiltonian

model for pseudospin-1 scattering where the system size is infinite. In experiments,

pseudospin-1 systems are typically realized through lattices, e.g., photonic, electronic,

or cold-atom lattices of finite size. To anticipate the theoretical and numerical results

in Secs. 3.2 and 3.3 to occur in real physical systems, a prerequisite is to study if

resonant skew scattering can arise in a finite lattice system. To be concrete, herein

we study massive pseudospin-1 transport in a paradigmatic flat-band system: the

Lieb lattice, as shown in Fig. 3.8(a). The relation between the single Dirac cone

Hamiltonian of a Lieb lattice and that of a dice lattice can be found in Appendix 3.6.5.

For an idealized Lieb lattice, the energy bands consist of a pair of vertex-touching

Dirac cones and a flat band through the touching point, so the quasiparticles are of

the massless pseudospin-1 type. When a gap opens between the two Dirac cones, the

quasiparticles become massive. There are two methods to open up such a gap. The
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Figure 3.8: Schematic illustration of an experimentally feasible, finite size lattice
system for massive pseudospin-1 scattering. (a) General Lieb lattice structure. (b,c)
Two mechanisms to generate massive pseudospin-1 quasiparticles: (b) dimerization
and (c) imaginary next-nearest-neighbor interaction. (d,e) Band structures for the
dimerized and imaginary next-nearest neighbor hopping Lieb lattices, respectively.
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first one is through dimerization, which staggers different hopping amplitudes along

the a-b and a-c directions, as shown in Fig. 3.8(b). The difference in the coupling

strength breaks the C4 symmetry of the lattice, leading to a gap opening. This is

the 2D Su-Schrieffer-Heeger (SSH) model [40, 65] with the following tight-binding

Hamiltonian:

H =
∑
n,m

ta+
n,mbn,m + t′a+

n,mbn−1,m + ta+
n,mcn,m + t′a+

n,mcn,m−1 + h.c. (3.34)

where t and t′ are the nearest neighbor coupling energies, {a+
n,m, b

+
n,m, c

+
n,m} and

{an,m, bn,m, cn,m} are the creation and annihilation operators for the localized states

|an,m〉, |bn,m〉, |cn,m〉 of each atom, with n,m being the cell indices. In the momentum

representation, the Hamiltonian is described by the following 3× 3 matrix:

H = (3.35)
0 tei

kxa
2 + t′e−i

kxa
2 tei

kya

2 + t′e−i
kya

2

te−i
kxa
2 + t′ei

kxa
2 0 0

te−i
kya

2 + t′ei
kya

2 0 0

 .

The corresponding energy-momentum dispersion relation is

E±(k) = ±
√

4tt′ cos2
kxa

2
+ 4tt′ cos2

kya

2
+ 2(t− t′)2, (3.36)

E0(k) = 0, (3.37)

where E± are the energies of the upper and lower bands, respectively, E0 is the flat

band energy of the Lieb lattice, and a is lattice constant. Near the Dirac point

k = (π
a
, π
a
), the gap is the smallest with ∆ =

√
2|t − t′|. In the vicinity of the gap,

the quasiparticles are described by the generalized, spin-1 Dirac-Weyl equation. The

band structure is illustrated in Fig. 3.8(d).

The second method to open up a gap for the Lieb lattice is to introduce a purely

imaginary next-nearest neighbor (NNN) hopping term [12, 65] between atoms b and

52



c with coupling strength λ , as shown in Fig. 3.8(c). Such interactions can be created

via a magnetic flux [66] or spin-orbit coupling with only one spin component [12, 195].

The tight-binding Hamiltonian is

H =
∑
n,m

ta+
n,mbn,m + ta+

n,mbn−1,m + ta+
n,mcn,m

+ ta+
n,mcn,m−1 − iλc+

n,mbn,m − iλb+
n−1,mcn,m

− iλc+
n,m−1bn−1,m − iλb+

n,mcn,m−1 + h.c., (3.38)

and the momentum space Hamiltonian is

H =


0 2t cos kxa

2
2t cos kya

2

2t cos kxa
2

0 −i4λ sin kxa
2

sin kya

2

2t cos kya

2
i4λ sin kxa

2
sin kya

2
0

 , (3.39)

with the energy-momentum dispersion relation given by

E±(k) = ±
√

4t2[cos2
kxa

2
+ cos2

kya

2
] + 16λ2 sin2 kxa

2
sin2 kya

2
, (3.40)

E0(k) = 0. (3.41)

At the Dirac point, the gap size is ∆ = 4λ and the corresponding band structure is

schematically shown in Fig. 3.8(e).

We employ the Kwant package [196] to calculate the transport properties of mas-

sive pseudospin-1 particles on a finite Lieb lattice. We set the device length (in the

horizontal direction) to be 80 lattice units and width (in the vertical direction) to be

40 units. The left and right leads have the same width as the device. To measure

the Hall current, we set up two leads (up and down) with the width of two units. A

circular gate potential is applied to the top of the device, whose radius is 10 units,

with the potential height V = 0.01. The gap size is ∆ = 0.0025. The incident elec-

tron energy (normalized by the hopping energy t) varies from 0.0026 to 0.0099. The
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electrons come from the left lead, scatter from the device defined by the potential

step, and leave the device through the right lead.
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Figure 3.9: Hall and longitudinal voltages of massive pseudospin-1 particles through
a finite Lieb lattice device defined by an externally applied electrical potential. (a,b)
Hall and longitudinal voltages versus the incoming electron energy for the dimeriza-
tion gap-opening mechanism, respectively. (c,d) The corresponding results for the
imaginary NNN hopping gap-opening mechanism.

Figures 3.9(a) and 3.9(b) show, for the dimer structure Lieb lattice, the Hall and

longitudinal voltages versus the incident electron energy. The Hall voltage exhibits

a large number of wide and narrow peaks, indicating the occurrence of Hall current

(the Hall effect is anomalous because of the absence of any external magnetic field).

The corresponding results for the imaginary NNN hopping Lieb lattice are shown

in Figs. 3.9(c) and 3.9(d), where there are valleys below the constant Hall voltage,

resulting from breaking of the time-reversal symmetry and the finite size effect.
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Figure 3.10: Density and current distribution associated with resonant states. (a,b)
Dimerization Lieb lattice with incident electron energy E = 0.00406. (c,d) Imaginary
NNN hopping Lieb lattice with incident energy E = 0.00404.

We calculate the probability density and current distribution associated with the

peak resonant state for incidence energy of E = 0.0406 (dimerization lattice) and E =

0.0404 (imaginary NNN hopping lattice). For the dimerized lattice scattering system,

there is a concentration of pseudospin-1 electrons about the edge of the potential

region, as shown in Fig. 3.10(a). Associated with the resonant state, there are current

vortices around the top and bottom edges of the potential, as shown in Fig. 3.10(b),

where the currents in the top and bottom vortices have opposite directions, signifying

conservation of time-reversal symmetry. The corresponding results for the imaginary

NNN hopping Lieb lattice are shown in Figs. 3.10(c) and 3.10(d). In this case, the

currents associated with the top and bottom vortices have the same direction, as

shown in Fig. 3.10(d), which is indicative of a broken time-reversal symmetry.

The results in Figs. 3.9 and 3.10 affirm that skew resonant scattering leading to

anomalous Hall current can arise in experimentally realizable lattice systems hosting

55



massive pseudospin-1 quasiparticles.

3.5 Discussion

The phenomenon of superscattering in Dirac material systems has been theoret-

ically predicted [26]. Specifically, in the subwavelength regime where the size of the

scatterer is smaller than the wavelength, extraordinarily large values of the scattering

cross section can arise even when the scatterer strength as measured by the product of

its size with the potential height becomes arbitrarily small. This phenomenon occurs

in two-dimensional Dirac material systems in which the quasiparticles are of the mass-

less pseudospin-1 type, defying the conventional wisdom that wave scattering as char-

acterized by the cross section should weaken continuously as the scatterer strength is

reduced. The physical mechanism underlying superscattering was found [26] to be the

emergence of a class of localized resonant modes inside the scatterer [24]. The energy

band structure of the Dirac materials that host massless pseudospin-1 quasiparticles

consists of a pair of Dirac cones with a flat band through the conical connecting point

- the Dirac point, without gap opening. In experiments or real applications, various

perturbations can be present which open a gap at the Dirac point, rendering massive

the quasiparticles. The questions are whether the phenomenon of superscattering can

persist and whether there are features that do not occur in the massless case.

Our study of massive pseudospin-1 scattering from an electrostatic potential bar-

rier reveals the phenomenon of super skew scattering. Our method consists of two

steps. First, for theoretical interest, we consider an effective continuum Hamiltonian

system, in which an externally applied electrical field generates a potential barrier of

either a circular or a deformed shape. In the former case, the wavefunctions and the

relevant scattering cross sections can be solved analytically from the generalized spin-

1 Dirac-Weyl equation through the approach of partial wave decomposition. Analytic
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and numerical results provide evidence for the occurrence of skew resonant scattering.

The remarkable finding is the phenomenon of super skew scattering in which a de-

crease in the size and/or potential height of the scatterer does not lead to a reduction

in the skew scattering cross section. When the circular scatterer is deformed so that

the cross sections can be calculated only numerically, we find that the phenomenon

of super skew scattering persists. We emphasize that skew scattering resonances and

super scattering belong to the type of exotic physics unique to pseudospin-1 Dirac

material systems with a flat band. In fact, we have demonstrated that such behaviors

do not arise in pseudospin-1/2 systems (e.g., graphene).

Skew scattering is synonymous with AHE. In experiments, massive pseudospin-

1 Dirac material systems are realized by finite size lattices and the Hall current

is usually measured. We have thus studied a Lieb lattice system incorporating two

distinct mechanisms to induce a band gap so that quasiparticles are of the pseudospin-

1 type with a finite mass. We find that skew resonant scattering and anomalous Hall

current can arise in the lattice systems, paving the way for experimentally observing

and characterizing these phenomena. It should be noted the band topology can affect

the transport behavior in a finite lattice system (See 3.6.6).

The phenomenon of resonant skew scattering in massive pseudospin-1 systems

can be exploited for applications in Hall devices. For example, the skew scattering

direction (or the direction of the anomalous Hall current) depends on the polarity

of the applied electrical potential: by switching its polarity, the Hall current will be

reversed. This may find applications in quantum sensing. Further, our work has

revealed that, when the geometric shape of the scattering region is deformed from

a perfect circle, a pair of wide resonant peaks with opposite z component of the

pseudospin can arise for different incident energy. Tuning the incident energy can

thus be used to control the direction of pseudospin.
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We remark that, while adding mass to spin-1 fermions does not suppress the Klein

tunneling effect, our work has revealed a key difference between the massless and mas-

sive cases: there is superscattering in the former but there is super skew scattering

in the latter as induced by the gap opening. The main contribution of our work is

an understanding of the skew scattering cross section resonances as a function of the

incident energy through uncovering a scaling law characteristic of super skew scatter-

ing. The physical origin of the skew scattering resonances has also been elucidated

in terms of certain angular momentum channels. Beyond the previously published

massless, circular-scatterer case, the present work extends the study of massive spin-1

skew scattering to an elliptic shaped scatterer - a numerically challenging feat that

we achieve by generalizing the multiple multipole method to massive spin-1 scatter-

ing. This is evidence that the phenomenon of super skew scattering is robust against

geometric deformation of the scatterer. Another feature going beyond the previous

work on massless spin-1 scattering is that, in the present work, electron transport

in a finite Lieb lattice device has been studied to confirm that the phenomenon of

super skew scattering can arise in experimentally feasible systems. Taken together,

the results of this paper provide new insights into the relativistic quantum scattering

of spin-1 particles with potential applications to anomalous Hall devices.
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3.6 Supplementary Notes

3.6.1 Simplification of Pseudospin-1 Skew Scattering Formula

Using the partial wave decomposition method, we get the coefficient Al and Bl

for the scattering wave as

Al = −A
1
l − A2

l

A3
l − A4

l

, (3.42)

Bl =
B1
l −B2

l

B3
l −B4

l

, (3.43)

where

A1
l = νIJl(kIR)[sIIJl−1(kIIR) + tIIJl+1(kIIR)], (3.44)

A2
l = νIIJl(kIIR)[sIJl−1(kIR) + tIJl+1(kIR)], (3.45)

A3
l = νIHl(kIR)[sIIJl−1(kIIR) + tIIJl+1(kIIR)], (3.46)

A4
l = νIIJl(kIIR)[sIHl−1(kIR) + tIHl+1(kIR)], (3.47)

B1
l = νIHl(kIR)[sIJl−1(kIR) + tIJl+1(kIR)], (3.48)

B2
l = νIJl(kIR)[sIHl−1(kIR) + tIHl+1(kIR)], (3.49)

B3
l = νIHl(kIR)[sIIJl−1(kIIR) + tIIJl+1(kIIR)], (3.50)

B4
l = νIIJl(kIIR)[sIHl−1(kIR) + tIHl+1(kIR)], (3.51)

and

sτ = ~vFkτ (Vτ −∆− E), tτ = −~vFkτ (Vτ + ∆− E),

ντ = −(Vτ + ∆− E)(Vτ −∆− E), kτ =

√
(E − Vτ )2 −∆2

~2v2
F

, (3.52)

with τ = I or II, corresponding to the region outside or inside the scatterer, respec-

tively. For simplicity, we denote x1 = kIR and x2 = kIIR. The weak scattering

59



regime can then be characterized by x1 � 1 and x2 � 1. For angular momentum

l = 0, we have

A0 = − νIJ0(x1)[sIIJ−1(x2) + tIIJ1(x2)]− νIIJ0(x2)[sIJ−1(x1) + tIJ1(x1)]

νIH0(x1)[sIIJ−1(x2) + tIIJ1(x2)]− νIIJ0(x2)[sIH−1(x1) + tIH1(x1)]

≈ −
νI [sII(−x2

2
) + tII

x2
2

]− νII [sI(−x1
2

) + tI
x1
2

]

νI [1 + i 2
π

ln γx1
2

][sII(−x2
2

) + tII
x2
2

]− νII [sI(−x1
2

+ i 2
π

1
x1

) + tI(
x1
2
− i 2

π
1
x1

)]

= −
νI
2
x2(tII − sII)− νII

2
x1(tI − sI)

νI
2
x2(tII − sII)[1 + i 2

π
ln γx1

2
]− νII

2
x1(tI − sI)[1− i 4

π
1
x21

]

≈ − πx2
1

πx2
1 − i4E

V
+ i2V−E

V
x2

1 ln γx1
2

, (3.53)

where Eq. (3.52) have been used in Eq. (3.53) to yield the final approximate results.

For angular momentum l = 1 with the corresponding coefficient A1, we have

A1 = − νIJ1(x1)[sIIJ0(x2) + tIIJ2(x2)]− νIIJ1(x2)[sIJ0(x1) + tIJ2(x1)]

νIH1(x1)[sIIJ0(x2) + tIIJ2(x2)]− νIIJ1(x2)[sIH0(x1) + tIH2(x1)]

≈ −
νIx1

2
[sII + tII

x22
8

]− νIIx2
2

[sI + tI
x21
8

]

νI [
x1
2
− i 2

π
1
x1

][sII + tII
x22
8

]− νIIx2
2

[sI(1 + i 2
π

ln γx1
2

) + tI(
x21
8
− i 4

π
1
x21

)]

≈ − πx2
1

πx2
1 + i[4E−∆

E+∆
V−2E
V

+ 2V+∆−E
V

x2
1 ln γx1

2
]
. (3.54)

For A−1 with angular momentum l = −1, we have

A−1 =
−νIJ−1(x1)[sIIJ−2(x2) + tIIJ0(x2)] + νIIJ−1(x2)[sIJ−2(x1) + tIJ0(x1)]

νIH−1(x1)[sIIJ−2(x2) + tIIJ0(x2)]− νIIJ−1(x2)[sIH−2(x1) + tIH0(x1)]

≈ −
νIx1

2
[tII + sII

x22
8

]− νIIx2
2

[tI + sI
x21
8

]

νI [
x1
2
− i 2

π
1
x1

][tII + sII
x22
8

]− νIIx2
2

[tI(1 + i 2
π

ln γx1
2

) + sI(
x21
8
− i 4

π
1
x21

)]

≈ − πx2
1

πx2
1 + i[4E+∆

E−∆
V−2E
V

+ 2 (V−∆−E)
V

x2
1 ln γx1

2
]
. (3.55)
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For A2 corresponding to the angular momentum l = 2, we have

A2 = − νIJ2(x1)[sIIJ1(x2) + tIIJ3(x2)]− νIIJ2(x2)[sIJ1(x1) + tIJ3(x1)]

νIH2(x1)[sIIJ1(x2) + tIIJ3(x2)]− νIIJ2(x2)[sIH1(x1) + tIH3(x1)]

≈

−νIx
2
1

8
[sII

x2
2

+ tII
x32
48

] +
νIIx

2
2

8
[sI

x1
2

+ tI
x31
48

]

νI
x21
8

[sII
x2
2

+ tII
x32
48

]− νIIx
2
2

8
[sI

x1
2

+ tI
x31
48

]− i 4
π
νI
x21

[sII
x2
2

+ tII
x32
48

] + i
νIIx

2
2

8
[ 2
π
sI
x1

+ 16
π
tI
x31

]

(3.56)

≈ − πx4
1

πx4
1 + i[32E−∆

E+∆
V−2E
V
− 4x2

1
V−E+∆

V
(1− 1

3
V−E+∆
E+∆

)]
. (3.57)

For A−2, we have

A−2 =

−νIJ−2(x1)[sIIJ−3(x2) + tIIJ−1(x2)] + νIIJ−2(x2)[sIJ−3(x1) + tIJ−1(x1)]

νIH−2(x1)[sIIJ−3(x2) + tIIJ−1(x2)]− νIIJ−2(x2)[sIH−3(x1) + tIH−1(x1)]
(3.58)

≈ − πx4
1

πx4
1 + i[32E+∆

E−∆
V−2E
V
− 4x2

1
V−E−∆

V
(1− 1

3
V−E−∆
E−∆

)]
. (3.59)

The reflection amplitude can be obtained as

f(θ) = −e−iπ/4
√

2

πk

∞∑
l=−∞

Ale
ilθ. (3.60)

The differential cross section is given by

dσ

dθ
= |f(θ)|2 =

2

πk
|
∞∑

l=−∞

Ale
ilθ|2. (3.61)

The transport cross section is

σtr =

∫ 2π

0

dθ|f(θ)|2(1− cos θ) =
4

k

∑
l

[
|Al|2 −<(AlA

∗
l+1)
]
. (3.62)

The skew scattering cross section has the form

σskew =

∫ 2π

0

dθ|f(θ)|2 sin θ =
4

k
=
[∑

l

A∗lAl−1

]
. (3.63)
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For the first resonant state in Fig. 3.2, the probability density distribution is confined

inside the circular potential region. The transport cross section is dominated by the

l = 1 term:

σtr ≈
4

k
|A1|2 ≈

4

k
=

4√
E2 −∆2

, (3.64)

and skew scattering is the result of interference between the l = 0 and l = 1 states.

We have

σskew ≈
4

k
=[A0A

∗
1] ≈ πk

V 2

E2

(V − E)(E −∆) + 2∆E

V (E + ∆)
. (3.65)

For the second resonant state in Fig. 3.2, the l = ±1 and l = 2 states contribute to

the transport cross section. We have

σtr =
4

k

[
|A−1|2 + |A1|2 + |A2|2

]
≈ 8

k
. (3.66)

In this case, skew scattering is due to the interference between the l = 1 and l = 2

states. We have

σskew ≈
4

k
=[A1A

∗
2] ≈ − 4

π

V − E + ∆

V

ln γk
2

k
. (3.67)

3.6.2 Massive Pseudospin-1/2 Scattering from a Circular Potential Scatterer

For massive pseudospin-1/2 scattering [56], the reflection coefficient is

Al = − τ1Jl(x1)Jl−1(x2)− τ2Jl−1(x1)Jl(x2)

τ1Hl(x1)Jl−1(x2)− τ2Hl−1(x1)Jl(x2)
, (3.68)

where l = j + 1
2
, with j = ±1

2
,±3

2
, . . ., x1 = k1R, x2 = k2R, and

τ1 = − ~vFk1

E −∆
, τ2 = − ~vFk2

E − V −∆
,

k1 =

√
E2 −∆2

~2v2
F

, k2 =

√
(E − V )2 −∆2

~2v2
F

,
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with (x1, τ1, k1) and (x2, τ2, k2 ) being quantities corresponding to the area outside

and inside the circular potential scatterer, respectively. In the weak scattering regime

(x1 � 1 and x2 � 1), we have A0 for j = −1/2 as

A0 = − τ1J0(x1)J−1(x2)− τ2J−1(x1)J0(x2)

τ1H0(x1)J−1(x2)− τ2H−1(x1)J0(x2)

≈ − −πτ1x1x2 + πτ2x
2
1

−πτ1x1x2 + πτ2x2
1 − i[4τ2 + 2τ1x2x1 ln γx1

2
]

=
−πV (E + ∆)

√
V−E−∆
V−E+∆

πV (E + ∆)
√

V−E−∆
V−E+∆

− i
[
4
√

V−E−∆
V−E+∆

− 2
√

E+∆
E−∆

√
(V − E)2 −∆2x1 ln γx1

2

] .
(3.69)

Similarly, for j = 1/2, we have

A1 = − τ1J1(x1)J0(x2)− τ2J0(x1)J1(x2)

τ1H1(x1)J0(x2)− τ2H0(x1)J1(x2)

≈ − −πτ2x1x2 + πτ1x
2
1

−πτ2x1x2 + πτ1x2
1 − i[4τ1 + 2τ2x2x1 ln γx1

2
]

= − πV
√
E2 −∆2

πV
√
E2 −∆2 + i

[
− 4
√

E+∆
E−∆

+ 2(V − E −∆)x1 ln γx1
2

] . (3.70)

The relevant coefficient-dependent quantities can be approximated as

|A0|2 ≈
π2V 2

16
(E + ∆)2,

|A1|2 ≈
π2V 2

16
(E + ∆)2,

<[A0A
∗
1] ≈ π2V 2

16
(E2 −∆2),

=[A0A
∗
1] ≈ −π

3V 3∆

32
(E2 −∆2).

The transport cross section is

σtr =
4

k

∑
l

[
|A0|2 + |A1|2 −<(AlA

∗
l+1)
]

≈ 4

k

[
|A0|2 + |A1|2 −<(A0A

∗
1)
]

=
π2

4

V 2

k
[E2 + 3∆2]. (3.71)
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The skew scattering cross section has the form

σskew =
4

k

∑
l

=[AlA
∗
l+1] ≈ 4

k
=[A0A

∗
1] = −π

2

8

V 3∆

k
(E2 −∆2). (3.72)

3.6.3 Transport Cross Sections

The results in the main text are for the skew cross sections. Here we present results

for the transport cross sections in various cases. Figure 3.11 shows the behavior of the

transport cross section for the same setting as in Fig. 3.2, and also shows the scaling

of the peak transport cross section with the scatterer strength. It can be seen that

there are super scattering associated with electron transport, similar to the massless

case [26]. The scaling behavior of skew and transport cross sections with respect

to circular scatterer strength is summarized in Table 3.1. The results are based on

Eqs. (3.64), (3.65), (3.66), (3.67), (3.71) and (3.72).

Note that these formulas are valid in certain potential range. The scattering cross

section should be zero when there is no potential. The corresponding results for the

elliptic scatterer are shown in Figs. 3.12, where the phenomenon of super scattering

persists.

Table 3.1: Summary of the Scaling of the Peak Value of Skew and Transport Scat-
tering Cross Sections with the Scatterer Strength V R.

Spin-1 (1st) Spin-1 (2nd) Spin-1/2

σskew/R V R ln(γV R)
V R

(V R)5

σtr/R (V R)−1 (V R)−1 (V R)3
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3.6.4 Effect of Varying Incident Angle for the Case of an Elliptical Scatterer

For the elliptical scatterer, a different incident direction may affect the scattering

cross sections. Surprisingly, we find that resonant skew scattering persists and changes

little for different incident angles, as exemplified in Figs. 3.13(a) and 3.13(b), in spite

of large variations in the transport cross section. The current distribution reveals

that the vortices are similar for different incident angles, giving rise to robust vortices

(or resonance) that lead to robust super skew scattering, as shown in Fig. 3.14.

3.6.5 Unitary Transformation Between the Effective Hamiltonians of Single

Dirac-cone Dice and Lieb Lattices

In Secs. 3.2 and 3.3, the effective Hamiltonian is derived from the a single Dirac

cone dice lattice. In Sec. 3.4, the phenomenon of super skew scattering is observed

in the single Dirac cone Lieb lattice. From a theoretical point of view, there exists

a unitary transformation between the effective Hamiltonians of the single Dirac cone

dice and Lieb lattices. Thus, in principle, results from the effective Hamiltonian of the

single Dirac cone dice lattice are expected to hold when the effective Hamiltonian is

one from the Lieb lattice. The results in Secs. 3.2-3.4 thus demonstrate the generality

of the phenomenon of super skew scattering across the two lattice systems. Here we

present this unitary transformation.

For the dice lattice, the effective Hamiltonian is given by

Hd = ~vFSd · k + ∆Sz + V (r), (3.73)

with

Sdx =
1√
2


0 1 0

1 0 1

0 1 0

 , Sdy =
1√
2


0 −i 0

i 0 −i

0 i 0

 , (3.74)
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and

Sdz =


1 0 0

0 0 0

0 0 −1

 . (3.75)

For the Lieb lattice, the effective Hamiltonian is

HL = ~vFSL · k + ∆Sz + V (r), (3.76)

with

SLx =


0 1 0

1 0 0

0 0 0

 , SLy =


0 0 1

0 0 0

1 0 0

 , (3.77)

and

SLz =


0 0 0

0 0 −i

0 i 0

 . (3.78)

Consider the following unitary matrix:

U =


0 1 0

1√
2

0 1√
2

i√
2

0 − i√
2

 , (3.79)

which satifies U †U = I. The unitary transformation for the S-matrix can be expressed

as

U †SLxU = Sdx, (3.80)

U †SLy U = Sdy , (3.81)

U †SLz U = Sdz . (3.82)
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The effective Hamiltonians from the two lattice systems can thus be connected by

the unitary transformation

U †HLU = Hd, (3.83)

with the current operator defined as

Ĵ = ∇pH. (3.84)

The conclusion is that the far field scattering behavior and near field probability and

current distributions are identical for the single Dirac-cone dice and Lieb lattices.

3.6.6 Topological Effect on Super Skew Scattering

In Sec. 3.4, two gap-opening methods are employed for the Lieb lattice system:

exploiting the dimerization term and adding a purely imaginary next-nearest neighbor

hopping term. The topological properties of these two types of lattices are different.

The dimerization lattice is topologically trivial while the lattice system with the

imaginary NNN hopping is topologically nontrivial. A detailed discussion of the

topological properties of these two cases can be found in Ref. [64]. For the finite

device in our study, we calculate the energy band for a strip that is finite in the y

direction and infinite along the x direction, as shown in Fig. 3.15. It can be seen that

there is an empty gap for the dimerization lattice, while there is an edge mode for

the imaginary NNN hopping lattice about kx = ±π/a. There is indication that the

topology can have some effect on skew scattering for transport inside the energy band

gap. In particular, as shown in Figs. 3.9(a) and 3.9(c), there is zero Hall voltage away

from the resonance for the dimerization lattice, but there is a finite Hall voltage for

the imaginary NNN hopping lattice when the energies are away from the resonance so

it becomes a resonant valley. While the focus of this paper is on super skew scattering,

the effect of topology deserves further attention.
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Figure 3.11: Resonant transport cross section for massive pseudospin-1 scattering
from a circular potential barrier in the Klein tunneling regime. The parameter values
are the same as those in Fig. 3.2. (a) σtr for massive pseudospin-1 quasiparticles versus
the incident energy. There are resonant peaks, corresponding to these in Fig. 3.2. (b)
The corresponding plot for pseudospin-1/2 scattering, where no resonant peaks occur
and the values of σtr are much smaller than those in (a) in the entire energy range.
(c) Magnification of the first resonant peak in (a), where the red and blue dashed
curves are the numerical and theoretical results, respectively. (d) The corresponding
magnification for pseudospin-1/2 scattering with the same legends as in (c). (e)
Magnification of the second resonant peak in (a). (f) The corresponding magnification
for pseudospin-1/2 scattering. (g) Scaling of the resonant transport cross section peak
value with the strength of the scatterer. The symbols are numerical data and the lines
are the corresponding theoretical predictions.
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Figure 3.12: Resonant transport cross section versus energy for scattering from
an elliptical potential. (a) Pseudospin-1 system (b) Pseudospin-1/2 system. The
parameter values are the same as those in Fig. 3.5. (c) Scaling of the resonant
transport cross section peak value with the strength of the elliptical scatterer. Legends
are the same as those in Fig. 3.7.
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Figure 3.13: Resonant skew and transport scattering cross sections for an elliptical
scatterer for different incident angles. (a) Resonant skew scattering cross section
for the first peak in Fig. 3.5. The red solid, blue dashed, and green dash-dotted
curves are for the incident angles of 0 (along positive x direction), π/2 (along positive
y direction), and π/4 (with respect to positive x direction), respectively. (b) The
corresponding results for the fourth resonant peak in Fig. 3.5. (c) Resonant transport
scattering cross section for the first peak in Fig. 3.12. The red solid, blue dashed, and
green dash-dotted curves are for the incident angles of 0, π/2, and π/4, respectively.
(d) The corresponding results for the fourth resonant peak in Fig. 3.12.
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Figure 3.14: In-plane current density and pseudospin-z distribution for different
incident angles. (a,c,e) Results for the first resonant state in Fig. 3.5 for incident
angle 0, π/2 and π/4. (b,d,f) Results for the fourth resonant state in Fig. 3.5 for the
same set of incident angles.
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(a)

(b)

Figure 3.15: Energy band structures of Lieb lattice under two gap-opening mecha-
nisms. The lattice system is a strip that has the width of 40 lattice constants in the
y direction and is infinite along the x direction. (a) Dimerization Lieb lattice and
(b) Imaginary NNN hopping Lieb lattice. Here, for the illustrative purpose, the band
gap size is chosen to be relatively large.

72



Chapter 4

CHAOS BASED BERRY PHASE DETECTOR

The geometric or Berry phase, a characteristic of quasiparticles, is fundamental to

the underlying quantum materials. The discoveries of new materials at a rapid pace

nowadays call for efficient detection of the Berry phase. Utilizing α-T3 lattice as a

paradigm, we find that, in the Dirac electron optics regime, the semiclassical decay

of the quasiparticles from a chaotic cavity can be effectively exploited for detecting

the Berry phase. In particular, we demonstrate a one-to-one correspondence between

the exponential decay rate and the geometric phase for the entire family of α-T3

materials. This chaos based detection scheme represents an experimentally feasible

way to assess the Berry phase and to distinguish the quasiparticles.

4.1 Introduction

In this chapter, we report a striking phenomenon in 2D Dirac materials, which

leads to the principle of chaos based detection of Berry phase. To be concrete, we

consider the entire α-T3 material family. An α-T3 material can be synthesized by

altering the honeycomb lattice of graphene to include an additional atom at the center

of each hexagon which, for α = 1, leads to a T3 or a dice lattice that hosts pseudospin-1

quasiparticles with a conical intersection of triple degeneracy in the underlying energy

band [197, 8, 9, 66, 11, 198, 199, 200, 201, 202, 203, 15, 204, 17, 205, 18, 206, 19, 21,

1, 207, 208, 209, 210, 211, 212, 213]. An α-T3 lattice is essentially an interpolation

between the honeycomb lattice of graphene and a dice lattice, where the normalized

coupling strength α between the hexagon and the central site varies between zero and

one [34, 214, 79, 215, 216, 217], as shown in Fig. 4.1(a). Theoretically, pseudospin-1
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quasiparticles are described by the Dirac-Weyl equation [8, 9, 1]. Suppose we apply an

appropriate gate voltage to generate an external electrostatic potential confinement

or cavity of α-T3 lattice. The mechanism for Berry phase detection arises in the

short wavelength or semiclassical regime, where the classical dynamics are relevant

and can be treated according to ray optics with reflection and transmission laws

determined by Klein tunneling - the theme of the emergent field of Dirac electron

optics (DEO) [47, 218, 219, 220, 221, 222, 223, 224, 225, 226, 53, 227, 54, 228, 229, 230,

231, 232, 233, 234, 235, 84, 236, 237, 238, 239, 82, 240, 241, 242]. If the shape of the

cavity is highly symmetric, e.g., a circle, the classical dynamics of the quasiparticles

are integrable. However, if the cavity boundaries are deformed from the integrable

shape, chaos can arise. We focus on the energy regime V0/2 < E < V0 in which Klein

tunneling is enabled, where V0 is the height of the potential [Fig. 4.1(b)], so that

the relative effective refractive index n inside the cavity falls in the range [−∞,−1].

As a result, there exists a critical angle for total internal reflections. For different

values of the material parameter α, the physical characteristics of the quasiparticles,

in particular the values of the Berry phase, are different. Our central idea is then that,

for a fixed cavity shape, the semiclassical decay laws for quasiparticles corresponding

to different values of α would be distinct. If the classical cavity dynamics contain a

regular component, the decay laws will be algebraic [243, 244, 245, 246, 247], but we

find that the differences among them will not be statistically significant enough to

allow lattices of different values of α to be distinguished. However, when the cavity

is deformed so that the classical dynamics are fully chaotic, the decay law becomes

exponential [248]. The striking phenomenon is that the exponential decay rate for

different values of α can be statistically distinguished to allow the Berry phase of the

quasiparticles to be unequivocally detected, leading to the birth of chaos based Berry

phase detectors. We note that in microcavity optics, classical chaos can be exploited
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to generate lasing with a high quality factor and good emission directionality at the

same time [249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259].

𝑉0

𝑝𝑛

(b)

(c)

(a)
AB

C

𝑡

𝛼𝑡

Figure 4.1: Schematic illustration of an α-T3 cavity and the energy dispersion rela-
tion. (a) α-T3 lattice structure. (b) The electron and hole energy dispersion relations
in different spatial regions. (c) A possible scheme of experimental realization of the
cavity through an applied gate voltage. The amount of the voltage is such that the
quasiparticles are in the Klein-tunneling regime.

4.2 Hamiltonian and Dirac Electron Optics

The α-T3 lattice system has the advantage of generating a continuous spectrum of

quasiparticles with systematically varying Berry phase through the tuning of the value

of the parameter α in the unit interval. At the two opposite ends of the spectrum,

i.e., α = 0, 1, the quasiparticles are pseudospin-1/2 Dirac fermions and pseudospin-1

Dirac-Weyl particles, respectively. As illustrated in Fig. 4.1, the lattice has three

nonequivalent atoms in one unit cell, and the interaction strength is t between A and

B atoms and αt between B and C atoms, where t is the nearest neighbor hopping

energy of the graphene lattice. A cavity of arbitrary shape can be realized by apply-

ing an appropriate gate voltage through the STM technique [228, 82, 260], as shown

in Fig. 4.1(c). We consider circular and stadium shaped cavities that exhibit inte-
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grable and chaotic dynamics, respectively, in the classical limit [261]. The low-energy

Hamiltonian for the α-T3 system about a K point in the hexagonal Brillouin zone

is [34, 216] Ĥ = Ĥkin + V (x)Î, where Ĥkin is the kinetic energy, V (x) is the applied

potential that forms the cavity, and I is the 3 × 3 identity matrix. The coupling

strength α can be conveniently parameterized as α = tanψ. The kinetic part of the

rescaled Hamiltonian (by cosψ) is

Ĥkin =


0 fk cosψ 0

f ∗k cosψ 0 fk sinψ

0 f ∗k sinψ 0

 , (4.1)

where fk = vF (ξkx−iky), vF is the Fermi velocity, k = (kx, ky) is the wave vector, and

ξ = ± is the valley quantum number associated with K and K ′, respectively. In the

semiclassical regime where the particle wavelength is much smaller than the size of

the cavity so that the classical dynamics are directly relevant, the DEO paradigm can

be instated to treat the particle escape problem, which is analogous to decay of light

rays from a dielectric cavity. In DEO, the essential quantity is the transmission coef-

ficient of a particle through a potential step, which can be obtained by wavefunction

matching as [216]

T =
4ss′ cos θ cosφ

2 + 2ss′ cos (θ + φ)− sin2 2ψ(s sin θ − s′ sinφ)2
, (4.2)

where s = ± and s′ = ± with the plus and minus signs denoting the conduction

and valence band, respectively, and incident and transmitted angles are φ and θ,

respectively. Imposing conservation of the component of the momentum tangent to

the interface, we get sin θ = (E/|E − V0|) sinφ. For more details about the electron

transmission through a potential step, one can refer Appendix 4.5.1. Our focus is

on the survival probability of the quasiparticles from an α-T3 cavity for the entire

material spectrum: 0 ≤ α ≤ 1.
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We set the amount of the applied voltage such that the energy range of the quasi-

particles is V0/2 < E < V0 (the Klein tunneling regime). In the optical analog, the

corresponding relative effective refractive index inside the cavity is n = E/(E − V0)

and that outside of the cavity is n = 1. Due to Klein tunneling, the range of relative

refractive index in the cavity is negative: −∞ < n < −1. As a result, a critical angle

exists for the tunneling of electrons through a simple static electrical potential step,

which is sinφc = (V0 − E)/E and is independent of the α value [216]. This behavior

is exemplified in the polar representation of the transmission in Fig. 4.2(a), which

shows that the value of the transmission increases with α. As the value of α is varied

in the unit interval, the critical angle remains unchanged.

4.3 Results

Algebraic Decay of α-T3 Quasiparticles from a Circular (Integrable) Cavity

The classical phase space contains Kolmogorov-Arnold-Moser (KAM) tori and an

open area through which particles (rays) escape. Initializing an ensemble of particles

(e.g., 107) in the open area, the survival probability time distribution (SPTD) is given

by

Psv(t) =

∫ L

0

ds

∫ pc

−pc
dpI(s, p)R(p)N(t), (4.3)

where L is the boundary length, pc = sinφc = 1/|n| with φc the critical angle for total

internal reflection, R(p) = 1−T is the reflection coefficient for the α-T3 quasiparticles

with transmission T defined in Eq. (4.2), N(t) = t/(2 cosφ) is the number of bounces

off the boundary, and I(s, p) = |n|/2L is the uniform initial distribution. Consider a

circle of unit radius, using the length of the ray trajectory as the time scale, we can
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rewrite Eq. (4.3) as

Psv(t) = |n|
∫ φc

0

dφ cosφ exp[− t

2 cosφ
ln (

1

R
)], (4.4)

with

R−1 = 1 +
−4 cos θ cosφ

2 + 2 cos (θ − φ)− sin2 2ψ(sin θ + sinφ)2
(4.5)

From the particle transmission plot in Fig. 4.2(a), we can see the particles near the

critical angle φc can survive for a longer time and can contribute to the long time

behavior. As a result, we can expand the ln( 1
R

) term about the critical angle φc by

defining a new variable χ with φ = φc − χ, and use the approximations χ → 0, we

have

ln (
1

R
) ≈

4
√

2|n| cosφc cosφc

2 + [2|n| − sin2 2ψ(|n|+ 1)2 sin2 φc]
· χ1/2. (4.6)

Substituting Eq. (4.6) into Eq. (4.4), we obtain the SPTD as

Psv =
1

4
t−2{2 + [2|n| − sin2 2ψ(|n|+ 1)2]

1

|n|2
}2

= C(n, ψ)t−2 (4.7)

This indicates that the quasiparticles decay algebraically from the cavity and the

value of the decay exponent is two, regardless of the value of α. For certain value of

|n|, as the value of α changes from zero to one, the decay coefficient C(n, ψ) decreases,

as shown in Fig. 4.2(b). The numerical calculation for SPTD in the circular cavity

is performed via taking 107 random initial points in the open region of the phase

space. We then trace each point with reflection coefficient R(p) when bouncing from

the boundary, and sum the surviving probabilities between t and t + ∆ with ∆ = 1

with the initial probability being 1 at t = 0. We can see from Fig. 4.2(b) that both

theoretical and numerical results show an algebraic behavior in the long time, with

exponent equals to 2.
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Experimentally, to distinguish the nature of the quasiparticles and to detect the

Berry phase, the decay coefficient is not a desired quantity to measure as it reflects the

short time behavior of the decay process. In fact, it not only depends the nature of

the material (as determined by the value of α) but also on the detailed system design.

The long time behavior of the decay is characterized by the algebraic decay exponent,

which does not depend on the details of the experimental design and, hence, it can

possibly be exploited for Berry phase detection. However, for an integrable cavity,

the algebraic decay exponent remains constant as the value of α is changed, as shown

in Fig. 4.2(b). It is thus not feasible to distinguish the quasiparticles by their long

time behavior, ruling out integrable cavities as a potential candidate for detecting the

Berry phase.

Exponential Decay of α-T3 Quasiparticles from a Chaotic Cavity

For the stadium cavity, the classical dynamics are chaotic, leading to random changes

in the direction of the propagating ray. In this case, the survival probability of the

quasiparticles in the cavity decays exponentially with time, as shown in Fig. 4.2(c),

where the long time behavior is determined by the exponential decay rate. The

striking phenomenon is that the decay rate increases monotonically as the value of

the material parameter α is increased from zero to one, suggesting the possibility of

using the exponential decay rate to distinguish the α-T3 materials and to detect the

intrinsic Berry phase. The difference in the decay rate can be further demonstrated by

calculating its dependence on the absolute value |n| for different values of α, as shown

in Fig. 4.3(a). For small values of |n|, the difference in the decay rate is relatively

large, indicating a stronger ability to discern the α-T3 quasiparticles. For large values

of |n|, the difference in the decay rate is somewhat reduced. This is expected because,

as the value of |n| is increased from one, the transmission for the materials at the
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Figure 4.2: Semiclassical decay of quasiparticles from a cavity in an α-T3 lattice.
For particle energy E = 0.53V0 (within Klein tunneling regime) and relative refractive
index n = −1.1277 inside of the cavity, (a) transmission T across a potential step as
a function of incident angle φ for a number of equally spaced α values. (b) SPTD
for the circular (integrable) cavity on a double logarithmic plot, where the blue cir-
cles, red squares, orange diamonds, purple up-triangles, and green down-triangles are
numerical results for the five α values in (a), respectively, and the solid lines are the
theoretical predictions. The decay is algebraic but the decay exponent is a constant
independent of the value of α. (c) SPTD for a stadium shaped (chaotic) cavity of
semicircle radius one and straight edge of length two on a semi-logarithmic plot. The
color legends are the same as in (b). In this case, the decay is exponential and its rate
depends on the value of α. Measuring the exponential decay rate then gives the value
of α and the corresponding Berry phase of the underlying material lattice system.
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two ends of the α-T3 spectrum, namely graphene and pseudospin-1 lattice, decreases

continuously. For |n| → ∞, the transmission tends to zero. This result indicates

that, the optimal regime to discern the quasiparticles for α-T3 occurs for |n| above

one but not much larger, corresponding to the regime where the particle energy is

slightly above half of the potential height.

In general, for a given value of α, the exponential decay rate is inversely propor-

tional to n, which can be argued, as follows [262, 263]. For Psv(t) ∼ exp (−γt), we

have dPsv(t)/dt ∼ −γ · Psv(t) ∼ −(〈T (p)〉/〈d〉) · Psv(t), where 〈T (p)〉 and 〈d〉 are

the average transmission and the distance between two consecutive collisions in the

chaotic cavity. The decay rate can then be obtained in terms of the steady probability

distribution Ps(s, p) as:

γ = 〈T (p)〉/〈d〉 = 〈d〉−1

∫ L

0

ds

∫ 1

−1

dpPs(s, p)T (p) (4.8)

Explicitly, in the Klein tunneling regime V0/2 < E < V0 (−∞ < n < −1), we

can derive an analytical expression for the exponential decay rate based on a simple

model of the steady probability distribution (SPD) for the stadium-shaped cavity

that generates fully developed chaos in the classical limit [262]. We assume that the

SPD is a uniform distribution over the whole phase space except the open regions

related to the linear segments of the stadium boundary. Then the decay rate can be

expressed in terms of the steady probability distribution:

γ =
2πR

2(πA/L)(L− 2l/|n|)

∫ 1/|n|

−1/|n|
dpT (p), (4.9)

where T (p) is the transmission coefficient defined in Eq. (4.2), the average path length

of ray trajectory segments between two successive bounces is 〈d〉 = πA/L, with

A = πR2 + 2Rl and L = 2πR + 2l being the area and boundary length of the sta-

dium, respectively. Substituting the expressions sin θ = |n|p, cos θ = −
√

1− sin2 θ =
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−
√

1− n2p2, sinφ = p, cosφ =
√

1− p2 into the expression of T (p) in the main text,

we get

T = 4
√

1− p2
√

1− n2p2/[2 + 2
√

1− p2
√

1− n2p2

+2|n|p2 − sin2 2ψ(n2p2 + p2 + 2|n|p2)]. (4.10)

In the limit |n| ≈ 1, imposing change of variable x = n2p2 to get dp = dx/(2|n|
√
x),

we can write the decay rate in terms of variable x as

γ =
2πR

2(πA/L)(L− 2l/|n|)

∫ 1

0

dx√
x
T (x)

=
2πR

2(πA/L)(L− 2l/|n|)

∫ 1

0

dx√
x

(1− x)(1− sin2 2ψ · x)−1

=
2πR

2(πA/L)(L− 2l/|n|)
B(1/2, 2)F (1, 1/2; 5/2; sin2 2ψ)

≈ 2πR

2(πA/L)(L− 2l/|n|)
4

3
· (1 +

1

5
sin2 2ψ + ...), (4.11)

where B(x, y) = Γ(x)Γ(y)/Γ(x+y) is the beta function and F (α, β; γ; z) is the Gauss

hypergeometric function.

For the |n| � 1 regime, we use the change of variable x = np to simplify the decay

rate integral. The decay rate becomes

γ =
4πR

2(πA/L)L|n|

∫ 1

0

4
√

1− x2

2 + 2
√

1− x2 − sin2(2ψ)x2
, (4.12)

which is inversely proportional to the absolute value of the refractive index |n|. More

importantly, the decay rate depends on the material parameter α monotonically

(α = tanψ, with α increasing from zero to one). We note that, the theoretical

results in Fig. 4.2(c) is obtained by doing the integration formula (4.9) directly. The

approximation used to derive Eqs. (4.11) and (4.12) here is to facilitate an analytic

demonstration of the scaling of the decay rate with n. The formulas also reveal that

the decay rate increases monotonically with α.

82



Numerically, we choose stadium shape with the semicircle radius to be 1 and the

straight long edge being 2 in length. In the calculation, we use a random ensemble of

107 initial points spread over the whole phase space and trace the survival probability

with time, which is scaled as the length of trajectory as in the circular case. The nu-

merical results are consistent with the theoretical cases based on SPD approximation,

as shown in Fig. 4.2(c).

Detection of Berry Phase

The Berry phase associated with an orbit in the conical bands is given by [79]

φBξ = πξ cos (2ψ) = πξ(
1− α2

1 + α2
). (4.13)

For the flat band, the Berry phase is

φB0,ξ = −2πξ cos (2ψ) = −2πξ(
1− α2

1 + α2
). (4.14)

We take ξ = ±1 for the K and K ′ valleys, respectively. For ξ = 1, the dependence

of the Berry phase on α is shown in Fig. 4.3(b). As the value of α is increased from

zero to one, the Berry phase decreases monotonically from π to zero. At the same

time, the exponential decay rate increases monotonically. There is then a one-to-one

correspondence between the decay rate and the Berry phase for the entire spectrum

of α-T3 materials, justifying a semiclassical chaotic cavity as an effective Berry phase

detector.

4.4 Conclusion

To summarize, we uncover a phenomenon in relativistic quantum chaos that can be

exploited to detect the Berry phase of two-dimensional Dirac materials. In particular,

for the spectrum of α-T3 materials, in the semiclassical regime, the decay of the
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Figure 4.3: Dependence of the semiclassical exponential decay rate from a chaotic
cavity on the effective refractive index and the detection of the Berry phase. (a) For
α = 0, 0.25, 0.5, 0.75, 1, the decay rate versus the refractive index, where the blue
circles, red squares, orange diamonds, purple up-triangles and green down-triangles
are the respective numerical results and the dashed curves are theoretical predictions.
(b) For E/V0 = 0.53, detection of Berry phase (red squares) based on the decay rate
(blue circles). As the value of α is changed from zero to one, there is a one-to-one
correspondence between the exponential decay rate and the Berry phase.

quasiparticles from a chaotic cavity depends on the intrinsic material parameter.

Experimentally, the cavity can be realized through a gate voltage, where locally the

boundary of the cavity is effectively a potential step. When the Fermi energy of

the quasiparticles is above half but below the potential height, the system is in the

Klein tunneling regime, rendering applicable Dirac electron optics. In this case, the
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relative effective refractive index inside the cavity is between negative infinity and

minus one, so a critical angle exists for the semiclassical ray dynamics. Because

of the close interplay between Klein tunneling and the value of the Berry phase,

measuring the quasiparticle escape rate leads to direct information about the Berry

phase and for differentiating the α-T3 materials. Our analysis and calculation have

validated this idea - we have indeed found a one-to-one correspondence between the

exponential decay rate and the value of the Berry phase. In terms of basic physics,

our finding builds up a connection, for the first time, between classical chaos and

Berry phase. From an applied standpoint, because of the fundamental importance of

Berry phase in determining the quantum behaviors and properties of materials, our

work, relative simplicity notwithstanding, provides an effective and experimentally

feasible way to assess the Berry phase for accurate characterization of the underlying

material. This may find broad applications in materials science and engineering

where new nanomaterials are being discovered at a rapid pace, demanding effective

techniques of characterization.

4.5 Supplementary Notes

4.5.1 The Band Structure and Wave-vectors Across the Potential Step

In order to give a clear understanding of the optic-like decay behavior of electrons

from a cavity formed by electro-static gate potential, we schematically depict the elec-

tron band structure and the wave-vectors across the potential step in the transmission

process, as shown separately in the first row and second row in Fig. 4.4. Besides, we

give a clear classification of the different refractive index regimes, corresponding to

different potential values compared to the Fermi energy. These regimes can be di-

vided into cases with the positive and negative refractive index and that with and
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Figure 4.4: Schematic plot of the band structures and wave-vectors across
potential step with different refractive indexes. The first row gives the band
structures of the electrons across the potential step with different gate potential values
and fixed Fermi energy, thus different refractive index for each setup. The black arrows
denote the wavevector directions (only depicting the x direction case). For negative
refractive index regimes, the wave-vector along x direction is opposite. The second
row shows the wave-vectors of the electrons with the incident angle labeled as φ and
the transmitted angle as θ.

without critical angles. In our setup, we always choose the incident electron in them

conduction band, i.e., with positive Fermi energy, and vary the potential V0. When

V0 is larger than the Fermi energy, the transmitted electron is in the valence band.

In this case, the wave-vector is in opposite direction along x direction and the same

direction along y direction, while keeping the velocity direction unchanged, leading

to negative refractive index.

Explicitly, for the gate potential in the range V0/2 < E < V0, the refractive index

denoted as n = E
E−V0 falls in the regime −∞ < n < −1. There are critical angle in

this case, corresponding to sin θ = 1 = E
|E−V0| sinφc. And the transmission angle can

be obtained in terms of incident angle φ as

θ = π − tan−1 sinφ · E/V0√
(1− E/V0)2 − (sinφ · E/V0)2

= π + tan−1 n sinφ√
1− (n sinφ)2

. (4.15)

where we have utilized sin θ = E
|E−V0| sinφ and cos θ = −

√
1− sin2 θ. The band
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structure and angles corresponding to wave-vectors are shown in Fig. 4.4 (a), (e).

In the regime where the potential satisfies 0 < E < V0/2, the refractive index

satisfies −1 < n < 0. As a result, there is no critical angle in this case. The

transmission angle can be obtained in the same form as Eq. (4.15) and the schematic

plot of the band structure and wave-vector angles are shown in Fig. 4.4 (b), (f).

For the case where V0 < 0 < E, the refractive index is in the range 0 < n < 1,

which is positive refractive index due to the incidence and transmission electron both

in the conduction band. The is no critical angle in this case. And the transmission

angle can be obtained as

θ = tan−1 sinφ · E/V0√
(1− E/V0)2 − (sinφ · E/V0)2

= tan−1 n sinφ

1− (n sinφ)2
. (4.16)

where we used the relation sin θ = E
E−V0 sinφ and cos θ =

√
1− sin2 θ. This schematic

band structure and angles related to wave-vectors are depicted in Fig. 4.4 (c), (g).

In the regime where 0 < V0 < E, the refractive index is in the range 1 < n < ∞

with the incidence and transmission electrons both in the conduction band. And

there is critical angle in this case, with sin θ = 1 = E
E−V0 sinφc. The transmission

angle can be obtained in the same form as in Eq. (4.16). And the band structures

and the wave-vectors can be seen in Fig. 4.4 (d), (h).

4.5.2 Survival Probability Distribution of α-T3 Quasiparticles in Different Energy

Regimes

For completeness, we derive the decay law of the survival probability of α-T3

quasiparticles and obtain the decay rate in other energy regimes. We demonstrate

that the decay in these regimes is not easy to be used to detect berry phase. For

the regimes where there are not critical angles, the decay is very fast, which is not
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Figure 4.5: Survival probabilities from integrable and chaotic cavities for
0 < E < V0/2. For E/V0 = 1/3 and n = −0.5, (a) transmission versus the incident
angle on a polar plot, (b) decay of the survival probability from a circular (integrable)
cavity with time, and (c) decay of the survival probability from a stadium shaped
(chaotic) cavity.

feasible to detect Berry phase. For the regime there is critical angle, the decay rate

for different particles follow similar curve, making them not easy to distinguish.

The 0 < E < V0/2 Regime

In this energy regime, the refractive index n = E/(E−V0) of the cavity is in the range

−1 < n < 0. In this regime, there exists no critical angle for rays inside the cavity.

Figure 4.5(a) shows that the transmission is nonzero for all angles and it increases

with decreasing α values. In this case, the decay of quasiparticles is exponential and

it does not depend on the nature of the classical dynamics, i.e., integrable or chaotic,

as shown in Fig. 4.5.

A theoretical explanation of the features in Fig. 4.5 is as follows. Due to the

absence of a critical angle for Dirac electron optical rays in the energy range 0 <

E < V0/2, the survival probability from a circular (integrable) is mainly determined

by the ray behavior about φ = π/2. Letting φ = π/2 − x, where x is a small angle
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deviation from π/2, and using the approximations

sinφ ≈ sinφc − cosφc · x,

cosφ ≈ cosφc + sinφc · x,

sin θ ≈ |n| · (sinφc − cosφc · x),

cos θ ≈ −
√

1− n2 · (sinφc − cosφc · x)2,

we get

lnR−1 =
4x
√

1− n2

2 + 2|n| − sin2 (2ψ)(1 + |n|)2
. (4.17)

where R = 1−T with T being the transmission coefficient defined in Eq. (4.2) in the

main text. The survival probability can be expressed as

Psv = exp {− 2
√

1− n2

2 + 2|n| − sin2 (2ψ)(1 + |n|)2
· t} (4.18)

For a chaotic cavity, the angle distribution is random, leading to an exponential

behavior of the survival probability. We can obtain the expression for the decay rate

γ by approximating Psv as

Psv(t) ≈ 〈1− T (p)〉t/〈d〉 = exp {ln [1− 〈T (p)〉](t/〈d〉)}. (4.19)

The decay rate can be expressed as

γ = − 1

〈d〉
ln [1− 〈T (p)〉]. (4.20)

For either the integrable or the chaotic cavity, the exponential decay rate depends on

the material parameter α which, in principle, can be used to detect the Berry phase.

However, due to the lack of a critical angle in this energy range, experimentally it

would be difficult to confine the quasiparticles. Indeed, comparing with the exponen-

tial decay from a chaotic cavity in the Klein tunneling regime (V0/2 < E < V0) as

treated in the main text, here the decay is much faster.

89



-90

-60

-30
0

30

60

90
0 0.2 0.4 0.6 0.8 1

(a)

α = 0

α = 0.25

α = 0.5

α = 0.75

α = 1 10
0

10
1

10
2

t

10
-4

10
-2

P
sv

(t
)

(b)

0 10 20 30 40

t

10
-5

10
0

(c)

Figure 4.6: Survival probabilities from integrable and chaotic cavities for
0 < V0 < E. For E/V0 = 8.8309 (n = 1.1277), (a) polar representation of the
transmission with respect to the incident angle, (b) decay with time of the survival
probability from a circular (integrable) cavity, and (c) decay of survival probability
from a stadium shaped (chaotic) cavity.

The 0 < V0 < E Regime

For the energy range 0 < V0 < E with the refractive index n = E/(E − V0) of

the cavity in the range 1 < n < ∞, the survival probability with time exhibits an

algebraic decay from an integrable cavity and an exponential decay from a chaotic

cavity, which is characteristically similar to the decay behaviors in the Klein tunneling

regime (V0/2 < E < V0) treated in the main text. A difference is that, for 0 < V0 < E,

the dependence of the transmission on the material parameter α is much weaker in

the sense that, as the value of α is increased from zero to one, the transmission barely

changes. It is thus practically difficult to distinguish the quasiparticles for different

materials. These behaviors are shown in Fig. 4.6, where the analytical fitting is

calculated in the same way as in the main text.

The V0 < 0 < E Regime

In the energy regime V0 < 0 < E with the refractive index n = E/(E − V0) of the

cavity in the range 0 < n < 1, the decay of the survival probability is similar to that

in the 0 < E < V0/2 regime. In particular, regardless of the nature of the classical

dynamics (integrable or chaotic), the survival probability exhibits an exponential

90



-90

-60

-30
0

30

60

90
0 0.2 0.4 0.6 0.8 1

(a)

α = 0

α = 0.25

α = 0.5

α = 0.75

α = 1
0 5 10

t

10
-10

10
-5

10
0

P
sv

(t
)

(b)

0 5 10

t

10
-5

10
0

(c)

Figure 4.7: Survival probability from integrable and chaotic cavities in the
V0 < 0 < E energy regime. For E/V0 = −1 (n = 0.5), (a) a polar representation
of the transmission versus the incident angle, (b) decay of survival probability from
a circular (integrable) cavity, and (c) decay of survival probability from a stadium
shaped (chaotic) cavity.

decay with time, as shown in Fig. 4.7. Again, comparing with the energy regime

of Klein tunneling, the decay is much faster here, making experimental detection of

Berry phase difficult.

4.5.3 Comparison Between the Decay of Survival Probability for Pseudospin-1/2

and Pseudospin-1 Quasiparticles

The best studied material in the α-T3 family is graphene, corresponding to α = 0.

There is also a growing interest in the material at the other end of the spectrum: α = 1

for which the quasiparticles are of the pseudospin-1 nature. We offer a comparison of

the decay behavior of the quasiparticles at these two extreme cases.

In the energy range 0 < E < V0/2 [corresponding to negative refractive index:

−1 < n = E/(E − V0) < 0], there is no critical angle for total internal reflection. For

both integrable and chaotic cavities, the survival probability decays exponentially

with time, with no qualitative difference. As the absolute value of the refractive

index is increased, the range of angle for transmission is large for pseudospin-1 quasi-

particles, but the range is smaller for pseudospin-1/2 quasiparticles. For integrable

cavities, the difference is somewhat larger.
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In the energy range for Klein tunneling: V0/2 < E < V0 (−∞ < n < −1), a

critical angle arises, above which there are total internal reflections. For an inte-

grable cavity, the survival probability decays algebraically with time, but the decay

is exponential for a chaotic cavity. In the integrable case, the algebraic decay expo-

nents have approximately identical values for the pseudospin-1 and pseudospin-1/2

particles. However, for a chaotic cavity, the decay of pseudospin-1 quasiparticles is

much faster than that of pseudospin-1/2 quasiparticles. Chaos can thus be effective

in detecting the Berry phase to distinguish the two types of quasiparticles. In fact, as

demonstrated in the main text, chaos in the Klein tunneling regime can be effective

for detecting the Berry phase across the entire material spectrum of the α-T3 family.

In the energy range of V0 < E (1 < n < ∞), a critical angle exists. The decay

behavior of the survival probability is algebraic for an integral cavity and exponential

for a chaotic cavity. The difference in the transmission versus the incident angle is

small for pseudospin-1 and pseudospin-1/2 quasiparticles, leading to a similar value of

the algebraic decay coefficient in the integrable case and a similar exponential decay

law in the chaotic case. In this energy range, to use the decay behavior to discern

the quasiparticles would be practically difficult.

In the energy range V0 < 0 < E (0 < n < 1), there is no critical angle, and the

decay behavior is exponential for both integrable and chaotic cavities. As the energy

is increased, the difference in the decay behaviors of pseudospin-1 and pseudospin-

1/2 quasiparticles diminishes, ruling out the possibility of exploiting the decay for

detection of Berry phase.

Finally, we note a symmetry related phenomenon: for spin-1 quasiparticles the

behavior of the survival probability is identical for positive and negative refractive

index regimes, as a result of symmetry in the expression of the transmission coefficient.
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Chapter 5

PHASE LOCKING OF A PAIR OF FERROMAGETIC NANO-OSCILLATORS

ON A TOPOLOGICAL INSULATOR

We investigate the magnetization dynamics of a pair of ferromagnetic insulators

(FMIs) deposited on the surface of a topological insulator (TI). Due to the nonlinear

nature of the underlying dynamics, the FMIs can exhibit oscillatory behaviors even

under constant applied voltage. The motion of the surface electrons of the TI, which

obeys relativistic quantum mechanics, provides a mechanism to couple the FMIs.

In particular, the spin polarized current of the TI surface electrons can affect the

magnetization of the two FMIs, which in turn modulates the electron transport,

giving rise to a hybrid relativistic quantum/classical nonlinear dynamical system.

We find robust phase and anti-phase locking between the magnetization dynamics.

As driving the surface electrons of a TI only needs extremely low power, our finding

suggests that nano FMIs coupled by a spin polarized current on the surface of TI

have the potential to serve as the fundamental building blocks of unconventional,

low-power computing paradigms.

5.1 Introduction

In this chapter, motivated by the growing interest in exploiting topological quan-

tum materials for achieving novel charge transport and efficient electrical control of

magnetization in spintronics applications, we investigate whether it is possible to

realize phase locking of nanoscale magnetic oscillators coupled via some topological

mechanism, e.g., through a topologically protected current. This has the potential

to lead to highly efficient, low power nano-oscillators as the fundamental building
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blocks of unconventional computing paradigms. To be concrete, we consider the

prototypical setting of a pair of ferromagnetic insulators (FMIs) on the surface of a

three-dimensional (3D) topological insulator (TI). A 3D TI possesses an insulating

bulk but hosts chiral metallic channels on its surface, where electrons are described as

massless Dirac fermions with spin-momentum locking [4, 5], resulting in large spin-

charge conversion efficiency [264, 265, 266, 267]. The locking provides an effective

mechanism to control the FMI magnetization [268, 269], and a large figure of merit

for charge spin conversion has been experimentally realized [270, 271]. For a single

FMI deposited on the top of a 3D TI, the exchange coupling between the magne-

tization and the surface state of TI can lead to nonlinear magnetization evolution

but the spin-momentum locking of the surface current of the TI is preserved, and

this can lead to phenomena such as anomalous magnetoresistance, unconventional

transport behaviors [119, 120], and magnetization switching due to Hall current in-

duced effective anisotropy field [123, 124, 125]. Quite recently, steady self oscillations

in the FMI/TI heterostructure were uncovered [126, 127] and explained [128], and a

number of nonlinear dynamical behaviors were studied [121, 122]. Here, we apply a

DC voltage to the TI and place the two FMIs on the top of the TI in series. We

first consider the case where the distance between the two FMIs is larger than the

de Broglie wavelength so that direct quantum interference between the two FMIs can

be neglected. As a result, the surface electronic states provide the only mechanism

that couples the two FMIs. We calculate the average spin of the electron flow in

each heterostructure interface by solving the quantum transmission. The effective

spin field, when combined with the magnetic anisotropy of the FMIs, can lead to self

oscillations of the magnetization vectors of the FMIs, even when the external driving

is DC. The oscillations in turn can modulate the electron transmission periodically,

effectively making the current time varying. The resulting AC current provides the
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needed coupling between the two FMIs for phase locking. We then study the case

where there is quantum interference between the two FMIs and find robust phase

locking. The topologically coupled FMI system thus represents a class of highly ef-

ficient, low power nanoscale coupled oscillators, which can potentially serve as the

fundamental building blocks for unconventional computing paradigms.

5.2 Model and Solution Method

Figure 5.1 shows schematically the system configuration of two FMIs deposited

on the top of a TI [272, 273], which can be realized using material combinations

such as Bi2Se3/YIG (Y3Fe5O12) [274], Bi2Te3/GdN [275], Bi2Se3/EuS [117, 276], and

Bi2Se3/Cr2Ge2Te4 [277] (For more details about experimental realization, one can

refer Appendix 5.4). The dynamical variable of each FMI is its macroscopic magne-

tization vector M . For the TI, a topologically protected spin polarized current flows

through the surface, where the spin is perpendicular to the current flow direction.

The spin and magnetization are coupled via the proximity interaction. The magne-

tization can affect the spin distribution and hence the electron transport behavior.

Simultaneously, the average spin will act as an effective magnetic field to influence

the dynamics of the FMIs. Even with constant voltage driving, the magnetization

vectors of the FMIs can exhibit oscillations. Intuitively, because the spin polarized

current is common to both FMIs, it serves a kind of coupling between the two FMIs.

Specifically, the magnetization of the first FMI can affect the current, which in turn

alters the effective magnetic field acting on the second FMI, impacting its dynamics,

and vice versa. As a result, phase locking is possible.

To develop a computational model, we assume that the magnetization precession

period is much longer than the time it takes for electronic transport to transmit

through the FMI/TI interface. For simplicity, first we ignore the quantum interference
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Figure 5.1: Schematic illustration of two FMIs on the top of a TI. The two
yellow blocks represent the FMIs and the green block underneath is the TI. The green
arrows in the yellow blocks are the magnetization vectors M , the blue arrows on the
surface of green blocks represent certain electron incident direction in magnetic free
region. And the small red arrows with the electron (blue sphere) denote the spin
direction, the black arrows indicate the electron motion direction.

effect or any other direct interaction between the two FMIs (later we will discuss the

case with quantum interference in the second part of section III). We solve the time-

independent Dirac equation for the electrons at the two interfaces separately, taking

into account the proximity effect. In particular, the low-energy electronic behavior of

the TI surface states is described by the effective Dirac Hamiltonian [126]

H = ~vF (σ × k) · ẑ − ξM · σ − U, (5.1)

where p = ~k = −i~(∂x, ∂y, 0) is the two-dimensional (2D) electron momentum

operator, σ = (σx, σy, σz) are the Pauli matrices for electron spin, ẑ = (0, 0, 1) is the

unit vector normal to the TI surface, and vF is the electron Fermi velocity, as shown

in Fig. 5.1. The second term in Eq. (5.1) represents the energy of exchange interaction

between an electron and the proximate FMI, with ξ being the coupling coefficient.

The last term is the external bias applied to the interface regions. Note that we treat
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the two FMI/TI heterostructures separately in the case without quantum interference,

i.e., we solve Eq. (5.1) by taking M = M 1 in the first heterostructure region and

match the wavefunctions in the incidence, heterostructure, and transmitted area for

the first one without any influence of the second heterostructure. And we treat the

second heterostructure in the same way with no influence from the first one. The

calculation of electron transmission through one FMI/TI heterostructure can be find

in Appendix 5.6.2. For the case with quantum interference, we solve Eq. (1) for two

FMIs on TI heterostructures as a whole (details refer the second part of section III

and Appendix 5.6.3).

The energy eigenvalues of Eq. (5.1) are

E± = ±
√

(vFpx + ξMy)2 + (vFpy − ξMx)2 + ξ2M2
z − U,

where the “±” signs correspond to the conduction (+) and valence (−) bands, and

p = ~k is the electron momentum. We see that the in-plane (x, y) magnetization

components can lead to a displacement in the momentum space. Especially, the

momentum displacement in the y direction can lead to a Hall current in that direction.

Besides, the perpendicular component of the magnetization vector can open up a gap

between the Dirac cones, contributing an additional Hall current in y. The first

kind of Hall current plays the role of effective anisotropy, while the second kind is

responsible for anti-damping. The two kinds of Hall current can lead to self oscillations

of magnetization [126, 127, 128].

For each FMI, the conductance through one FMI/TI heterostructure can be cal-

culated from the Landauer-Buttiker formalism [120, 126]:

G =
Ee2Lw

2π2~2vF

∫ π
2

−π
2

TM (E, θ) cos θdθ. (5.2)

where E is electron Fermi energy, TM (E, θ) = |t|2 is the transparency through one

FMI/TI barrier, θ is the electron incident angle in the (x, y) plane, −e is the electron
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charge. For two coupled FMIs, their conductances G1 and G2 determine the voltage

partition between them:

V1 =
G2

G1 +G2

V and V2 =
G1

G1 +G2

V. (5.3)

The current density is given by

Jx =
V1G1

Lw
=

Ee2V1

2π2~2vF

∫ π
2

−π
2

TM (E, θ) cos θdθ. (5.4)

From the current definition Ĵ = −e∇pH = −evF (−σ̂y, σ̂x) [125, 126], we can get the

mean spin polarization density for the first FMI as

〈σy〉1 = Jx/evF , (5.5)

=
EeV1

2π2~2v2
F

∫ π
2

−π
2

TM (E, θ) cos θdθ, (5.6)

Utilizing the equality TM (E, θ) cos θ = −ψ†σyψ (ψ is the electron wavefunction, more

details about the spin density derivation, see Appendix 5.6.2), we can rewrite the

above equation as

〈σy〉1 = − EeV1

2π2~2v2
F

∫ π
2

−π
2

ψ†σyψdθ,

= − EeV1

2π2~2v2
Fd

∫ d

0

∫ π
2

−π
2

ψ†σyψdθdx (5.7)

There are three spin components for each electron at specific position with certain

incident angle, which is (ψ†σxψ, ψ†σyψ, ψ†σzψ). So once we know the y component

spin density, the other components can be obtained by replacing ψ†σyψ in Eq.(8) by

ψ†σxψ and ψ†σyψ for the factor before the integral in Eq. (8) is related to electron

density. So, we can get

〈σx〉1 = − EeV1

2π2~2v2
Fd

∫ d

0

∫ π
2

−π
2

ψ†σxψdθdx, (5.8)

〈σz〉1 = − EeV1

2π2~2v2
Fd

∫ d

0

∫ π
2

−π
2

ψ†σzψdθdx. (5.9)
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Note that we can also first get the electron density and then get the spin density

expression above. The detailed discussion can be find in Appendix 5.6.2. The mean

spin density for the second FMI can be obtained in a similar way. The effective

magnetic field is then given by

Bspin = −〈 ∂H
∂M
〉A0

V0

=
ξ

a
〈σ〉, (5.10)

where 〈σ〉 is the mean spin density of the electron flow.

In addition to the effective magnetic field contribution from the electron spin, there

is another term that stems from the magnetic anisotropy of the material. We assume

that the magnetic layer has the z hard axis and the x easy axis; this corresponds

to anisotropy parameters Kz > Ky > Kx = 0 and the density of magnetic free

energy [126]

F (M) = Fan + Fspin

= Kxn
2
x +Kyn

2
y +Kzn

2
z −M ·Bspin(M), (5.11)

where n = (nx, ny, nz) = M/|M |. The effective magnetic field by material anisotropy

can be obtained via Ban = −∂Fan/∂M .

The LLG equation for magnetization dynamics of the two coupled FMIs can be

written as

dn1

dt
= −γn1 ×B(1)

eff (n1,n2) + αn1 ×
dn1

dt
, (5.12)

dn2

dt
= −γn2 ×B(2)

eff (n1,n2) + αn2 ×
dn2

dt
, (5.13)

where the normalized vectors of magnetization are defined as n1 = M 1/|M 1|, n2 =

M 2/|M 2| (|M 1| = |M 2| in this paper), γ is the gyromagnetic ratio, and α is the

Gilbert damping constant. B
(1)
eff and B

(2)
eff are the effective magnetic field for the first

and second FMI respectively with B
(1)
eff = B

(1)
spin + B(1)

an , and B
(2)
eff = B

(2)
spin + B(2)

an .
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The anisotropy induced effective magnetic field B(1)
an and B(2)

an are different for these

two FMIs, which will lead to different oscillation frequencies for the two FMIs when

applying the same voltage on them separately. The spin induced effective magnetic

field of the first heterostructure is B
(1)
spin = ξ

a
〈σ〉1 ∼ V1, and V1 is determined by the

conductance of both heterostructures via voltage partition with the same longitudinal

current along x direction. And the conductance of the two heterostructures is of

course related to the magnetizationM 1 andM 2. Similarly, the spin induced effective

magnetic field in the second heterostructure is B
(2)
spin ∼ V2, which is also related to

M 1 and M 2 in the same way as the first one. Thus, the magnetization of the two

FMIs are coupled together via the same current going through them. The iterative

calculation procedure is as following: Utilizing magnetization M 1 and M 2 of the

two FMIs, we solve the Hamiltonian Eq. (5.1) separately to get the corresponding

electron wavefunctions in these two heterostructures. Based on wavefunctions, we can

calculate the electron conductance (Eq. (5.2)) and average spin. Because the common

x direction current goes through these two heterostructures, we need to do the voltage

partition (Eq. (5.3)). This common current coupled the two FMIs together. Then

we can get the spin density (Eq. (5.7)-(5.9)) and thus the effective magnetic field by

spin which can affect the magnetization dynamics. A schematic illustration of this

procedure is illustrated in Appendix 5.6.1.

Our simulation parameters are the following. Each magnet is assumed to have

the dimension of d (length)×Lw (width) ×a (thickness) = 40 × 90 × 2.2 nm3, with

hard-axis anisotropy coefficients Ky = 2.0× 105 erg/cm3 and Kz = 2.5× 105 erg/cm3

along the y and z axis, respectively. The initial magnetization is M0 = 1200 Oe.

The Gilbert damping factor is α = 0.01. For the TI layer, the Fermi velocity of the

electron is vF = 4.6× 107 cm/s. The exchange energy term is ξM0 = 40 meV.
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Figure 5.2: Phase locking between the magnetization vectors of two FMIs.
(a) Time evolution of y components of the magnetization vectors of the two isolated
FMIs under the same applied voltage of 40 mV. The electron energy is 100 meV. The
red solid and blue dashed lines denote the y component of the magnetization of the
first and second FMI, respectively. (b) Fourier spectra of the time series in (a). (c,d)
The corresponding results under coupling through the surface current of the TI under
applied voltage of 80 mV. There is phase locking.

5.3 Results

Phase Locking in the Absence of Quantum Interference

To uncover phase locking for a pair of coupled FMIs in a general setting, we assume

that the FMIs have different values of anisotropy: one with the values listed above,

the other having an additional anisotropy in the x direction with the value of the

anisotropy coefficient being Kx = 0.0955 × 105 erg/cm3. Nonidentical values of the

anisotropy lead to different oscillation frequencies for the two FMIs under the same

applied voltage. We first consider the case of isolated FMIs by applying the same
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Figure 5.3: Robustness of phase locking for different parameter settings.
(a) For Ky = 1.5×104 erg/cm3 (the anisotropy coefficient in y), phase locking between
the two FMIs. Note that the value of Ky in Fig. 5.2 is Ky = 2 × 104 erg/cm3. The
red, blue and green curves denote the nx, ny and nz components, respectively. The
solid and dashed curves are for the first and second FMIs, respectively. The applied
voltage is 100 mV and the electron energy is 100 meV. (b) Phase locking behavior
when the damping factor is increased to 0.02 (from the value of 0.01 in Fig. 5.2). The
applied voltage is 140 mV and the electron energy is 100 meV.

DC voltage on the two FMIs separately. Figure 5.2(a) shows that the magnetization

vectors of the isolated FMIs exhibit oscillations at difference frequencies, where the

solid red and dotted blue lines correspond to the first and second FMI, respectively.

Note that the two magnetization components deviate within 1 ns (containing several

oscillation periods), signifying a difference in their frequencies due to the difference in

the anisotropy. The frequency difference can also be seen from the Fourier spectra, as

shown in Fig. 5.2(b). For the second FMI with an additional value of anisotropy along

the x axis, the frequency is lower than that of the first one. We next introduce coupling

by placing the two FMIs in series on a TI and letting the current go through the two

FMIs, as illustrated in Fig. 5.1. The separation between the two FMIs is sufficiently

large so that any direct quantum interference between the two FMIs can be neglected.

We apply the voltage of 80 mV. The magnetization oscillations will make the current

oscillate in time through the proximity effect, i.e., modulation of the transmission
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Figure 5.4: Phase and anti-phase locking between a pair of coupled FMIs.
(a) Phase locking between the y components of the magnetization vectors for V0 = 110
mV and E = 60 meV. (b) Anti-phase locking for V0 = 190 mV and E = 30 meV.
(c,d) The corresponding evolutions of the surface current of the TI for cases (a,b),
respectively. Other parameters are the same as those in Fig. 5.2(c).

of electrons. The current induces interaction between the two FMIs by an effective

magnetic field due to electron spin, leading to phase locking, as shown in Fig. 5.2(c),

where the y components of the magnetization vectors of the two FMIs evolve with

time at the same pace. Phase locking can be further demonstrated by the Fourier

spectra, as shown in Fig. 5.2(d), where the two oscillatory time series have essentially

the same peak frequency. We have examined a large number of combinations of the

parameters such as the amount of anisotropy and damping factor and found robust

phase locking in all cases, as exemplified in Fig. 5.3.

We also find persistent phase locking in wide ranges of the applied voltage and
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electron Fermi energy. For example, Figs. 5.4(a,b) demonstrate phase locking for

two cases where the applied voltage and electron energy are (110 mV, 60 meV) and

(190 mV, 30 meV), respectively, with other parameters being the same as those in

Fig. 5.2(c). Note that in Fig. 5.4(a), the magnetization vectors of the two FMIs

are in phase, while there is anti-phase locking between them in Fig. 5.4(b). The

corresponding surface current oscillations in the TI are shown in Figs. 5.4(c,d). In

each case, the primary frequency of the current oscillations is the same as that of the

magnetization oscillations. To our knowledge, the demonstrated phase and anti-phase

locking behavior enabled by the proximity induced torques in the FMI/TI systems

has not been reported before.

To examine more closely the different phase and anti-phase locking behaviors in

Fig. 5.4, we plot the 3D trajectories of the magnetization unit vector. Figures 5.5(a,b)

correspond to the cases in Fig. 5.4(a,b), respectively. The red and blue trajectories

are for the two FMIs, and the red and blue dots denote the position of the mag-

netization vector at a certain time. For case (a), the trajectories almost coincide

with each other and the magnetization vectors (red and blue dots) are at the same

location for any time, and the frequency of the y component is twice those of the nx

and nz components, as illustrated in insets (c,d). For case (b), the trajectories are

close to each other but the magnetization vectors are dominated by the z component

and have opposite phases at the time instants t0 and t1. In this case, the frequencies

of the three components are the same. We also plot the trajectory of one FMI in

the spherical coordinate, as shown in Fig. 5.6, where the components of the magne-

tization vector are nx = cos θ cosφ, ny = cos θ sinφ, and nz = sin θ. The spherical

coordinate trajectory in Fig. 5.6(a) corresponds to the case in Fig. 5.5(a), where the

magnetization vector circulates about the minimum energy point. In Fig. 5.6(b), the

trajectory is along the edge.
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Figure 5.5: Trajectories of the magnetization unit vectors. (a) Trajectories
(red and blue for the two FMIs, respectively) in the 3D magnetization space corre-
sponding to Fig. 5.4(a). The black arrow denotes the trajectory evolution direction.
The insets (c,d) correspond to the projections of the trajectory on the nx − nz and
nx − ny planes, respectively. (b) Trajectories corresponding to Fig. 5.4(b).
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Figure 5.6: Magnetization trajectories in the spherical coordinate with re-
spect to energy distribution. The red curve is the trajectory of the magnetization
vector. Darker background color indicates lower energy value. The applied voltage
is 55 meV for (a) and 95 meV for (b), whereas the electron energy is 60 meV for (a)
and 30 meV for (b).

The difference in the trajectories is closely related to the relative value of the

electron and exchange coupling energies. As illustrated in Fig. 5.7, when the mag-

netization vector is along the z direction, the exchange coupling energy is 40 meV,

opening up a gap in the energy band. For the case where the electron energy is

above the bottom of the upper band (e.g., for energy value of about 60 meV), the

in-plane electron spin component is large, especially along the y axis. The value of

the out-of-plane spin component is limited by the small exchange coupling energy

in comparison with the electron energy. This has been confirmed by the effective

magnetic field value from the average spin, as shown in Fig. 5.8(a). It can be seen

that the absolute value of the effective magnetic field is stable and large along the

y axis, whereas the z component exhibits large oscillations. The effective magnetic

field by anisotropy makes the magnetization vector circulate about the y axis. When

the electron energy is decreased to, say, 30 meV (an energy value inside the gap),

the electron will experience a strong barrier if the z component of the magnetiza-

tion vector is non-zero, leading to a large out-of-plane spin component that in turn
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Figure 5.7: Electron energy band structure for the case where the magnetization
vector is in the z direction.

acts as an effective magnetic field in the z direction. As a result, the total effective

magnetic field is large in the z direction, causing the magnetization vector to precess

dominantly about the z axis. This picture is confirmed by the effective magnetic field

value experienced by the electron, as shown in Fig. 5.8(b), where the z component of

the field is quite large.

When there is coupling between the two oscillators by the electron current in the

TI, the magnetization vector will be mostly in-plane. In this case, the anti-damping

torque will assume relatively small values if there is anti-phase locking between the

two magnetization vectors. As a result, in-phase locking will induce large fluctuations

in both y and z components, as can be seen from Fig. 5.8(a), where the lower values

of the y component correspond to a large absolute value in the z direction. On the

contrary, if the out-of-plane spin component dominates, an anti-damping torque will

arise, thereby reducing the total current fluctuations.
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Figure 5.8: Effective magnetic field by spin. The red, blue and green curves
denote the effective magnetic field in the x, y and z directions, respectively. The solid
and dashed lines are for the two FMIs. The two cases are: (a) E = 60 meV (above
the bottom of the upper band, the upper horizontal red arrow in Fig. 5.7) and (b)
E = 30 meV (in the gap, the lower horizontal red arrow in Fig. 5.7).

Effect of Quantum Interference on Phase Locking

Having uncovered the phenomena of phase and anti-phase locking in a pair of FMIs

coupled by the spin polarized surface current of the TI, we address the issue of quan-

tum interference and investigate its effect on the phase locking dynamics. To take into

account quantum interference, we treat the two FMIs as a single tunneling system

and calculate the probability of quantum tunneling through the whole system.

Consider a surface electron in the TI moving toward the interface region. As

shown in Fig. 5.9, there are five subregions of interest: (I) the “free” region to the

left of the interface between the first FMI and TI, (II), the interface region itself,

(III) the region between the two interfaces, (IV) the second interface region, and (V)

the “free” region to the right of the region IV. Let θ be the incident angle of the

electron from region I to region II. The spinor wavefunctions in the five regions are

shown in Appendix 5.6.3. Matching the wavefunctions at the boundaries, we can get

all the coefficients and hence the wavefunction in the whole 2D space. The average
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Figure 5.9: A schematic illustration of distinct quantum transport regions
for calculating the effective coupling field. The distance between the two FMIs
is L = d = 40 nm.

spin polarization in each subregion and the corresponding effective magnetic field can

then be calculated, as in Eqs. (5.4)-(5.13).

Figure 5.10 shows the representative magnetization dynamics of the two FMIs

when quantum interference is taken into account, for V0 = 50 mV and E = 100 meV.

The three components of the magnetization vector are represented by different colors,

and the solid and dashed lines are for the first and second FMI, respectively. The

magnetization vectors exhibit oscillations and there is phase locking. We vary the

external voltage and the electron energy in quite large ranges, and also change the

anisotropy value. In all cases, persistent phase locking is observed.

5.4 Indication on Experimental Realization of Phase Locking

One commonly used TI/FMI heterostructure is Bi2Se3/YIG (yttrium iron garnet)

heterostructure [274, 278, 279] which has been used for investigating the effect of ex-

change interaction between FMI and TI surface states on the magnetization dynamics

of YIG recently [279]. Among the different types of anisotropies in YIG thin film,

the shape anisotropy dominates. And the hard axis (perpendicular to the film plane
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Figure 5.10: Phase locking between the two coupled FMIs in the presence
of quantum interference. The applied voltage is 50 mV and the electron energy
is 100 meV. The red, blue and green curves denote nx, ny and nz, respectively. The
solid and dashed lines are for the FMI in region II and IV, respectively.

denoted as z direction here) anisotropy coefficient for YIG is in the order of Kz ∼ 105

erg/cm3 corresponding to the thickness d of the film ranging from several nm to tens

of nm [279, 278]. The magnetocrystalline anisotropy coefficient is smaller than that

of shape anisotropy, which is about K ∼ 2.5×104 erg/cm3 and can produce hard axis

in plane favoring magnetization along the 〈111〉 axis [278]. And the magnetization

value is usually in the order of 1000 Oe [279, 278]. Another popular heterostructure

Bi2Se3/EuS [117, 280, 118, 281] is also widely investigated and the recent progress

about the magnetoresistance and even current-induced magnetization switching is

reported [281]. The hard axis anisotropy is in the range of 104 − 105 erg/cm3 for

EuS [280, 118]. And the magnetization is also in the order of 1000 Oe [118]. The

anisotropy value of these two materials are comparable to the value we take in the

model (Kz = 2.5×105 erg/cm3) and have the potential to realize auto-oscillation and
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then phase locking based on the recent experimental progress.

Although we use specific anisotropy values to illustrate the phase locking phe-

nomena in our paper, we can show that there is tunability of the anisotropy values in

certain range to fit the real materials. First, if we fix the value of anisotropy in z direc-

tion, we can also achieve phase locking by changing y direction anisotropy and applied

voltage in a wide range. As an example, we take the z direction anisotropy coefficient

to be Kz = 2.5×105 erg/cm3, then we change the y direction anisotropy coefficient Ky

and the voltage. We can see phase locking can be achieved in a wide range of Ky value

and voltage range. We plot the phase diagram of phase locking in Fig. 5.11 based

on numerical calculation with Ky and V as variables and Kz = 2.5 × 105 erg/cm3,

electron Fermi energy E = 100 meV. The yellow area Fig. 5.11 roughly shows the

parameter range for phase locking.

𝑉

𝐾𝑦

2.3 × 105

75 115 (𝑚𝑉)

0.5 × 105

(𝑒𝑟𝑔/𝑐𝑚3)

Figure 5.11: The parameter range for phase locking. Fixing the Kz value, we
can get a wide range of voltage and Ky values for phase locking.

Furthermore, we can show the Kz value can also be tunned based on the analysis

of LLG equation. We can get an equivalent equation to LLG equation called Landau-
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Lifshitz (LL) equation by using the cross product of n on the left side

n× dn

dt
= −γn× (n×Beff )− α

dn

dt
, (5.14)

and take it into the LLG equation, we get the equivalent form

dn

dt
= − γ

1 + α2
n×Beff −

γα

1 + α2
n× (n×Beff ). (5.15)

where we can see increasing the effective magnetic field is equivalent to decreasing the

time period of magnetization oscillations. Specificly, we know that Beff = Bspin +

Ban, with the spin induced effective magnetic field proportional to the applied voltage,

i.e., Bspin ∼ V and the anisotropic magnetic field proportional to the anisotropy

coefficient, i.e., Ban ∼ K. Thus if we change the material anisotropy say by several

times, then we just need to change the voltage the same times to ensure the value of

Beff also changes the same times. This will not affect the phase locking and only

the magnetization dynamics period or time scale can be affected. Thus, in theory, we

can have a large range of tunability of the anisotropy.

In addition to the range of anisotropy, we need to restrict the anisotropy difference

of two nanocontact to be less than 10% of Kz value. If the anisotroopy difference of

these two nanocontacts is too large, synchronization cannot be realized.

5.5 Conclusion

To summarize, motivated by the need for nanoscale oscillators for developing po-

tential unconventional computing paradigms, we have studied the oscillatory dynam-

ics and phase locking of a pair of FMI oscillators coupled through the spin-polarized

current on the surface of an TI. The dynamics of the whole system are of the hybrid

type [122]: a combination of classical nonlinear and relativistic quantum dynamics,

with the following underlying physics. For each heterostructure interface between the
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FMI and TI, there is an average spin of the electron flow, which can be solved via the

transmission through the interface. The average spin acts as an effective field which,

when combining with the magnetic anisotropy of the FMI, leads to self oscillations

of the magnetization of each individual, uncoupled FMI. The self oscillations in turn

modulate the electron transmission periodically, making the surface current of the

TI time varying. The AC current generates the coupling of the two FMIs. As a

result, stable phase or anti-phase locking between the two FMIs emerges, regardless

of whether quantum interference is absent or present. The locking phenomenon is

robust as it occurs in wide ranges of the external applied voltage and electron energy.

To our knowledge, this is the first demonstration of phase locking due to proximity

effect induced torques in FMI/TI systems, justifying further investigation of these

systems in terms of their possible role in serving as the fundamental building block

of unconventional computing paradigms.

In an experimental setup, if the two FMIs are far from each other (e.g., > 100

nm), scattering from impurities will destroy the coherence between the states of the

two FMIs. In this case, our non-coherent approach is applicable. If the two FMIs

are close to each other (e.g., within 100 nm), coherence cannot be ignored, rendering

necessary our quantum coherence based treatment. Another very important direct

interaction between two FMIs that can affect the phase locking is the dipole-dipole

interaction [107] for which the energy can be written in the following form

Hdip = − µ0

4π|r|3
[3(m1 · r̂)(m2 · r̂)−m1 ·m2], (5.16)

where µ0 is vacuum permeability, r is the distance between two effective point dipoles,

r̂ is a unit vector parallel to the line joining the centers of the two dipoles, and m1,2 =

M 1,2 ·V , V is the volume of the FMI stripe. And for one FMI, the effective magnetic

field it feels from another is in this form B1,2 = − ∂H
∂M1,2

. Using the parameters in this
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paper, and set the two magnetization in the same direction (minimum energy) we can

roughly get the energy density H/V ≈ 2×104 erg/cm3 if we take the distance |r| = 20

nm. This is about one order of magnitude smaller than the z direction anisotropy

coefficient, which is Kz = 2.5 × 105 erg/cm3. So, if we keep the edge distance of

these two FMIs larger than 20 nm, the dipole-dipole interaction can be ignored. If

the two FMIs are too near to each other with dipole-dipole energy comparable to the

system energy, we should take the dipole-dipole interaction into account. The effect

of inclusion of dipole-dipole interaction into our current system on phase locking is

an interesting topic deserved for further investigation.

5.6 Supplementary Notes

5.6.1 Iterative Calculation Procedure for Coupled Magnetization Dynamics

In Fig. 5.12 we give a schematic procedure for calculating the magnetization dy-

namics without quantum interference (Fig. 5.12 (a)) and with quantum interference

(Fig. 5.12 (b)). The definition of all the corresponding quantities can be find in

section 7.2 of the paper.

5.6.2 Electron Spin Density Calculation in One FMI/TI Heterostructure

For one FMI/TI heterostructure (area I, II, III of Fig. 5.9), we can write the

wavefunctions in the incident area, heterostructure interface and the transmitted

area as following [125],

ψ1(x ≤ 0) =
1√
2

 ie−iθ

1

 eikF x cos θ

+
r√
2

 −ieiθ
1

 e−ikF x cos θ (5.17)
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ψ2(0 < x < d) = A ·

 ~vF (k̃y + ik̃x)

E + U − ξMz

 ei(k̃x+ξMy/~vF )x

+B ·

 ~vF (k̃y − ik̃x)

E + U − ξMz

 ei(−k̃x+ξMy/~vF )x (5.18)

ψ3(x ≥ d) =
t√
2

 ie−iθ

1

 eikF x cos θ (5.19)

where r and t are the reflection and transmission coefficients, E + U = ~vFkF ,

kx = kF cos θ, ky = kF sin θ, ~vF k̃x =
√

(E + U)2 − (ξMz)2 − (~vF k̃y)2, and ~vF k̃y =

~vFky − ξMx. Besides, for simplicity, we have denoted A = a√
2(E+U)(E+U−ξMz)

,

B = b√
2(E+U)(E+U−ξMz)

with a, b the corresponding coefficients. Matching the wave-

functions on the boundary between different parts, we can get the corresponding

coefficients, r, a, b, and t. Note that we ignore the spatial factor 1/
√
LW in the

wavefunction above with L, W the size parameter of the 2D device. For one elec-

tron, the spin y component in the transmitted region III can be obtained via the

wavefunction (Eq. (5.19)) average

ψ†3σyψ3 = −|t|2 cos θ, (5.20)

We define the transmission probability T (E, θ) = |t|2, thus we have T cos θ = −ψ†3σyψ3,

by which we have established the relation between electron transmission in x direc-

tion and the spin y component value in the transmitted region (free region). Next,

we will prove that this relation (spin-momentum locking) is also valid in the FMI/TI

heterostructure region, i.e., ψ†2σyψ2 = ψ†3σyψ3 independent of position x. To ver-

ify this, we write the spin value in terms of the wavefunction (Eq. (5.18)) in the
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heterostructure region at position x as following

ψ†2σyψ2 = −2β ·
[
|A|2=(α1) exp(−2=(k̃x)x)

+ |B|2=(α2) exp(2=(k̃x)x)
]

+ 2β · <
[
iA∗B · (α2 − α∗1) exp(−2i<(k̃x)x)

]
(5.21)

where we denote α1 = ~vF (k̃y + ik̃x), α2 = ~vF (k̃y − ik̃x) and β = E +U − ξMz, <(·)

and =(·) represent the real part and imaginary part of a certain number respectively.

Now, we can further simplify the expression of Eq. (5.21). From the formulas above,

we know k̃y is real and k̃x can be real or pure imagniary depending on Mz and ky

(~vF k̃x =
√

(E + U)2 − (ξMz)2 − (~vF k̃y)2). To evaluate the value of ψ†2σyψ2, we

first assume k̃x is real. Then we can get the second part on the right hand side of

Eq. (5.21) is 0, and exp(−2=(k̃x)x) = exp(2=(k̃x)x) = 1. We have

ψ†2σyψ2 = −2β~vF k̃x(|A|2 − |B|2), (5.22)

which is independent of the position x. Then we suppose k̃x is pure imaginary, then

the first part on the right hand side of Eq. (5.21) is zero, because =(α1) = =(α2) = 0.

Using exp(−2i<(k̃xx)) = 1, we have

ψ†2σyψ2 = 4β<(A∗Bk̃x). (5.23)

which is also independent of position x. Because the wavefunction matching at the

boundary, we can get the relation T (E, θ) cos θ = −ψ†3σyψ3 = −ψ†2σyψ2 in the het-

erostructure region.

Thus, the current density along x direction (Eq. (5.4)) can be written in terms of

spin average, i.e.,

Jx =
V1G1

Lw
= − Ee2V1

2π2~2vF

∫ π
2

−π
2

ψ†2σyψ2dθ. (5.24)
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Utilizing the current definition in free area Ĵ = −e∇pH = −evF (−σ̂y, σ̂x), we can

get the mean spin density

〈σy〉1 =
Jx
evF

= − EeV1

2π2~2v2
F

∫ π
2

−π
2

ψ†3σyψ3dθ,

= − EeV1

2π2~2v2
F

∫ π
2

−π
2

ψ†2σyψ2dθ,

= − EeV1

2π2~2v2
Fd

∫ d

0

∫ π
2

−π
2

ψ†2σyψ2dθdx. (5.25)

For each incident particle with certain angle and certain energy, the spin value at each

point x in the heterostructure is (ψ†2σxψ2, ψ
†
2σyψ2, ψ

†
2σzψ2). So we can also do angle

and position average for σx and σz like σy, and finally multiply the factor related

to electron density, as in Eq. (5.25). Thus the x and z components spin density in

the heterostructure region can be obtained by substituting ψ†2σyψ2 with ψ†2σxψ2 and

ψ†2σzψ2 in Eq. (5.25)

〈σx〉1 = − EeV1

2π2~2v2
Fd

∫ d

0

∫ π
2

−π
2

ψ†σxψdθdx, (5.26)

〈σz〉1 = − EeV1

2π2~2v2
Fd

∫ d

0

∫ π
2

−π
2

ψ†σzψdθdx. (5.27)

For the general Rashba Hamiltonian, we can also get the effective spin density

using the idea above but in a more straight forward manner. The general Rashba

Hamiltonian with exchange interaction has the form [282, 283, 284]

H =
~2

2m
k2 + α(σ × k) · ẑ − ξM · σ, (5.28)

where ~k = −i~(∂x, ∂y, 0) is the two-dimensional electron momentum operator, α

parametrizes the spin-orbit coupling, ξ is the exchange coupling strength between

conduction electron and the magnetization. We can also write the wavefunctions in

the incident, heterostructure and transmitted area, and matching wavefunctions at

the boundary to get the corresponding coefficients. We just give the transmitted wave
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in the following form [285] which is essential for spin density calculation

φt =
t√
2

exp(ik · r) ·

 i · s exp(−iθ)

1

 (5.29)

with t the transmission coefficient, s = ±1, exp(−iθ) = (kx − iky)/
√
k2
x + k2

y. The

current operator for x direction in the transmitted area is defined as

Ĵx = −e∇pxH = −e(px
m
− α

~
σ̂y). (5.30)

So for one electron, the current with certain incident angle is

jx = φ†t Ĵxφt = −e
[px
m
|t|2 + s · α

~
|t|2 cos θ

]
= −e

[~k
m

+
sα

~

]
|t|2 cos θ (5.31)

Thus the current with all angle average is in the form

javex =
−e
π
·
[~k
m

+
sα

~

] ∫ π
2

−π
2

TM (E, θ) cos θdθ. (5.32)

From the Landauer-Buttiker formalism, the conductance is

G =
Ee2Lw

2π2~2vF

∫ π
2

−π
2

TM (E, θ) cos θdθ. (5.33)

And the current density is

Jx =
V1G1

Lw
=

Ee2V1

2π~2vF
· 1

π

∫ π
2

−π
2

TM (E, θ) cos θdθ. (5.34)

So, the incident electron density can be expressed as

n =
Jx
javex

= − EeV1

2π~2vF
· 1

~k
m

+ sα
~
. (5.35)

Once we know the current density, we can calculate the spin average over different

incident angles and position, for example, the σy component can be written as

〈σy〉1 = n · 1

πd

∫ d

0

∫ π
2

−π
2

ψ†σyψdθdx

= − EeV1

2π2~2vFd
· 1

~k
m

+ sα
~

∫ d

0

∫ π
2

−π
2

ψ†σyψdθdx, (5.36)
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If we take m → ∞, α = ~vF , s = 1, we can get the spin density for TI case in

Eq. (5.25). In summary, the surface state of TI corresponds to the m → ∞ limit

of 2D Rashba Hamiltonian, in which case the spin-momentum locking efficiency is

maximum.

Another type of 2D Rashba systems can be graphene based heterostructures, e.g.

graphene/Ni(111) and graphene/transition metal dichalcogenide. For such systems,

the electron dynamics is governed by the 2D Dirac-Rashba Hamiltonian and turns out

to show great in-plane spin polarization, which is perpendicular to electron momen-

tum and proportional to the group velocity [286]. As such, like the surface electron

states of topological insulators considered, an in-plane voltage induced charge current

will lead to spin density along the perpendicular direction and hence corresponding

torque that can be the driven source for magnetization in adjacent magnetic insula-

tors. Then, similar inter-coupling dynamics (between electron transport and magne-

tization) can be established by adapting/generalizing the current formalism.

5.6.3 Solutions of Quantum Tunneling of Dirac Electrons Through Double FMI

Barriers

The spinor wavefunctions in the five regions in Fig. 5.9 can be written as

ψ1(x ≤ 0) =
1√
2

 ie−iθ

1

 eikF x cos θ +
r√
2

 −ieiθ
1

 e−ikF x cos θ
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ψ2(0 < x ≤ d) =
1√

2(E + U1)(E + U1 −Mz1)

·

[
a

 ~vF (k̃y1 + ik̃x1)

E + U1 −Mz1

 ei(k̃x1+my1/~vF )x

+b

 ~vF (k̃y1 − ik̃x1)

E + U1 −Mz1

 ei(−k̃x1+my1/~vF )x

]

ψ3(d < x < L+ d) =
c√
2

 ie−iθ

1

 eikF x cos θ +
d√
2

 −ieiθ
1

 e−ikF x cos θ

ψ4(L+ d < x < L+ 2d) =
1√

2(E + U2)(E + U2 −Mz2)

·

[
f

 ~vF (k̃y2 + ik̃x2)

E + U2 −Mz2

 ei(k̃x2+my2/~vF )x

+g

 ~vF (k̃y2 − ik̃x2)

E + U2 −Mz2

 ei(−k̃x2+my2/~vF )x

]

ψ5(L+ 2d < x) =
t√
2

 ie−iθ

1

 eikF x cos θ

where r is the reflection coefficient in region I, t is the transmission coefficient in

region V, a, b, c, d, f , and g are the corresponding coefficients in regions II, III, and
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IV. Other quantities are

E = ~vFkF ,

ky = kF sin θ,

~vF k̃x1 =

√
E2 −m2

z1 − (~vF k̃y)2,

~vF k̃x2 =

√
E2 −m2

z2 − (~vF k̃y)2,

~vF k̃y1 = ~vFky +mx1,

~vF k̃y2 = ~vFky +mx2,

U1 and U2 are the biases applied on the two FMIs, respectively, and m = ξM .

Matching the wavefunctions at the boundaries, we get all the coefficients and hence

the wavefunction in the whole domain, as follows.

t =
Z5Z10 − Z6Z9

(Z4Z10 − Z6Z8)b0 − (Z6Z7 − Z3Z10)a0

,

r =
(Z5Z7 − Z3Z9)a0 − (Z4Z9 − Z5Z8)b0

(Z4Z10 − Z6Z8)b0 − (Z6Z7 − Z3Z10)a0

,

a =
(Y6Z1 − Y7Y10)C0 + (Y6Z2 − Y8Y10)d0

Y6Y9 − Y5Y10

t = a0t,

b =
(Y6Y9 − Y5Z1)C0 + (Y8Y9 − Y5Z2)d0

Y6Y9 − Y5Y10

t = b0t,

c =
(X10Y1 −X7Y4)f0 + (X10Y2 −X8Y4)g0

X10Y3 −X9Y4

t = c0t,
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d =
(X7Y3 −X9Y1)f0 + (X8Y3 −X9Y2)g0

X10Y3 −X9Y4

t = d0t,

f =
X2X6 −X3X5

X2X4 −X1X5

t = f0t,

g =
X3X4 −X1X6

X2X4 −X1X5

t = g0t,

where th variables X1-X10, Y1-Y10, and Z1-Z10 are

X1 ≡ ~vF (k̃y2 + ik̃x2)ei(k̃x2+my2/~vF )(L+2d),

X2 ≡ ~vF (k̃y2 − ik̃x2)ei(−k̃x2+my2/~vF )(L+2d),

X3 ≡ ie−iθeikF (L+2d) cos θ
√

(E + U2)(E + U2 −mz2),

X4 ≡ (E + U2−mz2)ei(k̃x2+my2/~vF )(L+2d),

X5 ≡ (E + U2−mz2)e−i(k̃x2+my2/~vF )(L+2d),

X6 ≡ eikF (L+2d) cos θ
√

(E + U2)(E + U2 −mz2),

X7 = e−ikF (L+d) cos θ
√

(E + U2)(E + U2 −mz2),

X8 ≡ ~vF (k̃y2 − ik̃x2)ei(−k̃x2+my2/~vF )(L+d),

X9 ≡ ie−iθeikF (L+2d) cos θ
√

(E + U2)(E + U2 −mz2),
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X10 ≡ −ie−iθeikF (L+2d) cos θ
√

(E + U2)(E + U2 −mz2),

X10 ≡ −ie−iθeikF (L+2d) cos θ
√

(E + U2)(E + U2 −mz2),

Y1 ≡ (E + U2−mz2)ei(k̃x2+my2/~vF )(L+d),

Y2 ≡ (E + U2−mz2)ei(−k̃x2+my2/~vF )(L+d),

Y3 ≡ eikF (L+d) cos θ
√

(E + U2)(E + U2 −mz2),

Y4 ≡ e−ikF (L+d) cos θ
√

(E + U2)(E + U2 −mz2),

Y5 ≡ ~vF (k̃y1 + ik̃x1)ei(k̃x1+my1/~vF )d,

Y6 ≡ ~vF (k̃y1 − ik̃x1)ei(−k̃x1+my1/~vF )d,

Y7 ≡ ie−iθeikF d cos θ
√

(E + U1)(E + U1 −mz1),

Y8 ≡ −ie−iθeikF d cos θ
√

(E + U1)(E + U1 −mz1),

Y9 ≡ (E + U1−mz1)ei(k̃x1+my1/~vF )d,

Y10 ≡ (E + U1−mz1)ei(−k̃x1+my1/~vF )d,

Z1 ≡ eikF d cos θ
√

(E + U1)(E + U1 −mz1),

Z2 ≡ e−ikF d cos θ
√

(E + U1)(E + U1 −mz1),
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Z3 ≡ ~vF (k̃y1 + ik̃x1),

Z4 ≡ ~vF (k̃y1 − ik̃x1),

Z5 ≡ −Z6 = ie−iθ
√

(E + U1)(E + U1 −mz1),

Z7 ≡ Z8 = E + U1−mz1,

Z9 ≡ Z10 =
√

(E + U1)(E + U1 −mz1),
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Figure 5.12: Iterative calculation procedure for coupled magnetization dy-
namics. (a) Current coupled FMIs without quantum interference. (b) Current cou-
pled FMIs with quantum interference.
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Chapter 6

SCATTERING OF DIRAC ELECTRONS FROM A SKYRMION: EMERGENCE

OF ROBUST SKEW SCATTERING

We study electron scattering from a closed magnetic structure embedded in the top

surface of a topological insulator (TI). Outside of the structure there is a uniform layer

of ferromagnetic insulator (FMI), leading to a positive effective mass for the Dirac

electrons. The mass inside the structure can be engineered to be negative, leading

to a skyrmion structure. The geometric shape of the structure can be circular or

deformed, leading to integrable and chaotic dynamics in the classical limit. For a cir-

cular structure, the relativistic quantum scattering characteristics can be calculated

analytically. For a deformed structure, we develop an efficient numerical method, the

multiple multipole method, to solve the scattering wavefunctions. We find that, for

scattering from a skyrmion, anomalous Hall effect as characterized by skew scatter-

ing cross section can arise and is robust against structural deformation, due to the

emergence of resonant modes. In the short (long) wavelength regime, the resonant

modes manifest themselves as confined vortices (excited edge states). The origin of

the resonant states is the spin phase factor of massive Dirac electrons at the skyrmion

boundary. In the short wavelength regime, for a circular skyrmion, a large number

of angular momentum channels contribute to the resonant modes. In this regime,

classical dynamics are relevant, but we find that geometric deformations, even those

as severe as leading to fully developed chaos, have little effect on the resonant modes.

The vortex structure of the resonant states makes it possible to electrically “charge”

the skyrmion, rendering feasible to manipulate its motion through electric means.

In the long wavelength regime, only the lowest angular momentum channels con-
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tribute to the resonant modes, making the skew scattering sharply directional. These

phenomena can be exploited for applications in generating dynamic skyrmions for

information storage and in Hall devices.

6.1 Introduction

Previous studies focused on scattering of electrons from radially symmetric skyrmion

structures. Deformed skyrmion structure has been studied in recent years. For ex-

ample, it was found that Majorana modes are robust against skyrmion deforma-

tions [287]. Quantum engineering of Majorana fermions in deformed skyrmion struc-

ture was also studied [288, 289] and deformed (elongated) skyrmions were used for

stabilization and control of Majorana bound states in proximity to an s-wave super-

conductor [290]. Shape dependent resonant modes have been discovered recently in

skyrmions in magnetic nanodisks [291].

The study of deformation also lead to the study of classical chaos in relativis-

tic quantum systems which was recently emerged as an interdisciplinary field of re-

search [292, 293] with applications to Dirac material systems [294, 72]. In contrast

to the traditional field of (nonrelativistic) quantum chaos [261, 295] where classical

chaos often bears strong signatures in the corresponding quantum systems, such “fin-

gerprints” tend to be weakened in the relativistic quantum counterparts [30, 296]. For

example, in scattering (e.g., electronic transport through a quantum dot structure),

chaos tends to smooth out fluctuations in scattering matrix elements, quantum trans-

mission, or conductance [297, 298, 299, 300, 301, 302] if the quantum behaviors are

governed by the Schrödinger equation. However, in two-dimensional (2D) Dirac ma-

terials such as graphene, strong fluctuations of the quantum scattering characteristics

can persist to certain extent in spite of classical chaos [303, 304].

In this Chapter, we investigate the Dirac electron skew scattering to a skyrmion
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structure residing on top of topological insulator, coupled by the proximity effect.

In particular, we consider the setting of a two-dimensional (2D), closed magnetic

structure embedded in a uniform layer of ferromagnetic insulating (FMI) materials

on the top of a 3D topological insulator (TI). Outside of the structure, due to the

FMI layer and the proximity effect, the electrons obey the Dirac equation with a

positive mass. The mass of the closed structure can be engineered to be negative,

making it a skyrmion [129, 130, 131, 132]. The skyrmion structure can be deformed

so that the classical particle motions inside are chaotic. The massive Dirac electrons

moving on the surface of the TI are scattered by the structure. The system thus not

only provides a setting for exploring new physics associated with scattering of Dirac

electrons from a magnetic skyrmion for applications (e.g., in spintronics), but also

represents a paradigm to study the effects of classical chaos on relativistic quantum

scattering in the presence of magnetism.

More specifically, we investigate electron scattering from a magnetic structure on

the top of TI, which can be either of the skyrmion or non-skyrmion type. The struc-

ture can simply be a circle, in which case the classical dynamics are integrable, or it

can be deformed from the circular shape, e.g., a stadium, where there is fully devel-

oped chaos in the classical limit. For a circular structure, the various scattering cross

sections can be obtained analytically from the standard partial wave analysis. For

a deformed structure, we adopt an efficient method, the multiple multipole (MMP)

method in optics, to solving the scattering wavefunctions of the two-component Dirac

fermion in the magnetic system. We focus on two regimes: the short wavelength

regime where the size of the magnetic structure is larger than the wavelength so that

the underlying classical dynamics are relevant, and the long wavelength regime where

the structure size is comparable or smaller than the wavelength. There are two main

results. Firstly, a skyrmion can lead to strong skew scattering due to the emergence
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of resonant modes that manifest themselves as confined vortices inside the skyrmion

in the short wavelength regime or confined edge states in the long wavelength regime.

The resonant modes are the result of mass sign change across the skyrmion boundary.

For a circular skyrmion, in the short wavelength regime, a large number of angular

momentum channels contribute to the resonant modes and electron charging arises,

providing a way to electrically manipulate the skyrmion motion. In the long wave-

length regime, only the lowest angular momentum channels contribute to the resonant

states, leading to strongly directional skew scattering with implications in developing

Hall devices. The second result is that classical chaos generated by geometrical defor-

mations has little effect on the scattering from a skyrmion. The scattering phenomena

uncovered for the circular case are thus robust. The immunity of the scattering dy-

namics to severe deformation of the skyrmion structure is advantageous for spintronic

device applications [305].

6.2 Model and Method

We place an FMI thin film (e.g., Cu2OSeO3) on the top of a TI with a single mag-

netic structure at the center of the thin film, as schematically illustrated in Fig. 6.1.

The motions of the surface electrons are affected by the structure with the magneti-

zation vector n(r). The Hamiltonian of the system is

H = vF (p̂× σ)z −∆sn(r) · σ, (6.1)

where vF is the Fermi velocity, p̂ = −i∇ is the momentum operator, σ = (σx, σy, σz)

are the Pauli matrices, and ∆s(> 0) is the spin-splitting energy from the exchange

interaction between the electron and the magnetization. In the polar coordinates

r = (r, θ), for a circular structure, the magnetization vector can be parameterized as

n(r) = [− sin θ
√

1− n2
z(r), cos θ

√
1− n2

z(r), nz(r)]. (6.2)
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For a deformed magnetic structure, there is swirling spin texture with magnetic mo-

ment points up on the edge and down in the center [306]. The out-of-plane component

of the magnetic texture nz(r) acts as a Dirac mass term, which opens a gap in the elec-

tronic band structure. The in-plane component n|| can lead to an emergent magnetic

field in the form

B(r) =
c∆divn||(r)

e~vF
.

For a swirling skyrmion structure, the emergent magnetic field B is zero and the

in-plane component can be gauged away [145, 55]. In this case, the “hard-wall”

approximation nz(r) = ±1 can be invoked [145, 55], with the point inside and outside

of the skyrmion structure taking on the value of minus one and one (n1 = 1, n2 =

−1), respectively. In experiments, such a structure can be realized using materials

with a strong out-of-plane magnetic anisotropy. In our study, we assume that the

magnetic structure is fixed and unaffected by the interface electrons. Experimentally,

a skyrmion structure can be stabilized via the Dzyaloshinskii-Moriya (DM) interaction

in the FMI [129, 130], where the skyrmion size depends on materials parameters

such as the relative strength of the Heisenberg and DM exchange interactions [129,

130]. Our model is valid for skyrmion with a vortical magnetic texture as described.

However, for hedgehog skyrmions, the in-plane magnetic field cannot be gauged away

due to the emergent magnetic flux and the structure is not as stable as vortical

skyrmions [129, 130].

The energy-momentum dispersion for electrons in free space with a uniform mag-

netic texture (constant mass) is given by

E± = ±
√
~2v2

F (k2
x + k2

y) + ∆2n2
z, (6.3)

as shown in Fig. 6.1(a). While the energy dispersion curve inside of the skyrmion

appears similar to that outside of skyrmion, the spin direction is different for the
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Figure 6.1: Schematic illustration of electron scattering from a skyrmion structure
in a thin FMI film deposited on the top of a TI. (a) The band structure of the FMI/TI
heterostructure. Outside (inside) of the skyrmion structure, the mass corresponding
to the band gap is positive (negative). (b) Illustration of electron scattering behavior
from the skyrmion structure. For electronic states outside and inside of the skyrmion,
the associated spin direction is different due to the opposite signs of mass.

electronic state due to the opposite signs of mass. An electron will then go through

a scattering process in this 2D system. Because of the breaking of the time reversal

symmetry, skew scattering will arise.

For a circular magnetic structure, the scattering wavefunction and the related

behavior can be solved analytically using the partial-wave decomposition method

(Sec. 6.4). For a deformed skyrmion, analytic solutions of the scattering wavefunction

are not feasible. We have developed an MMP based method, which has its origin

in optics [307, 308, 309, 310, 311] and has recently been extended to scattering of

pseudospin-1 particles [30]. The basic idea is to assume two sets of fictitious poles

along and in the vicinity of the entire boundary of the magnetic structure: one outside

and another inside of the boundary. Each pole emits a wave in the form of Hankel

function (spherical wave in the far field). The transmitted wavefunction at each point
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inside of the scatterer can be expressed as the superposition of the waves emitted by

the poles outside of the scatterer. Similarly, the refracted wavefunction at each point

outside of the scatterer can be written as the combination of the waves emitted by

the poles inside of the scatterer. The incident plane wave as well as the reflected and

transmitted waves are matched on the boundary to enable the poles to be determined,

and the expansion coefficients can be obtained by solving the matrix eigenfunctions.

(The details of the MMP method adopted to scattering from a magnetic structure are

given in Appendix 6.6.1.) We validate the method by comparing the MMP solutions

with the analytic solution based on partial wave expansion for a circular skyrmion.

Overall, the MMP method is effective and efficient for solving both the near- and

far-field scattering problem for a magnetic scatterer of arbitrary shape.

In our calculation, we use the dimensionless quantity obtained via considerations

of the scales of the physical quantities involved. In particular, the energy scale in

the FMI/TI heterostructure is on the order of meV. In free space with zero mass,

the wavevector corresponding to the energy of 1 meV is k ∼ 1meV/(~vF ) = 3.04 ×

10−3/nm. We take the dimensionless radius of the magnetic structure (circular shape)

to be R = 1, which corresponds to a real structure of size of 100 nm. We then set

the dimensionless energy corresponding to 1 meV to be kR = 0.304. For ∆ = 10, the

corresponding energy gap is 10/0.304 ≈ 33 meV.

6.3 Emergence of Robust Resonant States in Scattering from Skyrmion

6.3.1 Short Wavelength Regime - Resonant Vortices and Edge Modes

We concentrate on regime where the wavelength of the incoming Dirac electron is

smaller than the size of the magnetic structure so that the classical dynamics inside

the structure are relevant. We consider a circular structure as well as a deformed
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structure that leads to chaos in the classical limit to identify any effect of chaos on

the electron scattering behavior.

Far-field behavior. Far away from the scattering center, for unit incident density

the spinor wavefunction can be written as

ΨI = Ψinc + Ψref

≈ C

 1

i ~vF k
E−m1

 eikr cos θ + C

 e−iθ

i ~vF k
E−m1

 f(θ)√
r
eikr (6.4)

where C is the normalization factor, k =
√
k2
x + k2

y is the electron wavevector, m1 =

∆sn1 and m2 = ∆sn2 are the mass terms outside and inside of the magnetic structure,

f(θ) denotes the 2D far-field scattering amplitude in the direction defined by angle

θ with the x-axis. For a circular structure, f(θ) can be obtained analytically. For a

chaotic structure, once the reflection function is calculated from the MMP method,

f(θ) can be obtained. The differential cross section is

dσ

dθ
= |f(θ)|2. (6.5)

The transport and skew cross sections are defined, respectively, as

σtr =

∫ 2π

0

dθ|f(θ)|2(1− cos θ) (6.6)

and

σskew =

∫ 2π

0

dθ|f(θ)|2 sin θ. (6.7)

Figures 6.2(a) and 6.2(b) show, respectively, the skew scattering and transport cross

sections as a function of incident electron energy, for a skyrmion (negative value of

m2) of circular shape (upper panel) and stadium shape (lower panel) of the same area

π in dimensionless units. The stadium shape is chosen because of its mirror symmetry
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for the incident plane waves so as to avoid an unnecessary complication: mixing of

skew scattering and back-scattering (or reflection). For both skyrmion shapes, there

are sharp resonant peaks in the skew cross section in the lower energy range close

to the gap - an indication of the emergence of anomalous Hall effect associated with

Dirac electron scattering from the skyrmion. As the incident energy is increased,

the peak height is reduced but its width becomes larger, as a larger energy value

corresponds to less distortion in the energy-momentum dispersion with the mass gap.

Note that there is little difference in the skew scattering cross section curves for the

two skyrmion shapes, indicating that the nature of the classical dynamics hardly

affects the scattering. For the curves of the transport cross section, as shown in

Fig. 6.2(b), its value decreases with increasing energy. For low energy values, the

valleys in the transport cross section correspond exactly to the skew scattering peaks.

Sharp peaks also exist in the backscattering cross section curve. Similar to the skew

cross section, the nature of the classical dynamics has no appreciable effect. The

results in Fig. 6.2 indicate that skyrmion skew scattering is robust against geometric

deformations that are so severe as to change the classical behavior completely: from

integrable dynamics to chaos.

Near-field behavior. To understand the origin of the deformation (chaos) inde-

pendent far-field scattering (transport) behavior, we study the near-field scattering

behavior by examining the probability density and the current density distribution

associated with some specific energy state. In particular, the probability density is

given by P = Ψ†Ψ, where Ψ = (ψ1, ψ2)T is the wavefunction, and the probability

current operator is Ĵ = ∇pH = vF (σy,−σx). The current density can be obtained as

J = (Jx, Jy) = vF [2(iψ1ψ
∗
2),−2(ψ1ψ

∗
2)]. (6.8)
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Figure 6.2: Skew scattering and transport cross sections versus incident electron en-
ergy in the short wavelength regime. (a) Skew scattering cross section versus the en-
ergy. The red and blue curves correspond to a circular and stadium-shaped skyrmion,
respectively. The mass values are m1 = 10 and m2 = −10. (b) Backscattering cross
section as a function of electron energy for the two skyrmion shapes as in (a). In
each panel, the red curve has been shifted upwards by an amount specified by the
horizontal red-dashed line for better visualization and comparison with the blue curve.

Figure 6.3: Probability and current density distribution for selected vortex states.
(a) The probability distribution for scattering from a circular skyrmion for m1 = 10,
m2 = −10, and E = 11.225. (b) In-plane current (marked as arrows) and spin-z
component (color coded) density distribution in the circular skyrmion region. (c,d)
The corresponding probability, current and spin distribution for scattering from a
stadium-shaped skyrmion for m1 = 10, m2 = −10, and E = 11.42.
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The probability density distribution of the spin-z component is given by

〈σz〉 = |ψ1|2 − |ψ2|2.

We choose a representative energy value corresponding to a skew scattering cross

section peak: E = 11.225 for the circular skyrmion and E = 11.42 for the stadium-

shaped skyrmion - marked as the red and blue stars in Fig. 6.2(a), respectively. The

probability and the current density distributions are shown in Fig. 6.3. From both

skyrmion structures, there are scattering resonant states, as shown in Figs. 6.3(a) and

6.3(c). The resonant patterns correspond to weak backscattering but stronger skew

scattering cross sections, indicating that these are effectively quasi-confined states.

Further insights into the contribution of the resonant states to skew scattering can

be gained by examining the current density distribution (marked as arrows) and the

spin-z component density distribution (color coded) in the 2D skyrmion structure,

as shown in Figs. 6.3(b) and 6.3(d). We see that the confined resonant states form

vortices with counter-clockwise currents. There is also an out-of-plane spin component

along the positive z direction. The vortices have an apparent directionality, so they

can affect the skew scattering direction and magnitude. The vortices are formed by

interference of waves reflected from the boundary and are robust against boundary

deformation. As a result, the nature of the classical dynamics, integrable or chaotic,

has no significant effect on scattering.

In addition to the confined vortex states inside of the skyrmion structure, another

form of confined states arises along the skyrmion boundary, as shown in Figs. 6.4(a)

and 6.4(c), for scattering from a circular and a stadium-shaped skyrmion, respectively.

There is strong confinement of the scattering wavefunction near the boundary with

clockwise current and spin-z component along the negative z axis direction, as shown

in Figs. 6.4(b) and 6.4(d). The edge states correspond to sharp resonant peaks in the
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Figure 6.4: Wavefunction probability and current density distribution associated
with selected edge states. (a) The probability distribution for scattering from a
circular skyrmion for m1 = 10, m2 = −10, and E = 11.461. (b) The corresponding
in-plane current (marked as arrows) and spin-z component (represented by colors)
density distribution. (c,d) The probability and spin distributions associated with
scattering from a stadium-shaped skyrmion for m1 = 10, m2 = −10, and E = 10.564.

backscattering cross section marked as the filled circles in Fig. 6.2(b). For the circular

skyrmion, the edge states have no corresponding sharp peaks in skew scattering. For

the stadium-shaped skyrmion, the edges states correspond to sharp valleys in the

skew scattering cross section.

6.3.2 Long Wavelength Regime - Resonant Modes Near the Boundary

Far-field behavior. We consider the regime where the skyrmion size is smaller

than the electronic wavelength: R� 1/k. This can be realized by setting the area of

the skyrmion structure to be 0.01π for both circular (R = 0.1) and stadium-shaped

skyrmions. In this long wavelength regime, for a deformed skyrmion structure, the

MMP method is still effective for calculating the far-field cross sections and the near-

field state distribution. Representative results on the skew scattering and transport
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Figure 6.5: Characteristics of Dirac electron scattering from a magnetic skyrmion in
the long wavelength regime. (a,b) Skew scattering and backscattering cross sections
versus energy, respectively. The red and blue curves correspond to a circular and
stadium-shaped skyrmion, respectively. The mass values are m1 = 10 and m2 = −10.
In each panel, the red curve has been shifted upward for a proper amount for better
visualization and comparison with the blue curve.

cross sections versus the incident energy are shown in Fig. 6.5. Different from the scat-

tering behaviors in the short wavelength regime, the oscillations of the skew scattering

cross section with energy are weak. For example, in the energy range 10 < E < 20,

only one smooth peak appears. There is hardly any difference in the scattering

characteristics between the two skyrmion structures, which is understandable as any

structural differences are not resolved in the long wavelength regime. Because of lack

of appreciable oscillations, there is directional skew scattering over a large energy

range - a desired feature in Hall device applications.

Near-field behavior. We examine the state associated with the energy value that

leads to the lowest skew scattering cross section: E = 12.072 for the circular and

E = 11.46 for the stadium-shaped skyrmion, and the respective probability density

distributions are shown in Figs. 6.6(a) and 6.6(c). The states are concentrated in the

vicinity of the boundary, which are different from the vortex states observed in the

short-wavelength regime. The edge states thus represent a different type of resonant
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states with directional current, as shown in Figs. 6.6(b) and 6.6(d). It can be seen

that the current direction is downward at the edge, contributing to skew scattering.

The spin-z component is along the negative z direction.

Figure 6.6: Wavefunction probability and current density distributions for selected
states for scattering in the long wavelength regime. (a,b) The probability distribu-
tion and in-plane current together with the spin-z component density distributions,
respectively, for scattering from a circular skyrmion for m1 = 10, m2 = −10, and
E = 12.072. (c,d) The corresponding results for scattering from a stadium-shaped
skyrmion for m1 = 10, m2 = −10, and E = 11.46.

6.3.3 Further Demonstration of Strong Skew Scattering from a Skyrmion Structure

To further demonstrate the shape-independent skew scattering behavior of Dirac

electrons from a magnetic structure, we study the effects of changing the mass of the

skyrmion texture. To be concrete, we set m1 > 0 and choose a set of positive and

negative m2 values. In this setting, there is a skyrmion for m2 < 0 but the magnetic

structure is non-skyrmion for m2 > 0.

We first examine the short-wavelength regime to probe into the origin of the
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Figure 6.7: Effects of varying mass on Dirac electron scattering in the short
wavelength regime. The area of the magnetic structure is π. (a) Skew scatter-
ing cross section versus the electron energy for a circular structure for mass values
m2 = −9,−5, 0, 5, 9, represented by the red, orange, green, blue and purple solid
curves, respectively. In each panel, the curves have been shifted upward for better
visualization and comparison, where each horizontal dashed line denotes the zero
reference point. The mass outside of the magnetic structure is m1 = 10. (b) The
corresponding curves for a stadium-shape structure with the same mass values as in
(a).

emerged confined vortex states. Figures 6.7(a) and 6.7(b) show the skew scattering

cross sections for the circular and stadium-shaped magnetic structure, respectively,

for m1 = 10 and m2 = −9,−5, 0, 5, 9. It can be seen that, among the five cases, the

resonant oscillations of the cross section with energy last longer for m2 = −9. On the

contrary, for m2 = 9 (non-skyrmion), the oscillations diminish rapidly as the energy

is increased. These behaviors hold regardless of whether the underlying classical dy-

namics are integrable or chaotic. Overall, a large difference between the masses inside

and outside of the magnetic structure can lead to stronger and long-lasting resonant
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Figure 6.8: Probability density distribution for selected states in the circular and
stadium-shaped structure for different masses in the short wavelength regime. (a)
Circular skyrmion structure (m2 = −9) for E = 10.349, (b) circular non-skyrmion
structure (m2 = 9) for E = 10.234, (c) stadium-shaped skyrmion (m2 = −9) for
E = 10.552, and (d) stadium-shaped structure (m2 = 9) for E = 10.514.

modes and, consequently, to more pronounced skew scattering. Figures 6.8(a) and

6.8(b) show the probability density distribution form2 = 9 andm2 = −9, respectively,

for the circular magnetic structure. The corresponding results for the stadium-shaped

structure are shown in Figs. 6.8(c) and 6.8(d). For both structures, there are resonant

modes for m2 = −9 (when the magnetic structure is of the skyrmion type) but not

for the case of m2 = 9.

In the long wavelength regime, regardless of the shape of the magnetic struc-

ture (circular or stadium-shaped), the skew scattering cross section decreases as the

relative mass difference is reduced, as shown in Fig. 6.9 for m2 = −9,−5, 0, 5, 9.
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Figure 6.9: Skew scattering for different mass values of the magnetic structure
in the long wavelength regime. The area of the structure is π/100 and the mass
outside of the structure is m1 = 10. (a) For a circular structure, skew scattering
cross section for m2 = −9,−5, 0, 5, 9, represented by the red, orange, green, blue and
purple solid curves, respectively. In each panel, the curves have been shifted upward
for better visualization and comparison, with the horizontal dashed lines denoting the
zero reference point. (b) The corresponding results for a stadium-shaped magnetic
structure.

Figure 6.10 shows representative resonant states for the circular and stadium-shaped

structure for m2 = ±9. Again, when the magnetic structure is of the skyrmion type,

skew scattering is strong, making the scattering electrons directional. However, when

the structure is not of the skyrmion type, skew scattering is weak.

6.4 Partial-wave Decomposition Based Analysis

Numerically, we have observed strong skew scattering of Dirac electrons from a

skyrmion structure, which is robust against geometric deformation. We now provide

an analytic understanding of skew scattering based on the method of partial wave
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Figure 6.10: Probability density distribution for the states corresponding to the
minimum of the skew scattering cross section in circular and stadium-shaped magnetic
structures in the long wavelength regime: (a) a circular skyrmion structure for m2 =
−9 and E = 12.152, (b) a circular non-skyrmion structure for m2 = 9 and E = 12.317,
(c) a stadium-shaped skyrmion structure for m2 = −9 and E = 11.53, and (d) a
stadium-shaped non-skyrmion structure for m2 = 9 and E = 11.72.

decomposition. Consider a circular skyrmion. Key to pronounced skew scattering

is the resonant modes emerged from the scattering process. In the short wavelength

regime, a large number of angular momentum components are involved in the scatter-

ing, leading to a large number of resonant modes as the result of various combinations

of the angular momentum components, which are manifested as peaks in the curve

of the cross section with the energy. In the long wavelength regime, typically only a

single resonant mode is dominant, implying the involvement of only the lowest several

angular momentum components. The asymmetric contribution from different angular

momentum channels leads to the observed pronounced skew scattering. Because the
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circular and stadium-shaped skyrmion structures generate similar scattering behavior,

the analytic results from the circular skyrmion case also provides an understanding

of the emergence of strong skew scattering in the stadium-shaped skyrmion.

For a circular skyrmion, the rotational symmetry stipulates conservation of the

total angular momentum Ĵz: [Ĵz, H] = 0, and the partial wave component with total

angular momentum j (= ±1/2,±3/2, ...) in the polar coordinates (r, θ) can be written

as

ψj(r) =

 uj(r)e
i(j−1/2)θ

vj(r)e
i(j+1/2)θ

 . (6.9)

The Hamiltonian in the polar coordinates is

H = ~vF

 −∆sn
~vF

−e−iθ ∂
∂r

+ e−iθ i∂
r∂θ

eiθ ∂
∂r

+ eiθ i∂
r∂θ

∆sn
~vF

 . (6.10)

Substituting the partial wave form in Eq. (6.9) into the Hamiltonian Eq. (6.10) leads

to an eigenvalue problem and consequently to the explicit expression for the partial

waves.

The transmitted wave inside of the skyrmion structure (r < R) can be expanded

in terms of the partial waves as

ψT (r, θ) = C

∞∑
l=−∞

il−1Bl

 Jl−1(k′r)ei(l−1)θ

− ~vF k′
E−∆sn′Jl(k

′r)eilθ

 , (6.11)

and the reflected wave outside of skyrmion (r > R) can be written as

ψR(r, θ) = C

∞∑
l=−∞

il−1Al

 Hl−1(kr)ei(l−1)θ

− ~vF k
E−∆sn

Jl(kr)e
ilθ

 , (6.12)

where C is a normalization factor. We denote n (n′) as the magnetic moment and

k (k′) as the wavevector outside (inside) of the skyrmion structure. For the incident
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electron in the free region outside of the skyrmion structure, the wavefunction is

ψI = C

 1

i ~vF k
E−∆sn

 eikr cos θ. (6.13)

Using the Jacobi-Anger identity:

eiz cos θ ≡
∞∑

l=−∞

ilJl(z)eilθ, (6.14)

we can expand the plane wave in the form

ψI = C
∑
l

il−1

 Jl−1e
i(l−1)θ

− ~vF k
E−∆sn

Jl(kr)e
ilθ

 . (6.15)

Matching the waves at the skyrmion boundary (r = R):

ψI(R) + ψR(R) = ψT (R), (6.16)

we get, after some algebraic manipulation,

Al =
Jl−1(kR)Jl(k

′R)− τ
τ ′
Jl(kR)Jl−1(k′R)

τ
τ ′
Hl(kR)Jl−1(k′R)−Hl−1(kR)Jl(k′R)

, (6.17)

and

Bl =
Jl−1(kR)Hl(kR)− Jl(kR)Hl−1(kR)

Hl(kR)Jl−1(k′R)− τ ′

τ
Hl−1(kR)Jl(k′R)

, (6.18)

where

τ = − ~vFk
E −∆sn

, and

τ ′ = − ~vFk′

E −∆sn′
.

Using the explicit formulas for Al and Bl as given in Eq. (6.17) and (6.18), respec-

tively, we obtain the decomposition coefficients versus the total angular momentum
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Figure 6.11: Partial wave decomposition coefficients as a function of total angular
momentum for a circular magnetic structure in the short wavelength regime. Among
the quantities plotted, Al’s are the coefficients for the reflected waves outside of
the structure and Bl’s are the transmitted wave coefficients. (a,b) For a skyrmion
structure (m1 = 10 and m2 = −9), |Al|2 and |Bl|2 as a function of j, respectively,
where the corresponding state is shown in Fig. 6.8(a). (c,d) For a non-skyrmion
structure (m1 = 10 and m2 = 9), |Al|2 and |Bl|2 versus j, respectively, where the
corresponding state is shown in Fig. 6.8(b).

for R = 1. Figures 6.11(a) and 6.11(b) show, for the case of scattering from a

skyrmion structure (m1 = 10 and m2 = −9), the expansion coefficients versus the

total angular momentum j. Figures 6.11(c) and 6.11(d) show the corresponding re-

sults for a non-skyrmion case (m1 = 10 and m2 = 9). It can be seen that, several

angular momentum components contribute to the reflected wave component Al, and

the asymmetric distribution of the angular momentum components about zero leads

to skew scattering. For the transmitted wave components, the distribution of the

angular components is asymmetric as well, leading to the emergence of resonant vor-

tices. For the Bl coefficients, their values for the non-skyrmion case is much smaller
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than those for the skyrmion case, indicating that the skyrmion structure can confine

the electrons much more effectively than the non-skyrmion structure.
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Figure 6.12: Transmitted and reflected partial wave coefficients as a function of
the total angular momentum for a circular magnetic structure in the long wavelength
regime. The radius of the structure is R = 0.1. (a,b) |Al|2 and |Bl|2 versus j for
m1 = 10 and m2 = −9 (skyrmion case), respectively, where the state is the one
shown in Fig. 6.10(a). (c,d) |Al|2 and |Bl|2 versus j for m1 = 10 and m2 = 9 (non-
skyrmion case), respectively, where the corresponding state is shown in Fig. 6.10(b).

Setting R = 0.1 lands the scattering system in the long wavelength regime. Fig-

ures 6.12(a,b) and 6.12(c,d) show the coefficients associated with different angular-

momentum components for the skyrmion (m1 = 10 and m2 = −9) and non-skyrmion

(m1 = 10 and m2 = 9) cases, respectively. In both cases, only a single angular mo-

mentum component contributes to the coefficient Al, i.e., j = −1/2, giving rise to the

directionality in the scattering and a slow change in the resonant cross section with

the energy. The value of Al for the non-skyrmion case is much smaller than that of

the skyrmion case. For the transmitted coefficient Bl, the angular momentum compo-
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nent j = −3/2 dominates the skyrmion case and a number of components including

j = −1/2 have contributions in the non-skyrmion case, and the values of Bl are much

larger in the skyrmion than the non-skyrmion case, again implying stronger confine-

ment by resonance and better directionality of scattering in the skyrmion structure

as compared with those in the non-skyrmion structure.

6.5 Discussion

We have investigated relativistic quantum scattering of Dirac electrons from a

closed magnetic structure embedded in the top surface of a 3D TI. Outside of the

structure, there is a uniform FMI layer, leading to a finite but positive mass for the

Dirac electron. The mass of the structure itself can be engineered to be negative or

positive, where a skyrmion and a non-skyrmion structure arises in the former and

latter case, respectively. In the short wavelength regime, the nature of the classical

dynamics in the closed structure should be relevant to the quantum scattering dynam-

ics, according to conventional wisdom from the study of quantum chaos [261, 295].

For a perfectly circular structure, the classical dynamics are integrable. For a de-

formed structure such as one with the stadium shape, there is fully developed chaos

in the classical dynamics. Our main findings are two. First, in the short wave-

length regime, classical chaos hardly has any effect on the scattering dynamics. In

fact, similar behaviors in the scattering characteristics at a quantitative level, such

as the skew scattering and backscattering cross sections, have arise for the circular

and stadium-shaped structures. The diminishing effects of classical chaos on rela-

tivistic quantum scattering from a magnetic structure are consistent with previous

results on weakened manifestations of chaos in relativistic quantum systems in gen-

eral [30, 296, 303, 304, 312]. Second, strong skew scattering can arise when the

magnetic structure is a skyrmion, regardless of the nature of the classical dynamics.
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In the short wavelength regime, the pronounced skew scattering is associated with res-

onant modes manifested as confined vortices inside of the skyrmion structure, which

are originated from the sign change in the mass when the Dirac electrons travel from

outside to inside of the skyrmion structure. A partial wave analysis for scattering

from a circular skyrmion has revealed that a large number of angular momentum

channels contribute to the resonant modes. We have also studied the long wave-

length regime, where the geometric details of the magnetic structure are unresolved

so naturally the scattering process is expected to be independent of the nature of the

classical dynamics. In this regime, resonant states can still emerge as confined edge

states inside of the magnetic structure, to which only a single angular momentum

channel contributes, leading to highly directional skew scattering.

In the short wavelength regime, the resonant states manifested as confined vortices

inside of the skyrmion structure can be exploited for electrically charging the skyrmion

structure [144, 145], enabling the surface electrons on the TI to drive skyrmion mo-

tion with a low current and high thermal efficiency. In the long wavelength regime,

the strong and robust directionality for skew scattering may be exploited for device

application based on the anomalous Hall effect.

Note that Our treatment is based on the electron scattering over the skyrmion

structure, which is more convenient to get the analytical expression for circular case

and utilizing MMP method for deformed case. The cross section can capture the

fundamental mechanism of the electron behavior under the influence of a skyrmion

structure. For experimental realization, the electron scattering over a skyrmion struc-

ture is not easy to control without lead or contact. It is better to set up a device

with lead and finite region with skyrmion structure to achieve control of spin skew

scattering. Although the boundary may have some effect on electron scattering, as

long as the device size is larger compared to the electron wavelength, the basic spin
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skew scattering behavior will remain the same.

For the material realization, the evidence of magnetic skyrmions at the interface

of ferromagnet/TI (Cr2Te3/Bi2Te3) heterostructures has been revealed in a recent

study [313]. And the inhomogeneous Zeeman coupling is much more easily to be

tuned for a ferromagnetic strip with strong out-of-plane magnetic anisotropy [145].

A number of open issues are worth studying, such as using spin transfer torque of

the electrons to drive the skyrmion motion, exploitation of skyrmion related switches

or oscillators, and scattering from multiple skyrmions that are themselves dynamic

with possible phase-locking or anti-phase locking behavior.

6.6 Supplementary Notes

6.6.1 Multiple Multipole (MMP) Method for Scattering of Dirac Electrons on the

Top of a TI from a Magnetic Structure

We denote the area outside and inside of the skyrmion structure as regions I and

II, respectively. The wavefunction in region II can be written as

ΨII(r) ≡

 ψI1

ψII2

 =
∑
mI

∑
l

CmI
l√
2

 H
(1)
l−1(kIIdmI )e

−iθmI

τIIH
(1)
l (kIIdmI )

 eilθmI , (6.19)

where

kII =
√
E2 −∆2n2

II/~vF ,

τII = −~vFkII/(E −∆nII),

dmI = |r − rmI |,

θmI = Angle(r − rmI ),
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Figure 6.13: A schematic illustration of the basics of the MMP method. Shown is
placement of poles (fictitious sources) inside and outside of a magnetic structure of
arbitrary shape. The scattering spinor wavefunctions inside (outside) of the structure
are determined by the poles outside (inside) of the structure.

and CmI
l are the expansion coefficients. The scattered wavefunction in region I is

ΨI(r) ≡

 ψI1

ψI2

 =
∑
mII

∑
l

CmII
l√
2

 H
(1)
l−1(kIdmII )e

−iθmII

τIH
(1)
l (kIdmII )

 eilθmII , (6.20)

where

kI =
√

(E −∆2n2
I/~vF ,

τI = −~vFkI/(E −∆nI),

dmII = |r − rmII |,

θmII = Angle(r − rmII ),
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and CmII
l are the expansion coefficients. The incident plane wave propagating along

the direction defined by an angle β with the x axis in region I is given by

Ψin(r) ≡

 ψin1

ψin2

 =
1√
2

 1

−iτIeiβ

 ei(kxr cos θ+kyr sin θ). (6.21)

Matching the boundary conditions

(ψI1 + ψin1 )|rj∈Γ = ψII1 |rj∈Γ (6.22)

(ψI2 + ψin2 )|rj∈Γ = ψII2 |rj∈Γ, (6.23)

we get

∑
mII

∑
l

CmII
l

1√
2
τIH

(1)
l (kI |rj − rmII |)eilθmII

−
∑
mI

∑
l

CmI
l

1√
2
τIIH

(1)
l (kII |rj − rmI |)eilθmI

=
i√
2
τIe

iβeikIr (6.24)

and

∑
mII

∑
l

CmII
l

1√
2
H

(1)
l−1(kI |rj − rmII |)ei(l−1)θmII (6.25)

−
∑
mI

∑
l

CmI
l

1√
2
H

(1)
l−1(kII |rj − rmI |)ei(l−1)θmI

= − 1√
2
τIe

iβeikIr, (6.26)

which can be cast in a compact form as

∑
mII

∑
l

jAIlmIIC
mII
l −

∑
mI

∑
l

jAIIlmIC
mI
l = −jψinII (6.27)

∑
mII

∑
l

jBI
lmII

CmII
l −

∑
mI

∑
l

jBII
lmI
CmI
l = −jψinI (6.28)
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where

jAIlmII =
1√
2
τIH

(1)
l (kI |rj − rmII |)eilθmII , (6.29)

jAIIlmI =
1√
2
τIIH

(1)
l (kII |rj − rmI |)eilθmI , (6.30)

jBI
lmII

=
1√
2
H

(1)
l−1(kI |rj − rmII |)ei(l−1)θmII , (6.31)

jBII
lmI

=
1√
2
H

(1)
l−1(kII |rj − rmI |)ei(l−1)θmI , (6.32)

and

jψin2 = − i√
2
τIe

iβeikIrj , (6.33)

jψin1 =
1√
2
eikIrj . (6.34)

In principle, the set consists of an infinite number of equations with an infinite number

of undetermined expansion coefficients CmII
l and CmI

l . To solve the system numeri-

cally, finite truncation is necessary. We set the total number of boundary points to

be J with MI and MII poles in regions I and II, respectively, and l→ [−L,L] for all

the multipoles. The process leads to the following finite-dimensional matrix equation:

M2J×N · CN×1 = −Y2J×1, (6.35)

where N = (2L+ 1)× (MI +MII) = NI +NII ,
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CN×1 =



C1II
−L
...

C1II
l

C2II
l

...

CMII
l

...

CMII
L

C1I
−L
...

C1I
l

C2I
l

...

CMI
l

...

CMI
L


N×1

; Y2J×1 =



1ψin2
...

jψin2
...

Jψin2

1ψin1
...

jψin1
...

Jψin1


2J×1

(6.36)

and

M2J×N =

 A(I) −A(II)

B(I) −B(II)

 (6.37)
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with

A(τ) =



1A
(τ)
−L1τ

· · · 1A
(τ)
l1τ

1A
(τ)
l2τ
· · · 1A

(τ)
lMτ

· · · 1A
(τ)
LMτ

2A
(τ)
−L1τ

· · · 2A
(τ)
l1τ

2A
(τ)
l2τ
· · · 2A

(τ)
lMτ

· · · 2A
(τ)
LMτ

... · · · ...
... · · · ... · · · ...

jA
(τ)
−L1τ

· · · jA
(τ)
l1τ

jA
(τ)
l2τ
· · · jA

(τ)
lMτ

· · · jA
(τ)
LMτ

... · · · ...
... · · · ... · · · ...

JA
(τ)
−L1τ

· · · JA
(τ)
l1τ

JA
(τ)
l2τ
· · · JA

(τ)
lMτ

· · · JA
(τ)
LMτ


. (6.38)

B(τ) =



1B
(τ)
−L1τ

· · · 1B
(τ)
l1τ

1B
(τ)
l2τ
· · · 1B

(τ)
lMτ

· · · 1B
(τ)
LMτ

2B
(τ)
−L1τ

· · · 2B
(τ)
l1τ

2B
(τ)
l2τ
· · · 2B

(τ)
lMτ

· · · 2B
(τ)
LMτ

... · · · ...
... · · · ... · · · ...

jB
(τ)
−L1τ

· · · jB
(τ)
l1τ

jB
(τ)
l2τ
· · · jB

(τ)
lMτ

· · · jB
(τ)
LMτ

... · · · ...
... · · · ... · · · ...

JB
(τ)
−L1τ

· · · JB
(τ)
l1τ

JB
(τ)
l2τ
· · · JB

(τ)
lMτ

· · · JB
(τ)
LMτ


. (6.39)

As the expansions are generally nonorthogonal, more equations are required than

the number of unknowns to enable reduction of an overdetermined matrix system with

2J � N , which can be solved by the pseudoinverse algorithm: C = −pinv(M ∗ Y ).
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Chapter 7

FANO RESONANCE IN MOLECULAR TRANSPORT

We investigate spin transport through a chiral polyacetylene molecule and uncover

the emergence of spin Fano resonances as a manifestation of the chiral induced spin

selectivity (CISS) effect. Initializing the electrons through optical excitation, we de-

rive the Fano resonance formula associated with the spin polarization. Computations

reveal that quasidegeneracy is common in this complex molecule system. A remark-

able phenomenon is the generation of pronounced spin Fano resonances due to the

contributions of the two near-degeneracy states. We also find that the Fano resonance

width increases linearly with the coupling strength between the molecule and the lead.

Our findings lead to new insights into the role of CISS effect in complex molecules

from the perspective of transport and resonance of spin polarization, paving the way

for chiral molecule based spintronics applications.

7.1 Introduction

In this Chapter, we investigate spin transport through a chiral polyacetylene

molecule. Calculating the spin polarization versus the energy, we find the occurrence

of a large number of sharp resonances that are characteristic of generalized Fano reso-

nances. To establish this, we derive the Fano formula and test its applicability to the

numerically observed resonance profiles. In the conventional Fano formula, typically

a resonance occurs at a single energy level. However, the structural complexity of the

chiral molecule stipulates that level degeneracy is common where, for instance, two

energy levels can be arbitrarily close to each other. Our computations reveal that

the quasidegeneracy can lead to large spin polarization manifested as a resonance.
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(a) (b)

Figure 7.1: A chiral molecule and CISS effect. (a) Illustration of a twisted poly-
acetylene molecule. (b) Spin polarization with respect to energy for a non-chiral
(θ = π), a left-handedness (θ = π/2), and a right-handedness (θ = −π/2) molecule,
respectively. The number of carbon atoms is N = 8.

We find that, in order to explain the resonant enhancement in the spin polarization,

both levels must be taken into account, and this leads to a generalized Fano for-

mula. Instigating proper approximations enables us to calculate the resonance width.

Based on the energy level spacing and the resonance width, we obtain a criterion to

determine whether one or two energy levels are necessary to account for an observed

resonance. To our knowledge, prior to our work, spin Fano resonance associated with

spin transport in chiral molecules had not been studied. Our finding of Fano resonance

induced and enhanced spin polarization provides new insights into understanding and

exploiting CISS in electronic transport through complex molecules.

7.2 Model and Method

We consider a carbohydrate molecule, namely polyacetylene, a flat chain of conju-

gated carbon atoms that form a helix with a fixed radius, where each atom is oriented
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an angle φ apart [172]. The pitch of the helix is held fixed so that the geometrical

structure of the chain is described by a single parameter: the angle φ. An extra

hydrogen atom is attached to the carbon atom at both ends. In the limit φ → π,

the resulting molecule becomes nonchiral. Each end of the chain is connected to a

gold electrode. The starting point is electrons prepared in a localized state in the left

lead. A current flows through the molecule while the electrons either pass through

the whole molecule to the right lead or is back scattered into the left. A schematic

figure of the twisted polyacetylene molecule is shown in Fig. 7.1(a).

We employ the standard tight-binding model for the chiral molecule with the

generic set of Slater-Koster hopping parameters [172]. For simplicity, we assume

that the leads connect only to the outermost carbon atom in the chain. The carbon

atoms are modeled using the four n = 2 orbitals: 2s, 2px, 2py and 2pz, such that the

spinless couplings Γ are positive, semidefinite 4× 4 matrices. We set the coupling to

be diagonal to stipulate that chirality is originated from the molecule, not from the

chiral coupling to the lead. In addition, to ensure that the SOC is small in comparison

with the coupling to the leads, the diagonal components are set to be 100λ, i.e., a

hundred times the atomic SOC of a carbon atom, where λ = 6 meV.

The general Hamiltonian for the complex molecule can be written as a sum of

three terms:

Ĥ = Ĥo + ĤSO + Σ, (7.1)

where Ĥo is the molecular spinless Hamiltonian, ĤSO is the Hamiltonian for spin-

orbit coupling (SOC), and Σ is the lead induced self-energy term. Explicitly, the

SOC Hamiltonian can be written as

ĤSO = λL · σ/~,

where L is the orbital angular momentum vector and σ is the vector of Pauli matri-
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ces. The Hamiltonian Ĥ preserves the time reversal symmetry and there is Kramers

degeneracy with the two-fold degenerate state |n〉 and its time reversed state Θ̂|n〉.

Based on the Hamiltonian, we use the non-equilibrium Green’s function (NEGF)

method to calculate the charge and spin current [172]:

T = Tr[
1 + a · σ

2
γLG

†
MΓRGM ], (7.2)

S = Tr[
1 + a · σ

2
γLG

†
MΓRσ · nGM ], (7.3)

where

GM =
1

E −HM + iΓL/2 + iΓR/2
. (7.4)

The spin polarization is defined as [173]

P =
S

T
=
T↑↑ + T↑↓ − T↓↑ − T↓↓
T↑↑ + T↑↓ + T↓↑ + T↓↓

. (7.5)

We calculate the spin polarization as a function of incident energy E for different

twist angles, with a representative example shown in Fig. 7.1(b). When there is no

chirality, the spin polarization is zero. However, when the molecule is chiral, there

are spin polarization peaks, whose values have opposite signs for the two opposite

handedness.

7.3 Spin Fano Resonance in Chiral Molecules

Figure 7.1(b) illustrates that there are resonant peaks in the spin polarization

curve, associated with which are relatively values of spin polarization. We now derive

the Fano formula for spin polarization based on the NEGF method. Because of the

inclusion of the self-energy term Σ, the Hamiltonian is non-Hermitian with complex

eigenvalues as well as non-identical left and right eigenstates. The eigenequations for
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the right and left eigenstates are

Ĥ|ψα,µ〉 = εα|ψα,µ〉, (7.6)

〈φα,µ|Ĥ = 〈φα,µ|εα, (7.7)

where µ = 1, 2 denotes the two Kramer’s degenerate eigenstates. The eigenstates

|ψα,µ〉 and |φα,µ〉 constitute a biorthonormal basis set under the normalization

|Φα,µ〉 = |φα,µ〉/〈ψβ,ν |φα,µ〉. (7.8)

The biorthonormal conditions are

〈Φα,µ|ψβ,ν〉 = 〈ψα,µ|Φβ,ν〉 = δα,βδµ,ν , (7.9)

with the completeness relation of the eigenwavefunctions

∑
µ

∑
α

|ψα,µ〉〈Φα,µ| =
∑
µ

∑
α

|Φα,µ〉〈ψα,µ| = 1. (7.10)

Using Eqs. (7.9) and (7.10), we have the Green’s function for the molecule as

GR(r, r′) = 〈r| 1

E − Ĥs

|r′〉

=
∑
α,µ

∑
β,ν

〈r|ψα,µ〉〈Φα,µ
1

E − Ĥs

|ψβ,ν〉〈Φβ,ν |r′〉

=
∑
α,µ

∑
β,ν

ψα,µ(r)
1

E − εβ
δα,βδµ,νΦ

†
β,ν(r

′)

=
∑
µ

∑
α

ψα,µ(r)Φ†α,µ(r′)

E − εα

=

 GR
↑↑(r, r

′) GR
↑↓(r, r

′)

GR
↓↑(r, r

′) GR
↓↓(r, r

′)

 , (7.11)
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where the eigenfunctions are

Φα,µ(r′) =

 Φ↑α,µ(r′)

Φ↓α,µ(r′)

 , (7.12)

ψα,µ(r) =

 ψ↑α,µ(r)

ψ↓α,µ(r)

 . (7.13)

The spin-resolved Green’s function can be written as

GR
σσ′(r, r′) =

∑
µ=1,2

∑
α

ψσα,µ(r)Φσ′†
α,µ(r′)

E − εα
. (7.14)

We use the Fisher-Lee relation to connect the S matrix with the Green’s function [178,

314, 315] and then separate the fast from the slow variables. Let E0 be the energy.

If E0 approaches an eigenenergy of the corresponding closed system, a pole will arise

in R, so we can separate the sum into two terms: one term slowly varying and the

other rapidly changing, where the former acts effectively as the background and the

latter varies rapidly in the small energy interval. Explicitly, we have

Rσσ′

nm = R0,σσ′

nm +R1,σσ′

nm =
∑
µ=1,2

∑
β 6=α

ψσβn,µ(xr)Φ
σ′†
βm,µ(xl)

E − εβ

+
∑
µ=1,2

ψσαn,µ(xr)Φ
σ′†
αm,µ(xl)

E − εα
. (7.15)

The transmission coefficient is given by

tσσ′ = i
√
Vq ×Rσσ′ ×

√
Vp, (7.16)

where Vq and Vp are Fermi velocities and we set Vq = Vp = 1. The transmission

coefficient can be expanded as

tσσ′ = t0σσ′ + t1σσ′ . (7.17)
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For each transmission component, we can write

Tσσ′ = Tr(tσσ′t†σσ′)

= Tr[(t0σσ′ + t1σσ′)(t
0†
σσ′ + t1†σσ′)]

= Tr(t0σσ′t
0†
σσ′) + Tr(t0σσ′t

1†
σσ′)

+Tr(t1σσ′t
0†
σσ′) + Tr(t1σσ′t

1†
σσ′)

= T 00
σσ′ + T 01

σσ′ + T 10
σσ′ + T 11

σσ′ . (7.18)

We impose the following approximations:

T 00
σσ′(E) ≈ T 00

σσ′(E0), (7.19)

T 01
σσ′(E) = T 01

σσ′(E0)
E0 − Eα − iγα
E − Eα − iγα

= T 01
σσ′(E0)

ε0 − i
ε− i

, (7.20)

T 10
σσ′(E) = T 10

σσ′(E0)
E0 − Eα + iγα
E − Eα + iγα

= T 10
σσ′(E0)

ε0 + i

ε+ i
, (7.21)

T 11
σσ′(E) = T 11

σσ′(E0)
(E0 − Eα)2 + γ2

α

(E − Eα)2 + γ2
α

= T 11
σσ′(E0)

ε20 + 1

ε2 + 1
, (7.22)

where ε ≡ (E − Eα)/γα and ε0 ≡ (E0 − Eα)/γα. For E0 = Eα, we have ε0 = 0. For

the spin transmission S, we obtain

S = T↑↑ + T↑↓ − T↓↑ − T↓↓

= [T 00
↑↑ + T 00

↑↓ − T 00
↓↑ − T 00

↓↓ ]

+ [T 01
↑↑ + T 01

↑↓ − T 01
↓↑ − T 01

↓↓ ]
ε0 − i
ε− i

+ [T 10
↑↑ + T 10

↑↓ − T 10
↓↑ − T 10

↓↓ ]
ε0 + i

ε+ i

+ [T 11
↑↑ + T 11

↑↓ − T 11
↓↑ − T 11

↓↓ ]
ε20 + 1

ε2 + 1

= T 00
s (E) + T 01

s (E) + T 10
s (E) + T 11

s (E)

= T 00
s (E0) + T 01

s (E0)
ε0 − i
ε− i

+ T 10
s (E0)

ε0 + i

ε+ i

+ T 11
s (E)

ε20 + 1

ε2 + 1
. (7.23)
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Setting ε0 = 0 and denoting

∆Ts = T 01
s (E0) + T 10

s (E0) + T 11
s (E0), (7.24)

qs =
i

2

T 10
s (E0)− T 01

s (E0)

∆Ts
, (7.25)

we get

S = T 00
s (E0)

(ε+ qs∆Ts
T 00
s

)2 + (1 + ∆Ts
T 00
s
− q2s∆T 2

s

(T 00
s )2

)

ε2 + 1

= T 00
s

(ε+ xs)
2 + ys

ε2 + 1
, (7.26)

where

xs =
qs∆Ts
T 00
s

, (7.27)

ys = 1 +
∆Ts
T 00
s

− q2
s∆T

2
s

(T 00
s )2

. (7.28)

Similarly, for spin transmission T , we have

T = T↑↑ + T↑↓ + T↓↑ + T↓↓

= [T 00
↑↑ + T 00

↑↓ + T 00
↓↑ + T 00

↓↓ ]

+ [T 01
↑↑ + T 01

↑↓ + T 01
↓↑ + T 01

↓↓ ]
ε0 − i
ε− i

+ [T 10
↑↑ + T 10

↑↓ + T 10
↓↑ + T 10

↓↓ ]
ε0 + i

ε+ i

+ [T 11
↑↑ + T 11

↑↓ + T 11
↓↑ + T 11

↓↓ ]
ε20 + 1

ε2 + 1

= T 00
c (E) + T 01

c (E) + T 10
c (E) + T 11

c (E)

= T 00
c (E0) + T 01

c (E0)
ε0 − i
ε− i

+ T 10
c (E0)

ε0 + i

ε+ i

+ T 11
c (E)

ε20 + 1

ε2 + 1
. (7.29)

Setting ε0 = 0 and denoting

∆Tc = T 01
c (E0) + T 10

c (E0) + T 11
c (E0), (7.30)

qc =
i

2

T 10
c (E0)− T 01

c (E0)

∆Tc
, (7.31)
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we get

T = T 00
c (E0)

(ε+ qc∆Tc
T 00
c

)2 + (1 + ∆Tc
T 00
c
− q2c∆T 2

c

(T 00
c )2

)

ε2 + 1
, (7.32)

where

xc =
qc∆Tc
T 00
c

, (7.33)

yc = 1 +
∆Tc
T 00
c

− q2
c∆T

2
c

(T 00
c )2

. (7.34)

The spin polarization can be written as

P =
S

T
=
T 00
s

T 00
c

(ε+ xs)
2 + ys

(ε+ xc)2 + yc

=
T 00
s

T 00
c

( ε+xc√
yc

+ xs−xc√
yc

)2 + ys
yc

( ε+xc√
yc

)2 + 1

= α
(εf + qf )

2 + yf
ε2f + 1

, (7.35)

where

α =
T 00
s

T 00
c

, (7.36)

εf =
ε+ xc√
yc

, (7.37)

qf =
xs − xc√

yc
, (7.38)

yf =
ys
yc
. (7.39)

Equation (7.35) is the Fano resonance formula for spin polarization. To provide

numerical validation, we first consider a molecule with eight carbon atoms at the

twist angle π/4. Selecting a peak with energy about E = 1.68, we see that the Fano

formula (7.35) matches remarkably well with the numerical curve for both the spin

polarization and charge transmission, as shown in Figs. 7.2(a) and 7.2(b). From the

energy levels in Fig. 7.2(c), we have that the two Kramers degenerate states with real

part of the energy about 1.68 contribute to the spin Fano resonance.
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(a) (b)

(c) (d)

Figure 7.2: Spin Fano resonance in a chiral molecule. (a) Fano resonance curve for
electronic transmission, where the blue solid and black dashed curves are numerical
and theoretical results, respectively. (b) Spin Fano resonance curve. The red solid
and black dashed curves are numerical and theoretical results, respectively. (c,d) Real
and imaginary parts of the total eigenenergies in a certain range, respectively. The
number of carbon atoms is N = 8 and the twist angle is θ = π/4.

The width of the Fano resonance peak can also be calculated through a perturba-

tion approach. In particular, with the eigenfunctions in Eqs. (7.12) and (7.13), and

treating the self-energy ΣR as a perturbation, we expand the eigenenergies and the

eigenstates as

εα = ε0,α − δα − iγα, (7.40)

|ψα,µ〉 = |ψ0α,µ〉 − |ψrα,,µ〉 − i|ψiα,µ〉. (7.41)
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Substituting Eqs. (7.40) and (7.41) into Eq. (7.6), we get

(Ĥc + ΣR)(|ψ0α,µ〉 − |ψrα,µ〉 − i|ψiα,µ〉)

= (ε0,α − δα − iγα)(|ψ0α,µ〉 − |ψrα,µ〉 − i|ψiα,µ〉). (7.42)

After some approximations, we obtain

δα + iγα ≈ −
∑
µ

〈ψ0α,µ|ΣR|ψ0α,µ〉

= −
∑
µ,σ

〈ψσ0α,µ|ΣR
0 |ψσ0α,µ〉. (7.43)

The resonance width γα can be obtained as

γα = −Im
(∑

µ,σ

〈ψσ0α,µ|ΣR
0 |ψσ0α,µ〉

)
. (7.44)

The width predicted by this formula agrees with the numerical value, as shown in

Fig. 7.2(d).

7.4 Degeneracy enhanced spin Fano resonance

The Fano resonances discussed above result from a single energy level (including

the case of Kramers’ degeneracy of two identical levels). For a complex molecule,

the situation can arise where several nearby energy levels collectively contribute to

a resonance. This typically occurs for different twist angles when the number of

carbon atoms in the molecule is relatively large. To treat such a case, we include

more related Green’s function terms in the transmission coefficient in Eq. (7.15). The

modified form can be written as

Rσσ′

nm = R0,σσ′

nm +R1,σσ′

nm =
∑
µ=1,2

∑
β 6=α

ψσβn,µ(xr)Φ
σ′†
βm,µ(xl)

E − εβ

+
∑
α

∑
µ=1,2

ψσαn,µ(xr)Φ
σ′†
αm,µ(xl)

E − εα
. (7.45)
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(a) (b)

(c) (d)

Figure 7.3: Spin Fano resonance in a chiral molecule associated with near degen-
erate levels. (a) Fano resonance peak for electronic transmission, where blue solid
and black dashed curves are numerical and theoretical results, respectively. (b) Spin
polarization Fano resonance peak, with red solid and black dashed curves being nu-
merical and theoretical results, respectively. (c,d) Real and imaginary parts of the
eigenenergies, respectively, where the red squares and blue circles represent the exact
and perturbation results, respectively. The molecule has N = 27 carbon atoms and
the twist angle is θ = π/2.

where the second term contains energy levels that can contribute to the transmission

coefficient. A exemplary Fano resonance peak with two contributing levels is shown

in Fig. 7.3(a) and 7.3(b) for transmission and spin polarization, respectively. It can

be seen that the result from the fast-slow variable approximation fits well with the

numerical calculation. In a general sense, this is still a Fano resonance, as the corre-

sponding transmission and spin polarization curves can still be fit by a kind of Fano

formula.

A challenging question is, given a resonance, how one can determine if it is con-
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tributed by a single energy level or by several. Here we provide a criterion to identify

the pertinent states by comparing the resonance peak width γ and the energy level

spacing between the levels of the resonance peak and its neighbors. As shown in

Fig. 7.3(c), there are two levels which are quite near the Fano resonance peak, with

energies E = 2.506, E = 2.516, and the energy difference ∆E = 0.01. We then check

the corresponding peak width γ, as shown in Fig. 7.3(d). We find that the peak width

for the two levels are γ ≈ 0.02 and γ ≈ 0.015, which are larger than the level spacing,

so both levels ought to be be taken into account when calculating the resonance peak.

This peak-width based criterion can be checked in the single level case. Figure 7.2

shows that the resonance peak corresponds to the energy value E = 1.676, while the

level difference between this level and its nearby levels is about ∆E ≈ 0.3. We also

have that the peak widths for the three levels are γ = 0.13, γ = 0.015, and γ = 0.014,

respectively. These data indicate that there is no significant spin polarization overlap

between the central state and its neighboring states, so the resonance is the result of

a single energy level.

In comparison with spin Fano resonances due to a single energy level, what effects

do nearly degenerate levels have on the resonance? For example, do multiple levels

lead to enhanced spin polarization? To address these questions, we focus on the pa-

rameter plane of the incident energy E and the twist angle θ, and calculate the spin

polarization Pz, the total electron transmission, and the spin z component transmis-

sion in the plane, for a relatively large molecule of N = 28 carbon atoms. The results

are shown in Figs. 7.4(a-c) with coupling strength being one. It can be seen that, near

a level crossing point, a large spin polarization component can emerge, where its sign

remains unchanged near the level crossing points. This should be compared with the

case of a non-degenerate region where there is also larger spin polarization but with

opposite directions. We examine the spin polarization about the near degeneracy
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point and far from the near-degeneracy point, and find that two levels contribute to

the resonance curve in the former while only one level is involved in the latter case.

(a) (b) (c)

(d) (e) (f)

Figure 7.4: Near degeneracy enhanced spin Fano resonance. (a-c) Transmission
(T ), spin-z transmission (Tz), and spin polarization (Pz) (colors) versus the electron
energy E and the twist angle θ for coupling strength one. (d-f) Similar plots as
those in (a-c) but for coupling strength 0.1. The number of carbon atoms is N = 28.

7.5 Effect of Coupling Strength on Resonance Width

The coupling strength between the molecule and the leads can affect the electron

transport behavior and thus the resonance profile. To study this effect, we set the

coupling strength to 0.1 and calculate T , Tz, and Pz in the parameter plane (E, θ),

as shown in Fig. 7.4(d-f), respectively. Comparing the results in Figs. 7.4(a) and

7.4(d), we see that the transmission area with values above 0.6 is much larger along

the energy axis for the case of unity molecule-lead coupling strength as compared

with the case of a smaller coupling strength. A similar behavior occurs for the spin

transmission, where a larger area of high transmission along the energy axis near a

level-crossing point or a non-degenerate lower single level arises for the large coupling
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(a) (b) (c)

(d) (e) (f)

Figure 7.5: Effect of molecule-lead coupling strength on electronic and spin trans-
port. (a-c) Transmission (T ), spin-z transmission (Tz), and spin polarization (Pz)
versus electron energy E for unity molecule-lead coupling strength. (d-f) The corre-
sponding results for the case of coupling strength 0.1. In both cases, the chain has
N = 28 carbon atoms and the twist angle is θ = 1.69.

case, as shown in Figs. 7.4(b) and 7.4(e). As the spin polarization is the ratio between

the spin and total charge transmission, the areas in which large polarization transport

arises are similar in both cases, as shown in Figs. 7.4(c) and 7.4(f).

To further study the transport, we set the twist angle to be θ = 1.69, where the

Fano resonance peak value is about E = 2.528. Figure 7.5 shows the transmission

versus energy about this resonance. We find that the resonance peak is much narrower

for the total transmission and spin transmission in the weak molecule-lead coupling

case [comparing Figs. 7.5(d,e) with Figs. 7.5(a,b), respectively]. For the spin polariza-

tion, the resonance is also narrower in the weak coupling case [comparing Fig. 7.5(f)

with Fig. 7.5(c)].

To gain more insights, we calculate the imaginary part of the eigenenergy and

the resonance peak width versus the molecule-lead coupling strength, as shown in
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(a) (b) (c)

Figure 7.6: Fano resonance width and peak values versus the molecule-lead coupling
strength. (a) Resonance peak width (blue curve) and the imaginary part of eigenen-
ergies (red lines and open circles) versus the coupling strength. (b) Resonance peak
values of Tz versus the coupling strength. (c) Resonance peak values of Pz versus the
coupling strength. The parameter values are N = 28 and θ = 1.69. The real part of
eigenenergy at the Fano resonance is about E = 2.528.

Fig. 7.6(a). It can be seen that the resonance width increases linearly with the

coupling strength. The spin transmission also increases with the coupling strength,

as shown in Fig. 7.6(b). Due to the distinct increasing behaviors in the electronic and

spin transmission, the spin polarization first increase, reaches a maximum, and then

decreases with the coupling strength, as shown in Fig. 7.6(c).

7.6 Discussion

Spin-orbit coupling providing a source of magnetic fields for electrons in an atom

is a relativistic effect and is thus weak: on the order of a few meV. However, it is still

possible to generate a sizable spin polarization through some cumulative effect. For

example, for transport through a large molecule, an electron will encounter, visit, and

pass through many atoms. At each encounter where the electron orbits the nucleus,

the spin-orbit interaction depends on the orbital orientation and will lead to some

weak spin polarization. For a chiral molecule such as DNA, there is a preference in

the orbital orientation so the effects on electron’s spin polarization from the many

atoms on the electron’s way through will be cumulatively enhanced, leading to the
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phenomenon of CISS [150].

At the present, CISS is not well understood. A recent result [172] was that the

CISS effect vanishes when all electron states with the same energy are equally likely - a

consequence of the Onsager reciprocal principle. The generality of this result means

that the CISS effect needs to be understood in terms of the specific experimental

settings. Three possible situations were pointed out [172]: the electronic states with

the same energy not being equally probable (e.g., for electrons generated optically

by a laser), the presence of accidental degeneracy in the molecular spectrum which

enhances the spin-orbit coupling, or a magnetic lead. More recently, an analysis based

on symmetry in electronic transmission was carried out to gain insights into the origin

of CISS [173].

The main contribution of this work is the discovery and analysis of spin Fano reso-

nance associated with transport through a complex molecule. Using chiral polyacety-

lene molecules of different number of carbon atoms, we find numerically the occur-

rences of various resonance peaks in the curve of spin polarization versus the electron

energy. Extending the recently derived formula of spin Fano resonance for transport

through two-dimensional mesoscopic quantum dots [178] to complex molecules, we

obtain a general formula for spin Fano resonance in this context of quantum biology.

Our formula is more general than any such previously derived formulas in electronic

transport through solid-state devices, in the sense that it allows us to include multiple

energy levels. This is particularly relevant and important for complex molecules, as

quasidegeneracies in the energy levels are ubiquitous. Our formula fits the numeri-

cally observed resonance peaks remarkably well for both the straightforward case of

one energy level and the more challenging cases where more than one energy level

is involved. To our knowledge, for the latter case no existing Fano formulas in the

literature are applicable. We also develop a criterion for determining the energy levels
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involved in a Fano resonance, based on the resonance width relative to the spacing

of neighboring energy levels. Typically, a spin Fano resonance due to more than one

energy level is associated with enhanced spin polarization, and this can find potential

applications in spintronics based on biological molecules. It should be noted that, at

room temperatures, there are atom oscillations that can affect the electron coherent

transport. To ensure coherence, the length of the molecular chain cannot be too large.

7.7 Supplementary Notes

7.7.1 Quasidegeneracy and Level Separation for Different Values of the Molecular

Twist Angle

To assess the effects of fine-tuning the molecular twist angle on the spin polar-

ization resonance, we choose five slightly different angles: θ = 1.61, 1.63, 1.65, 1.67,

and 1.69, and calculate the spin polarization associated with quasidegenerate energy

levels and well separated single energy levels, as shown in Fig. 7.7. As the angle in-

creases, there is a change in the contribution to the spin polarization resonance from

two-state quasidegeneracy points to well separated single-level points. Take the case

θ = 1.63 [Figs. 7.7(b1-b5)] as an example. Figure 7.7(b1) shows the energy levels in a

certain range. There is a pair of nearby levels with energy E = 2.53 and E = 2.536,

where each level corresponds to two degenerate states due to Kramer’s degeneracy.

Figure 7.7(b2) shows that the two quasidegenerate levels correspond to two differ-

ent imaginary parts of the eigenenergies: γ ≈ 0.017 and γ ≈ 0.014, respectively,

which determine the width of the spin Fano resonance peak. Figure 7.7(b3) shows

the theoretical result of the spin resonance peak induced by the E = 2.53 states, as

represented by the black dashed curve, where the red curve is the exact result. The

spin resonance peak corresponding to the E = 2.536 states is shown as the black
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(a1) (a2) (a3) (a4) (a5)

(b1) (b2) (b3) (b4) (b5)

(c1) (c2) (c3) (c4) (c5)

(d1) (d2) (d3) (d4) (d5)

Figure 7.7: Single level or two quasidegenerate levels contributing to a Fano reso-
nance. (a1) The energy levels for a chiral molecule of N = 28 carbon atoms with the
twist angle θ = 1.63. (a2) Imaginary part of system eigenenergies. (a3,a4) Examples
of single-level contribution to spin Fano resonance for E = 2.53 [black dashed curve,
the lower level in (a1)] and E = 2.536 [black dashed curve, the higher level in (a1)],
respectively, where the red curves are numerical results from the exact NEGF calcu-
lation. (a5) Two-level contribution to spin Fano resonance [black dashed curve, the
two levels labeled in (a1)]. The results in panels (b1-b5), (c1-c5), and (d1-d5) are for
twist angles θ = 1.65, 1.67, and 1.69, respectively, with the same legends as those in
(a1-a5).

dashed curve in Fig. 7.7(b4). It can be seen that all these peaks with contribution

from a single energy level cannot match the exact spin resonance peak. Note that the

theoretical resonance curve in Fig. 7.7(b3) is wider than that in Fig. 7.7(b4) due to

the larger γ value in the former case. We then insert both levels in the fast changing

part of the NEGF formula to produce the corresponding theoretical spin resonance

curve, as shown by the black-dashed curve in Fig. 7.7(b5). In this case, there is a

good fit between the theoretical and numerical resonance curves. For the other four
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rows (corresponding to the four other values of the twist angle), the legends are the

same as those in Figs. 7.7(b1-b5). In Figs. 7.7(a1-a5), the two target levels are well

separated from each other and the exact spin resonance peak is not so sharp. In fact,

the theoretical fit from each level or their combination does not produce any result

that matches the resonance peak at E = 2.53. For θ = 1.63 and θ = 1.65, as shown

in Figs. 7.7(b1-b5) and Figs. 7.7(c1-c5), respectively, where the two levels are quite

close to each other. While the theoretical resonance curve from each level does not

match with the numerical curve, the combination of the two levels produces a spin

resonance curve that agrees well with the numerical one. For θ = 1.67 and θ = 1.69,

as shown in Figs. 7.7(d1-d5) and Figs. 7.7(e1-e5), respectively, the two levels gradu-

ally move away from each other. In both cases, the first level (the lower one) gives

the correct resonance curve, while the second level does not contribute significantly

to the resonance curve. It can then be concluded that, when there are two nearby

levels, they contribute collectively to the spin Fano resonance. However, when the

levels are well separated from each other, only one level contributes to the resonance

peak.

(a) (b)

Figure 7.8: Near-degeneracy enhanced spin Fano resonance. (a) Colored-coded
spin-polarization value in the parameter plane of electron energy and molecular twist
angle. (b) Magnification of part of (a) about a specific degeneracy point. The chiral
molecule has N = 37 carbon atoms.

175



Angle E1 E2 |E1 − E2| γ1 γ2 levels

1.62 2.523 2.537 0.015 0.0156 0.0155 two

1.63 2.53 2.536 0.006 0.0168 0.0142 two

1.64 2.531 2.54 0.009 0.0123 0.0183 two

1.65 2.529 2.546 0.017 0.0096 0.02 two

1.66 2.528 2.553 0.025 0.0074 0.021 two

1.67 2.527 2.558 0.031 0.0055 0.0217 one

1.68 2.527 2.562 0.035 0.0043 0.0218 one

1.69 2.528 2.565 0.037 0.0036 0.0214 one

Table 7.1: Identification of One or Two-level Contribution to Spin Fano Resonance.
The chiral molecule has N = 28 carbon atoms.

(a) (b)

Figure 7.9: Length and angle dependence of the peak value of spin polarization
resonance. (a) Peak resonance value versus the carbon atom number for molecule
twist angle θ = π/2. (b) Peak resonance value versus the twist angle for N = 8.
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7.7.2 Criteria for Identifying Contribution to Spin Fano Resonance as Due to a

Single Level or Two Quasidegenerate Levels

The results in Figs. 7.4 and 7.7 indicate that a pair of nearby levels, e.g., in the

vicinity of a level crossing point, can lead to a large spin Fano resonance peak, to

which both levels contribute. Away from the crossing point, there can also be large

resonance peaks but they are contributed to by a single state. Here we give a general

criterion for identifying whether a spin Fano resonance is due to one or two levels in

terms of the energy level difference and the imaginary part γ of the eigenenergy. In

particular, denoting the energy of the main state as E1 and the corresponding energy

imaginary part as γ1, we find the energy level that is the closest to E1 and denote it

as E2 with imaginary part of the eigenenergy as γ2. If the level difference |E1 − E2|

is smaller than or comparable to the larger value of γ1 and γ2, we deem the second

level a contributor to the Fano resonance and include it in the fast changing part of

the NEGF formula. Otherwise, we simply choose one level. An example is shown in

Table 7.1.

7.7.3 Spin Polarization for a Chiral Molecule of N = 37 Carbon Atoms

To provide further support for our finding of near-degeneracy enhanced spin Fano

resonance, we calculate the spin polarization in the parameter plane of electron en-

ergy and twist angle for a chiral molecule of N = 37 carbon atoms, as shown in

Fig. 7.8. Near the energy-level crossing points, there is significant spin polarization,

so is the case for the well separated single levels. In addition,, the spin polarization

has negative values about the quasidegenerate points and is positive about the well

separated single levels. These results are consistent with those from a chiral molecule

of N = 28 carbon atoms in the main text.
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7.7.4 Length and Angle Dependence of Peak Spin Polarization Resonance

To confirm the cumulative effect in CISS due to the electron spin-orbit coupling

associated with all the atoms in the molecule, we calculate the spin polarization as

a function of the carbon atom number N . As shown in Fig. 7.9(a) for θ = π/2,

the spin polarization increases with N and reaches the value about 30%, in spite of

fluctuations. Figure 7.9(b) shows the peak resonance value versus the twist angle θ

for N = 8. Note that, for θ = π, the molecule is no longer chiral. In this case, the spin

polarization peak value is approximately zero. As the angle decreases from θ = π to

θ = π/2, the molecule becomes progressively more chiral, and the spin polarization

increases accordingly, indicating the role of chirality in generating spin polarization.
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József Cserti, and Balázs Dóra. Diverging dc conductivity due to a flat band
in a disordered system of pseudospin-1 dirac-weyl fermions. Phys. Rev. B,
88(16):161413, 2013.
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