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ABSTRACT

Collision-free path planning is also a major challenge in managing unmanned aerial

vehicles (UAVs) fleets, especially in uncertain environments. The design of UAV rout-

ing policies using multi-agent reinforcement learning has been considered, and propose

a Multi-resolution, Multi-agent, Mean-field reinforcement learning algorithm, named

3M-RL, for flight planning, where multiple vehicles need to avoid collisions with each

other while moving towards their destinations. In this system, each UAV makes deci-

sions based on local observations, and does not communicate with other UAVs. The

algorithm trains a routing policy using an Actor-Critic neural network with multi-

resolution observations, including detailed local information and aggregated global

information based on mean-field. The algorithm tackles the curse-of-dimensionality

problem in multi-agent reinforcement learning and provides a scalable solution. The

proposed algorithm is tested in different complex scenarios in both 2D and 3D space

and the simulation results show that 3M-RL result in good routing policies. Also as a

compliment, dynamic data communications between UAVs and a control center has

also been studied, where the control center needs to monitor the safety state of each

UAV in the system in real time, where the transition of risk level is simply considered

as a Maikov process. Given limited communication bandwidth, it is impossible for

the control center to communicate with all UAVs at the same time. A dynamic learn-

ing problem with limited communication bandwidth is also discussed in this paper

where the objective is to minimize the total information entropy in real-time risk level

tracking. The simulations also demonstrate that the algorithm outperforms policies

such as a Round & Robin policy.
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Chapter 1

INTRODUCTION

Unmanned aircraft systems (UAS) have been foreseen to play important roles in

commercial, scientific and recreational applications, such as policing and surveillance,

product deliveries, surveillance, air transportation Maza et al. (2009); Menouar et al.

(2017). The number of UAVs in airspace has been increasing significantly over recent

years. Because of that, flight planning has received increasing attention. This paper

focuses on the flight planning where path planning, more specifically, is to identify

a policy under which each UAV can maneuver over the airspace to reach their des-

tinations. In particular, path planning in this paper is not to identify a fixed path,

but refers to the process of dynamically and adaptively adjusting the path in real-

time according to the surrounding environment following a policy, which is critical

for operating UAVs in a dynamic environment such as uncertain weather conditions.

In this paper, we consider the collision avoidance problem in both 2D horizontal

space and 3D space. We consider a system where all UAVs belong to the same entity so

they will implement the same policy, which will be trained in a centralized fashion but

would be executed decentralized. The state space or complexity of the policy increase

exponentially as the number of UAVs increase, i.e. the curse of dimensionality. In

this paper, we explore the mean-field approach for multi-agent reinforcement learning.

The major difficulty in this multi-agent routing problem is how to develop polices

under which each agent makes decision based on local information (and limited global

information), but collectively reduce the risk of collision.

As a compliment, we also considers the problem of monitoring parallel Markov

chains over wireless networks. The problem is motivated by risk monitoring in avia-
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tion systems where a control tower needs to communicate with UAV in its region to

monitor their risk levels. The solution of this problem can also be applied to other

risk monitoring applications. The major challenge in the problem is that the commu-

nication bandwidth is limited. It has been shown in Galati et al. (2008), the channel

becomes very congested when multiple UAVs in an area broadcast their positions

through the ADS-B channel, which lead to significant data loss. This optimization

problem is then formulated as a Multi-Armed Bandit (MAB) problem with the ca-

pacity of wireless channels as a hard constraint. The problem is similar to a restless

bandit problem. The key difference is that the objective is to minimize the total

information entropy of all bandits instead of finding the optimal bandit.

1.1 Related Work

Existing results on multi-agent UAV collision avoidance planning include both

model-based methods and model-free methods. Model-based methods can provide

near optimal performance, but require accurate information about movement models

and environments, both of which are difficult to obtain in practice. With these in-

formation, some works model the collision avoidance as an optimal control problem,

which could be solved by integer linear programming Richards and How (2002); Pallot-

tino et al. (2002), nonlinear programming Raghunathan et al. (2004); Christodoulou

and Kodaxakis (2006), pairwise optimization Carbone et al. (2006), gradient descent

Zhao et al. (2020), random tree search Lin and Saripalli (2017) or many other methods

Liu et al. (2020); Jenie et al. (2018); Yang et al. (2018). Data-driven reinforcement

learning methods are model-free and have received increasing attention recently. For

example, Chen et al. (2016); Lowe et al. (2017) proposed decentralized multi-agent re-

inforcement learning methods where each agent knows the positions and velocities of

all other agents for taking actions. Such global information, however, is also difficult

2



to obtain in practice. As an alternative, Julian et al. (2019) proposed a centralized

method based on neural networks for solving a pair-wise collision avoidance problem,

and then a greedy method for a multi-agent system based on the parse-wise solution.

There are also other approaches that solve the collision avoidance between UAVs

and obstacles using Proximal Policy Optimization (PPO) Hu et al. (2020) and Long

short-term memory (LSTM) network Singla et al. (2018).

In this paper, we consider solving collision avoidance path planning problem with a

multi-agent decentralized partially observed reinforcement learning algorithm. Com-

pare with centralized system, decentralized control systems do not have a central

controller obtaining global information and making decisions for all agents in real

time. Decentralized control is well used in large-scale complex systems, and serve as

a effective tool to overcome specific difficulties arising in large scale complex systems

such as high dimensionality, information structure constraints, uncertainty, and de-

lays Bakule (2008). Decentralized control has even been used airspace system Šǐslák

et al. (2010). Partial observing is also a popular setting in decentralized system, the

benefit of such a representation is that agents just need to plan only in terms of the

small set of features, finding policy and value functions in low-dimensional spaces

is typically easier and faster than finding value functions in high-dimensional global

spaces. Some decentralized partially observable algorithms have good performance in

robotic control Long et al. (2018) and even model based UAV control van den Berg

et al. (2011).

Mean-field theory (MFT)Kadanoff (2009) studies models in which a large number

of agents interact with each other. In MFT, the effect of all the other agents on

a given agent is approximated by a single averaged effect, called mean-field, which

reduces a many-body problem to a one-body problem. The main idea of MFT is to

replace the interactions to the agent with an average or effective interaction.
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Mean-field has been used in reinforcement learning recently Yang et al. (2018) for

multiagent systems, called mean-field reinforcement learning. The method calculates

the mean actions of other agents based on the neighboring agents, and uses it as the

input of a single-agent reinforcement learning algorithm. Therefore, the size of the

state space for the single-agent reinforcement learning problem remains a constant

even as the total number of agents increases. While this mean-field reinforcement

learning approach provides a scalable solution, it cannot be directly applied to the

routing problem as it is critical for each UAV to maintain a safe distance to other

UAVs, so the any action based on the aggregated “mean” information is not sufficient

for safety.

1.2 Main Results

In this paper, we consider the routing problem where UAVs need to reach their

destinations while maintaining safe distances from each other. The UAVs (also called

agents in this paper) make their own decisions based on their own states and ob-

servations. To overcome the curse of dimensionality and maintain safe distances, we

implement a mean-field reinforcement learning approach with multi-level information.

Each agent has a local view space which it has accurate information of its neighbors

in the space (called intruders) such as the relative position, velocity and its desti-

nation direction, and has statistical information about other agents outside of the

viewspace. Based on that, we proposed a multi-resolution, multi-agent, mean-field

reinforcement-learning algorithm to solve the collision avoidance problem where each

agent only uses local observations and aggregated mean-field for decision making,

and the global information statistics are used for training the reinforcement learning

algorithm. In particular, we use the actor-critic algorithm with convolutional neural

network (CNN).
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The paper is organized as follows. First, we consider about the collision avoidance

reinforcement learning algorithm in 2. In this chapter, the problem formulation of

the proposed collision avoidance model based on probabilistic dynamic is introduced.

Then the methodology of the proposed mean-field reinforcement learning algorithm

is explained. The simulation results are presented to show the convergence of the

learning process. Comparisons between the proposed method and some others based

on cost and average distance are also provided. To make the simulation concrete,

we also build an environment on MATLAB&SIMULINK UAVToolBox Inc (2020).

Further more, we have extended our algorithm into 3D scenario, simulation results

have also been provided. Further analysis is discussed and several conclusions are

drawn. Then, we consider about the monitoring of central controller under limited

bandwidth. We prove that the problem is indexable for single-rate wireless channels

and establish a sufficient condition under which the problem is indexable with multi-

rate wireless channels. Our numerical evaluations show that our algorithm outperform

other heuristics such as the greedy policy and Round& Robin policies.
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Chapter 2

3M-RL: MULTI-RESOLUTION, MULTI-AGENT, MEAN-FIELD

REINFORCEMENT LEARNING FOR AUTONOMOUS UAV ROUTING

2.1 Problem Formulation

We consider the horizontal routing (also called flight planning), i.e. paths over

a two-dimensional space. We discretize the two dimensional space into in a grid,

and let si ∈ S denote the relative position of the ith agent on the grid relative to

its destination in an L × L space. Besides its own state, an observation oi ∈ O

on about its viewspace is also available at each time slot, as shown in Fig.2.1. The

viewspace consists of two parts, the first part is area close to the agent, which requires

detailed information of “intruders” in the view space such as their relative positions,

heading directions and distance from the destinations. The second part is a mean-

field viewspace which represents the area surround detail viewspace, which does not

include detailed information, only number of intruders and their mean direction in

each meta-grid are required. The number of agents together with the mean direction

represent the “flow” of intruders in that area. Number of intruders characterized the

size of flow, and the mean direction represents flow’s direction. The detailed space is

used to avoid the intruders close to it, and the mean viewspace helps the agents to

avoid the congested area.

We define ri(si, oi) to be the reward of the ith UAV at state si, and with obser-

6



Figure 2.1: The Grid Space and Viewspace of Agents

vation oi:

ri(si, oi) = (2.1)
−c0dist(si, di)− c1

∑
j∈N (i) exp(−dist(si, sj))− c2

when si 6= di

r when si = di

where di is the destination of the ith UAV, dist(·, ·) is the Euclidean distance func-

tion, N (i) is the set of UAVs in the viewspace of the ith UAV. c0, c1, c2, r are positive

constants. When the UAV arrives at its destination, a positive reward r is given.

Otherwise, a cost (negative reward) is incurred. The cost is consists of three compo-

nents. The first component −c0dist(si, di) encourages the UAVs to go towards their

destinations following shortest paths if no collision is detected. The second compo-

nent −c1

∑
j∈N (i) exp(−dist(si, sj)) encourages the UAVs to keep distance with each

other for safety. An intruder close to an agent incurs a large cost due to safety con-

cerns. More discussion will be given in the learning process. An intruders far away

from an agent results in a small cost. The intruders outside the view space do not

change the current cost, however, they are included in the training as the mean-field.

By doing this, multiresolution is realized in the training process. The last term −c2 is

7



Figure 2.2: Without the Constant Term c2, There Might Be a Collision

a constant and is used to balance the first term and the second term. This constant

term plays a significant roll in the model. We next present a toy example for illus-

trating its importance. As shown in Fig.2.2, there are three UAVs in a 10 × 10 grid

space, where dashed arrows are their direct path toward the destinations. Let c0 = 1

and c2 = 0. The view space is a 5 × 5 area around the agent. To avoid the collision

between the blue and red UAV, it would be a good choice for the red one to take a

“left” move at its first step, or equivalently, the blue one to take an “up” move. To

encourage one of the agents in changing its trajectory, its total cost has to be smaller

than the shortest path. However, in the first step, the first term dominates the cost

function, and the first term leads to a large cost at least 9 in the final total cost. As

a result, to actuate the movements, c1 has to be greater than 5.6094. However, c1

is designed to be a parameter to control the safe distance between the agents, so a

larger c1 makes the blue one keep far away from the green one, since the second term

dominates the cost at this time, and a bad trajectory will be trained. This problem

becomes worse when the size of the grid space increase. As a result, c1 has to be

large enough to achieve the collision avoidance, the first term should dominate in ri

anytime there is a collision. Based on this, c2 has to dominate in ri in collision free

states. We know that all direct paths towards destinations take the same number of
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steps in the grid space, c2 term is not able to select the path close to the shortest

path, c1 is used to adapt the shortest path, it should be smaller than c2 in general.

The simulation comparison is shown in Section 2.3. Constants c0, c1, c2, r need to be

tuned during the training.

In this problem, we need optimizes its policy π(si, oi) : S×O → [0, 1] to minimize

the discounted total cost
∑

t γ
tri (si(t), oi(t)), where γ is the discount factor.

2.2 3M-RL for UAV Routing

To solve the problem, we propose a multi-agent reinforcement learning approach

called 3M-RL. This is a model free method, and as we mentioned in Section ??, the

policy is optimized by a well designed reinforcement learning process. 3M-RL is also

a multi-agent system, where every agent makes its own decision independently. As

a result, the complexity can be significantly reduced compared with methods like

dynamic programming which considers all agents together. In this section, we will

first describe a method called Mean-Field Multi-agent Reinforcement Learning, and

discuss about its issue when applying to collision avoidance in Section 2.2.1. Then

details about our 3M-RL approach and implementation will be discussed in Section

2.2.2 and 2.2.3. We will start from 2D horizontal space domain, and then extend our

algorithm into 3D domain in Section 2.2.5.

2.2.1 Mean-Field Multi-agent Reinforcement Learning

Mean-Field Multi-agent Reinforcement Learning is proposed in Yang et al. (2018),

where the key idea is the following equation:

Qj(s, a) =
1

N j

∑
k∈N (j)

Qj(s, aj, ak) (2.2)

≈ Qj(s, aj, āj) (2.3)
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(a) Case 1 (b) Case 2

Figure 2.3: A Toy Example about the Error in Approximation

where Qj is the Q value of agent j, a is the joint action of all the agents, N (j) is

the index set of the neighboring agents of agent j with size |N (j)| = N j, and āj is

the mean action of j’s neighbor. However, in our collision avoidance flight planning

problem, only an approximation like Eq.2.3 might lead to some error. It can be shown

by a simple example, as in Fig 2.3. Consider the blue vehicle as agent j, and we focus

on its Q values Qj(s, a). The blue frame is its view space, containing the red and

green vehicles as its neighbors or intruders in other words. The arrow on the red

and green vehicles are their actions, and their mean action forms aj. Consider these

two cases in Fig.2.3(a) and Fig.2.3(b), the only difference between them is that the

actions of the red and blue agents are switched. As a result, the mean action āj in

these two cases are exactly the same. Assume the blue agent’s action aj is going up,

it is obviously that case 2 in Fig.2.3(b) has a high risk of collision and a large cost,

but the case 1 in Fig.2.3(a) is collision free. Therefore, the Q value of the blue agent

Qj(s, a) cannot be simply approximated as Qj(s, aj, āj).

In our problem, similar to Yang et al. (2018), agents focus on the intruders close

to it, as shown in Fig.2.1. Other than the mean observation over its neighborhood

area, each UAV focuses on the intruders in its view space. The features like heading

direction, destination of intruders in the view space, detailed actions are used by its

neighborhood āj. These information are considered as observation oj. The mean

10



viewspace is also necessary. An agent may not able to avoid intruders in a congested

viewspace, so mean direction is used because detailed information is not necessary

for congestion avoidance purpose.

2.2.2 3M-RL: Multi-Resolution, Multi-Agent, Mean-Field Actor Critic Algorithm

As we mentioned in Section 2.1, other than the mean field observations, we add

detailed viewspace to solve the problem. We implemented the algorithm with CNN

and Actor-Critic, where CNN is used to extract features from observations and the

actor-critic method is used to reduce the variance of learning. Actor-critic method

is one of the reinforcement learning implementation that have a separate memory

structure to explicitly represent the policy independent of the value function, and

require minimal computation in order to select actionsSutton and Barto (2018). It is

also well used in many multi-agent games, and many of them have very good results

like Lowe et al. (2017). The combination of CNN and actor critic is also popular

Pinto et al. (2017); Christodoulou (2019), since CNN is a good structure to deal with

image-like input.

First recall the policy gradient method Sutton and Barto (2018):

∇θJ(θ) = Eπ

[∑
a

qπ(si, ai)∇θ log πθ(at|st)

]
(2.4)

= Eπ [Gt∇θ log πθ(at|st)] . (2.5)

where π(at|st) : S × A → (0, 1) is the policy, and it means the probability of taking

the action at at state st, this policy function is approximated with parameter vector

θ. If the parameters are updated as Monte-Carlo Policy Gradient as Eq.(2.5), it has

a large variance because the cumulative return Gt has a large variance, and the log

probability ∇θ log πθ(at|st) is large. So the learning converges slowly. The policy

gradient theorem Eq.(2.4) can be generalized to include a baseline policy b(s) to
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reduce the variance:

∇θJ(θ) = Eπ

[∑
a

qπ(si, ai)∇θ log πθ(at|st)

]

= Eπ

[∑
a

(
qπ(si, ai)− b(s)

)
∇θπθ(at|st)

]
. (2.6)

Since
∑

a

(
qπ(si, ai) − b(s)

)
= 0, the new implementation with the baseline is unbi-

ased. By selecting appropriate baseline value, large return Gt leads to large b(s), the

variance is reduced, which is a well-known result, called variance reduction. In the

actor-critic method, another system v̂(si,w) is used to learn the state value, where

w is the parameter.

Figure 2.4: Overview of Mean Field Actor Critic Method

Based on the discussion above, the overview of our 3M-RL is shown in Fig.2.4.

The information about mean actions of neighbors as we discussed before, is contained

in the observation oi. Although all the agents make decisions on their own state and

observation, they can also cooperate with each other since all the agents in the system

follow the same policy πθ(ai|si, oi), by assuming that the intruders follow the same

policy as itself. Here the policy π is parameterized by θ, and it is independent with

agents’ index i. Unlike many multi-agent reinforcement learning algorithms that all

12



Figure 2.5: Structure 1: Actor Critic Network

Figure 2.6: Input Matrix of Structure 1

agents has its own policy, homogeneous agents setting here simplify the complexity of

the policy, and also help with the cooperation between agents. A value estimator will

evaluate the value functions of each agent, and updates the policy π. We also defined

the critic network v̂(si, oi) be the estimator parameterized by w. The estimator and

policy functions are approximated by neural networks with parameters θ and w.

The algorithm is presented in Alg.1. Line 3 to 6 is the testing part, where T is

the time horizon of the episode, and t is the time index in the episode. In this part,

all agents act following the current policy π. The sample paths (simulation data) are

recorded. Line 8 to 13 is the policy updating part, where the algorithm updates two

sets of parameters, θ which is the set of actor parameters and determines the policy,

and w wich is the set of critic parameters and estimates the state value. The policy

of an agent depends on the action scores and follows the Boltzmann distribution:

π(aj) =
ezj∑
k e

zk
(2.7)

where zj is the score of the jth action in action space A.

We would like to remark that a single trace might introduce large variance, so it
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Algorithm 1: 3M-RL: Multi-Resolution Multi-agent Mean-Field Actor

Critic Reinforcement Learning

1 Input: A policy parameterization π(a|si, oi,θ) and a state value

parameterization v̂(si, oi,w)

2 foreach Episode do

3 while Not Arrived and t<T do

4 Take action a(t) ∼ π(·|si(t), oi(t),θ);

5 Get next relative position si(t+ 1), next observation oi(t+ 1), and

reward ri(t);

6 Record
(
si(t), oi(t), π(·|si(t), oi(t),θ), ri(t)

)
7 end

8 foreach si(t) in the episode do

9 Gt ←
∑T

τ=t γ
τri(τ);

10 δt ← Gt − v̂(si(t), oi(t),w);

11 Network parameters update: w← w + αwδt∇v̂(si, oi,w);

12 Network parameters update: θ ← θ + αθδt∇ lnπ(a(t)|si(t), oi(t),θ)

13 end

14 end
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is better to use batch update. We assume that the number of traces we collect in

an episode fits for the batch size, so the policy can be updated at the end of each

episode. Otherwise when there are too many agents in the system, the policy need to

be updated during an episode. In this case, the data in line 6 need to be substituted

by the following two steps:

1. Gt(si, oi) = ri(t) + γv̂(si(t+ 1), oi(t+ 1),w)

2. Record
(
si(t), oi(t), π(·|si(t), oi(t),θ), Gt(si(t), oi(t))

)
where the Gt(si, oi) is estimated return which is used as Gt directly in line 9, since

the future rewards might not saved in the same batch.

It is worth noticing that Alg.1 is just a training process, the policy determined

by the actor is indeed a stochastic policy, because stochastic exploration is necessary

during the training process. However, after the policy is well trained, the policy we

used to execute is a greedy policy, choosing the action with highest action score, then

it becomes a deterministic policy and exploration is not required any more.

2.2.3 CNN Implementation

We use CNN in our actor-critic algorithm because the state and observations of

an agent can be easily transferred to image. We will use CNN to approximate the

π(si, oi,θ) and v̂(si, oi,w) in Alg.1.

We propose two CNN structures for this algorithm. The first structure is shown

in Fig.2.5, which is a three-layer CNN used to extract features from the input matrix,

and whose output consists of actor part (action scores) and critic part (state value).

The actions of the agents depend on the corresponding action scores and Eq.2.7. The

input of the system is a five layer matrix shown in Fig.2.6. All the information such

as relative positions and observations can be described by an image. For example,
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for the blue and red agents in the toy example Fig.2.2, the input of the agents can

be shown as Fig.2.7. We assume that the square at the center is the destination,

and for the blue agent, all its nonzero entries settle in the blue square, these entries

characterized its observation at current time. The state information is illustrated by

the position of the square, and the state is the relative position of the center of the

blue square relative to the destination. As a result, the agent in a L × L space has

input matrix with size (2L − 1) × (2L − 1) × 4, and it contains all the state and

observation information. This structure fits for the case when the dimension of view

space is small, and the features can be extract from the viewspace is very limited, it

would be better for us to regard the whole space as an image, and use it as the input

of CNN.

Figure 2.7: Input Matrix in Horizontal 2D Space

The above structure turns out to be inefficient when the grid space is large. Since

only a few entries have nonzero values. Based on this, we propose the second CNN

structure, as shown in Fig.2.8, which is a Mixture Feature Embedding neural network.

CNN is used to extract the observation features in viewspace, and the state feature

is just binary code of the state. A concatenate layer is used to concatenate these

features, and the output have the same type as in Fig.2.5. In this structure, the input
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of the CNN is not the matrix in Fig.2.6. Instead, it is a three-layer matrix with size

equals to the viewspace. The entries in the matrix is the number of intruders in the

view space, intruder’s heading direction, and intruder’s distance from destination,

just as the second, third, and fourth layers in Fig. 2.6. This structure significantly

reduces the processing time of the neural network as size of grid space increases.

Figure 2.8: Structure 2: Mixture Feature Embedding Neural Network

2.2.4 Continuous State Space Extension

The collision avoidance algorithm may be difficult to implement in some real

problems, we also extended the algorithm to continuous state space. The continuous

state space environment is built on MATLAB SIMULINK with UAV ToolBoxInc

(2020).

In this environment, the positions are no longer integers, it could be any point in

the space, the action is also not simple as before, it is adapted to a turn set: A =

{Left − Left, Left,Maintain,Right, Right − Right}, which is achieved by setting

the target roll angle to some predefined values.

It is worth mentioning that the information in the state and observations also need

to be extended. Structure 2 in Fig.2.8 is used, and we include the agent’s heading

direction in the state feature vector, and the 3rd layer in the observation matrix in
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Fig.2.6 is also adapted to continuous heading direction. To prevent frequent sharp

turning, we added a small cost to ri every time when turning action is made. Details

of the simulation and results are shown in Section 2.3.

2.2.5 Continuous 3D State Space Extension

We’ve also considered solving collision avoidance path planning problem in 3D

space with our 3M-RL algorithm. Collision avoidance in 3D space can be much

more complex than horizontal 2D scenario, since it extends the state space. On the

other hand, different from collision avoidance in 2D space, UAVs have different model

equations in horizontal and vertical directions Inc (2020), as a result, they may have

different turning radius and sensitivity in different directions. In general, the target

of collision avoidance path planning is no intruders in its collision hull. Collision

hull is the risk area which center coincides with the UAV’s position, it can be set as

cylinder Ferrera et al. (2018); Zhu et al. (2016) or simply a sphere Lin et al. (2020).

Fig.2.9 illustrates an example of cylinder collision hull, which will also be used is our

simulation. For generality, we defined a reward function in 3-D space as below:

ri(si, oi, ai) = (2.8)
−c0dist(si, di)− c1

∑
j∈N (i) 1{sj is in collision hull}

−c2 − r(ai) when si 6= di

r when si = di

where dist function here is the distance in 3-D space, and 1 is the indicate function.

We also introduced a reward component on action r(ai) that is used to control the

preference of actions, because in some applications, the raising of UAVs may leads

to more energy costs. We have also set up simulations illustrating the utility of this

component.
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In this part, we still consider continuous state space, but the environment is no

longer built on SIMULINK UAV ToolBox, because in this ToolBox, the height of

fixedwing UAV model is controlled by setting target height, which is much slower

than the control on row angle. To simplify the model, we defined the action space of

the UAVs as:

A := {Left− Left,Left,Maintain, (2.9)

Right, Right−Right, Up,Down}

and details shown as in Tab.2.1. In Tab.2.1, HA is the variation in heading angle,

and RD is the raising or descending in height, we also assume that these actions are

finished fast enough compare with one time slot. This is just a preliminary model,

the real actions largely depends on the control system and model of UAV, we set up

this model to test the ability of our algorithm handling states and observations in

3-D space.

CNN has also been well used in many 3-D object recognition and classification

of 3-D images Zhang et al. (2018); Maturana and Scherer (2015). We use the same

structure as in Fig.2.8, simply substitute the layers in CNN as 3D CNN layers. And it

should be noticed that the size of action is 7 as we mentioned in Eq.2.9. The detailed

view space and mean view space in the observation is illustrated in Fig.2.10, and the

input of the 3D CNN is a 4D matrix (width × length × height × information length),

where the information length we used is 5, just as the layers in Fig.2.6. On the other

hand, the algorithm and the equations we used to update neural network parameters

are still as shown in Alg.1.

19



Actions LL L M R RR U D

HA −30◦ −15◦ 0◦ 15◦ 30◦ 0◦ 0◦

RD 0 0 0 0 0 +1 −1

Table 2.1: Details of Actions in 3D Space

Figure 2.9: Collision Hull in 3D Space

Figure 2.10: Observation in 3D Domain

2.3 Experimental Results

We evaluated 3M-RL on 10×10, 20×20, and 50×50 grid respectively, and on a

continuous environment built on UAVToolBox in MATLAB&SIMULINK. We remark

that in this section, to have a clear estimation on the plotted trajectories, the policy

used to test is the greedy policy instead of following the Boltzmann distribution

Eq.2.7, so the testing policy is deterministic.
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2.3.1 Experimental Results on the 10× 10 Grid Space

We first considered a system where four agents move in a 10×10 grid with 5× 5

detailed viewspace around it. Each agent starts at one corner of the space and

heads toward the cross corner. We chose this moderate-size network so we can solve

the minimum cost by using dynamic programming as the baseline to evaluate the

performance of the proposed algorithm. Since the view space it too small in this

part, so neural network with structure 1 is used.

We first show the comparison in convergence in Fig.2.11, it plots the total cost

of all vehicles in the training process. Our proposed 3M-RL is compared with two

other algorithms. Mean Field Q is also a multi-agent reinforcement learning. It is

implemented by regrading the input of the CNN as the state, and training the policy

use tabular Q-learning. Because of the large state space, it takes a very long time

to converge. As we can see, after 10,000 episodes’ training process, the decrease

tendency of mean-field Q-learning is not clear, and the proposed 3M-RL used Actor-

Critic structure and converges much faster. This fast convergence is the reason we

chose to use the Actor-Critic algorithm.

We also compared the proposed algorithm with the mean-field multi-agent rein-

forcement learning algorithm proposed in Yang et al. (2018). As we pointed out in

the earlier section that the direct application of the mean-field multi-agent reinforce-

ment can lead to unsafe plans, because of the lack of significant neighbor information.

Fig.2.11 shows the total costs under our method and pure mean-field method Yang

et al. (2018) in training process. We can clearly see that 3M-RL results in a much

lower cost and is close to the optimal.
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Figure 2.11: Convergence Comparison

2.3.2 Experimental Results on the 20× 20 Grid

We considered four agents on a 20×20 grid, where each agent has 11×11 detailed

viewspace around it. Also in this section, we use CNN with structure 1. First our

experiment showed the significant of the constant term −c2 in the reward function

Eq.(2.1). As shown in Fig.2.12 and Fig.2.13, the UAVs have same start point and

destinations in these two cases, however, c2 in Fig.2.12 balances the first and second

term in the cost function Eq.2.1 well (we consider c0 : c1 : c2 = 0.05 : 5 : 1).

As we can see in the figure the collision is well solved. Fig.2.13 have parameters

c0 : c1 : c2 = 1 : 5 : 0, without the c2 term balancing the reward function, a collision

occurred.

To show the advantage of using CNN, we also design another actor-critic feedfor-

ward neural network with 2 hidden layers. The input of this network is the binary

coded information of the state and observation of the UAV. Fig.2.14 shows the aver-

age distance between all agents in a episode. The horizontal axis represents the time

in an episode, and the vertical axis represents the average distance between each pair
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Figure 2.12: Trajectory Planning with c2

Figure 2.13: Trajectory Planning without c2

of UAVs. At time 0, all UAVs start from their origins, so the distance at this time

is large. As they approaches their destinations, they first get closer to each other,

which increases the risk of collision. When the UAVs are close to their destinations,

the pairwise distance again becomes large. As a result, larger average distance rep-

resents a better path planning policy. As shown in Fig.2.14, the proposed mean field

actor critic method with CNN has the best performance.
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Figure 2.14: Average Distance Comparison

Figure 2.15: 3M-RL Simulation Trajectories of 12 UAVs in 50× 50 Grid Space

Figure 2.16: Remove Two of the UAVs, Trajectories of the Remaining UAVs

2.3.3 Experimental Results on a 50× 50 Grid

The trajectory plot of 12 UAVs in 50× 50 grid space is shown in Fig.2.15. In this

simulation, each agent has a 21 × 21 view space around it, and c0 : c1 : c2 = 0.1 :

10 : 1. Since the grid space is large, CNN with structure 2 was used. We plotted the
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trajectories they have passed as the time index t = 20, 40, 60, 75. We can see that

none of the agents collide with others.

To show the importance of mean viewspace, we also evaluated the our algorithm

(v1) and the case when the mean direction layer in Fig.2.6 is removed (v2). We

compared the minimum distance to the others and the maximum time slot cost of

each agent during an episode. It shows that with the mean direction layer, the agents

have better safety distance. Without the 5th layer in the input matrix, the maximum

cost suffer from larger variance, which means there is some congestion during the

episode.

To test the robustness of the algorithm, we also tested the policy when 2 of the

12 UAVs are removed, each UAV will suffer from less intruders. The results turned

out that most trajectories remains the same.

2.3.4 Continuous Space Simulations

As we mentioned, our continuous space simulation is built on UAVToolBox in

SIMULINK Inc (2020).

The environment is set to be discrete in time, continuous in state space and discrete

in action space. The action is made every second, and the action is some predefined

target roll angle. We used the fixed wing UAVs as our agents. To simplify the

problem, the speed of UAVs remains the same the all the time, and the pitch angle

is fixed to 0. We also would like to mention that after the target roll angle set,

the variation of roll angle follows the step response defined in the UAVToolBox, as

shown in Fig.2.17. This makes the mechanism of environment more complicated.

Here the reward parameters we used is c0 : c1 : c2 = 0.1 : 10 : 1. To prevent frequent

sharp turning, we also added a small penalty on the turning actions. We simulate

the collision avoidance problem of 4 UAVs, and the trained trajectory is shown in
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Min Dist Max Cost

Vehicle v1 v2 v1 v2

1 2.83 1.00 2.01 11.30

2 2.83 2.83 2.05 1.99

3 2.83 2.24 2.02 3.43

4 2.83 1.00 1.79 11.50

5 2.83 2.83 1.77 1.77

6 2.83 2.83 2.31 1.82

7 2.83 2.83 2.21 1.96

8 2.83 2.83 1.78 1.85

9 2.83 2.24 1.96 3.31

10 2.83 2.24 1.78 3.59

11 2.83 2.83 1.78 1.78

12 2.83 2.83 1.78 2.15

Table 2.2: Comparison of the Input Matrix with Mean Direction Layer (v1) and
Without Mean Direction Layer (v2) in Fig.2.6

Fig2.18.

Compared with the discrete space collision avoidance of 4 UAVs trajectory shown

in Fig.2.19, the trajectory from continuous 3M-RL is smoother.

We also compared continuous 3M-RL with Optimal Reciprocal Collision Avoid-

ance (ORCA) navigation framework, which has been a successful approach to avoid

collisions with other moving agents van den Berg et al. (2011). ORCA is a heuris-

tic algorithm that agents change their directions when the intruders appear in their

“cycle of sensing”. However, their methods do not consider the intruders outside the

sensing space.
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Figure 2.17: Roll Angle Step Response in UAVToolBox

The simulation environment of ORCA is also continuous, but the turning action

could be any direction, and the heading angle will change as soon as decision being

made. Do not consider the intruders outside the sensing space and could not restrain

sharp turning makes ORCA suffer from sharp turn, as shown in Fig.2.20. Continuous

3M-RL considers the probability of an intruders get into the viewspace during the

training, and is able to get a smoother trajectory.

Figure 2.18: Continuous 3M-RL Simulation

2.3.5 3D Scenario Simulations

We will present our preliminary simulation results of executing 3M-RL in 3D

space. As we mentioned, this simulation is built up on a crude UAV model, the real
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Figure 2.19: Discrete 3M-RL Simulation

Figure 2.20: ORCA Simulation

model largely depends on the control system and dynamics of UAV, we set up this

model to test the ability of our algorithm handling collision avoidance problem in 3-D

space.

We set up our simulation of 4 UAVs in a 30 × 30 × 10 space, and the collision hull

is a cylinder, as shown in Fig.2.9, with radius 5 and height 3. And the detailed view

space of observation is the 10 × 10 × 5 space around it. The reward parameters we

used here is c0 = 0.1, c1 = 100, c2 = 1.

Fig.2.21 shows the result without action reward, although the collision avoidance
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problem is considered in 3-D space, 4 UAVs start from one corner and targeting at

the point at opposite corner with the same height. As we can see, although the

trajectories are free of collisions, the paths are still in a horizontal plane.

Fig.2.22 shows the result with action reward, the rewards of different actions are

shown as in 2.3, to encourage the UAVs avoid collisions with different height. The

thick blue lines are the planned path of the UAVs, and the red lines on the green

plane at the bottom of the figure is the projection of trajectories on the horizontal

plane, and this plan is also free of collision.

Actions LL L M R RR U D

Reward −4 −2 0 −2 −4 −0.3 −0.3

Table 2.3: Details of Actions in 3D Space

Figure 2.21: Simulation of 3M-RL in 3D Space, without Action Reward

Figure 2.22: Simulation of 3M-RL in 3D space, with Action Reward
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2.4 Extended Multi Agent Collision Avoidance Policy

In previous sections, we have developed a reinforcement learning collision avoid-

ance algorithm, that all agents making decisions on its local state and local observa-

tion, which is able to provide a good trajectory, when the start point and destination

are fixed. The objective function is defined as

max
θ
Eai(t)∼πθ(a|si(t),oi(t))

[
∞∑
t=0

ri(si(t), oi(t))

∣∣∣∣∣ si(0) = si

]
for all i (2.10)

However, we have found some issue limiting the stability and performance of the

algorithm. In this section, we are going to discuss these issues.

2.4.1 Reward Function and Nash Equilibrium

In our previous collision avoidance algorithm, each agent making a decision based

on its own position, destination and local observation. The environment returns

rewards for different agents. However this setting may not stable or even do not have

a Nash equilibrium point. We will used a simple one step toy example to illustrate

it. As shown in Tab.2.4 and Tab.2.5, we simply assume it characterizes a one step

A2

1 2 3

A1

1 1 2 -1

2 2 1 -1

3 -1 -1 3

Table 2.4: Values of r1 under the Condition of Agent 2’s Action

game, and next step of this game is always terminal state no matter what actions

they are going to take. Tab.2.4 and Tab.2.5 shows the reward of r1 and r2 when the

action of agent 1 and agent 2 are jointly considered. A1 = {1, 2, 3} is the action space
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A2

1 2 3

A1

1 1 0 -1

2 0 1 -1

3 -1 -1 3

Table 2.5: Values of r2 under the Condition of Agent 1’s Action

of agent 1 and A2 is the action space of agent 2. It is a one step game, and the reward

is also terminal reward. Based on the table, it is clear that there exists an optimal

policy for both agent 1 and agent 2, that is a1 = 3 and a2 = 3, and both of the agents

would get the largest reward r1 = 3 and r2 = 3. But in multi-agent system that two

agents make decisions independently, it is hard to say whether these two agents could

converge the optimal actions, or even worse, the policy of these agents will always

oscillate in action 1 and 2. The reason is that when a1 = 1, the optimal action of a2

is 1; but when a2 = 1, the optimal action of a1 is 2.

Young (1993) systematically discussed the existence of an equilibrium in an multi-

agent game like this. They basically discussed a one step multi-agent game where

every agent has its own reward function depends the joint action. They defined a

property of this one step game called weakly acyclic:

Definition 1 (Weakly Acyclic Game Young (1993)) Define the best-reply graph

of a game Γ as follows: each vertex is an n-tuple of strategy a ∈
∏n

i=1Ai, where Ai

is the strategy set of agent i. Let ai be the strategy of agent i in joint action a and

a−i be the joint strategy of all other agents. For every two vertex a and a′, there is a

directed edge a→ a′ if and only if (1) a 6= a′ and (2)there exists exactly one agent i

such that a′i is the best response to a−i on agent i’s reward function, and a−i = a′−i.

We say the game Γ is weakly acyclic if its best response graph, from any initial vertex
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a, there exists a directed path to some vertex a∗ from which there is no outgoing edge.

It is clear that any point without outage edge is an Nash Equilibrium. The best reply

graph of the example can be illustrate as in Fig.2.23. As we can see, (a1 = 1, a2 = 1),

(a1 = 1, a2 = 2), (a1 = 2, a2 = 2), (a1 = 2, a2 = 1) forms a circle, thus is not a Weakly

Acyclic Game, which prevent the learning process approaching a Nash equilibrium.

We have also verified the oscillation in our previous reward function by using dynamic

Figure 2.23: Best Reply of the Example

programming algorithm. We simulated the 2 agents’ collision avoidance problem, even

both of agents global state of itself and its intruder, there exists a circle structure

in the best-reply graph, in other words, there may not exists a deterministic Nash

Equilibrium policy.

In general it is hard to analytically verify whether a game like this has a circle to

not, it could be a better solution to use identical reward function to evaluate the

joint action of all agents. Zhang et al. (2019a) has discussed the format of general

cooperative game setting and competitive setting. In general the reward of pure

cooperative game has to have identical reward in one time slot.

In our collision avoidance problem, it would be better for as to defined the objective
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function as below:

max
θ
Eai(t)∼πθ(a|si(t),oi(t))

[∑
i

∞∑
t=0

ri(si(t), oi(t))

∣∣∣∣∣ si(0) = si

]
(2.11)

We still need to mention that multi-agent problems in mean field games like Subrama-

nian and Mahajan (2019), the reward function is defined on different agents, however,

it is defined when the distribution of agents get into a stationary distribution as the

number of agents goes to infinity. When these assumptions holds, Each agent’s effect

on the overall multi-agent system can thus become infinitesimal, resulting in all agents

being interchangeable and indistinguishable. The uniform value function Vπ,z(x) is

then good enough to evaluate the overall performance of the system. As a result, the

best reply graph theory does not fit for the mean field games. In this report, we are

going to design a policy under the following assumption:

Assumption 1 (Homogeneous Agent Assumption) Every agent takes exactly

the same policy π(ai|si), where si is the state of agent i and ai is its action.

This assumption is kind of strong in some scenarios, for example, in our collision

avoidance problem if only deterministic policies and deterministic models are consid-

ered, agents at the same position and same destination always takes the same action,

and can never diverge. We will make some adjustment on the model to deal with it.

Consider a swarm control problem under Homogeneous Agent Assumption, methods

that takes joint global state for every agent s = (s1, s2, · · · , sn) and returns the joint

action a = (a1, a2, · · · , an) are redundant. For a homogeneous agents’ policy, we do

not care about the distribution of the states of the agents, instead of the index of

the agents. As a result, our target is to remove the sequence of the joint states and

actions.
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2.4.2 Enhanced Multi-Agent Reinforcement Learning

In this section, we will define our problem in another way, and make it closer to

a mean field game that focus the interaction between policy and distribution.

We consider the collision avoidance problem with N agents, N := {1, 2, · · · , N} is the

set of agents. They may have same or different destinations. We first define a state

of the ith agent in the system si : (posi, desti) ∈ S by its position and destination,

e.g. ((0, 0), (10, 10)) means the agent at position (0, 0) and its destination is (10, 10),

also for simplicity, in general, if the set of destination is limited, we can also use

represent destination by its index. In other word words, ((0, 0), 1) means the agent

is at position (0, 0), heading towards destination 1. Also S is the state space of one

agent. The joint state is s = (s1, s2, · · · , sN) ∈ SN .

We first consider the collision avoidance problem in discrete grid space, and the action

space is defined as

A = {1 : Up, 2 : Left, 3 : Down, 4 : Right}.

For simplicity, we also assume that the destination of an agent does not change in an

episode, also, once the agent reaching its destination, its position could not change

any more. Let a := (a1, a2, · · · , aN) ∈ AN is the joint action of all agents. The state

transition of an agent only depends on the its current state and action of the agent,

that is:

P (s(t+ 1)|s(t), a(t)) =
N∏
i=1

P (si(t+ 1)|s(t), a(t))

=
N∏
i=1

P (si(t+ 1)|si(t), ai(t))
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To solve the problem of collision avoidance, we defined the reward function on joint

state and action as below:

ri(s, a) = −α · distd(si)− β1{∃j, distp(si, sj) ≤ distsafe}

r(s, a) =
N∑
i=1

ri(s, a) (2.12)

where distd is the destination distance function, returns the distance from the position

to the destination in si, distp is the position distance function, it returns the distance

between the positions, distsafe is the safe distance required by the application and β

is the penalty of collision. ri can be understood as the reward on agent i, however,

all agents need to optimized the overall reward r, instead of its own reward. And it

can be easily understood that ri is bounded in finite space, we assume |ri(s, a)| < M .

Also here we assume that ri only depends on intruders around agent i and its own

action ai, detailed global state and actions of other agents are not required.

With the Assumption.1, the interaction the index of different agents are not im-

portance, to characterize it, we define a {s} as the set of joint state, removing the

index and sequence of the elements in it. Then all agents are associated with a uni-

form localized policy πθ parameterized by θ. The localized policy πθ(ai|si, O(si, {s}))

is the distribution on the action ai for the agent i whose state is si, conditioned on an

anonymous observation O(si, {s}) on its neighborhood, where O is the obervation

function on set {s} around state si. We will define the observation function in the

following section. We also need to notice that if s 6∈ {s}, the policy function π is

meaningless. Then we use

πθ(a|s) =
N∏
i=1

πθ(ai|si, O(si, {s}))

to denote the joint policy, which is the product distribution of the localized policies as

each agent acts independently. By doing this, the complex interaction between every
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agent to all the other agents can be characterized by the interaction between agent and

the corresponding distribution of global state over state space S like the mean field

game in Subramanian and Mahajan (2019). The main reason we using anonymous

observation is that the complexity can be largely reduces under Assumption.1, we

will discuss the details in the following sections.

The objective is to find the best homogeneous policy πθ such that the discounted

global stage reward is maximized, starting from some initial state distribution s0,

max
θ
J(θ) := Es∼s0Ea(t)∼πθ(·|s(t))

[
∞∑
t=0

γtr(s(t), a(t))

∣∣∣∣∣ s(0) = s

]
(2.13)

Also, for a fixing localized homogeneous policy πθ, the Q-function for this policy is

defined as:

Qθ(s, a) := Ea(t)∼πθ(·|s(t))

[
∞∑
t=0

γtr(s(t), a(t))

∣∣∣∣∣ s(0) = a, a(0) = a

]

=
N∑
i=1

Ea(t)∼πθ(·|s(t))

[
∞∑
t=0

γtri(s(t), a(t))

∣∣∣∣∣ s(0) = a, a(0) = a

]

=
N∑
i=1

Qθ
i (s, a) (2.14)

2.4.3 Exponential Decay of Q-function Leads to Approximation on Local

Observation

The idea of this part comes from Qu et al. (2020), they discussed the approxima-

tion in network applications, and the set of neighborhood is fixed, here we are going

to extend it into dynamic neighbors under the Assumption.1. In this section, we

assume that the observation O(si, {s}) includes states of all agents in the observable

region, as shown in the red blocks in Fig.2.24. The observable region is the defined

as the area where the intruders in it can reach the position of si within dobs steps.

As shown in Fig.2.24, dobs = 2. We also assume that risk region is contained in the

observable region.
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Define N k
s (s) to be the set of agents that could get into the observable region of agents

in state s within k-step when the global state is s, and N 0
s (s) is the set of agents in

the observable region of state s including it self. For example, Fig.2.24 illustrates a

simple example of set of neighbors when safe distance is 2. We simply assume the

black agent is in state s. The only neighbor in its 0 step neighborhood is itself. The

blue agent is in its 4 step neighborhood. We also defined N k
−s(s) = N \ N k

s (s) as

the set of agents out side its k step neighborhood. The intuition of neighborhood is

that intruders outside an agent’s k step neighborhood will not get into its risk region

until k/2 step in the future, and the collision penalty induced by this intruder will

always has a discounted factor at least γk/2+1. Next, we will prove this property in

equations.

Figure 2.24: Set of Neighbors

Let the state of agent i to be si, and the global state is s. The global state can

also be written as (sN ksi
, sN k−si

), where sN ksi
is the joint state of agents in agent i’s k

step neighborhood, to avoid the abuse of notation, we omit the brackets in neighbor

function N k
s . Similarly, we write (aN ksi

, aN k−si
) as the joint action. Then we could have

following property, the intuition of the theorem come from Qu et al. (2020).

Theorem 1 (Extended Exponential Decay Property) The (c, ρ)-exponential de-

cay property holds if, for any localized homogeneous policy πθ, for any s ∈ N ,
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sN ksi
∈ S |N ksi | , sN k−si

, s′N k−si
∈ S |N

k
−si
|, aN ksi

∈ A|N ksi | , aN k−si
, a′N k−si

∈ A|N
k
−si
|, Qθ

i satis-

fies,

|Qθ
i (sN ksi

, sN k−si
, aN ksi

, aN k−si
)−Qθ

i (sN ksi
, s′N k−si

, aN ksi
, a′N k−si

)| ≤ cρbk/(dobs+2)c (2.15)

Proof: From the left hand side of Eq.2.15, we have:

|Qθ
i (sN ksi

, sN k−si
, aN ksi

, aN k−si
)−Qθ

i (sN ksi
, s′N k−si

, aN ksi
, a′N k−si

)|

≤
∞∑
t=0

|E(s(t),a(t))∼πθ [γ
tri(s, a)|(s(0), a(0)) = (s, a)]

−E(s(t),a(t))∼πθ [γ
tri(s, a)|(s(0), a(0)) = (s′, a′)]|

The equation holds since |
∑

i xi| ≤
∑

i |xi|.

Next, we start from k = 0. When k = 0, si and states of agents in Nsi(s) are equal in

s and s′. As shown in Fig.2.25, the observable space of agent i in s and s′ are exactly

the same. As a result, the policy and reward of agent i are also equal in s and s′, and

we can have

E(s(t),a(t))∼πθ [ri(s(0), a(0))|(s(0), a(0)) = (s, a)] = (2.16)

E(s(t),a(t))∼πθ [ri(s(0), a(0))|(s(0), a(0)) = (s′, a′)]

On the other hand, as we can see in Fig.2.25, there will be an intruder get into agent

Figure 2.25: k=0
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i’s observable space in state s′, but not in s. We also have

|E(s(t),a(t))∼πθ [γ
tri(s(t), a(t))|(s(0), a(0)) =

(s, a)]−E(s(t),a(t))∼πθ [γ
tri(s(t), a(t))|(s(0), a(0)) = (s′, a′)]| < 2M · γt

for t ≥ 1. As a result, we have:

|Qθ
i (sN ksi

, sN k−si
, aN ksi

, aN k−si
)−Qθ

i (sN ksi
, s′N k−si

, aN ksi
, a′N k−si

)| ≤ γ
2M

1− γ

for k ≥ 0. Next we consider the largest k that is possible to have

E(s(t),a(t))∼πθ [γ
tri(s(1), a(1))|(s(1), a(1)) = (s, a)] 6= (2.17)

E(s(t),a(t))∼πθ [γ
tri(s(1), a(1))|(s(1), a(1)) = (s′, a′)]

under some πθ. As shown in Fig.2.26, it illustrates the comparison of two scenarios

s and s′ at t = 0 and t = 1, where the black agent is regards as agent i. We assume

in both of these scenarios, k = 1 + dobs, and the rewards of these two scenarios are r

and r′ respectively. First consider s case, we assume that under some policy πθ, both

blue and black agents are taking action “Right” with probability 1 when t = 0. As

t = 1, the blue agent is still outside the observable area of the black agent. Then we

consider s′ case, compare with s, because of the existence of green agent which is in

the observable area of the blue agent, we assume that under policy πθ, the action of

blue agent is modified to taking “Left” with probability 1. As a result, at t = 1, the

blue agent is in the observable area of black agent, and r′(1) 6= r(1).

On the other hand, if k = 2 + dobs, the observable area of all agents that is possible

to get into the observable are of the black agent is contained in N 2+dobs
si

, and it can

be guaranteed to have

E(s(t),a(t))∼πθ [γ
tri(s(1), a(1))|(s(0), a(0)) = (s, a)] = (2.18)

E(s(t),a(t))∼πθ [γ
tri(s(1), a(1))|(s(0), a(0)) = (s′, a′)].
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Figure 2.26: Largest k Satisfying Eq.2.16 and Eq.2.17.

As a result, we could have

|Qθ
i (sN ksi

, sN k−si
, aN ksi

, aN k−si
)−Qθ

i (sN ksi
, s′N k−si

, aN ksi
, a′N k−si

)| ≤ γ2 2M

1− γ

for k ≥ 2 + dobs.

Similarly, we next consider the largest k that is possible to satisfy Eq.2.16, 2.18 and

following Eq.2.19.

E(s(t),a(t))∼πθ [γ
tri(s(2), a(2))|(s(0), a(0)) = (s, a)] 6= (2.19)

E(s(t),a(t))∼πθ [γ
tri(s(2), a(2))|(s(0), a(0)) = (s′, a′)]

We are going to illustrate it with another example as shown in Fig.2.27, and for

simplicity, we just show it in 2-D space. In these two scenarios, k = 3 + 2dobs.

Compare with s case, because of the existence of green intruder in s′ case, the action

of intruder 2 is changing from “Right” w.p.1 to “Left” w.p.1 as t = 0. As a result, at

t = 1, intruder 2 get into the observable area of intruder 1, which change the action

of intruder 1 from “Right” w.p.1 to “Left” w.p.1 as t = 1. This is exactly same as

t = 0 in Fig.2.26, and for the same reason, intruder 1 get into the observable area of

agent i when t = 2, which makes r′(2) 6= r(2).

On the other hand, if k ≥ 4 + 2dobs, it can be guaranteed that the observable area

of both intruder 1 and 2 are contained in N 4+2dobs
si

, in other words, the observable

area of all intruders that could get into the observable area of agent i before t = 2 is
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contained in N 4+2dobs
si

. As a result, we could have:

|Qθ
i (sN ksi

, sN k−si
, aN ksi

, aN k−si
)−Qθ

i (sN ksi
, s′N k−si

, aN ksi
, a′N k−si

)| ≤ γ3 2M

1− γ

for k ≥ 4 + 2dobs. At last, with induction, we could get the following equation

Figure 2.27: Largest k Satisfying Eq.2.16,2.18,2.19.

|Qθ
i (sN ksi

, sN k−si
, aN ksi

, aN k−si
)−Qθ

i (sN ksi
, s′N k−si

, aN ksi
, a′N k−si

)| ≤ γm+1 2M

1− γ

for k ≥ m(2 + dobs), and theorem proved. �

2.4.4 New Algorithm

Based on the Exponential Decay Property we have proved, we can defined our

algorithm as shown in Alg.2. The intuition of this algorithm is that when k is large

enough, the influence of intruders outside N k
si

to Qi can be ignored. On the other

hand, the policy of agent i at state si is almost irrelevant with Qi for agent j outside

N k
si

. That is saying

∂Q(s, a)

∂π(ai|si, oi)
=
∂
∑

j Qj(s, a)

∂π(ai|si, oi)

≈
∂
∑

j∈N ksi
Qj(s, a)

∂π(ai|si, oi)

2.4.5 Analysis and Contribution

The In this section, we derived a extended exponential decay property based on

local observable algorithm and dynamic neighborhood. The property states that
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Algorithm 2: Algorithm

1 Input: A policy parameterization πθ(a|si, oi) and a state value

parameterization V̂ w(sN ksi
)

2 foreach Episode do

3 while Any Agent Not Arrived and t < T do

4 Take action a(t) ∼ πθ(·|si(t), oi(t)) for all i;

5 Get next relative position si(t+ 1), next observation oi(t+ 1), and

reward ri(t) for all i;

6 Record
(
si(t), oi(t), sN ksi

(t), ai(t), ri(t), si(t+ 1), oi(t+ 1)
)

for all i

7 end

8 foreach t in the episode do

9 δi ← ri(t) + γV̂ w(sN ksi
(t+ 1))− V̂ w(sN ksi

(t)) for all i;

10 Network parameters update: w← w + αw 1
n

∑
i δi∇V̂ w(sN ksi

);

11 Network parameters update:

θ ← θ + αθ 1
n

∑
i

1
|N ksi |

∑
j∈N ksi

δj∇ ln πθ(a(t)|si(t), oi(t))

12 end

13 end

intruders’ influence on Qi, the reward-to-go of agent i, decay exponentially w.r.t

the distance between the position of agent i and the intruder. Based on that, we

developed a centralized training with decentralized execution algorithm Alg.2 to solve

the objective function Eq.2.11. The diagram of our algorithm is shown as in Fig.2.30.

Compare with general centralized training with decentralized execution algorithms

as shown in Fig.2.29, we have used a decentralized critic network and largely reduce

the complexity.
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Figure 2.28: Previous algorithm, unstable

2.4.6 Simulation Results

In this section, we basically compare the simulation results of our algorithm in

Alg.2 and Fig.2.30 and our previous algorithm illustrated in Fig.2.28. The comparison

of total rewards in different scenarios are shown in Fig.2.31,2.32,2.33. In these plot,

our new algorithm is slower than our previous algorithm, however since these multi-

agent reinforcement learning algorithms do not even have stability guarantee, the

speed of training is not that important. On the other hand, it looks that the difference

of total reward between these two algorithms are not apparent, the reason is that the

total reward are dominated by the terminal reward and penalty of collision, compare

with a random walk algorithm at the first episode, both algorithm could avoid the

collision and reach the destination with a relative good policy.

The values of total reward in these scenarios are shown in Tab.2.4.6. The results

show that our new algorithm can get a better performance than the previous algorithm

even if the policy space remains the same.
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Grid Size Num of Agents Safe Distance Old Alg new Alg

30 4 2 -2.7519 -2.2435

30 8 2 -8.3003 -7.8122

30 8 3 -7.3276 -3.4722

Figure 2.29: General Centralized Training with Decentralized Execution Algo-
rithms, Critic Network Has Large Complexity

44



Figure 2.30: New Algorithm

Figure 2.31: Comparison of Total Reward of 4 Agents in 30 Grid Size, Safe Dis-
tance=2
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Figure 2.32: Comparison of Total Reward of 8 Agents in 30 Grid Size, Safe Dis-
tance=2

Figure 2.33: Comparison of Total Reward of 8 Agents in 30 Grid Size, Safe Dis-
tance=3
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Chapter 3

LEARNING PARALLEL MARKOV CHAINS OVER UNRELIABLE WIRELESS

CHANNELS

In this chapter, we are going to discussed the problem that the central controller

needs to maintain an estimate of the risk level of each UAV. When a report from an

UAV is successfully is received, the state of the Markov chain is know; otherwise, the

estimate of the distribution of the risk level of an UAV is updated based on a pre-

defined Markov chain. In this chapter, we assume simple two-state Markov chains.

Due to limited bandwidth, the controller can only probe a subset of Markov chains

each time. The objective is to develop a scheduling algorithm to minimize the total

information entropy of the Markov chains.

This optimization problem is then formulated as a Multi-Armed Bandit (MAB)

problem with the capacity of wireless channels as a hard constraint. The problem is

similar to a restless bandit problem. The key difference is that the objective is to

minimize the total information entropy of all bandits instead of finiding the optimal

bandit. We adopt Whittle’s Index to solve the problem. Whittle’s Index was first

proposed in Whittle (1988) for restless bandit problems. Whittl’s index has been used

in wireless communication problems. For example, Anand and de Veciana (2018)

consider sa delay minimization problem through a multi-state channels, and Liu and

Zhao (2010) studies the throughput maximization problem where transmitter in the

system has dynamic multi-channel access.

In this chapter, we consider both single-rate wireless channels and multi-rate wire-

less channels. We prove that the problem is indexable for single-rate wireless channels

and establish a sufficient condition under which the problem is indexable with multi-
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rate wireless channels. Our numerical evaluations show that our algorithm outperform

other heuristics such as the greedy policy and Round& Robin policies.

3.1 Problem Formulation

We consider a system consisting of M two-state Markov chains as shown in Fig.3.1.

For simplicity, we assume that for the ith Markov chain, p10 = p01 = pi < 0.5.

Figure 3.1: A Two-State Markov Chain

We assume the controller can probe at most K (K < M) of them at each time

slot, and each probe succeeds with probability r < 1. Let Si(t) denote the state of

the Markov chain i at time t, and θi(t) ∈ [0, 1] denotes the probability that Markov

chain i is in state “1” at time slot t given the most recent observation received at the

controller.

θi(t) =


Si(t), if the probe is successful

pi + (1− 2pi)θi(t− 1), otherwise

(3.1)

Given a Bernoulli distribution with parameter θi(t), the entropy of the distribution

is

ci(t) = −θi(t) log θi(t)− (1− θi(t)) log(1− θi(t)).

The problem we are interested in is to minimize the overall entropy of the system,

i.e.

min
π∈Π

E

[
∞∑
t=0

βt
M∑
i=1

ci(t)

]

subject to:
M∑
i=1

Aπi (t) ≤ K, ∀t,

(3.2)

48



where

Aπi (t) = 1{Markov chain i is probed at time t}

under a scheduling policy π, and Π is the set of all scheduling policies.

If we view θi(t) as the state of an arm, then the problem is related to restless

bandit problems. A significant difference is that the reward
∑

i ci(t) depends on the

states of all arms.

We use Whittle’s index Whittle (1988) to solve this problem. We will see that

despite the fundamental difference in the cost function, the problem is an indexable

problem. Following Whittle’s index approach, we first relax the hard constraint per

time slot to an average constraint, i.e., the number of Markov chains to be obsrved

is at most K on average,
∞∑
t=0

M∑
i=1

βtAπi (t) ≤ K

1− β
.

By introducing the Lagrange multiplier v to the problem, we have the following

Lagrangian:

L(v) = min
π∈Π

E

[
∞∑
t=0

βt
M∑
i=1

ci(t) + v
∞∑
t=0

βt

(
M∑
i=1

Aπi (t)−K

)]
(3.3)

Note that the Lagrange multiplier v can be viewed as the penalty. Since the term

v
∑∞

t=0 β
tK is a constant in the optimization problem, for a fixed v, the relaxed

problem can be decoupled into subproblems associate with each individual Markov

chain. In particular, we have

min
π∈Π

E

[
∞∑
t=0

βtci(t) + v
∞∑
t=0

βtAπi (t)

]
. (3.4)

Note that while we replace the hard constraint, the algorithm implemented can

only probe K Markov chains. The Whittle index approach is to index the M Markov

chains and then the algorithm picks the K ones with the highest indices.
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The Whittle’s Index Policy is a low-complexity heuristic that has been extensively

used in the literature and performs well in practice.The challenge is that problems

are not always indexable. In the following sections, we will prove the indexability and

the conditioned indexability, i.e. Whittle’s index is well defined.

3.2 Whittle’s Index Approach

To solve the sub-problem Eq.(3.4) for each Markov chain. We consider the follow-

ing Bellman equation:

Vi(θi; v) = min
{
ci(θi) + βVi

(
pi + (1− 2p)θi; v

)
, v+

ci(θi) + β
[
rθiVi(1; v) + r(1− θi)Vi(0; v)+

(1− r)Vi (pi + (1− 2pi)θi; v)
]} (3.5)

where Vi(θ, v) is the value function of the ith Markov chain starting from state θi(t),

and r is the message delivery ratio. The Whittle index in this problem is v∗(θi, r),

the smallest value of v in the Eq. (3.4) that makes it equally desirable to observe and

not to observe when the ith Markov chain is in state θi. The fundamental question in

Whittle’s index whether the problem is indexable. We will analyze the indexability

in two different cases.

3.2.1 Single State Channels

We first consider the case the message delivery ratio r remains the same at all

time, and have the following lemma.

Lemma 1 Vi(θi; v) is a concave function in θi.

The proof of this lemma can be found in the Appendix.
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Letting the two terms in the minimization equal to each other, we obtain

ci(θi(t)) + βVi
(
pi + (1− 2pi)θi(t); v

)
= v + ci(θi(t))

βrθi(t)Vi(1; v) + βr(1− θi(t))Vi(0; v)+

β(1− r)Vi (p+ (1− 2pi)θi(t); v) .

(3.6)

Since the cost entropy function is symmetric in θ, we know that Vi(0; v) = Vi(1; v),

which yields

βrVi
(
pi + (1− 2pi)θi(t); v

)
= v + βrVi(0; v). (3.7)

We next show that the problem is indexable when r is given. Let Di(v) be the set of

values of θi for which Markov chain i will not be probed under the v-penalty policy,

i.e.

Di(v) = {θ ∈ [0, 1] : βrVi
(
pi + (1− 2pi)θ; v

)
<v + βrVi(0; v)}.

The problem is indexable if Di(v) increases monotonically from ∅ to the universe set

as v increasing from 0 to ∞, as established in the following theorem.

Theorem 2 The Markov chains are indexable.

Proof: The indexable condition is equivalent to that Equation (3.7) has a unique

solution v∗(θ) for each state θ. Because of the symmetry of the cost function, we

know that Vi(0; v) = Vi(1; v). Based on the concavity of Vi(θ; v), we have

Vi
(
pi + (1− 2pi)θi; v

)
> Vi(0; v)

because for every θ ∈ (0, 1), the point (θ, Vi(θ; v)) on the graph of Vi(θ; v) is above

the straight line joining the points (0, Vi(0; v)) and (1, Vi(1; v)), as shown in Fig. 3.2.

So when v = 0, Di(0) = ∅.
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On the other hand, we know that Vi(θ, v) is upper bounded by − log(0.5)
1−β , which is

the discounted total cost when the state stays as θ = 0.5, which occurs if no probing

occurs. As a result, when v > − log(0.5)
1−β , Di(v) = {θi : θi ∈ [0, 1]}.

Next we prove the monotonicity of Di(v). We know that the LHS of Equation

(3.7) is a concave function in θi. So the LHS and RHS can be plotted as in Fig. 3.2.

From the symmetry of the cost function, we know that Vi(θi; v) = Vi(1− θi; v), so in

Figure 3.2: LHS and RHS of Eq.(3.7)

the remaining part of the proof, we assume that θi ∈ [0, 0.5] for simplicity.

According to Fig. 3.2, when θi ∈ [0, α(v)), the LHS is smaller than the RHS of

Equation (3.7), Di(v) = {[0, α(v))}. Let

g1(θi(t), v) = βrVi
(
pi + (1− 2pi)θi(t); v

)
g2(θi(t), v) = v + βrVi(0; v).

We can prove the indexability by proving

∂g2

∂v
− ∂g1

∂v
≥ 0

for any θi ∈ [0, α(v)). In other words, for fixed θ, as v increases, g2 increases faster

than g1 if θ ∈ D(v). The condition can be written as:

1 + βr
∂Vi(0; v)

∂v
− βr∂Vi(pi + (1− 2pi)θi; v)

∂v
≥ 0 (3.8)
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for any θi ∈ Di(v).

Here we point out that V (θ; v) is not differentiable for some v. In particular, the

function is not differentiable when

βrVi
(
pi + (1− 2pi)θ; v

)
= v + βrVi(0; v),

i.e. when θ is on the boundary of D(v). When Vi(θ; v) = g1(θ, v) = g2(θ, v), probe or

not does not make any difference, but the derivative of the two terms in the Bellman

equation Equation (3.5) may be different. Since a boundary point is not included

in D(v) According to its definition, so we consider the derivative of the second term

when it is not differentiable and defines it to be ∂V (θ;v)
∂v

here, because if Eq.(3.8) holds

for all the differentiable points, it also holds for both left and right hand derivative at

the non-differentiable points. For the non-differentiable point of V (0; v), right hand

derivative will be considered.

Let

h0(θ) = θ,

and

ht(θ) = pi + (1− 2pi)h
t−1(θ)

for t ≥ 1, represents the t step state transition without probe. For any θ ∈ Di(v), let

k = arg max
k
{hk(θ) ∈ Di(v)}.

So for θ ∈ Di(v) we have:

Vi(g
t(θ); v) =

t∑
i=0

ci(h
i(θ)) + βt+1Vi(h

t+1(θ); v) (3.9)

when 0 ≤ t ≤ k. The costs ci(θi) are independent with v, so we have:

∂Vi(θ; v)

∂v
= βk+1∂Vi(h

k+1(θ); v)

∂v
(3.10)
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As a complement, we also point out that k is an integer related to v, ∂Vi(h
k+1(θ);v)
∂v

is

not differentiable when hk+1(θ) lies on the boundary of D(v) for any k ≥ 0. We will

prove that the indexability holds for any k ≥ 0, then both left-hand derivative and

right-hand derivative are under consideration. So we simply regard k as a constant

for all differentiable v.

Next we consider about the term ∂Vi(h
k+1(θ);v)
∂v

, we have:

Vi(g
k+t(θ); v) = v + ci(g

k+t(θ))+

βrVi(0; v) + β(1− r)V (gk+t+1(θ); v)

(3.11)

for any t ≥ 1. Let ∂V (0;v)
∂v

= x

∂Vi(g
k+1(θ); v)

∂v
= 1 + βrx+ β(1− r){

1 + βrx+ β(1− r)
(

1 + βrx+ β(1− r) · · ·
)}

=
1 + βrx

1− β(1− r)
so for θ ∈ D(v), we have:

∂Vi(θ; v)

∂v
= βk+1 1 + βrx

1− β(1− r)

and

∂Vi(pi(1− 2pi)θi(t); v)

∂v
= βk

1 + βrx

1− β(1− r)
Then Eq.(3.8) becomes:

1 + βr

[
x− βk 1 + βrx

1− (1− r)β

]
≥ 0

x− βk 1 + βrx

1− (1− r)β
≥ − 1

βr(
1− βk+1r

1− β + βr

)
x ≥ βk

1− β + βr
− 1

βr

First it is easy to show that ∂V (θ;v)
∂v

> 0, since as the penalty increase, the discounted

total cost can not decrease, so we have x ≥ 0, and the LHS of above equation is

always positive for any k ≥ 0.
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Since βk

1−β+βr
< 1

βr
, the RHS of the above equation is always smaller than 0 for any

k ≥ 0. So Eq.(3.8) always holds when θi(t) ∈ Di(v), and the problem is indexable.

As we mentioned before, Vi(h
k+1(θ), v) is not differentiable in v when hk+1(θ) is

on the boundary of D(v), since k is a piece-wise constant on v. Both of left derivative

and right derivative can be support by Eq.(3.8), since it holds for any k ≥ 0. �

The value v∗(θi, r) is defined as the penalty on probing to balance the two terms

in the Bellman equation Eq.(3.5). Whittle’s index based policies are known to have

good performance in practice, see Aalto et al. (2016) and Anand and de Veciana

(2018).

We next summarize the calculation of Whittle’s index. According to Eq.(3.9) and

Eq.(3.11), θ is on the boundary of D(v∗(θ)), in other words, D(v∗(θ)) = [0, θ) for any

θ > 0. So we can get:

Vi(0, v
∗(θ)) =

L0∑
j=0

βjci(h
j(0)) + βL0

(
v+

β
[
rVi(0; v∗(θ)) + (1− r)Vi

(
hL0+2(0); v∗(θ)

) ])
=

L0∑
j=0

βjci(h
j(0)) + βL0

v + βrV (0; v∗(θ))

1− β(1− r)

+
∞∑
j=1

βL0+j(1− r)jc(hL0+j(0)) (3.12)

where

L0 = arg max
k
{hk(0) ∈ D(v∗(θ))}

= dlog1−2pi
(1− 2θ)e.

On the other hand, Eq.(3.7) holds for v = v∗(θ), we have

βrVi
(
h1(θ); v∗(θ)

)
= v + βr · Vi(0; v∗(θ))
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∞∑
j=1

rβj(1− r)j−1c(hj(θ))+
βrv + β2r2Vi(0; v∗(θ))

1− β(1− r)

= v + βr · Vi(0; v∗(θ))

(3.13)

Combine Eq.(3.12) and Eq.(3.13), Whittle’s index v∗(θ) of the ith UAV at state θ

can be solved.

3.2.2 Multi-State Channel

We now consider multi-state channel case, assume that the channel states of the

ith Markov chain ri is an i.i.d. random variable such that ri ∈ Ri = {ri,1, ri,2, · · · , ri,n}

with ri,1 > ri,2 > · · · > ri,n for any i. Each channel state occurs with probabilities

ρi,1, ρi,2, · · · , ρi,n respectively, and satisfying
∑

j ρi,j = 1 for any i. Also we assume

that the channel states at current time is known for all Markov chains, but the future

channel states are unknown. This setting is similar to the multi-state channel in

Anand and de Veciana (2018).

In Multi-State channel, for the ith Markov chain, the tuple (θi, ri) where θi ∈ [0, 1],

and ri ∈ Ri consists the state, since decision depends on both θi and ri, and the state

space is [0, 1] × Ri. Still, let Di(v) be the set of states where the ith Markov chain

would not to be probed under v-penalty policy. The Bellman Equation (3.5) becomes:

Vi(θi(t), ri;v) = min
{
ci(θi(t))+βV i

(
pi + (1− 2pi)θi(t);v

)
,

v + ci(θi(t)) + βriV i(0; v) + β(1− ri)·

V i (pi + (1− 2pi)θi(t); v)
} (3.14)

where V i (θi; v) = Eri [Vi (θi, ri; v)] is the expected value over ri, that is:

V i(θi(t);v) =Eri
[

min
{
ci(θi(t))+βV i

(
pi+(1−2pi)θi(t);v

)
,

v + βriV i(0; v) + β(1− ri)V i (pi+(1−2pi)θi(t);v)
}] (3.15)
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Similarly, because of the symmetric property of the Markov process, we only consider

about θ ∈ [0, 0.5]. From the previous section, we know that the concavity still holds.

Let the two terms in the minimum are equal to each other, we have:

βriV i

(
pi + (1− 2pi)θi(t); v

)
= v + βriV i(0; v) (3.16)

For agent i, the space of θi can be divided into n + 1 parts {Φi,l} where l =

0, 1, 2, · · · , n, and Φi,0 satisfying:

βri,jV i

(
pi + (1− 2pi)θi; v

)
< v + βri,jV i(0; v) for all ri,j ∈ Ri.

Φi,1 satisfies: 
βri,1V i

(
pi + (1− 2pi)θi; v

)
≥ v + βri,1V i(0; v)

βri,jV i

(
pi + (1− 2pi)θi; v

)
< v + βri,jV i(0; v)

for all j > 1

Φi,l satisfies: 

βri,jV i

(
pi+(1− 2pi)θi; v

)
≥ v + βri,jV i(0; v)

for all j ≤ l

βri,jV i

(
pi+(1− 2pi)θi; v

)
< v + βri,jV i(0; v)

for all j > l

Φi,n satisfies:

βri,jV i

(
pi(1− 2pi)θi; v

)
≥ v + βri,jV i(0; v) for all ri,j ∈ Ri.

From the concave property, we have V i

(
pi(1 − 2pi)θi; v

)
> V i(0; v) for any θi, by

moving the βri,jV (0, v) term to the left, it is easy to show that any θi ∈ Φi,l−1 is

smaller than θ′i ∈ Φi,l. Then the rested set Di(v) of the ith Markov chain can be

described as Di(v) = {(θi, ri) : θi ∈ Φi,0, ri ∈ Ri or θi ∈ Φi,l, ri < ri,l for 0 < l ≤ n}.
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Similarly, to prove the indexability of iid situation, we need to prove

1 + βri
∂V i(0; v)

∂v
− βri

∂V i(pi + (1− 2pi)θi; v)

∂v
≥ 0 (3.17)

holds for any (θi, ri) ∈ Di(v) for any i.

Theorem 3 The mult-state channel Markov chains are indexable when

β <
1

1 + (1− ρi,1)ri,1
, (3.18)

holds for all i.

The proof of this Theorem can be found in the appendix.

Similarly, the we would choose to probe the K Markov chains with higher indexes.

However the indexes now depend on both state estimation θi(t) and channel state ri.

In multi-state channel, the explicit format of v∗i (θ, ri) is hard to solve, especially when

the number of state of channel is large. However, we can use binary search to get an

approximation. As for an example, we will show brief process to derive the two-state

channel index as an example.

For the ith Markov chain, to solve the index v∗(θ, ri,1), let v∗ = v∗(θ, ri,1) =

v∗(θ′, ri,2) (0 < θ < θ′ < 0.5), and θ′ is temporarily unknown. From the proof above,

let V i(0, v
∗) = x, (θ, ri,1) and (θ′, ri,2) is on the boundary of Di(v

∗), we have the

following equations:

βri,1V i(pi + (1− 2pi)θ; v
∗) = v∗ + βri,1x (3.19)

βri,2V i(pi + (1− 2pi)θ
′; v∗) = v∗ + βri,2x (3.20)
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On the other hand, x = V i(0, v
∗) can be expressed as:

x =

L0∑
j=0

βjci(h
j
i (0)) +

L1−1∑
j=0

βL0+1+j(1− ρ1r1)j

(
ci(h

L0+1+j
i (0)) + ρi,1v

∗ + βρi,1ri,1x
)
1{L1 > 0}+

∞∑
j=0

βL0+L1+1+j(1− ρi,1ri,1)L1(1− ri)j(
ci(h

L0+L1+1+j
i (0)) + v∗ + βrix

)
(3.21)

where L0 = maxk{hki (0) < θ}, and L1 = maxk{hk(0) < θ′} − k0. Combine Eq.(3.19)

(3.20) (3.21) the index value of v∗, θ′, V i(0, v
∗) for the ith Markov chain can be

estimated by using binary search.

3.3 Simulations

We consider a scenario where a control tower is monitoring UAVs in the area.

Each UAV has two states: “low risk” and “high risk”. The transition probability p

from one state to another is assumed to be 0.05.

We assume that there are 500 UAVs in the system, based on the channel band-

width, the control tower can require information from 150 of them at each time slot.

Assume that there are two types of UAV, each types has 250 UAVs. The first one has

transition probability p1 = 0.05, and has transmission success probability r1 = 0.5.

The second type of UAV has transition probability p2 = 0.02 and transmission success

probability r2 = 0.7.

We can plot the index of these two types of UAV as in Fig.3.3. We compare the

Whittle’s index approach with a greedy method that UAVs with larger c(θ) will be

selected, and the Round Robin method, where all the UAVs are selected periodically

with same frequency. And the simulation results of total information entropy of all

these 500 UAVs are shown in Fig.3.4. As we can see, the information entropy level of
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Figure 3.3: Index of two types of UAV

Whittle’s Index Approach is lower than both the greedy or Round & Robin methods.
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Figure 3.4: Information Entropy Simulation

We next consider multi-state channels such that Pr(r = 0.9) = 0.4, Pr(r = 0.7) =

0.3, and Pr(r = 0.5) = 0.3.

The simulation results are plotted in Fig.3.5. Again we can observe that the

Whittle’s index outperforms the other two algorithms.
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Chapter 4

CONCLUSION AND FUTURE WORK

In this paper, we proposed our 3M-RL for UAV collision free routing and imple-

mented the algorithm with CNN and Actor-Critic. This method overcomes the curse

of dimensionality, and significantly reduces the computational complexity compared

with centralized path planning algorithms. 3M-RL takes intruder information with

different resolutions based on their distances. For nearby intruders, detailed infor-

mation is acquired to avoid the collision. For the intruders in a medium range, it

focuses on their mean direction. For the intruders far away, the probability of their

approaching can also be learned during the training. We constructed two network

deep-neural-network structures fits for different sizes of space.

We also studied the problem of learning the states of parallel Markov chains over

unreliable wireless networks. The solution to this problem has applications in risk

monitoring such as monitoring the states of UAVs from a control tower. We first

proved that for single state wireless channels, the problem based on Whittle’s index

is indexable, and the index can be derived explicitly. For multi-state channels, the

indexability can be proved under a sufficient condition, and the index value can

be calculated numerically. And simulation shows that the proposed Whittle’s index

approach can have better performance than greedy policy and Round & Robin policy.

Although we have simulated our 3M-RL algorithm in 3D space, the model we

used is still a crude virtual model, this simulation is just used to show the ability

of our algorithm in handling observations and collision problems in 3D continuous

space. We will consider about more accurate model in the future, e,g, models that

controlling pitching angle and reasonable step response. Also, algorithms like Šǐslák
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et al. (2010) considers the spatial-temporal collision avoidance in 4D domain (3-D

space and time), we could also introduce time index as part of our state, and extends

the policy to be observation-time dependent, which may able to solve the collision

avoidance between agents and external moving obstacles.

On the other hand, our algorithm is a data based learning algorithm, the outcome

policy depends on the distribution of data we get in the training process. The guar-

antee of reinforcement learning collision avoidance requires meticulous stability and

optimality proof. The proof in multi-agent reinforcement learning algorithms is even

more difficult, the researches on the optimality and stability of multi-agent reinforce-

ment learning algorithm is also very constrainedZhang et al. (2019b). We consider

the stability and optimality proof of our algorithm as a significant future work.

Furthermore, communications among UAV systems usually are unreliable, and

usually suffer from delay and loss Qiu et al. (2019, 2020). Solving the collision avoid-

ance in wireless communication network could also be an interesting problem to study.

Simulation results showed that our method can provide good paths. The method

also has a fast learning rate compared with mean-field Q-learning, and results in a

lower total cost compared with the mean-field multi-agent reinforcement learning.
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Ferrera, E., A. Alcántara, J. Capitán, A. R. Castaño, P. J. Marrón and A. Ollero,
“Decentralized 3d collision avoidance for multiple uavs in outdoor environments”,
Sensors 18, 12, 4101 (2018).

Galati, G., E. G. Piracci, N. Petrochilos and F. Fiori, “1090 mhz channel capacity
improvement in the air traffic control context”, in “2008 Tyrrhenian International
Workshop on Digital Communications - Enhanced Surveillance of Aircraft and
Vehicles”, pp. 1–5 (2008).

Hu, J., X. Yang, W. Wang, P. Wei, L. Ying and Y. Liu, “Uas conflict resolution in
continuous action space using deep reinforcement learning”, in “AIAA AVIATION
2020 FORUM”, p. 2909 (2020).

Inc, T. M., “Uav toolbox user’s guide”, 1.0 (R2020b), URL
https://www.mathworks.com/help/pdfdoc/uav/uavug.pdf(2020).

Jenie, Y. I., E. van Kampen, J. Ellerbroek and J. M. Hoekstra, “Safety assessment of
a uav cd r system in high density airspace using monte carlo simulations”, IEEE
Transactions on Intelligent Transportation Systems 19, 8, 2686–2695 (2018).

64



Julian, K., M. Kochenderfer and M. Owen, “Deep neural network compression for
aircraft collision avoidance systems”, Journal of Guidance, Control, and Dynamics
42, 3, 598–608, URL

Kadanoff, L. P., “More is the same; phase transitions and mean field theories”, Journal
of Statistical Physics 137, 5-6, 777 (2009).

Lin, Y. and S. Saripalli, “Sampling-based path planning for uav collision avoidance”,
IEEE Transactions on Intelligent Transportation Systems 18, 11, 3179–3192 (2017).

Lin, Z., L. Castano, E. Mortimer and H. Xu, “Fast 3d collision avoidance algorithm
for fixed wing uas”, Journal of Intelligent & Robotic Systems 97, 3, 577–604 (2020).

Liu, H., X. Li, M. Fan, G. Wu, W. Pedrycz and P. N. Suganthan, “An autonomous
path planning method for unmanned aerial vehicle based on a tangent intersection
and target guidance strategy”, IEEE Transactions on Intelligent Transportation
Systems pp. 1–13 (2020).

Liu, K. and Q. Zhao, “Indexability of restless bandit problems and optimality of
whittle index for dynamic multichannel access”, IEEE Transactions on Information
Theory 56, 11, 5547–5567 (2010).

Long, P., T. Fan, X. Liao, W. Liu, H. Zhang and J. Pan, “Towards optimally decen-
tralized multi-robot collision avoidance via deep reinforcement learning”, in “2018
IEEE International Conference on Robotics and Automation (ICRA)”, pp. 6252–
6259 (IEEE, 2018).

Lowe, R., Y. Wu, A. Tamar, J. Harb, P. Abbeel and I. Mordatch, “Multi-agent actor-
critic for mixed cooperative-competitive environments”, CoRR abs/1706.02275,
URL http://arxiv.org/abs/1706.02275 (2017).

Maturana, D. and S. Scherer, “Voxnet: A 3d convolutional neural network for real-
time object recognition”, in “2015 IEEE/RSJ International Conference on Intelli-
gent Robots and Systems (IROS)”, pp. 922–928 (2015).

Maza, I., K. Kondak, M. Bernard and A. Ollero, “Multi-uav cooperation and control
for load transportation and deployment”, in “Selected papers from the 2nd Inter-
national Symposium on UAVs, Reno, Nevada, USA June 8–10, 2009”, pp. 417–449
(Springer, 2009).

Menouar, H., I. Guvenc, K. Akkaya, A. S. Uluagac, A. Kadri and A. Tuncer, “Uav-
enabled intelligent transportation systems for the smart city: Applications and
challenges”, IEEE Communications Magazine 55, 3, 22–28 (2017).

Pallottino, L., E. M. Feron and A. Bicchi, “Conflict resolution problems for air traffic
management systems solved with mixed integer programming”, IEEE Transactions
on Intelligent Transportation Systems 3, 1, 3–11 (2002).

Pinto, L., M. Andrychowicz, P. Welinder, W. Zaremba and P. Abbeel, “Asymmet-
ric actor critic for image-based robot learning”, arXiv preprint arXiv:1710.06542
(2017).

65



Qiu, J., D. Grace, G. Ding, J. Yao and Q. Wu, “Blockchain-based secure spectrum
trading for unmanned-aerial-vehicle-assisted cellular networks: An operator’s per-
spective”, IEEE Internet of Things Journal 7, 1, 451–466 (2020).

Qiu, J., D. Grace, G. Ding, M. D. Zakaria and Q. Wu, “Air-ground heterogeneous
networks for 5g and beyond via integrating high and low altitude platforms”, IEEE
Wireless Communications 26, 6, 140–148 (2019).

Qu, G., A. Wierman and N. Li, “Scalable reinforcement learning of localized policies
for multi-agent networked systems”, (2020).

Raghunathan, A. U., V. Gopal, D. Subramanian, L. T. Biegler and T. Samad, “Dy-
namic optimization strategies for three-dimensional conflict resolution of multiple
aircraft”, Journal of guidance, control, and dynamics 27, 4, 586–594 (2004).

Richards, A. and J. P. How, “Aircraft trajectory planning with collision avoidance
using mixed integer linear programming”, in “Proceedings of the 2002 American
Control Conference (IEEE Cat. No.CH37301)”, vol. 3, pp. 1936–1941 vol.3 (2002).

Singla, A., S. Padakandla and S. Bhatnagar, “Memory-based deep reinforcement
learning for obstacle avoidance in UAV with limited environment knowledge”,
CoRR abs/1811.03307, URL http://arxiv.org/abs/1811.03307 (2018).
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Proof of Lemma 1

Proof: We start with a finite time problem, let T be the time horizon, and V ∗i (θi(t), t; v)
be the minimum discounted cost start from state θi(t) at time t, and the process will
be terminated at time T . We have

V ∗i (θi(t), t; v) = min
π

{ T−1∑
τ=t

βτ−t[ci(θi(τ)) + v1Aπi (τ)=1]+

βT−tVi(θi(T ), T ; v)
} (A.1)

is the cost from time t to time horizon T under policy π. We assume that the terminal
cost Vi(θi(T ), T ; v) is always zero. When t = T − 1, we have:

Vi(θi(T − 1), T − 1; v) = min{ci(θi(T − 1)), v + ci(θi(T − 1))}

It is obviously that

ci(θi(T − 1)) =− θi(T − 1) log(θi(T − 1))− (1− θi(T − 1))

log(1− θi(T − 1))

is a concave function on θi(T −1), and v is a constant. Since the point-wise minimum
of two concave functions is still concave, we can get Vi(θi(T − 1), T − 1; v) is concave
on θi(T − 1).
For any t < T − 1, if Vi(θi(t+ 1), t+ 1; v) is concave on θi(t+ 1), we have:

Vi(θi(t),t;v)=min
{
ci(θi(t))+βVi

(
pi+(1−2pi)θi(t), t+1;v

)
,

v + ci(θi(t)) + β
[
rθi(t)Vi(1, t+ 1; v) + r(1− θi(t))·

Vi(0, t+1; v) + (1−r)Vi (pi+(1−2pi)θi(t), t+1; v)
]} (A.2)

The first term in the minimum is concave since it is the sum of two concave functions.
For the second term, because of the symmetric of the cost function, Vi(1, t + 1; v) =
Vi(0, t+ 1; v) are constants, the second term is also concave since it is summation of
constants and concave functions. As a result, Vi(θi(t),t;v) is also concave.
As T → ∞, for any finite t, Vi(θi(t),t;v) can be regard as point-wise minimum of
infinite concave functions. According to the property of epigraph, and the fact that
convexity is preserved under intersection, we can have:

lim
T→∞

V ∗i (θi(t), t; v) = V ∗i (θi(t); v)

is a concave function on θi(t). �

69



Proof of Theorem 3

Proof: Similarly, we point out that V i(θ; v) is not differentiable on v for some v, for
example, when θ is on the boundary of Di(v). According to the definition of Di(v),
the point on the boundary is not included in Di(v), so we consider the derivative of

the second term when it is not differentiable. We just define ∂V i(θ;v)
∂v

here, because if
Eq.(3.17) holds for all the differentiable points, it also holds for both left and right
hand derivative at the non-differentiable points.
We start from θ ∈ Φi,0, we need to prove that Eq.(3.17) holds for any θ ∈ Φi,0 and
ri ∈ Ri. Similarly, let

hki (θ) =
1− (1− 2pi)

k

2
+ (1− 2pi)

kθ

is k-step transition without probing. Let

ki,0 = arg max
k
{hki (θ) ∈ Φi,0},

we have ki,0 ≥ 0, since

βriV i

(
pi + (1− 2pi)θ; v

)
< v + βriV i(0; v)

for θ ∈ Φi,0. Then we have:

V i(θ, v) =

ki,0∑
j=0

βjc(hji (θ)) + βki,0+1V i(h
ki,0+1
i (θ), v).

and we have:
∂V i(θ, v)

∂v
= βki,0+1∂V i(h

ki,0+1
i (θ), v)

∂v
.

Similarly,
∂V i(h

ki,0+1

i (θ),v)

∂v
is not differentiable in v when hki+1

i (θ) lies on the boundary of
Di(v) for any ki ≥ 0. We will propose a sufficient condition for the indexability in for
any ki,0 ≥ 0, such that both left derivative and right derivative. So we simply regard

k0 as a constant for all differentiable v. Then let ki,1 = maxk{h
ki,0+k
i (θ) ∈ Φi,0∪Φi,1},

ki,1 ≥ 0 since h
ki,0
i (θ) ∈ Φi,0, we have:

V i(h
ki,0+1
i (θ); v) = c(h

ki,0+1
i (θ)) + β(1− ρi,1ri,1)·

V (h
ki,0+2
i (θ); v) + ρ1v + βρ1r1V i(0; v)
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And assume ∂V i(pi;0)
∂v

= x,

∂V i(h
ki,0+1
i (θ); v)

∂v
=ρi,1 + ρi,1βri,1x+

β(1− ρi,1ri,1)
∂V i(h

ki,0+2
i (θ); v)

∂v

=(ρi,1+ρi,1βri,1x)
1−βki,1(1− ρi,1ri,1)ki,1

1− β(1− ρi,1ri,1)
+

βki,1(1− ρi,1ri,1)ki,1
∂V i(h

ki,0+ki,1+1
i (θ); v)

∂v

Then let ki,2 = maxk{h
ki,0+ki,1+k
i (θ) ∈ Φi,0 ∪ Φi,1 ∪ Φi,2}, similarly, it is easy to show

that ki,2 ≥ 0, we have:

V i(h
ki,0+ki,1+1
i (θ); v) = c(h

ki,0+ki,1+1
i (θ))+

β(1− ρi,1 − ρi,2)V (h
ki,0+ki,1+2
i (θ); v))+

ρi,1

(
v+βri,1V i(0; v)+β(1− ri,1)V i

(
h
ki,0+ki,1+2
i (θ); v

))
+

ρi,2

(
v+βri,2V i(0; v)+β(1− ri,2)V i

(
h
ki,0+ki,1+2
i (θ); v

))
And still assume ∂V i(pi;0)

∂v
= x,

∂V i(h
ki,0+ki,1+1
i (θ); v)

∂v
= ρi,1+ρi,2+β(ρi,1ri,1 + ρi,2ri,2)x+

β(1− ρi,1ri,1 − ρi,2ri,2)
∂V i(h

ki,0+ki,1+2
i (θ); v)

∂v
= (ρi,1 + ρi,2 + β(ρi,1ri,1 + ρi,2ri,2)x)·
1− βki,2(1− ρi,1ri,1 − ρi,2ri,2)ki,2

1− β(1− ρi,1ri,1 − ρi,2ri,2)
+

βki,2(1− ρi,1ri,1 − ρi,2ri,2)ki,2
∂V i(h

ki,0+ki,1+1
i (θ); v)

∂v

And until ki,n = maxk{h
∑n−1
j=0 ki,j+k

i (θ) ∈ ∪nj=0Φi,j}, we have:

V i(h
∑n
j=1 ki,j+1

i (θ); v) = ci(h
∑n
j=1 ki,j+1(θ))+

n∑
j=1

ρi,j

(
v+βri,jV i(0; v)+β(1−ri,j)V i

(
h
∑n
j=1 ki,j+2(θ); v

))
and we can have:

∂V i(h
∑n
j=1 ki,j+1

i (θ); v)

∂v
= (1 + βrix)

1

1− β(1− ri)
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where ri =
∑n

j=0 ρi,jri,j. In conclusion, each equation can be seen as a the sum of
geometric progression, such that they can be written as:

∂V i(h
∑m−1
j=0 ki,j+1

i (θ); v)

∂v
=ai,m+ai,mqi,m+· · ·+ai,mq

ki,m−1
i,m

+ q
ki,m
i,m

∂V i(h
∑m
j=0 ki,j+1

i (θ); v)

∂v

where ai,m = (
∑m

j=1 ρi,j) + (β
∑m

j=1 ri,jρi,j)x, and qi,m = β(1 −
∑m

j=1 ri,jρi,j). Let

ai = maxm{ai,m} = 1 + βrix, and qi = maxm{qi,m} = β(1− pi,1ri,1). So we have:

∂V i(h
ki,0+1
i (θ); v)

∂v
≤ ai

1− qi
= (1 + βrix)

1

1− β(1− ρi,1ri,1)

and
∂V i(θ, v)

∂v
≤ βki,0+1(1 + βrix)

1

1− β(1− ρi,1ri,1)

∂V i(pi + (1− 2pi)θ, v)

∂v
≤ βki,0(1 + βrix)

1

1− β(1− ρi,1ri,1)

So for θ ∈ Φi,0, if we need to prove:

1 + βri
∂V i(0; v)

∂v
− βri

∂V i(pi + (1− 2pi)θi; v)

∂v

≥ 1 + βri

(
x− βki,0 1 + βrix

1− β(1− ρ1r1)

)
≥ 0

holds for all ri ∈ Ri, we need to have:

1 + βri

(
x− βki,0 1 + βrix

1− β(1− ρi,1ri,1)

)
≥ 0(

1− βki,0+1ri
1− β + βρi,1ri,1

)
x ≥ βki,0

1− β + βρi,1ri,1
− 1

βri

If

β <
1

1 + (1− ρi,1)ri,1
, (A.3)

we have 1 − β + βρi,1ri,1 ≥ βri,1, the RHS of the above equation is always negative,
the LHS is always positive, and the condition holds for all ki,0 ≥ 0.
Next we consider θ ∈ Φi,1, similarly, still ki,1 = maxk{hki (θ) ∈ Φi,0 ∪ Φi,1}, we have:

V i(h
j
i (θ); v)=c(hji (θ))+β(1−ρi,1ri,1)V (hj+1

i (θ); v)+ρi,1v+

βρi,1ri,1V i(0; v)
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for all 0 ≤ j ≤ ki,1, and

∂V i(θ; v)

∂v
=(ρi,1 + ρi,1βri,1x)

1− βk1(1− ρi,1ri,1)ki,1

1− β(1− ρi,1ri,1)
+

βki,1(1− ρi,1ri,1)ki,1
∂V i(h

ki,1+1
i (θ); v)

∂v

The following parts are same as θ ∈ Φi,0 case. At last, we can also have:

∂V i(h
ki,0+1(θ); v)

∂v
≤ (1 + βrix)

1

1− β(1− ρi,1ri,1)

For θ ∈ Φi,1, if we need to prove:

1 + βr
∂V i(0; v)

∂v
− βr∂V i(pi + (1− 2pi)θ; v)

∂v

≥ 1 + βri

(
x− 1 + βrix

1− β(1− ρi,1ri,1)

)
≥ 0

holds for all ri < ri,1. Under the condition of Eq.(3.18), it is easy to prove that it
holds for all ki,1 ≥ 0.
Similarly, if θ ∈ Φi,l, we will have ai = max{ai,m,m = l, l+1, l+2, · · · , n} = 1+βrix,

and qi = max{qi,m,m = l, l + 1, l + 2, · · · , n} = β(1 −
∑l

j=0 ρi,jri,j). Then the

indexability condition Eq.(3.16) becomes:

1 + βri
∂V i(pi; v)

∂v
− βri

∂V i(pi + (1− 2pi)θi; v)

∂v

≥ 1 + βri

(
x− 1 + βrix

1− β(1−
∑l

j=0 pi,jri,j))

)

≥ 1 + βri

(
x− 1 + βrix

1− β(1− pi,1ri,1)

)
≥ 0

Holds for all ri < ri,l. Under the sufficient condition Eq.(3.18), the indexability for
θ ∈ Φi,l holds for all ki,l ≥ 0, the multi-state channel Markov chains can be proved to
be indexable. �
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