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ABSTRACT

A production system is commonly restricted by time windows. For example, perisha-

bility is a major concern in food processing and requires products, such as yogurt,

beer and meat, not to stay in buffer for long. Semiconductor manufacturing is faced

with oxidation and moisture absorption issues, if a product in buffer is exposed to

air for long. Machine reliability is a major source of uncertainty in production sys-

tems that causes residence time constraints to be unsatisfied, leading to potential

product quality issues. Rapid advances in sensor technology and automation provide

potentials to manage production in real time, but the system complexity, brought by

residence time constraints, makes it difficult to optimize system performance while

providing a guaranteed product quality.

To contribute to this end, this dissertation is dedicated to modeling, analysis

and control of production systems with constrained time windows. This study starts

with a small-scale serial production line with two machines and one buffer. Even

the simplest serial lines could have too large state space due to the consideration

of residence time constraints. A Markov chain model is developed to approximately

analyze its transient behavior with a high accuracy. An iterative learning algorithm

is proposed to perform real-time control.

The analysis of two-machine serial line contributes to the further analysis of more

general and complex serial lines with multiple machines. Residence time constraints

can be required in multiple stages. To deal with it, a two-machine-one-buffer sub-

system isolated from a multi-stage serial production line is firstly analyzed and then

acts as a building block to support the aggregation method for overall system per-

formance. The proposed aggregation method substantially reduces the complexity of

the problem while maintaining a high accuracy.
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A decomposition-based control approach is proposed to control a multi-stage se-

rial production line. A production system is decomposed into small-scale subsystems,

and an iterative aggregation procedure is then used to generate a production control

policy. The decomposition-based control approach outperforms general-purpose rein-

forcement learning method by delivering significant system performance improvement

and substantial reduction on computation overhead.

Semiconductor assembly line is a typical production system, where products are

restricted by time windows and production can be disrupted by machine failures. A

production control problem of semiconductor assembly line is presented and studied,

and thus total lot delay time and residence time constraint violation are minimized.
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Chapter 1

INTRODUCTION

1.1 Background

A part in a production system spends a certain amount of time in buffer before

entering its downstream machine for further processes. In many production systems,

the amount of time that a part spends in buffer imposes a significant impact on the

quality of its final product. This kind of production systems can be seen in food

industry, battery production, automotive paint shop, semiconductor manufacturing,

etc. The time that a part has been staying in a buffer is its residence time. To guar-

antee an acceptable quality of the final product, residence time constraints, including

maximum allowable residence time and minimum required residence time, are always

set to specify the upper bound and lower bound of residence time, respectively.

Constraints on residence time are widely studied in food industry due to its per-

ishability. For instance, perishable nature is an important feature in dairy production

(Wang et al., 2010). Yogurt goes through several processes from raw milk to interme-

diate products and finally to final products, and each stage is under strict time limits

(Amorim et al., 2013). Agricultural products are often subject to perishability (Ahu-

mada and Villalobos, 2011). One example is the kimchi, which occupies a large share

of overall consumption of main agricultural products in Korea. To produce kimchi,

cabbage is processed to be salted cabbage, and it is then further processed to be kim-

chi (Shin et al., 2019). Both the cabbage and the salted cabbage are perishable, and a

storage time window exists for each stage of the kimchi production (Shin et al., 2019).

Pork is highly consumed meat. One challenging problem for meat packing plant is
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the planning and scheduling of operations for processing carcasses, and it is aimed

at managing inventories of perishable products and balancing the benefits between

demand and production (Albornoz et al., 2015). Xie and Li (2012) introduce a case

study from a meat production company that produces hot dog, bologna, bacon, etc.,

with perishability concerns. The perishability is also an issue in production systems

of bread and bakery products. An entire automated production line is often used to

produce bread and bakery products, and quality deterioration of bread and bakery

products could occur during the stoppage due to machine failure (Liberopoulos and

Tsarouhas, 2005).

Residence time constraints are considered in battery production (Ju, 2015; Ju

et al., 2017b). Chemical materials in cell assembly process are filled into cells to form

electrodes. Cells are baked to a certain temperature, before each material can be

added. Those processes should be done within a certain time limit. A cell will be

scrapped, if such a time limit cannot be satisfied. Intermediate batteries often have

to wait in buffer due to demand uncertainty, technical failures and other production

disruptions (Ju, 2015).

In automotive paint shop, the car body goes into oven to solidify the coating. The

car body needs to cool down after the heat treatment, and it takes a small amount

of time. However, the longer the time that a car body is exposed to air, the more

likely that the car body is contaminated with dirt. The analysis and control of the

automotive paint shop should take residence time constraints into consideration.

In semiconductor manufacturing, residence time receives substantial attention as

well. In semiconductor fabrication, cluster tools are adopted to process wafers. A

general cluster tool contains several process modules, and the time that a wafer stays

in a process module should be both lower and upper bounded (Yang et al., 2016;

Pan et al., 2017; Wang et al., 2018b). A wafer will be premature if it leaves the
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process module earlier than the minimum required residence time, whereas a wafer

will have quality problems if it stays in the process module for a longer time than the

maximum allowable residence time. Different types of time limits are also observed

in other process steps of wafer fabrication (Klemmt and Mönch, 2012; Kim and Lee,

2019). Products in a semiconductor assembly line are restricted by time windows due

to the concerns of oxidation and moisture absorption (Han and Kim, 2017). Failures

caused by moisture include popcorn cracking (Galloway and Miles, 1996), deformation

(Yoon et al., 2008) and adhesion degradation (Tee and Zhong, 2004).

Production systems with residence time constraints are difficult to monitor and

control. Traditionally, the analysis of a such production system is based on their

steady states. Long-term behaviors of a production system are analyzed to obtain

heuristic approaches that keep the production system in a low defect rate. As a

result, production capacity is often not fully utilized due to the quality concern. The

rapid development in information and communication technologies (ICT) provides

new opportunities to monitor and control production systems with residence time

constraints (Lu and Ju, 2017; Wang et al., 2017; Stephan et al., 2010; Weyer et al.,

2015). The state of a production system can be monitored, and proper controls

based on real-time data are able to be applied. However, as residence time and

its constraints are required in the modeling, it imposes difficulty on analysis and

control of a production system. In this dissertation, production systems with residence

time constraints are studied. The study is aimed at providing production engineers

and managers quantitative tools for system performance evaluation and real-time

operation management.
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1.2 Analysis and Control of Two-Machine Serial Line

My research starts with a two-machine serial line with residence time constraints.

It is the simplest serial line that consists of two machines and one buffer. The study on

a two-machine serial line will play as an building block for the study on a multi-stage

serial line.

However, it is difficult to analyze and control a serial line with residence time

constraints, even for those with only two machines and one buffer. The challenge

lies in the large state space of the serial line. As all parts in the buffer is under

residence time constraints, the buffer occupancy is not sufficient to capture the state

of a buffer. The residence time of each part is also important information to describe

system dynamics. The consideration of residence time of each part can result in a

large state space that is too large to perform any analysis.

In order to optimize the production performance in a timely manner, the transient

behavior of the two-machine serial line with residence time constraints and a real-

time control strategy need to be investigated. In this study, a Markov chain model

is developed to analyze the transient behavior of a two-machine geometric serial line

with constraints on both maximum allowable residence time and minimum required

residence time. Compared with the simulation, the proposed analytical method is

shown to estimate the system’s transient performance with high accuracy. Structural

properties are investigated based on the model to provide insights into the effects

of residence time constraints and buffer capacity on system performance. An iter-

ative learning algorithm is proposed to perform real-time controls, which improves

the system performance by balancing the trade-off between the production rate and

scrap rate. Specifically, a control policy derived from Markov Decision Processes is
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implemented as an initial control policy, and the Bayesian method is then applied to

the run time data to improve the control policy.

1.3 Analysis of Multi-Stage Serial Lines

Multi-stage serial line refers to a serial line with more than two machines. Though

a two-machine serial line with residence time constraints can be analyzed and con-

trolled in real time, the method cannot be directly extended to the multi-stage line

with residence time constraints. The challenge still lies in the large state space. The

state space grows exponentially, as the number of machines in a multi-stage line

increases.

In this study, a method to analyze a multi-stage serial line with residence time

constraints is proposed. To analyze such a system, a two-machine-one-buffer sub-

system, isolated from the multi-stage geometric serial production line, is taken as a

building block, and develop a Markov chain model to analyze the subsystem first.

Based on the analysis of two-machine-one-buffer subsystems, the aggregation method

is applied to obtain both the steady-state and transient performance of a multi-stage

serial production line. Through simulation experiments, the proposed aggregation

method is shown to maintain a high accuracy in estimating both steady state and

transient performance measures. The main contribution of this study is twofold.

One is the approximate method to model a two-machine-one-buffer subsystem, which

makes the analysis of a two-machine-one-buffer subsystem efficient and also provides

a building block for the aggregation method. The other is the aggregation method,

which evades the direct modeling for multi-stage serial production lines with residence

time constraints.
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1.4 Decomposition-Based Real-Time Control of Multi-Stage Serial Lines

Residence time constraints are often required in multiple stages of a production

system, but limited research has been on real-time production control of such a large-

scale production system. An extendable method that supports real-time control of a

multi-stage serial line is worth studying.

In this study, a novel decomposition-based control approach is proposed by decom-

posing a production system into small-scale subsystems based on domain knowledge

and their structural relationship. The subsystems are simple enough to derive a con-

trol solution using local information. An iterative aggregation procedure is then used

to generate production control policy with convergence guarantee. Compared with a

general-purpose reinforcement learning based method, the decomposition-based con-

trol can deliver significant improvements on system performance and substantial re-

duction on computation overhead, which makes it applicable for real-time production

decision making.

1.5 Fast Response to Machine Failures in Semiconductor Assembly Lines

Semiconductor assembly line is a complex production system. Benefiting from

its flexibility, a semiconductor assembly line can process different types of products

from different orders at the same time, and a master schedule is created every shift to

optimize production within the next three weeks. However, semiconductor assembly

lines are susceptible to machine failures, causing the master schedule to be sub-

optimal or even infeasible. Specifically, machine failures can result in due time not to

be met and residence time constraints to be violated. In this study, machine failures in

semiconductor assembly lines are classified into two categories, short machine failure

and long machine failure. To handle short machine failure, extra time is added to
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each operation of each lot to make the master schedule robust. The assembly line can

recover on its own without intervention. When long machine failure occurs, a mixed

integer programming model is formulated to adjust the master schedule. The original

master schedule is taken as a warm start, and a short period schedule is obtained

with CPLEX Optimizer for the semiconductor assembly line to follow immediately.

In this way, the semiconductor assembly line can respond to long machine failure fast

without replacing the whole master schedule, or it can give master scheduler enough

time to remake a new master schedule. Thus, the negative impact of machine failure is

minimized. Data from shop floor are collected. Using those data, a simulation model

is developed with Python and SimPy package to simulate a real-world semiconductor

assembly line and evaluate the proposed method. The experiment results show that

the proposed method can achieve fast response to machine failures in semiconductor

assembly lines.

1.6 Organization of the Document

The rest of the dissertation is organized as follows. Chapter 2 reviews the related

literature. Chapter 3 presents a method to analyze and control a two-machine serial

line with residence time constraints. Chapter 4 extends system analysis from a two-

machine serial line to a multi-stage serial line. In Chapter 5, a novel method to

control a multi-stage serial line is proposed. Chapter 6 introduces and solves a real-

world production control problem in semiconductor assembly line. Finally, Chapter

7 concludes the dissertation.
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Chapter 2

LITERATURE REVIEW

2.1 Residence Time Constraints Due to Perishability

Perishability is usually a main reason why residence time constraints should be

considered, and it is a process that prevents an item from being used for its intended

original use (Raafat, 1991). Perishability includes decay, damage, spoilage, evapora-

tion, obsolescence, pilferage, loss of utility of loss of marginal value of a commodity

that results in decreasing usefulness from the original one (Kärkkäinen, 2003). The

terms, deterioration and perishability, are usually interchangeable (Pahl and Voß,

2014). Research on this kind of models was initially applied to blood banks and

distribution of blood (Dumas and Rabinowitz, 1977; Brodheim and Prastacos, 1979;

Beliën and Forcé, 2012; Pahl and Voß, 2014).

Different classifications are proposed to deal with perishability. For example,

Nahmias (1982) classifies perishability into fixed lifetime perishability and random

lifetime perishability. In fixed lifetime perishability, lifetime is a specified number of

periods or a length of time independent of all other parameters in the system. In

random lifetime perishability, lifetime is a random variable with a specified probabil-

ity distribution. Raafat (1991) provides two categories of perishability. In the first

category, items, such as style goods in fashion merchandising, become simultaneously

obsolete at the end of the planning horizon. In the second category, items deteriorate

throughout their planning horizon. The second category can be further divided into

two classes: items with fixed shelf life such as blood and items with continuous decay

and random lifetime such as radioactive material. Deteriorating items are classified
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into constant-utility perishable goods, such as prescription drugs, decreasing-utility

perishable goods, such as fresh produce, and increasing-utility perishable goods, such

as some wines (Raafat, 1991). Amorim et al. (2013) provide a review of the literature,

and the review suggests that different categories of perishability overlap among each

other and are highly tailored for a specific propose. Amorim et al. (2013) propose a

more comprehensive framework for classifying perishability. Perishability is studied

from three dimensions: physical product deterioration, authority limits and customer

value (Amorim et al., 2013). Physical product deterioration reflects the actual phys-

ical state of an item, authority limits represent external regulations and conventions,

and customer value stands for the willingness that a customer has to pay for an item

(Amorim et al., 2013).

In manufacturing environment, the dimension of authority limits is usually ap-

plied. A fixed threshold, obtained from experiments or domain knowledge, is set to

represent residence time constraints. Perishability only refers to the upper bound of

residence time, and in practice the lower bound of residence time is often required in

a production system as well.

2.2 Study of Residence Time Constraints on Serial Production Line

Serial line, also called transfer line, refers to a category of production lines that

are usually applied to mass production (Li and Meerkov, 2009; Gershwin, 1994; Pa-

padopoulos et al., 2019). A serial line consists of a predetermined sequence of ma-

chines. Practically, serial lines are highly automatic production lines with low man-

power, low flexibility and high production throughput. In a serial line, the uncertainty

is primarily from machine reliability, and it can result in a huge production loss. Thus,

serial lines under the uncertainty of machine reliability are widely studied during the

past decades.
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Each machine in a serial line is subject to a reliability model. Bernoulli machine

is the simplest reliability model (Li and Meerkov, 2009; Zhang et al., 2013; Ju et al.,

2017a). A Bernoulli machine has two states. It can be either up or down with

a fixed probability each cycle. It is a reliability model for a machine that has a

short downtime compared with cycle time (Meerkov and Zhang, 2008). When the

downtime is due to breakdown, it usually takes a longer time to repair. In this

case, geometric machines are applicable (Gershwin, 1994; Meerkov et al., 2010; Kang

et al., 2017b). Similar to Bernoulli machine, a geometric machine can be up or down.

Two probabilities, failure probability and repair probability, are specified to model a

machine. Multistage degradation machine reliability model is a natural extension of

the geometric machine (Kang and Ju, 2016, 2018). There are several working states

and one failure state. Machine state keeps transferring from a good state to a worse

state, until the machine fails. Exponential machine is a continuous time reliability

model (Li and Meerkov, 2009; Colledani and Gershwin, 2013; Levantesi et al., 2003).

In continuous model, the transitions of failure and repair are modeled by two rates,

failure rate and repair rate. Brownian motion model, as a more generic reliability

model, is introduced in serial line with machine degradation status monitored (Kang

et al., 2018, 2019).

Serial lines with residence time constraints are studied. One direction of those

studies is to estimate the probability distribution of residence time (Shi and Gershwin,

2012; Angius et al., 2016; Shi and Gershwin, 2016). The study on such a probability

distribution helps design buffer capacity to reduce defective rate. However, serial lines

in those studies can only identify a defective part at the end of the serial line. It wastes

resources to process a defective part, before its defect is identified. Naebulharam and

Zhang (2014) study a production system where the defect is able to be soon detected,

and the quality buy rate is introduced to evaluate system performance. Another
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direction is to take residence time into modeling. Ju et al. (2015) evaluate the two-

machine Bernoulli line with perishable intermediate products, and Ju et al. (2017b)

further study the production control of the two-machine Bernoulli line. Kang et al.

(2017a) and Wang et al. (2019) extend the analysis from a Bernoulli machine to

a geometric machine, which is a more general reliability model in practice. When

residence time is modeled, the state space can become too large to perform analysis.

Approximate methods are used to model residence time (Ju et al., 2015, 2017b; Kang

et al., 2017a; Wang et al., 2019).

The aggregation method and decomposition method provide frameworks to ap-

proximately evaluate multi-stage serial production lines. Gershwin (1987, 1994) pro-

poses the decomposition method. Li and Meerkov (2009) propose the aggregation

method to estimate the steady-state performance of multi-stage Bernoulli serial pro-

duction lines. Zhang et al. (2013) extend the aggregation method to perform transient

analysis for multi-stage Bernoulli serial production lines. Lee and Li (2017) and Lee

et al. (2018) study Bernoulli serial production lines with waiting time limits through

the aggregation method. Chen et al. (2016) apply the aggregation method to geo-

metric serial production lines by defining virtual geometric machines.

2.3 Real-Time Production Control

Performance measures of a serial production line with residence time constraints

include production rate and scrap rate. One way to improve the system is to stop

several machines from producing each cycle according to real-time system state to

reduce scrap rate without sacrificing too much production rate. Thus, a control

problem arises and becomes worth studying. Real-time control of two-machine serial

lines is studied (Ju et al., 2017b; Wang et al., 2019). After problem approximation,
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the optimal control policy is derived. Such a method works well for a small-scale

problem but is not directly extendable.

Production control is studied to achieve a desired system performance, and it has

been investigated for decades. Due to a lack of access to real-time system state, early

practice of production control mainly focuses on simple static system settings (Jae-

gler et al., 2018) and event-driven/rule-based approaches (Thürer et al., 2019), and

those strategies are still widely used (Ju et al., 2016; Cao and Xie, 2015). Supported

by the Internet of Things technologies, real-time production control based on real-

time system state becomes possible, and it provides potentials to further improve a

production system (Lu et al., 2016). Reinforcement learning is a way to perform real-

time production control and enhance production performance (Stricker et al., 2018;

Waschneck et al., 2018). Through training, reinforcement learning enables a com-

plex production system to find a real-time action that can improve its performance.

However, such a way to control production becomes difficult in many cases for two

reasons. First, training a reinforcement learning model is computationally expensive.

Second, learning methods, such as artificial neural networks, are black box models,

and it is difficult to combine domain knowledge into them. Another direction to con-

trol a complex production system is through a decentralized way (Wang et al., 2017;

Lu and Ju, 2017; Wang et al., 2018a). The introduction of multi-agent system (MAS)

and holonic manufacturing system (HMS) attempts to address the production con-

trol problem in this way (Leitão, 2009; Barbosa et al., 2015; Giret et al., 2016). The

decentralized control aims at achieving flexible control, significantly reducing compu-

tational efforts, and improving system performance globally. However, it is difficult

to have all three objectives well achieved, and there is a lack of mathematical models

supporting decentralized production control.
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2.4 Semiconductor Assembly Lines

Semiconductor assembly lines are susceptible to uncertain disruptions, such as

machine failures. For production systems that carry out production without using an

explicit schedule, such as serial lines, real-time production control, reactive schedul-

ing and online scheduling are common ways to address uncertainty (Qiao et al., 2018;

Gupta et al., 2016). The control policy can be created beforehand, and in the run

time one may control production by following the predetermined rule. When a pro-

duction system is complex and flexible, a schedule is often required and one may

make a deterministic but robust schedule so that it can deal with uncertainty on its

own without intervention (Liu et al., 2007). If real-time intervention has to be given,

the original schedule can be totally replaced or partially changed. If a scheduling

algorithm has computation time small enough, the same algorithm can also act as

a rescheduling method and quickly create a new schedule in response to disruptions

(Chung et al., 2014; Park et al., 2019). As an alternative way, one may use reschedul-

ing methods that adjust but maintain the original schedule, including right shift

rescheduling, single machine oriented match-up rescheduling, machine group oriented

match-up rescheduling, affected operation rescheduling and fix-sequence rescheduling

(Qiao et al., 2012, 2018; Abumaizar and Svestka, 1997; Mason et al., 2004). The

semiconductor assembly line in this study is complex, and thus a schedule is always

required. Long machine failure occurs, so one cannot merely rely on a robust schedule.

Considering the long computation time to make a master schedule, total rescheduling

is not applicable to this problem. A proper way to control production in response to

machine failures in such a semiconductor assembly line has not been fully studied.

Another motivation of fast response to machine failures in semiconductor assem-

bly lines is from residence time constraints. In semiconductor manufacturing, both
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fabrication and assembly are restricted by residence time constraints. In wafer fabri-

cation, a wafer is processed at a process module and required to be unloaded within

a time limit (Zhu et al., 2014; Pan et al., 2017). Different types of time limits are

also observed in other process steps of wafer fabrication (Klemmt and Mönch, 2012;

Kim and Lee, 2019). Products in a semiconductor assembly line are restricted by

time windows due to the concerns of oxidation and moisture absorption (Han and

Kim, 2017). Failures caused by moisture include popcorn cracking (Galloway and

Miles, 1996), deformation (Yoon et al., 2008) and adhesion degradation (Tee and

Zhong, 2004). However, not much attention has been paid to production control of

semiconductor assembly lines considering residence time constraints.

A semiconductor assembly line is often formulated and solved as a flexible job

shop problem, which is a job shop problem with parallel machines and thus a NP-hard

problem (Mastrolilli and Gambardella, 2000). Practically, a semiconductor assembly

line has more requirements, making the scheduling more complex not to mention

production control in real time. Process steps of semiconductor assembly commonly

include wafer mount, wafer sawing, die attach, wire bond and inspection (Chen and

Lo, 2012). Re-entrance is involved, and setup on a machine is required depending

on product type and may takes hours (Chung et al., 2014; Huh et al., 2018; Park

et al., 2019). The number of setup operators could also be limited (Chung et al.,

2014). In addition, internal and external variability, such as unscheduled machine

downtime and rush orders, is commonly seen (Chung et al., 2014). Meta-heuristic

methods are often used to create production schedule (Lin and Chen, 2015; Hsieh

and Cheng, 2018). However, given a schedule, how to respond to disruption is worth

more research.
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Chapter 3

ANALYSIS AND CONTROL OF TWO-MACHINE SERIAL LINE

3.1 Problem Formulation

The two-machine serial line with residence time constraints under study in this

chapter is shown in Figure 3.1. Raw materials or parts enter machine m1 to be

processed and continue to flow into buffer B, where they wait to enter machine m2 if

available. Parts with residence time in the buffer exceeding a certain threshold need

to be scrapped, while those who have not met the minimum required residence time

cannot go downstream. The following assumptions define the machines, the buffer

and their interactions.

(i) The production line consists of two machines (denoted as m1 and m2) and a

buffer B between them.

(ii) Both machines are synchronized with a constant processing time (cycle time),

which is the time to process a part.

(iii) Machines are subject to failures, and their reliability models are independent.

The machine reliability models follow geometric distribution. Specifically, if

machine mi is up in cycle (k−1), it will still be up with probability (1−pi) and

down with probability pi during the kth cycle, for i = 1, 2, and k = 2, 3, · · · . If

machine mi is down in cycle (k− 1), it will be up with probability ri and down

with probability (1 − ri) during the kth cycle, for i = 1, 2, and k = 2, 3, · · · .

Here pi and ri are defined as the failure and repair probability, respectively, for

i = 1, 2.
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Figure 3.1: Geometric Line with Residence Time Constraints

(iv) Buffer B has finite capacity N (1 ≤ N < ∞). First-in-first-out (FIFO) policy

is assumed regarding the buffer outflow process.

(v) The maximum allowable residence time in buffer B is characterized by Tmax,

counted as the number of cycles. A part will be scrapped directly from the

buffer immediately at the beginning of the cycle when its residence time reaches

Tmax. Let Tmax ≥ N , otherwise N has no effect on the system.

(vi) The minimum required residence time in buffer B is denoted as Tmin, counted

as the number of cycles. A part is allowed to be produced by machine m2 only

when the residence time of the part reaches or exceeds Tmin.

(vii) Machine m1 is blocked during a time slot if at the beginning of the cycle, a)

machine m1 is up, b) buffer B is full, c) machine m2 does not take a part,

and d) there will be no part scrapped from B at the beginning of the next

cycle. Machine m2 is never blocked. In addition, block-before-service policy is

assumed.

(viii) Machine m2 is starved during a time slot if machine m2 is up, and no part in

the buffer B has residence time larger than or equal to Tmin. Machine m1 is

never starved.
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The problem to be studied can be formulated as: Under assumptions (i)-(viii)

shown in this section, develop a method to evaluate the transient behavior of the

two-machine geometric serial line with residence time restraints, investigate system

properties, and optimize system performance in real time. The solution to the problem

is developed in the next section.

3.2 Modeling

3.2.1 System States and Transition Equations

In order to investigate the transient behavior of a production system under the

assumptions (i)-(viii) in this chapter, a Markov chain model is introduced. First of

all, the state of the Markov chain model needs to be specified. The buffer occupancy

in buffer B, the residence time of each part, and the state (up and down) of machine

m1 and m2 are required to describe a state of the production system. If one wants to

accurately capture the state of the production system, the total number of states M

is

M = 4
N∑
i=0

 Tmax

i

 . (3.1)

The buffer occupancy is in the range of {0, 1, · · · , N}. For each part, the residence

time is in the range of {0, 1, · · · , Tmax − 1}. If one fixes the buffer occupancy to

be i ∈ {0, 1, · · · , N}, the total number of combinations of residence time for i parts

in the buffer is
(
Tmax
i

)
. The total number of combinations of residence time for all

possible buffer occupancy is
∑N

i=0

(
Tmax
i

)
. There are two machines, and each machine

can be up or down. Thus, the total number of system states can be calculated by

Equation (3.1). The state space grows exponentially when Tmax and N increase. For

instance, if Tmax = N , the number of total states is M = 2N+2. Therefore, the
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problem soon becomes intractable as Tmax and N increase. In order to tackle this

issue, an approximate model is considered where only the residence time of the first

part is considered. To characterize the system dynamics, a discrete time Markov chain

model is developed, and the state space for the approximate model is denoted by S.

n ∈ {0, 1, · · · , N} denotes the buffer occupancy. τ1 ∈ {0, 1, · · · , Tmax − 1} denotes

the residence time for which the first part has been staying in the buffer. si denotes

the state of machine mi, for i = 1, 2. Specifically, si = 1 means machine mi is up

during a cycle and si = 0 represents machine mi is down, for i = 1, 2. Besides, when

n = 0, which means that there is no part in B, the corresponding residence time τ1

is recorded as 0. Furthermore, when 0 < n ≤ N , the residence time of the head part

should be greater than or equal to (n − 1), which means n − 1 ≤ τ1 ≤ Tmax − 1, for

0 < n ≤ N . Thus, a specific system state can be represented as (n, τ1, s1, s2) ∈ S. For

a two-machine geometric serial line with the buffer capacity N , maximum allowable

residence time Tmax and minimum required residence time Tmin, all feasible states

(n, τ1, s1, s2) at arbitrary time t are collected in Table 3.1. The total number of states

M is

M = 4

[
N∑
i=1

(Tmax − i+ 1) + 1

]

= 4

[
NTmax −

N(N − 1)

2
+ 1

]
.

(3.2)

The buffer occupancy is in the range of {0, 1, · · · , N}. If one fixes the buffer occupancy

to be i ∈ {1, · · · , N}, then τ1 is in the range of {i − 1, i, · · · , Tmax − 1}. There are

(Tmax− i+1) possible values of τ1. If the buffer occupancy is 0, the only value of τ1 is

0. Thus, the total number of combinations is
[∑N

i=1 (Tmax − i+ 1) + 1
]
. Considering

the state of two machines, the total number of system states for the approximate

model is shown in Equation (3.2). Compared to Equation (3.1), the size of the state

space for the approximate model has been reduced significantly.
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Table 3.1: System States at Arbitrary Time t

τ1 = 0 τ1 = 1 · · · τ1 = N − 1 · · · τ1 = Tmax − 1

s2 = 0 s2 = 1 s2 = 0 s2 = 1 · · · s2 = 0 s2 = 1 · · · s2 = 0 s2 = 1

n = 0 s1 = 0 (0,0,0,0) (0,0,0,1) - - · · · - - · · · - -

s1 = 1 (0,0,1,0) (0,0,1,1) - - · · · - - · · · - -

n = 1 s1 = 0 (1,0,0,0) (1,0,0,1) (1,1,0,0) (1,1,0,1) · · · (1,N -1,0,0) (1,N -1,0,1) · · · (1,Tmax-1,0,0) (1,Tmax-1,0,1)

s1 = 1 (1,0,1,0) (1,0,1,1) (1,1,1,0) (1,1,1,1) · · · (1,N -1,1,0) (1,N -1,1,1) · · · (1,Tmax-1,1,0) (1,Tmax-1,1,1)

n = 2 s1 = 0 - - (2,1,0,0) (2,1,0,1) · · · (2,N -1,0,0) (2,N -1,0,1) · · · (2,Tmax-1,0,0) (2,Tmax-1,0,1)

s1 = 1 - - (2,1,1,0) (2,1,1,1) · · · (2,N -1,1,0) (2,N -1,1,1) · · · (2,Tmax-1,1,0) (2,Tmax-1,1,1)

n = 3 s1 = 0 - - - - · · · (3,N -1,0,0) (3,N -1,0,1) · · · (3,Tmax-1,0,0) (3,Tmax-1,0,1)

s1 = 1 - - - - · · · (3,N -1,1,0) (3,N -1,1,1) · · · (3,Tmax-1,1,0) (3,Tmax-1,1,1)

...
...

...
...

...
...

...
...

...
...

...
...

n = N s1 = 0 - - - - · · · (N ,N -1,0,0) (N ,N -1,0,1) · · · (N ,Tmax-1,0,0) (N ,Tmax-1,0,1)

s1 = 1 - - - - · · · (N ,N -1,1,0) (N ,N -1,1,1) · · · (N ,Tmax-1,1,0) (N ,Tmax-1,1,1)
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Define x(n, τ1, s1, s2, t) as the probability for state (n, τ1, s1, s2) at the beginning

of the tth cycle, given that the initial state is known. The transition equations can

formulate the state evolution with time. Start with the state (j, i, s1, s2) in the (t+1)th

cycle, where 2 ≤ j ≤ N −1, j ≤ i ≤ Tmax−1, and s1, s2 = 0, 1. The state means that

there are j parts in the buffer, the residence time of the first part in the buffer is i,

and the states for both machines are s1 and s2, respectively. All possible transitions

to state (j, i, s1, s2) are illustrated as follows.

(a) (j − 1, i − 1, 1, 0). In this case, machine m1 is up, and machine m2 is down.

Buffer B is not full in cycle t, and the residence time of the first part is less than

(Tmax− 1). After this cycle, both the buffer occupancy and the residence time of

the first part will increase by 1.

(b) (j − 1, i− 1, 1, 1). In this case, both machines are up. A new part will enter the

buffer after this cycle, but no part will leave the buffer. Since machine m2 is up,

this transition occurs when i− 1 < Tmin.

(c) (j, i− 1, 0, 0). Both machines are down, and the residence time of the first part is

less than (Tmax − 1). After this cycle, no part will enter or leave the buffer, and

the residence time of the first part will increase by 1.

(d) (j, i − 1, 0, 1). Machine m1 is down, and machine m2 is up. After this cycle, no

part will enter or leave the buffer. Since machine m2 is up, this transition occurs

when i− 1 < Tmin.

(e) (j, k, 1, 1), for max (i, Tmin) ≤ k ≤ Tmax − 1. In this case, a new part will enter

the buffer, and the first part in the buffer will leave the buffer. In the next cycle,

the first part will have residence time i.
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(f) (j, Tmax − 1, 1, 0). In this case, a new part will enter the buffer and the first part

in the buffer will be scrapped from the buffer. In the next cycle, the new head

part will have residence time i.

(g) (j+1, k, 0, 1), for max (i, Tmin) ≤ k ≤ Tmax−1. Machine m1 is down, and machine

m2 is up. Thus, no part will enter the buffer, and the first part in the buffer will

leave the buffer. In the next cycle, the first part will have residence time i.

(h) (j + 1, Tmax − 1, 0, 0). Both machines are down, and the residence time of the

first part is (Tmax− 1). Thus, no part will enter the buffer, and the first part will

be scrapped from the buffer. In the next cycle, the first part will have residence

time i.

To get the transition equations to be presented in a concise way, notations P
(k)
1,1 , P

(k)
1,0 ,

P
(k)
0,1 , and P

(k)
0,0 , for k = 1, 2, are introduced. Specifically, P

(k)
i,j denotes the probability

that machine mk that is in state i transitions to state j. They are expressed as follows.

P
(k)
1,1 = 1− pk,

P
(k)
1,0 = pk,

P
(k)
0,1 = rk, (3.3)

P
(k)
0,0 = 1− rk, k = 1, 2.

Then the transitions regarding state (j, i, s1, s2) in cycle (t+ 1) can be obtained using

the following equation
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x(j, i, s1, s2, t+ 1) =x(j − 1, i− 1, 1, 0, t)P
(1)
1,s1
P

(2)
0,s2

+ x(j − 1, i− 1, 1, 1, t)P
(1)
1,s1
P

(2)
1,s2

1N+(Tmin + 1− i)

+ x(j, i− 1, 0, 0, t)P
(1)
0,s1
P

(2)
0,s2

+ x(j, i− 1, 0, 1, t)P
(1)
0,s1
P

(2)
1,s2

1N+(Tmin + 1− i)

+
Tmax−1∑

k=max(i,Tmin)

x(j, k, 1, 1, t)P
(1)
1,s1
P

(2)
1,s2

Φ(j, k, i− 1)

+ x(j, Tmax − 1, 1, 0, t)P
(1)
1,s1
P

(2)
0,s2

Φ(j, Tmax − 1, i− 1)

+
Tmax−1∑

k=max(i,Tmin)

x(j + 1, k, 0, 1, t)P
(1)
0,s1
P

(2)
1,s2

Φ(j + 1, k, i− 1)

+ x(j + 1, Tmax − 1, 0, 0, t)P
(1)
0,s1
P

(2)
0,s2
· Φ(j + 1, Tmax − 1, i− 1),

(3.4)

where 2 ≤ j ≤ N − 1, j ≤ i ≤ Tmax − 1, and s1, s2 = 0, 1. 1N+(x) is an indicator

function. 1N+(x) = 1 if x is an positive integer (x ∈ N+), otherwise 1N+(x) = 0.

When the first part in the buffer is scrapped or produced by machine m2, one needs

to identify the residence time of the second part in buffer B. Since only the residence

time of the first part in the buffer is recorded, it is impossible to exactly determine

how long the second part has stayed. One can use an operator Φ(n, τ1, τ2), proposed

by Kang et al. (2017a), to estimate the conditional probability that the second part

in buffer B has residence time τ2 given that there are n parts in the buffer and the

first one has stayed for τ1 cycles.

The transitions for the rest of the states can be obtained in a similar way, shown

in Appendix A. Using these equations, one can derive the probability distribution of

states at any time and conduct transient analysis on the system performance.

22



3.2.2 State Transition Matrix

To analyze the system performance, the state transition matrix by transforming

the four-dimension state space into a one-dimension vector is constructed. Specifi-

cally, (n, τ1, s1, s2) is ranked based on buffer occupancy n first and then the residence

time τ1 for the first part in the buffer, followed by the state of machine m1 and m2

(s1 and s2) in the third and fourth. A sorting method is utilized by introducing an

order operator I(n, τ1, s1, s2) which is defined as

I(n, τ1, s1, s2) =



2s1 + s2 + 1, if n = 0,

4

[
1

2
(n− 1)(2Tmax + 2− n)

+τ1 − n+ 2

]
+ 2s1 + s2 + 1,

if n > 0.
(3.5)

Denote by X(t) an M -dimension row vector for system state probability at time

t. X(t) is be expressed as X(t) = [x1(t), x2(t), · · · , xI(n,τ1,s1,s2)(t), · · · , xM(t)]. In

addition, xI(n,τ1,s1,s2)(t) = x(n, τ1, s1, s2, t). Furthermore, define Q as the M × M

state transition matrix of the Markov chain described in the transition equations

above. Specially,

Q = [Qij]M×M , (3.6)

where Qij represents the probability that the system is in state (n′, τ ′1, s
′
1, s
′
2) given

that the state was (n′′, τ ′′1 , s
′′
1, s
′′
2) in the previous cycle, where i = I(n′′, τ ′′1 , s

′′
1, s
′′
2) and

j = I(n′, τ ′1, s
′
1, s
′
2). Using the state sorting method and matrix notation, the state

evolution could be formulated as

X(t+ 1) = X(t)Q, t = 1, 2, · · · . (3.7)
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3.3 System Performance and Properties

3.3.1 Performance Measures

To investigate the system dynamics, the performance measures are defined as

below.

• Production Rate, PR(t): the expected number of parts produced by machine

m2 in the tth cycle;

• Consumption Rate, CR(t): the expected number of parts consumed by machine

m1 in the tth cycle;

• Scrap Rate, SR(t): the expected number of scrapped parts in the tth cycle;

• Work-In-Process, WIP (t): the expected buffer occupancy in buffer B at the

beginning of the tth cycle.

As the state and transition matrix are defined, the above performance measures can be

evaluated theoretically. Given a production system defined by assumptions (i)-(viii),

the performance measures can be estimated in the following way:

P̂R(t) =
N∑
n=1

Tmax−1∑
τ1=max(n−1,Tmin)

1∑
s1=0

xI(n,τ1,s1,1)(t), (3.8)

ĈR(t) =
1∑

s2=0

xI(0,0,1,s2)(t) +
N−1∑
n=0

Tmax−1∑
τ1=n−1

1∑
s2=0

xI(n,τ1,1,s2)(t) (3.9)

+
Tmax−1∑

τ1=max(N−1,Tmin)

xI(N,τ1,1,1)(t) + xI(N,Tmax−1,1,0)(t),

ŜR(t) =
N∑
n=1

1∑
s1=0

xI(n,Tmax−1,s1,0)(t), (3.10)

Ŵ IP (t) =
N∑
n=1

Tmax−1∑
τ1=n−1

1∑
s1=0

1∑
s2=0

nxI(n,τ1,s1,s2)(t), (3.11)
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where P̂R(t), ĈR(t), ŜR(t), and Ŵ IP (t) are the estimates from the analytical

method for PR(t), CR(t), SR(t), and WIP (t), respectively. The above equations

provide analytical formulas to evaluate system performance measures. Specifically,

P̂R(t) is the probability that machine m2 is up, the buffer is not empty during the

tth cycle and the residence time of the first part in the buffer has reached or exceeded

Tmin. ĈR(t) is the probability that machine m1 is up and there is at least one spot

available in the buffer. Similarly, ŜR(t) can be calculated by using the instances that

machine m2 is down and the first part in the buffer has residence time (Tmax − 1),

representing that the first part is about to be scrapped. Finally, Ŵ IP (t) estimates

the expected buffer occupancy in the tth cycle.

3.3.2 Accuracy Evaluation

To evaluate the accuracy of the proposed method, the analytical results are com-

pared with the results obtained from simulation experiments. A MATLAB program

is constructed to perform the simulation and compare it with the analytical method.

Parameter settings are generated randomly from a predefined range. For each pa-

rameter setting, 10, 000 replications are carried out for simulation. The experiment

for each setting follows the procedures below.

1) A parameter setting is randomly generated from the following parameter set:

p1, p2 ∈ [0.4, 0.8] ,

r1, r2 ∈ [0.3, 0.8] ,

N ∈ {3, 4, 5, 6, 7} , (3.12)

Tmax ∈ {N + 1, N + 2, N + 3} ,

Tmin ∈ {1, 2} .
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Residence time constraints are usually concerned about in practice when the first

machine has higher efficiency than the second machine. Thus, we let the setting

satisfy p1 < p2 and r1 > r2.

2) Set the buffer to be empty initially, and set the initial state of both machines to

be up.

3) Run the simulation for a total of T = 200 time slots.

4) PR(t), CR(t), SR(t) and WIP (t) are unknown. The performance measures esti-

mated through the simulation are unbiased, so the performance measures obtained

from the simulation are used to represent PR(t), CR(t), SR(t) and WIP (t).

5) Take the average of performance measures of the last 100 time slots as the sim-

ulated performance in the steady state. The steady state performance measures

PR(∞), CR(∞), SR(∞) and WIP (∞) are estimated through the simulation as

follows:

PR(∞) =
1

100

T∑
t=T−99

PR(t), (3.13)

CR(∞) =
1

100

T∑
t=T−99

CR(t), (3.14)

SR(∞) =
1

100

T∑
t=T−99

SR(t), (3.15)

WIP (∞) =
1

100

T∑
t=T−99

WIP (t). (3.16)

The following error metrics are introduced to evaluate the accuracy:

δPR =
1

T

T∑
t=1

∣∣∣PR(t)− P̂R(t)
∣∣∣

PR(∞)
× 100%, (3.17)
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Figure 3.2: Accuracy of Performance Measures Estimated by the Analytical Method

δCR =
1

T

T∑
t=1

∣∣∣CR(t)− ĈR(t)
∣∣∣

CR(∞)
× 100%, (3.18)

δSR =
1

T

T∑
t=1

∣∣∣SR(t)− ŜR(t)
∣∣∣, (3.19)

δWIP =
1

T

T∑
t=1

∣∣∣WIP (t)− Ŵ IP (t)
∣∣∣

WIP (∞)
× 100%. (3.20)

It is worth mentioning that since SR(∞) is typically very small (less than 0.1), the

absolute error is used to evaluate the accuracy of ŜR(t).
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Figure 3.3: Comparison of the Performance Measures between the Simulation and

Estimation

1, 000 randomly selected settings are tested using both the analytical model and

simulation. The resulting accuracy is summarized in Figure 3.2. As one can see

from the figure, the performance measures obtained from the analytical method have

small errors. Specifically, the mean values of δPR, δCR, δSR and δWIP are 1.05%, 0.8%,

0.0028 and 0.44%, respectively.

To illustrate how the analytical model captures the system behavior in both the

transient and steady state, the setting below is selected and the performance measures

obtained from the analytical method are compared with the simulation.

p1 = 0.4, p2 = 0.5, r1 = 0.8, r2 = 0.55, N = 7, Tmax = 10, Tmin = 2. (3.21)
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The result is shown in Figure 3.3. Simulated performance measures are plotted in solid

lines, with the shaded area indicating the 95% confidence interval. The dashed lines

represent estimation using the proposed analytical model. As one can see, estimation

and simulation results are close in the whole period. Specifically, during the transient

period, the estimated performance measures can clearly capture the system dynamics,

which ensures that the estimation can provide high accuracy for transient analysis in

two-machine geometric lines with residence time constraints.

3.3.3 Effect of Residence Time Constraints on System Performance

When residence time constraints are applied to a production system, the perfor-

mance of the production system changes. A production system without residence

time constraint can be viewed as a special case of production systems with residence

time constraints Tmin = 0 and Tmax =∞. As Tmin increases and Tmax decreases, the

performance is influenced gradually. Some performance measures may be sensitive

to residence time constraints, while some others may not. There is no closed-form

equation to express performance measures, so it is not obvious to see how residence

time constraints influence the performance measures. In this subsection, numerical

experiments are conducted to study how Tmin and Tmax influence production rate,

consumption rate, scrap rate, and work-in-process.

Here starts the analysis of residence time constraints from Tmin. Two settings are

selected based on the parameter setting in Equation (3.21). In the first setting, set

N = 3 and Tmax = 6 to create a case with small N and small Tmax. In the second

setting, set N = 7 and Tmax = 10 to create a case with large N and large Tmax. To

test the influence of Tmin on performance measures, let Tmin be equal to 0, 1, and 2,

and use the analytical model to evaluate the performance measures. The performance

measures of the setting with small N and small Tmax are shown in Figure 3.4a, while
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Figure 3.4: Effect of Tmin on System Performance
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the performance measures of the setting with large N and large Tmax are shown in

Figure 3.4b. It suggests that neither production rate nor consumption rate is sensitive

to Tmin, especially when N and Tmax are large. The scrap rate does not have a large

change due to the conservation of flow, but this small change looks obvious when

N and Tmax are small. The reason is that the scrap rate is relatively small. The

work-in-process is easily influenced by Tmin when N and Tmax are small. When N

and Tmax become large, scrap rate and work-in-process have obvious difference for

different Tmin in transient stage, but converge to some values close with each other

in steady state. The system starts with an empty buffer occupancy, and a different

Tmin causes a different production rate and work-in-process in transient state, which

then cause a different scrap rate in transient state. Machine m1 has a larger repair

probability and smaller failure probability than machine m2. Thus, buffer occupancy

is kept in a high level in the long term when N and Tmax are large. It results in

the overlap of performance measures in the steady state with different Tmin, which is

shown in Figure 3.4b.

To compare the impact that Tmin has on performance measures in different set-

tings, parameter settings are randomly generated from the parameter set given in

Equation (3.12). For each setting, Tmin is set to be 2 and 0, respectively. Use the

performance measures for Tmin = 2 minus the performance measures for Tmin = 0,

and plot the difference and relative difference for production rate, consumption rate,

scrap rate and work-in-process in Figure 3.5. It suggests that a larger Tmin results

in a smaller production rate, a smaller consumption rate, a larger scrap rate, and a

larger work-in-process. It also suggests that the scrap rate and work-in-process are

sensitive to Tmin. The difference of scrap rate is small, but the relative difference of

the scrap rate is large due the small denominator. Significant difference of production
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Figure 3.5: Difference and Relative Difference of Performance Measures with Tmin = 2

and Tmin = 0

rate can be observed, but there is no significant difference of consumption rate for

most cases.

The analysis is performed on Tmax in a similar way. Two settings are selected

based on the parameter setting in Equation (3.21). In the first setting, set N = 3 and

Tmax = 5, 6, 7 to create a case with small N and small Tmax. In the second setting,

set N = 7 and Tmax = 8, 9, 10 to create a case with large N and large Tmax. The

performance measures of the setting with small N and small Tmax are shown in Figure

3.6a, while the performance measures of the setting with large N and large Tmax are

shown in Figure 3.6b.It suggests that the production rate is not sensitive to Tmax,

while the consumption rate and scrap rate are sensitive to Tmax. The work-in-process

is sensitive to Tmax in steady state when N and Tmax are large.

Parameter settings are randomly generated from the parameter set given in Equa-

tion (3.12). For each setting, Tmax is set to be 10 and 8, respectively. Use the per-

formance measures for Tmax = 10 minus the performance measures for Tmax = 8, and
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Figure 3.6: Effect of Tmax on System Performance
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Figure 3.7: Difference and Relative Difference of Performance Measures with Tmax =

10 and Tmax = 8

plot the difference and relative difference for performance measures in Figure 3.7. A

larger Tmax leads to a larger production rate, a smaller consumption rate, a smaller

scrap rate, and a larger work-in-process. The relative difference of the scrap rate is

large, and it reaches 40% for most cases. The relative difference of the work-in-process

varies a lot. It is as small as 0 in some cases, but it also reaches 25% in some other

cases. Significant difference of consumption rate can be observed, but there is no

significant difference of production rate for most cases.

3.3.4 Effect of Buffer Capacity on System Performance

Buffer capacity is a parameter that can be easily modified by the designer of a

production system. Buffer is aimed at providing smooth production under uncer-

tainties. A proper buffer capacity makes facilities in a production system be fully

utilized. However, unnecessary buffer capacity can cause a production system not

to be lean, which can further cause a series of problems. Thus, the design of lean
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production lines is important. Monotonicity properties of PR(t), SR(t) and WIP (t)

with respect to N are discussed in this subsection, and a case study is provided to

illustrate the effect of buffer capacity on system performance.

Consider two two-machine geometric serial lines defined by assumptions (i)-(viii),

and denote them as system ρ and system ζ, respectively. To complete the proof

for monotonicity properties, a new way is used to represent the state of the two-

machine geometric serial line. For system ρ in cycle t ∈ N+, the state is defined

as Xρ
t = (ϕρ, s1, s2), where the set ϕρ = {ϕ1, ϕ2, · · · } represents arrival time to the

buffer for all the parts waiting in the buffer. Let ϕρ[1], ϕ
ρ
[2], · · · be a sequence of the

components in set ϕρ in increasing order, and it satisfies that ϕρ[i] < ϕρ[j] for all i and j

that i < j and ϕρ[i], ϕ
ρ
[j] ∈ ϕρ. For i = 1, 2, si = 1 means machine mi is up during cycle

t, and si = 0 represents down. Similarly, the definition and notation are applied to

system ζ. Define φ = (φ1
1, φ

2
1, φ

1
2, φ

2
2, · · · , φ1

t , φ
2
t , · · · ) to be a sample path for system

ρ and system ζ. For t = 1, 2, · · · , and i = 1, 2, φit ∈ {0, 1} represents the state of

machine mi in cycle t. Sample path φ is a realization of the stochastic process.

Lemma 1. System ρ and system ζ have the same parameters except N . Denote

the buffer capacities for system ρ and system ζ as Nρ and N ζ, respectively. Assume

that both systems have the same initial state and sample path. ϕρ ⊆ ϕζ and |ϕρ|+1 ≥∣∣ϕζ∣∣ for any cycle t, if Nρ + 1 = N ζ.

Proof. See Appendix B.

Theorem 1. WIP (t) is monotonically increasing in N .

Proof. From Lemma 1, ϕρ ⊆ ϕζ at any time, so |ϕρ| ≤
∣∣ϕζ∣∣ at any time. WIP (t) is

monotonically increasing in N .

Theorem 2. PR(t) is monotonically increasing in N .

35



Proof. From Lemma 1, ϕρ ⊆ ϕζ at any time. Assume that production on the machine

m2 happens in system ρ at the end of cycle t. From the assumption, t− ϕρ[1] ≥ Tmin

and φ2
t = 1 in cycle t. Since ϕρ ⊆ ϕζ in cycle t, ϕρ[1] ∈ ϕζ and ϕζ[1] ≤ ϕρ[1] ≤ t− Tmin.

Thus, t− ϕζ[1] ≥ Tmin in cycle t, and production also happens in system ζ at the end

of cycle t. Therefore, PR(t) is monotonically increasing in N .

Theorem 3. SR(t) is monotonically increasing in N .

Proof. From Lemma 1, ϕρ ⊆ ϕζ at any time. Assume that the scrap happens in

system ρ at the end of cycle t. From the assumption, t− ϕρ[1] = Tmax − 1 and φ2
t = 0

in cycle t. Since ϕρ ⊆ ϕζ , then ϕρ[1] ∈ ϕζ and the scrap also happens in system ζ at

the end of cycle t. Therefore, SR(t) is monotonically increasing in N .

It has been proved that production rate, work-in-process, and scrap rate are mono-

tonically increasing in N . A large production rate is preferred, but one may want

to prevent work-in-process and scrap rate from being large. Thus, the design of lean

production lines is aimed at minimizing work-in-process and scrap rate by selecting

a buffer capacity under which the production rate can meet the customer demand.

A case study is provided to give insights into the effect of buffer capacity on system

performance, and it is helpful for the designer to pick a proper buffer capacity for a

lean production line.

The range of buffer capacity that can be selected is {1, · · · , Tmax}. When buffer

capacity is set to be 1, the production system is a Just-in-Time (JIT) system. Machine

m1 is block after producing one part, until this part is consumed by machine m2 or

scrapped. The production rate, work-in-process and scrap rate are the smallest in

this setting. Given a finite Tmax and infinite N , the largest buffer occupancy that

can occur is equal to Tmax. Thus, the largest buffer capacity is equal to Tmax, and it

leads to the largest production rate, work-in-process and scrap rate. Define the line
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efficiency EN(t) to be the ratio of the production rate in cycle t for buffer capacity N

to the production rate in cycle t for the largest buffer capacity given the initial state.

The line efficiency in steady state can be represented as EN(∞). The line efficiency

EN(t) does not exist in cycle t if PR(t) for the largest buffer capacity is equal to 0

in cycle t. The accumulative line efficiency EN(t, t′) from cycle t to t′ is defined to

be the radio of accumulative production rate from t to t′,
∑t′

i=t PR(i), for the buffer

capacity N to the accumulative production rate for the largest buffer capacity.

A case study is given to illustrate the effect of buffer capacity on system perfor-

mance. The parameter setting for the case study is the same as the parameter setting

in Equation (3.21) except buffer capacity N . The range of buffer capacity that can

be selected is {1, · · · , 10}. Select N = 2, N = 4, N = 6, N = 8, and N = 10 as

the buffer capacity. The buffer is empty and both machines are up in the first cycle.

Use the analytical model to obtain the system performance from the first cycle to the

100th cycle, shown in Figure 3.8. Figure 3.8a and Figure 3.8b shows that the line

efficiency and the accumulative line efficiency are close to 1 when buffer capacity is

selected as N = 6, N = 8, or N = 10. When the buffer capacity N = 4, the line effi-

ciency and the accumulative line efficiency in the 100th cycle are 97.19% and 97.78%,

respectively. It means that the production loss within first 100 cycles is only 2.22%

due to the reduction of 6 units of buffer capacity. When the customer demand is

small and estimated to be only 75% of the maximum production capacity, the buffer

capacity N = 2 is sufficient to satisfy the customer demand. When Figure 3.8c is

compared with Figure 3.8d and Figure 3.8e, it is observed that the production rate is

not sensitive to N but scrap rate and work-in-process are sensitive to N . When the

buffer capacity is set to be N = 4, the 2.22% production loss results in 86.02% reduc-

tion of scrap rate and 43.05% reduction of work-in-process. If the customer demand

is as small as 75% of the maximum production capacity and the buffer capacity is set
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Figure 3.8: Effect of Buffer Capacity on System Performance
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to be N = 2, the scrap rate can be reduced by 98.77% and the work-in-process can

be reduced by 69.98%.

The analysis of the effect of buffer capacity on system performance supports the

design of lean production lines, which are beneficial to production systems with res-

idence time constraints. By setting a proper buffer capacity based on the customer

demand, a lean production line can be designed and scrap rate and work-in-process

can be significantly reduced.

3.4 Real-Time Production Control

The analytical method has been applied to capture the dynamics of the two-

machine geometric serial line. To achieve better performance, the control based on

real-time production information can be implemented. In this section, a control

policy to optimize the system performance is proposed based on manipulation of m1.

Specifically, a control policy actively turns the state of m1 down to prevent more

parts from entering the buffer and suffering long residence time. With such a control

policy, the residence time for parts in the buffer, as well as the scrap rate due to long

residence time, can be reduced. The rest of this section provides the detail about how

the initial control policy can be obtained from an MDP model and how the control

policy could be improved by Bayesian methods and run time data.

3.4.1 Modeling of Discounted Markov Decision Processes

First of all, the optimization objective should be specified. In practice, it is desired

to reduce the scrap rate and increase the production rate, which means to maximize

PR(t)−ωSR(t). ω (0 < ω < 1) is the weight, and it is determined by the cost of parts

and the price of products. To find the trade-off of production rate and scrap rate,
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an MDP model is built to analyze the control problem of the system. The relative

parameters of this MDP problem are listed as follows.

• Decision epochs: t ∈ N+.

• System states at each decision epoch: (n, τ1, s1, s2) ∈ S.

• Actions at each decision epoch:

A(n,τ1,s1,s2) = {1, 0} ,∀(n, τ1, s1, s2) ∈ S, (3.22)

which means in an arbitrary cycle t when the system state is (n, τ1, s1, s2), the

action a(n, τ1, s1, s2) satisfies a(n, τ1, s1, s2) ∈ A(n,τ1,s1,s2). a(n, τ1, s1, s2) = 1

represents a control that does not manually intervene the reliability model of

m1, and a(n, τ1, s1, s2) = 0 means a control that turns m1 down intentionally at

the end of the current cycle.

• Reward function: Denote the reward function by r(n, τ1, s1, s2) for (n, τ1, s1, s2) ∈

S. Specifically,

r(n, τ1, s1, s2) = PR(t)− ωSR(t), (3.23)

for any t such that the system in state (n, τ1, s1, s2).

• Transition probability matrix:

Qa(n,τ1,s1,s2) =


Q, if a(n, τ1, s1, s2) = 1,

Q(p1 = 1, r1 = 0), if a(n, τ1, s1, s2) = 0,

(3.24)

where Q(p1 = 1, r1 = 0) is obtained by setting p1 as 1 and r1 as 0 in the original

matrix Q presented in Equation (3.6), representing that m1 is turned down with

probability 100% after the current cycle.
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• The expected total discounted reward of policy π:

vπλ(y1) = Eπ
y1

{
∞∑
t=1

λt−1r(yt)

}
. (3.25)

where λ ∈ [0, 1) is the discount, y1 ∈ S represents the initial state of the system,

and yt ∈ S represents the state in cycle t.

The optimal expected discounted reward and optimal policy are given as follows.

v∗λ(y1) = vπ
∗

λ (y1) = max
π

Eπ
y1

{
∞∑
t=1

λt−1r(yt)

}
, (3.26)

π∗ ∈ arg max
π

Eπ
y1

{
∞∑
t=1

λt−1r(yt)

}
. (3.27)

The MDP model for two-machine geometric serial lines has been constructed. The

control policy can be obtained by implementing the value iteration algorithm to

the MDP model. The value iteration algorithm is an iterative algorithm that is

guaranteed to converge to the optimal solution. To briefly illustrate the algorithm,

vk(n, τ1, s1, s2), or vk(i) where i = (n, τ1, s1, s2), is introduced as the total discounted

reward with the initial state (n, τ1, s1, s2) estimated in the kth iteration of the value it-

eration algorithm, for k = 0, 1, 2, · · · . Set the initial total discounted reward v0(i) = 0

for all i ∈ S. In the (k + 1)th iteration,

vk+1(i) = max
a(i)∈Ai

{
r (i) +

∑
j∈S

λP (j | i, a (i)) vk(j)

}
, (3.28)

for all i ∈ S. P (j | i, a (i)) denotes the transition probability from state i to state

j given the action a (i), and the transition probability P (j | i, a (i)) can be obtained

from the transition matrix presented in Equation (3.24). For any i ∈ S, vk+1(i)

increases monotonically in k and converges to v∗λ(i) (Bertsekas, 2012). With v∗λ(i)

known for all i ∈ S, the optimal action in state i, a∗(i), is obtained as follows.

a∗(i) ∈ arg max
a(i)∈Ai

{
r (i) +

∑
j∈S

λP (j | i, a (i)) v∗λ(j)

}
. (3.29)
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Figure 3.9: The Control Policy Obtained from the MDP Model

Since the optimal solution may not be unique, the right-hand side of the expression

can be a set of the optimal actions. With the optimal action for each system state

obtained, the optimal control policy π∗ can be derived.

3.4.2 Control Policy Evaluation

Further numerical experiments are conducted to illustrate the effectiveness of the

control policy obtained from the proposed MDP model. The parameters for the

numerical experiment are set to be the same as Equation (3.21). In addition, set

ω = 0.7 and λ = 0.99. With the help of MATLAB, the control policy is obtained and

shown in Figure 3.9. Four charts, based on four combinations of machine states, are

provided. In each chart, the horizontal axis represents the residence time of the first
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part in the buffer and the vertical axis represents the buffer occupancy. A block in a

chart represents a state of the system and the action to the state is represented by the

color and pattern. The grey blocks in the charts represent the infeasible region. The

blocks in each chart surrounded by the grey blocks are the feasible region. Among

those blocks, the action that keeps machine m1 unchanged is taken when the system

state is in a while block, and the action that turns machine m1 down is taken when

the system state is in a block with a blue pattern. Several features of the control

policy can be observed from Figure 3.9. There are mainly three features that can be

observed from the control policy.

1) The buffer occupancy is an important factor to consider when applying an action.

In the feasible region of each chart in Figure 3.9, there is a boundary line that

separates the white blocks from the blocks with a blue pattern. The boundary

lines characterize the control policy. By observing the boundary lines, one can

realize that no intervention is needed on machine m1 when the buffer occupancy

is low. Machine m1 is required to be turned down, when the buffer occupancy is

high. Buffer is aimed at providing smooth production under uncertainties, and

thus production on machine m1 is encouraged when the buffer occupancy is low.

However, it takes a long time to consume all parts in the buffer by machine m2

when the buffer occupancy is high. A high buffer occupancy means a high risk of

the scrap due to residence time constraints. Thus, machine m1 is turned down to

prevent the buffer occupancy from being too high.

2) The action depends on machine states. The control policy shown in Figure 3.9 also

suggests that more parts can be accepted to wait in the buffer when machine m1

is down and machine m2 is up, while a smaller number of parts are allowed to stay

in the buffer when machine m1 is up and machine m2 is down. The reason is that
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the working of machine m2 promotes the consumption of parts in the buffer and

then reduces the risk of scrap, while the the working of machine m1 encourages the

accumulation of parts in the buffer and then increases the risk of scrap. Therefore,

the control policy is more likely to turn machine m1 down when machine m1 is up

and machine m2 is down.

3) The control policy is not sensitive to the residence time of the first part in the

buffer. Besides, the monotonic boundary can be observed when machine m2 is up,

while a u-shaped boundary is for the case where machine m2 is down. The reasons

for such phenomena are two-fold. The first focus is on why the boundary line

declines when τ1 is small. The reason is that τ2 is estimated based on the values

of τ1 and n. It is more likely to obtain a large τ2 if τ1 is large. Similarly, it is more

likely to obtain a large τ2 if n is large. Thus, when τ1 increases, the control policy

tends to prevent n from increasing. Under such control policy, when the first part

is produced by machine m2 or scrapped, the new head part tends to have a small

τ1. This can reduce the risk of scrap for the new head part. This explains why the

dividing line goes down when τ1 is small. However, the manipulation on machine

m1 cannot change τ2 in reality. When a part enters the buffer, its residence time

increases by 1 each cycle no matter how machine m1 works. All the parts that

already exist in the buffer will not influenced by machine m1. The reason that

the control policy tends to believe that τ2 can be reduced by preventing n from

increasing is that the control policy assumes that Φ(n, τ1, τ2) keeps unchanged

after the control policy is applied. This assumption can cause errors and also

result in the room for further improvement for the control policy obtained from

MDP model, which motivates the further study in Section 6.3. Second, the reason

why the boundary line goes up when τ1 is large is provided as follows. As is
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Figure 3.10: Comparison of Performance Measures with and without Control

mentioned, the manipulation on machine m1 actually makes no difference in parts

that have been in the buffer. The scrap of parts that have been in the buffer can

decrease the length of the queue in the buffer, and it increases the probability that

a new-release part from machine m1 is finally produced by machine m2. When τ1

is large, the probability that the first part in the buffer will be scrapped is high.

It encourages machine m1 to keep producing more products.

To compare the transient behaviors of systems with and without control, simula-

tion experiments are conducted. Simulation runs 100 cycles and repeats 10,000 times.

The results are plotted in Figure 3.10. The solid blue line represents the original case

where no control is employed, while the dashed red line characterizes the controlled
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case. The shaded areas stand for the 95% confidence interval. The result suggests

that by applying the real-time control policy generated by the MDP model, consid-

erable reduction on scrap rate can be achieved without sacrificing too much on the

production gain.

3.4.3 Policy Improvement by Bayesian Methods

The MDP model provides an approach to obtain a control policy to the two-

machine geometric serial line, and the simulation study has suggested that this con-

trol policy can balance the trade-off between production rate and scrap rate. This

control policy derived from MDP model can be further improved when the system

starts to work and real-time data become available. Approximations are used in the

modeling of the two-machine geometric serial line. Specifically, Φ(n, τ1, τ2) is used

in the Markov chain model under the assumption that consumption on machine m1

follows an independent geometric reliability model. This assumption may not be fol-

lowed when control policies are implemented in the system. Therefore, the control

policy from MDP model may not perform well in some cases. In this subsection,

Bayesian methods and run time data are applied to improve the original control pol-

icy. Specifically, take the originally estimated Φ(n, τ1, τ2) as a prior belief and make

use of run time data to update Φ(n, τ1, τ2). A new control policy can be derived from

the updated Φ(n, τ1, τ2), and in the meantime, the new control policy brings new

errors to Φ(n, τ1, τ2). Run time data are collected to continue the iteration, until no

better control policy could be found.

First fix n and τ1. Let pn,τ1 =
(
pn,τ10 , pn,τ11 , · · · , pn,τ1Tmax−2

)T
denote a Tmax−1-

dimension vector to represent the probabilities that different values of τ2 occur.

Specifically, pn,τ1i = P (τ2 = i | n, τ1), for i = 0, 1, · · · , Tmax−2. Each time a part

in buffer is scrapped or produced by machine m2, an observation of τ2 is got. As-
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sume during a period of time there are m observations of τ2. Given n and τ1, m

observations of τ2 follow the multinomial distribution with parameters m and pn,τ1 ,

denoted by c|pn,τ1:Multinomial (m,pn,τ1). The problem is to estimate pn,τ1 based

on Φ(n, τ1, τ2) and m observations. The estimated pn,τ1 results in a new Φ(n, τ1, τ2),

which could help generate a better control policy.

In the Bayesian method, assume that pn,τ1 follows the Dirichlet distribution with

vector parameters αn,τ1 =
(
αn,τ10 , αn,τ11 , · · · , αn,τ1Tmax−2

)T
, denoted by pn,τ1:Dir (αn,τ1).

Given n and τ1, the observations of τ2 are modeled as the multinomial distribution

with a Dirichlet prior. The probability density function is given by

f (pn,τ1 ;αn,τ1) =
1

B (αn,τ1)

Tmax−2∏
i=0

(pn,τ1i )α
n,τ1
i −1 , (3.30)

where

B (αn,τ1) =
ΠTmax−2
i=0 Γ (αn,τ1i )

Γ
(∑Tmax−2

i=0 αn,τ1i

) , (3.31)

and

Tmax−2∑
i=0

pn,τ1i = 1, (3.32)

pn,τ1i ∈ [0, 1] for i = 0, 1, · · · , Tmax − 2. (3.33)

Let c = (c0, c1, · · · , cTmax−2)
T be the number of occurrences of each τ2 among m

observations. Then,

P (pn,τ1|c) ∝ P (c|pn,τ1)P (pn,τ1)

∝ ΠTmax−2
i=0 (pn,τ1i )ci ΠTmax−2

i=0 (pn,τ1i )α
n,τ1
i −1 (3.34)

= ΠTmax−2
i=0 (pn,τ1i )α

n,τ1
i +ci−1 .

The posterior follows Dirichlet distribution:

pn,τ1|c:Dir (αn,τ1 + c) . (3.35)
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The parameters of the prior is obtained from the estimated Φ (n, τ1, τ2). Define µ as

a weight for prior belief. The parameter αn,τ1i can be obtained

αn,τ1i = µΦ (n, τ1, τ2 = i) = µP (τ2 = i|n, τ1) , for i = 0, 1, · · · , Tmax − 2. (3.36)

During the run time, c for different n and τ1 is collected, and then it can be used to

update Φ (n, τ1, τ2):

P (τ2 = i|n, τ1) =
αn,τ1i + ci∑Tmax−2

j=0

(
αn,τ1j + cj

) , for i = 0, 1, · · · , Tmax − 2. (3.37)

After the observations are modeled, run time data could be used to update the

control policy based on the Bayesian methods. An algorithm is developed to make

use of Bayesian methods to improve the control policy as shown in Figure 3.11. The

algorithm starts with a control policy derived from the MDP model. The update

cycle number θ is determined. Each time the number of observations reaches θ, the

prior information and run time data are combined to calculate a new Φ (n, τ1, τ2) and

its corresponding control policy. If the control policy is different from the original one,

the new control policy is implemented and Equation (3.36) is then used to obtain a

new prior. Each time a new control policy is obtained, the current control policy and

the updated Φ (n, τ1, τ2) are applied to the analytical model. If the average reward

does not improve any more, stop the process and use the control policy obtained from

the previous iteration permanently. The iteration continues until it reaches the total

production cycles Σ or it cannot improve the system.

To illustrate how the algorithm improves the control policy and system perfor-

mance, simulation experiments are conducted to compare the control with and with-

out the integration with Bayesian methods. The Bayesian method works when the

estimated Φ (n, τ1, τ2) is not accurate due to the implementation of a control policy.

Therefore, the Bayesian method is more likely to work, when machine m1 does not
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Figure 3.11: Flow Chart of Algorithm Based on Bayesian Methods
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Figure 3.12: Improvement of Reward for Bayesian Methods

fail often but is frequently turned down according to the control policy applied. Thus,

select parameters randomly from the parameter set in Equation (3.12), and also set

p1 = 0.1. In addition, set ω ∈ (0.65, 0.75), µ = 50, and λ = 0.99. The simulation

runs for 1,800 cycles, and 2,000 replications are carried out in each parameter setting.

The original control policy is taken as a prior, and Φ (n, τ1, τ2) is updated each 300

cycles. It means Σ = 1800 and θ = 300. 200 settings are chosen randomly from the

predefined range. For each case, use the average reward of the control with Bayesian

methods during the last 300 cycles minus the average reward without Bayesian meth-

ods. Positive difference means that the algorithm leads to larger rewards. The results

for the 200 settings are given in Figure 3.12a and 3.12b. Figure 3.12a shows the

difference of rewards of the 200 cases, while 3.12b demonstrates the percentage of

improvement of these cases. These figures suggest substantial performance improve-

ment can be achieved by using the Bayesian method for policy improvement. Among

the 200 illustrated cases, most of them do not deliver much improvement, typically

about 1-5%, because the approximation in the MDP model does not often lead to a

large error and the control policy obtained from the MDP model is good enough for
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most of these cases. However, there are cases where the production performance can

benefit substantial improvement from the Bayesian method combining with the orig-

inal MDP model. As one could see, there is one setting that the reward is increased

by as much as 0.4, which is about 35% improvement. There are also other several

cases that show significant improvement. Typically, noticeable improvement could be

obtained when the first machine has a relatively small failure probability, in which

case the approximation method tends to have large deviation.

A case study is used to illustrate in detail how Bayesian methods make use of run

time data to improve the control policy. The parameters for the case study are

p1 = 0.1, p2 = 0.65, r1 = 0.45, r2 = 0.35, N = 3,

Tmax = 5, Tmin = 1, ω = 0.7, λ = 0.99, µ = 50. (3.38)

Set Σ = 2400 and θ = 300, and simulation repeats for 20,000 times under such

parameter setting. In this case study, three control policies are compared. The first

control method is the original control from the approximation based MDP model.

The second model is the original control integrated with Bayesian methods. The

third control method is the optimal control obtained through the exact MDP model

without any approximation. The comparison of the performance measures for the

three control methods is provided in Figure 3.13. It is obvious that the optimal

control policy without approximation delivers the best performance across all four

measures. There exists a clear gap in terms of each performance measure between

the original control and the optimal control as approximation is involved. For the

original control and the control with Bayesian methods, their performance overlaps

in the first 300 cycles since no run time data is collected initially. After the first

300 cycles, control policy is updated by the Bayesian method which significantly

improve the approximation accuracy thus leading to better system performance. The
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Figure 3.13: Comparison of Performance Measure with and without Bayesian Meth-

ods

difference between control policies is illustrated in Figure 3.14. As more data is

collected and applied, the improvement from the Bayesian method diminishes and

the system performance under such control becomes eventually close to the optimal

control.
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Figure 3.14: Comparison of Control Policies without and with Bayesian Methods
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Chapter 4

ANALYSIS OF MULTI-STAGE SERIAL LINE

4.1 List of Symbols for this Chapter

• D: Number of machines in multi-stage line.

• mi: The ith machine of multi-stage line.

• msub
1 : The first machine of subsystem.

• msub
2 : The second machine of subsystem.

• ssubi : The state of machine msub
i in subsystem.

• pi: Failure probability of machine mi in multi-stage line.

• psubi : Failure probability of machine msub
i in subsystem.

• ri: Repair probability of machine mi in multi-stage line.

• rsubi : Repair probability of machine msub
i in subsystem.

• Bi: The ith buffer in multi-stage line.

• B: The buffer in subsystem.

• Ni: Capacity of buffer Bi.

• N : Capacity of buffer B.

• n: Buffer occupancy for buffer B.
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• Ti,min: Minimum required residence time for buffer Bi.

• Tmin: Minimum required residence time for buffer B.

• Ti,max: Maximum allowable residence time for buffer Bi.

• Tmax: Maximum allowable residence time for buffer B.

• τi: Residence time of the ith part in buffer B.

• psi (t): Starvation probability of machine mi in cycle t.

• ps: Starvation probability of machine msub
1 .

• pbi(t): Blockage probability of machine mi in cycle t.

• pb: Blockage probability of machine msub
2 .

• P
(k)
1,1 : Probability that machine msub

k that is up in one cycle is still up in the

next cycle.

• P
(k)
1,0 : Probability that machine msub

k that is up in one cycle is down in the next

cycle.

• P
(k)
0,1 : Probability that machine msub

k that is down in one cycle is up in the next

cycle.

• P
(k)
0,0 : Probability that machine msub

k that is down in one cycle is still down in

the next cycle.

• x(n, τ1, s
sub
1 , ssub2 , t): Probability for state (n, τ1, s

sub
1 , ssub2 ) in cycle t.

• Φ(n, τ1, τ2): Conditional probability that the second part in buffer B has resi-

dence time τ2 given that there are n parts in buffer B and the first part in buffer

B has residence time τ1.
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Figure 4.1: A Multi-Stage Geometric Serial Line with Residence Time Limits

4.2 Problem Formulation

In this chapter, a method that analyzes a multi-stage line with residence time

constraints is proposed. For simplicity purpose, the term “multi-stage line” is used to

represent a multi-stage geometric serial production line with residence time limits for

the rest of the chapter. The multi-stage line under study is shown in Figure 4.1. Raw

materials enter machine m1 to be processed and continue to flow downstream until

they finish the process in machine mD or get scrapped from a buffer. The following

assumptions define the machines, the buffers, and their interactions.

(i) The multi-stage line consists of D machines (denoted by m1,m2, · · · ,mD) and

(D − 1) buffers (denoted by B1, B2, · · · , BD−1), where D > 2.

(ii) All machines are synchronized with a constant processing time (cycle time),

which is the time to process a part.

(iii) Machines are subject to failures, and their reliability models are independent.

The reliability model for each machine follows a geometric distribution. Specif-

ically, if machine mi is up in cycle (k − 1), it will still be up with probability

(1− pi) and down with probability pi during the k-th cycle, for i = 1, 2, · · · , D,

and k = 2, 3, · · · . If machine mi is down in cycle (k − 1), it will be up with
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probability ri and down with probability (1 − ri) during the k-th cycle, for

i = 1, 2, · · · , D, and k = 2, 3, · · · . Here pi and ri are defined as the failure prob-

ability and repair probability, respectively, for i = 1, 2, · · · , D. The machine

efficiency of machine mi, denoted by ei, is represented by ei = ri
ri+pi

.

(iv) Buffer Bi has a finite capacity Ni (1 ≤ Ni < ∞), for i = 1, 2, · · · , D − 1.

First-in-first-out (FIFO) policy is assumed regarding the buffer outflow process.

(v) The maximum allowable residence time for parts in buffer Bi is characterized

by Ti,max, for i = 1, 2, · · · , D − 1, counted as the number of cycles. A part in

buffer Bi will be scrapped immediately at the beginning of the cycle when its

residence time reaches Ti,max. Let Ti,max ≥ Ni, otherwise Ni has no effect on

the system.

(vi) The minimum required residence time for parts in buffer Bi is denoted by Ti,min,

for i = 1, 2, · · · , D − 1, counted as the number of cycles. A part is allowed to

leave buffer Bi and enter machine mi+1 only when its residence time reaches or

exceeds Ti,min.

(vii) Machine mi, for i = 1, 2, · · · , D − 1, is blocked during a time slot, if at the

beginning of the cycle, (a) machine mi is up, (b) buffer Bi is full, (c) machine

mi+1 does not produce a part in this cycle due to machine failure or blockage,

and (d) there will be no part scrapped from buffer Bi at the beginning of the

next cycle. Machine mD is never blocked. In addition, block-before-service

policy is assumed.

(viii) Machine mi, for i = 2, · · · , D, is starved during a time slot, if machine mi is up

and no part in buffer Bi−1 has residence time greater than or equal to Ti−1,min.

Machine m1 is never starved.
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The problem to be studied is to develop a method under assumptions (i)-(viii)

to evaluate both the steady-state and transient behaviors of the multi-stage line.

Specifically, the system behavior of a multi-stage line is described by performance

measures defined as follows.

• Production Rate, PRi(t), for i = 1, · · · , D: the expected number of parts pro-

duced by machine mi in cycle t;

• Overall Production Rate, PR(t): the expected number of parts produced by the

multi-stage line in cycle t;

• Overall Consumption Rate, CR(t): the expected number of parts that enter the

multi-stage line in cycle t;

• Scrap Rate, SRi(t), for i = 1, · · · , D − 1: the expected number of scrapped

parts from buffer Bi in cycle t;

• Overall Scrap Rate, SR(t): the expected number of scrapped parts from the

multi-stage line in cycle t;

• Work-in-process, WIPi(t), for i = 1, · · · , D − 1: the expected number of parts

in buffer Bi in cycle t;

• Overall Work-in-process, WIP (t): the expected number of parts in the multi-

stage line in cycle t;

• Starvation Probability, psi (t), for i = 1, · · · , D: the probability that machine mi

is starved in cycle t, when machine mi is up;

• Blockage Probability, pbi(t), for i = 1, · · · , D: the probability that machine mi

is blocked in cycle t, when machine mi is up.
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Figure 4.2: A Two-Machine-One-Buffer Subsystem

For a multi-stage line, the overall production rate is equal to the production rate

of the last machine, and thus PR(t) = PRD(t) for all t. The overall consumption

rate is equal to the production rate of the first machine, so CR(t) = PR1(t) for all

t. Scrap occurs in each buffer in the multi-stage line. Thus, the overall scrap rate is

the summation of scrap rates of all buffers. Similarly, the overall work-in-process is

the summation of work-in-processes of all buffers. Thus, SR(t) =
∑D−1

i=1 SRi(t) and

WIP (t) =
∑D−1

i=1 WIPi(t) for all t. By assumptions (vii) and (viii), ps1(t) = 0 and

pbD(t) = 0 for all t.

4.3 Two-Machine-One-Buffer Subsystems

4.3.1 Model Formulation

The multi-stage line cannot be modeled directly using a single Markov chain due

to its large state space. For instance, for a multi-stage line with 10 machines, 9 buffers,

buffer capacity being Ni = 6 and maximum allowable residence time Ti,max = 8 for

i = 1, 2, · · · , 9, the total number of system states is as large as 3.5×1024. Alternatively,

one can start with a simple two-machine-one-buffer subsystem with a much smaller

state space as shown in Figure 4.2, which plays a role as a building block for the
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performance evaluation of multi-stage line latter. In the rest of the chapter, the term

“subsystem” is used to represent the two-machine-one-buffer subsystem.

A subsystem consists of two machines (denoted by msub
1 and msub

2 ) and a buffer

(denoted by B). Similar to a machine in a multi-stage line, machine msub
i in a sub-

system is characterized by failure probability psubi and repair probability rsubi , for

i = 1, 2. Buffer B is described by its maximum allowable residence time Tmax, min-

imum required residence time Tmin, and buffer capacity N . A subsystem, isolated

from a multi-stage line, is influenced by its upstream buffer through starvation and

its downstream buffer through blockage. In order to cope with such effects, two prob-

abilities, starvation probability ps and blockage probability pb, are used to model the

starvation from the upstream buffer and the blockage from the downstream buffer,

respectively. Specifically, ps presents the probability that starvation occurs to ma-

chine msub
1 when machine msub

1 is up. pb denotes the probability that blockage occurs

to machine msub
2 when machine msub

2 is up.

To analyze a subsystem, only residence time of the first part in buffer B is in-

cluded in the state, instead of recording residence times of all the parts. The rest

of the residence time is then estimated using approximation. The detail of the ap-

proximate method is discussed in Section 4.3.3. Let n ∈ {0, 1, · · · , N} denote the

buffer occupancy in buffer B. τ1 ∈ {0, 1, · · · , Tmax − 1} denotes the residence time

of the first part in buffer B. Denote the states of machines msub
1 and msub

2 ’s states

by ssub1 and ssub2 , respectively. Specifically, ssubi = 1 means that machine msub
i is up,

and ssubi = 0 means that machine msub
i is down. Then, the system state of a subsys-

tem is represented by
(
n, τ1, s

sub
1 , ssub2

)
. For the same example mentioned above with

3.5×1024 states, the number of states of the approximate model for each subsystem is

136. The size of state space for a single model to be analyzed is significantly reduced.
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4.3.2 Transition Equations

Based on the states of subsystems, the transition equations can be constructed.

Let x(n, τ1, s
sub
1 , ssub2 , t) denote the probability of state (n, τ1, s

sub
1 , ssub2 ) in cycle t. Let

P
(k)
i,j denote the conditional probability that the state of machine msub

k is j given

that its state is i in the previous cycle, for i, j = 0, 1 and k = 1, 2. Specifically,

P
(k)
1,1 = 1 − psubk , P

(k)
1,0 = psubk , P

(k)
0,1 = rsubk , and P

(k)
0,0 = 1 − rsubk , for k = 1, 2. One

can use the operator Φ(n, τ1, τ2), which is defined as the conditional probability that

the second part in buffer B has residence time τ2 given that there are n parts in

buffer B and the first part in buffer B has residence time τ1. The method to estimate

Φ(n, τ1, τ2) will be introduced in Section 4.3.3 in detail. Let us consider the state

(1, i, ssub1 , ssub2 ) in cycle (t+ 1), for 1 ≤ i ≤ Tmax− 1 and ssub1 , ssub2 = 0, 1. There is one

part in the buffer and its residence time could be any feasible value except 0. The

transition equation for state (1, i, ssub1 , ssub2 ) can be expressed as
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x(1, i, ssub1 , ssub2 , t+ 1)

= x(1, i− 1, 0, 0, t)P
(1)

0,ssub
1
P

(2)

0,ssub
2

+x(1, i− 1, 1, 0, t)psP
(1)

1,ssub
1
P

(2)

0,ssub
2

+x(1, i− 1, 0, 1, t)pbP
(1)

0,ssub
1
P

(2)

1,ssub
2

1N+(i− Tmin)

+x(1, i− 1, 1, 1, t)pspbP
(1)

1,ssub
1
P

(2)

1,ssub
2

1N+(i− Tmin)

+x(1, i− 1, 0, 1, t)P
(1)

0,ssub
1
P

(2)

1,ssub
2

1N+(Tmin + 1− i)

+x(1, i− 1, 1, 1, t)psP
(1)

1,ssub
1
P

(2)

1,ssub
2

1N+(Tmin + 1− i)

+

Tmax−2∑
j=max(i,Tmin)

x(2, j, 0, 1, t)(1− pb)P (1)

0,ssub
1
P

(2)

1,ssub
2

Φ(2, j, i− 1)

+

Tmax−2∑
j=max(i,Tmin)

x(2, j, 1, 1, t)ps(1− pb)P (1)

1,ssub
1
P

(2)

1,ssub
2

Φ(2, j, i− 1)

+x(2, Tmax − 1, 0, 0, t)P
(1)

0,ssub
1
P

(2)

0,ssub
2

Φ(2, Tmax − 1, i− 1)

+x(2, Tmax − 1, 1, 0, t)psP
(1)

1,ssub
1
P

(2)

0,ssub
2

Φ(2, Tmax − 1, i− 1)

+x(2, Tmax − 1, 0, 1, t)P
(1)

0,ssub
1
P

(2)

1,ssub
2

Φ(2, Tmax − 1, i− 1)

+x(2, Tmax − 1, 1, 1, t)psP
(1)

1,ssub
1
P

(2)

1,ssub
2

Φ(2, Tmax − 1, i− 1),

(4.1)

where 1N+(x) is an indicator function. 1N+(x) = 1 if x is an positive integer (x ∈ N+),

and 0 otherwise. Similar to Equation (4.1), transition equations for all the other states

can be formulated as shown in Appendix C.

4.3.3 Approximation of Residence Time

The operator Φ(n, τ1, τ2) is used in Equation (4.1) for approximation of residence

time. The operator Φ(n, τ1, τ2) is first proposed in Ju et al. (2015) and first applied

to geometric serial line in Kang et al. (2017a). However, the first machine of a

subsystem studied in this chapter can be starved, and the operator Φ(n, τ1, τ2) is

influenced by starvation from the upstream buffer. Thus, the method that derives
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Φ(n, τ1, τ2) in literature cannot be directly used. A method that derives Φ(n, τ1, τ2)

by taking starvation into consideration is provided in what follows.

Given current time t and residence time of the first part τ1, denote the state

sequence of machine msub
1 from cycle (t − τ1 − 1) to (t − 1) by a (τ1 + 1)-dimension

vector V . Specifically,

V =
(
ssub1 (t− τ1 − 1) , ssub1 (t− τ1) , · · · , ssub1 (t− 1)

)
, (4.2)

where ssub1 (i) is the state of machine msub
1 in cycle i. Denote by γ(V ) the probability

that a sequence V occurs.

γ(V ) =

τ1∏
i=1

P
(1)

ssub1 (t−τ1−2+i),ssub1 (t−τ1−1+i)
. (4.3)

Since starvation may occur to machine msub
1 , it is possible that no part is produced

by machine msub
1 during one cycle even though machine msub

1 is up. Therefore, the

(τ1 + 1)-dimension vector W is defined as a sequence for production of machine msub
1 .

Specifically,

W = (w1 (t− τ1 − 1) , w1 (t− τ1) , · · · , w1 (t− 1)) , (4.4)

where w1(i) = 1 represents that msub
1 produces a part in cycle i, and 0 otherwise.

Then, w1(i) ≤ ssub1 (i) for any i. The probability that a sequence W occurs can be

derived from the sequence V . Given W defined by Equation (4.4), define C to be a

collection of all V that can result in W . Specifically,

C = {V | w1(i) ≤ ssub1 (i), i = t− τ1 − 1, · · · , t− 1}. (4.5)

We denote by Γ(W ) the probability that a sequence W occurs. Then, Γ(W ) can be

expressed as

Γ(W ) =
∑
V ∈C

γ(V )(ps)k(1− ps)τ1−k, (4.6)
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where k =
∑t−1

i=t−τ1(s
sub
1 (i)− w1(i)).

We define a set, denoted by A, that consists of all possible W that satisfies w1(t−

τ1−1) = 1 and
∑τ1+1

i=1 w1(t−i) = n. Similarly, let B be a set that contains all possible

W that satisfies w1(t− τ1 − 1) = 1, w1(t− τ2 − 1) = 1, and
∑τ2

i=1w1(t− i) = n− 2.

Specifically,

A =

{
W

∣∣∣∣w1(t− τ1 − 1) = 1,

τ1+1∑
i=1

w1(t− i) = n

}
,

B =

{
W

∣∣∣∣w1(t− τ1 − 1) = 1, w1(t− τ2 − 1) = 1,

τ2∑
i=1

w1(t− i) = n− 2

}
.

Then, the operator Φ(n, τ1, τ2) can be estimated as follows.

Φ(n, τ1, τ2) =

∑
W∈B Γ(W )∑
W∈A Γ(W )

, (4.7)

where the denominator is the probability that buffer occupancy is n and residence

time of the first part is τ1, while the numerator represents the probability that buffer

occupancy is n, residence time of the first part is τ1, and residence time of the second

part is τ2.

4.3.4 Performance Measures of Subsystems

The estimated performance measures of a subsystem, for t ∈ N+ ∪ {∞}, in-

clude production rate P̂R
sub

(t), consumption rate ĈR
sub

(t), Scrap Rate ŜR
sub

(t),

work-in-process, Ŵ IP
sub

(t), starvation probability ŜT
sub

(t) and blockage probabil-

ity B̂L
sub

(t). Given ps, pb, and x(n, τ1, s
sub
1 , ssub2 , t), the performance measures are

estimated as follows.
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P̂R
sub

(t) = (1− pb)
N∑
n=1

Tmax−1∑
τ1=max(n−1,Tmin)

1∑
ssub
1 =0

x(n, τ1, s
sub
1 , 1, t), (4.8)

ĈR
sub

(t) = (1− ps)(
1∑

ssub
2 =0

x(0, 0, 1, ssub2 , t) +

N−1∑
n=1

Tmax−1∑
τ1=n−1

1∑
ssub
2 =0

x(n, τ1, 1, s
sub
2 , t) (4.9)

+(1− pb)
Tmax−2∑

τ1=max(N−1,Tmin)

x(N, τ1, 1, 1, t) +

1∑
ssub
2 =0

x(N,Tmax − 1, 1, ssub2 , t)),

ŜR
sub

(t) =
N∑
n=1

1∑
ssub
1 =0

x(n, Tmax − 1, ssub1 , 0, t) + pb
N∑
n=1

1∑
ssub
1 =0

x(n, Tmax − 1, ssub1 , 1, t), (4.10)

Ŵ IP
sub

(t) =
N∑
n=1

Tmax−1∑
τ1=n−1

1∑
ssub
1 =0

1∑
ssub
2 =0

nx(n, τ1, s
sub
1 , ssub2 , t), (4.11)

ŜT
sub

(t) =


∑1

ssub1 =0
x(0,0,ssub1 ,1,t)+

∑max(N,Tmin)
n=1

∑Tmin−1
τ1=n−1

∑1

ssub1 =0
x(n,τ1,ssub1 ,1,t)∑1

ssub1 =0
x(0,0,ssub1 ,1,t)+

∑N
n=1

∑Tmax−1
τ1=n−1

∑1
s1=0 x(n,τ1,s

sub
1 ,1,t)

, if Tmin > 0,

∑1

ssub1 =0
x(0,0,ssub1 ,1,t)∑1

ssub1 =0
x(0,0,ssub1 ,1,t)+

∑N
n=1

∑Tmax−1
τ1=n−1

∑1

ssub1 =0
x(n,τ1,ssub1 ,1,t)

, if Tmin = 0,

(4.12)

B̂L
sub

(t) =

∑Tmax−2
τ1=N−1 x(N, τ1, 1, 0, t) + pb

∑Tmax−2
τ1=N−1 x(N, τ1, 1, 1, t)∑1

s2=0 x(0, 0, 1, s2, t) +
∑N
n=1

∑Tmax−1
τ1=n−1

∑1
s2=0 x(n, τ1, 1, s2, t)

. (4.13)

The estimated production rate P̂R
sub

(t) is the expected number of parts the subsys-

tem produces in cycle t. It is equal to probability that machine msub
2 is up, there is

at least one part in the buffer with residence time equal to or greater than Tmin, and

machine msub
2 is not blocked. The estimated consumption rate ĈR

sub
(t) represents

the expected number of parts that enter the subsystem in cycle t. It is equivalent to

the probability that buffer is not full and machine msub
1 produces a part. ŜR

sub
(t)

denotes the estimated number of scrapped parts from the subsystem in cycle t. It

can be calculated as the probability that residence time of the first part in the buffer

reaches (Tmax − 1) but machine msub
2 is not able to produce due to machine failure

or blockage. Ŵ IP
sub

(t) denotes the estimated number of parts in buffer B in the

subsystem in cycle t. ŜT
sub

(t) and B̂L
sub

(t) are starvation probability of machine

msub
2 and blockage probability of machine msub

1 , respectively. The denominator of

Equation (4.12) presents the probability that machine msub
2 is up, and the numerator
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is the probability that machine msub
2 is up and the buffer is empty. Similarly, the

denominator of Equation (4.13) is the probability that machine msub
1 is up, and the

numerator is the probability that machine msub
1 is up and the buffer is full.

4.4 Modeling Multi-Stage Line Using Aggregation Method

For a production line with multiple stages, the state space is typically too large to

directly perform analysis. Alternatively, the aggregation method is typically pursued

to estimate the performance measures of a multi-stage line based on the analysis

of all its subsystems. The aggregation method for the multi-stage line consists of

the steady-state analysis and transient analysis, which are to be introduced in this

section.

4.4.1 Steady-State Analysis

For a multi-stage line in the steady state, the state probability of each state

keeps unchanged, the starvation probability and blockage probability of each machine

become constant, and the expected performance measures do not vary with time.

Given system parameters, the steady-state analysis is aimed at obtaining performance

measures introduced in Section 4.2 for t =∞.

When a multi-stage line is in the steady state, each subsystem, isolated from the

multi-stage line, is also in the steady state. It means that the starvation probability

ps and the blockage probability pb for any subsystem do not change with time. The

steady-state probability x(n, τ1, s
sub
1 , ssub2 ,∞) for all (n, τ1, s

sub
1 , ssub2 ) can be obtained

via transition equations such as Equation (4.1). Thus, the performance measures

P̂R
sub

(∞), ĈR
sub

(∞), ŜR
sub

(∞), Ŵ IP
sub

(∞), ŜT
sub

(∞), and B̂L
sub

(∞) can be

calculated by Equations (4.8)-(4.13). By the analysis of subsystems with psi (∞) and

pbi(∞) known, for i = 1, · · · , D, P̂R
sub

(∞) of the (i − 1)-th subsystem can be the
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estimate of PRi(∞) for i = 2, · · · , D. ĈR
sub

(∞) of the first subsystem can be the

estimate of PR1(∞). Let SRi(∞) and WIPi(∞) be ŜR
sub

(∞) and Ŵ IP
sub

(∞)

of the i-th subsystem, respectively, for i = 1, · · · , D − 1. Then, PR(∞), CR(∞),

SR(∞), and WIP (∞) can be derived.

The aggregation method provides iterative procedures to estimate psi (∞) and

pbi(∞) for i = 1, · · · , D, shown in Figure 4.3. In each iteration, a backward ag-

gregation and a forward aggregation are performed. Start with the first iteration. By

the assumptions (vii) and (viii), ps1(∞) = 0 and pbD(∞) = 0. Set the initial psi (∞) to

be 0 for i = 2, · · · , D and initial pbi(∞) to be 0 for i = 1, · · · , D − 1.

(a) Backward aggregation. The first iteration starts from the backward aggregation,

shown in Figure 4.3a. First take machine mD−1, machine mD, and buffer BD−1 to

form a subsystem. In the subsystem, the parameters of machine msub
1 , machine

msub
1 and buffer B are the same as the parameters of machine mD−1, machine

mD and buffer BD−1, respectively. The values of psD−1(∞) and pbD(∞) of the

multi-stage line are assigned to ps and pb of the subsystem, respectively. With all

the parameters for a subsystem ready, the steady-state performance measures of

the subsystem can be obtained. The steady-state blockage probability B̂L
sub

(∞)

of the subsystem is used to update the value of pbD−1(∞) in the multi-stage line.

After this step, a new multi-stage line is created with the number of machines

reduced by one, the number of buffers reduced by 1, and the blockage probability

pbD−1(∞) updated. Then, the process continues by taking machine mD−2, ma-

chine mD−1 and buffer BD−2 from the new multi-stage line to form a subsystem.

Continue the process until the number of machines is reduced to be one and all

the blockage probabilities pbi(∞), for i = 1, · · · , D − 1, are updated.
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Figure 4.3: Steady-State Analysis of the Aggregation Method
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(b) Forward aggregation. Similar to the backward aggregation, the forward aggre-

gation takes two machines and one buffer to form a subsystem but starts from

the left side of the multi-stage line, shown in Figure 4.3b. First take machine

m1, machine m2 and buffer B1 to form a subsystem. The parameters of machine

m1, machine m2 and buffer B1 of the multi-stage line are assigned to machine

msub
1 , machine msub

2 and buffer B of the subsystem, respectively. ps and pb of

the subsystem are assigned the values of ps1(∞) and pb2(∞) of the multi-stage

line, respectively. By performing analysis on the subsystem, one can obtain the

steady-state starvation probability ŜT
sub

(∞), which is then used to replace ps2(∞)

of the multi-stage line. After the step, a new multi-stage line is created with the

number of machines reduced by one, the number of buffers reduced by one, and

the starvation probability ps2(∞) updated. Continue the process until the number

of machines is reduced to be one and all the starvation probabilities psi (∞), for

i = 2, · · · , D, are updated.

An iteration is finished when both one backward aggregation and one forward

aggregation are completed. The estimated steady-state performance measures can be

obtained after several iterations. The pseudocode for the aggregation method is shown

in Figure 4.4. Line 1 and Line 2 are to initialize starvation probability and blockage

probability. The iterative procedures of the aggregation method are represented by

the loop from line 4 to line 19, among which the backward aggregation is given by the

loop from line 5 to line 11 and the forward aggregation is given by the loop from line

12 to line 18. The function that appears in line 9 and line 16 transfers the parameters

into the transition matrix by Equation (4.1) and outputs starvation probability and

blockage probability by Equation (4.12) and Equation (4.13), respectively.
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1: Initialize psi (∞) = 0, i = 1, · · · , D

2: Initialize pbi(∞) = 0, i = 1, · · · , D

3: Determine the total number of iterations: iter

4: for j = 1, iter do . Iterations

5: for k = 1, D − 1 do . The backward aggregation

6: l = D − k . Set index

7: m = D − k + 1

8: I =
[
pl, rl, p

s
l (∞), pm, rm, p

b
m(∞), Tl,max, Tl,min, Nl

]
9:

[
ŜT

sub
(∞), B̂L

sub
(∞)

]
= getSubPerformance(I)

10: pbl (∞) = B̂L
sub

(∞) . Update blockage probability

11: end for

12: for k = 1, D − 1 do . The forward aggregation

13: l = k . Set index

14: m = k + 1

15: I =
(
pl, rl, p

s
l (∞), pm, rm, p

b
m(∞), Tl,max, Tl,min, Nl

)
16:

[
ŜT

sub
(∞), B̂L

sub
(∞)

]
=getSubPerformance(I)

17: psm(∞) = ŜT
sub

(∞) . Update starvation probability

18: end for

19: end for

Figure 4.4: Iterative Procedures of the Steady-State Analysis
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Figure 4.5: A Multi-Stage Line is Decomposed into Subsystems for Transient Analysis

4.4.2 Transient Analysis

With the system parameters and initial system state known, the transient analysis

is aimed at obtaining transient performance measures introduced in Section 4.2 for

t ∈ N+. To perform transient analysis of a multi-stage line, firstly decompose a

multi-stage line into several subsystems. Figure 4.5 shows the decomposition, where

any two neighboring machines and the buffer between the two machines are isolated

to form a subsystem. A multi-stage line with D machines and (D − 1) buffers is

decomposed into (D − 1) subsystems. The subsystem that consists of machine mi,

machine mi+1 and buffer Bi is denoted by SSi, for i = 1, · · · , D− 1. In the transient

analysis, the starvation probability ps and the blockage probability pb for a subsystem

change over time, and each subsystem is modeled to be a time-varying Markov chain.

The objective of transient analysis is to capture the time-varying transition matrix
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of each subsystem over time, so that the transient behavior of both subsystems and

the whole multi-stage line can be predicted.

Let Xi(t) denote the row vector of state probabilities of subsystem SSi in cycle

t, for i = 1, · · · , D − 1. Denote the transition matrix of subsystem SSi in cycle t

by Qi(t). The pseudocode for the transient analysis is shown in Figure 4.6, which

provides procedures to use the time-varying transition matrices of subsystems to

perform transient analysis of the multi-stage line. Given the initial state of a multi-

stage line, the initial states of its subsystems are determined. It further determines

the state probability Xi(1) for i = 1, · · · , D − 1, which is initialized in line 1. With

Xi(1) for i = 1, · · · , D − 1 known, psi (1) and pbi(1) for i = 1, · · · , D can be obtained.

A loop from line 5 to line 18 is then to calculate the transient system state probability

of the multi-stage line from cycle t = 1 to cycle t = T . There are two loops inside the

loop. The first loop from line 6 to line 12 is to update the state probabilities of each

subsystem, and the second loop from line 13 to line 17 is to update the starvation

probabilities and the blockage probabilities. Line 10 is a function to transfer system

parameters to transition matrix of a subsystem. The update in line 16 can be achieved

by Equation (4.12) and Equation (4.13). When the calculation for all the loops is

completed, the state probabilities and performance measures of each subsystem (from

SS1 to SSD−1) for each cycle (from t = 1 to t = T ) are obtained. Then the transient

performance measures of the entire multi-stage line are derived.

4.4.3 Comparison between Steady-State and Transient Analysis

Steady-state analysis is aimed at long-term performance. When the system reaches

steady state soon and stays in steady state for a long time, the production during the

transient stage is negligible. The long-term performance obtained from steady-state

analysis can be used to estimate production capacity, make production plan, and
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1: Initialize Xi(1), i = 1, · · · , D − 1

2: Obtain psi (1), i = 1, · · · , D

3: Obtain pbi(1), i = 1, · · · , D

4: Set the length of time: T

5: for j = 1, T − 1 do

6: for k = 1, D − 1 do . Update state probability

7: l = D − k . Set index

8: m = D − k + 1

9: I =
[
pl, rl, p

s
l (j), pm, rm, p

b
m(j), Tl,max, Tl,min, Nl

]
10: Ql(j) = getTransition(I)

11: Xl(j + 1) = Xl(j)Ql(j)

12: end for

13: for k = 1, D − 1 do . Update starvation and blockage probabilities

14: l = D − k . Set index

15: m = D − k + 1

16: Update psm(j + 1) and pbl (j + 1) from Xl(j + 1)

17: end for

18: end for

Figure 4.6: Procedures of the Transient Analysis
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conduct continuous improvement. Transient analysis is required, when production

operates partially or entirely in the transient regime for reasons such as long cycle

time, disruptions, etc. The system performance is not stable in transient stage and

may be increasing, decreasing or fluctuating in this stage. The transient analysis is

aimed at capturing such dynamics. For a simple discrete time Markov chain, sys-

tem transition can be represented by a transition matrix. Steady-state analysis and

transient analysis can be performed by manipulating the transition matrix. However,

there is no single matrix that can model system transition for a multi-stage line, and

thus the aggregation method is proposed to address the problem.

The procedure for steady-state analysis and the procedure for transient analy-

sis are different from several aspects. First, it is assumed that there exist constant

starvation probability, blockage probability and steady state probabilities in steady-

state analysis, while in transient analysis those probabilities are changing over time.

Second, starvation probability and blockage probability for each subsystem are un-

known and initialized to zero in steady-state analysis, while the two probabilities are

initially known from the initial system state in transient analysis. Third, the loop

from line 4 to line 19 in Figure 4.4 represents the iterative procedure for steady-state

analysis, and it converges from performance measures under the initial setting to the

performance measures in steady state. The intermediate measures in the iterative

procedure have no physical meaning. In contrast, the loop from line 5 to line 18 in

Figure 4.6 is to obtain transient behavior. For any j in the loop, transient starvation

probability, blockage probability, state probabilities and performance measures for

cycle (j + 1) are derived. Fourth, the number of iterations for both methods are dif-

ferent. The backward aggregation and forward aggregation are performed iter times

in steady-state analysis, while there is only one backward aggregation in transient

analysis. Finally, the procedure of steady-state analysis cannot analyze transient
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Table 4.1: Parameter Setting for Illustrative Example

i 1 2 3 4 5 6 7 8

ei 0.62 0.75 0.85 0.73 0.68 0.91 0.81 0.72

ri 0.35 0.44 0.37 0.24 0.27 0.35 0.29 0.46

Ni 5 6 7 7 7 5 6 6

Ti,max 8 8 10 10 8 7 9 9

Ti,min 1 1 2 2 1 1 2 1

behavior of a multi-stage line. In contrast, transient analysis can be used to obtain

steady-state performance measures by running for a sufficiently large number of cycles

as the system reaches steady state, but such a way is not computationally efficient.

4.5 Model Validation

4.5.1 An Illustrative Example

To evaluate the accuracy of the proposed analytical method, the results obtained

from the proposed analytical method are compared with simulation. A MATLAB

program is constructed to conduct the numerical experiment. First consider a single

case with the parameters shown in Table 4.1.

Initially, all the machines are set to be up, and all the buffers are set to be empty.

Both steady-state analysis and transient analysis of the aggregation method are per-

formed. For the steady-state analysis of the aggregation method, 6 iterations are con-

ducted to get the steady-state performance measures. Simulation repeats 10,000 times

to obtain the average value and 95% confidence interval of each performance measure

in each cycle. The result of the numerical study is shown in Figure 4.7. Simulated

performance measures are plotted in solid blue line, with the shaded area indicating

the 95% confidence interval. The red dashed lines represent the transient perfor-
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Figure 4.7: Comparison of Performance Measures from the Aggregation Approach

and Simulation

mance measures obtained from transient analysis of the aggregation method. The

green dash-dotted lines represent the steady-state performance measures obtained

from steady-state analysis of the aggregation method. The result of the experiment

suggests that the proposed aggregation method can capture both the steady-state

and transient behaviors of the multi-stage line accurately.

As is shown in Figure 4.8, the blue solid lines represent the steady-state per-

formance measures obtained from the simulation, while the green dash-dotted lines

represent the estimated performance measures after each iteration of the aggregation

method. The initial starvation probability and blockage probability for each machine
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Figure 4.8: Steady-State Performance Measures Estimated in Each Iteration of the

Aggregation Method

of the multi-stage line are set to be 0, and the estimated performance measures in it-

eration 0 in Figure 4.8 represent the estimated performance measures with the initial

parameter setting. It suggests that the convergence can be achieved usually within

three iterations, and converging performance measures are close to the true values.

4.5.2 Experiment with Random Parameters

To evaluate the accuracy of the proposed method in a more general sense, the ex-

periment with random parameters is conducted. The estimated performance measures

obtained through the aggregation method are compared with the ones estimated by
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the simulation. Let Tst be the threshold of time where one can guarantee that the sys-

tem in the simulation study can reach the steady state, and let T denote run length of

the simulation. Denote by PM(t) the true performance measures, like PR(t), CR(t),

SR(t) and WIP (t), and they represented by average performance measures of all

repeats of the simulation in cycle t. The true steady-state performance is obtained

as follows.

PM(∞) =
1

T − Tst + 1

T∑
i=Tst

PM(i). (4.14)

Denote the steady-state performance measures obtained through the aggregation

method by P̂R(∞), ĈR(∞), ŜR(∞), Ŵ IP (∞). The absolute errors of the esti-

mated steady-state performance measures, denoted by εPR(∞), εCR(∞), εSR(∞) and

εWIP (∞), are provided as follows.

εPM(∞) =
∣∣∣PM(∞)− P̂M(∞)

∣∣∣ , (4.15)

where P̂M(∞) represents P̂R(∞), ĈR(∞), ŜR(∞), and Ŵ IP (∞), and εPM(∞) rep-

resents εPR(∞), εCR(∞), εSR(∞) and εWIP (∞). The relative errors of the estimated

steady-state performance measures are denoted by δPR(∞), δCR(∞), δSR(∞) and δWIP (∞).

Let δPM(∞) stand for δPR(∞), δCR(∞), δSR(∞) and δWIP (∞). The relative errors are de-

fined as follows.

δPM(∞) =
εPM(∞)

PM(∞)
. (4.16)

Let Ttr be the time before which the transient behaviors of the aggregation method

and the simulation are compared. The absolute errors of the estimated transient

performance measures are denoted by εPR(t), εCR(t), εSR(t) and εWIP (t). Let εPM(t)

stand for εPR(t), εCR(t), εSR(t) and εWIP (t). The absolute errors are defined as follows.

εPM(t) =

∑Ttr
i=1

∣∣∣PM(i)− P̂M(i)
∣∣∣

Ttr
. (4.17)
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The relative errors of the estimated transient performance measures are denoted by

δPR(t), δCR(t), δSR(t) and δWIP (t). Let δPM(t) stand for δPR(t), δCR(t), δSR(t) and δWIP (t).

The relative errors are defined as follows.

δPM(t) =
εPM(t)

PM(∞)
. (4.18)

To test the aggregation method in both steady-state analysis and transient anal-

ysis, the parameter settings are randomly selected from the range shown as follows.

D ∈ {4, 5, 6, 7, 8, 9, 10} ,

ei ∈ [0.60, 0.99] for i = 1, · · · , D,

ri ∈ [0.20, 0.50] for i = 1, · · · , D, (4.19)

Ni ∈ {5, 6, 7} for i = 1, · · · , D − 1,

Ti,max ∈ {Ni + 1, Ni + 2, Ni + 3} for i = 1, · · · , D − 1,

Ti,min ∈ {1, 2} for i = 1, · · · , D − 1.

The number of machines is selected from the range {4, 5, 6, 7, 8, 9, 10}, and this can

cover a large number of applications. Machine efficiency is commonly seen in the range

of [0.60, 0.99], from which the machine efficiency is randomly chosen in the experiment.

The selection of N and Ti,min and Ti,max covers a large portion of applications. The

steady state performance of a production system is worth analyzing, when the buffer

is capable of supporting a smooth production and the majority of parts are finally

produced with an acceptable quality. Thus, the repair probability is selected from

[0.20, 0.50]. For the experiments of steady-state analysis, 5,000 random parameter

settings are generated. In each parameter setting, the run length is T = 100, 000,

and 40 runs are carried out. The cycles after Tst = 20, 001 are considered in the

steady-state analysis. In the transient analysis, 5,000 parameter settings are randomly
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selected. In each parameter setting, the simulation runs T = 2, 000 cycles and repeats

10,000 times. In addition, set Tst = 1, 001 and Ttr = 400.

The accuracy of the steady-state analysis and transient analysis is shown in Figure

4.9 and Figure 4.10, respectively. The overall consumption rate can be estimated

accurately. The median of the relative error of overall consumption rate is 0.81% in

both steady-state analysis and transient analysis, and the relative errors are less than

2.0% for most cases. The estimates of overall production rate and work-in-process

have higher errors. For most cases, it can maintain relative errors smaller than 6%,

which is also acceptable. The overall scrap rate has the largest error. The median of

relative error is 4.1% for steady-state analysis and 3.9% for transient analysis. The

absolute error of scrap rate is small, and the large relative error is partially due to

the small denominator. The experiment with random parameters suggests that the

proposed analytical method, combining the approximate modeling of residence time

and the aggregation method, can estimate performance measures of a multi-stage line

in high accuracy.

Both the simulation and the aggregation method are developed with MATLAB

and run on a computer with Intel(R) Core(TM) i7-8700 CPU, 16 GB RAM, and

64-bit Windows 10 Enterprise operating system. The average time to perform sim-

ulation for a parameter setting in steady-state analysis is 39.63 seconds, and it only

takes 0.13 seconds on average to perform steady-state analysis of the aggregation

method. It shows that the aggregation method is more efficient. In transient analy-

sis, the simulation takes 219.11 seconds on average for each parameter setting, and the

aggregation method takes 27.36 seconds. The transient analysis of the aggregation

method takes more time than the steady-state analysis, but it is still more efficient

than the simulation.
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Figure 4.9: Accuracy of the Steady-State Analysis. AE: Absolute Error; RE: Relative

Error
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Figure 4.10: Accuracy of the Transient Analysis. AE: Absolute Error; RE: Relative

Error
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Chapter 5

DECOMPOSITION-BASED REAL-TIME CONTROL OF MULTI-STAGE

SERIAL LINES

5.1 Problem Formulation

5.1.1 System Description and Assumptions

For simplicity purpose, the term “multi-stage line” is used to represent the multi-

stage Bernoulli serial line with residence time constraints for the rest of the chapter.

The multi-stage line under study is shown in Figure 5.1. Parts visit each machine

and buffer from the left side to the right side, until they finish all the processes or

get scrapped from the system. The following assumptions define the machines, the

buffers, and their interactions.

(i) The multi-stage line consists of D machines, denoted by m1,m2, · · · ,mD, and

(D − 1) buffers, denoted by B1, B2, · · · , BD−1, where D > 2.

(ii) All machines are synchronized with a constant processing time (cycle time),

which is the time to process a single part on a machine.

(iii) Machines are subject to failures, and each machine is assumed to be an indepen-

dent Bernoulli machine. The state of a machine is determined at the beginning

of a cycle. Before that, the state of machine mi in cycle t, for i = 1, · · · , D

and t = 1, 2, · · · , is a random variable, denoted by Si(t), following the Bernoulli

distribution with parameter pi. Specifically, machine mi is capable of producing

a part in cycle t with probability pi and fails to do so with probability (1− pi).
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Figure 5.1: Illustration of the Multi-Stage Line with Residence Time Constraints

It can be represented by P (Si(t) = 1) = pi and P (Si(t) = 0) = 1 − pi. At the

beginning of cycle t, the machine state is realized, and the realized machine

state is denoted by si(t) ∈ {0, 1}.

(iv) Buffer Bi has a finite capacity Ni (1 ≤ Ni < ∞), for i = 1, 2, · · · , D − 1, and

its buffer occupancy is determined at the end of a cycle and denoted by ni.

First-in-first-out (FIFO) policy is assumed regarding the buffer outflow process.

(v) Each part in a buffer has its residence time, and it is counted as the number of

cycles, for which the part has been staying in the buffer. Residence time of a

part is determined at the end of a cycle and starts with 0 as the part enters a

buffer at the end of a cycle. Residence time of a part in a buffer increases by

one each cycle, if the part keeps staying in the same buffer. Let τi,j denote the

residence time of the jth part in buffer Bi, if such a part exists.

(vi) The maximum allowable residence time for a part in buffer Bi is characterized

by Ti,max, for i = 1, 2, · · · , D − 1. A part in buffer Bi will be scrapped when

its residence time reaches Ti,max. Let Ti,max ≥ Ni, otherwise Ni has no effect on

the multi-stage line.
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(vii) The minimum required residence time for a part in buffer Bi is denoted by

Ti,min, for i = 1, 2, · · · , D− 1. A part in buffer Bi is allowed to be processed by

machine mi+1 only when its residence time reaches or exceeds Ti,min.

(viii) Machine mi, for i = 1, 2, · · · , D − 1, is blocked during a cycle, if (a) machine

mi is up, (b) buffer Bi is full, (c) machine mi+1 does not produce a part in this

cycle due to machine failure or blockage, and (d) there will be no part scrapped

from buffer Bi. Machine mD is never blocked. In addition, block-before-service

policy is assumed.

(ix) Machine mi, for i = 2, · · · , D, is starved during a cycle, if machine mi is up,

and no part in buffer Bi−1 has residence time greater than or equal to Ti−1,min.

Machine m1 is never starved.

(x) At the end of each cycle, a machine can be stopped to prevent it from producing

in the next cycle. One can also have a machine unchanged, and thus the machine

will work as a Bernoulli machine in the next cycle. It is always beneficial not to

stop the last machine, so only actions on machine mi, for i = 1, 2, · · · , D − 1,

are considered. Let ai(t) ∈ {1, 0}, for i = 1, 2, · · · , D − 1 and t = 0, 1, · · · ,

denote the action on machine mi at the end of cycle t. The action ai(t) = 0

makes machine mi not work in cycle (t + 1). The action ai(t) = 1 represents

that machine mi is unchanged. The action on the whole system is represented

by a(t) = [a1(t) a2(t) · · · aD−1(t)]
T . The action space is denoted by A =

{0, 1}D−1.

5.1.2 Performance Measures

To evaluate the multi-stage line, the performance measures of interest are intro-

duced as follows.
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• Production rate of machine mi, PRi(t), for t = 1, 2, · · · and i = 1, · · · , D: the

expected number of parts produced by machine mi in cycle t;

• Scrap rate of buffer Bi, SRi(t), for t = 1, 2, · · · and i = 1, · · · , D − 1: the

expected number of scrapped parts from buffer Bi in cycle t;

• Scrap rate of the multi-stage line, SR(t) for t = 1, 2, · · · : the expected number

of scrapped parts from the multi-stage line in cycle t.

Remark 1. Both Ju et al. (2017b) and Zhang et al. (2013) study Bernoulli lines and

are consistent with the early work (Li and Meerkov, 2009) in the problem formulation

of Bernoulli lines. Ju et al. (2017b) and Zhang et al. (2013) have a small difference

in the definition of performance measures due to the concern of transient analysis.

In Ju et al. (2017b), performance measures in one cycle are observed in the current

cycle and derived from the system state of the previous cycle. In Zhang et al. (2013),

performance measures in one cycle are derived from the system state in the current

cycle and can be observed at the end of the next cycle. One cycle lag of performance

measures is the only difference between the two studies. In this chapter, the definition

from Ju et al. (2017b) is followed.

Remark 2. Scrap rate of the multi-stage line is the summation of scrap rates of all

buffers. Thus, SR(t) =
∑D−1

i=1 SRi(t) for all t.

For the system under consideration, it is desired to maximize production rate

PRD(t) and minimize scrap rate SR(t) simultaneously. The objective of the study is

therefore to maximize (PRD(t)−ωSR(t)) through the actions defined in assumption

(x), where ω is a positive constant to balance the trade-off between production rate

PRD(t) and scrap rate SR(t).
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5.1.3 System Dynamics and Optimization Model

LetHi, for i = 1, 2, · · · , D−1, be a collection of all subsets of set {0, 1, · · · , Ti,max−

1} that have cardinality smaller than or equal to Ni. Specifically,

Hi = {h | h ⊂ {0, 1, · · · , Ti,max − 1} and |h| ≤ Ni} , (5.1)

for i = 1, 2, · · · , D − 1, which is the state space for buffer Bi. Hi(t) ∈ Hi, for

t = 0, 1, · · · , is defined to be the state of buffer Bi at the end of cycle t, and Hi(t)

represents a set of residence times of parts in buffer Bi. The occupancy of buffer Bi

at the end of cycle t can be represented by ni = |Hi(t)|. Follow the convention that

machine state is determined at the beginning of a cycle, buffer state is determined at

the end of a cycle, and the system state is determined at the end of a cycle. Thus,

system state is represented by states of all buffers. The state of a multi-stage line

at the end of cycle t can be defined by H(t) = (H1(t), H2(t), · · · , HD−1(t)), which

belongs to the state space of the multi-stage line, denoted by H = ⊗D−1i=1 Hi. In

addition, define two other collections as follows.

Hi,min = {Hi ∈ Hi | supHi ≥ Ti,min} , (5.2)

Hi,max = {Hi ∈ Hi | supHi = Ti,max − 1} , (5.3)

for i = 1, 2, · · · , D−1. If buffer Bi is not empty, supHi is equal to the residence time

of the first part in the buffer and τi,1 = supHi. If buffer Bi is empty, then the set Hi

is empty and supHi = −∞. Hi,min is a collection of states of buffer Bi that the first

part in the buffer has residence time greater than or equal to Ti,min, while Hi,max is

a collection of states of buffer Bi that the first part in the buffer has residence time

equal to (Ti,max − 1).

A discounted infinite horizon dynamic optimization problem is considered, and

the objective is to maximize discounted cumulative production rate while minimizing
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scrap rate in the long term. Given the known initial state H(0), the objective function

is

max E

{
∞∑
t=1

λt−1
(
P̃RD (t)− ωS̃R (t)

)}
, (5.4)

where P̃Ri (t), for i = 1, 2, · · · , D, S̃Ri(t), for i = 1, 2, · · · , D − 1, and S̃R(t) are

random variables, and λ ∈ [0, 1) is the discount factor. Then, PRi(t) = E
[
P̃Ri (t)

]
,

SRi(t) = E
[
S̃Ri (t)

]
and SR(t) = E

[
S̃R (t)

]
. Start with machine mD to formulate

the system dynamics. The production and scrap of the last machine at time (t+ 1),

for t = 0, 1, · · · , are represented as follows.

χHD−1,min
(HD−1(t))SD(t+ 1) = P̃RD(t+ 1), (5.5)

χHD−1,max
(HD−1(t))(1− SD(t+ 1)) = S̃RD−1(t+ 1), (5.6)

where a characteristic function χX(x) is used. Specifically,

χX(x) =


1 if x ∈ X,

0 otherwise.

(5.7)

Equation (5.5) means that machine mD will finish producing a part at the end of

cycle (t + 1), if there is at least a part in buffer BD−1 with residence time greater

than or equal to TD−1,min at the end of cycle t and machine mD is up during cycle

(t + 1). Equation (5.6) represents that a part will be scrapped from buffer BD−1 if

there exists a part in buffer BD−1 with residence time equal to (TD−1,max − 1) at the

end of cycle t and machine is down during cycle (t + 1). Then, the state of buffer

BD−1 is updated as follows.

H ′D−1 (t) =


HD−1(t) if P̃RD(t+ 1) + S̃RD−1(t+ 1) = 0,

HD−1(t) \ supHD−1(t) otherwise,

(5.8)

H ′′D−1(t) = F
(
H ′D−1(t)

)
, (5.9)
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for t = 0, 1, · · · . Equation (5.8) suggests that the part with the largest residence time

in buffer BD−1 is removed if a part in this buffer is either produced or scrapped. In

Equation (5.9), an operator F () on set is introduced. For two sets X and X ′ such

that X ′ = F (X), x + 1 ∈ X ′ is satisfied for any element x ∈ X, and x − 1 ∈ X is

satisfied for any element x ∈ X ′. Equation (5.9) means that the residence time of

each part increases by one.

In a similar way, the production rate and scrap rate of machine mi+1, for i =

1, 2, · · · , D − 2, are expressed as follows.

χHi,min (Hi (t))χR>0

(
Ni+1 − |H ′i+1 (t) |

)
Si+1 (t+ 1) ai+1 (t) = P̃Ri+1 (t+ 1) , (5.10)

χHi,max (Hi (t))
(
1− χR>0

(
Ni+1 − |H ′i+1 (t) |

)
Si+1 (t+ 1) ai+1 (t)

)
= S̃Ri (t+ 1) ,(5.11)

for t = 0, 1, · · · . If machine mi+1 finishes producing a part at the end of cycle (t+ 1),

suggested by Equation (5.10), four conditions should be met. First, there is at least

one part in buffer Bi with residence time greater than or equal to Ti,min at the end

of cycle t. Second, there is no blockage in buffer Bi+1. Third, machine mi+1 is up

during cycle (t + 1). Last, machine mi+1 is not turned down. If there is one part in

buffer Bi with residence time equal to (Ti,max − 1) and at least one of the last three

conditions above is not satisfied, then a part is scrapped from buffer Bi, suggested by

Equation (5.11). Then, update the states of those buffers, shown in Equation (5.12)

and Equation (5.13) below.

H ′i (t) =


Hi(t) if P̃Ri+1(t+ 1) + S̃Ri(t+ 1) = 0,

Hi(t) \ supHi(t) otherwise,

(5.12)

H ′′i (t) = F (H ′i(t)) , (5.13)

for i = 1, 2, · · · , D − 2 and t = 0, 1, · · · . Equation (5.12) and Equation (5.13) are

similar to Equation (5.8) and Equation (5.9), respectively. If a machine produces
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a part, the number of parts in its downstream buffer will increase by one. After

considering both inflow and outflow of a buffer, one can determine the state of a

buffer in the next cycle as follows.

Hi+1(t+ 1) =


H ′′i+1(t) if P̃Ri+1(t+ 1) = 0,

H ′′i+1(t) ∪ {0} otherwise,

(5.14)

for i = 1, 2, · · · , D − 2 and t = 0, 1, · · · . Equation (5.14) suggests that a new part

with residence time equal to 0 is added to buffer Bi+1 at the end of cycle (t + 1) if

machine mi+1 successfully produces a part at the end of cycle (t+ 1). In addition,

χR>0 (N1 − |H ′1 (t) |)S1 (t+ 1) a1 (t) = P̃R1 (t+ 1) , (5.15)

H ′′1 (t) = F (H ′1 (t)) , (5.16)

H1 (t+ 1) =


H ′′1 (t) if P̃R1 (t+ 1) = 0

H ′′1 (t) ∪ {0} otherwise,

(5.17)

for t = 0, 1, · · · . Equation (5.15), Equation (5.16) and Equation (5.17) are for the

first machine and first buffer, and they are similar to Equation (5.10), Equation (5.9)

and Equation (5.14), respectively. Finally, by Remark 2,

S̃R(t+ 1) =
D−1∑
i=1

S̃Ri(t+ 1), (5.18)

for t = 0, 1, · · · .

5.2 Decomposition-Based Control Framework

5.2.1 Complexity of Multi-Stage Line

The production control problem introduced in Section 5.1 is not able to be ana-

lyzed directly due to the large state space. The total number of system states of a

multi-stage line, denoted by M , is provided as follows.
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M =
D−1∏
i=1

Ni∑
j=0

 Ti,max

j

 . (5.19)

Consider a single buffer first. If the buffer occupancy is fixed to be j, the number of

combinations for a buffer is equal to the number of ways to choose j different residence

times from Ti,max options, which is represented by

 Ti,max

j

. Then, the total

number of system states can be calculated by considering all buffers and all possible

buffer occupancy. For example, for a multi-stage line that has 7 machines and 6 buffers

with buffer capacity Ni = 6 and maximum allowable residence time Ti,max = 8, for

i = 1, 2, · · · , 6, the number of system states is as large as 2.3 × 1014 according to

Equation (5.19). To deal with this level of complexity, one common approach is to

use reinforcement learning to perform production control by approximately mapping

system states and actions to rewards. However, these methods result in a long time

training and suffer from interpretability. In addition, the approximation architecture

could deteriorate soon as the problem scale continues to increase. To tackle these

issues, decomposition-based control, a novel approach, is proposed. Hypothesize that,

by leveraging the system decomposition, production performance can be effectively

optimized in real time.

5.2.2 Overview of the Decomposition-Based Control Approach

Instead of analyzing and controlling a multi-stage line as a whole, the decomposition-

based control is proposed. The concept of the decomposition-based control is shown in

Figure 5.2. A multi-stage line is decomposed into subsystems, and structural relation-

ship between subsystems is defined. Under a properly defined structural relationship,

each subsystem is assumed to behavior like its corresponding part in the multi-stage

line. Each subsystem is modeled independently as an MDP model. Since the state
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Figure 5.2: Concept of Decomposition-Based Control

space of a subsystem is small enough, the control policy for each subsystem can be

derived through value iteration or policy iteration. Each subsystem takes action by

observing its local environment. The control policy of a multi-stage line is a combina-

tion of all control policies derived from all subsystems. However, as a control policy is

implemented, the original structural relationship between subsystems changes. Due

to this change, the behavior of a subsystem does not truly represents its correspond-

ing part in the multi-stage line. It requires subsystems to update their relationship

according to the current control policy, which is part of the aggregation procedure.

A new iteration starts, since the current control policy may not be optimal as the

relationship between subsystems is updated. The MDP model for each subsystem

with updated relationship is developed, and new control policy is derived. After sev-

eral iterations, this process converges, and each subsystem has a similar behavior as

its corresponding part in the multi-stage line. Control policy for each subsystem can

achieve a global improvement.

In the following subsections, the system decomposition and modeling of subsys-

tems will be introduced in details, and a novel aggregation based procedure will be

provided to generate the control policy.
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Figure 5.3: System Decomposition with Two- or Three-Machine Subsystems

5.2.3 System Decomposition

A subsystem, isolated from a multi-stage line, serves as a building block to support

the decomposition-based control, and it can be a two-machine-one-buffer subsystem

or a three-machine-two-buffer subsystem, shown in Figure 5.3. Figure 5.3a shows how

a multi-stage line with D machines is decomposed into (D−1) two-machine-one-buffer

subsystems. Each subsystem consists of two machines, msub
1 and msub

2 , and a buffer

Bsub
1 . The ith subsystem of a multi-stage line is denoted by SSi, for i = 1, 2 · · · , D−1.

The control model for a two-machine-one-buffer subsystem is to determine when to
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turn machine msub
1 down based on the state of the subsystem. Figure 5.3b shows

how a multi-stage line with D machines is decomposed into (D−1)/2 three-machine-

two-buffer subsystems. Each three-machine-two-buffer subsystem consists of three

machines, denoted by msub
1 , msub

2 and msub
3 , and two buffers, denoted by Bsub

1 and

Bsub
2 . Similar to a two-machine-one-buffer subsystem, the control model for a three-

machine-two-buffer subsystem is to control machine msub
1 and msub

2 according to the

state of the subsystem.

Decompose a serial line into subsystems, since the system as a whole is infeasible

to analyze directly due to its large state space. Decomposition, as an approximation

based method, can compromise modeling accuracy, when too many subsystems are

involved. Also, to consider the complexity of the subsystem itself, the balance is

found by using three-machine-two-buffer subsystem as a general building block in the

decomposition method. One two-machine-one-buffer subsystem will be utilized to

handle the systems with even number of machines.

5.2.4 Descriptive Model of Subsystem

The relevant parameters to model a subsystem are presented in Figure 5.4. The ith

machine in a subsystem is denoted by msub
i , and it is a Bernoulli machine with param-

eter psubi . The ith buffer in a subsystem is denoted by Bsub
i . Buffer Bsub

i is described

by buffer capacity N sub
i , maximum allowable residence time T subi,max and minimum re-

quired residence time T subi,min. Neighboring subsystems are mutually influenced. Such

influence is modeled by starvation probability, ps, and blockage probability, pb. The

probability that machine msub
1 is not able to produce due to the starvation from its

upstream buffer is denoted by ps. If buffer Bsub
1 has available space, the probability

that the first machine can produce is psub1 (1 − ps). Machine msub
2 in a two-machine-

one-buffer subsystem and machine msub
3 in a three-machine-two-buffer subsystem are
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Figure 5.4: Models for Subsystems

shared by its downstream subsystem, which is illustrated in Figure 5.3. The prob-

ability pb represents the probability that machine msub
2 in a two-machine-one-buffer

subsystem or machine msub
3 in a three-machine-two-buffer subsystem is not allowed

to work due to downstream blockage or the control policy of the downstream sub-

system. Thus, if there is at least one part in buffer Bsub
1 of a two-machine-one-buffer

subsystem or buffer Bsub
2 of a three-machine-two-buffer subsystem with residence time

larger than or equal to the minimum required residence time, the probability that the

part can be produced and leave the subsystem is psub2 (1− pb) and psub3 (1− pb) for two-

machine-one-buffer subsystem and three-machine-two-buffer subsystem, respectively.

Assumption (ix) suggests that machine m1 is never starved, so ps is always equal to

0 for the first subsystem. Similarly, the last machine of the last subsystem is never

blocked, and thus pb in the last subsystem is always equal to 0.

5.2.5 Markov Decision Model for Subsystem

When a two-machine-one-buffer subsystem is isolated, the subsystem can be viewed

as a two-machine serial line with two Bernoulli machines with parameters psub1 (1−ps)
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and psub2 (1−pb), respectively. Similarly, a three-machine-two-buffer subsystem can be

viewed as a three-machine serial line with three Bernoulli machines with parameters

psub1 (1−ps), p2 and psub3 (1−pb), respectively. The modeling of two-machine-one-buffer

subsystem shares similarities with the modeling of three-machine-two-buffer subsys-

tem. In this subsection, only how to model a three-machine-two-buffer subsystem is

shown without repeating it for two-machine-one-buffer subsystem.

• Decision epochs: t = 0, 1, · · · .

• System state: hsub(t) = (nsub1 , τ sub1 , nsub2 , τ sub2 ) ∈ Hsub. nsub1 and nsub2 are buffer

occupancy of buffer Bsub
1 and buffer Bsub

2 , respectively. τ sub1 and τ sub2 are resi-

dence time of the first part in buffer Bsub
1 and buffer Bsub

2 , respectively, if the

buffer is not empty. Let τ subi = 0, for i = 1, 2, if nsubi = 0. The state space of a

subsystem is denoted by Hsub.

• Action: asub(t) =
[
asub1 (t) asub2 (t)

]T ∈ Asub, where asubi (t) ∈ {1, 0}, for i = 1, 2,

at any time t. The action asubi (t) = 0 makes machine msub
i not work in cycle

(t + 1), and the action asubi (t) = 1 keeps machine msub
i unchanged. The action

space of a subsystem is denoted by Asub.

• Reward: the reward at time (t − 1) is denoted by r
(
hsub (t− 1) ,asub (t− 1)

)
.

Specifically,

r
(
hsub (t− 1) ,asub (t− 1)

)
= P̃R

sub
(t)− ωS̃Rsub

(t) , (5.20)

where P̃R
sub

(t) and S̃R
sub

(t) are random variables representing the production

of the last machine msub
3 and the scrap from both buffers, respectively.

• Expected total discounted reward of policy πsub:

vπ
sub

= Eπsub
{ ∞∑

t=0

λtr
(
hsub (t) ,asub (t)

)}
, (5.21)
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where λ ∈ [0, 1) is the discount.

The optimal control policy of a subsystem can be expressed as

π∗ ∈ arg max
πsub

Eπsub
{ ∞∑

t=0

λtr
(
hsub (t) ,asub (t)

)}
. (5.22)

Remark 3. The state of a buffer is defined only by the buffer occupancy and the

residence time of the first part in the buffer. Following the approximate method de-

tailed in Ju et al. (2017b), the optimization problem can be treated as an MDP with

an exact stochastic model, and standard methods, such as the value iteration and the

policy iteration, can be used to solve the problem.

Let πsub : Hsub → Asub be a mapping from state to action under control policy

πsub. As control policy πsub is implemented, the subsystem reaches steady state.

Let µ : Hsub → [0, 1] be a mapping from state to its steady-state probability under

control policy πsub. P̂R
sub

, ŜR
sub

, ŜT
sub

and B̂L
sub

denote the estimated long-term

performance measures of the subsystem under control policy πsub, and they are defined

and derived as follows.

• Estimated production rate P̂R
sub

: the expected number of parts produced by

the last machine of the subsystem in a cycle, and specifically,

P̂R
sub

=
∑

hsub∈HsubPR

µ
(
hsub

)
psub3

(
1− pb

)
, (5.23)

where

Hsub
PR =

{
hsub ∈ Hsub | τ sub2 ≥ T sub2,min

}
. (5.24)

The subset of state space, Hsub
PR, represents all states where the residence time

of the first part in buffer Bsub
2 is equal to or larger than T sub2,min. It is suggested

by Equation (5.23) that one part can be produced for a subsystem in a state in

Hsub
PR if machine msub

3 is up and there is no blockage to the machine.
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• Estimated scrap rate ŜR
sub

: the expected number of scrapped parts from the

subsystem in a cycle, and specifically,

ŜR
sub

=
∑

hsub∈HsubSR,1

µ
(
hsub

) (
1−

[
0 psub2

]
πsub

(
hsub

))
+

∑
hsub∈HsubSR,2

µ
(
hsub

) [
0 psub2

]
πsub

(
hsub

) (
1− psub3

(
1− pb

))
+

∑
hsub∈HsubSR,3

µ
(
hsub

) (
1− psub3

(
1− pb

))
,

(5.25)

where

Hsub
SR,1 =

{
hsub ∈ Hsub | τ sub1 = T sub1,max − 1

}
, (5.26)

Hsub
SR,2 =

{
hsub ∈ Hsub | τ sub1 = T sub1,max − 1, nsub2 = N sub

2 , τ sub2 < T sub2,max − 1

}
.

(5.27)

Hsub
SR,3 =

{
hsub ∈ Hsub | τ sub2 = T sub2,max − 1

}
. (5.28)

Equation (5.25) is the summation of three terms. The first term represents the

case that a part is scrapped from buffer Bsub
1 due to failure of machine msub

2 or

an action that turns machine msub
2 down. In the second term, machine msub

2

is capable of working, but a part is scrapped from buffer Bsub
1 due to blockage

of buffer Bsub
2 . The third term represents a scrap from buffer Bsub

2 caused by

machine msub
3 .

• Estimated starvation probability ŜT
sub

: the probability that the last machine of

the subsystem is not able to produce due to starvation, and specifically,

ŜT
sub

=
∑

hsub∈HsubST

µ
(
hsub

)
, (5.29)

where

Hsub
ST =

{
hsub ∈ Hsub | τ sub2 < T sub2,min

}
. (5.30)
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The estimated starvation probability ŜT
sub

is the probability that buffer Bsub
2

has no part with residence time larger than or equal to T sub2,min.

• Estimated blockage probability B̂L
sub

: the probability that the first machine of

the subsystem is not able to produce due to blockage or control policy, and

specifically,

B̂L
sub

=
∑

hsub∈Hsub

µ
(
hsub

) (
1− [1 0]πsub

(
hsub

))
+

∑
hsub∈Hsub

BL,1

µ
(
hsub

)
[1 0]πsub

(
hsub

) (
1−

[
0 psub2

]
πsub

(
hsub

))
+

∑
hsub∈Hsub

BL,2

µ
(
hsub

)
[1 0]πsub

(
hsub

) [
0 psub2

]
πsub

(
hsub

) ((
1− psub3

)
+ psub3 pb

)
,

(5.31)

where

HsubBL,1 =

{
hsub ∈ Hsub | nsub1 = Nsub

1 , τsub1 < T sub1,max − 1

}
, (5.32)

HsubBL,2 =

{
hsub ∈ Hsub | nsub1 = Nsub

1 , τsub1 < T sub1,max − 1, nsub2 = Nsub
2 , τsub2 < T sub2,max − 1

}
.

(5.33)

The first term of Equation (5.31) is the probability that machine msub
1 is blocked

by the control policy that directly turns machine msub
1 down. The second term

represents the case when buffer Bsub
1 is full and machine msub

2 cannot produce a

part from buffer Bsub
1 due to the control policy or failure on machine msub

2 . The

third term gives the situation where both buffer Bsub
1 and buffer Bsub

2 are full

and machine msub
3 cannot produce a part due to the control policy or failure.

In a similar way, the MDP model of a two-machine-one-buffer subsystem can be

built, and the performance measures of a two-machine-one-buffer subsystem can be

derived.
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5.2.6 Aggregation Procedure

The structural relationship between neighboring subsystems is defined by star-

vation probability ps and blockage probability pb. If ps and pb are accurate, the

behavior of a subsystem will be similar to its corresponding part in the multi-stage

line. The control policy of each subsystem is derived from its MDP model as ps and

pb are assumed to be known. However, as the control policy of each subsystem is

implemented, it changes the relationship between neighboring subsystems. Thus, it

requires the relationship to be updated. The update of relationship further requires

each subsystem to derive an updated control policy. Thus, an iterative method, the

aggregation procedure, is proposed to update the relationship between neighboring

subsystems and the control policy of each subsystem.

The aggregation procedure, shown in Figure 5.5, includes the backward aggrega-

tion and the forward aggregation. Figure 5.5a shows that a multi-stage line is decom-

posed into several subsystems, and control policy πsub is derived for each subsystem

as the starvation probability ps and the blockage probability pb of each subsystem are

assumed to be known and fixed. Figure 5.5b and Figure 5.5c illustrate the backward

aggregation and the forward aggregation, respectively. In this process, the control

policy πsub is fixed, and pb and ps are updated through the backward aggregation

and forward aggregation, respectively. In addition, performance measures, including

P̂R
sub

, ŜR
sub

, are derived.

The backward aggregation, shown in Figure 5.5b, starts with the last subsystem

and moves backward. The blockage probability B̂L
sub

, derived by Equation (5.31)

from the a subsystem, is used to update pb of its upstream neighboring subsystem,

and this process continues until pb of the first subsystem is updated. The forward

aggregation, shown in Figure 5.5c, is similar to the backward aggregation but starts
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Figure 5.5: The Aggregation Procedure

with the first subsystem. The starvation probability ŜT
sub

, derived by Equation (5.29)

from a subsystem, is used to update ps of its downstream neighboring subsystem. This

forward aggregation continues until ps of the last subsystem is updated.

Figure 5.6 provides the pseudocode of the decomposition-based control approach.

Line 1 is to decompose the multi-stage line into subsystems. Line 2 initializes the

control policy for each subsystem, and the initial control policy never turns machines

down. The decomposition-based control consists of several iterations to finally derive
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1: Decompose multi-stage line into K subsystems

2: Initialize control policy for each subsystem

3: while Stop criteria is not satisfied do

4: Initialize ps and pb to 0

5: while Stop criteria is not satisfied do

6: for k = 1, K − 1 do

7: Derive performance of subsystem SSK−k+1

8: Update pb of subsystem SSK−k

9: end for

10: for k = 1, K − 1 do

11: Derive performance of subsystem SSk

12: Update ps of subsystem SSk+1

13: end for

14: end while

15: for k = 1, K − 1 do

16: Obtain control policy for subsystem SSk

17: end for

18: end while

Figure 5.6: The Iterative Procedure for Decomposition-Based Control

the control policy for each subsystem, and the iterations are presented from line 3

to line 18. It is a loop from line 3 to line 18. Inside the loop, the steps from line 6

to line 9 represent the backward aggregation, and the steps from line 10 to line 13

represent the forward aggregation. As ps and pb of each subsystem are updated, the

new control policy for each subsystem is derived, shown from line 15 to line 17. A
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stop criteria is set for the loop, and it can be a certain number of iterations or the

indication of convergence of ps and pb.

5.2.7 Convergence

A parameter setting is selected as follows to numerically study the convergence of

the aggregation procedure.

D = 7,

p1 = 0.9, p2 = 0.87, p3 = 0.85, p4 = 0.83, p5 = 0.8, p6 = 0.77, p7 = 0.75,

Ni = 6, Ti,max = 8, Ti,min = 2, for i = 1, · · · , D − 1, (5.34)

ω = 1.3.

The discount, λ, is set to be 0.95. A set of control policies for subsystems are ob-

tained in each iteration, and the steady-state performance measures are compared

under those control policies through simulation. The simulation repeats 1,000 times,

and the steady-state performance measures are shown in Figure 5.7. The horizontal

axis represents the iterations, and the vertical axis represents the performance mea-

sures. Iteration 0 shows the performance measures where the initial control policy

is implemented. The result suggests that the decomposition-based control can soon

improve the performance in a small number of iterations. The performance measures

oscillate withing a small zone primarily due to the random error from simulation.

The oscillation of production rate looks more obvious, because the control policy do

not change the production rate much.

To numerically study the convergence in a more general sense, vectors psi and

pbi, for i = 0, 1, · · · , are introduced. Let psi and pbi, for i = 0, 1, · · · , be a vector of

the starvation probabilities and a vector of blockage probabilities from all subsystems

under the control policy obtained from the ith iteration, respectively. Specifically,
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Figure 5.7: Steady-State Performance Measures with Control Policies Obtained in

Each Iteration

psi = [ps1 ps2 · · · ]T , (5.35)

pbi =
[
pb1 pb2 · · ·

]T
, (5.36)

where psj and pbj, for j = 1, 2, · · · , are the starvation probability ps and blockage

probably pb of subsystem SSj, respectively. The distance of psi and psi−1 and the

distance of pbi and pbi−1 are denoted by dsi and dbi for i = 1, 2, · · · , respectively, and
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defined as follows.

dsi =
(
psi − psi−1

)T (
psi − psi−1

)
, (5.37)

dbi =
(
pbi − pbi−1

)T (
pbi − pbi−1

)
. (5.38)

The convergence can be observed, if dsi and dbi are getting close to 0 as i increases.

To numerically show the convergence of the aggregation procedure of the decomposition-

based control, 2,000 parameter settings are randomly generated from the range of

parameter settings as follows.

p1 ∈ [0.85, 0.99],

pi ∈ [0.65, 0.99] for i = 2, · · · , D,

Ni ∈ {5, 6, 7} for i = 1, · · · , D − 1,

Ti,max ∈ {Ni + 1, Ni + 2, Ni + 3} for i = 1, · · · , D − 1, (5.39)

Ti,min ∈ {1, 2} for i = 1, · · · , D − 1,

ω ∈ [0.7, 1.7] .

Parameters are selected with equal probability from the range. Let the number of

machines be 9. The number of iterations is set to be 8. Both ds8 and db8 at the end of

the iteration are obtained for each parameter setting. The experiment result shows

that 99.95% of all cases have ds8 smaller than 10−3 and 100.00% of the cases result in

db8 smaller than 10−3. It indicates that the performance measures converge within a

small interval after a certain number of iterations.
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5.3 Numerical Experiments and Performance Comparison

5.3.1 RL Control for Comparison

The decomposition-based control is compared with a feature-based reinforcement

learning control (RL control). In the RL control, a feature-based architecture is used

to handle the large state space.

Let r (H (t− 1) ,a(t− 1)) be the reward function of the multi-stage line at time

(t− 1). Specifically,

r (H (t− 1) ,a(t− 1)) = ˜PRD (t)− ωS̃R (t) . (5.40)

Given the initial system state H (0), the optimal expected total discounted reward is

expressed as follows.

v∗ (H (0)) = max
π

Eπ

{ ∞∑
i=0

λir (H (i) ,a(i))

}
, (5.41)

which, however, is impossible to obtained due to the large state space of the problem.

An approximate lookahead function v̂(φ(H(t)),β) with parameters β is introduced

to replace v∗ (H (t)). Function φ(H(t)) maps system state H(t) to the feature, and

v̂(φ(H(t)),β) can be obtained through training. The buffer occupancy of each buffer

and the residence time of the first part in each buffer are important measures to

capture system dynamics, and thus they are taken as candidates of features. To fur-

ther explore features, a preliminary analysis of features is performed with parameters

given as follows.
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D = 4,

p1 = 0.9, p2 = 0.83, p3 = 0.75, p4 = 0.7,

Ni = 6, for i = 1, 2, 3

Ti,max = 8 for i = 1, 2, 3,

Ti,min = 0 for i = 1, 2, 3,

ω = 0.9, λ = 0.95.

(5.42)

Let the initial buffer occupancy of each buffer be 2 and residence time of the first part

in each buffer be 6. The effect of initial buffer occupancy is studied. Change the initial

buffer occupancy from 1 to 6 for each buffer each time with all other parameters fixed.

For each initial buffer occupancy, 4,000 initial system states are randomly generated,

and simulation runs for 50 cycles starting with each initial system state. The average

total discounted rewards,
∑50

t=1 λ
t−1 (PR (t)− ωSR (t)), starting with different initial

buffer occupancy are compared. The result is shown in Figure 5.8. It suggests that,

to have a large average total discounted reward, the buffer occupancy should not be

either too small or too large. A small buffer occupancy results in a high probability

of starvation for the downstream machines, and it reduces the production rate. In

contrast, a large buffer occupancy requires long time to have all the parts in the buffer

processed, and the risk of scrap increases.

Following the same way with parameters given in Equation (5.42), the effect of

initial residence time of the first part in the buffer is studied. The initial buffer

occupancy is set to be 4 for each buffer, and the initial residence time of the head

part in each buffer is set to be 3. Change the residence time from 3 to 7 and plot the

average total discounted reward in Figure 5.9. A trend can be seen that the average

total discounted reward decreases as the initial residence time of head part in buffer
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Figure 5.8: The Average Total Discounted Reward with Different Initial Buffer Oc-

cupancy

increases. A large residence time results in a high risk of scrap, and thus a small

residence time is always preferred.

According to the simulation study, three features are adopted for each buffer, and

they are the buffer occupancy ni, the square of buffer occupancy n2
i and residence

time of the first part in the buffer τi,1. Thus, the features for the multi-stage line are

provided by

φ (H (t)) = [φ1 φ2 · · · φ3D−2]
T , (5.43)

where φ1 is a constant term, and φ3i−1, φ3i and φ3i+1 are features of buffer Bi, for

i = 1, 2, · · · , D − 1. Specifically,

φ3i−1 = ni,

φ3i = n2
i ,

φ3i+1 =


τi,1, if ni 6= 0

0, if ni = 0

, i = 1, 2, · · · , D − 1.

(5.44)
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Figure 5.9: The Average Total Discounted Reward with Different Initial Residence

Time of Head Part in Buffer

Then, the lookahead function, following a linear feature-based architecture, is ex-

pressed as follows.

v̂ (φ (H (t)) ,β) = βTφ (H (t)) . (5.45)

Parameter β in Equation (5.45) can be estimated in training through simulation. The

optimal action can be expressed as

a∗(t− 1) ∈ arg max
a(t−1)∈A

E

{
r (H (t− 1) ,a(t− 1)) + λv̂ (φ (H (t)) ,β)

}
. (5.46)

5.3.2 Simulation Experiment with a Single Case

To show how the decomposition-based control improves the multi-stage line, the

parameter setting in Equation (5.34) is used. The simulation runs 200 cycles with all

buffers empty initially and repeats 1,000 times. The multi-stage line is decomposed

into three-machine-two-buffer subsystems.

The result of the simulation experiment is shown in Figure 5.10. In each one of

the three plots in Figure 5.10, the horizontal axis represents the time from cycle 0
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Figure 5.10: Comparison of Performance Measures

to cycle 200, and the vertical axis represents the performance measures. There are

three plots representing three performance measures, and they are production rate

PRD(t), scrap rate SR(t) and reward (PRD(t)−ωSR(t)). The average performance

measures and 95% confidence intervals without control are plotted by blue lines and

blue shaded areas, respectively. Similarly, the green color and red color are used for

the RL control and the decomposition-based control, respectively.

Production rates with two control methods and without control are plotted in

Figure 5.10a, and it shows no significant difference of production rates among the three

110



methods. The two control methods slightly reduce the production rate. Among the

two control methods, the decomposition-based control maintains a higher production

rate. The two control methods have significant improvement to the scrap rate, shown

in Figure 5.10b, and in this case, RL control shows to reduce more scrap rate. The

result suggests that both control methods can significantly reduce scrap rate without

sacrificing too much production rate. Figure 5.10c shows the rewards of the three

methods. The rewards under RL control and decomposition-based control are higher

than the reward without control. The rewards of RL control and decomposition-based

control are almost overlapped, and RL control results in a slightly higher reward in

this case. In terms of computing time, the decomposition-based control is much

more computationally efficient than the RL control. The experiment runs on a server

with Intel(R) Core(TM) i7-5930K CPU, sufficiently large RAM and Linux operating

system. In this single experiment, the decomposition-based control takes 19 seconds

to generate the control policy, while the RL control needs as much as 10,222 seconds

for training.

After the last iteration of the aggregation procedure, each subsystem has its con-

trol policy. The control policies for machine m3 and machine m4 are partially pre-

sented in Figure 5.11 and Figure 5.12, respectively. Machine m3 and machine m4

are assigned to the second subsystem, which consists of machine m3, machine m4,

machine m5, buffer B3 and buffer B4. Both machine m3 and machine m4 take actions

by observing the states of buffer B3 and buffer B4.

Figure 5.11 presents the control policy for machine m3. First fix the state of buffer

B4. The relationship between the action that machine m3 takes and the state of buffer

B3 is illustrated in Figure 5.11a, Figure 5.11b and Figure 5.11c. The horizontal axis

represents the residence time of the first part in buffer B3, and the vertical axis

represents the buffer occupancy of buffer B3. Given that the state of buffer B4 is
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Figure 5.11: Control Policy Obtained from the Decomposition-Based Control for

Machine m3

fixed, a state for the subsystem is represented by a block in the figure. The black

blocks are the infeasible region that the subsystem will never visits. In the feasible

region, a block is colored to be white or gray, indicating two actions. The white

color means that machine m3 will be unchanged, while the gray color indicates that

machine m3 will be turn down manually. Figure 5.11a shows the case when buffer

B4 has a low buffer occupancy and a small residence time of the first part. It can be

observed that machine m3 is turned down only when there is a high buffer occupancy

in buffer B3. Figure 5.11b shows a control policy when buffer B4 has a median buffer

occupancy and a median residence time of the first part, and the control policy is

similar to the control policy shown in Figure 5.11a. When buffer B4 reaches a high

occupancy and has a large residence time of the first part, machine m3 is more likely
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Figure 5.12: Control Policy Obtained from the Decomposition-Based Control for

Machine m4

to be turned down to maintain a lower buffer occupancy for buffer B3, shown in

Figure 5.11c.

Then, fix the state of buffer B3 and present the control policy with respect to the

state of buffer B4. The result is shown in Figure 5.11d, Figure 5.11e and Figure 5.11f.

Figure 5.11d indicates that machine m3 always keeps unchanged whatever state buffer

B4 is when buffer B3 has a low buffer occupancy and a small residence time of the

first part. In contrast, machine m3 is always turned down whatever state buffer B4

is when buffer B3 has a high buffer occupancy and a large residence time of the first

part, which is shown in Figure 5.11f. Figure 5.11e indicates that when buffer B3 has

a median buffer occupancy and a median residence time of the first part, machine m3

is turned down only when buffer B4 reaches a high buffer occupancy.
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From Figure 5.11, three main features related to the decision making of machine

m3 can be observed. First, buffer occupancy of buffer B3 and buffer B4 plays an

important role in machine m3’s decision making. Machine m3 is more likely to be

turned down when buffer B3 and/or buffer B4 have/has a high buffer occupancy. Such

actions prevent the subsystem from a potential scrap by turning machinem3 down and

stopping new parts from entering the subsystem. Since the buffer occupancy is high,

the action that turns machine m3 down will not cause too much loss of production.

Second, buffer B3 has a larger influence on machine m3’s decision making than buffer

B4. It can be observed that the lookup tables shown in Figure 5.11a, Figure 5.11b and

Figure 5.11c does not change too much mutually, while the lookup tables in Figure

5.11d, Figure 5.11e and Figure 5.11f shows a large difference. Machine m3 is closer

to buffer B3 than buffer B4, and it explains why buffer B3 has a larger influence on

machinem3’s decision making. Last, the control policy is not sensitive to the residence

time of the first part in either buffer B3 or buffer B4, and the boundary that separates

the white region and gray region does not show the property of monotonicity.

Figure 5.12 presents the control policy for machine m4. In each plot, the black

blocks represent the infeasible region. Within the feasible region, the white block

indicates the action that no intervention is given, while the gray block indicates the

action to turn machine m4 down. First fix the state of buffer B4. When buffer B4

has a low buffer occupancy and a small residence time of the first part, machine m4

is always kept unchanged. In such a situation, there is no risk of scrap from buffer

B4, and letting machine m4 work can potentially increase production rate. When

buffer B4 has a median buffer occupancy and a median residence time of the first

part, machine m4 is turned down when buffer B3 has a small buffer occupancy and a

small residence time for the first part. This action can decrease the risk of scrap from

buffer B4 without increasing the risk of scrap from buffer B3. It can be observed that
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the feasible region with τ3,1 smaller than 2 is white, and the actions in those states

in fact do not make any difference. The reason is that machine m4 cannot produce a

part from buffer B3 when the residence time of the first part in buffer B3 is smaller

than T3,min. When buffer B4 has a high buffer occupancy and a large residence time

of the first part, machine m4 produces when the residence time of the first part in

buffer B3 is large. In this case, machine m4 has to do a trade-off by considering scrap

from both buffer B3 and buffer B4.

Then, fix the state of buffer B3. Figure 5.12d suggests that machine m4 is more

likely to be turned down when B3 has a low buffer occupancy and a small residence

time of the first part. Figure 5.12e indicates that, in the cases that B3 has a median

buffer occupancy and a median residence time of the first part, machine m4 is turned

down only when buffer occupancy of buffer B4 is high. Machine m4 does so due to the

trade-off of scrap in buffer B3 and buffer B4. Figure 5.12f suggests that machine m4

is unchanged whatever state buffer B4 is when buffer B3 has a high buffer occupancy

and a large residence time of the first part.

When Figure 5.11 is compared with Figure 5.12, it can be observed that the action

on machine m3 and the action on machine m4 play different roles in improving the

systems. Machine m3 is the first machine of its subsystem, and it decides to allow a

part to enter the subsystem or prevent a part from entering the subsystem. Machine

m4 is in the middle of buffer B3 and buffer B4. Its responsibility is to balance the

risk of scrap from buffer B3 and buffer B4.

5.3.3 Simulation Experiment with Randomly Selected Parameter Settings

To evaluate the performance of the decomposition-based control in a more general

sense, parameter settings of a multi-stage line are randomly selected from a predefined

range, and the performance measures of a system without control, with RL control
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and with decomposition-based control are compared. The range of parameter settings

is given in Equation (5.39). Parameters are selected with equal probability from

the range. 200 parameter settings are randomly selected for multi-stage lines with

D = 5 machines and D = 7 machines, respectively. In each parameter setting, the

average steady-state performance measures of a system without control, with RL

control and with decomposition-based control are obtained through simulation and

compared mutually. The simulation starts with empty buffers. The average reward of

each cycle from cycle 201 to cycle 400 among 100 repeats, which is the mean value of

20,000 observations, is calculated and compared. In the decomposition-based control,

multi-stage line is decomposed into three-machine-two-buffers subsystems.

The results of the simulation experiment for the multi-stage lines with 5 machines

and 7 machines are shown in Figure 5.13 and in Figure 5.14, respectively. Figure 5.13a

and Fig 5.13b show the improvement of reward by RL control and the decomposition-

based control for the multi-stage line with 5 machines, respectively. In most cases

among 200 random parameter settings, the RL control can improve the system, but

it could happen in some cases that the RL control makes the performance worse.

In contrast, the decomposition-based control is more robust, and all 200 cases can

be improved. Figure 5.13c shows a pairwise comparison where the improvement of

decomposition-based control minus the improvement of RL control for each case is

presented, and the result suggests that the decomposition-based control outperforms

the RL control. Considering the average reward without control is 0.525, such an

improvement is significant. The same comparison is performed for the multi-stage

line with 7 machines as well. Figure 5.14a, compared with Figure 5.13a, shows more

negative improvement. It suggests that as the number of machines increases the RL

control is more likely to fail to work. In contrast, Figure 5.14b suggests that the

decomposition-based control can still maintain a good performance. Figure 5.14c,
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Figure 5.13: Improvement of Average Reward for Multi-Stage Lines with 5 Machines.

The Average Reward without Control is 0.525.

compared with Figure 5.13c, shows that the strength of decomposition-based control

over the RL control is more significant as the the number of machines increases. The

average reward without control is 0.464, and it shows a significant improvement of

the decomposition-based control.

The control methods are developed with MATLAB and run on a server with

Intel(R) Core(TM) i7-5930K CPU, sufficiently large RAM and Linux operating sys-
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Figure 5.14: Improvement of Average Reward for Multi-stage Lines with 7 Machines.

The Average Reward without Control is 0.464.

tem. It takes time to perform training for RL control and perform the aggregation

procedure of decomposition-based control. When there are 5 machines, the average

computing time is 1,037.8 seconds for RL control and 34.6 seconds for decomposition-

based control. As the total number of machines increases to 7, the average computing

time is 14,506.3 seconds for RL control and 70.8 seconds for decomposition-based con-

trol. The result suggests that the decomposition-based control is much more compu-
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Table 5.1: Average Reward of Different Methods

D Average re-

ward without

control

Average re-

ward with

decomposition-

based control

Relative im-

provement of

decomposition-

based control

Average reward

with RL control

Relative im-

provement of

RL control

5 0.525 0.648 23.4% 0.588 12%

7 0.464 0.608 31.0% 0.506 9.1%

9 0.403 0.563 39.7% − −
11 0.385 0.543 41.0% − −

Table 5.2: Computing Time of Different Methods (Second)

D Aggregation procedure of

decomposition-based control

Training of RL

control

5 34.6 1,037.8

7 70.8 14,506.3

9 170.7 −
11 211.6 −

tationally efficient than the RL control. When the number of machines increases, the

computing time of the RL control increases much faster than the decomposition-based

control.

Serial lines with more machines are tested, and the result is summarized in Tables

5.1 and 5.2. Table 5.1 provides the reward of each method under each setting. The

decomposition-based control shows a good performance and also outperforms the RL

control and the case under no control. The computing time is presented in Table 5.2.

The computing time of the aggregation procedure of the decomposition-based control

is much smaller than the training time of RL control and also much less sensitive to

the number of machines than the RL control.
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Chapter 6

FAST RESPONSE TO MACHINE FAILURES IN SEMICONDUCTOR

ASSEMBLY LINES WITH RESIDENCE TIME CONSTRAINTS

6.1 Background

Semiconductor manufacturing consists of wafer fabrication and assembly, also re-

ferred to as front-end and back-end, respectively (Zhang et al., 2020; Li et al., 2012;

Chen and Lo, 2012). Semiconductor assembly line is a flexible manufacturing system.

Products of different types from different orders, having customized operations and

qualified machines, are processed in the same assembly line at the same time. The

high flexibility, on the other hand, increases the complexity of production system

analysis and control. A lot of research has been devoted to a better way to schedule

semiconductor assembly so that the throughput is maximized, due date of each order

is met, and production requirements are well satisfied (Chung et al., 2014; Lin and

Chen, 2015; Hsieh and Cheng, 2018). At Intel, a master schedule is created every

shift, specifying when and where each lot of products should be processed within the

next three weeks. Creating such a master schedule, considering both the feasibility

and optimality, is time-consuming.

However, the semiconductor assembly may not always go as planned, and an

assembly line can easily be disrupted by machine failures. Machine repair takes

from several minutes to hours, causing the master schedule to be sub-optimal or

even infeasible. Specifically, machine failures can result in delay. Since those lots

directly impacted by machine failures may not arrive at downstream operations in

time, it further leads to delay at downstream operations. In addition, products in
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a semiconductor assembly line are subject to residence time constraints. Due to

oxidation and moisture absorption issues, they cannot stay in buffer too long (Han

and Kim, 2017). Residence time constraints are considered in a master schedule to

guarantee product quality, but machine failures may lead to violation of residence

time constraints. When long machine failure occurs, neither sticking to the original

master schedule nor immediately remaking a new master schedule is a good way to

deal with it.

This chapter is aimed at fast response to machine failures in semiconductor assem-

bly lines. There are two practical requirements. First, the master schedule should be

retained if possible, considering the difficulty of remaking a master schedule. Second,

the computation time should be small enough. In this chapter, machine failures in

semiconductor assembly lines are classified into two categories, short machine failure

and long machine failure. To handle short machine failure, extra time is added to

each operation of each lot to make the master schedule robust. The assembly line can

recover on its own without intervention. When long machine failure occurs, a mixed

integer programming model is formulated to adjust the master schedule. The original

master schedule is taken as a warm start, and a short period schedule is obtained with

CPLEX Optimizer for the semiconductor assembly line to follow immediately. In this

way, the semiconductor assembly line can respond to long machine failure fast with-

out replacing the whole master schedule, or it can give master scheduler enough time

to remake a new master schedule. Thus, the negative impact of machine failure is

minimized. Data from shop floor are collected. Using those data, a simulation model

is developed with Python and SimPy package to simulate a real-world semiconductor

assembly line and evaluate the proposed method. The experiment results show that

the proposed method can achieve fast response to machine failures in semiconductor

assembly lines.
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Figure 6.1: The Layout of the Segment of a Semiconductor Assembly Line under

Study

6.2 System Description

6.2.1 Layout

In this chapter, a segment of a semiconductor assembly line, presented in Figure

6.1, is studied. There are four operations, denoted by O1, O2, O3 and O4, respectively.

Products of different types may have different requirements in terms of operations.

Some products go over all four operations, and the others only need to visit the first

three operations. Products are subject to residence time constraints, defined by time

windows. A time window specifies the maximum time a product can stay in a certain

area containing one or more than one buffer.

6.2.2 Product, Product Group and Lot

Each product belongs to a product group. Products of the same product group

share great similarity and require the same operations. The properties of product
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Figure 6.2: The Properties and Relationship of Product Group, Lot, Operation,

Machine and Tool

group include product group id and operation sequence, shown in Figure 6.2. In the

assembly line under study, there are 20 different product groups.

A lot consists of hundreds of products of the same product group, denoted by letter

L plus a number, such as L1, L2, etc. Products in the same lot are processed and

moved together. Lot is the minimum unit flowing in the assembly line. A lot carries

properties presented in Figure 6.2. Each lot has a unique id. Different lots may carry

different quantities of products, leading to different process time. A lot has a set of

qualified machines capable of processing the lot. Lots of the same product group may

have minor difference and thus can have different sets of qualified machines. A lot is

assigned to one machine for each operation, chosen from the set of qualified machines.

When a lot finishes the process at an operation, there are some supplementary works
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to do on the lot. It also takes time to move the lot to the next operation. The

cycle time refers to the time length from the lot finishing an operation to the lot

becoming available in buffer for the next operation. Thus, at any time, a lot can be

waiting in a buffer, getting process on a machine, or spending cycle time. There is

a predetermined schedule that specifies the assigned start time and assigned finish

time of each operation for each lot. If the actual finish time of a lot is later than the

assigned finish time, then the lot is delayed.

6.2.3 Operation, Machine and Tool

An operation is a collection of machines. A machine is denoted by letter M plus a

number, such as M1, M2, etc. A machine can only process lots one at a time. When

a machine is vacant, it chooses from its buffer a lot that is ready to go or a delayed

lot with the smallest assigned start time. To process a lot, a machine needs to have

a tool installed. The tool type and the product group of the lot should match. The

machine keeps using the same tool, if the following lots are of the same product group.

Otherwise, conversion of tools is required, and it takes time to set up a tool.

Figure 6.3 shows the layout of an operation that consists of several machines. For

a lot at this operation, there is a set of qualified machines, which is a subset of all

machines at the operation. The lot chooses one qualified machine according to the

schedule to have the operation done.

6.2.4 Schedule and Disruption

A schedule is made every shift, specifying when a lot should be released into the

system, when the lot should be processed at each operation, and what machine is

assigned to process the lot. Making a feasible and satisfactory schedule is complex,

and it usually takes a long time. The production of the following three weeks is then
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Figure 6.3: The Layout of an Operation

carried out according to the schedule. However, the production can be disrupted by

machine failures. When a machine fails to work, lots assigned to this machine are

waiting until the machine is repaired. Delay could happen to many lots. It also causes

violation of residence time constraints.
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6.3 Method

6.3.1 Short Machine Failure

There are two categories of machine failures, short machine failure and long ma-

chine failure, which are dealt with separately. To address short machine failure, which

lasts usually less than one hour, a small amount of extra time is assigned to each oper-

ation for each lot in the schedule. Thus, the assembly line can recover soon on its own

after the machine is repaired. Figure 6.4 presents a situation where a machine fails to

work. Each circle represents a lot that is assigned to the machine experiencing short

machine failure. The horizontal axis is the time that a lot finishes the operation, and

the vertical axis stands for the delay time. Machine failure occurs after the fourth

lot is processed. Without extra time added, delay time of lots lasts long and reduces

only when there exists machine idle time, shown in Figure 6.4a. In contrast, Figure

6.4b shows the case with extra time added, and it starts recovering when the machine

is repaired. The delay time of lots is decreasing until it finally reaches zero.

6.3.2 Long Machine Failure

A schedule even with extra time added to each operation for each lot cannot be

robust enough to handle long machine failure, and a proper adjustment is required.

The computation time should be short enough so that the factory floor can soon

switch to the adjusted schedule without too much delay. The adjustment can allow the

assembly line to recover faster. Figure 6.5 illustrates the adjustment for an operation.

When a machine fails, some lots are directly impacted, shown in Figure 6.5a. Without

proper control, those lots and the following lots assigned to the same machine can

have a long delay. The control takes advantage of machine idle time in the master

schedule so that the total delay time is minimized and the residence time constraints
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Figure 6.4: Illustration of Short Machine Failure

are satisfied. After a short period, the production can catch up with the master

schedule, shown in Figure 6.5b. If the assembly line cannot recover via the control,

the quickly adjusted schedule gives the master scheduler time to remake a new master

schedule.
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Figure 6.5: Illustration of adjustment for an Operation
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Figure 6.6: The Flowchart to Handle Machine Failure

Figure 6.5 only shows the control for the operation with failed machine. The

adjusted schedule also impacts downstream operations. Some lots may delay at one

operation and not be able to start the next operation in time. Therefore, similar

adjustment is carried out for the downstream operations.

Figure 6.6 shows how a machine failure is handled. If it is a short machine failure,

the system can recover on its own. If it is a long machine failure, the master schedule

is adjusted so the system can catch up with the original master schedule or has enough

time to remake a new master schedule.
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Model of an Operation

Assume a machine fails, and the repair is expected to be long. The decision horizon

is determined and should be longer than the repair time. Let I be the total number

of lots that are or will be at the operation within the decision horizon. Let K be the

total number of machines at the operation. Model parameters are first introduced.

oi,k ∈ R≥0, for i = 1, 2, · · · , I and k = 1, 2, · · · , K, specifies if the kth machine is a

qualified machine for the ith lot and how long it takes to process. If oi,k = 0, the

kth machine is not qualified for the ith lot. If oi,k > 0, the kth machine is qualified

and the process time is oi,k. Let ei, for i = 1, 2, · · · , I, be the time when the ith lot

enters the buffer and is ready for the operation. Denote by αi, for i = 1, 2, · · · , I, the

product group of the ith lot. sk,αi,αi′ denotes the conversion time of the kth machine

from product group αi to product group αi′. Let trk, for k = 1, 2, · · · , K, be the time

when the kth machine becomes available for the first time in the decision horizon.

If the kth machine is the failed machine, then trk is the time when the machine is

repaired. Let pi, for i = 1, 2, · · · , I, be the time when the ith lot is scheduled to

finish the process according to the original master schedule. Let τi be the time, by

which the ith lot has to finish the process due to residence time constraints. M is a

large number. Decision variables are defined, including xi,k ∈ R≥0, for i = 1, 2, · · · , I

and k = 1, 2, · · · , K, zi,i′ ∈ {0, 1}, for i = 1, 2, · · · , I, i′ = 1, 2, · · · , I and i 6= i′,

ai,k ∈ {0, 1}, for i = 1, 2, · · · , I and k = 1, 2, · · · , K, and di ∈ R≥0, for i = 1, 2, · · · , I.

xi,k = 0 means the kth machine is not used to perform the operation for the ith lot.

If xi,k > 0, the ith lot is assigned to the kth machine and the process starts at time

xi,k. zi,i′ ∈ {0, 1} is a binary decision variable. ai,k = 1 if the ith lot is assigned to

the kth machine. Otherwise, ai,k = 0. di is the delay time of the ith lot. Thus, the

mixed integer programming model is developed as follows.
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min f (xi,k, zi,i′, ai,k, di) =
I∑
i=1

di, (6.1)

s.t.

K∑
k=1

ai,k = 1, for i = 1, 2, · · · , I, (6.2)

xi,k ≤Mai,k, for i = 1, 2, · · · , I, and k = 1, 2, · · · , K, (6.3)

ai,k ≤ oi,k, for i = 1, 2, · · · , I, and k = 1, 2, · · · , K, (6.4)

ei ≤
K∑
k=1

xi,k, for i = 1, 2, · · · , I, (6.5)

xi′,k − xi,k ≤M (1− zi,i′)− 1 + 2M(1− ai′,k) + 2M(1− ai,k),

for i = 1, 2, · · · , I, i′ = 1, 2, · · · , I, i 6= i′, and k = 1, 2, · · · , K, (6.6)

xi′,k − (xi,k + oi,k + sk,αi,αi′) ≥ −Mzi,i′ − 2M(1− ai′,k)− 2M(1− ai,k),

for i = 1, 2, · · · , I, i′ = 1, 2, · · · , I, i 6= i′, and k = 1, 2, · · · , K, (6.7)

xi,k ≥ (trk + sk,βk,αi) ai,k, for i = 1, 2, · · · , I, and k = 1, 2, · · · , K, (6.8)

K∑
k=1

xi,k ≤ τi, for i = 1, 2, · · · , I, (6.9)

K∑
k=1

(xi,k + oi,kai,k)− pi ≤ di, for i = 1, 2, · · · , I, (6.10)

xi,k ∈ R≥0, ai,k ∈ {0, 1} for i = 1, 2, · · · , I, and k = 1, 2, · · · , K,

zi,i′ ∈ {0, 1} for i = 1, 2, · · · , I, i′ = 1, 2, · · · , I, and i 6= i′

di ∈ R≥0 for i = 1, 2, · · · , I.

Since exactly one machine is required for each lot, and thus the constraint given by

Equation (6.2) holds. The process time is always greater than one minute. Therefore,

if oi,k > 0, ai,k can be either 1 or 0. Otherwise, ai,k = 0. M is always greater than

xi,k. The ith lot can be assigned to the kth machine, only when the kth machine is
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qualified for the ith lot. It means that xi,k and ai,k can be nonzero only when oi,k is

nonzero. Thus, it leads to constraints (6.3) and (6.4). ei is the time when the ith

lot enters the buffer, and the start time of a lot should be later than its arrival time.

Thus, it leads to Equation (6.5).

Constraints (6.6) and (6.7) restrict that a machine works for lots one at a time.

xi,k and xi′,k should be mutually compared only when both the ith lot and the i′th

lot are assigned to the kth machine, which means that both xi,k and xi′,k are greater

than zero. Therefore, Equations (6.6) and (6.7) always hold, if either xi,k or xi′,k is

equal to zero. If both xi,k and xi′,k are positive, Equations (6.6) and (6.7) become

Equations (6.11) and (6.12), respectively, which are presented as follows.

xi′,k − xi,k ≤M (1− zi,i′)− 1, (6.11)

xi′,k − (xi,k + oi,k + sk,αi,αi′) ≥ −Mzi,i′. (6.12)

Since both i and i′ traverse set {1, 2, · · · , I}, one only needs to compare xi,k and xi′,k

when the ith lot starts process earlier than the i′th lot. If the i′th lot starts earlier,

then zi,i′ = 1 and Equations (6.11) and (6.12) become Equations (6.13) and (6.14),

respectively, presented as follows.

xi′,k − xi,k ≤ −1, (6.13)

xi′,k − (xi,k + oi,k + sk,αi,αi′) ≥ −M, (6.14)

which always hold. If the ith lot starts earlier, then one needs to require that the i′th

lot should start at least after the ith lot finishes the process. In this case, zi,i′ = 0,

and Equations (6.11) and (6.12) become Equations (6.15) and (6.16), respectively.

xi′,k − xi,k ≤M − 1, (6.15)

xi′,k − (xi,k + oi,k + sk,αi,αi′) ≥ 0. (6.16)
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Equation (6.15) always holds, and Equation (6.16) suggests that if xi′,k is greater than

xi,k then it should be at least greater than (xi,k + oi,k + sk,αi,αi′).

Any lot assigned to the kth machine should start later than trk plus conversion

time, which is presented in Equation (6.8). If the ith lot is not assigned to the kth

machine, then both xi,k and ai,k are equal to zero and Equation (6.8) still holds.

Otherwise, xi,k should be greater than or equal to (trk + sk,βk,αi). Equation (6.9) has

residence time constraints to be satisfied. Equation (6.10) gives the delay time, which

is to be minimized in objective function (6.1).

Thus, a mixed integer programming model is developed. The adjustment of the

master schedule for the operation with long machine failure can be obtained by solving

the model.

Warm Start

When a machine has a long failure, it causes long delay time to lots assigned to

the machine. Lots assigned to other machines of the same operation still follow the

original master schedule. It is how the production is carried out without real-time

intervention, which is not preferred but could be a feasible solution to the model.

This solution is taken as a warm start for the solver to speed up computation.

To address such a real-time decision making problem, one may prefer to reach a

good solution quickly rather than search for the optimal solution with long compu-

tation time. Warm start acts as a benchmark for an algorithm to solve the model,

and thus the output is always better than the benchmark. Therefore, even with very

short computation time provided, an adjustment at least better than no control can

be obtained.
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Figure 6.7: All Operations are Coordinated

Adjustment of Downstream Operations

Even though the objective function (6.1) is minimized, there could be some lots with

positive delay time di. Those lots do not finish the operation in time and thus do not

arrive at downstream operations in time. Thus, the downstream operations should

also be adjusted according to the adjustment of the upstream operations. Figure 6.7

shows the process of the adjustment for the downstream operations. Assume long

machine failure occurs to the second operation. The first model is developed for the

second operation. The delay time di of the second operation is used to update the

arrival time ei of the third operation. The same model provided in Section 6.3.2 is

then developed with the updated ei and solved for the third operation. The output di

is then imported to the model for the fourth operation. Thus, a model is developed

for a single operation each time, and all operations are coordinated in a decentralized

way.

134



Table 6.1: System Configuration of the Semiconductor Assembly Line

Setting Value

Number of operations 4

Number of machines at operation 1 11

Number of machines at operation 2 3

Number of machines at operation 3 8

Number of machines at operation 4 15

Number of product groups 20

Span of schedule 3 weeks

Number of lots 528

6.4 Experiment

6.4.1 System Configuration

The system configuration of the semiconductor assembly line in this experiment

is presented in Table 6.1. There are four operations, and each operation consists of

several machines.

A simulation model is developed with Python and SimPy package. The parameters

for building the simulation model are estimated from a real-world semiconductor

assembly line. A 3-week master schedule for more than 500 lots of 20 different product

groups is available. Both short and long machine failures are randomly generated in

simulation run. Figure 6.8 presents the delay time of all lots at the first operation in

a simulation run. The horizontal axis gives the assigned start time of a lot, and the

vertical axis shows the delay time. Most lots are processed in time, and their delay

time is close to zero. When a machine fails for around 20 minutes, it could cause a

lot to be delayed for around 20 minutes. Around 4 minutes is assigned as extra time

to each lot. Thus, the system is recovering, until the delay time finally reaches zero.
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Figure 6.8: Lot Delay Time over 3 Weeks

The first and second operations are subject to long machine failure. The mixed

integer programming model, introduced in Section 6.3.2, is developed with Python

and solved by CPLEX Optimizer. An initial solution is given to the CPLEX Op-

timizer as a warm start. The maximum computation time is set to be 2 minutes.

The best solution is exported, if the optimal solution is not obtained within the max-

imum computation time. The experiment is conducted on a server with Intel(R)

Core(TM) i7-5930K CPU, sufficiently large RAM and Linux operating system. At

most 6 threads are assigned to the CPLEX Optimizer.

6.4.2 An Illustrative Example

Let one machine at the second operation fail for 4 hours at around 3,100 minutes.

Table 6.2 presents the original master schedule of the second operation for 12 hours

after 3,100 minutes. Three machines at the second operation are M59, M60 and M62.
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Table 6.2: Original Master Schedule (Minute)

Machine Lot Ready

time

Actual start

time

Actual fin-

ish time

Assigned

finish time

Delay

time

M59 L406 3119 3173 3215.5 3216 0

M59 L372 3230 3230 3273.5 3274 0

M59 L82 3358 3358 3402.5 3403 0

M59 L94 3411 3411 3455.5 3456 0

M59 L381 3450 3456 3499.5 3500 0

M59 L136 3624 3624 3668.5 3669 0

M59 L84 3605 3669 3713.5 3714 0

M59 L65 3852 3852 3896.5 3897 0

M60 L378 2629 3208 3241.6 3242 0

M60 L396 3163 3242 3248.9 3249 0

M60 L322 1919 3249 3297.5 3298 0

M60 L463 2445 3298 3345.5 3346 0

M60 L166 3377 3377 3421.5 3422 0

M60 L389 3425 3425 3473.5 3474 0

M60 L90 3658 3658 3702.5 3703 0

M62 L108 2636 3167 3211.5 3212 0

M62 L285 3130 3212 3256.5 3257 0

M62 L210 2328 3257 3301.5 3302 0

M62 L168 2575 3302 3346.5 3347 0

M62 L12 1991 3347 3394.5 3395 0

M62 L371 2790 3395 3438.5 3439 0

M62 L373 3010 3439 3482.5 3483 0

M62 L222 2715 3483 3531.5 3532 0

M62 L277 3702 3702 3746.5 3747 0
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Table 6.3: Impact of Long Machine Failure on Master Schedule (Minute)

Machine Lot Ready

time

Actual start

time

Actual fin-

ish time

Assigned

finish time

Delay

time

M59 L406 3119 3173 3215.5 3216 0

M59 L372 3230 3230 3273.5 3274 0

M59 L82 3358 3358 3402.5 3403 0

M59 L94 3411 3411 3455.5 3456 0

M59 L381 3450 3456 3499.5 3500 0

M59 L136 3624 3624 3668.5 3669 0

M59 L84 3605 3669 3713.5 3714 0

M59 L65 3852 3852 3896.5 3897 0

M60 L378 2629 3208 3241.6 3242 0

M60 L396 3163 3242 3248.9 3249 0

M60 L322 1919 3249 3297.5 3298 0

M60 L463 2445 3298 3345.5 3346 0

M60 L166 3377 3377 3421.5 3422 0

M60 L389 3425 3425 3473.5 3474 0

M60 L90 3658 3658 3702.5 3703 0

M62 L108 2636 3407 3451.5 3212 239.5

M62 L285 3130 3451.5 3496.0 3257 239.0

M62 L210 2328 3496 3540.5 3302 238.5

M62 L168 2575 3540.5 3585.0 3347 238.0

M62 L12 1991 3585 3632.5 3395 237.5

M62 L371 2790 3632.5 3676.0 3439 237.0

M62 L373 3010 3676.0 3719.5 3483 236.5

M62 L222 2715 3719.5 3767.9 3532 235.9

M62 L277 3702 3767.9 3812.4 3747 65.4
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Table 6.4: Adjusted Master Schedule (Minute)

Machine Lot Ready

time

Actual start

time

Actual fin-

ish time

Assigned

finish time

Delay

time

M59 L463 2445 3437 3484.5 3346 138.5

M59 L168 2575 3348 3392.5 3347 45.5

M59 L108 2636 3215.5 3260 3212 48

M59 L406 3119 3173 3215.5 3216 0

M59 L285 3130 3303.5 3348 3257 91

M59 L372 3230 3260 3303.5 3274 29.5

M59 L166 3377 3392.5 3437 3422 15

M59 L381 3450 3484.5 3528 3500 28

M60 L322 1919 3248.5 3297 3298 0

M60 L12 1991 3341.5 3389 3395 0

M60 L210 2328 3297 3341.5 3302 39.5

M60 L378 2629 3208 3241.6 3242 0

M60 L396 3163 3241.6 3248.5 3249 0

M60 L82 3358 3389 3433.5 3403 30.5

M60 L94 3411 3433.5 3478 3456 22

M60 L389 3425 3478 3526.4 3474 52.4

M60 L136 3624 3624 3668.5 3669 0

M60 L277 3702 3702 3746.5 3747 0

M60 L65 3852 3852 3896.5 3897 0

M62 L222 2715 3494 3542.5 3532 10.5

M62 L371 2790 3407 3450.5 3439 11.5

M62 L373 3010 3450.5 3494 3483 11

M62 L84 3605 3605 3649.5 3714 0

M62 L90 3658 3658 3702.5 3703 0
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Ready time of a lot in the table is the time when the lot arrives in buffer and is ready

for the operation. If there is no disruption, the actual start time of the operation

goes according to the schedule, and the actual finish time is a little earlier than the

assigned finish time. The delay time is zero for each lot.

Table 6.3 shows what will happen without control if machine M62 fails for 4 hours.

All lots assigned to machine M62 will wait in buffer until the machine is repaired.

The machine failure causes around 4 hours delay to 8 lots. The total delay time is

32.79 hours. Production control for 12 hours decision horizon is carried out, and the

result is presented in Table 6.4. The total delay time is 9.55 hours, achieving 70.9%

reduction.

The delay time of the second operation after adjustment is taken as input for the

adjustment of the third operation, and it results in 8 minutes total delay time at the

third operation. Then, the 8 minutes delay time does not further cause delay at the

fourth operation.

6.4.3 Simulation Experiment with Randomly Generated Long Machine Failure

Long machine failures from 200 minutes to 400 minutes are randomly generated in

simulation experiment. 30 cases test the long machine failure on the first operation,

and another 30 cases test second operation. Figure 6.9 presents the total delay time

with and without control. All 30 cases in each plot are sorted by the total delay time

without control in descending order. The second operation has much more idle time,

and thus the production control shows a better improvement. At both operations,

total delay time with control is always smaller than the one without control. Box

plots of two operations are presented in Figure 6.10.

Another purpose of fast response to machine failures is to reduce the number

of lots violating residence time constraints. Here is an experiment focusing on the
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Figure 6.9: Total Delay Time with and without Control with Randomly Generated

Long Machine Failure
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Figure 6.10: Box Plot of Total Delay Time with and without Control

time window between the first operation and the second operation. Machine failure

is set from 100 minutes to 600 minutes. For each machine failure, 1,000 cases are

randomly generated, and Figure 6.11 shows how frequently residence time constraint

violation could occur. The horizontal axis is the number of lots violating residence

time constraints, and the vertical axis gives the frequency. As the machine failure time
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Figure 6.11: Histogram of Lots Having Time Window Violation
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Figure 6.12: Percentage of Cases that Have Time Window Violation

increases, the number of cases with zero residence time constraint violation decreases

and more lots could violate the constraint. The production control can improve this

performance measure, as shown in Figure 6.12. No residence time constraint violation

occurs among all 6,000 cases with production control.

6.4.4 Control in Run Time

The mixed integer programming model is integrated into the simulation model to

simulate the scenario in real-world factory, where a long machine failure occurs and

the production control is carried out. The factory carries out production according

to a schedule, but due to uncertainty the system dynamics can deviate from the

schedule. Thus, before any adjustment, one needs to obtain parameters of the mixed

integer programming model from real-time system state.

• Lot set within decision horizon. Machines may have short delay, and thus the lot

set to be considered cannot be directly obtained from the master schedule. By

checking the lot being processed on each machine, the lot set can be determined.
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• The time when a machine becomes available trk. Due to short machine failure,

the actual available time could be later than what suggests in master schedule.

By checking lots being processed and their start time, trk for each machine can

be determined.

• The time that lot arrives in buffer ei. Lots may not arrive in buffer in time.

The actual ei can be later than what suggests in master schedule. By checking

the upstream machines and their delay time, ei of each lot can be estimated.

• The residence time constraint τi. If the upstream operation is delayed, the

actual τi could be greater than what suggests in master schedule. The upstream

operations should be considered to get the value of τi.

All other parameters are independent of real-time system state and can be easily

obtained from master schedule.

After the mixed integer programming model is integrated into the simulation, a

long machine failure is created and the results with and without control are compared.

Figure 6.13 presents the results of three different settings. In the first setting shown

in Figure 6.13a, there is no long machine failure. Each spot stands for a lot with its

assigned start time and delay time. Since there is no long machine failure, delay time

is usually around zero minutes. Figure 6.13b shows the setting with long machine

failure but no control. The machine failure lasts 4 hours, and many lots are negatively

impacted. The impact on lots is reduced by production control, shown in Figure 6.13c.

Figure 6.14 compares the three settings from the perspective of throughput. It starts

from 2,900 minutes, and the horizontal axis shows the number of lots processed by

the time given by the vertical axis. The setting without long machine failure always

leads to the highest throughput, and production control can minimize the negative

impact of long machine failure on throughput.
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(c) With Long Machine Failure and Control

Figure 6.13: Delay Time of the Second Operation

6.5 Discussion

The idle time shown in Figure 6.5 is essential. The essence of the adjustment is

to reduce delay time by making use of the idle time. Those idle time exists for two

reasons. First, the operation may not be the bottleneck of the production system.

Machines may often be idle waiting for lots to come. Second, the idle time could

also be created in the master schedule purposely to trade efficiency for flexibility.

If there is not much idle time, an operation may not be able to recover. In this
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Figure 6.14: Throughput

situation, the proposed method can still minimize total delay time and the residence

time constraint violation. In addition, a fast response to machine failures provides

the master scheduler with enough time to remake a new master schedule.

The decision horizon is determined depending on length of machine failure and

idle time. The long machine failure could last several hours or a whole day. The

mixed integer programming needs to consider all lots directly impacted. A short

decision horizon means there may not be enough idle time to make use of, while a

long decision horizon results in a high problem complexity.

In this chapter, it is assumed that how long the machine will fail is known. When a

machine fails to work, its repair time can be estimated according to the failure type.

This estimation may not always be accurate. If the machine is capable of getting

back to work early, it does not impact the adjusted master schedule. If the repair
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is delayed, based on the information about how long it could be delayed, production

control can be performed again with similar process.
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Chapter 7

CONCLUSIONS

This dissertation focuses on production systems with constrained time window. The

study starts with a two-machine serial production line with residence time constraints.

An analytical model is introduced to investigate its transient performance. Compared

to simulations, the analytical results are verified to possess high accuracy in evaluat-

ing the transient behavior. Systematic properties are explored to help have a better

understanding of such systems. An algorithm for real-time control is proposed to

optimize the system performance. Then, a novel modeling approach is introduced

for performance evaluation of multi-stage serial lines with residence time constraints.

Specifically, the two-machine-one-buffer subsystem is defined as a building block, and

a Markov chain model is developed to analyze the two-machine-one-buffer subsys-

tem. The aggregation method is then developed to use subsystems to approximately

evaluate the performance of a multi-stage serial line. Compared with simulation, the

proposed aggregation method is verified to possess high accuracy. Due to a large state

space, it is difficult to perform real-time control for multi-stage serial production lines.

The decomposition-based control is proposed to address the problem. The simula-

tion experiment suggests that the proposed method can improve system performance.

Compared with a general-purpose reinforcement learning based control method, the

decomposition-based control can achieve a better system performance improvement

and a significant reduction on computing time. It provides production engineers with

an effective and quantitative tool to perform real-time control of production systems

with residence time constraints. Semiconductor assembly line is an example, where

machines are disrupted by random failure and products are restricted by time win-
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dows. To optimize the operation of a semiconductor assembly line, machine failures

are classified into the short machine failure and long machine failure and dealt with

separately. Fast response to machine failures is achieved to reduce lot delay time and

residence time constraint violation.

There are several directions for future research. Production systems may have

different structures, such as distributed systems and assembly systems. Those struc-

tures and their properties can be explored. In addition, residence time constraints

may have different forms, which can be further studied. Bernoulli machines and geo-

metric machines are used to model machine reliability in this dissertation. It is worth

studying production control in a manufacturing environment with more general ma-

chine reliability models. In terms of semiconductor assembly line, algorithms to solve

the mixed integer programming model can be studied. Besides, more practical re-

quirements observed in semiconductor assembly lines can be considered in modeling.

Re-entrance is commonly seen. In some operations, lots with small size can merge to

form a single large lot. Sometimes, a large lot splits into multiple small lots. Semi-

conductor assembly lines are also faced with different disruptions, other than machine

failures. It is worth studying fast response in semiconductor assembly line with those

requirements considered.
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Following Section 3.2.1, the rest of the transitions are shown here. We start with
the simple state (0, 0, s1, s2) in the (t+ 1)-th cycle, where s1, s2 = 0, 1, meaning that
the buffer is empty and the states for both machines are s1 and s2, respectively. All
possible transitions to state (0, 0, s1, s2) are illustrated as follows.

(a) (0, 0, 0, 1) and (0, 0, 0, 0). In these two cases, machine m1 is down and buffer B
is empty in cycle t. B will remain empty in the (t+ 1)-th cycle regardless of the
state of machine m2.

(b) (1, τ1, 0, 1), for τ1 = Tmin, Tmin+1, · · · , Tmax−1. In this scenario, there is one part
whose residence time has reached or exceeded Tmin at the beginning of cycle t.
Machine m2 is up. Thus the part will be consumed by machine m2. In addition,
as m1 is down, no part will enter the buffer, which will leave buffer B empty in
cycle (t+ 1).

(c) (1, Tmax − 1, 0, 0). Such a state specifies that there is one part in the buffer with
residence time (Tmax − 1), and machine m2 is down during the t-th cycle. Thus
the part will have to be scrapped at the end of the t-th cycle, since it fails to be
consumed by machine m2 and its residence time will reach Tmax at the beginning
of the next cycle. Moreover, machine m1 is down in cycle t, indicating that no
new part enters buffer B. It leaves buffer B empty in cycle (t+ 1).

Transitions regarding state (0, 0, s1, s2) in cycle (t + 1) can be obtained using the
following equation

x(0, 0, s1, s2, t+ 1) =x(0, 0, 0, 1, t)P
(1)
0,s1
P

(2)
1,s2

+ x(0, 0, 0, 0, t)P
(1)
0,s1
P

(2)
0,s2

+
Tmax−1∑
τ1=Tmin

x(1, τ1, 0, 1, t)P
(1)
0,s1
P

(2)
1,s2

+ x(1, Tmax − 1, 0, 0, t)P
(1)
0,s1
P

(2)
0,s2
,

(A.1)

where s1, s2 = 0, 1.
Next, state (1, 0, s1, s2) in cycle (t + 1), for s1, s2 = 0, 1, shows that there is one

part in buffer B at the beginning of the (t+ 1)-th cycle and its residence time is 0. It
implies that the part is produced by m1 at the end of cycle t. Thus, m1 must be up
in cycle t. Similar to x(0, 0, s1, s2, t+ 1), the system evolution for x(1, 0, s1, s2, t+ 1)
can be represented as

x(1, 0, s1, s2, t+ 1) =x(0, 0, 1, 0, t)P
(1)
1,s1
P

(2)
0,s2

+ x(0, 0, 1, 1, t)P
(1)
1,s1
P

(2)
1,s2

+
Tmax−1∑
τ1=Tmin

x(1, τ1, 1, 1, t)P
(1)
1,s1
P

(2)
1,s2

+ x(1, Tmax − 1, 1, 0, t)P
(1)
1,s1
P

(2)
0,s2
,

(A.2)
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where s1, s2 = 0, 1.
Then, consider the state (1, i, s1, s2) in cycle (t + 1), for 1 ≤ i ≤ Tmax − 1 and

s1, s2 = 0, 1. There is one part in the buffer but its residence time could be any
feasible value except 0. It can be transferred from one of the following items.

(a) (1, i−1, 0, 0). This means that in cycle t there is a part in buffer B with residence
time (i− 1) and both machines are down.

(b) (1, i − 1, 0, 1), where i − 1 < Tmin. This means that in cycle t there is a part in
buffer B with residence time (i− 1) smaller than Tmin, and m1 is down. Though
m2 is up, this part cannot leave buffer B and enter m2.

(c) (2, τ1, 0, 1), for τ1 = max(i, Tmin),max(i, Tmin)+1, · · · , Tmax−1. The second part
in buffer B has residence time (i− 1).

(d) (2, Tmax − 1, 0, 0). The second part in buffer B has residence time (i− 1).

Using operator Φ(n, τ1, τ2), the transition equation for state (1, i, s1, s2), 1 ≤ i ≤
Tmax − 1, could be expressed as:

x(1, i, s1, s2, t+ 1) =x(1, i− 1, 0, 0, t)P
(1)
0,s1
P

(2)
0,s2

+ x(1, i− 1, 0, 1, t)P
(1)
0,s1
P

(2)
1,s2

1N+(Tmin + 1− i)

+
Tmax−1∑

j=max(i,Tmin)

x(2, j, 0, 1, t)P
(1)
0,s1
P

(2)
1,s2

Φ(2, j, i− 1)

+ x(2, Tmax − 1, 0, 0, t)P
(1)
0,s1
P

(2)
0,s2

Φ(2, Tmax − 1, i− 1),

(A.3)

where 1 ≤ i ≤ Tmax − 1 and s1, s2 = 0, 1.
Transitions for the rest of states could also be obtained in a similar way, shown

as below.

x(j, j − 1, s1, s2, t+ 1) =x(j − 1, j − 2, 1, 0, t)P
(1)
1,s1
P

(2)
0,s2

+ x(j − 1, j − 2, 1, 1, t)P
(1)
1,s1
P

(2)
1,s2

1N+(Tmin + 2− j)

+
Tmax−1∑

i=max(j−1,Tmin)

x(j, i, 1, 1, t)P
(1)
1,s1
P

(2)
1,s2

Φ(j, i, j − 2)

+ x(j, Tmax − 1, 1, 0, t)P
(1)
1,s1
P

(2)
0,s2

Φ(j, Tmax − 1, j − 2),
(A.4)

where 2 ≤ j ≤ N , and s1, s2 = 0, 1;
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x(N, i, s1, s2, t+ 1) =x(N − 1, i− 1, 1, 0, t)P
(1)
1,s1
P

(2)
0,s2

+ x(N − 1, i− 1, 1, 1, t)P
(1)
1,s1
P

(2)
1,s2

1N+(Tmin + 1− i)

+ x(N, i− 1, 0, 0, t)P
(1)
0,s1
P

(2)
0,s2

+ x(N, i− 1, 0, 1, t)P
(1)
0,s1
P

(2)
1,s2

1N+(Tmin + 1− i)

+
Tmax−1∑

j=max(i,Tmin)

x(N, j, 1, 1, t)P
(1)
1,s1
P

(2)
1,s2

Φ(N, j, i− 1)

+ x(N, Tmax − 1, 1, 0, t)P
(1)
1,s1
P

(2)
0,s2

Φ(N, Tmax − 1, i− 1)

+ x(N, i− 1, 1, 0, t)P
(1)
1,s1
P

(2)
0,s2

+ x(N, i− 1, 1, 1, t)P
(1)
1,s1
P

(2)
1,s2

1N+(Tmin + 1− i),

(A.5)

where N ≤ i ≤ Tmax − 1, and s1, s2 = 0, 1.
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Proof. Assume without loss of generality that the initial state for both system ρ and
system ζ is ({}, φ1

1, φ
2
1).

Basis step. If φ1
1 = 0 in cycle t = 1, the state in cycle t = 2 for both system ρ

and system ζ is ({}, φ1
2, φ

2
2). If φ1

1 = 1, the state in cycle t = 2 for both system ρ and
system ζ is ({2}, φ1

2, φ
2
2). ϕ

ρ ⊆ ϕζ and |ϕρ|+ 1 ≥
∣∣ϕζ∣∣ hold for t = 2.

Induction step. Assume that ϕρ ⊆ ϕζ and |ϕρ| + 1 ≥
∣∣ϕζ∣∣ hold for 1 ≤ t < k,

where k = 2, 3, · · · . We want to prove that ϕρ ⊆ ϕζ and |ϕρ|+1 ≥
∣∣ϕζ∣∣ hold for t = k.

Three potential events may change ϕρ and ϕζ . They are the scrap, the consumption
on machine m1 and the production on machine m2.

First we consider the scrap. Since ϕρ ⊆ ϕζ and |ϕρ| + 1 ≥
∣∣ϕζ∣∣ are satisfied in

cycle t = k − 1 and both system ρ and system ζ have the same Tmax, the scrap in
cycle t = k can happen to both system ρ and system ζ, or only to a unique part in
system ζ. Therefore, ϕρ ⊆ ϕζ and |ϕρ|+1 ≥

∣∣ϕζ∣∣ hold in cycle t = k if scrap happens.
Next we consider the consumption on machine m1. Assume for a contradiction

that a new part enters the buffer of system ρ in cycle t = k but no part enters the
buffer of system ζ. The two systems share the same sample path, so system ζ is
blocked and system ρ is not blocked in cycle t = k − 1. We have that

∣∣ϕζ∣∣ = N ζ and

|ϕρ| < Nρ in cycle t = k − 1. It is a contradiction to |ϕρ| + 1 ≥
∣∣ϕζ∣∣ for 1 ≤ t < k.

Assume for a contradiction that a new part enters system ζ but no part enters system
ρ because of blockage, and then |ϕρ|+ 1 <

∣∣ϕζ∣∣ in cycle t = k. From |ϕρ|+ 1 <
∣∣ϕζ∣∣

in cycle t = k, we have that |ϕρ| <
∣∣ϕζ∣∣ in cycle t = k − 1. From the blockage that

happens to system ρ, we have that
∣∣ϕζ∣∣ < N ζ and |ϕρ| = Nρ in cycle t = k− 1. From

Nρ + 1 = N ζ , we have that |ϕρ|+ 1 >
∣∣ϕζ∣∣ in cycle t = k−1, which is a contradiction

to |ϕρ| <
∣∣ϕζ∣∣ in cycle t = k − 1. If one part enters the buffer of system ρ and one

part enters the buffer of system ζ in cycle t = k, ϕρ ⊆ ϕζ and |ϕρ| + 1 ≥
∣∣ϕζ∣∣ still

hold. Therefore, ϕρ ⊆ ϕζ and |ϕρ| + 1 ≥
∣∣ϕζ∣∣ hold in cycle t = k when consumption

on machine m1 happens.
Finally, we consider the production on machine m2. Assume for a contradiction

that ϕρ * ϕζ in cycle t = k after a part in system ζ is produced on machine m2 at
the end of cycle t = k − 1. Let the arrival time of the part in system ζ produced
at the end of cycle t = k − 1 be ϕ. We have that ϕ ∈ ϕρ and ϕ ∈ ϕζ during cycle
t = k − 1, but ϕ ∈ ϕρ and ϕ /∈ ϕζ during cycle t = k. From the assumption, we have
that in cycle t = k− 1, ϕ = ϕζ[1], and ϕ = ϕρ[j] for some j > 1. Then ϕρ[1] < ϕρ[j] = ϕζ[1].

ϕρ[1] ∈ ϕρ but ϕρ[1] /∈ ϕζ in cycle t = k − 1. It is a contradiction to ϕρ ⊆ ϕζ for

1 ≤ t < k. Assume for a contradiction that production on machine m2 happens in
system ρ but not in system ζ at the end of cycle t = k − 1, and then |ϕρ|+ 1 <

∣∣ϕζ∣∣
at the beginning of cycle t = k. From the assumption, we have that t − ϕρ[1] ≥ Tmin

and t− ϕζ[1] < Tmin in cycle t = k − 1. It implies that ϕζ[1] > ϕρ[1]. Then ϕρ[1] ∈ ϕρ but

ϕρ[1] /∈ ϕζ in cycle t = k − 1. It is a contradiction to ϕρ ⊆ ϕζ for 1 ≤ t < k. If one

part in system ρ is produced on machine m2 and one part in system ζ is produced
on machine m2 at the end of cycle t = k − 1, ϕρ ⊆ ϕζ and |ϕρ| + 1 ≥

∣∣ϕζ∣∣ still hold

in cycle t = k. Therefore, ϕρ ⊆ ϕζ and |ϕρ| + 1 ≥
∣∣ϕζ∣∣ hold in cycle t = k when

production on machine m2 happens.
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After considering all the possible events in cycle t = k, we have that ϕρ ⊆ ϕζ and
|ϕρ|+ 1 ≥

∣∣ϕζ∣∣ hold in cycle t = k. The proof is completed.
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We start with the simple state (0, 0, ssub1 , ssub2 ) in the (t+1)-th cycle, for ssub1 , ssub2 =
0, 1. It represents the system state that the buffer is empty and the states for both
machines are ssub1 and ssub2 , respectively.

Transitions regarding state (0, 0, ssub1 , ssub2 ) in cycle t+1 can be obtained using the
following equation

x(0, 0, ssub1 , ssub2 , t+ 1) =x(0, 0, 0, 1, t)P
(1)

0,ssub1
P

(2)

1,ssub2

+ x(0, 0, 1, 1, t)psP
(1)

1,ssub1
P

(2)

1,ssub2

+ x(0, 0, 0, 0, t)P
(1)

0,ssub1
P

(2)

0,ssub2

+ x(0, 0, 1, 0, t)psP
(1)

1,ssub1
P

(2)

0,ssub2

+
Tmax−2∑
τ1=Tmin

x(1, τ1, 0, 1, t)(1− pb)P (1)

0,ssub1
P

(2)

1,ssub2

+
Tmax−2∑
τ1=Tmin

x(1, τ1, 1, 1, t)p
s(1− pb)P (1)

1,ssub1
P

(2)

1,ssub2

+ x(1, Tmax − 1, 0, 0, t)P
(1)

0,ssub1
P

(2)

0,ssub2

+ x(1, Tmax − 1, 1, 0, t)psP
(1)

1,ssub1
P

(2)

0,ssub2

+ x(1, Tmax − 1, 0, 1, t)P
(1)

0,ssub1
P

(2)

1,ssub2

+ x(1, Tmax − 1, 1, 1, t)psP
(1)

1,ssub1
P

(2)

1,ssub2
,

(C.1)

for ssub1 , ssub2 = 0, 1.
State (1, 0, ssub1 , ssub2 ) in cycle t + 1, for ssub1 , ssub2 = 0, 1, represents the state that

there is one part in buffer B and its residence time is 0. It implies the part is produced
by machine msub

1 at the end of cycle t. Thus, machine msub
1 must be up in cycle t,

and starvation does not happen to machine msub
1 .

The system evolution for x(1, 0, ssub1 , ssub2 , t+ 1) can be represented as

x(1, 0, ssub1 , ssub2 , t+ 1) =x(0, 0, 1, 0, t)(1− ps)P (1)

1,ssub1
P

(2)

0,ssub2

+ x(0, 0, 1, 1, t)(1− ps)P (1)

1,ssub1
P

(2)

1,ssub2

+
Tmax−2∑
τ1=Tmin

x(1, τ1, 1, 1, t)(1− ps)(1− pb)P (1)

1,ssub1
P

(2)

1,ssub2

+ x(1, Tmax − 1, 1, 0, t)(1− ps)P (1)

1,ssub1
P

(2)

0,ssub2

+ x(1, Tmax − 1, 1, 1, t)(1− ps)P (1)

1,ssub1
P

(2)

1,ssub2
,

(C.2)

for ssub1 , ssub2 = 0, 1.
The rest of the transitions are shown as below.
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x(j, j − 1, ssub1 , ssub2 , t+ 1)

= x(j − 1, j − 2, 1, 0, t)(1− ps)P (1)

1,ssub
1
P

(2)

0,ssub
2

+x(j − 1, j − 2, 1, 1, t)(1− ps)P (1)

1,ssub
1
P

(2)

1,ssub
2

1N+(Tmin + 2− j)

+x(j − 1, j − 2, 1, 1, t)(1− ps)pbP (1)

1,ssub
1
P

(2)

1,ssub
2

1N+(j − 1− Tmin)

+

Tmax−2∑
i=max(j−1,Tmin)

x(j, i, 1, 1, t)(1− ps)(1− pb)P (1)

1,ssub
1
P

(2)

1,ssub
2

Φ(j, i, j − 2)

+x(j, Tmax − 1, 1, 0, t)(1− ps)P (1)

1,ssub
1
P

(2)

0,ssub
2

Φ(j, Tmax − 1, j − 2)

+x(j, Tmax − 1, 1, 1, t)(1− ps)P (1)

1,ssub
1
P

(2)

1,ssub
2

Φ(j, Tmax − 1, j − 2),

(C.3)

for 2 ≤ j ≤ N , and ssub1 , ssub2 = 0, 1;

x(j, i, ssub1 , ssub2 , t+ 1)

= x(j − 1, i− 1, 1, 0, t)(1− ps)P (1)

1,ssub
1
P

(2)

0,ssub
2

+x(j − 1, i− 1, 1, 1, t)(1− ps)P (1)

1,ssub
1
P

(2)

1,ssub
2

1N+(Tmin + 1− i)

+x(j − 1, i− 1, 1, 1, t)(1− ps)pbP (1)

1,ssub
1
P

(2)

1,ssub
2

1N+(i− Tmin)

+x(j, i− 1, 0, 0, t)P
(1)

0,ssub
1
P

(2)

0,ssub
2

+x(j, i− 1, 0, 1, t)P
(1)

0,ssub
1
P

(2)

1,ssub
2

1N+(Tmin + 1− i)

+x(j, i− 1, 0, 1, t)pbP
(1)

0,ssub
1
P

(2)

1,ssub
2

1N+(i− Tmin)

+x(j, i− 1, 1, 0, t)psP
(1)

1,ssub
1
P

(2)

0,ssub
2

+x(j, i− 1, 1, 1, t)psP
(1)

1,ssub
1
P

(2)

1,ssub
2

1N+(Tmin + 1− i)

+x(j, i− 1, 1, 1, t)pspbP
(1)

1,ssub
1
P

(2)

1,ssub
2

1N+(i− Tmin)

+

Tmax−2∑
k=max(i,Tmin)

x(j, k, 1, 1, t)(1− ps)(1− pb)P (1)

1,ssub
1
P

(2)

1,ssub
2

Φ(j, k, i− 1)

+x(j, Tmax − 1, 1, 0, t)(1− ps)P (1)

1,ssub
1
P

(2)

0,ssub
2

Φ(j, Tmax − 1, i− 1)

+x(j, Tmax − 1, 1, 1, t)(1− ps)P (1)

1,ssub
1
P

(2)

1,ssub
2

Φ(j, Tmax − 1, i− 1)

+

Tmax−2∑
k=max(i,Tmin)

x(j + 1, k, 0, 1, t)(1− pb)P (1)

0,ssub
1
P

(2)

1,ssub
2

Φ(j + 1, k, i− 1)

+

Tmax−2∑
k=max(i,Tmin)

x(j + 1, k, 1, 1, t)ps(1− pb)P (1)

1,ssub
1
P

(2)

1,ssub
2

Φ(j + 1, k, i− 1)

+x(j + 1, Tmax − 1, 0, 0, t)P
(1)

0,ssub
1
P

(2)

0,ssub
2

Φ(j + 1, Tmax − 1, i− 1)

+x(j + 1, Tmax − 1, 0, 1, t)P
(1)

0,ssub
1
P

(2)

1,ssub
2

Φ(j + 1, Tmax − 1, i− 1)

+x(j + 1, Tmax − 1, 1, 0, t)psP
(1)

1,ssub
1
P

(2)

0,ssub
2

Φ(j + 1, Tmax − 1, i− 1)

+x(j + 1, Tmax − 1, 1, 1, t)psP
(1)

1,ssub
1
P

(2)

1,ssub
2

Φ(j + 1, Tmax − 1, i− 1),

(C.4)
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for 2 ≤ j ≤ N − 1, j ≤ i ≤ Tmax − 1, and ssub1 , ssub2 = 0, 1;

x(N, i, ssub1 , ssub2 , t+ 1)

= x(N − 1, i− 1, 1, 0, t)(1− ps)P (1)

1,ssub
1
P

(2)

0,ssub
2

+x(N − 1, i− 1, 1, 1, t)(1− ps)P (1)

1,ssub
1
P

(2)

1,ssub
2

1N+(Tmin + 1− i)

+x(N − 1, i− 1, 1, 1, t)(1− ps)pbP (1)

1,ssub
1
P

(2)

1,ssub
2

1N+(i− Tmin)

+x(N, i− 1, 0, 0, t)P
(1)

0,ssub
1
P

(2)

0,ssub
2

+x(N, i− 1, 0, 1, t)P
(1)

0,ssub
1
P

(2)

1,ssub
2

1N+(Tmin + 1− i)

+x(N, i− 1, 0, 1, t)pbP
(1)

0,ssub
1
P

(2)

1,ssub
2

1N+(i− Tmin)

+

Tmax−2∑
j=max(i,Tmin)

x(N, j, 1, 1, t)(1− ps)(1− pb)P (1)

1,ssub
1
P

(2)

1,ssub
2

Φ(N, j, i− 1)

+x(N,Tmax − 1, 1, 0, t)(1− ps)P (1)

1,ssub
1
P

(2)

0,ssub
2

Φ(N,Tmax − 1, i− 1)

+x(N,Tmax − 1, 1, 1, t)(1− ps)P (1)

1,ssub
1
P

(2)

1,ssub
2

Φ(N,Tmax − 1, i− 1)

+x(N, i− 1, 1, 0, t)P
(1)

1,ssub
1
P

(2)

0,ssub
2

+x(N, i− 1, 1, 1, t)P
(1)

1,ssub
1
P

(2)

1,ssub
2

1N+(Tmin + 1− i)

+x(N, i− 1, 1, 1, t)pbP
(1)

1,ssub
1
P

(2)

1,ssub
2

1N+(i− Tmin),

(C.5)

for N ≤ i ≤ Tmax − 1, and ssub1 , ssub2 = 0, 1.
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