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ABSTRACT

Recent advances in cyber-physical systems, artificial intelligence, and cloud com-

puting have driven the widespread deployment of Internet-of-Things (IoT) devices

in smart homes. However, the spate of cyber attacks exploiting the vulnerabilities

and weak security management of smart home IoT devices have highlighted the

urgency and challenges of designing efficient mechanisms for detecting, analyzing, and

mitigating security threats towards them.

In this dissertation, I seek to address the security and privacy issues of smart

home IoT devices from the perspectives of traffic measurement, pattern recognition,

and security applications. I first propose an efficient multidimensional smart home

network traffic measurement framework, which enables me to deeply understand the

smart home IoT ecosystem and detect various vulnerabilities and flaws. I further

design intelligent schemes to efficiently extract security-related IoT device event and

user activity patterns from the encrypted smart home network traffic. Based on

the knowledge of how smart home operates, different systems for securing smart

home networks are proposed and implemented, including abnormal network traffic

detection across multiple IoT networking protocol layers, smart home safety monitoring

with extracted spatial information about IoT device events, and system-level IoT

vulnerability analysis and network hardening.
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Chapter 1

INTRODUCTION

The recent decade has witnessed the rapid development and wide deployment

of Internet-of-Things (IoT) devices in different aspects of our lives, such as home

automation, smart city, connected healthcare, industry 4.0, etc. Among them, the

smart home is one of the most important applications of IoT technology [4, 136, 137,

151]. Heterogeneous smart home IoT devices are now available on the market and

have driven various innovative services to bring convenience to users.

However, weakly protected and coarsely managed smart home IoT devices can be

easily targeted by cyber attacks [5, 9, 42, 70, 113, 114, 127, 159]. The pervasive smart

home IoT devices can be turned into bots for launching distributed denial-of-service

(DDoS) attacks [9, 57, 70] or can be compromised for projecting cyber security hazards

and physical risks, e.g., unlocking the front door of a smart home via a hacked smart

lock [47, 58, 113, 114, 127].

In this dissertation, we focus on addressing the security and privacy challenges

of modern smart home systems by mining IoT network traffic in smart homes. We

start from understanding the communication model of smart home networks and

analyzing network behaviors of different IoT devices. Specifically, we propose an IoT

traffic measurement framework to automatically collect, process, characterize, and

profile communication patterns of IoT devices. we build the behavioral profiles of

different IoT devices based on a wide spectrum of their traffic features from IP-spatial,

temporal, cloud, and internal traffic dimensions. By carefully investigating the smart
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home network traffic from different dimensions, we also identified several flaws and

vulnerabilities.

We next devote our research efforts to extracting critical security-related patterns

from the encrypted smart home network traffic, which can help us learn what is

happening in smart homes. We identified that each IoT device event will generate

a static and unique packet-level signature. However, some device events’ signatures

may share overlapped network packets, making it challenging to differentiate between

them. To address this problem, we design an efficient time-sensitive subsequence

matching algorithm which utilizes the critical inter-packet time interval information

to accurately extract device event sequences.

We then demonstrate that user activity information can also be inferred from

the extracted device event sequences because different user activities will generate

unique device event sequences in a smart home deployed with heterogeneous IoT

devices. In light of the existence of cyberattacks and device failures which can result in

missing and out-of-order IoT device events, we design a polynomial-time approximate

matching algorithm to infer what user activities happened in our smart home.

With our extensive knowledge of smart home network communication patterns

as well as device event and user activity information, we propose several systems

for securing smart home networks. We first design a multi-layer security monitoring

framework for addressing the broad attack vectors across the entire IoT protocol stack.

The two-stage machine-learning based anomaly detection system designed by us can

effectively identify both known attacks and zero-day attacks.

We then reveal that critical spatial information about whether an IoT device event

is triggered locally or remotely can be extracted by comprehensively analyzing the

network traffic of all devices collected in the home network. We further demonstrate
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the importance of the spatial information of each IoT device event by exploring

its applications in smart home safety monitoring, including abnormal device event

detection and home entrance safety monitoring.

In addition, We study the problem of systematically profiling and analyzing IoT

system security using the extended weighted attack graph model. From the attacker’s

perspective, a novel algorithm named SAT for computing a shortest attack trace in

a weighted attack graph is designed. Our SAT algorithm is robust as it can properly

deal with cycles in attack graphs and is guaranteed to find a shortest attack trace

in polynomial time if the attack graph contains at least one attack trace. In case

there is no attack trace in the attack graph, SAT will stop properly without entering

the infinite loop. Our algorithm is also fast. It has a worst-case running time of

O(m+ n log n), where n and m are the numbers of vertices and edges in the attack

graph, respectively.

Based on SAT, we examine the network hardening problem from the defender’s

perspective, where a subset of network elements within a budget constraint is selected

to be hardened in order to maximally increase the height of the shortest attack trace in

the hardened attack graph. We prove that the network hardening problem is NP-hard.

We design an exact algorithm for computing an optimal solution using a novel bounding

technique as the baseline. We also design a polynomial-time heuristic algorithm. While

the heuristic algorithm does not guarantee to find an optimal solution, our extensive

experimental evaluation on different datasets demonstrates that it can efficiently

produce relatively good results compared with the exact algorithm.
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Part I

Smart Home Network Measurement
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Chapter 2

MULTIDIMENSIONAL SMART HOME NETWORK TRAFFIC MEASUREMENT

2.1 Background

Recent advances in embedded systems have enabled the wide deployment of IoT

devices in edge networks. The major players in IoT domains have also developed their

own smart IoT platforms such as Samsung’s SmartThings [119], Google’s Nest [51],

and Amazon’s Alexa [6] to support broad IoT compatibility and rapid application

development. These IoT platforms adopt similar system architectures consisting of

IoT devices, cloud-based servers, and IoT applications.

These existing IoT platforms are primarily function-driven and feature-driven, thus

leaving security and privacy concerns as the secondary or optional goals. As a result,

today’s IoT devices are often vulnerable to various security threats, and many of them

have already been compromised [72, 81]. For example, the insecure configuration and

design flaws of IoT devices have contributed to one of the largest botnets, the Mirai

botnet [9, 52, 70], which commands and controls over 600,000 IoT devices at its peak.

In addition, the coarse access control policy, malicious applications, and exposures in

open wireless channels have created broad attack vectors towards heterogeneous IoT

devices [15, 42, 58, 114].

Protecting and securing millions of vulnerable IoT devices is a complicated and

challenging task. As a recent security evaluation study [5] pointed out, IoT measure-

ment and monitoring is an important early step towards this goal. Specifically, the

first step of IoT security lies in measuring, monitoring, and analyzing communication
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patterns and behavioral profiles of IoT devices. For example, what do remote hosts

on the Internet talk with the smart speakers or thermostats, at what time, for what

reasons? Answering these questions is of great importance to understanding if, when,

and how the connected IoT devices in edge networks are targeted, compromised, and

controlled by cyber attacks.

2.2 Smart Home IoT System Communication Model and Network Traffic Collection

As illustrated in Figure 2.1, a smart home IoT device either directly connects

to a home router via WiFi or Ethernet, or indirectly through a hub device via low-

energy wireless protocols such as Bluetooth, Zigbee, or Z-Wave for Internet access.

To control a smart home IoT device such as turning a smart bulb on, a controlling

device (with companion apps installed) needs to connect to the Internet through

WiFi or cellular network and then authenticate itself with the cloud services. After

connections with the cloud servers are established, the controlling devices can send

commands to the servers, where the integrity and validity of the commands will be

verified. The command messages will be routed inside the cloud service providers’ AS

(autonomous system) and then forwarded to the IoT devices through the home router.

Upon receiving commands from the cloud servers, the IoT devices will validate them

and then take the corresponding actions.

When the controlling devices are physically close to IoT devices, they can directly

communicate with the IoT devices and send commands using Bluetooth if supported.

In fact, we found that August Smart lock’s mobile companion app always prefers

using the Bluetooth protocol when the controlling device is within the communication

range of the lock, even if WiFi or cellular network is available. We also found that
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Figure 2.1. Communication Model of the Smart Home IoT System

some IoT devices, such as Reolink cameras, directly communicate with the controlling

devices connected to the same home network to exchange commands and data.

As observed from Figure 2.1, the home router is an ideal place for comprehensively

collecting the network traffic of IoT devices in smart homes because all IoT devices

are directly or indirectly connected to the home router for Internet access. Thus in

this study, we advocate a home router-based IoT traffic measurement and monitoring

platform for continuously monitoring the incoming and outgoing traffic between smart

home networks and the Internet as well as the internal traffic within smart home

networks.

More specifically, the home router can see the non-translated incoming and outgoing

traffic to and from an IoT device. The internal LAN traffic in the smart home network

is also visible to the internal interface of the home router. In addition, the home

router-based solutions are transparent to IoT devices and therefore there is no need

for the users to install or update additional packages and applications on IoT devices.

We propose a IoT traffic measurement framework via programmable routers at

edge networks where the programmable edge router continuously captures, stores, and
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analyzes the incoming, outgoing, and internal network traffic flow records of all IoT

devices in the edge network. For each flow record, we collect the well-known 5-tuples of

a network conversation or session, i.e., source IP address (srcIP), source port number

(srcPort), destination IP address (dstIP), destination port number (dstPort), and

protocol, as well as the start and end timestamps, duration, byte count, and packet

count. The availability of millions of network traffic flow data allows us to characterize

and model the multidimensional behavioral profiles of heterogeneous IoT devices.

2.3 Multidimensional Behavioral Profiling of IoT Devices

After collecting comprehensive network traffic in smart homes, we further design

a multidimensional approach to characterizing the behaviors of IoT devices from

IP-spatial, temporal, entropy, cloud, and internal dimensions.

2.3.1 IP-Spatial Behavior of IoT Devices

We first characterize the IP-spatial behaviors of IoT devices by analyzing whom

the IoT devices talk to. We propose to aggregate remote IP addresses that IoT devices

communicate with into BGP network prefixes and ASNs in order to gain an in-depth

understanding of “clustered” IP-spatial behaviors for IoT devices and make sense of

the remote IP addresses. For example, the IP address of the DNS server for Google

home smart voice assistant, 8.8.8.8, is from the BGP prefix 8.0.0.0/9 and ASN

15169 owned by Google based on the latest snapshot of the BGP routing table [97] and

the official registry records from Internet assigned numbers authority (IANA). Our

experiments following this strategy reveal an interesting observation. Even though
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most IoT devices communicate with a large number of remote hosts, they typically

only engage with a very small subset of BGP network prefixes and ASNs, which

are likely from the same server pool by the same service providers for efficient load

balancing and content distributions.
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Figure 2.2. The Convergence of IP Addresses, Prefixes, and ASNs for IoT and Non-IoT
Devices Over the Longitudinal Measurement Period (Samsung IoT Bridge and Philips
Hue Were Added Late)

Figure 2.2 demonstrates the convergence of unique remote IP addresses, their

network prefixes, and ASNs for a variety of IoT and non-IoT devices deployed in one

edge network over a 4-month time span. This longitudinal measurement study for the

IP-spatial behavior confirms that most IoT devices engage with a much smaller set of

destination IP addresses, prefixes, and ASNs than smartphones and laptops.

2.3.2 Temporal Behavioral Dynamics of IoT Devices

We study the temporal behavior of IoT devices by measuring the number of distinct

time slots in which IoT devices exhibit traffic activities. We select a 5-minute time

window in the experiment in order to balance the computation overhead and monitor

real-time traffic activities. Figure 2.3 depicts the flow, packet, and byte count of three

different kinds of devices over a one-week time span. As shown in Figure 2.3, the Echo
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Dot, LG Smart TV, and Macbook Laptop exhibit distinct traffic characteristics over

time. These features reflect the activities of different devices. For example, LG smart

TV has high peaks in both packet count and byte count at the very beginning, which

corresponds to the activity that this device was turned on for network streaming at

that time. The diversity of temporal patterns on flow, packet and byte count inspires

us to measure and quantify the variability over the entire data collection period.
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Figure 2.3. Traffic Characteristics of IoT Devices and Non-IoT Devices Over One-Week
Time-Span

For each IoT device d in the edge network, let Wd,i denote the number of time

windows in which the device d is observed with network traffic on the i-th day.

Considering that the connected devices are randomly added into the edge network, we

use the average time window µd for each device rather than the total number of time

windows during the entire measurement period, which is derived as µd =
∑N

i=1 Wd,i

N
,

where N is the number of the days since device d is observed in the edge network and

1 ≤ i ≤ N . So the temporal variability on time windows, measured by coefficient of

variance, can be calculated as CoVd =
µd

σd
, where σd, the standard deviation, is derived

as σd =
√

1
N

∑N
i=1 Wd,i − µd.

Figure 2.4 is a scatter graph on the mean µ and coefficient of variance CoV of
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Figure 2.4. The Mean and Coefficient of Variance of Time Slots Observed With Traffic
Activities for IoT and Non-IoT Devices

time slots observed with network activities for different IoT and non-IoT devices. In

Figure 2.4, four out of the six IoT devices exhibit traffic activities during the majority

of time windows in each and every day, and their variability on the number of time

windows is much smaller compared with non-IoT devices. One of the IoT devices, i.e.,

an IP camera, is only active for a small number of time slots per day, but exhibits

low variability on the time window as well. The only IoT device exhibiting a high

variability is a smart TV, and the main reason is that it is often turned on and off in an

unpredictable fashion. Based on these observations, we can easily classify connected

networked devices in edge networks into three categories: always-on IoT devices (e.g.

Echo Dot), on-demand IoT devices (e.g. IP camera and smart TV), and non-IoT

devices.

The self-similarity traffic patterns of IoT devices also inspire us to analyze the

autocorrelation on network traffic generated by all connected devices in edge networks.

Autocorrelation is a metric that quantifies the correlation of the same variable across

different and lagged periods of times, thus it is also often referred to as serial correla-
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tion and lagged correlation. The autocorrelation metric, ρd,k, for the IoT device d,

between network traffic activity time series Xd,i and a k-lagged copy of itself Xd,i+k

is captured by the autocorrelation function (ACF) as ρd,k =
∑n−k

i=1 (Xd,i−µ)(Xd,i+k−µ)

σ2 ,

where µ and σ are the mean and standard deviation of network traffic activity time

series Xd,1, Xd,2, . . ., Xd,n for the device d, respectively. An autocorrelation value of 0

suggests independent and random observations on the traffic time series of connected

devices in edge networks, while a significant autocorrelation reveals substantial corre-

lations among adjacent observations or determines predictable seasonality in the time

series [84, 104].
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Figure 2.5. Autocorrelation Plots of Network Traffic Time Series for Selected IoT and
Non-IoT Devices

Figure 2.5 illustrates the autocorrelation plots, also referred to as correlograms,

of network traffic time series for three selected IoT and non-IoT device. These plots

reflect distinct repeating patterns of different devices. We can see noticeable peaks

at the beginning where time lag is short for both Philips Hue and Amazon Echo.

This indicates that communication patterns of IoT devices are typically stable and

predictable. On the other hand, for Android smartphone, there is no significant peak

in the autocorrelation plot, which corresponds to our intuition that non-IoT devices

like smartphones often have messy and random network traffic.
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2.3.3 Characterizing Traffic Predictability via Sample Entropy

To further study temporal dynamics and predictability of IoT network traffic in

edge networks, we explore sample entropy, denoted as SE , to quantify the randomness,

uncertainty, or determinism of network traffic for IoT device over time due to the

inherent ability of the sample entropy measure in capturing the complexity and

predictability of time series data [112]. Given a traffic feature f , our continuous data

collection generates a unique time series observation f(t1), f(t2), . . ., f(tM) over M

consecutive time windows. Let Y (ti) denote a vector of m continuous observations at

time ti, i.e., {f(ti), f(ti+1), . . ., f(ti+m−1)}. For 1 ≤ i ≤M −m+ 1, Bm
i (r) represents

the number of Y (tj) such that D[Y (ti), Y (tj)] ≤ r (j ≠ i), where D[Y (ti), Y (tj)] =

max
k
|fi(tk)−fj(tk)| where fi(tk) ∈ Y (ti), fj(tk) ∈ Y (tj), and r specifies how much two

sequences are expected to exhibit strong similarity, which is usually set as proportional

to the standard deviation of the original time series.

The sample entropy SE is defined as SE = − ln(Φm+1(r)/Φm(r)), where Φm(r) is

the mean average value of Bm
i (r), i.e., Φm(r) = (M−m+1)−1

∑M−m+1
i=1 Bm

i (r). In other

words, the sample entropy reflects the conditional probability for two subsequences of

f(t1), f(t2), . . ., f(tM) that are similar along m consecutive observations continue to

share similarity for m+ 1 observations.

Given a time series of data x(1), x(2), . . ., x(N), SampEn defines two positive

parameters m ∈ N and r ∈ R to represent the length of compared run and the filtering

level respectively. Vectors X(1), X(2), . . ., X(N − m + 1) are constructed, where

X(i) = {x(i), x(i+1), . . ., x(i+m− 1)}. Each of these vectors contains m consecutive

time series values starting from x(t). For 1 ≤ i ≤ N−m+1, Bm
i equals to the number

of X(j) such that d[X(i), X(j)] ≤ r (j ̸= i), where d[X(i), X(j)] = max
a
|xi(a)−xj(a)|
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and xi(a) ∈ X(i), xj(a) ∈ X(j). Here r specifies how much we expect two sequences

to be similar with other, and it is usually set as proportional to the standard deviation

of the original time series. We define Φm(r) as the mean average value of Bm
i (r):

Φm(r) = (N −m+ 1)−1
∑N−m+1

i=1 Bm
i (r). We have SampEn = − ln(Φm+1(r)/Φm(r)).

Applying the sliding window approach, we can estimate the entropy values for

all traffic features of IoT devices in edge networks. In our experiments, we set each

observation time window as 10 minutes and the overall time period as 4 hours, and

then calculate the sample entropy of the time series traffic data collected in the past

four hours to balance the computational overhead and real-time responses to traffic

fluctuations.

(a) Incoming tra c of selected IoT devices (b) Outgoing tra c of selected IoT devices
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Figure 2.6. Distinct Sample Entropy Measures of Network Traffic by Different IoT
Devices Over Time

We set the parameters m as 2 and r as 0.2 times the standard deviation of time

series f(t1), f(t2), . . ., f(tM ) [110]. Based on our experimental results, such parameter

settings will best estimate the time series entropy and depict the traffic and activity

patterns of IoT devices, which confirms the findings in [110]. Figure 2.6 illustrates

the distinct sample entropy measures on packet count of four different IoT devices
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in the same edge network. Specifically, the entropy of Echo Dot exhibits a spike at

9AM due to the music playing on Spotify and a preconfigured weather forecast service

during this time period, while Philips Hue communicates with the cloud server actively

during the daytime and remains only the heart-beat communications with servers at

night. Compared with Echo Dot and Philips Hue, Google Home and SmartThings

Hub have more stable entropy over time, as our in-depth analysis reveals that most

of their network traffic are predicable short-term connections with NTP, DNS, and

cloud servers. In other words, the simple yet effective sample entropy measure is able

to capture, characterize, and distinguish the temporal dynamics and predictability of

network traffic for IoT devices, thus potentially could help develop new event detection

and intrusion prevention algorithms for monitoring and securing IoT devices in edge

networks.

2.3.4 Cloud Behavior of IoT Devices

The objective of cloud behavior analysis is to understand why and how IoT devices

communicate with remote cloud servers. Specifically, we profile cloud behaviors of

IoT devices based on the dominant applications or services observed from dstPort

and protocol of their outgoing network traffic flows. Table 2.1 demonstrates all the

observed 5 applications for 5 IoT devices deployed in one edge network during a 24-

hour time window. These 5 applications are HTTP, HTTPS, DNS, NTP, and Spotify

music streaming. As a comparison, the Andriod Smartphone and the Macbook laptop

in the same edge network engage with 11 and 15 distinct applications, respectively,

during the same time period.

The limited and consistent set of common applications used by IoT devices
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Table 2.1. The Dominant Applications Used by IoT Devices in Edge Networks

Application Service Echo Camera Echo Dot Philips Hue Smart TV
443/TCP HTTPS Y Y Y Y Y
80/TCP HTTP Y Y Y Y
53/UDP DNS Y Y Y Y
123/UDP NTP Y Y Y Y
4070/TCP Spotify Y

again confirms that IoT devices are typically designed for very specific functions and

dedicated utilities. Figure 2.7 illustrates the convergence of cloud applications for

IoT and non-IoT devices, where the number of applications for IoT devices converges

rapidly.
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Figure 2.7. The Convergence of Applications for IoT and Non-IoT Devices

We continue to characterize the remote servers and their aggregated network

prefixes or ASNs via analyzing the fanouts, i.e. unique numbers of destination IP

address, BGP prefixes, and ASNs, for each application. In addition, we measure

the distribution of network traffic across these remote servers, prefixes and ASNs

by calculating the entropy and standardized entropy of these fanouts. For a given

application a of an IoT device d, let F and R denote the number of network traffic
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flows and the unique numbers of the remote servers represented as s1, s2, . . . , sR. The

probability of each remote server Psi is calculated as Psi =
Csi

F
, where Csi denotes

the number of flows between d and si. Clearly
∑R

i=1 Csi = F . The normalized

entropy on the remote servers for application a of device d is then derived as NEd,a =

−(logR)−1
∑R

i=1 Psi × logPsi .

Table 2.2. The Entropy of Destination IP Addresses, Prefixes and ASNs IoT Devices
Have Sent HTTPS Requests Within a 24-Hour Time Window

Device Flows Fanout Normalized Entropy
IP Prefix ASN IP Prefix ASN

Echo 148 20 6 1 0.5529 0.3158 0.0000
IP Camera 32 12 9 2 0.6023 0.5422 0.1792
Echo Dot 228 40 10 2 0.6197 0.3365 0.0051
Philips Hue 96 4 2 1 0.2163 0.0221 0.0000
LG Smart TV 429 109 39 7 0.6574 0.2968 0.1733
IoT Hub 258 3 2 1 0.1969 0.1115 0.0000
Laptop 3831 832 340 90 0.6782 0.5191 0.3064
Smartphone 1497 353 131 21 0.6274 0.4964 0.3077

The normalized entropy is in the range of [0, 1], revealing the degree of uncertainty,

randomness, or variations on the remote servers which communicate with IoT devices

in edge networks. Clearly, a NEd,a value of 0 or near 0 indicates the uniformity on

the remote servers, which means that this device only communicates with one or

few servers on application a. While a NEd,a value of 1 or near 1 means the high

randomness on the remote servers.

Following a similar process, we could also calculate the entropies and normalized

entropies for their aggregated network prefixes or ASNs of remote servers.

Table 2.2 illustrates the entropy values of destination IP addresses, prefixes and

ASNs of the hosts which IoT devices have sent HTTPS requests to within a 24-hour

time window. In our eperiments, all IoT devices exhibit some uncertainty on network

prefixes and ASNs for their HTTPS traffic, while the laptop and smartphones exhibit

much higher variations on the remote prefixes and ASNs for HTTPS traffic.
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2.3.5 IoT Traffic Behaviors within Edge Networks

2.3.5.1 Communication between IoT Devices and Edge Routers

Based on our longitudinal measurement, we have observed two dominant appli-

cations in this category, dynamic host configuration protocol (DHCP) and DNS.

All of the IoT devices exchange the DHCP information with their respective edge

routers periodically via UDP ports 67 and 68. This observation is consistent with the

common DHCP configurations on today’s home routers, which act as DHCP servers

and automatically assign the IP address to all of the devices in edge networks. After

the lease time is over, home edge routers will renew it if the IoT device is still active.

It is interesting to note that all of the IoT devices in our study have their IP addresses

renewed every 12 hours by exchanging DHCP packets with the edge routers, which

indicates that the DHCP lease time is set as 12 hours on the router side.

Similar to many non-IoT devices, such as laptops and smartphones, the majority of

IoT devices leave the choice of DNS servers to the edge routers for the consideration of

short DNS query and reply latency. Routers usually set themselves as the DNS server

and add their IP addresses in the “DNS servers” field of the DHCP Offer packets.

Among the 20 types of IoT devices in our study, Google Home is the only device that

prefers external DNS services, i.e., Google’s own public IPv4 DNS servers 8.8.8.8 and

8.8.4.4 over the edge router-based DNS services. As DNS traffic is often triggered

by many IoT applications such as HTTPS and NTP for retrieving IP addresses of the

cloud servers, there tends to exist strong correlations between the internal DNS traffic

of IoT devices and the actual incoming wide area networks (WAN) network traffic of

these devices.
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2.3.5.2 Communication among IoT Devices

The data communication among IoT devices happens primarily during the operation

stage between paired IoT devices in the same edge network such as an Amazon Echo

and a Philips Hue bridge. Due to the improved network latency and simplified

management and operations, different IoT devices in the same edge network can be

“paired” with each other for better communication and cooperation. We notice that

during the initial pairing stage, all IoT devices contact their respective vendors’ cloud

servers for authentication and registration. After a paired relationship is established,

many of the paired devices continue to rely on the cloud servers as a proxy to

communicate with each other for security and trust considerations.

SrcIP DstIP SrcPort DstPort Size
192.168.1.216 192.168.1.195 59337 80 678B
192.168.1.195 192.168.1.216 80 59337 2634B
192.168.1.216 192.168.1.195 59338 80 574B
192.168.1.195 192.168.1.216 80 59338 2542B
192.168.1.216 192.168.1.195 59339 80 750B
192.168.1.195 192.168.1.216 80 59339 1650B

Figure 2.8. First 6 Network Flows Captured When Sending an “open” Command
From Amazon Echo Dot (192.168.1.216) to Philips Hue Bridge (192.168.1.195)

We also noticed one pair of IoT devices, Amazon Echo Dot and Philips Hue bridge,

directly talking with each other using the HTTP protocol, after the Philips Hue

bridge is added into the trusted device list on the Amazon Echo Dot. Figure 2.8

illustrates network packets captured by the router when we press the “open” button

in the Amazon Alexa App. The direct internal communication significantly improves

the efficiency and latency of operating the Philips Hue bulbs via controlling Amazon

Echo Dot in the same edge network, since the commands are not required to transfer
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through the long-latency path from mobile Apps on smartphones, cloud servers, the

Philips Hue bridge, to the light bulbs. On the other hand, the direct communication

using the insecure HTTP protocol could potentially leave both IoT devices vulnerable

to attacks. Therefore, whether retaining the cloud servers as a communication proxy

is a system design trade-off between security and efficiency.

2.3.5.3 Communication between IoT and Non-IoT Devices

We discover three communication protocols, multicast DNS (mDNS), simple service

discovery protocol (SSDP), and HTTP/HTTPS in this category. Many Apple devices,

Linux-based networked systems, and Windows computers with Apple iTunes all

periodically broadcast mDNS packets to identify and resolve the IP addresses of other

devices in the same edge network. In our study, Philips Hue bridge is the only IoT

device leveraging mDNS protocol to identify itself via replying mDNS queries but

many IoT devices broadcast mDNS packets in order to find other devices.

1 M-SEARCH * HTTP /1.1
2 HOST: 239.255.255.250:1900
3 MAN: "ssdp:discover"
4 MX: 4
5 ST: urn:schemas-upnp-org:device:basic:1

Figure 2.9. An Example of SSDP Requests Sent by SmartThings Hub

The SSDP protocol is designed for the advertisement and discovery of network

services and device existence. Many IoT devices adopt SSDP protocol to bootstrap

the device discovery services. For example, Samsung SmartThings hub broadcasts

SSDP messages whenever a user tries to pair a new IoT device to the hub using the
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SmartThings App on a smartphone. Figure 2.9 shows an SSDP message sent from

the Samsung SmartThings hub when the hub is requested to pair with a Philips

Hue bridge. The Mandatory Extensions in HTTP (MAN) in Figure 2.9 defines the

scope of the extension and carries the value of “ssdp:discover” to indicate a device

search request, and the maximum wait time in seconds (MX) is used for load balance

when the hub processes the SSDP responses. Search target (ST) is in the format of

urn:schemas-upnp-org:device:DeviceType:version in the case of searching for a

particular device, specified by the device type and version.

The corresponding device type and version of Philips Hue bridge is basic and 1,

respectively, as included in the SSDP response messages. However, we notice that the

Samsung SmartThings hub is actually enumerating all the device types and versions

by sending out different SSDP requests, which explains why our IoT measurement

framework captures a large number of SSDP network flows during every device pairing

process. These SSDP requests also flood in the Wi-Fi networks even if the selected

device pairs with the hub using other wireless communication protocols such as ZigBee

and Z-Wave. In other words, the drive-by attackers, if receiving the broadcast SSDP

packets sent by the hub, could pair with and potentially compromise the corresponding

IoT devices. These findings confirm the design flaws in the paring stage of these

wireless protocols reported in the prior research in [90, 114, 115, 159]. Our study also

discovers an interesting behavior of Philips Hue bridge which proactively sends out the

SSDP packets targeting a Windows PC in the same edge network every two minutes.

Such unique traffic pattern could help effectively detect this type of IoT device.

The third type of communication protocol between IoT and non-IoT devices is

HTTP/HTTPS, which is used by smartphones to directly communicate with a variety

of IoT devices in the same edge network. Many IoT devices are controlled, configured,
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and monitored by smartphone-based apps on Android or Apple iOS platforms, and

these devices e.g. Philips Hue Bridge, Google Home, and Reolink Camera, often allow

the smartphones to directly communicate with them for reduced network latency

using HTTP and HTTPS protocols if and only if the device has been registered in the

corresponding application on the smartphone and the IoT device and smartphone are

in the same edge network. On the other hand, some IoT devices such as Echo Dot,

SmartThings Hub, and Ring Video Doorbell strictly require that all data packets of

command and control must first go through the trusted cloud servers and then be

forwarded to the devices for security reasons.

2.4 Related Work

IoT behavioral profiling and fingerprinting is one of the crucial topics where we

have witnessed a lot of recent research efforts with the recent rapid development and

deployment of IoT devices in smart homes[11, 65, 88, 103, 118, 131]. The fingerprinting

techniques cover nearly all protocol layers of TCP/IP stacks such as applying wavelet

transform on the sequence of packet inter-arrival time (IAT) of wireless access points

for device profiling [49, 54, 125] or characterizing packet headers and IP payload [11,

86].

Most of the existing studies on IoT behavioral fingerprinting are centered on the

protocols of physical and link layers for the applications of device classification [49, 54,

64, 125]. For example, IoTScanner [125] introduces a real-time system that passively

scans and analyzes the data communication over WiFi, Bluetooth, and Zigbee for

classifying IoT devices and detecting privacy threats. While BF-IoT [54] proposes to

extract the unique features from the link and service layers of Bluetooth low energy
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(BLE) protocol stack for generating the IoT fingerprint for authenticating devices

and defending against spoofing attacks. In addition, a wireless device identification

platform for distinguishing legitimate and adversarial IoT devices based on radio

frequency (RF) fingerprinting over different ranges of signal-to-noise ratio (SNR) levels

is proposed in [64].

A few recent studies have shifted traffic data collection and analysis to the network,

transport, and application layers for device behavioral modeling and characteriza-

tion [11, 86]. For example, IoT SENTINEL [86] achieves IoT device fingerprints with

20 binary features of protocol fields extracted from packet headers collected from

link, network, transport and application layers to reflect the protocol engagement

of IoT devices headers such as ARP, IP, ICMP, TCP, UDP, NTP, DNS, DHCP,

HTTP and HTPPS, and 3 numerical features including packet size, destination IP

counter, source and destination port numbers. In [11], behavioral fingerprints of IoT

devices are characterized with a subset of binary features identified in [86], and 3

payload-based features including the entropy of payload, TCP payload size, and TCP

window size. Complement to these studies, our efforts are focused on behavioral

fingerprinting of IoT devices in edge networks based on network flow records rather

than the raw IP data packets which raise privacy concerns of IoT users and incur

expensive computational and storage cost on resource-constrained commodity edge

routers such as off-the-shelf home routers.

A very recent paper studying the IoT devices on home networks [72] provides

a large-scale empirical analysis with the ISP level network traffic data. Different

from [72], our study explores programmable edge routers to build an IoT measurement

framework from the perspective of edge networks and sheds light on multidimensional
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traffic patterns of IoT devices from incoming and outgoing network traffic as well as

from the local LAN traffic within edge networks.

2.5 Conclusions

As the wide adoption of IoT devices continues to accelerate in smart homes, cities,

and industries, it becomes increasingly urgent to design and implement Internet traffic

measurement platforms to effectively monitor, characterize, and profile communications

patterns of IoT devices with remote end hosts on the Internet and local systems on the

same edge networks. Towards this end, this study develops a systematic measurement

framework for establishing multidimensional behavioral profiles of connected IoT

devices based on a wide spectrum of traffic features from IP-spatial, temporal, entropy,

and cloud dimensions. We also leverage the benefits of our programmable router based

scheme to take a deep look into the LAN network patterns of different IoT devices.

Based on our deep analysis, we have discovered a number of important and interesting

findings. We notice that IoT devices typically communicate with cloud servers from

a very small number of prefixes and ASNs, which belong to IoT manufactures, the

cloud service providers, NTP service providers, and public DNS service providers. IoT

devices also often exhibit repeated and predictable traffic activities over time due to

heart-beat signals between IoT devices and cloud servers. Unlike laptops, desktops,

or smartphones, IoT devices often engage with a limited and common number of

applications such as DNS, HTTPS, HTTP, and NTP. These behavioral fingerprints

not only characterize communication patterns of IoT devices with end systems on the

Internet, but also benefit a range of security applications for IoT devices.
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Part II

Extracting Critical Patterns from Smart Home Network Traffic
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Chapter 3

IOTATHENA: UNVEILING IOT DEVICE EVENTS FROM NETWORK TRAFFIC

3.1 IoTAthena System Overview

Developing effective techniques to understand and report IoT device events, e.g.,

the smart lock of the home’s main entrance is unlocked remotely with a smartphone app,

is crucial for ensuring the physical and property safety of these devices’ homeowners.

Our real-world experiments with August Lock and other IoT devices demonstrated

the feasibility of developing an automated system to learn and generate signatures of

IoT device events and use them for unveiling IoT device events from network traffic

logs. Such a system is urgently needed for understanding what is happening to IoT

devices in millions of smart homes and for detecting suspicious and unauthorized

behaviors towards critical home devices.

IoT Network

Traffic Analysis

IoT Device Activity 

Signature Generation 

Time Sensitive

Subsequence MatchingIoT Network Traffic

Src Port

Dst IP

Dst Port

Protocol

Timestamp

IoT Device Activities 

IoT Device 

Activity Extraction

�Length

Figure 3.1. Overall Architecture of the IoTAthena System for Unveiling IoT Device
Events From IoT Network Traffic

In this study, we propose a new system, named IoTAthena, to automatically and

accurately unveil IoT device events from smart home network traffic logs. Figure 3.1

illustrates the overall architecture of IoTAthena, which includes four key system
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modules: i) IoT network traffic analysis, ii) IoT device event signature generation, iii)

time-sensitive subsequence matching, and iv) IoT device event extraction.

The IoT network traffic analysis module takes IoT network traffic during the

intentionally “silent” period, and characterizes background network traffic for each IoT

device. The IoT device event signature generation module collects the corresponding

network traffic of each IoT device event by intentionally triggering the event and

collecting the traffic. The collected IoT network traffic along with the labeled event

logs serve as the ground truth for generating the signature of each IoT device event

consisting of an ordered sequence of IP packets with inter-packet time intervals. The

time-sensitive subsequence matching module relies on the sigMatch algorithm to

capture all matches of each IoT device event signature in the network traffic log, while

the IoT device event extraction module relies on actExtract to unveil the sequence

of IoT device events from the network traffic log.

In summary, IoTAthena adopts a white-box approach to first generate signatures of

IoT device events consisting of ordered sequences of IP packets with inter-packet time

interval information. Subsequently, IoTAthena applies efficient matching algorithms

for deterministically unveiling the sequence of IoT device events from the network

traffic log, unlike black-box machine learning classification models [1, 11, 86, 126].

3.2 Network Traffic Collection and Analysis

Network traffic of IoT devices embeds rich information on device types and their

behavioral patterns [109, 126]. In this section, we describe how to collect and analyze

IoT network traffic in order to characterize and generate signatures of IoT device

events.
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3.2.1 IoT Network Traffic Collection

Figure 3.2 illustrates the data flows initiated from an IoT device or destined to

an IoT device in a smart home environment. For clarity, we use two IoT devices

as examples: a smart lock and a security camera. A user usually interacts with an

IoT device using the device’s companion app on the smartphone in the home or

outside the home, e.g., in the office or on the road. The app first communicates with

the cloud server which in turn generates traffic between the cloud server and the

device, as illustrated by the solid red line between the smart lock and the cloud server.

Sometimes, the smartphone directly communicates with the device without involving

the cloud server, such as streaming requests on the security camera, illustrated by the

solid green line between the smartphone and the security camera.

Home Network

Cloud Server

Home Router

Smart Lock

Security Camera

Smartphone

Smartphone

WAN

Phone-device communication

Cloud initiated communication

Device initiated communication

background communication

Figure 3.2. Illustration of Data Flows Initiated From or Destined to IoT Devices,
Using Smart Lock and Security Camera As Examples

The user can also manually operate the device in the traditional way, such as locking

the smart lock manually. This action causes the device to update its status to the
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cloud server immediately following the action. In addition, the user can communicate

directly with the device locally through a non-WiFi communication channel, such as

Bluetooth or ultrawideband (UWB) when the user is in the vicinity of the device.

This action also causes device initiated status updates. Furthermore, automatic device

operations such as the smart lock’s autolocking function also introduce status update

traffic. These types of device initiated communications are illustrated by the dashed

red line. There also exists traffic introduced by device background operations such as

device firmware update checks. We use the dotted red line between the smart lock

and the cloud server to illustrate these data flows.

IoTAthena collects the network traffic at the programmable home router, which

enables the capture of incoming and outgoing packets of all above mentioned device-

related operations. The smart home router is a desirable centralized location for data

collection, considering its switching and routing function, sufficient computational

and processing capacities, and the design transparency to IoT devices and apps.

3.2.2 IoT Network Traffic Analysis

The network traffic collected at the home router can be classified into two parts:

the first part consists of traffic between the IoT devices and the cloud servers, while

the second part consists of internal LAN traffic such as address resolution protocol

(ARP) requests and SSDP broadcast packets. In order to separate the logs of an

individual IoT device from the mixed home network traffic, IoTAthena first identifies

each device’s unique IP address via the mapping of its media access control (MAC)

address and host name in DHCP packets. It subsequently uses the device IP address
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as the unique cluster key to separate IoT network traffic into individual traffic clusters

to simplify further analysis.

We carefully studied the network traffic within each individual traffic cluster of

an IoT device. We can clearly observe the network traffic one would anticipate for

normal IoT device events, e.g., users issuing locking or unlocking commands for August

Lock via the smartphone app. Surprisingly, we also discovered a significant amount

of network traffic when there is no human-triggered or environment-triggered IoT

device event. We use the term background traffic to denote such network traffic, i.e.,

network traffic not triggered by human or environment. In order to gain a thorough

understanding of IoT background traffic, we left the devices in our controlled smart

home environment without any human interactions for one week and consider the

network traffic cluster of each IoT device during this “silent” period as background

traffic. By separating IP data packets based on the destination (and source) ports

of the outgoing (and incoming) traffic, we observed that these IoT devices typically

exchange messages with the remote cloud servers on the well-known application

ports such as 22/TCP (SSH), 53/UDP (DNS), 80/TCP (HTTP), 123/UDP (NTP),

5353/UDP (mDNS). This observation leads us to classify IoT background traffic into

three categories: management and service, signal and update, and random noise.

The management and service traffic is mainly used to manage and maintain the

devices, e.g., periodical time synchronizations with NTP servers. The signal and

update traffic corresponds to keep-alive signals and regular firewall update checks

between IoT devices and cloud servers. The random noise traffic is mostly generated

by other IoT or non-IoT devices in the local home network for a variety of reasons,

e.g., ARP requests, SSDP broadcasts, and mDNS traffic from Apple Bonjour protocol

for automatic device and service discovery.

30



+0.2s +0.6s +0.8s +1.0s +1.2st0

device: 49156

+0.4s +1.4s +1.6s

413 bytes

  t0

+0.2s +0.6s +0.8s +1.0s +1.2st0 +0.4s +1.4s +1.6s

605 bytes

 +0.008s

413 bytes

+0.254s

605 bytes

+0.262s

rbs.augus t.com: 443
Time

Time

605 bytes

+1.433s

413 bytes

+1.426s

605 bytes

+1.678s

413 bytes

+1.670s

(a) August Lock WiFi (un)locking.

+0.2s +0.6s +0.8s +1.0s +1.2st0

device: 49156

+0.4s +1.4s +1.6s

413 bytes

  t0

+0.2s +0.6s +0.8s +1.0s +1.2st0 +0.4s +1.4s +1.6s

605 bytes

+0.016s

rbs.augus t.com: 443
Time

Time

605 bytes

+1.098s

413 bytes

+1.083s

605 bytes

+1.395s

413 bytes

+1.379s

(b) August Lock Bluetooth (un)locking.

Figure 3.3. Packet Sequences of August Lock’s Device Events: The Pattern in (b)
Seems Like a Subsequence of the Pattern in (a)

3.3 IoT Device Event Signatures

Consistent with the findings of PingPong [135], we observed repetitive network

packet sequences that correspond to repeated device events in the network traffic

collected at the router of the smart home network. We also observed certain August

Lock device events resulting packet sequences that are challenging for PingPong

to recognize. Figure 3.3 illustrates such an example. The Bluetooth (un)locking1

event’s packet sequence (3 pairs as illustrated in Figure 3.3(b)) is a subset of the

WiFi (un)locking event’s packet sequence (4 pairs as illustrated in Figure 3.3(a)). The

clustering of re-occurring packet pairs approach in PingPong cannot distinguish WiFi

(un)locking from Bluetooth (un)locking. In fact, it is difficult to distinguish these two

events in the network traffic solely based on request/reply patterns, which leads us to

consider more information (the full detailed packet sequence) and inter-packet time

intervals to characterize IoT device events. The time intervals between consecutive

1The locking event and the unlocking event exhibit the same packet sequences and inter-packet
time intervals because of the simple lock/unlock state transitions. The encrypted application data
prevents us for further differentiating these two events with network traffic only. We generate a
unique signature for each indistinguishable event group. For example, we use (un)locking for short
to denote either the locking event or the unlocking event. Similarly, we use on or off to denote
either the on event or the off event.
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packets provide critical information to effectively and accurately differentiate IoT

device events such as those in Figure 3.3 that share overlapping packet sequences and

happen very closely in time.

3.3.1 Inter-Packet Time Interval Measurement

Because IoTAthena collects network traffic at the home router, the inter-packet

time intervals are essentially the round-trip time (RTT) between the home router

and IoT devices in the smart home plus the processing time at the device (LAN),

or the RTT between the home router and cloud servers across the Internet plus the

processing time at the cloud server (WAN).

Figure 3.4. Inter-Packet Time Intervals: Large Values in WAN (left) vs Small Values
in LAN (right)

Figure 3.4 illustrates the time interval between the first and second packets (left

plot), and the time interval between the second and third packets (right plot), of

1, 200 repeated on device events of TP-Link Plug over a 24-hour span. We observe

that the inter-packet time intervals exhibit stable and consistent patterns, with small

variances. However, the time interval between one pair of consecutive packets may

significantly differ from that between another pair of consecutive packets. Specifically,

the interval between the first and second packets has a mean (µ) of 76.73ms and

a standard deviation (σ) of 0.003995ms, while the interval between the second and
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third packets has a mean (µ) of 0.02ms and a standard deviation (σ) of 0.000003ms

for TP-Link Plug’s on event. The unstable wireless channel between the IoT devices

and the home router could result in packet loss and retransmission which contribute

to the fluctuation in the LAN inter-packet time intervals. The uncertain number of

retransmissions in the MAC layer affects the inter-packet time intervals in our collected

traffic log. However, compared with the short wireless transmission delay, the local

processing time at the IoT device still dominates the LAN inter-packet time intervals,

as we observe from the right plot in Figure 3.4. These key observations inspire us to

include inter-packet time intervals as an important component in characterizing the

signatures of IoT device events.

3.3.2 IoT Device Event Signature Definition

A network data packet p collected at the home router is an 8-tuple, where the first

through eighth fields are timestamp, IoT device internal IP address, canonical remote

cloud server name, remote application port, protocol, traffic direction, packet length,

and application-layer data, respectively. It is important to note that each TCP/IP

data packet carries a variety of traffic features including those in the 8-tuple. However,

this study only selects the features that provide additional information on identifying

and differentiating IoT device events, while skipping the features, e.g., Time to Live

(TTL), sequence and acknowledgement numbers with redundant or little contributions

towards device event identification.

We use p.t to denote the timestamp of packet p, and use p̂ to denote the 7-tuple

obtained by deleting the first field (timestamp) in p. We call p̂ the base packet of

packet p.
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Definition 3.1. The signature of an IoT device event is given by an ordered sequence

of n base packets (q̂1, q̂2, . . . , q̂n), together with an ordered sequence of n−1 inter-packet

time intervals (τ1, τ2, . . . , τn−1), where τj > 0 is the time interval between the jth packet

and the j + 1th packet, j = 1, 2, . . . , n − 1. The number of base packets, n, in each

device event signature is determined by the observed TCP/IP data packets triggered by

the device event minus the protocol-specific packets, e.g., TCP three-way handshake,

and the regular heart-beat signals between the device and the remote cloud server. 2

Instead of using (q̂1, q̂2, . . . , q̂n) and (τ1, τ2, . . . , τn−1) to represent a signature, we can

equivalently represent the same signature using a sequence of n packets (ρ1, ρ2, . . . , ρn),

where ρ̂j = q̂j for j = 1, 2, . . . , n and ρj+1.t− ρj.t = τj for j = 1, 2, . . . , n− 1. In this

representation, the time interval between the jth packet and the j + 1th packet can

be uniquely computed by τj = ρj+1.t− ρj.t.

The signature of an IoT device event is a constant, as defined in Definition 3.1.

The above alternative representation of the signature, however, does not look like a

constant in format. For example, for any given real number c, (p1, p2, . . . , pn) and

(ρ1, ρ2, . . . , ρn) denote exactly the same signature, provided that p̂j = ρ̂j , pj.t = ρj.t+c,

for j = 1, 2, . . . , n. Since (p1, p2, . . . , pn) and (ρ1, ρ2, . . . , ρn) define exactly the same

sequence of n base packets (p̂1, p̂2, . . . , p̂n) = (ρ̂1, ρ̂2, . . . , ρ̂n) and exactly the same

sequence of n− 1 inter-packet time intervals (p2.t− p1.t, p3.t− p2.t, . . . , pn.t− pn−1.t)

= (ρ2.t− ρ1.t, ρ3.t− ρ2.t, . . . , ρn.t− ρn−1.t), we can use this alternative representation

without losing any accuracy.

Given the above discussions, we will denote a signature of an IoT device event

using an ordered sequence of packets (q1, q2, . . . , qn), where the timestamp fields are

only used to compute the inter-packet time intervals τj = qj+1.t− qj.t. For this reason,
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we also call the timestamp fields in a signature relative timestamps. We set q1.t to 0

for simplicity.

3.3.3 Automated Signature Generation

Towards automatically generating signatures of IoT device events, we first follow

the same practice as [158] to compile a complete list of any given IoT device’s events

from the AndroidManifest.xml file of the device’s companion app. We then write

scripts using command-line tool and scripting feature in Android Debug Bridge (ADB)

to automate the user interactions with IoT devices such as turning on/off Philips Hue

and (un)locking of August Lock. For all IoT devices in our lab, we trigger each of

their device events 100 times in order to remove randomness and gain statistically

meaningful understanding of the device event packet sequence.

Filtering the background traffic described in Section 3.2.2, which happens in

parallel with the device event, leads to an ordered sequence of timestamped IP packets

exchanged between IoT devices and the cloud servers. Each packet in the sequence

carries a variety of traffic features such as the timestamp of each packet, local IP

address and port number of the IoT device, remote IP address and port number of

the cloud server, protocol, packet length, and the actual application payload of IoT

applications which are mostly encrypted for security and privacy reasons. For each

packet, we continue to remove features with random and dynamic values due to the

protocol designs, e.g., the random local port number at IoT devices in TCP connections

with cloud servers and TCP sequence and acknowledge numbers. In addition, we

transform certain traffic features to retain the stable values, e.g., converting dynamic
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IP addresses of load-balanced cloud servers to the canonical remote cloud server

names.

The inter-packet time interval τj between the jth packet and the j + 1th packet in

the signature is set to the mean (over the 100 tries) of the inter-packet time intervals.

To simplify notations, we set q1.t to 0, and set qj+1.t = qj.t+ τj, j = 1, 2, . . . , n.

3.4 Algorithms for Unveiling IoT Device Events from Network Traffic

Having discussed network traffic in Section 3.2 and device event signatures in

Section 3.3, we are now ready to present our algorithms for unveiling IoT device

events from network traffic logs. In Section 3.4.1, we formally define the IoT device

event signature matching problem and the IoT device event extraction problem. In

Section 3.4.2, we present the sigMatch algorithm for identifying all matches of a given

signature in the network traffic log. In Section 3.4.3, we present the actExtract

algorithm for unveiling the sequence of events of an IoT device from the network traffic

log. In Section 3.4.4, we discuss the limitations and extensions of our algorithms.

3.4.1 Problem Formulation

An IoT network traffic log (denoted by L) is an ordered sequence of packets

(p1, p2, . . . , pm) with increasing timestamps (i.e., pi′ .t < pi′′ .t for i′ < i′′). As discussed

in Section 3.3.2, a signature of an IoT device event (denoted by S) is an ordered

sequence of packets (q1, q2, . . . , qn) with increasing relative timestamps (i.e., qj′ .t < qj′′ .t

for j′ < j′′). Recall that p̂ and q̂ denote the 7-tuple obtained by deleting the timestamp

in p and the relative timestamp in q, respectively. A signature set of an IoT device
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(denoted by SS) is a set of distinct signatures {S1,S2, . . . ,SK}, one signature per event

of the device.

In light of the end-to-end network latency variations on the Internet [28, 59, 105],

we allow an inter-packet time interval tolerance ϵj > 0 as the “safety margin” for the

measurement of qj+1.t− qj.t when trying to find a match of a signature in the network

log.

Let j satisfy 1 < j ≤ n and δ > 0 be a given tolerance. Let i′ and i′′ satisfy

1 ≤ i′ < i′′ ≤ m. We say that (pi′ , pi′′) is a δ-valid match of (qj−1, qj), if

1. p̂i′ = q̂j−1, p̂i′′ = q̂j;

2. |(pi′′ .t− pi′ .t)− (qj.t− qj−1.t)| ≤ δ.

Let S = (q1, q2, . . . , qn) be a signature. Let ϵ = (ϵ1, ϵ2, . . . , ϵn−1) be the match-

ing tolerance vector, where ϵj is the tolerance for the matching of (qj, qj+1). Let

(l[1], l[2], . . . , l[n]) be an increasing sequence of integers indicating the index of the

location of a packet in the network log. We say that (pl[1], pl[2], . . . , pl[n]) is an ϵ-valid

match of signature S in log L, if (pl[j], pl[j+1]) is an ϵj-valid match of (qj, qj+1), for

j = 1, 2, . . . , n− 1.

We study the following two related problems:

IoT device event signature matching: Given network traffic log L, signature

S, and tolerance vector ϵ for S, identify all ϵ-valid matches of signature S in log L.

IoT device event extraction: Given network traffic log L and signature set SS,

find a sequence of IoT device events A1,A2, . . ., whose execution leads to the network

traffic log L.
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3.4.2 Signature Matching via Time-Sensitive Subsequence Matching

The IoT device event signature matching problem is different from the traditional

subsequence matching problem [80] and the longest common subsequence problem [10,

21] due to the inter-packet time interval constraint. We solve the signature matching

problem using a time-sensitive subsequence matching approach, called sigMatch, as

presented in Algorithm 3.1.

Algorithm 3.1: sigMatch(L,S, ϵ)
Input: Network traffic log L = (p1, p2, . . . , pm), Signature S = (q1, q2, . . . , qn),

tolerance vector ϵ = (ϵ1, ϵ2, . . . , ϵn−1).
Output: A DAG GLS = (VLS, ELS) that captures all ϵ-valid matches of signature S

in L.
1 VLS ← ∅; ELS ← ∅;
2 for i := 1 to m do
3 if p̂i == q̂1 then
4 VLS ← VLS ∪ {vi,1};
5 for j := 2 to n do
6 for k := 1 to i− 1 do
7 if vk,j−1 ∈ VLS and (pk, pi) is an ϵj−1-valid match of (qj−1, qj) then
8 VLS ← VLS ∪ {vi,j}; ELS ← ELS ∪ {(vi,j , vk,j−1)};

9 output DAG GLS.

For a given network traffic log L = (p1, p2, . . . , pm) and signature S =

(q1, q2, . . . , qn), together with a inter-packet time interval tolerance vector ϵ, we com-

pute a DAG GLS = (VLS, ELS) that captures all ϵ-valid matches of signature S in log L.

The vertex set VLS contains vertices in the form of vi,j , where pi is a potential match of

qj . The edge set ELS contains directed edges in the form of (vi,j, vk,j−1), where (pk, pi)

is an ϵj−1-valid match of (qj−1, qj) for 1 ≤ k ≤ i− 1, and there is a directed path from

vertex vi,j to a vertex vi′,1 ∈ VLS (for some i′ ≤ i− j + 1).

If p̂i ̸= q̂j, vertex vi,j does not exist. If p̂i = q̂j, vertex vi,j may exist. Each
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edge has the form (vi,j, vk,j−1) for some k < i. Hence we have |VLS| ≤ mn and

|ELS| ≤ m(m−1)(n−1)
2

.

In Line 1 of Algorithm 3.1, both VLS and ELS are initialized to ∅. The algorithm then

populates the vertex set and the edge set while looping over the packets p1, p2, . . . , pm.

For each i, the algorithm loops over the packets q1, q2, . . . , qn. When p̂i = q̂1, vi,1 is

a vertex in the DAG. For j = 2, 3, . . . , n, vi,j is a vertex if and only if p̂i = q̂j and

(pk, pi) is an ϵj−1-valid match of (qj−1, qj) for some k < i. In this case, (vi,j, vk,j−1) is

an edge in the DAG.
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Figure 3.5. Running Example of sigMatch: Row Index Corresponds to the Traffic
Log, Column Index Corresponds to the Signature

We use Figure 3.5 to illustrate a running example of sigMatch. The goal is to iden-

tify all ϵ-valid matches of signature S = (q1, q2, q3) in log L = (p1, p2, p3, p4, p5, p6, p7, p8)

with tolerance vector ϵ = (1, 1). In this example, we have p̂1 = p̂3 = p̂4 = q̂1, denoted

by the hexagon shape; we also have p̂2 = p̂5 = p̂6 = p̂7 = p̂8 = q̂2 = p̂3, denoted by the
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square shape. The timestamps (for traffic log) and relative timestamps (for signature)

are inside the corresponding shape.

We start from p1. Since p̂1 = q̂1, vertex v1,1 is added to VLS; Then we move to p2.

Since p̂2 = q̂2, v1,1 ∈ VLS, and |(p2.t− p1.t)− (q2.t− q1.t)| = |(38− 35)− (4− 0)| ≤ 1,

vertex v2,2 is added to VLS and directed edge (v2,2, v1,1) is added to ELS. Similarly,

vertices v3,1 and v4,1 are added to VLS. Next, we pay attention to the row corresponding

to p5. We found p̂5 = q̂2. For k = 1, we found v1,1 ∈ VLS, but the time interval does

not match. For k = 3, we found v3,1 ∈ VLS, and the time interval matches. Hence

vertex v5,2 is added to VLS, and edge (v5,2, v3,1) is added to ELS. For k = 4, we found

v4,1 ∈ VLS, and the time interval matches. At this moment, vertex v5,2 is already in

VLS, and edge (v5,2, v4,1) is added to ELS. We obtain the DAG as shown in Figure 3.5

by continuing the above process.

Theorem 3.1. Algorithm sigMatch has a worst-case time complexity of O(m2n),

where n is the number of packets in the signature S, and m is the number of packets

in the network traffic log L. Furthermore,

(a) If (pl[1], pl[2], . . . , pl[n]) is an ϵ-valid match of S, then (vl[n],n, vl[n−1],n−1, . . . , vl[1],1)

is a directed path in GLS, and l[1] < l[2] < · · · < l[n].

(b) If (vl[n],n, vl[n−1],n−1, . . . , vl[1],1) is a directed path in GLS, then (pl[1], pl[2], . . . , pl[n])

is an ϵ-valid match of S in L, and l[1] < l[2] < · · · < l[n].

Proof. The loop over i runs m times. The loop over j runs n times. The loop

over k runs i− 1 times, for each i. This leads to the worst-case time complexity of

O(m2n).

From the condition in Line 7 of the algorithm, we notice that there is an edge in

the form (vi,j, vk,j−1) if and only if there is an ϵ[j]-valid match of (q1, q2, . . . , qj) in L
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that matches (qj−1, qj) to (pk, pi), where ϵ[j] = (ϵ1, ϵ2, . . . , ϵj−1). This leads to claims

(a) and (b). 2

We point out that the total number of ϵ-valid matches of signature S in L may

be exponential. However, all of them are captured by a polynomial sized DAG GLS,

which can be computed in polynomial time.

3.4.3 Unveiling IoT Device Events from Network Traffic Log

We investigate how to unveil the events of an IoT device using sigMatch in

Algorithm 3.1 as a building block. Note that we can separate the traffic of a specific

IoT device from all network traffic using the IoT device’s distinct IP address. For a

given IoT device, we first extract its signature set SS = {S1,S2, . . . ,SK}. For each

signature Sk, using its corresponding tolerance vector ϵk, we can apply sigMatch to

construct the corresponding DAG GLSk in O(m2nk) worst-case time, where nk is the

number of packets in Sk. We can compute all K DAGs in O(Km2nmax) worst-case

time, where nmax = max{n1, n2, . . . , nK}.

For each k = 1, 2, . . . , K, there may be zero or more ϵk-valid matches of signature Sk.

Making use of GLSk , we can either confirm that there is no ϵk-valid match (when there

is no vertex vi,nk
in VLSk) or compute the earliest ϵk-valid match (pl[1], pl[2], . . . , pl[nk]), in

the sense that (pl[1], pl[2], . . . , pl[nk]) is lexicographically smallest, in O(m+nk) worst-case

time.

Given the network traffic L, and the valid matches of signatures in SS, how do we

decide which IoT device event happened first? Through extensive experiments, we

found that in normal situations, each network packet corresponding to an earlier IoT

device event proceeds every network packet corresponding to a later IoT device event.
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Therefore the signature that has the earliest match happens first. Once this decision

is made, we can delete each packet with a timestamp no later than that of the last

packet in the match of the found signature from the network traffic. Repeating the

above process, we can unveil the sequence of IoT device events from the given network

traffic. We formally describe this process called actExtract in Algorithm 3.2.

Algorithm 3.2: actExtract(L,SS, ε)
Input: Network traffic L = (p1, p2, . . . , pm), signature set SS = {S1,S2, . . . ,SK},

ε = (ϵ1, ϵ2, . . . , ϵK) where ϵk is the match tolerance vector for Sk.
Output: A sequence of IoT device events A1,A2, . . ..

1 for k := 1 to K do
2 GSk ← sigMatch(L,Sk, ϵk);
3 while some signature Sk has a match in GSk do
4 Let Sk′ have the earliest match;
5 output Device event corresponding to Sk′ ;
6 Remove all packets in L with timestamp no later than that of the last matched

packet for Sk′ .
7 for k := 1 to K do
8 GSk ← sigMatch(L, Sk, ϵk);

Theorem 3.2. The worst-case time complexity of Algorithm 3.2 is O(Km3nmax),

where K is the number of signatures, nmax is the maximum number of packets in any

of the signatures, and m is the number of packets in network traffic log L. In normal

situations (i.e., each packet for an earlier device event precedes every network packet

of a later device event), actExtract correctly outputs a sequence of IoT device events

A1,A2, . . . whose sequential execution will generate a network traffic log that may be

different from L only in the timestamp fields.

Proof. Initially, the K DAGs can be computed in O(Km2nmax) time. The earliest

match of Sk can be computed in O(m+nk) time, ∀k. Selecting the signature with the
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earliest match requires O(Knmax) time. This process is repeated for no more than m

times, hence the time complexity.

Next, we prove the correctness of the algorithm. Assuming that the sequence

of IoT device events that generated the network traffic L is A1,A2, . . . ,Ax. By our

normal assumption, each network packet of A1 must happen earlier than every network

packet of Aλ, for any λ > 1. Since actExtract uses the earliest match, it will output

A1 as the first device event, and all of the packets in the computed match for A1

have timestamps earlier than the timestamp of any packet in other IoT device event

Aλ, with λ > 1. Hence, when we delete the packets matched for A1, we delete all of

the packets generated for A1, but none of the packets generated by Aλ with λ > 1.

Therefore actExtract will next output A2, then A3, and so on. This proves the

correctness of the algorithm. 2

When we execute the computed sequence of IoT device events, the network traffic

observed may be different from L, but only in the timestamp field. The sequence of

packets will have increasing timestamps. Ignoring the timestamp field, two sequences

of packets will be identical with L. Note that we can divide the network traffic log

into multiple sublogs where each sublog corresponds to a unique IoT device. We can

apply actExtract to each sublog in parallel to unveil the IoT device events.

3.4.4 Discussions

Our proposed actExtract algorithm can unveil the event sequence of an IoT

device with no ambiguity and guarantee correctness, assuming there is no ongoing

attack and the device can only carry out one event at a time, which is true for most

devices. For devices that allow two or more concurrent events, such as IP cameras, we

43



can modify sigMatch algorithm to record only non-overlapping matches in network

traffic for a signature in a DAG. We can then build the DAG for the same device

events’ signatures independently and output all the identified events. In case when

there is attacking traffic, it is possible that one packet is matched to two different

signatures. We can add a variable in sigMatch to record all the signatures that a

packet is matched to. If such a conflict happens, our algorithm can report it as an

anomaly and raise an alarm.

3.5 Experimental Evaluations

We evaluate the performance of IoTAthena using two different settings: 1) our

own smart home testbed, and 2) a large public IoT network traffic dataset [109]. We

first describe these settings in Section 3.5.1. In Section 3.5.3, we present experimental

results on the sensitivity of IoTAthena’s accuracy on the matching tolerance. In

Section 3.5.4, we present experimental results for homogeneous IoT device events. In

Section 3.5.5, we present experimental results for mixed IoT device events, together

with a case study.

3.5.1 Experiment Setting

Our smart home testbed has 16 widely-used IoT devices, including multiple models

of IP cameras, smart bulbs, smart doorbells, smart locks, and smart plugs. These IoT

devices are all ranked as popular by Smart Home DB [128]. Our experiments have

identified a total of 44 different IoT device events by using these 16 devices. The

numbers of IoT devices and device events in this study are comparable to existing
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studies on understanding IoT device events in smart home network environments [1,

135]. This controlled smart home environment was used to create the “silent” week

for collecting, analyzing, and characterizing background network traffic, as discussed

in Section 3.2. For each IoT device event, we repeatedly generate the event while

collecting the associated network traffic as well as recording the event logs which

are used for establishing the ground truth at the same time. Using the signature

extraction technique introduced in Section 3.3, we were able to extract signatures for

most of the IoT devices event of all 16 representative IoT devices except the stream

off event of Amcrest ProHD camera, which does not have the deterministic traffic

pattern to form a signature.

In addition to network traffic and event logs collected from our own smart home

testbed, we also evaluated IoTAthena’s performance using a large public IoT network

traffic dataset [109], known as the MON(IOT)R dataset. The MON(IOT)R dataset

includes raw IP data traffic and the labeled event logs of 25 IoT devices2. Among

these devices, 6 of them are also included in our smart home testbed, while the other

19 devices are unique to the dataset. The IoT network traffic and labeled device

events in the dataset allow us to evaluate the performance of IoTAthena.

3.5.2 Evaluation Metrics

To evaluate and quantify the performance of our proposed algorithms, we use

the widely used metrics, i.e., true positives (T P), false positive (FP), false negative

(FN ), and true negative (T N ). In addition to these four measures from the confusion

2We evaluated IoTAthena on the IoT device events with at least 30 samples in the MON(IOT)R
dataset in order to have statistically meaningful results.
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matrix, we also use precision (P), recall (R), and accuracy (A) to understand the

overall quality of our user activity inferring experiments. The precision is calculated

as P = T P
T P+FP , while the recall is R = T P

T P+FN . The accuracy can be calculated as

A = T P+T N
T P+T N+FP+FN .

3.5.3 Sensitivity Analysis on the Tolerance Parameter

Our time-sensitive subsequence matching algorithm sigMatch uses the tolerance

vector ϵ = (ϵ1, ϵ2, . . . , ϵn−1) for accommodating inter-packet time intervals’ variations.

In our experiment, ϵj is set to r × σj for j ∈ [1, n − 1], where σj is the standard

deviation of the inter-packet time interval between two consecutive packets qj and

qj+1 and r ≥ 1 is a tunable parameter.

The accuracy of IoTAthena depends on the matching tolerance parameter. Intu-

itively, when the matching tolerance is very small, IoTAthena tends to unveil fewer

device events due to the strict checking of inter-packet time intervals, leading to low

accuracy. On the other hand, when the matching tolerance is very large, IoTAthena

tends to have more false negatives due to the loose checking of inter-packet time

intervals, also leading to low accuracy. In order to have a deeper understanding

of this dependency, we carried out sensitivity analysis. For each IoT device event,

we repeatedly triggered it 120 times with random delays between two consecutive

experiments. We then ran 6-fold cross validation using the data collected. In each

of the 6 rounds, we observe the accuracy of IoTAthena on 20 of the experiments,

while using the remaining 100 to generate the signature. Figure 3.6 illustrates some

representative results.

Figure 3.6(a)-(d) show the accuracy changes for unveiling the on and off events of
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Figure 3.6. The Impact of r in the Inter-Packet Time Interval Tolerance Parameter
on the Accuracy of IoT Device Event Signature Matching

TP-Link Bulb and TP-Link Plug as r increases from 1 to 30, while Figure 3.6(e)-(h)

show the accuracy dynamics of unveiling August Lock’s app opening, Wifi (un)locking,

autolocking, and Bluetooth (un)locking events. In Figure 3.6(a)-(d), we observe

that the accuracy of IoTAthena exhibits a non-decreasing trend for the on and off

events of both TP-Link Bulb and TP-Link Plug, when r increases from 1 to 30.

These observations are not surprising since the increasing value of r leads to a higher

tolerance value to allow larger inter-packet time intervals.

However, Figure 3.6(e)-(g) contradict such conjectures as increasing r to a particular

value leads to decreasing accuracy in matching August Lock’s app opening, WiFi

(un)locking, and autolocking events. Our in-depth investigation discovered that the

accuracy decrease for the larger r values is due to the interference of August Lock’s

background traffic noise. The background traffic happens to shares overlapping packets

with the signatures of app opening, WiFi (un)locking, and autolocking events when we

allow bigger tolerance of inter-packet intervals. Unlike Figure 3.6(e)-(g), the accuracy

of unveiling August Lock’s Bluetooth (un)locking events changes in a non-decreasing

fashion in Figure 3.6(h) as r increases from 1 to 30. The underlying reason of this
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distinct observation is the unique traffic patterns of the network traffic collected when

triggering August Lock’s Bluetooth (un)locking events, where no background noise

that cannot be filtered out has been observed.

In summary, our sensitivity analysis on the tolerance parameter confirmed the

importance and impact of choosing appropriate tolerance values during the IoT device

event extraction process. More importantly, the observations in Figure 3.6 highlight the

rationale and necessity of our full packet sequences with inter-packet time intervals as

the IoT device event signature and our time-sensitive subsequence matching algorithm

for unveiling IoT device events.

3.5.4 Performance of IoTAthena on Homogeneous IoT Device Events

Having done the sensitivity analysis, we focused on evaluating IoTAthena’s perfor-

mance of unveiling homogeneous IoT device events. We first present experimental

results on our smart home testbed. We then present results on the MON(IOT)R

dataset [109].

For each IoT device event, we repeated it 120 times and collected the network traffic

on the router in our smart home testbed. We again ran the 6-fold cross validation.

Table 3.1 shows the accuracy (A), precision (P), and recall (R) measures of IoTAthena

for various events of the 16 IoT devices in our smart home testbed, with r set to 3,

11, and 23, respectively.

From Table 3.1, we observe that the performance of IoTAthena depends on r.

For r = 3, IoTAthena achieves a minimum accuracy of 0.78, a minimum precision

of 0.98, and a minimum recall of 0.78. When r is increased to 11, the performance

of IoTAthena improves, with precision of 1.00, accuracy of 0.99 or better, and recall

48



Table 3.1. Accuracy, Precision, and Recall of IoTAthena for 16 Devices with r Set as
3, 11, 23 Respectively.

Type Device Event r = 3 r = 11 r = 23
A P R A P R A P R

bulb

Philips Hue on or off 0.98 1.00 0.98 1.00 1.00 1.00 1.00 1.00 1.00
brightness 0.95 1.00 0.95 1.00 1.00 1.00 1.00 1.00 1.00

Sengled LED
on 0.88 1.00 0.88 1.00 1.00 1.00 1.00 1.00 1.00
off 0.89 1.00 0.89 1.00 1.00 1.00 1.00 1.00 1.00
brightness 0.92 1.00 0.92 1.00 1.00 1.00 1.00 1.00 1.00

TP-Link Bulb

on 0.96 1.00 0.96 1.00 1.00 1.00 1.00 1.00 1.00
off 0.97 1.00 0.97 1.00 1.00 1.00 1.00 1.00 1.00
color 0.99 1.00 0.99 1.00 1.00 1.00 1.00 1.00 1.00
brightness 0.95 1.00 0.95 1.00 1.00 1.00 1.00 1.00 1.00

camera

Amcrest ProHD stream on 0.86 1.00 0.86 1.00 1.00 1.00 1.00 1.00 1.00

Arlo - Q Indoor
stream on 0.96 1.00 0.96 1.00 1.00 1.00 1.00 1.00 1.00
stream off 0.94 1.00 0.94 1.00 1.00 1.00 1.00 1.00 1.00
motion detection 0.98 1.00 0.98 1.00 1.00 1.00 1.00 1.00 1.00

Arlo Ultra
stream on 0.88 1.00 0.88 1.00 1.00 1.00 1.00 1.00 1.00
stream off 0.92 1.00 0.92 1.00 1.00 1.00 1.00 1.00 1.00
motion detection 0.95 1.00 0.95 1.00 1.00 1.00 1.00 1.00 1.00

Blink XT2
stream on 0.92 1.00 0.92 0.99 1.00 0.99 0.99 1.00 0.99
stream off 0.95 1.00 0.95 1.00 1.00 1.00 1.00 1.00 1.00
motion detection 0.96 1.00 0.96 1.00 1.00 1.00 1.00 1.00 1.00

Reolink Camera
stream on 0.98 1.00 0.98 1.00 1.00 1.00 1.00 1.00 1.00
stream off 0.96 1.00 0.96 1.00 1.00 1.00 1.00 1.00 1.00
motion detection 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

doorbell

August Doorbell

stream on 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
stream off 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
ringing 0.94 1.00 0.94 1.00 1.00 1.00 1.00 1.00 1.00
motion detection 0.95 1.00 0.95 1.00 1.00 1.00 1.00 1.00 1.00

Ring Doorbell

stream on 0.98 1.00 0.98 1.00 1.00 1.00 1.00 1.00 1.00
stream off 0.96 1.00 0.96 1.00 1.00 1.00 1.00 1.00 1.00
ringing 0.96 1.00 0.96 1.00 1.00 1.00 1.00 1.00 1.00
motion detection 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

lock

August Lock Pro

app opening 0.78 1.00 0.78 1.00 1.00 1.00 0.77 0.86 0.88
WiFi (un)locking 0.80 0.98 0.82 1.00 1.00 1.00 0.75 0.81 0.91
Bluetooth (un)locking 0.90 1.00 0.90 1.00 1.00 1.00 0.99 0.99 1.00
autolocking 0.85 1.00 0.85 1.00 1.00 1.00 0.97 1.00 0.97
manual (un)locking 0.93 1.00 0.93 1.00 1.00 1.00 1.00 1.00 1.00

Schlage Deadbolt
WiFi (un)locking 0.89 1.00 0.89 1.00 1.00 1.00 1.00 1.00 1.00
autolocking 0.92 1.00 0.92 1.00 1.00 1.00 1.00 1.00 1.00
manual (un)locking 0.90 1.00 0.90 1.00 1.00 1.00 1.00 1.00 1.00

plug

Amazon Plug on 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
off 0.96 1.00 0.96 1.00 1.00 1.00 1.00 1.00 1.00

Gosund Socket on or off 0.98 1.00 0.98 1.00 1.00 1.00 0.99 0.99 1.00

TP-Link Plug on 0.99 1.00 0.99 1.00 1.00 1.00 1.00 1.00 1.00
off 0.97 1.00 0.97 1.00 1.00 1.00 1.00 1.00 1.00

WeMo Plug on or off 0.98 1.00 0.98 1.00 1.00 1.00 0.99 0.99 1.00
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of 0.99 or better, across all IoT device events in our experiments. When r is further

increased to 23, the performance of IoTAthena drops, with a minimum accuracy of 0.75,

a minimum precision of 0.81, and a minimum recall of 0.88. Based on this empirical

evidence, we choose r = 11 as the “optimal” value for the tolerance parameter.

Table 3.2. Accuracy, Precision, and Recall of IoTAthena in the External MON(IOT)R
Dataset with r Set as 11

Device Event A P R
Amcrest Camera Wired watch 1.00 1.00 1.00
Blink Camera watch 1.00 1.00 1.00
Blink Security Hub watch or photo 1.00 1.00 1.00
Bulb1 on or off 1.00 1.00 1.00
Fire TV menu 0.95 1.00 0.95
Google Home Mini volume or voice 1.00 1.00 1.00
Insteon Hub on or off 1.00 1.00 1.00
Invoke volume or voice 1.00 1.00 1.00
Lefun Camera Wired watch or photo 1.00 1.00 1.00
LG TV Wired menu 1.00 1.00 1.00

Lightify Hub on or off 1.00 1.00 1.00
color 1.00 1.00 1.00

Luohe Spycam watch 1.00 1.00 1.00

Magichome Strip on 0.98 0.98 1.00
off 1.00 1.00 1.00

Microseven Camera watch 1.00 1.00 1.00
Philips Bulb on or off 0.97 1.00 0.97
Samsungtv Wired menu 1.00 1.00 1.00
Sengled Hub on or off 0.98 1.00 0.98
Smartthings Hub on or off 1.00 1.00 1.00
T-philips Hub on or off 1.00 1.00 1.00

TP Link Bulb

on 1.00 1.00 1.00
off 1.00 1.00 1.00
color 1.00 1.00 1.00
dim 1.00 1.00 1.00

TP Link Plug on 1.00 1.00 1.00
off 1.00 1.00 1.00

Wink Hub2 on 1.00 1.00 1.00
off 1.00 1.00 1.00

Xiaomi Hub on or off 0.98 0.98 1.00
Xiaomi Strip on or off 1.00 1.00 1.00
Zmodo Doorbell watch 1.00 1.00 1.00

We also evaluated the performance of IoTAthena using the MON(IOT)R

dataset [109]. Due to the relatively small sample size (between 30 and 40), we

ran 4-fold cross validation instead of 6-fold cross validation. Table 3.2 illustrates the

accuracy, precision, and recall measures of running IoTAthena against 25 IoT devices
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in the MON(IOT)R dataset with r set to 11. We observe that IoTAthena achieve a

minimum accuracy of 0.95, a minimum precision of 0.98, and a minimum recall of

0.95.

The prior study [135] also evaluates the algorithm with the same the MON(IOT)R

dataset [109]. Table VI in [135] reports an average accuracy of 99.12% on 3 IoT device

events for WAN Sniffer, and an average accuracy of 99.06% on 4 IoT device events

for WiFi sniffer. As shown in Table 3.2, our approach achieves an average accuracy

of 99.57% on 33 IoT device events on the same dataset. Therefore, our proposed

IoTAthena system is able to generate signatures for more IoT device events than [135]

while achieving slightly better accuracy in identifying the signatures with the same

public dataset.

In summary, experimental evaluations with our smart home testbed and the

MON(IOT)R dataset demonstrate that IoTAthena can successfully unveil homogeneous

IoT device events from network traffic logs.

3.5.5 Performance of IoTAthena on Mixed IoT Device Events

A significant benefit of our IoTAthena system lies in the realtime security moni-

toring of IoT devices in smart homes, which has become an increasingly important

research topic. Given the IoT network traffic logs, IoTAthena can accurately unveil

the sequence of IoT device events over time and potentially detect anomalous traffic

patterns and behaviors towards IoT devices.

As a case study, we applied IoTAthena to unveil the device event of 5 IoT devices

in our smart home during a 24-hour span. The 5 devices in this case study consist

of Arlo Ultra Camera, August Lock, Ring Doorbell, TP-Link Bulb, and TP-Link
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Plug. Figure 3.7 visualizes the time-series events of these 5 IoT devices discovered by

IoTAthena during a 24-hour time span in our smart home environment.

12pm 4pm 6pm 8pm 10pm 4am2pm 12am 2am 6am 8am 10am

August Lock 
WiFi (Un)Locking

August Lock 
Manual (Un)Locking

Ring Doorbell 
Ringing

Ring Doorbell 
Stream On

Arlo Ultra 
Stream On

12pm

TP-Link Bulb

TP-Link Plug

Figure 3.7. IoT Device Events Discovered by IoTAthena in the Small Home Environ-
ment During a 24-Hour Span

The two device events highlighted by the light blue box near the left end of

Figure 3.7 capture two consecutive user-triggered events at around 12:45pm: i) (the

homeowner) unlocked the August Lock with app (from outside), indicated by the dark

blue disk inside the light blue box, and ii) manually locked the August Lock (after

entering home), indicated by the green square inside the light blue box. Similarly, the

four IoT device events highlighted by the red box at around 7:20pm in Figure 3.7 reflect

four consecutive events: i) (a visitor) pressed the button on the ring doorbell, which

generated a push notification to the homeowner’s smartphone; ii) (the homeowner)

watched the video streaming feed on the ring doorbell to check the visitor’s identity;

iii) (the homeowner) manually unlocked the August Lock to let the visitor in; iv) the

August Lock was manually locked (from inside).

To evaluate IoTAthena’s ability in unveiling sequences of mixed IoT device events,

we used IoTAthena to unveil the mixed IoT device event of all 16 devices in our

smart home from the network traffic, in a 24-hour span, from 12:00pm to 11:59am.
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Figure 3.8 illustrates IoTAthena’s performance by comparing the ground truth event

sequences with the unveiled event sequences of 16 IoT devices in the smart home

testbed, where a blue dot represents a successful match, while a red cross represents

a failed match. The actual dates for running different IoT device event experiments

might vary, so the x-axis only denotes the time of the day from 12:00pm to 11:59am.

As can be seen from the figure, IoTAthena correctly unveiled all but one of the events.

The only missed event occurs with the Blink XT2 Camera. Our root cause analysis

revealed that IoTAthena missed one streaming event due to the unseen variation in

packet length.

xxxx

12pm 2pm 4pm 6pm 8pm 10pm 12am 2am 4am 6am 8am 10am 12pm

Ring VideoDoor

August Doorbell Cam Pro

WeMo Plug

TP-Link Plug

Gosund WiFi Smart Socket

Amazon Smart Plug

Schlage WiFi Deadbolt

August Lock Pro

TP-Link Bulb

Sengled SmartLED

Philips Hue

Reolink Camera

Blink XT2

Amcrest ProHD

Arlo Ultra

Arlo - Q Indoor

Figure 3.8. Device Event Sequence Extraction Results of 16 IoT Devices in the Smart
Home Environment Where X-Axis Denotes the Time of the Day From 12:00pm to
11:59am

In summary, our experimental evaluations based on a variety of heterogeneous IoT

devices demonstrated that IoTAthena can effectively and accurately unveil individual

IoT device events as well as unveil IoT device event sequences over time.
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3.6 Related Work

The recent growth and deployment of IoT devices in smart homes have attracted

the networking research community to study the traffic characterization and behavioral

fingerprinting of IoT devices, and explore network traffic to discover IoT devices’ types

and events. Most of the existing studies [49, 53, 54, 62, 64, 79, 86, 103, 109, 118, 125,

155, 160] in IoT traffic characterization and fingerprinting are interested in a wide range

of traffic features from TCP/IP protocols as well as from IoT wireless communication

channels. For example, the research in [62] utilizes the wireless radio propagation

patterns of IoT devices for secure authentication. Two recent researches [155, 160]

explore the captured WiFi signals in home network for applications of localization and

positioning. These prior researches provide critical insights for understanding traffic

patterns of heterogeneous IoT devices and identifying IoT device models or types for

IoT device discovery and management, IoT application performance monitoring, and

vulnerability and security analysis.

In light of the recent IoT Botnets exploiting and control thousands of vulnerable

IoT devices [5, 9, 24, 42, 44, 57, 72, 89, 91, 101, 133, 141, 154], some research

efforts have proposed innovative methods of classifying IoT devices based on machine

learning, statistical inference, or passive traffic measurement [11, 86, 126]. For example,

IoTSentinel [86] first extracts 23 traffic features of IoT network traffic, and subsequently

builds Random Forest classifiers to identify IoT device types. Similarly, IoTSense [11]

fingerprints the behaviors of IoT device types with feature vectors from packet headers

and payload, and builds several machine learning classifiers for effectively detecting

IoT device types based on the trained behavioral fingerprinting. The research in [126]

first monitors a smart IoT environment with various IoT devices for six months for

54



extensive IoT network traffic analysis, and then builds a machine learning framework

for classifying IoT device types.

As homeowners continue to deploy smart home IoT devices such as smart locks and

security cameras for mission-critical applications, accurately identifying IoT device

events via supervised machine learning models [1, 96] and deterministic inference [135,

156] becomes an urgent research problem. For example, HomeSnitch [96] constructs

bidirectional application data unit exchanges for representing IoT application behaviors

and applies supervised machine learning classifiers to classify IoT application behaviors

and identifying unknown behaviors. Similarly, Peek-a-Boo [1] demonstrates the

feasibility of identifying the types, states, and IoT device events via machine learning

techniques from an attacker’s perspective. The closest work to ours is PingPong [135],

which explores the sequential and directional “ping/pong” behavioral patterns between

cloud servers and IoT devices or between cloud servers and smartphones. The

experiments in [135] have shown that the simple ping/pong packet-pairs with payload

size and traffic directions can effectively detect many IoT devices events. HoMonit [156],

another work of deterministically detecting IoT device event, monitors encrypted

wireless traffic of some home apps and infers smart app activities based on the

deterministic finite automaton (DFA) model of smart app behavior and wireless

side-channel analysis. IoTGaze [53] also builds up a system to identify IoT device

events using the sniffed wireless traffic.

Inspired and motivated by these studies on identifying IoT device types and/or

events, our proposed IoTAthena system is focused on understanding traffic signatures

of IoT device events and accurately extracting device events from IoT network traffic.

The insights from the unveiled IoT device events have a broad range of applications

such as anomaly detection, e.g., an unauthorized user is watching the video stream of
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the surveillance camera, IoT device malfunction detection, e.g., a smart plug shows

two consecutive on events, and smart home safety, e.g., the smart lock was unlocked

remotely by an unauthorized user.

Note that our work is significantly different from [11, 86, 126] in the way that our

objective is generating signatures for concrete IoT device events such as on or off events

of a smart plug and unveiling these events from network traffic, instead of identifying

IoT device models or types. Different from machine learning based solutions [1, 96],

IoTAthena adopts a white-box approach to programmatically generate signatures of

IoT device events consisting of ordered sequences of IP data packets with relative

timestamps. IoTAthena’s signature generation module is inspired by PingPong [135],

but it generates a full signature for each IoT device event and introduces a novel

time-sensitive subsequence matching approach for unveiling IoT device events from

new IoT network traffic logs.

3.7 Conclusions

This study introduces IoTAthena to effectively and accurately unveil IoT device

events from network traffic in smart homes. We first recognize and generate event

signatures of IoT device events consisting of ordered sequences of IP data packets

by repeated and controlled experiments. Subsequently, we design two polynomial

time algorithms, sigMatch and actExtract. The sigMatch algorithm captures all

matches of any given IoT device event signature from real network traffic logs. The

actExtract algorithm unveils the full event sequences of all IoT devices from the

network traffic log. Through experimental evaluations based on a wide range of

heterogeneous IoT devices from a real smart home environment and a public IoT
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dataset, we demonstrated that IoTAthena is able to accurately unveil IoT device

events from raw network traffic logs.
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Chapter 4

IOTMOSAIC: INFERRING USER ACTIVITIES IN SMART HOMES

4.1 System Overview and Architecture

In this section, we first discuss the rationale for building a system of user activity

inference from IoT network traffic in smart homes. Subsequently, we present the

overall architecture of our proposed IoTMosaic system and its main components.

4.1.1 Towards A User Activity Inference System

With the prevalence and popularity of IoT devices, a wide range of innovative

services and applications such as home automation, remote healthcare, and voice

assistants are available for homeowners. These dedicated IoT devices mostly work

independently for specific functions, e.g., a smart camera starts recording once sensing

sound or motions, and a smart lock is opened or closed remotely via a companion

smartphone app.

Many real-world user activities trigger a sequence of temporally and spatially cor-

related events involving multiple IoT devices. The individual device event information

of each of these IoT devices often lacks sufficient evidence to infer the user activities

and tell homeowners what happened in their homes. For example, a delivery personnel

dropping off a package on the front door and ringing the Ring Doorbell could trigger

the motion detection event and the doorbell’s ringing event. However, exploring

correlated events and collective insights from heterogeneous IoT devices in the same
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home could reveal many important user activities. Such automated user activity

monitoring and inference system could have many practical benefits in home safety

and security, assisted living, and remote healthcare.

Towards this end, this study proposes the IoTMosaic system for automatically

and algorithmically inferring user activities based on the underlying network traffic of

IoT devices in smart homes. Rather than inferring user activities directly from the

IoT network traffic, IoTMosaic first detects IoT device events by analyzing network

traffic in smart homes by adopting the solution introduced in Chapter 3. Based

on these extracted IoT device events, IoTMosaic generates the signatures of diverse

user activities which consist of IoT device event sequences. IoTMosaic then infers

user activities using approximate matching algorithms to accommodate missing or

out-of-order IoT device events due to device malfunctions or varying latencies.

IoT Network Traffic Collection Device Event Detection

User Activity Profiling

User ActivitiesUser Activity Inference

Figure 4.1. System Architecture of IoTMosaic for Inferring User Activity From IoT
Network Traffic in Smart Homes

4.1.2 System Architecture and Components

Figure 4.1 illustrates IoTMosaic’s overall system architecture for inferring user

activity from IoT network traffic in smart homes. IoTMosaic consists of four main
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components: i) IoT network traffic collection, ii) IoT device event detection, iii) user

activity profiling, and vi) user activity inference.

The first key system component, IoT network traffic collection, leverages pro-

grammable home routers to continuously collect, process, and analyze outgoing and

incoming timestamped TCP/IP data packets of smart home IoT devices. For the sec-

ond component, IoT device event detection, this work adopts the solution introduced

in Chapter 3 for extracting IoT device events from network traffic collected by the

home routers in the first component.

The primary focus of this study is to design and implement the last two system

components in Figure 4.1, i.e., user activity profiling and user activity inference. For

learning and profiling user activities, we first collect IoT network traffic in smart

homes while repeatedly running and labeling each user activity as ground truth.

Subsequently, we extract the sequence of IoT device events as the signature for each

user activity. The user activity profiling component is responsible for recognizing and

generating the signatures of different user activities which are the input of the next

user activity inference component.

Towards developing the user activity inference system component, we propose

simple yet effective algorithms for identifying user activities from IoT device events

with the tolerance of missing events. Our proposed approximate matching algorithms

effectively infer user activities with varying missing device events. In case of multiple

matches to different user activities which share overlapping IoT device events, we

devise a heuristic trimming step to strategically remove some inferred activities based

on the number of missing device events and the dependency among the signatures of

user activities.

To evaluate the performance of our proposed system, we set up an experimental
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smart home environment in a two-bedroom apartment with heterogeneous IoT devices.

We systematically evaluate our system with different user activities, mostly related to

home safety and security, in the smart home testbed. Our extensive experiments on

the labeled user activities and network traffic data collected span over two months

show that IoTMosaic is able to accurately infer diverse user activities in smart homes.

4.2 User Activities Profiling

4.2.1 Detecting IoT Device Events with IoT Network Traffic

The network traffic of IoT devices plays a crucial role in classifying the IoT device

types, e.g., LG smart TV, and detecting IoT device events, e.g., switching Philips Hue

smart lighting on or off. These individual and distinguished events generated by IoT

devices are referred to as IoT device events.

In this study, we adopt the approach in Chapter 3 to first generate the unique

signature of each IoT device event with diverse traffic features including the crucial

inter-packet time interval information in IP packets and then extract IoT device events

in our smart home environments. Table 4.1 lists the smart home IoT devices deployed

in this study and their respective device events for learning and inferring a wide range

of user activities related to home safety and security, e.g., a person with smart lock

app access entering the home from the front door.

As IoT devices continue to be deployed in smart home applications such as smart

locks and surveillance cameras, the knowledge and awareness of IoT device events

have become increasingly important for understanding the statuses of IoT devices

and detecting anomalous behaviors and attacks towards them. More importantly,
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Table 4.1. Smart Home IoT Devices Deployed in This Study and Their Respective
Device Events

Device Name Device Event Abbreviation
Arlo Q Camera (AQ) motion detection AQmot

August Lock (AL)
WiFi (un)locking ALwlk

manual (Un)locking ALmlk

auto locking ALalk

D-Link Water Sensor (DW) water detected DWwtr

water not detected DWnwtr

Kangaroo Motion Sensor (KM) motion detection KMmot

Reolink Camera (RC) motion detection RCmot

stream on / off RCon / RCoff

Ring Doorbell (RD)
motion detection RDmot

stream on / off RDon / RDoff

ringing RDring

Ring Spotlight (RS) motion detection RSmot

motion light on / off RSon / RSoff

Smart Life Contact Sensor (SC) open / close SCopen / SCclose

Tessan Contact Sensor (TC) open / close TCopen / TCclose

TP-Link Bulb (TB) on / off TBon / TBoff

TP-Link Plug (TP) on / off TPon / TPoff

multiple IoT device events, happening very closely in time and space, could collectively

provide valuable knowledge for inferring user activities in smart homes. Inspired by

this critical insight, IoTMosaic explores IoT device events for understanding, profiling,

and inferring user activities in smart homes.

4.2.2 Profiling User Activities with IoT Device Event Sequences

Recognizing and tracking user activities and behaviors in smart environments have

been a long-standing research problem [107] due to its importance in assisted living,

remote healthcare, and home safety. In this study, we consider a user activity as the

interaction between a person and the smart home environment, e.g., an e-commerce

delivery personnel pushing the smart doorbell and leaving a package on the porch.

The direct interaction between users and IoT devices, e.g., a user opening or closing

the smart lock via the companion smartphone App, is only considered as IoT device

events (or actions) instead of user activities. In other words, a user activity, consisting
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of several human actions, could trigger one or more IoT device events, determined

by the availability and deployment of IoT devices as well as the layout of the smart

home.

Our real-world experiments with heterogeneous IoT devices deployed in the smart

home testbed have discovered that many user activities trigger an ordered sequence

of device events from several adjacent IoT devices. For example, a person with the

physical key entering our smart home environment from the front door triggers a

series of IoT device events related to August smart lock, Tessan Contact Sensor,

Ring doorbell, Ring Spotlight, and Alro Q Camera. It should be noted that a single

IoT device event is often unable to infer the underlying user activities independently.

However, combining and correlating the time and space of multiple events from

adjacent IoT devices that are deployed at the nearby locations where user activities

happen potentially provide sufficient information for extracting these user activities.
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Figure 4.2. Layout of IoT Device Deployment in a Real-World Smart Home Where
Each IoT Device Is Represented With Its Abbreviation Name

Figure 4.2 illustrates the layout of our smart home experimental environment in a
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two-bedroom apartment. Given the list of IoT devices in Table 4.1 and the deployment

of devices in Figure 4.2, we use repeated and controlled experiments to discover and

generate distinct signatures of user activities with the sequences of IoT device events.

Table 4.2. User Activities and Their Signatures of IoT Device Event Sequences

No. User Activity Device Event Sequence

1 A person without key entering the RDmot, RSmot, RDring, RDon, RDoff , ALmlk,
home from the front door (day) TCopen, TCclose, ALmlk, AQmot

2 A person without key entering the RDmot, RSon, RDring, RDon, RDoff , ALmlk,
home from the front door (night) TCopen, TCclose, ALmlk, AQmot, RSoff

3 A person with app access entering the RDmot, RSmot, ALwlk, TCopen,
home from the front door (day) TCclose, ALalk, AQmot

4 A person with app access entering the RDmot, RSon, ALwlk, TCopen,
home from the front door (night) TCclose, ALalk, AQmot, RSoff

5 A person with key entering the RDmot, RSmot, ALmlk, TCopen,
home from the front door (day) TCclose, ALalk, AQmot

6 A person with key entering the RDmot, RSon, ALmlk, TCopen,
home from the front door (night) TCclose, ALalk, AQmot, RSoff

7 A person ring the doorbell
RDmot, RSmot, RDringand leave (day)

8 A person ring the doorbell
RDmot, RSon, RDring, RSoffand leave (night)

9 A person checking the front
RDmot, RSmotdoor of the home (day)

10 A person checking the front
RDmot, RSon, RSoffdoor of the home (night)

11 A person with key leaving the home AQmot, ALmlk, TCopen, TCclose,
from the front door (door locked) (day) RDmot, RSmot, ALmlk

12 A person with key leaving the home AQmot, ALmlk, TCopen, TCclose,
from the front door (door locked) (night) RDmot, RSon, ALmlk, RSoff

13 A person with key leaving the home from AQmot, ALmlk, TCopen, TCclose,
the front door (door not locked) (day) RDmot, RSmot

14 A person with key leaving the home from AQmot, ALmlk, TCopen, TCclose,
the front door (door not locked) (night) RDmot, RSon, RSoff

15 A person appearing in the hallway
KMmot, TBonof the home

16 A person leaving the hallway of the home KMmot, TBoff

17 A person checking the living room’s
RCon, RCoffcamera streaming

18
A person entering the balcony from

RCmotliving room or entering the living
from balcony (contact sensor alarm off)

19 An person entering the home from the
SCopen, RCmotbalcony (contact sensor alarm on)

20 An person leaving the home to enter the
RCmot, SCclosebalcony ((contact sensor alarm on)

21 A person checking water leakage DWwtr, TPoff , DWnwtr, TPon

Table 4.2 summarizes the list of 21 user activities in our smart home testbed

which are common and essential to home safety and security. For each user activity,
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we repeatedly trigger it 20 times, while simultaneously collecting TCP/IP packets

using the programmable home router. To only include IoT device events that are

actually triggered by the user activity, we run all of the experiments at this stage in

a controlled environment and ensure no other interfering IoT device events or user

activities happen at the same time. To avoid the mutual inference of user activities,

we separate the experiments of two consecutive user activities for at least 10 minutes.

We first extract all device events from the IoT network traffic during the experiment

period where user activity U is triggered. For each IoT device event e, we compare its

timestamp, i.e., the timestamp of the first packet captured by the smart home router

which is matched to e, with the manually-recorded timestamp of the user activity U .

Given the existence of clock synchronizations, varying end-to-end network latencies,

and automatic events, e.g., August smart lock automatically closes the door if the

door remains open for 30 seconds after an unlock event, we consider the device event

e is actually generated by the user activity U if and only if |e.t − U.t| ≤ Ω. In our

experiments, we choose Ω as 60 seconds as the values from 60 seconds to 5 minutes

achieve similar results in mapping the relevant device event e to U .

Sorting all IoT device events associated with each user activity U based on their

timestamps leads to an ordered sequence of IoT device events (e1, e2, . . . , en). If two

or more sequences of IoT device events happen for the same user activity during the

20 experiments, we select the sequence with the most occurrences. Such disparity

is not observed in our experiments, as the same user activity always triggers the

same sequences of IoT device events. We refer to the sequence of IoT device events,

(e1, e2, . . . , en), as the signature of the user activity U , as well as the user activity

itself.

Table 4.2 summarizes the signatures of all 21 user activities with the corresponding
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IoT device event sequences generated by following the above process. These signatures

confirm the feasibility of inferring user activities related to physical safety and security

in smart homes from the device events extracted from the IoT network traffic.

4.3 User Activity Inference

Inferring interleaving user activities from device event sequence includes two steps:

first, unveil the non-overlapped occurrences of each user activity individually; second,

orchestrate a global view of what user activities happened at what time for all user

activities. In this section, we first define the problem of k-approximate signature

matching to unveil the occurrences of an individual user activity in the device event

sequence, followed by our proposed k-approximate signature matching algorithm.

Lastly, we present an activity inference algorithm to provide the global view of user

activities when multiple user activities happen in parallel.

4.3.1 User Activity Inference Problem

Given a sequence of IoT device events S = (s1, s2, . . . , sm) and a set of user activity

signatures U = {U1, U2, . . . , Ur} where Ui is the signature of the user activity i, we

define the user activity inference problem as inferring all user activities that

generate events in S.

The unpredictability of user activities and the missing and out-of-order device

events have created substantial challenges for solving the user activity inference

problem. In this study, we present the first attempt to give a heuristic solution of

this problem via finding approximate matches of the user activities’ signatures from
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S. Specifically, we formulate a problem called k≤approximate signature matching and

develop an optimal solution for user activity inference based on algorithms designed

for solving k≤approximate signature matching problem.

4.3.2 k≤Approximate Signature Matching Problem

The edit distance (ED) between a user activity signature U and a sequence of

device events S is defined as the minimum cost of changing S into U where 1) only the

operation of deletion from S and U is allowed, 2) deletion of an event from U has cost

1, and 3) deletion of an event from S has cost 0. This definition of ED is different from

the classic definition in literature in that the substitution is not a valid operation here

because a device event could be missing or out-of-order but should not change into

another event. In addition, the costs of deleting different events from U are different

due to the varying importance of these events to U . For ease of presentation, we set

the cost of deleting any event from U uniformly as 1.

Given a sequence of device events S = (s1, s2, . . . , sm), a user activity signature

U = (e1, e2, . . . , en), and an integer k ≥ 0, we define a k=single-approximate

signature match as a minimal-length subsequence of S with the start index i and

end index j and ED((si, . . . , sj), U) = k, where k is the approximation parameter.

The k=approximate signature matching problem is to reveal the maximum

number of non-overlapping k=single-approximate matches of U in S, which is referred

to as k=approximate match.

The k≤approximate signature matching problem is to find all the approximate

matches that:

1) exist in an i=approximate match of U in S where i ≤ k;
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2) if there exists a match M in i=approximate match, then there does not exist a

match M ′ in j=approximate match where j > i and the start and end indices overlap

with those of M .

For example, if S = (a, a, b, a, c, a, b, a, a, b, a, b, c) and U = (a, b, a, c), a

1≤approximate match of U in S includes two 0=single-approximate signature matches

(s2, s3, s4, s5) and (s9, s10, s11, s13) and one 1=single-approximate signature match

(s6, s7, s8).

4.3.3 k≤Approximate Signature Matching Algorithm

In this section, we first present Algorithm 4.1 to solve the k=approximate match

problem which aims at identifying all k=single-approximate matches of U in S. In

Algorithm 4.1, start records the starting index for the chunk of S that U is matched

against. C is a two-dimensional cost matrix of size (m+1)× (n+1) and C records the

edit distance between two sequences Sstart,i and U0,j. The first row of C is initialized

as 0 to n since the cost of matching U to an empty device event sequence equals to

cost of deleting events from U . The first column of C is initialized as all 0s because

the match of U can start from anywhere in S. The last column of C indicates the edit

distance between U and Sstart,i where i = start, . . . ,m− 1.

The main idea of this algorithm is that the cost of matching sequence U0,j in Sstart,i

is the same as the cost of matching U0,j−1 in Sstart,i−1 if si = ej. Otherwise, the cost

either equals to the cost of matching U0,j in Sstart,i−1 due to the cost 0 of deleting si,

or equals to the cost of matching U0,j−1 in Sstart,i plus 1 due to the cost 1 of deleting

ej.

If Ci,n = k, we find a match of U in S that ends at si with the approximate
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Algorithm 4.1: k=appxMatch(S, U, k)
Input: Device event sequence S = (s1, s2, . . . , sm), a user activity signature

U = (e1, e2, . . . , en), approximation parameter k
Output: A list Lk of all k=single-approximate match U in S. Each match is

represented by an ordered sequence of the indices of device events in S
matched to U

1 Lk ← ∅; start← 1;
2 for i := 0 to m do
3 Ci,0 ← 0;

4 for j := 1 to n do
5 C0,j ← j;

6 for i := 1 to m do
7 for j := 1 to n do
8 if si == ej then
9 Ci,j ← Ci−1,j−1;

10 else if Ci−1,j < Ci,j−1 + 1 then
11 Ci,j ← Ci−1,j ;

12 else
13 Ci,j ← Ci,j−1 + 1;

14 if j == n and Ci,j == k then
15 M ← ∅; p← i; q ← n;
16 while q > 0 do
17 if Cp,q == Cp−1,q−1 and sp == eq then
18 p← p− 1; q ← q − 1;
19 M.insert(p);

20 else if Cp−1,q < Cp,q−1 + 1 then
21 p← p− 1;

22 else
23 q ← q − 1;

24 Lk.insert(M);
25 for j := 1 to n do
26 Ci,j ← j; start← i;

27 output List Lk.
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parameter k. We then output the indices of the current match by backtracking the

costs saved in C. Next, we reset the cost matrix by setting the i-th row of C from 0

to n and then continue to find matches starting from Si+1.

Algorithm 4.2: k≤appxMatch(S, U, k)
Input: Device event sequence S, a user activity signature U , approximation

parameter k
Output: L = (L0, L1, . . . , Lk) where Lk is the k=approximate match of U in S

1 Pre-process S to remove all the events in S but not in U ;
2 L0, L1, . . . , Lk ← ∅;
3 Initialize Q with (0,m− 1) as its only element;
4 for i := 0 to k do
5 T ← null;
6 while Q do
7 H ← Q.head(); D ← S[H.start,H.end];
8 Lk.append(k=appxMatch(D,U, i));
9 for each k=approximate match in Lk do

10 B ← the event sequence before M in D;
11 D ← the event sequence after M in D;
12 if B is not empty then
13 start ← starting index of B;
14 end ← ending index of B;
15 T .append(start, end);

16 if D is not empty then
17 start ← starting index of D;
18 end ← ending index of D;
19 T .append(start, end);

20 Q← T ;

21 return L.

Figure 4.3 shows a running example of Algorithm 4.1 with U = (a, b, a, c), S =

(a, a, b, a, c, a, b, a, a, b, a, b, c), and k = 0, respectively. In this example, s1 equals to

e1 which are both a, thus C1,1 = 0. s1, i.e., a, does not equal to e2, i.e., b, therefore,

C1,2 = 1 because C1,1 + 1 = 1 and C0,2 = 2. Similarly, we determine the other values

in the cost matrix C until comparing s5 with e4 which are both c, so C5,4 = C4,3 = 0.
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Figure 4.3. A Running Example of Algorithm 4.1

As we reach the last column of the cost matrix, and the cost value equals to k = 0,

we find a match of U in S with the approximation parameter 0. Then we start from

C5,4 and revisit the cost matrix to output this match as (5, 4, 3, 2).

We continue on searching for matches from s6 until we find another 0=single-

approximate signature match ending at s13 as (13, 11, 10, 9). As a result, Algorithm 1

outputs 0=approximate match L0 = ((5, 4, 3, 2), (13, 11, 10, 9)).

Algorithm 4.2 presents the solution for the k≤approximate signature matching

problem. It outputs L = (L0, L1, . . . , Lk), where Li records the i=approximate match

of U in S. Each element on Li stores the indices of the device events in S that form

the i=single-approximate match of U .

The main idea of Algorithm 4.2 is to start from 0=approximate match, repeatedly

discover the i=approximate match of U in S, and remove all the device events in

the i=approximate match from S until i = k. Indices of events in S are carefully

recorded that only portions of device events in S that do not overlap with the starting
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and ending indices of matches to U in the current round will be considered in the

next round. In this way, only non-overlapping matches are selected for output and

approximate matches with smaller k are discovered before approximate matches with

bigger k. List Q is designed to save a list of a pair of starting and ending indices

for a continuous portion of S that have not been matched in the approximate match

with smaller k. The output of Algorithm 4.2 with k = 3 on the running example in

Figure. 4.3 is L0 = ((2, 5), (9, 13)), L1 = ((6, 8)), L2 = ∅, and L3 = ((1, 1)).

Theorem 4.1. The time complexity of k=appxMatch algorithm is O(mn) and the

time complexity of k≤appxMatch algorithm is O(kmn) where m is the number of

events in S and n is the number of events in U .

Proof Sketch. This can be derived from the execution of the algorithms. 2

Theorem 4.2. The k=appxMatch algorithm outputs the maximum number of non-

overlapping k=single-approximate signature matches of U in S.

Proof Sketch. It has been proved in literature [71] that given a sequence of

overlapped time intervals, the greedy algorithm that chooses an interval with the

earliest finish time and excludes other overlapping intervals, outputs the maximum

number of non-overlapping intervals. The k=appxMatch algorithm indeed outputs the

match with the earliest finish time and only considers non-overlapping matches. 2

4.3.4 Inferring User Activities via Approximate Matching

With the k≤appxMatch algorithm, we can discover approximate matches of each

user activity independently. However, it is possible that two matches of different

user activities share overlapped device events which cause collisions and ambiguity.
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Therefore, we further develop a trimming step to remove the collisions in the device

event sequences that are matched to different user activities.

Algorithm 4.3: actInfer(S,U, k)
Input: A device event sequence S, an ordered sequence of signatures of all user

activities by their lengths U = (U1, U2, . . . , Ur), k
Output: LU1 , LU2 , . . . , LUr where collisions in approximate matches have been

removed
1 for i := 0 to r do
2 LUi ← k≤appxMatch(S, Ui, k);

3 for i := 0 to k do
4 for j := 1 to r do
5 for M ∈ Li

Uj
do

6 if ∃M ′ ∈ Li′
Uj′

(i′ < i) and M ∩M ′ ̸= ∅ then
7 remove M from Li

Uj
;

8 else if ∃M ′ ∈ Li
Uj′

(j ̸= j′) and M ⊆M ′ then
9 remove M from Li

Uj
;

10 output LU1 , LU2 , . . . , LUr .

The trimming heuristics in the last step of inferring user activities prefer a match

with a smaller approximate parameter k or a longer sequence of IoT device events

in its signature. This trimming step is designed based on the following empirical

observations from our real-world experiments:

1. The chance of missing device events in the signatures of user activities during

the matching is marginal. Thus we always prefer matches with smaller values of

k.

2. If the signature of one user activity is a subset of another one and both of

them are matched independently, the user activity with the superset signature

is preferred if both activities are inferred at the same time.

3. If two user activities from different users have overlapping device events, and
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these two activities happen at the same time, then it is possible that the

overlapped events are shared by both of them. For example, if one user is

entering the home from the hallway while another user is heading towards the

kitchen through the hallway, these two user activities will only generate one

light on event since the light will be turned on only once. Thus this device event

is shared by these two user activities and can be mapped to both of them during

the matching.

Algorithm 4.3 presents the pseudocode of the final algorithm of user activity

inference and outputs the set of inferred user activities from the IoT device event

streams with the simple yet effective trimming heuristic step.

4.4 Performance Evaluations

In this section, we first describe the experiment setup of a real-world smart

home environment for evaluating our proposed user activity inference algorithms.

Subsequently, we systematically evaluate the performance of our algorithms in inferring

a diverse of user activities from IoT network traffic collected from the smart home

environments.

4.4.1 Experiment Setup of Smart Home Environments

To evaluate our proposed algorithms of inferring user activities from IoT network

traffic, we have designed and set up a real-world smart home environment, as illustrated

in Figure 4.2, where we deployed a number of heterogeneous IoT devices. In this

smart home environment, each user activity enumerated in Table 4.2 will trigger at
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least one IoT device event, thus leading us to observe and collect IoT network traffic

via the programmable home router.

In our experiment, we use the Linksys WRT1900AC router running the OpenWrt

operating system to collect TCP/IP packets for all the outgoing and incoming network

traffic between IoT devices and remote hosts as well as internal traffic in the LAN

traffic between IoT devices. For each IoT device event, we adopt the method in

Chapter 3 for generating its signature consisting of an ordered sequence of IP packets

with inter-packet time intervals. Based on these signatures, we run the signature

matching and event extraction algorithms in Chapter 3 on the collected traffic to

detect all of the IoT device events that happened in the smart home.

For each of the 21 user activities in Table 4.2, we first learn and build its signature

via capturing and studying the underlying IoT network traffic while intentionally

repeating the activity with time logs, which serve as the labeled ground truth. Ex-

tracting IoT device events from the network traffic and correlating them with the

labeled and repeated user activities allow us to recognize and generate the signatures

for all 21 user activities. To evaluate the performance of our proposed user activity

inference algorithms, we also repeatedly run thousands of user activities at different

times and days with time logs over a two-month evaluation period. In addition,

our smart home environment continuously collects IoT network traffic, even during

the time that we are not actively running the experiments of triggering the 21 user

activities. The labeled user activities and collected IoT network traffic provide the

valuable dataset for evaluating the correctness and accuracy of our algorithms for

inferring user activities.
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4.4.2 Evaluation Metrics

We use the same evaluation metrics metrics, i.e., true positives (T P), false positive

(FP), false negative (FN ), true negative (T N ), precision (P), recall (R), and accuracy

(A), as introduced in Section 3.5.2. In addition, We also use the F1 score (F1) matric,

which is the harmonic mean of precision and recall and can be calculated as 2× P×R
P+R .

Specifically, for a given inferred user activity α′, if a matching real user activity α

is found at the same time from the ground truth, we consider this activity as a true

positive. However, if there is no matching user activity from the ground truth, we

consider it as a false positive. For a given real user activity α, if the user activity

inference algorithms report a different inferred user activity, e.g., β′, or simply fail

to report an inferred user activity, we consider it as a false negative. When the user

inference algorithms do not report an inferred user activity α′ for any real user activity

other than α in the ground truth, it is a true negative. In our experiments, we always

observe perfect true negative results, thus we leave the true negative measures out of

the experiment results.

4.4.3 Experimental Results

Using performance evaluation metrics introduced in Section 4.4.2, we present

the performance of our proposed user activity inference system in three phases. In

the first phase, we present the experimental results of running the 0≤approximate

matching algorithm, i.e., requiring the exact matching of device event sequences

for all user activities. In the second phase, we present the result of running the

1≤approximate matching algorithm, allowing at most one missing device event due
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to packet delays and losses or device malfunctions. In the third and final phase, we

add the optimization rules to the 1≤approximate matching algorithm for substantially

improving the performance of user activity inference.

4.4.3.1 Phase I: 0≤approximate matching

Our experiments of running 0≤approximate matching algorithm for inferring

thousands of user activities in the real-world smart home environment have shown that

the overall value of accuracy, precision, and recall are 0.96, 0.99, and 0.97, respectively,

as illustrated in columns 6 to 8 of the last row in Table 4.3. We can observe that most

of the user activities can be detected correctly. However, the user activity inference

algorithms occasionally fail to detect user activities #2,#4,#6,#8,#10,#11,#12,

and #14, leading to a small number of false negatives, as shown on the fifth column

of Table 4.3.

Our in-depth investigation has discovered that nearly all of these false negatives

are caused by the “missing” Ring Doorbell’s motion detection event from the device

event sequences of these user activities. The underlying root cause of these “missing”

events is the multiple-second long delay of reporting these motion events by the

battery-powered Ring Doorbell [19], leading to the out-of-order device events for

these user activities. In other words, these motion events are simply delayed, actually

not missing. However, as the 0≤approximate matching algorithm requires the exact

matching of device event sequences for all user activities, these cases with out-of-order

device events are reported as false negatives.

In addition to these false negatives, there are also 16 cases of false positive for user

activity #18. Our follow-up analysis reveals that the real user activities indeed have
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Table 4.3. Experimental Results of Our Proposed User Activity Inference Algorithms
in the Real-World Smart Home Environment

User
#

Phase I Phase II Phase III
Act. T P FP FN A P R T P FP FN A P R T P FP FN A P R

1 112 112 0 0 1.00 1.00 1.00 112 0 0 1.00 1.00 1.00 112 0 0 1.00 1.00 1.00
2 115 105 0 10 0.91 1.00 0.91 115 0 0 1.00 1.00 1.00 115 0 0 1.00 1.00 1.00
3 112 112 0 0 1.00 1.00 1.00 112 0 0 1.00 1.00 1.00 112 0 0 1.00 1.00 1.00
4 115 106 0 9 0.92 1.00 0.92 115 0 0 1.00 1.00 1.00 115 0 0 1.00 1.00 1.00
5 113 113 0 0 1.00 1.00 1.00 113 0 0 1.00 1.00 1.00 113 0 0 1.00 1.00 1.00
6 115 97 0 18 0.84 1.00 0.84 115 0 0 1.00 1.00 1.00 115 0 0 1.00 1.00 1.00
7 112 112 0 0 1.00 1.00 1.00 112 0 0 1.00 1.00 1.00 112 0 0 1.00 1.00 1.00
8 112 110 0 2 0.98 1.00 0.98 112 0 0 1.00 1.00 1.00 112 0 0 1.00 1.00 1.00
9 121 121 0 0 1.00 1.00 1.00 121 78 0 0.61 0.61 1.00 121 0 0 1.00 1.00 1.00

10 112 105 0 7 0.94 1.00 0.94 112 0 0 1.00 1.00 1.00 112 0 0 1.00 1.00 1.00
11 350 347 0 3 0.99 1.00 0.99 350 0 0 1.00 1.00 1.00 350 0 0 1.00 1.00 1.00
12 294 269 0 25 0.91 1.00 0.91 294 0 0 1.00 1.00 1.00 294 0 0 1.00 1.00 1.00
13 116 116 0 0 1.00 1.00 1.00 116 0 0 1.00 1.00 1.00 116 0 0 1.00 1.00 1.00
14 113 98 0 15 0.87 1.00 0.87 113 0 0 1.00 1.00 1.00 113 0 0 1.00 1.00 1.00
15 138 138 0 0 1.00 1.00 1.00 138 33 0 0.81 0.81 1.00 138 0 0 1.00 1.00 1.00
16 132 132 0 0 1.00 1.00 1.00 132 33 0 0.81 0.81 1.00 132 0 0 1.00 1.00 1.00
17 112 112 0 0 1.00 1.00 1.00 112 0 0 1.00 1.00 1.00 112 0 0 1.00 1.00 1.00
18 224 224 16 0 0.93 0.93 1.00 224 16 0 0.93 0.93 1.00 224 16 0 0.93 0.93 1.00
19 112 112 0 0 1.00 1.00 1.00 112 0 0 1.00 1.00 1.00 112 0 0 1.00 1.00 1.00
20 113 113 0 0 1.00 1.00 1.00 113 0 0 1.00 1.00 1.00 113 0 0 1.00 1.00 1.00
21 116 116 0 0 1.00 1.00 1.00 116 0 0 1.00 1.00 1.00 116 0 0 1.00 1.00 1.00
all 2959 2870 16 89 0.96 0.99 0.97 2959 158 0 0.95 0.95 1.00 2959 16 0 0.99 0.99 1.00

happened as inferred, but are not recorded in our controlled experiments. This obser-

vation suggests that our user activity inference algorithms could potentially monitor

real-time IoT network traffic and alert homeowners on unexpected or anomalous user

activities for home safety and other applications.

4.4.3.2 Phase II: 1≤approximate matching

Running the 0≤approximate matching algorithm for inferring thousands of user

activities achieves high accuracy, but returns a non-trivial of false negatives. Therefore,

in phase II we explore the increase of the value of k in the matching algorithm

for accommodating the missing and out-of-order device events when searching and

matching the signatures of user activities. To understand and quantify the performance
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tradeoff, specifically false positives and false negatives with varying k, we run the

k≤approximate matching with the value of k increasing from 0 to 5. As illustrated in

Figure 4.4, the increase of k leads to lower false negatives but higher false positives.

In addition, increasing k from 1 to 2, 3, 4, 5 achieves marginal improvements in false

negatives, but incurs significant penalties in false positives. Therefore, we choose

1≤approximate matching algorithms for the remaining experiment evaluations.

k=0 k=1 k = 2 k = 3 k = 4 k = 5

0

100

200

300

400

500

FN count

FP count

Figure 4.4. Tradeoff Analysis of False Positive vs. False Negatives With Varying k

By setting k as 1, the approximate matching algorithm allows at most one missing

or out-of-order device event when matching the signatures of user activities. Such

flexibility effectively addresses the challenge of the long delay of the Ring Doorbell’s

motion detection event, and significantly improves the performance of our user activity

inference system in the smart home environment. As shown in the column 11 of

Table 4.3, the false negative measures of user activities #2,#4,#6,#8,#10,#11,#12,

and #14 drop to 0.

However, in column 10 of Table 4.3, we also observe the increase of false positive

measures from 0 to 78, 33, 33 for user activities #9,#15, and #16, respectively. Our

follow-up analysis discovers that the signatures of all of these three user activities
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(#9,#15, and #16) have a length of 2 device events. The short length of 2 device

events in the signatures explains the high false positives, since 1≤approximate matching

algorithm will report the matching success of one of these activities whenever finding

one single device event in their signatures. Given the above observations, we continue

to explore optimization rules in the approximate matching algorithm to reduce high

false positives while maintaining low false negatives during the matching process.

4.4.3.3 Phase III

1≤approximate matching with optimization. Inspired by the findings of high false

positives for the short device event sequences, we add a simple yet effective optimization

rule for the approximate matching algorithm. Specifically, when the length of the

device event sequence for a user activity is equal to or less than a certain threshold,

referred to as θ, we only run the 0≤approximate matching algorithm to infer such

activities. The intuition of such optimization rule lies in the observation that when

the length of the device event sequence in the user activity signature is short, the

probability of finding false positives is very high. Based on our empirical results, we

set θ as 3 in our experiments.

As shown in columns 16 and 17 in Table 4.3, the false positives of user activities

#9,#15, and #16 drop to 0 thanks to the simple yet effective optimization rule.

The only remaining false positives correspond to user activity #18, which are caused

by real but uncontrolled user activities that were not recorded in our experiments.

Figure 4.5 compares the overall accuracy, precision, recall, and F1 scores of running our

proposed user activity inference algorithms over three phases: 0≤approximate matching,

1≤approximate matching, 1≤approximate matching with optimization, respectively.
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Figure 4.5. Overall Accuracy, Precision, Recall, and F1 Scores of Phase I, Phase II,
and Phase III, Respectively

Clearly, 1≤approximate matching with the simple and intuitive optimization rule

achieves the best performance.

In summary, our two-month long experiments have shown that our proposed user

activity inference system is able to effectively and accurately detect and infer user

activities from IoT network traffic in smart homes. By applying the approximation

matching algorithm with the simple optimization rule, we achieve the overall values

of accuracy, precision, and recall as 0.99, 0.99, and 1.00, respectively.

4.5 Related Work

Given the prevalent threats and attacks targeting IoT devices [5, 9, 57, 75, 90, 91,

114, 127, 159], detecting various user activities in smart homes has become a crucial

task for IoT security. A few recent studies have explored the events and statuses of

IoT devices for recognizing user activities and behaviors [1, 47, 107]. For example,

the researchers of [107] deploy numerous sensors in a three-bedroom apartment and

develop a hidden Markov model (HMM) based system to recognize and track user

activities. Peek-a-Boo [1] is able to launch privacy attacks in smart homes by passively

81



sniffing the encrypted network traffic over the air and utilizing machine learning

approaches to recognize six different user activities. Similarly, the study in [47]

proposes HAWatcher, a semantics-aware anomaly detection system for appified smart

homes, for discovering the correlation according to semantic information in smart

homes, and exploits these correlations for modeling a smart home’s normal behaviors.

Different from these prior work, IoTMosaic first detects IoT device events from

smart home network traffic and then recognizes and profiles user activities to map

them to their triggered IoT device event sequences. Subsequently, IoTMosaic develops

an effective approximate matching algorithm for inferring user activities in smart

homes, which could provide homeowners critical insights on what is happening in

their homes instantly and automatically.

4.6 Conclusions

This study proposes IoTMosaic for inferring user activities from IoT network

traffic. Based on the IoT device events detected from smart home network traffic,

IoTMosaic generates the signatures of diverse user activities consisting of IoT device

event sequences. Given the observation of missing and out-of-order device events due

to device malfunctions and varying network latencies, we design the approximate

matching algorithms to capture the exact or approximate matches of user activities’

signatures in the device event sequence. In addition, we devise a heuristic trimming

strategy to resolve the conflicts in multiple matches of user activities due to overlapping

device events in their signatures. Our two-month experimental results with thousands

of user activities in a real-world smart home show that our proposed algorithms can
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infer different user activities with accuracy, precision, and recall of 0.99, 0.99, and

1.00, respectively.
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Part III

Securing Smart Home Networks

84



Chapter 5

IOTARGOS: MULTI-LAYER MACHINE-LEARNING BASED INTRUSION

DETECTION FOR SMART HOME IOT DEVICES

5.1 Background

In this section, we first describe the rising deployment, applications, and services

of IoT devices in millions of smart homes, and then discuss the existing vulnerabilities

of heterogeneous and weakly-protected IoT devices and the challenges to secure them.

Finally, we shed light on multi-layer behavioral fingerprints left by real-world IoT

attacks and threats.

5.1.1 Internet-of-Things at Smart Homes

The recent years have witnessed the explosive deployment of Internet-connected

IoT devices in smart homes. A smart home today can connect a wide range of IoT

devices such as IP surveillance cameras, smart thermostats and smoke detectors, voice

assistants, and air quality monitors via different communication protocols for home

automation, home security and safety, energy efficiency, and healthcare.

Smart home IoT devices connect to the Internet either directly via running TCP/IP

protocol stacks on themselves or indirectly via relying on a smart home platform such

as Samsung’s SmartThings [119], Google’s Nest [51], and Amazon’s Alexa [6]. In smart

homes, the Internet-capable IoT devices such as smart TVs, IP surveillance cameras,

Amazon Echo, and Google Home typically use wired cables or WiFi to connect to
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home routers, while many embedded IoT devices such as Philips Hue smart bulb,

Samsung multipurpose sensor, and August smart lock use low-power wireless protocols

such as Zigbee, BLE, and Z-Wave to connect to the Internet via a smart gateway,

hub, or bridge. For ease of presentation, we refer the Internet-capable IoT devices as

ic-IoT devices, and the gateway-supported embedded IoT devices as em-IoT devices.

5.1.2 Security Challenges of Heterogeneous IoTs

As connected IoT devices in smart homes continue to grow in size and complexity,

the security issue has become one of the top challenges in IoT research community.

Securing IoT systems in smart home is a daunting task due to the heterogeneity of

IoT systems, the prevalence of vulnerabilities in IoT devices and applications, as well

as the broad attack vector across the entire IoT protocol stack. For example, the

recent Mirai botnet [9, 70], formed by hundreds of thousands of IoT devices, launched

an aggregated 600 Gbps DDoS attack towards Brian Krebs’s security blog. Thousands

of home IP cameras, as part of Mirai botnet, are remotely exploited by attackers

via universal plug and lay (UPnP) enabled home routers which allow IoT devices

behind network address translation (NAT) protection to automatically bind a service

port for communicating with remote networked systems [127]. Another innovative

attack [90, 114] discovers and leverages the software implementation bugs in the

Zigbee light link (ZLL) protocol [159], to potentially control all the lights in a city via

spreading IoT worms from a single infected bulb, i.e., patient zero, to all compatible

IoT lights using their built-in Zigbee wireless connectivity and physical adjacency.

Similarly, misbehaving and malicious smart home applications could explore the design

flaws of smart home programming platforms such as Samsung SmartThings to gain
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over-privileged access and control of IoT systems and to launch event spoofing attacks

e.g., triggering fake fire alarms [42, 156].

5.1.3 Multi-Layer Behavioral Fingerprint of IoT Attacks

Many cyber attacks towards IoT devices leave traffic and behavioral fingerprints

at different TCP/IP layers and IoT protocol stacks. For example, the Mirai botnet

employs three stages including infiltration, infection, and operation for scanning,

controlling, and exploiting vulnerable IoT devices. These steps trigger Internet data

traffic between the attacking devices and the UPnP-enabled home router as well as

wireless packets between the router and wireless IP cameras or other IoT devices.

Similarly, if an attacker with unauthorized access to an August smart lock account

via a Web interface or a smart phone app remotely opens and closes the smart lock

via August cloud services, the events will leave IP, WiFi, and Bluetooth data traffic

between the cloud servers and the home router, the router and the August connect

bridge, the bridge and the August smart lock, respectively. Therefore, the broad attack

vector over the entire IoT protocol stack calls for a multi-layer security monitoring

and analysis platform.

5.2 IoTArgos System Overview and Design

In this section, we first present the system overview and architecture of IoTAr-

gos. Subsequently, we discuss each key component of IoTArgos for monitoring and

measuring IoT data communications via a multi-layer approach.
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Figure 5.1. The Overall System Architecture of IoTArgos.

5.2.1 IoTArgos System Overview

IoTArgos is a multi-layer smart home security monitoring system for monitoring

and analyzing data communications of IoT systems in smart homes and detecting

and mitigating intrusions and anomalous activities. The design and implementation

of IoTArgos are router-centered. Our intuition of developing IoTArgos on the home

router originates from the network architecture of smart homes. Specifically, consumer-

grade home routers serve as the residential gateway to route and forward data packets

between internal IoT devices in smart homes and external cloud servers of IoT vendors

or other remote servers on the Internet. The physical connection from IoT devices to

the router is established either directly through wired cables or WiFi, or indirectly

via a hub or bridge. In recent years, a number of research studies have explored

the computation, storage, and bandwidth resources on commodity home routers to

characterize end-to-end performance and troubleshoot performance anomalies and

mis-configurations in home networks [2, 29].

Figure 5.1 illustrates the overall system architecture of IoTArgos, which consists of

four key components: data collection, IoT communication characterization, ML-based

intrusion detection, and real-time mitigation and defense. The primary objective of

the data collection component is to configure and setup data collection instruments on
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programmable home routers, while the IoT communication characterization component

is devoted to characterizing and profiling communication patterns of IoT devices.

The ML-based intrusion detection component first explores supervised classification

algorithms to classify known attacks of IoT data communications and then relies on

unsupervised anomaly detection algorithms to detect unknown suspicious activities or

zero-day attacks.

5.2.2 Key System Components

5.2.2.1 Multi-Layer IoT Data Collection

A key strength of our proposed router-centered security monitoring system lies

in its flexibility of collecting all data communications at a centralized location. Such

simple yet effective deployment and configuration is crucial for millions of regular home

users to adopt the system, as existing application-driven or device-specific solutions

require non-trivial skills and efforts for home users to manage and secure IoT devices

with diverse operating systems and interfaces in smart homes. As the residential

gateway of broadband home networks, many programmable home routers including

bare-bone Raspberry Pi models have the computational resources and open-source

packages to capture and store raw IP data packets and aggregated network traffic flows

as well as the Ethernet and WiFi frames. Many battery-operated IoT devices in smart

homes such as smart locks only communicate with low energy wireless protocols such

as Zigbee and Bluetooth, which have been proven to be insecure by design. Therefore,

in order to collect the entire data frames from heterogeneous IoT devices adopting

different link layer protocols, we setup Texas Instrument CC2531 and CC2540 USB
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dongles for the capture of Zigbee and Bluetooth frames respectively. In this study,

IoTArgos collects both network flow records and wireless packets of Zigbee, Bluetooth

and WiFi protocols at programmable home routers.

5.2.2.2 Characterizing IoT Data Communications

The collected multi-layer data by programmable home routers allow us to sys-

tematically characterize data communication behaviors of all IoT devices in smart

homes, e.g., when, how, and why IoT devices in smart homes communicate with cloud

servers, other remote networked systems, mobile applications that control the devices,

home routers, and local IoT hubs. Specifically, IoTArgos profiles data communications

of IoT devices with a broad range of basic raw communication and traffic features

such as the IP address and domain name of remote end hosts, inter-packet arrival

time, packet size, flow duration, source port, destination port, protocol, link layer

protocol, as well as aggregated features such as the number and dynamics of remote

hosts, and the dominant applications. These traffic features not only characterize IoT

data communications, but also play a crucial role in the ML-based intrusion detection

component.

5.2.2.3 ML-based Intrusion Detection

In general, we classify cyber attacks towards IoT systems as known and unknown

attacks. The signature and patterns of known attacks are often public knowledge,

while unknown attacks, e.g., new or zero-day attacks are typically not discovered

or reported yet. Similar to traditional firewalls, detecting known intrusions and
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attacks often requires signature-based techniques or supervised machine-learning

based methods which are often unable to uncover new attacks. In order to capture

both known and unknown attacks, IoTArgos adopts a two-stage approach for ML-

based intrusion detection: i) supervised classification stage, and ii) unsupervised

anomaly detection stage. The first stage applies one supervised machine learning

algorithm on the collected multi-layer data for classifying IoT attacks or normal

IoT data communications, while the second stage applies one unsupervised anomaly

detection algorithm to uncover anomalous behaviors that are not detectable by the

supervised classification stage due to the unavailability of attack signatures or training

data-sets.

5.3 Multi-Layer Feature Characterization of Smart Home IoT Devices

IoT devices in smart homes often exhibit various functions and diverse computation,

storage, and communication capabilities. For example, smart TVs and Amazon Echo

are often powered by electric power and have wired or wireless connections to home

routers for Internet connections, while battery-operated motion and water leak sensors

rely on low energy wireless communication protocols such as Zigbee, Z-Wave, or

Bluetooth to connect with the specific bridges (also called hubs or gateways) which

support both TCP/IP protocols and IoT wireless protocols and standards.

To characterize data communication for all IoT devices in smart homes with

a centralized solution, IoTArgos explores a wide range of multi-layer features from

TCP/IP-based network flow records extracted by softflowd and nfcapd packages

installed on programmable home routers and wireless packets captured by wireless

sniffers installed on the routers. The majority of IoT applications and services in smart
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homes have employed encryption in data communications, thus IoTArgos focuses on

behavioral features such as the size, durations, protocols, and remote end systems of

data communications.

Mining and correlating multi-layer features of IoT data communications allow us

to gain a deep understanding on behavioral patterns of these IoT devices in smart

homes, which is a critical first step for securing these devices and detecting anomalies.

For example, Figure 5.2 shows the numbers of Zigbee wireless packets exchanged

between a Samsung outlet and Samsung SmartThings hub as well as IP data packets

between the hub and Samsung servers hosted on Amazon cloud over a 24-hour time

window.
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Figure 5.2. The Numbers of ZigBee Wireless Packets Exchanged Between a Samsung
Outlet and Samsung SmartThings Hub As Well as IP Packets Between the Hub and
Samsung Cloud Servers

The objective of building behavioral patterns of IoT devices is to understand what,

when, how, if, and why the devices communicate with other systems including their

local bridges, hubs, or gateways in the same home and remote cloud servers. Towards

this end, IoTArgos extracts the basic traffic features of network flows and wireless

packets originating from or destined to the IoT devices including source MAC address,
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destination MAC address, source IP address, destination IP address, source port,

destination port, protocol, flow volumes in packets and bytes, flow duration, and then

derives the advanced features such as inter-packet arrival time, average packet size,

domain and autonomous system number (ASN) of cloud server.

The multi-layer data communication features allow IoTArgos to establish a behav-

ioral profile to summarize the communication patterns of IoT devices over time. Such

behavioral profiles and communication patterns, if captured in a controlled smart home

laboratory environment, can serve as a baseline of normal IoT communications. To

identify multi-layer features of IoT data communications, we rely on permanent physi-

cal layer addresses of IoT devices and their hubs as well as the temporal sequences to

associate network flow records with wireless packets for generating augmented network

flow records which summarize individual conversations or events of IoT applications

and services, e.g., remotely opening an August smart lock via data communications

among the lock owner’s smart phone, August cloud server, the smart home router,

and the August connect bridge.

In summary, IoTArgos characterizes and profiles IoT data communications with a

broad range of features from multi-layer IoT protocol stacks. Mining these multi-layer

features also leads us to discover distinct communication patterns of IoT devices in

smart homes. These features and patterns provide critical insights and valuable inputs

for exploring ML algorithms to detect intrusion activities and anomalous behaviors

towards or from IoT devices.
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5.4 Machine-Learning Based Intrusion Detection

A number of recent studies and surveys have reported that the prevalent and

exploitable vulnerabilities of IoT systems in smart homes have enabled the attackers

to compromise and control thousands of IoT systems for launching large scale DDoS

attacks or listening to the private conversations in hacked smart voice assistants.

Hence, detecting intrusion activities and anomalous behaviors of IoT systems in smart

homes is an important design goal of IoTArgos.

In this section, we present our two-stage ML-based intrusion detection design in

IoTArgos, which relies on the supervised classification algorithms in the first stage

to classify known attacks, and explores the unsupervised anomaly detection in the

second stage to detect unknown or zero-day attacks towards IoT devices in smart

homes.

5.4.1 First Stage: Supervised Classification

The intuition of our proposed two-stage intrusion detection strategy is driven

by the diversity and complexity of the existing and potential attacks and attacks

towards heterogeneous IoT devices in smart homes. Traditional signature-based

detection methods or emerging ML-based classifications approaches are very efficient

for classifying attacks whose signatures are available or whose prior instances are

captured and labelled. However, such methods often have challenges in recognizing

zero-day attacks that are created by attackers via exploiting newly discovered or

exposed vulnerabilities from one or more types of IoT devices.

Therefore, as a first step, IoTArgos explores supervised classification algorithms to
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detect and filter a subset of attacks via training a suite of classification algorithms

and selecting the desired algorithm that balances the intrusion detection performance

and system consumption such as CPU and memory cost on resource-constrained

home routers. Specifically, we choose five well-known and computationally lightweight

classification algorithms including k-nearest neighbors (k-NN), logistic regression (LR),

naïve bayes (NB), RF, and support vector machine (SVM).

5.4.2 Second Stage: Unsupervised Anomaly Detection

As several prior studies on Internet intrusion and anomaly detection have pointed

out, cyber attackers often employ new attack techniques thanks to the newly discov-

ered zero-day vulnerabilities in the compromised systems, they often exhibit similar

behavioral patterns, e.g., such as port scanning, penetration testing, and brute-force

password attempts as existing attacks. Given the likely new attacks that are misclas-

sified as “normal” in the first stage, IoTArgos develops the second-stage with anomaly

detection algorithms for identifying new attacks from the remaining “normal” data

communications. In this stage, we also select and evaluate computationally lightweight

anomaly detection algorithms such as clustering-based local outlier factor (CBLOF),

fast angle-based outlier detection (FastABOD), feature bagging (FB), isolation forest

(IForest), local outlier factor (LOF), and PCA.

Therefore, the goal of the second stage is to uncover anomaly behaviors that are not

detectable by the supervised intrusion classification technique due to the unavailability

of attack signatures or training data-sets or the emerging new vulnerabilities or

weakness of IoT systems to be discovered by attackers. In other words, each data

communication with various multi-layer features of IoT systems in smart homes will
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be initially inspected by the the first-stage classification algorithms in IoTArgos. If

the classifier reports normal, the record will go through the second stage anomaly

detection model.

5.5 Performance Evaluations

We have implemented the IOTArgos system and deployed the system across 22

real-world smart home networks. In this section, we present results of our extensive

performance evaluations along with our key observations. We first describe our

experiment setup, synthetic IoT data communication generations, and evaluation

metrics. Subsequently, we systematically evaluate the performance of our proposed

two-stage intrusion detection technique.

5.5.1 Experiment Setup and Synthetic IoT Traffic Generation

To detect and classify attacks and intrusion activities towards IoT devices in smart

homes, we built a simple yet effective ML-based intrusion detection component into

the IoTArgos system. To demonstrate the performance, benefit, and feasibility of

our approach, the IoTArgos system not only collects the normal multi-layer data

communications of IoT devices in distributed smart homes in real-time, but also

captures the simulated attack traffic towards selected IoT devices. To comprehensively

simulate the existing cyber attacks against smart home IoT systems, we referred to

recent studies [5, 9, 102, 114] on security attacks and threats towards IoT devices and

simulate and replay a wide range of cyber attacks, as summarized in Table 5.1, across

multiple layers of IoT communication protocol stack.
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For each type of attacks, we wrote dedicated scripts and followed the state-of-

the-art penetration test procedure to replay the attacks with varying instances and

intensity towards selected IoT devices. In order to replay link layer attacks against

devices running the Zigbee and Bluetooth protocols [32, 90, 114, 115, 159], we rely

on the widely-used HackRF One transceiver, a software defined radio (SDR) device

capable of transferring and receiving radio signals ranging from 1MHz to 6GHz, and

run the open-source radio frequency monitoring and injecting tools such as GNU

Radio and Scapy-radio for customizing the frequency or the type of the link layer

frames.

For collecting the normal IoT data communication, we built a smart home sandbox

in a laboratory environment that deploys the IoTArgos system on a OpenWrt-supported

Linksys WRT1900ACS home router equipped with 1.6GHz dual-core processor and

512MB memory. In the smart home laboratory, all IoT devices are configured behind

the NAT-enabled router. In addition, we disabled UPnP from the security setting on

the home router to prevent outside attackers in close proximity from directly targeting

all IoT devices in the smart home sandbox. The smart home sandbox, consisting of

a variety of IoT devices and the programmable home router, has been continuously

running for over six months. We consider the data collected by the router in the

sandbox during these six months as the normal IoT data communications, and combine

with the simulated attacks to generate large scale synthetic IoT communication data-

sets. We eventually built a labelled data-set consisting of over 6 million normal

network flow records and over 300 thousand attack flows for our evaluation experiment.

Once acquiring the synthetic IoT data communications consisting of normal IoT data

communications and simulated attacks, we evaluate the performance and cost of a
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suite of ML models for determining the most optimal model to balance the intrusion

detection quality and the cost of computational and memory resources.

Table 5.1. The List of Simulated Attacks Towards IoT Devices in Smart Homes

Category Attack Strategy Description

Scanning Attacks

host scanning [9, 148] identifying IoT devices
and scanning for
vulnerabilities

port scanning [9, 102]
nexpose scanning [5]
nessus scanning [5]

Flooding Attacks

HTTP flooding [9] application-layer
DNS flooding [9] application-layer
GRE-IP flooding [9] application-layer
UDP flooding [9] volumetric
UDP plain flooding [9] volumetric
SYN flooding [9] TCP state exhaustion
ACK flooding [9] TCP state exhaustion
IP AH flooding [9] IPSec
IP ESP flooding [9] IPSec

Brute Force Attacks SSH brute force [102] brute forcing
user credentialsTelnet brute force [9]

Data Link Layer Attacks

ACK spoofing [90, 114] fake scan response
blind attack [90] malicious identify request
DoS attack [90] junk traffic
force re-pairing [115] manipulate pairing request

5.5.2 Evaluation Metrics

We use the similar true positives (T P), false positive (FP), false negative (FN ),

true negative (T N ), precision (P), recall (R), accuracy (A), and F1 score (F1) metrics

as introduced in Section 3.5.2 and Section 4.4.2. In our synthetic IoT data traffic, we

label the simulated attacks as positive and normal traffic flows and wireless packets as

negative. During the performance evaluation of ML-based algorithms, the correctly

detected attacks are denoted by T P , while the attacks detected as normal scenarios

are considered as FN . Similarly, T N refers to the cases when normal IoT data

communications are recognized as normal, while FP represents the cases when normal

IoT communications are incorrectly detected as attacks.
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5.5.3 Evaluation of the First Stage

In the first stage for IoT intrusion detection, we select five widely-used classification

algorithms, i.e., k-NN, LR, NB, RF, and SVM, and apply k-fold cross validation

with k set as 10 to evaluate and compare their performance. Table 5.2 illustrates

accuracy, precision, recall, and F1 score of the five classification algorithm. As shown

in Table 5.2, all classification algorithms achieve over 0.90 across all metrics except

the precision and F1 score for NB classification.

Table 5.2. The Performance Metrics of Detecting IoT Intrusions With Five Classifica-
tion Algorithms

Model A P R F1

k-NN 0.9833 0.9878 0.9649 0.9762
LR 0.9573 0.9718 0.9076 0.9386
NB 0.9195 0.9413 0.8292 0.8817
RF 0.9858 0.9893 0.9703 0.9797
SVM 0.9707 0.9806 0.9365 0.9580

While all these classification algorithms are very effective, the effectiveness of these

algorithms depends on the complete knowledge of the attacks. In reality, there are

always the possibility of new and unknown attacks. In order to study the impact

of new and unknown attacks, we conducted a study in which we intentionally treat

certain types of attacks as “normal” data in the training phase. As a result, the

performance of all classification algorithms decreases significantly due to the existence

of new attacks. Table 5.3 shows the decreased performance metrics of detecting IoT

intrusions with five classification algorithms with 25% types of IoT attacks with the

lowest instances in the synthetic data-set as new or unknown during model training

process. For example, the accuracy, precision, recall and F1 score of RF classification

drops 0.1088, 0.1004, 0.0950, 0.0977, respectively. This simple study demonstrates
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that the classification algorithm alone, albeit efficient in detecting IoT attacks with

high quality labelled data-sets, is not sufficient enough to detect the rising new attacks

and threats towards IoT systems in smart homes.

Table 5.3. The Performance Metrics of Detecting IoT Intrusions With Five Classifica-
tion Algorithms With 25% Types of IoT Attacks As New or Unknown During Model
Training Process

Model A P R F1

k-NN 0.8945 0.8958 0.8781 0.8869
LR 0.8388 0.8620 0.8388 0.8502
NB 0.7802 0.8668 0.7636 0.8119
RF 0.8770 0.8889 0.8753 0.8820
SVM 0.8766 0.8886 0.8642 0.8762

5.5.4 The Benefits of the Second Stage

Anomaly detection algorithms have been extensively studied to identify unknown

attacks or anomalies towards networked systems. Thus, we introduce anomaly de-

tection algorithms in IoTArgos as the second stage for discovering those “new” types

of IoT attacks that are incorrectly detected as normal data communications by the

classification algorithm in the first stage. Considering the rare nature of the new

or zero-day IoT attacks, we only consider the types of IoT attacks with the lowest

instances from our labelled data-set as the “new” types of attacks in the experiments.

The intuition and rationale of introducing anomaly detection algorithms lie in

our observations that all outlier IoT data communications are likely anomalous and

suspicious activities towards IoT systems since these data communications likely

deviate from common and normal IoT data communication patterns. In this study, we

select six algorithms i.e., CBLOF, FastABOD, FB, IForest, LOF, and PCA which are

widely used for anomaly or outlier detections, and run each of these algorithms against
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all the “normal” IoT data communications to generate distinct clusters of various sizes

for grouping similar patterns or to assign anomaly scores for each communication flow.

Table 5.4. Performance Metrics of Combining RF Classification and the Second Stage
for Detecting Known and New IoT Attacks

Model A P R F1

CBLOF 0.9757 0.9798 0.9661 0.9729
FastABOD 0.9241 0.9365 0.9212 0.9288
FB 0.9467 0.9521 0.9353 0.9436
IForest 0.9876 0.9897 0.9750 0.9823
LOF 0.9444 0.9500 0.9342 0.9420
PCA 0.9818 0.9876 0.9763 0.9819

Table 5.4 illustrates the performance of combining RF classification with the

second-stage anomaly detection algorithms for detecting new IoT intrusions that are

misclassified as normal communications in the first stage. To systematically evaluate

the benefit of adding anomaly detection algorithms in the second stage, we run all the

30 combinations of the (classification, anomaly detection) pair on our labelled data-set

of synthetic IoT data communications. Table 5.5 shows the substantial improvement

on AUC of combining two-stages over the first classification stage alone, where each

entry shows the result of the corresponding (classification, anomaly detection) pair.

Table 5.5. The AUC Improvement by Combining Two-Stages Over the First Classifi-
cation Stage Alone

Model None CBLOF FastABOD FB IForest LOF PCA
k-NN 0.87 0.97(+10.6%) 0.92(+4.9%) 0.96(+9.3%) 0.97(+10.7%) 0.95(+8.8%) 0.97(+10.8%)
LR 0.89 0.96(+8.9%) 0.91(+2.9%) 0.94(+6.0%) 0.97(+9.2%) 0.96(+8.2%) 0.96(+7.7%)
NB 0.82 0.92(+11.1%) 0.90(+9.7%) 0.92(+11.4%) 0.96(+16.6%) 0.92(+12.0%) 0.92(+12.0%)
RF 0.87 0.97(+11.5%) 0.92(+6.0%) 0.95(+8.8%) 0.97(+11.3%) 0.96(+10.0%) 0.97(+11.4%)
SVM 0.88 0.94(+7.3%) 0.91(+3.8%) 0.94(+7.0%) 0.96(+9.7%) 0.94(+7.5%) 0.95(+9.0%)

We observe from Table 5.5 that running anomaly detection after classification

improves accuracy in all cases, and the improvement is significant except for a few

combinations. For example, applying PCA anomaly detection after running the RF
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classification improves 11.4% on the AUC metric, i.e., from an AUC of 0.87 in the

first stage to the final AUC of 0.97. To have a better view of the improvement, we use

Figure 5.3 to illustrate both the average improvement and maximum improvement of

AUC via combining anomaly detection stage and classification for all 30 combinations.

All of the models have significant AUC increment on average and the isolation forest

model managed to improve the raw naïve bayes model’s AUC over 16%.

  k-NN LR NB RF SVM

First Stage Classification Models

0.7

0.75

0.8

0.85
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0.95

1
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U

C

None

Average
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Figure 5.3. The Average and Best AUC Improvement by Combining Two-Stages Over
the First Classification Stage Alone

In summary, these experimental results demonstrate that our proposed two-stage

intrusion detection algorithm is very effective and has significant advantages over

classification alone. In addition, we have run a series of experiments with varying

ratios, e.g., 95%/5%, 90%/10%, 85%/15%, 80%/20%, 75%/25%, and 70%/30% of

normal and attack traffic flows. All the experiments show similar performances of our

proposed two-stage ML-based method in detecting simulated attacks towards smart

home IoT devices. Given the overall performance and robustness of our proposed

method, it is safe to expect significant improvement of the two-stage algorithm when
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new/better classification or anomaly detection algorithms are designed and employed

by our two-stage algorithm.

5.6 Related Work

Smart home IoT security has been of recent interest to many researchers due to the

wide deployment of IoT devices in home networks. Research effort has been devoted to

empirically study the current status of IoT deployment, to discover and raise awareness

of the potential vulnerabilities and their growing security implications, to design more

secure IoT application frameworks, to analyze the firmware and software security, and

to understand the behavior of IoT components and further detect anomaly [5, 15, 17,

39, 41, 44, 48, 55, 60, 65–69, 76, 82, 83, 92, 100, 108, 114, 122, 124, 129, 144, 157].

State of Home IoT Deployment and Security: A recent SoK paper [5] categorizes

the home IoT security research into device, mobile application, cloud endpoint, and

communication, describes the attacks and mitigation, and proposes recommendations

to stakeholders for each category. In addition, the paper evaluates the security

properties of 45 home IoT devices and their applications. A recent paper [72] carries

out a large-scale empirical analysis of IoT devices in real-world homes, covering

83 million devices in 16 million homes, and presents methodologies to identify the

types of IoT devices in home networks and provides their regional distributions. The

paper also analyzes the status of services and weakness in the IoT devices and the

scanning behavior of smart homes. As the first paper investigating the security

problems of Smart Home IoT applications, the work in [42] identifies over 50% of the

applications on Samsung’s SmartThings platform with serious over-privilege problems.

The similarities and differences between IoT security research and classic IT security
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research from hardware, system software, network, and application layers are discussed

in [44]. A recent paper [91] provides a comprehensive survey on security issues and

defense mechanisms for various IoT applications in smart homes, vehicles, cities and

buildings. Human Factors in smart home IoT security are discussed in [36–38, 56, 73,

74, 89, 130, 149].

Attack Techniques: The popularity of home IoT devices has introduced a new

spectrum of attacks towards all the components in smart homes. The SOK paper [5]

compiles a comprehensive list of attacks towards different types of IoT devices, popular

services supported by the devices, weak trust management and weak credentials, mobile

application development, and communication channels. With an example attack where

worms automatically spread over a large area among physically adjacent lamps in

a chain reaction using only the standard Zigbee wireless interface, a new attack

paradigm where IoT devices with ad hoc networking capabilities can spread malware

to their physically adjacent neighbors bypassing the Internet is investigated in [114].

In addition, vulnerable IoT devices have been recently exploited to form high profile

botnets. The detail insight of Mirai botnet is studied in [9, 52, 70], which is a high

profile DDoS threat sourced from hundreds of thousands of IoT devices, and how

the insecurity of IoT devices contributes to the growth of this largest ever botnet.

The latest botnet consisting of IoT devices managed in a peer-to-peer fashion named

Hajime is discussed in [57].

Application Security: A recent paper [15] gives a thorough analysis of smart

home IoT applications’ security and privacy issues. SmartAuth [134] is a framework

that identifies required permissions for IoT applications running on platforms like

SmartThings and Apple Home. SAINT [14] is a static information flow tracking and

analysis tool for evaluating privacy risks in IoT implementation. Their results show
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that 60% SmartThings market apps include sensitive data flow. Soteria [16] presents a

static analysis system for validating whether an IoT app or environment is secure and

operates correctly by automatically extracting a state model from a SmartThings IoT

app and applying model checking to identify property violations. IoTSan [93] uses

model checking to reveal interaction level flaws by identifying events that can lead the

system to unsafe states. FlowFence [43] proposed a framework that splits application

codes into sensitive and non-sensitive modules and orchestrates the execution through

opaque handlers. SIFT [77] is a safety-centric programming platform which leads to

more robust and reliable IoT apps.

Behavior Modeling and Intrusion Detection: HoMonit [156] proposes a third-party

defender which monitors the smart home side-channel traffic and detects misbehavior

in smart apps such as privileged accesses and event spoofing. Their approach leverages

wireless fingerprints to detect mis-behaviors in a resource-constraint IoT environment.

The current encryption status of four popular medical devices is investigated in [148]

by capturing and analyzing network traffic and retrieving clear-text information,

which reveals sensitive medical conditions and behaviors. Applying machine learning

techniques for detecting intrusion targeting IoT devices are discussed in [95, 144, 152].

[11, 86, 150] model the device behavior at network, transport and application layers,

while [54, 64, 125] model device behavior with linker layer and physical layer traffic.

A recent position paper [139] summarizes the attacks and security functions in

device, network, and service layers, and introduces a cross layer framework to connect

and bridge the gap between different layers. Another relevant paper [26] demonstrates

smart home devices are vulnerable to attacks from malicious mobile apps running on

authorized phones and implements and evaluates a HanGuard system where the home

router enforces role based access control between mobile apps and IoT devices with
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the help of a user-space monitoring app running on the mobile phone. Their adoption

of router for enforcing security policy is similar to this work. Leveraging smart home

applications on activity recognition, health monitoring, and automation for detecting

abnormal home and user behavior in the homes is proposed in [23]. In contrast to

these research effort, our proposed IoTArgos system focuses on characterizing IoT

data communications with multi-layer behavioral features, and detecting intrusion

and anomalous activities towards IoT with a two-staged ML-based method.

5.7 Conclusions

The recent high-profile cyber attacks towards vulnerable and insecure IoT devices

have highlighted the prevalent security threats towards millions of smart homes and

the great risks of data and user privacy. These attacks call for systematic approaches

for protecting IoT devices from the broad attack vector which spans the entire IoT

protocol stacks due to design flaws of rapidly developed and deployed protocols, weak

credential management, and lack of cryptographic functions on resource-constrained

IoT devices. As a first step of securing IoT devices in smart homes, this paper

designs, develops, and evaluates IoTArgos, a multi-layer security monitoring system

on programmable home routers. Based on data captured from hundreds of IoT devices

in real-world smart homes, IoTArgos characterizes and models data communication

behaviors of heterogeneous IoT devices with a broad range of communication and

traffic features. To detect intrusions towards IoT devices, IoTArgos develops a two-

stage method to first explore supervised classification algorithms for identifying known

attacks based on trained labelled data-sets and then rely on unsupervised anomaly

detection algorithms for capturing emerging attacks without prior attack labels or
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signatures. Our extensive experiments based on synthetic IoT data traffic with normal

communications collected from a smart home sandbox and simulated attacks have

shown the two-stage method is very effective in detecting a wide range of IoT attacks.
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Chapter 6

EXTRACTING SPATIAL INFORMATION OF IOT DEVICE EVENTS FOR

SMART HOME SAFETY MONITORING

6.1 Motivation and System Architecture

In this section, we first discuss the motivation of this study and then present the

overall architecture of the proposed system.

6.1.1 Motivation

Our motivation comes from real-world attacking scenarios where smart home

IoT devices are compromised for executing malicious device events triggered by

attackers [45, 78, 127]. However, these attacks could reveal that the controlling devices

triggering the events are in abnormal or suspicious places. Thus, extracting the spatial

information of each IoT device event is crucial to better understand the behaviors of

smart home IoT devices and users as well as to secure smart homes.

In this work, we study the problem of extracting spatial information of IoT device

events by first discussing the obstacles and challenges. We propose IoTDuet for

determining whether a device event is triggered locally or remotely. IoTDuet makes

efforts in extracting spatial information of IoT device events by collecting and analyzing

only the home network traffic, while the outputs of IoTDuet are still informative and

crucial for understanding IoT devices’ behaviors and detecting safety risks in smart
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homes. We then utilize the extracted spatial information for applications in home

safety monitoring.

6.1.2 System Architecture

Figure 6.1 presents the overall architecture of our system which detects whether

a device event is triggered locally or remotely. Our system consists of five major

components, which are (i) home network traffic collection, (ii) IoT device event

extraction, (iii) controlling device’s command and data traffic identification, (iv) traffic

analysis of device event and controlling device, and (v) home safety monitoring.

Home Network 

Traffic Collection

IoT Device Traffic

Controller Traffic

Spatial Information 

of IoT Device Events

IoT Device 

Event Extraction

Controlling Device Command 

& Data Traffic Identification

Command Transfer

Device Event & Controlling 

Device Traffic Analysis 

Time Constraint

Physical Constraint

Data Transfer

Event Signature Match

Timestamp Labeling Home Safety Monitoring

Abnormal Device 

Events Detection

Home Entrance 

Monitoring

Figure 6.1. The Overall Architecture of Our Proposed System

The first component of our system is in charge of collecting all incoming and out-

going network traffic of the smart home at the home router. The second component is

implemented by adopting the solution introduced in Chapter 3 for accurately inferring

the device event logs from the collected smart home network traffic. IoTDuet corre-

sponds to the third and fourth components in Figure 6.1 where the third component

focuses on identifying the command and data transfer traffic of the controlling devices

in the home network and building profiles of the domain name information of the

cloud servers that the controlling devices send commands and data to. The fourth

component combines information captured by the second and third components to
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determine whether a device event is triggered locally or remotely. The last component

leverages the extracted spatial information of IoT device events for critical home safety

monitoring applications. We focus on detecting abnormal device events and compre-

hensively monitor all possible home entrance activities, which are closely related to

the cyber and physical security of smart homes.

6.2 Challenges of Device Events’ Spatial Information Extraction

As we can observe from the communication model of smart home IoT devices

discussed in Chapter 2, IoT devices and controlling devices do not directly communi-

cate with each other for sending and receiving commands, data, and status update

information in most cases. In particular, the vendors’ cloud servers act as a proxy

between IoT devices and controlling devices for forwarding messages. From the smart

home users’ perspective, capturing the network traffic sent and received by the IoT

devices at the home router is practical for most off-the-shelf home routers with little

modifications. However, by analyzing the network traffic collected at the home router,

we can only observe network packets sending to or receiving from the cloud servers.

Thus, no information about the controlling devices’ IP addresses can be observed by

just analyzing the home network traffic.

We thus turn our attention to exploring the IP addresses of the cloud servers

to check whether they can help us determine the location of the controlling devices.

We examine the DNS traffic of all IoT devices deployed in our smart home testbed

and notice that when IoT devices send DNS queries to get the cloud servers’ IP

addresses, the DNS resolution policies will pick the host that is close to the IoT

devices geographically. The traffic will be routed inside the cloud service provider’s AS
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to the host that is close to the controlling device to minimize network latency. On the

other hand, such policy also prevents us from inferring the location of the controlling

device by examining the location of the cloud servers the IoT devices communicate

with.

On the cloud servers’ side, they can learn the IP addresses of both the controlling

devices and the IoT devices but such information cannot be directly accessed by

smart home users. The lack of network traffic captured at the cloud servers side

prevents us from directly knowing the IP addresses of the controlling devices which

carry important spatial information.

The inter-packet time intervals of packets sent between the IoT devices and the

cloud servers captured at the home router were also considered for inferring the

locations of the controlling devices. It can reveal whether the controlling devices are

far away from the IoT devices if network latency instead of computation latency at

the cloud server dominates the inter-packet time intervals. In fact, we notice that for

some devices such as August Lock, sending out commands using a controlling device

located on a different continent from where the IoT device is deployed will result in

noticeably larger intervals compared to the case where the controlling device is in

the same city as the IoT device. However, we can only tell whether the controlling

device is significantly far away by analyzing the intervals without knowing the exact

geographical location. The variations in network conditions also prevent us from

quantifying how far the controlling device is from the IoT device. This strategy also

does not apply to all IoT devices because inter-packet intervals of some devices are

dominated by the computation latency of the cloud server.
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6.3 IoTDuet Design

6.3.1 Home Network Traffic Collection

The first component of IoTDuet is in charge of collecting smart home network

traffic at the home router. We first flash the Linux-based OpenWRT operating system

to an off-the-shelf home router. Then we collect all raw incoming and outgoing traffic

of all devices connected to the home router using software such as tcpdump or tshark.

The network traffic of different devices can be grouped by filtering with IP addresses

and MAC addresses. Specifically, we identify the network traffic generated by different

IoT devices using the hostname field in the header of DHCP response packets, which

contain string values that can be mapped to the names of the device vendors, device

names, and device models.

6.3.2 Device Event Inference from Home Network Traffic

Existing studies have revealed that different IoT device events always generate

unique network traffic traces which can be modeled as device event signatures [1, 109,

135]. After extracting device event signatures via controlled experiments, they can be

used for inferring device events by matching them in home network traffic. IoTDuet

adopts the solution introduced in Chapter 3 for generating the traffic signature of

each IoT device event with inter-packet interval information, and extracting IoT

device events from network traffic collected by the home routers using time-sensitive

subsequence matching. We label the timestamp of each extracted device event using

the timestamp of the first packet that is matched to it.
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6.3.3 Identifying Controller’s Command and Data Transfer Traces from Home

Network Traffic

We start with an example of an unlocking command packed in JSON format sent

from an iPhone controller with the Schlage Home mobile app to the cloud server whose

domain name is ‘api.branch.io’ to open the Schlage smart lock. From the key-value pairs

in the JSON object illustrated in Figure 6.2, we notice that there are many values that

could change in different settings for keys such as ‘device_carrier’, ‘connection_type’,

‘latest_update_time’, and ‘app_version’. Thus the payload contents and the packet

lengths could vary when sent from different types of controlling devices in different

network conditions at different times which makes the packet-level signature hard to

be extracted from the controller’s command messages, unlike the device event traces

of the IoT devices.

1 "device_carrier" : "Verizon",
2 "connection_type" : "wifi",
3 "latest_update_time" : 1641964009951 ,
4 "app_version" : "4.4.0",

Figure 6.2. Examples of the Keys in the JSON Object Corresponding to the Unlocking
Command Sent From an iPhone Controller to the Cloud Server With the Domain Name
‘api.branch.io’ To Unlock the Schlage Smart Lock Where the Keys ‘Device_carrier’,
‘Connection_type’, ‘Latest_update_time’, and ‘App_version’ Can Change if the
Command Is Sent From a Different Controller Device in Different Network Conditions
at Different Times

However, we notice that the domain name of the remote server that the controller

communicates with is always ‘api.branch.io’ even if we use different controlling devices

such as an Android phone or a tablet. Thus, we use the domain name or part of

the domain name of the remote host that command messages and data are sent to
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as the signature of the controller’s command transfer. As the example in Figure 6.3

illustrates, if a controlling device inside the home network initiates Arlo Q camera’s

stream on event, we would observe the network traffic of both the packet-level signature

of Arlo Q camera’s stream on event and controlling device’s command message which

is sent to ‘myapi.Arlo.com’ at the home router. However, when a controlling device

outside the home network initiates the same device event, we can only observe

the packet-level signature of Arlo Q camera’s stream on device event at the home

router. Such differences in the network traffic data collected by the home router can

help differentiate whether an IoT device event is triggered by the controlling device

connected to the home network or not.

Cloud Service

Outside ControllerInside Controller

Alro Q Camera

Home Router

Send commands to myapi.arlo.com

Figure 6.3. An Example of the Network Traffic Collected at the Home Router in the
Scenarios of a Controller Inside the Home Network Initiating a Stream on Event and
a Controller Outside the Home Network Initiating a Stream on Event of the Arlo Q
Camera

To correctly extract the domain name information, we installed a MITM (Man-in-

the-Middle) root certificate on the controlling devices and applied the MITM proxy for

collecting and decrypting the network traffic generated by the controlling device. We

then repeat each device event for at least 5 times at different times of the day for each

kind of controlling device such as smartphone, tablet, and browser. After verifying that
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the domain name is consistent over different runs and different controlling platforms,

we set it as the signature of the controlling command.

Some device events such as video streaming have different kinds of network traffic

traces on the controlling devices side because a large number of video stream packets

instead of simple reply packets are sent to the controlling devices from the cloud. We

observe that for some of the camera and doorbell devices in our testbed, video streams

could be sent from the cloud server with the same domain name as the cloud server

that the IoT device communicates with for uploading the videos. So, we can apply the

same strategy used for command messages to extract the domain name information

of the controller’s data transfer traffic.

After building signatures of the controllers’ command and data transfer messages,

we can easily look up the packets sent to servers with these domain names in the

traffic collected by the home router.

6.3.4 Extracting Spatial Information of IoT Device Event

For each device event ei, we can efficiently extract the spatial information about

whether it is triggered locally or remotely, as described in Algorithm 6.1. We first

examine the device event name to check whether it contains keywords in the set H

which includes names of the low-energy wireless communication protocols such as

Zigbee, Bluetooth, and Z-Wave. Due to the limited wireless communication range of

these protocols, when we observe the above keywords, we can claim that such device

event is triggered by the controlling device that is close to the home and label the

location of ei as ‘inherently local’.

We then check the device event name to verify if the device event can only be
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Algorithm 6.1: IoTDuet(ei, P,H,D)
Input: An IoT device event ei, network packets of all devices connected to the

home network P = {p1, p2, . . . , pr}, a set H of device event names that are
inherently local, a set D of the domain name controlling device
communicate with when triggers ei

Output: Spatial attribute of ei
1 ei.location← ‘remote’;
2 if ei.name ∈ H then
3 ei.location← ‘inherently local’;

4 else
5 start← argmin

j
(pj .t, pj .t > ei.time− δ);

6 end← argmax
j

(pj .t, pj .t < ei.time+ δ);

7 for j := start to end do
8 if pj .domainName ∈ D then
9 ei.location← ‘local’;

10 output ei.location.

triggered by a person or an object that is physically close to the device. In our smart

home environment, these device events include motion detection events of all camera

and doorbell devices, ringing event of all doorbells, and manual locking or unlocking

and autolocking events of all lock devices. These device names are also included in the

set H and when observing these device events, we label the location of ei as ‘inherently

local’.

If ei.name /∈ H and ei is extracted from the IoT device’s network traffic with

timestamp ei.time, we further check the network packets P of all devices connected to

the home network. When we observe the packet sent to the host of the domain name

in set D which contains domain names that the controlling device will communicate

with for sending the command messages or data during the time period of [ei.time−

δ, ei.time+ δ], we claim that the device event ei is triggered by a controlling device in

the home network and label the spatial attribute of ei as ‘local’. In our environment,
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we set δ = 5s to cope with network latency while minimizing interference. Otherwise, if

only the device event ei is extracted from the IoT device’s network traffic and there are

no packets sent to the server with the domain name in D during [ei.time−δ, ei.time+δ],

then the device event ei is considered to be triggered by a controlling device in a

different network. Most smartphones, tablets, and laptops automatically connect

to the home WiFi network when in the communication range unless deliberately

disconnected by the user, which is a rare case. So in this condition, we will label the

location of ei as ‘remote’.

6.4 Home Safety Monitoring

The spatial information about smart home IoT device events is critical in smart

home security. We explore home safety monitoring applications of detecting abnormal

device events and home entrance monitoring.

6.4.1 Abnormal Device Event Detection

The spatial information about where a device event is triggered helps us gain a

deeper understanding of the device events that happen at a smart home. Thus we can

apply this information for detecting if a device event is abnormal or not. We assume

that when we observe the network traffic of a controlling device connected to the

home network, the device events observed during this time period should be triggered

locally. On the contrary, a device event that is triggered remotely during this time

should be labeled as anomalies and reported to the smart home users because there is
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a high possibility that this device event is triggered by attackers who compromised

the device remotely.

Algorithm 6.2 describes how we identify the list of abnormal device events Le in

sequence E. If we observe a device event ei at time ei.time triggered by a controlling

device that is connected to the home network, and by observing the network traffic

in the smart home collected at the home router, we can notice that the controlling

device is connected to the home network until t′. In this case, we will check the spatial

information of all device events ei+1, ei+2 . . . , eu where eu.time ≤ t′ and eu+1.time > t′

extracted using IoTDuet as described in Algorithm 6.2. If we observe a device event

ej which is triggered by remotely, we will flag it as ‘potentially abnormal’ and include

it in the output list Le.

Algorithm 6.2: AbnormalEventsExtract(E, P , IoTDuet)
Input: Device event sequence E = (e1, e2, . . . , em), network packets of all devices

connected to the home network P
Output: A list Le of all potential abnormal device events Le = {ea1 , ea2 , . . . , ear}

1 Le ← ∅;
2 for i := 0 to m do
3 if IoTDuet(ei, P,H,D) == ‘local’ then
4 check P for t′ of time that the controlling device disconnect the home

network;
5 for j := i+ 1 to m do
6 if ej .time < t′ then
7 if IoTDuet(ej , P,H,D) == ‘remote’ then
8 Le.insert(ej);

9 else
10 i← j + 1; break;

11 output List Le.
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6.4.2 Home Entrance Monitoring

The extracted spatial information of smart home device events can help us better

profile the entrance activities in a smart home. In this work, we aim to comprehensively

monitor all possible home entrance activities as it is critical to the physical safety and

privacy of the smart home residents. We first identify all possible entrance points in

the smart home. For each entrance point, we enumerate all possible home entrance

activities and build up signatures of them which consist of sequences of device events

using the techniques proposed in Chapter 4. The key difference is that we embedded

the spatial information into the signatures of home entrance activities, which means

two occurrences of a device event with the same name but different spatial attributes

will be treated differently when building up signatures for the entrance activities,

unlike IoTMosaic introduced in Chapter 4.

We also comprehensively consider all kinds of entrance activities at different

entrance points which not only include the common ones listed in IoTMosaic, but

also activities that rarely happen or are potentially ‘abnormal’. Based on whether an

entrance activity is common for the normal user, we build up a set N consisting of

potentially abnormal entrance activities which are seldom triggered by legitimate users.

We also build a set T consisting of time-dependent activities which are considered to

be abnormal during the specific time period, i.e., midnight time M .

By applying the k≤appxMatch algorithm on the device events E, we can extract

all home entrance activities A = (A1, A2, . . . , An) by ordering them based on the

timestamp of the first device event in each sequence that is matched to the signature

of a home entrance activity. Each extracted home entrance activity Ai has two

attributes, activity name Ai.name and its timestamp Ai.time. Utilizing spatial
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and temporal information of each device event, we can identify a list of abnormal

home entrance activities La which should be reported to the smart home users using

Algorithm 6.3. We first check the name of each entrance activity Ai and add Ai to

La if Ai.name ∈ N . We then check the timestamp of Ai and if Ai.name ∈ T and

Ai.time ∈ M , we also include Ai in La. In our experiment, we set M =[1:00am,

5:00am] when the users in the smart home and the neighborhood are less active.

Algorithm 6.3: EntranceActMon(A, N, T,M)
Input: Home entrance activity sequence A = (A1, A2, . . . , An), a set of potentially

abnormal entrance activities N , a set of time-dependent abnormal entrance
activities T , midnight time period M

Output: A list La of all potentially abnormal home entrance activities
La = {eg1 , eg2 , . . . , egq}

1 La ← ∅;
2 for i := 0 to n do
3 if Ai.name ∈ N then
4 La.insert(Ai);

5 else if Ai.name ∈ T and Ai.time ∈M then
6 La.insert(Ai);

7 output List La.

6.5 Experimental Evaluation

In this section, we first present the setup of our experimental environment. Then we

discuss our identified hostnames that controllers communicate with for command and

data transfer. We then evaluate the performance of IoTDuet in extracting the spatial

information of each IoT device event. Subsequently, we evaluate the frameworks of

abnormal device event detection and home entrance safety monitoring.
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6.5.1 Experimental Setup

To systematically and extensively evaluate IoTDuet, we set up a real-world smart

home environment where 17 different types of IoT devices are deployed as illustrated

in Table 6.1. All of these IoT devices are ranked as popular based on Smart Home

DB [128]. For each of these IoT devices, we also identify the different device events it

supports and there are 53 different IoT device events in total as listed in Table 6.1.

We identified 3 entrance points in our smart home testbed which are the window,

the front door, and the back door. Figure 6.4 demonstrates the layout of our smart

home environment and the deployment of the IoT devices at the 3 entrance points for

home entrance monitoring.
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Figure 6.4. The Layout of Our Smart Home Testbed With 3 Entrance Points and the
Deployment of IoT Devices at the Entrance Points for Home Entrance Monitoring
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Table 6.1. The Domain Names of the Cloud Server Which the Controlling Device of
Different Platforms Communicates With for Command and Data Exchange of 17 IoT
Devices With 53 Different IoT Device Events

Type Device Name Device Event Cloud Server’s Domain Name

bulb

Philips Hue on or off (PHonoff ) api2.amplitude.com
brightness (PHbr) api2.amplitude.com

Sengled LED
on (SSon) *.cloud.sengled.com
off (SSoff ) *.cloud.sengled.com
brightness (SSbr) *.cloud.sengled.com

TP-Link Bulb

on (TBon) api.tplinkra.com
off (TBoff ) api.tplinkra.com
color (TBcl) api.tplinkra.com
brightness (TBbr) api.tplinkra.com

camera

Amcrest ProHD stream on (APon) *.compute.amazonaws.com

Arlo - Q Indoor

stream on (AQon) myapi.arlo.com
stream off (AQoff ) myapi.Arlo.com
streaming (AQstr) arlo*.*.amazonaws.com
motion detection (AQmot) N/A

Arlo Ultra

stream on (AUon) myapi.arlo.com
stream off (AUoff ) myapi.arlo.com
streaming (AUstr) arlo*.*.amazonaws.com
motion detection (AUmot) N/A

Blink XT2

stream on (BXon) *.immedia-semi.com
stream off (BXoff ) *.immedia-semi.com
streaming (BXstr) *.compute.amazonaws.com
motion detection (BXmot) N/A

Reolink Camera

stream on (RCon) apis.reolink.com
stream off (RCoff ) apis.reolink.com
streaming (RCstr) direct
motion detection (RCmot) N/A

Yi Camera

stream on (Y Con) gw-us.xiaoyi.com
stream off (Y Coff ) gw-us.xiaoyi.com
streaming (Y Cstr) *.aliyun.com
motion detection (Y Cmot) N/A

doorbell

August Doorbell

stream on (ADon) api-production.august.com
stream off (ADoff ) api-production.august.com
streaming (ADstr) *.compute.amazonaws.com
ringing (ADring) N/A
motion detection (ADmot) N/A

Ring VideoDoorbell

stream on (RDon) clientapigw.ring.com
stream off (RDoff ) clientapigw.ring.com
streaming (RDstr) *.compute.amazonaws.com
ringing (RDring) N/A
motion detection (RDmot) N/A

lock

August Lock Pro

WiFi (un)locking (ALwlk) api-production.august.com
Bluetooth (un)locking (ALblk) N/A
autolocking (ALalk) N/A
manual (un)locking (ALmlk) N/A

Schlage Deadbolt
WiFi (un)locking (SDwlk) api2.branch.io
autolocking (SDalk) N/A
manual (un)lock (SDmlk) N/A

plug

Amazon Plug on (APon) api.amazon.com
off (APoff ) api.amazon.com

Gosund Socket on or off (GSonoff ) device-provisioning.googleapis.com

TP-Link Plug on (TPon) api.tplinkra.com
off (TPoff ) api.tplinkra.com

WeMo Plug on or off (WPonoff ) appapis.xwemo.com
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6.5.2 Domain Name Extraction of Cloud Servers

For each of the 53 IoT device events, we repeated it for at least 10 times using

all possible controlling devices. We marked traffic types and remote cloud servers’

host names of the device events that are ‘inherently local’ as ‘N/A’ in Table 6.1. The

rest of the IoT device events can be triggered by different kinds of controllers such as

smartphones and tablets with the mobile companion apps installed. Some of them can

also be triggered using a web browser or the PC software provided by the vendors. We

tested on all of these controlling devices to extract the domain names of the remote

cloud servers that the controlling commands of data are sent to.

To accurately identify domain names, we installed a MITM root certificate on the

controlling devices and deploy the MITM proxy to collect and decrypt the network

traffic sent from it. For mobile applications employing the certificate pinning technique,

we patched them using Frida to bypass the certificate pinning. We investigated the

packets whose payloads carry commands that are sent to the cloud servers for triggering

the corresponding device events or data received from the cloud servers for device

events such as video streaming. Since all the TLS packets are already decrypted using

MITM, we identified the packets corresponding to the command or data exchange by

matching keywords in the payloads such as ‘open’, ‘off’, and ‘lock’.

We identified domain names of the remote cloud servers for each of the device

events which involve the controlling device and we found that the domain name is

consistent in all 10 runs in the experiments across all different controlling platforms.

The results are illustrated in Table 6.1.
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6.5.3 Performance Evaluation of IoTDuet

With the domain name of the cloud servers that controllers communicate with, we

further evaluated the performance of IoTDuet in detecting whether an IoT device is

triggered locally or remotely. We collected the data over a 2-week period where device

events are triggered by both controllers connected to the smart home network and

by controllers in three different remote places including the same city as the smart

home tested, a different city in US west coast, and a different city in US east coast

respectively. For each of the triggered device event, we recorded its name and labeled

the timestamp.

6:00am 10:00am 2:00pm 6:00pm 10:00pm 2:00am 6:00am

Philips Hue
Sengled SmartLED

TP-Link Bulb
Amcrest ProHD

Alro Q
Alru Ultra
Blink XT2
Reolink

Yi Camera

August Doorbell
Ring Doorbell
August Lock

Schlage Deadbolt
Amazon Plug
Gosund Plug
TP-Link Plug
WeMo Plug

Figure 6.5. Device Events Triggered by the Controller Locally and Remotely Over
the 2 Weeks That Mapped to a 24-Hour Window Where the Blue Points Indicate the
Device Events Triggered Locally While the Red Points Indicate the Device Events
Triggered Remotely

Figure 6.5 illustrates the extracted device events by mapping them to a 24-hour

time window. The blue points indicate the device events triggered locally the red

points indicate the device events triggered remotely. We notice that IoTDuet can
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accurately and efficiently determine where a device event is triggered by analyzing

the smart home network traffic.

6.5.4 Performance Evaluation of Home Safety Monitoring

The spatial information of device events extracted by IoTDuet enables us to detect

potential anomalies that are critical to the safety of smart home users. We systemati-

cally evaluated the performance of our proposed Algorithm 6.2 and Algorithm 6.3 in

detecting abnormal device events and home entrance activities using the data collected

in our real-world smart home testbed.

6.5.4.1 Abnormal Device Event Detection

We detect the abnormal device events using the spatial information of each device

event extracted with IoTDuet by setting alarms to the device events that are triggered

remotely while the controlling devices are connected locally to the home network. To

evaluate the performance of Algorithm 6.2 on extracting abnormal device events, we

trigger each device event normally while synthetically injecting device events that are

triggered remotely when the controlling device is connected to the home network.

Figure 6.6 illustrates an example of detected abnormal Blink XT2 stream on and

off device events. These two device events are triggered remotely and are marked

in red in Figure 6.6. We also noticed Phillips Hue on event and TP-Link Plug on

event which are triggered locally and the controlling device is connected to the home

network during the time that Blink XT2 stream on and off device events are triggered

remotely. So, we raise an alarm for these two device events to notify the smart home
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11:00am 10:10am 11:20am 11:30am

Control Device Connection

Phillips Hue on

Blink XT2 stream on

Blink XT2 stream off

TP-Link Plug on

Figure 6.6. An Example of Detected Abnormal Blink XT2 Stream on and off Device
Events Which Are Triggered Remotely (Marked in Red) When the Controlling Device
Is Connected to the Home Network

user that the Blink XT2 may be compromised for generating abnormal device events.

Our evaluation on the data collected at the smart home with synthetic abnormal

data shows that our framework can correctly identify abnormal device events with

suspicious spatial patterns which are triggered remotely while the controlling device

still connects to the home network.

6.5.4.2 Home Entrance Monitoring

In our smart home testbed, we identified 3 critical entrance points including the

window, front door, and back door. For each of the 3 entrance points, we further

enumerated all possible entrance activities in order to comprehensively monitor the

home entrance safety. Table 6.2 lists all 90 home entrance activities that could happen

at our smart home. Different from IoTMosaic introduced in Chapter 4, which considers

only the common user activities, we study all kinds of home entrance activities that

could happen including intrusive activities and abnormal activities. For example, we

not only consider the opening window from the inside activity of normal users, but

also include the activity that a person breaks into the house through the window from

the outside, as listed in Table 6.2. In addition, we also take the spatial information of
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Table 6.2. Home Entrance Activities With Labels and Their Corresponding Device
Event Sequence Signatures

Entrance Entrance Activity Event Sequence LabelPoint

Window

A person or an object outside
AUmot

time-
the house passes by the window dependent
A person opens the window

KMmot, SCopen
potentially

from the inside normal
A person closes the window

KMmot, SCclose
potentially

from the inside normal
A person opens the window

AUmot, SCopen
potentially

from the outside abnormal
A person closes the window

AUmot, SCclose
potentially

from the outside abnormal
A person breaks into the house

AUmot, SCopen,KMmot
potentiallythrough the closed window from abnormaloutside and leaves the window open

7 breaking into the house activities · · · · · ·are omitted due to page limit

Back Door

A person enters the house through
SDmlk, TC2open, RCmot, potentiallyback door by manually unlocking a
TC2close, SDmlk normallocked door and locks it manually

29 back door entrance activities · · · · · ·are omitted due to page limit

Front Door

A person or an object outside
RDmot

time-
the house passes by the front door dependent
A person outside the house rings

RDmot, RDring
time-

the doorbell and then leaves dependent
A person outside the house rings

RDmot, RDring, ALmlk, potentiallythe doorbell and gets inside with door
TC1open, AQmot abnormalunlocked manually and leaves door opened

14 entrance activities by ringing doorbell · · · · · ·first with different ways of opening and
closing front door omitted due to page limit
A person enters the house through

RDmot, ALmlk, TC1open, potentiallyfront door by manually unlocking a
AQmot, TC1close, ALmlk normallocked door and locks the door manually

14 entrance activities of a person with lock
· · · · · ·control with different ways of opening and

closing front door omitted due to page limit
A person exits the house through front

AQmot, ALmlk, potentiallydoor by unlocking a locked door manually
TC1open, RDmot abnormaland leaves the door unlocked

14 exiting activities of a person with lock
· · · · · ·control with different ways of opening and

closing the front door omitted due to page limit
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each device event into consideration when identifying the entrance activities and treat

the device events with same name but different spatial information as unique when

building up the signatures.

As shown in Table 6.2, we categorize each entrance activity as ‘potentially normal’,

‘potentially abnormal’, and ’time-dependent’ based on whether the entrance activity

is considered to be different from smart home users’ normal behaviors. If an entrance

activity is performed by legitimate users most of the time, we consider it as ‘potentially

normal’. If an entrance activity is intrusive or not common, we consider it as

‘potentially abnormal’. If an entrance activity is suspicious during a particular time

period, i.e., midnight, we label it as ‘time-dependent’ because we need the timestamp

information of the activity to help us make the decision.

We applied the signature extraction and approximate matching algorithms proposed

in Chapter 4 with k set as 0 on the dataset collected in our smart home testbed where

each home entrance activity was repeated for at least 10 times over 2 weeks. For each

matched entrance activity, we first check if its name corresponds to a ‘potentially

abnormal’ activity and then check the timestamp to see if it is ’time-dependent’ and

it happens during midnight following Algorithm 6.3. For both of the above cases,

we will mark the home entrance activity as a potential anomaly and report it to the

users. Our experiments of applying Algorithm 6.3 on the dataset which contains all 90

different kinds of entrance activities confirm that our system can effectively identify

intrusive and abnormal home entrance activities for home safety monitoring.
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6.6 Related Work

The raising security and privacy threats of smart home IoT devices have drawn

great research attention [1, 8, 12, 13, 18, 20, 25, 30, 31, 47, 61, 68, 69, 72, 84, 85, 94,

96, 100, 106, 107, 109, 111, 120, 121, 132, 138, 140, 145, 147, 156, 157]. Most of the

existing work focuses on either detecting abnormal flows of known attacks such as

port scanning and DoS attacks at the network traffic level [20, 94] or applying the

domain knowledge such as smart home layout and IoT devices’ deployment location

for anomaly detection at the device event level with the assumption that the event

logs of all IoT devices are available [13, 30, 31, 47]. Some researchers have been

working on inferring the device event information from the home network traffic by

utilizing the fact that IoT devices generate unique signatures when device events are

triggered [1, 135]. However, little effort has been devoted to extracting the controller

spatial information from the home network traffic.

DÏoT [94] proposes a federated learning model for detecting abnormal network

traffic. Survey paper [20] reviews the literature work in network traffic level anomaly

detection using machine learning. These solutions achieve high accuracy and efficiency

in detecting cyber attacks such as port scanning, brute forcing credential, and DoS

attacks, but fail to work if the IoT devices have already been compromised by attackers.

HAWatcher [47] is a semantics-aware anomaly detection system for appified smart

homes by generating and enforcing hypothetical correlations based on semantic in-

formation. The work in [30] identifies device event constraints in physical channels.

Peeves [13] verifies the validity of a device event based on the state and sensory data

of nearby IoT devices. However, all of them rely on the strong assumption that the

complete device event logs or device state information are always available.

129



IoTDuet, to the best of our knowledge, is the first effort in studying the spatial

information of IoT device events from the home network traffic. IoTDuet is able to

determine whether a device event is triggered locally and remotely by monitoring

the traffic of all devices connected to the home network. Such spatial information is

crucial for understanding the behavior of the smart home ecosystem and home safety

monitoring.

6.7 Conclusions

In this study, we propose a system named IoTDuet for extracting spatial infor-

mation of IoT device events about whether they are triggered by controlling devices

connected to the home network. We explore the extracted spatial information of

each IoT device event for applications of abnormal device event detection and home

entrance safety monitoring. We extensively evaluated the performance of IoTDuet

and applications of home safety monitoring on a real-world smart home testbed.
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Chapter 7

IOT SYSTEM VULNERABILITY ANALYSIS AND NETWORK HARDENING

WITH SHORTEST ATTACK TRACE IN A WEIGHTED ATTACK GRAPH

7.1 Basic Concepts

In this section, we first present the concept of attack graphs in network security.

We then discuss how to conduct the system-level security analysis of IoT systems using

attack graphs. We show that the concept of attack trace [40] is critical in analyzing

the attack graphs. Subsequently, we define weighted attack graphs and discuss attack

traces and shortest attack traces in a weighted attack graph.

7.1.1 Attack Graph

The concept of attack graphs has been widely adopted in cyber security to provide

a systematic view of network security and to analyze the vulnerabilities in the system.

State-based attack graphs [123] model the network system as a finite state machine

where state transitions correspond to the intruder’s atomic attacks. However, the

size of the state-based attack graphs could scale exponentially to the input size, thus

limiting their applications. Logical attack graphs [98, 99], on the other hand, are

more efficient as the logical attack graphs can be generated in polynomial time. In

this study, we focus on the logical attack graph model, and we refer to logical attack

graphs as attack graphs in the rest of this chapter.

We use MulVAL [99] to generate attack graphs. The inputs to MulVAL are system
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configurations and interaction rules in Datalog tuples and Datalog rules. Then

the MulVAL reasoning engine will call the Prolog system XSB [117] to evaluate the

interaction rules on input facts and subsequently output the logical attack graph.

The MulVAL-generated logical attack graphs are directed graphs and could contain

cycles [98]. There are three kinds of vertices in the logical attack graph: primitive fact

vertices, derived fact vertices, and rule vertices. The attack goal is a special derived

fact vertex. The edges in the graph represent the “depends on” relation. Each derived

fact vertex is dependent on any one of its incoming neighbors. Hence a derived fact

vertex is also called an OR vertex. Each rule vertex is dependent on all of its incoming

neighbors. Hence a rule vertex is also called an AND vertex.

7.1.2 System-Level IoT Security Analysis

An attack graph conveys critical information regarding the system vulnerabilities,

making it a powerful model for methodically measuring and analyzing IoT system

security. IOTA [40] formally develops a framework for efficiently constructing attack

graphs given the IoT system configurations.

In IOTA, the attack graph of an IoT system is generated using MulVal [99] with

Prolog clauses representing the exploit models and device dependencies as inputs.

The exploit models are built by scanning the IoT system configurations for individual

vulnerability. Three types of IoT device dependencies are identified by IOTA, including

app-based dependency, indirect physical dependency, and direct physical dependency.

The app-based dependencies are extracted by applying natural language processing

(NLP) techniques to the descriptions of smart home apps. IOTA [40] proposes

the metrics of the shortest attack trace to an attack goal and the blast radius of a
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vulnerability for interpreting the generated attack graph. A recursive algorithm is

proposed to calculate the shortest attack trace to the attack goal in the attack graph.

The authors of [3] study the IoT device deployment problem systematically by

considering the whole IoT system with the attack graph. Both the problem of

deploying all required IoT devices with minimal security implications and computing

the maximal number of IoT devices to be deployed without increasing the security

risk of the network are studied in [3]. A heuristic search algorithm for solving both

optimization problems is designed by [3].

7.1.3 Weighted Attack Graph

We extend the concept of attack graphs [98] and propose the concept of weighted

attack graphs.

Definition 7.1 (Weighted Attack Graph). A weighted attack graph is a directed

graph G = (Vp, Vd, Vr, E, w, g), where Vp, Vd and Vr denote the set of primitive fact

vertices (source vertices), the set of derived fact vertices (OR vertices), and the set of

rule vertices (AND vertices), respectively; E ⊆ {(Vp ∪ Vd)× Vr} ∪ {Vr × Vd} is the set

of directed edges; w(v) ≥ 0 is the weight for a vertex v; w(e) ≥ 0 the weight for an

edge e ∈ E; g ∈ Vd is the attacker’s goal. 2

In the above definition, the notation w(·) is overloaded : w(v) denotes the weight

of vertex v ∈ Vp ∪ Vd ∪ Vr, while w(e) denotes the weight of edge e ∈ E. It should

be noted that this notation overloading simplifies the presentation without creating

ambiguity, as its meaning is clear from the context.

Let G be a weighted attack graph. We use V G
p to denote the set of primitive fact

vertices in G, V G
d to denote the set of derived fact vertices in G, V G

r to denote the
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set of rule vertices in G, EG to denote the set of edges in G, gG to denote the goal

vertex in G, and wG to denote the weight function in G. We also use V G to denote

the set of all vertices, i.e., V G = V G
p ∪ V G

d ∪ V G
r . When the graph G is clear from the

context, we may drop the superscript and use the notations Vp, Vd, Vr, V, E, g, w.

The concept of weighted attack graph contains the concept of (unweighted) attack

graph studied in the literature [40, 98, 116, 123] as a special case. When we restrict

w(v) = 0,∀v ∈ V and w(e) = 1,∀e ∈ E, the weighted attack graph reduces to

the classic (unweighted) attack graph. For this reason, we will use the notations of

weighted attack graph and (unweighted) attack graph interchangeably, unless specified

otherwise.

Note that not all vulnerabilities are the same in terms of penetrability and ubiquity.

Therefore, the inclusion of vertex and edge weights in attack graphs can more accurately

characterize the vulnerabilities of the IoT system. This is the main motivation for us

to study weighted attack graphs. We will discuss the impact and cost of networking

hardening in Section 7.3.

7.1.4 Attack Trace

Given an attack graph, an attacker can have different attacking strategies in order

to achieve the attack goal. To model the attacker’s attacking strategies, we adopt

the concept of attack trace introduced in IOTA [40], which can accurately profile the

dependency relationships between vertices in an attack graph. Note that IOTA [40]

defines attack traces for unweighted attack graphs. In this study, we extend the

concept of attack traces to weighted attack graphs in Definition 7.2.

Definition 7.2 (Attack Trace in a Weighted Attack Graph). Let G be a
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weighted attack graph. Let t ∈ V G be any vertex in G. An attack trace to vertex t in

G, denoted by TG,t, is a subgraph of G that satisfies the following properties:

1. Let v be any vertex in TG,t. If v ∈ V G
d , then the in-degree of v in TG,t is 1. In

other words, for any OR vertex v in TG,t, TG,t contains exactly one of the edges in

{(u, v)|(u, v) ∈ EG}.

2. Let v be any vertex in TG,t. If v ∈ V G
r , then the in-degree of v in TG,t is equal

to the in-degree of v in G. In other words, for any AND vertex v in TG,t, TG,t

contains all edges in the set {(u, v)|(u, v) ∈ EG}.

3. Let v be any vertex in TG,t. If the in-degree of v in TG,t is 0, then v ∈ V G
p . In

other words, every source vertex in TG,t is a primitive fact vertex.

4. Vertex t is the only vertex in TG,t with out-degree 0 in TG,t.

The height of the attack trace TG,t, denoted by H(TG,t), is the length of the longest

path in TG,t, where the length of a path is the summation of the weights of the vertices

and edges on the path. An attack trace to vertex g is called an attack trace of G. We

may use TG to denote TG,g since the goal vertex g is unique in G. 2

Example. To illustrate the concept of attack trace in a weighted attack graph,

consider the attack graph G in Figure 7.1(a). We assume that w(v) = 0 for each

vertex v and w(e) = 1 for each edge in G. There are two attack traces to node g in

the attack graph G:

1. Attack trace TG,g
1 with the set of vertices {v2p, v3p, v2r , v2d, v4r , g}, and the set of

edges {(v2p, v2r ), (v3p, v2r ), (v2r , v2d), (v2d, v4r ), (v4r , g)}. This attack trace is highlighted

in orange in Figure 7.1(a).

2. Attack trace TG,g
2 with the set of vertices {v1p, v1r , v1d, v3r , v2d, v4r , g}, and the set of

edges {(v1p, v1r), (v1r , v1d), (v1d, v3r), (v3r , v2d), (v2d, v4r), (v4r , g)}
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Figure 7.1. (a) An Attack Graph With Two Attack Traces (b) An Attack Graph With
No Attack Trace

The height of attack trace TG,g
1 is 4, while the height of attack trace TG,g

2 is 6.

Definition 7.3 (Shortest Attack Trace). Let G be a weighted attack graph. Let

t ∈ V G be any vertex in G. Let TG,t
sh be an attack trace in G. TG,t

sh is said to be a

shortest attack trace to vertex t, if H(TG,t
sh ) ≤ H(TG,t) for any attack trace TG,t to

vertex t. A shortest attack trace to vertex g ∈ V G (the attacker’s goal) is called a

shortest attack trace of G. 2

The concept of (unweighted) attack trace and shortest attack trace was introduced

in [40] for unweighted attack graphs, where the height of an attack trace is defined as

the longest path (measured by hop-count) in the attack trace. One can verify that the

height of an attack trace defined above is the same as the height of an attack trace

defined in [40] when w(v) = 0,∀v ∈ V and w(e) = 1,∀e ∈ E.

A given attack graph may have multiple nonidentical shortest attack traces.

However, for any two shortest attack traces T1 and T2 of attack graph G, their heights

must be equal, i.e., H(T1) = H(T2). To simplify the presentation without confusion,

we will use Tsh to denote a shortest attack trace.

136



Following a shortest attack trace is the optimal strategy for the attacker, i.e.,

it requires the least effort/time for the attacker to gain control of the attack goal.

Therefore H(Tsh) is the least effort/time that the attacker needs to spend to gain

control of the attack goal.

7.2 Computing a Shortest Attack Trace: Perspective of the Attacker

In this section, we present a novel polynomial time algorithm for computing a

shortest attack trace in a weighted attack graph. Our algorithm is inspired by the

approach in IOTA [40].

7.2.1 A Novel Algorithm for Computing an SAT

Our algorithm for computing a shortest attack trace is Algorithm 7.1, named

SAT(G). SAT(G) takes an attack graph G as input. It either stops in Line 26, claiming

that there is no attack trace in G, or stops in Line 36, outputting a shortest attack

trace Tsh.

Before illustrating SAT(G) with examples, we explain its main steps in the following.

Line 1 creates an empty priority queue PQ such as the Fibonacci heap [46]. We use a

color system for the vertices. A vertex v is WHITE before it is inserted into PQ, GRAY

when it is on PQ, and BLACK after it is extracted from PQ. The in-degree of v is

recorded in v.in. The vertex attribute v.done denotes the number of edges into v that

have been traversed by the algorithm. If v is an OR vertex, v.height is initialized to∞,

and decreased to the minimum of the heights of all attack traces to v computed so far.

If v is an AND vertex, v.height is initialized to −∞, and increased to the maximum of
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Algorithm 7.1: SAT(G)

Input: G = (Vp, Vd, Vr, E, w, g): an attack graph
Output: Tsh: a shortest attack trace to g in G.

1 Create an empty priority queue PQ;
2 for ∀v ∈ Vd do
3 v.type← 1; v.in← 0; v.done← 0; v.height←∞; v.color ← WHITE;

4 for ∀v ∈ Vr do
5 v.type← 2; v.in← 0; v.done← 0; v.height← −∞; v.color ← WHITE;

6 for ∀e = (x, y) ∈ E do
7 y.in← y.in+ 1;

8 for ∀v ∈ Vp do
9 v.type← 0; v.height← w(v); Insert v to PQ; v.color ← GRAY;

10 while PQ ̸= ∅ do
11 u← ExtractMin(PQ); u.color ← BLACK;
12 if (u == g) goto 27;
13 for ∀v ∈ u.adj with v.color ̸= BLACK do
14 temp← u.height+ w(u, v) + w(v);
15 if (v.type == 1) then
16 if (v.done == 0) then
17 v.height← temp; v.parent← u;
18 Insert v to PQ; v.color ← GRAY;

19 else if (temp < v.height) then
20 v.height← temp; v.parent← u;

21 v.done← v.done+ 1;

22 if (v.type == 2) then
23 v.height← max{v.height, temp}; v.done← v.done+ 1;
24 if v.done == v.in then
25 Insert v to PQ; v.color ← GRAY;

26 stop: There is no attack trace in the attack graph G;
27 Create an empty FIFO queue Q; Insert g to Q;
28 Create an empty set Tsh of edges in the shortest attack trace;
29 while Q ̸= ∅ do
30 v ← Dequeue(Q);
31 if (v.type == 1) then
32 u← v.parent; Insert u to Q; Tsh ← Tsh ∪ {(u, v)};
33 if (v.type == 2) then
34 for ∀u ∈ V such that (u, v) ∈ E do
35 Insert u to Q; Tsh ← Tsh ∪ {(u, v)};

36 Output Tsh;
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{u.height+ w(u, v) + w(v)|u.color = BLACK}. When all incoming neighbors of v are

extracted from PQ, a shortest attack trace to vertex v is computed, and its height is

stored in v.height. These attributes for v ∈ Vd ∪ Vr are initialized in Lines 2-7.

In Lines 8-9, each vertex v ∈ Vp is inserted into PQ, with v.height set to its final

value of w(v). The main body of the algorithm is the while-loop in Lines 10-25, where

the vertex on PQ with the minimum height value is extracted. Whenever a vertex

u is extracted from PQ, edges in the form (u, v) are traversed and the attributes of

v are updated accordingly. An OR vertex v is inserted into PQ as soon as an attack

trace TG,v is computed (note that TG,v does not have to be a shortest attack trace

to v). An AND vertex v is inserted into PQ as soon as a shortest attack trace TG,v is

computed. If the goal vertex g is extracted, the algorithm goes to Line 27 to output

the computed shortest attack trace Tsh and exits in Line 36. If PQ becomes empty

before g is inserted into it, the algorithm exits in Line 26, claiming that G does not

contain an attack trace.

7.2.2 Walk-through Examples

We use the examples in Figure 7.1 to illustrate Algorithm 7.1. The attack graph

in Figure 7.1(a) has two attack traces. The attack graph in Figure 7.1(b) has no

attack trace. We assume that w(v) = 0 for each vertex v and w(e) = 1 for each edge

in Figure 7.1. Hence, the weighted attack graphs reduce to unweighted attack graphs.

When Algorithm 7.1 is applied to the attack graph in Figure 7.1(a), the main

steps are as follows. (S1) An empty priority queue PQ is initialized and the primitive

fact vertices v1p, v2p, v
3
p are inserted into PQ with v1p.height = 0, v2p.height = 0,

v3p.height = 0. (S2) v1p is extracted from PQ. Edge (v1p, v
1
r ) is traversed,and v1r .height
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is increased from −∞ to v1p.height+w(v1p, v
1
r )+w(v1r ) = 1. Since we have traversed all

edges going into v1r , the AND vertex v1r is inserted into PQ. (S3) v2p is extracted from

PQ. Edge (v2p, v
2
r) is traversed, and v2r .height is increased from −∞ to v2p.height +

w(v2p, v
2
r ) +w(v2r ) = 1. Unlike the previous step, the AND vertex v2r is not inserted into

PQ at this moment, since we have not traversed all edges going into v2r yet. (S4) v3p

is extracted from PQ. Edge (v3p, v
2
r) is traversed, v2r .height remains unchanged since

v3p.height + w(v3p, v
2
r) + w(v2r) is not larger than v2r .height. However, since we have

now traversed all edges going into v2r , the AND vertex v2r is inserted into PQ. (S5) v1r is

extracted from PQ. Edge (v1r , v
1
d) is traversed, and v1d.height is decreased from ∞ to

2. The OR vertex v1d is inserted into PQ. (S6) v2r is extracted from PQ. The OR vertex

v2d is inserted into PQ with v2d.height = 2. (S7) v1d is extracted from PQ. The AND

vertex v3r is inserted into PQ with v3r .height = 3. (S8) v2d is extracted from PQ. The

AND vertex v4r is inserted into PQ with v4r .height = 3. (S9) v3r is extracted from PQ.

The edge (v3r , v
2
d) is traversed. Since v2d has been extracted from PQ, the attributes

at v2d are not updated. (S10) v4r is extracted from PQ. The OR vertex g is inserted

into PQ with g.height = 4. (S11) g is extracted from PQ. The algorithm outputs

the attack trace {(v4r , g), (v2d, v4r), (v2r , v2d), (v2p, v2r), (v3p, v2r)} and stops in Line 36. The

height of the computed shortest attack trace is 4. This example is representative of

cases where the attack graph contains at least one attack trace.

When Algorithm 7.1 is applied to the attack graph in Figure 7.1(b), the main

steps are as follows. (S1) An empty priority queue PQ is initialized and the primitive

fact vertex v1p is inserted into PQ with v1p.height = 0. (S2) v1p is extracted from PQ.

The edge (v1p, v
1
r) is traversed, and v1r .height is increased from −∞ to v1p.height +

w(v1p, v
1
r) + w(v1r) = 1. Since we have not traversed all edges going into v1r (edge

(v2d, v
1
r) has not been traversed) yet, the AND vertex v1r is not inserted into PQ at this
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moment. (S3) Algorithm 7.1 finds PQ = ∅ and goes to Line 26. It stops, claiming

that there is no attack trace in the attack graph shown in Figure 7.1(b). This example

is representative of cases where the attack graph does not contain any attack trace.

7.2.3 Analysis of the Algorithm

In this section, we analyze the properties of the algorithm. In Theorem 7.1, we

analyze the worst-case running time of the algorithm. In Theorems 7.2-7.3, we prove

the correctness of the algorithm.

Theorem 7.1. Let n be the number of vertices in G and m be the number of edges

in G. The worst-case running time of Algorithm 7.1 is O(m+ n log n). 2

Proof. The time spent on Lines 1-9 is O(n+m) as we spend O(1) time for each

vertex and each edge. The while-loop from Line 10 to Line 25 performs at most n

ExtractMin operations, at most n Insertion operations, and at most m DecreaseKey

operations. If we use the Fibonacci heap [46] to implement the priority queue, this

portion has a worst-case running time O(m+ n log n). Line 27 takes O(1) time. The

while-loop from Line 29 to Line 35 takes O(m) time, as there are at most m edges in

T . Hence the worst-case time complexity of Algorithm 7.1 is O(m+ n log n). 2

Remarks. At the high level, our algorithm for computing a shortest attack

trace follows the same principle as the algorithm in [40]. However, there are subtle

differences that may affect the worst-case running time. The algorithm in [40] uses a

top-down approach (without memoization). Our algorithm uses a bottom-up approach,

where no instance is solved more than once. Our algorithm can compute a shortest

attack trace whenever an attack trace exists, and can recognize if an attack trace does

not exist, in polynomial time (refer to Theorems 7.1 and 7.2).
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Theorem 7.2. If the attack graph G contains an attack trace, then Algorithm 7.1

correctly computes a shortest attack trace, with the edges in the shortest attack trace

stored in Tsh. In this case, the algorithm exits in Line 36. 2

Proof. Our proof relies on the following claims:

(a) Let v ∈ V G be any vertex in G. The following is always true throughout the

execution of the algorithm: v.color is WHITE if and only v has not been inserted

into the priority queue PQ, v.color is GRAY if and only v is on the priority queue

PQ, and v.color is BLACK if and only v has been extracted from the priority queue

PQ.

(b1) Let v be any OR vertex in G. The value v.height is monotonically non-increasing

during the execution of the algorithm.

(b2) Let v be any OR vertex in G. The first time v.height is reduced from ∞ to a real

number, v is inserted into PQ, and v.height is the height of some (not necessarily

the shortest) attack trace to vertex v; When v is extracted from PQ, v.height is

the height of a shortest attack trace to vertex v.

(c1) Let v be any AND vertex in G. The value v.height is monotonically non-decreasing

during the execution of the algorithm.

(c2) Let v be any AND vertex in G. When v is inserted into PQ, v.height is the height

of a shortest attack trace to vertex v. The value v.height will not be changed

again after v is inserted into PQ. When v is extracted from PQ, v.height is the

height of a shortest attack trace to vertex v.

(d) If vertex α is extracted from PQ before vertex β is extracted, then α.height

(at the time α is extracted) is less than or equal to β.height (at the time β is

extracted).
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Claim (a) follows directly from the algorithm. We note that vertex v becomes

GRAY and gets inserted into PQ only in Line 9 (for v ∈ Vp), Line 18 (for v ∈ Vd), and

Line 25 (for v ∈ Vr); and vertex v gets extracted from PQ and becomes BLACK only

in Line 11.

To prove Claim (b1), we note that for v ∈ V G
d , v.height is initialized to ∞ in

Line 5, and changed (to a smaller value) in Line 17 and Line 20. To prove Claim (c1),

we note that for v ∈ V G
r , v.height is initialized to −∞ in Line 7, and changed (to a

larger value) in Line 23.

To prove Claim (d), we note that vertices is extracted from PQ by the ExtractMin

operation. Therefore, when α is extracted, the height of α is the smallest among all

vertices on PQ. Since the vertex weights and edge weights are all non-negative, for

any vertex v that has not been extracted from PQ before vertex α, we will not have

v.height < α.height when v.done ≥ 1. This proves Claim (d).

Claims (b2) and (c2) can be proved using mathematical induction. Let v be an OR

vertex. The first time an incoming neighbor of v is extracted from PQ, the height of

v is decreased from ∞ to a real number (which is the height of an attack trace to v).

This value may be further reduced when other incoming neighbors of v are extracted

from PQ. When all incoming neighbors of v are extracted from PQ, the height of v

will no longer be decreased.

Let v be an AND vertex. v.height is initialized to −∞ in Line 5. Every time an

incoming neighbor v′ of v is extracted, v.height will be set to the maximum of its

current value and v′.height+w(v′, v) +w(v). Therefore, when all incoming neighbors

of v are extracted from PQ, the v.height is the height of a shortest attack trace to

vertex v. The above analysis, together with (d), proves (b2) and (c2).

Now assume that there is an attack trace in G. Since the number of attack traces
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in G is finite, there must be a shortest attack trace. Let hopt be the height of the

shortest attack trace to g. Following the above analysis, vertex v will be inserted into

and extracted from PQ provided that the height of the shortest attack trace to v is

smaller than the hopt. Hence, the attack goal g will be inserted into and extracted

from PQ. Therefore, Algorithm 7.1 exits at Line 36. 2

Theorem 7.3. If the attack graph G contains no attack trace, then Algorithm 7.1

stops in Line 26. 2

Proof. The algorithm stops after O(m+ n log n) basic operations. If it stops at

Line 36, it must have computed a shortest attack trace. The only other place for the

algorithm to stop is Line 26. Therefore if there is no attack trace to g, Algorithm 7.1

must stop at Line 26. 2

7.3 Optimal Network Hardening: Perspective of the Defender

In Section 7.2, we presented an efficient algorithm for computing a shortest attack

trace. The best strategy for the attacker to gain access to the attack goal g is to

launch an attack along a shortest attack trace. Therefore, the height of a shortest

attack trace, H(Tsh), is a good metric to measure the hardness for the attacker to

gain access to its attack goal g. The larger the value of H(Tsh), the less vulnerable

the system is.

Assume that we can harden a network element z (a vertex or an edge) to increase

the value of w(z). Then we can increase the height of the shortest attack trace by

hardening some selected network elements. However, hardening a network element

comes with a cost. Also, some network elements are hardenable, while others are

not. Therefore, a natural question to ask is: What is the best strategy to harden the
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network with a given budget constraint? This section is devoted to answering the

above question.

7.3.1 The Network Hardening Problem

A network element in this study refers to either a vertex or an edge in G. Since there

are n = |V | vertices and m = |E| edges in G, we have a total of N = n+m network

elements. We define a one-to-one mapping η from the set of integers {1, 2, . . . , N}

to the set of network elements V ∪ E such that η(k) ∈ V for k = 1, 2, . . . , n, and

η(k) ∈ E for k = n+ 1, n+ 2, . . . , n+m. We use a binary-valued array ϕ[1 : N ] to

indicate whether a network element is hardenable. In particular, ϕ[k] = 1 if η(k) is

hardenable, and ϕ[k] = 0 otherwise.

Let k ∈ [1, N ] be an integer. If ϕ[k] = 1, we can harden network element η(k) with

a cost of c[k] > 0 to increase the weight of η(k) from w(η(k)) to w(η(k)) + δ[k]. If

ϕ[k] = 0, η(k) is not hardenable. For convenience, we define δ[k] = 0 and c[k] =∞ in

this situation.

Definition 7.4. Let the attack graph G be given, together with mapping η and

network hardening information ϕ, δ, and c. A binary-valued array X[1 : N ] is said

to be a feasible hardening strategy for budget B ≥ 0, if X[k] ≤ ϕ[k], k = 1, 2, . . . , N

and
∑N

k=1X[k]× c[k] ≤ B. 2

The meaning of the array X[1 : N ] as a hardening strategy is the following. For

k = 1, 2, . . . , N , network element η(k) is hardened if and only if X[k] = 1. Since X[k] ≤

ϕ[k], only hardenable network elements will be hardened. Since
∑N

k=1X[k]× c[k] ≤ B,

the total cost for hardening does not exceed the given budget B.
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We use G(X) to denote the hardened attack graph corresponding to X, and use

Tsh(X) and H(Tsh(X)) to denote the shortest attack trace of G(X) and the height of

Tsh(X), respectively. The decision version and the optimization version of the network

hardening problem are formally defined in the following.

Definition 7.5 (Decision Hardening Problem). Let the attack graph G be given,

together with network hardening information η, ϕ, δ, and c. Let B be the budget for

network hardening, and H be the desired level of network hardness. The decision

network hardening problem (DHP) asks whether there exists a feasible hardening

strategy X such that H(Tsh(X)) ≥ H. When the answer is YES, the problem also asks

for the corresponding hardening strategy X. 2

Definition 7.6 (Optimization Hardening Problem). Let the attack graph G be given,

together with network hardening information η, ϕ, δ, and c. Let B be the budget

for network hardening. The optimization network hardening problem (OHP) asks

for a feasible hardening strategy Xopt such that H(Tsh(Xopt)) ≥ H(Tsh(X)) for every

feasible hardening strategy X. 2

OHP can be formulated as the following optimization problem.

maximize H(Tsh(X)) (7.1)

s.t. X[k] ∈ {0, 1}, k = 1, 2, . . . , N, (7.2)

X[k] ≤ ϕ[k], k = 1, 2, . . . , N, (7.3)
N∑
k=1

X[k]× c[k] ≤ B. (7.4)

In Section 7.3.2, we will study the computational complexity of the network

hardening problem. In Sections 7.3.3 and 7.3.4, we will present optimal and heuristic

algorithms, respectively, for solving the OHP problem.
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7.3.2 Hardness of the Problem

We present a polynomial-time reduction from Knapsack [50] to DHP. An

instance of Knapsack is given by a finite set U , a size s(u) ∈ Z+ and a reward

r(u) ∈ Z+ for each u ∈ U , a size constraint B ∈ Z+, and a reward goal R ∈ Z+. It

asks for a subset S ⊆ U such that

∑
u∈S

s(u) ≤ B and
∑
u∈S

v(u) ≥ R. (7.5)

Theorem 7.4 (Hardness of Network Hardening). The network hardening problems

DHP and OHP are both NP-hard. 2

Proof. Let I1 = (U, s(·), r(·),B,R) be an arbitrary instance of Knapsack, where

U = {u1, u2, . . . , uK}. If K is an even integer, we construct a corresponding instance

I ′1 = (U ′, s′(·), r′(·),B′,R′) with |U ′| = |U |+ 1 such that

• U ′ = U ∪ {uK+1},

• s′(uk) = s(uk), 1 ≤ k ≤ K,

• s′(uK+1) = min{s(uk)|1 ≤ k ≤ K},

• r′(uk) = r(uk), 1 ≤ k ≤ K,

• r′(uK+1) = 1 +
∑K

k=1 r(uk),

• B′ = B+ s(uK+1),

• R′ = R+ r(uK+1).

Since s(uK+1) ≤ s(uk) for 1 ≤ k ≤ K and r(uK+1) >
∑K

k=1 r(uk), I1 has a solution if

and only if I ′1 has a solution. In addition, any solution to I ′1 must be the union of

S and {uK+1}, where S is a solution to I1. Therefore, without loss of generality, we

may assume that for instance I1, K is an odd integer.
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Given instance I1 of Knapsack, we construct a corresponding instance I2 of

DHP in the following. The weighted attack graph is G = (Vp, Vd, Vr, E, g, w), where

Vp = {v1}, Vd = {v3, v5, v7, . . . , vK}, Vr = {v2, v4, v6, . . . , vK−1}, E = {(vk−1, vk)|k =

2, 3, . . . , K}, g = vK , and w(vk) = 1 for each k = 1, 2, . . . , K and w(e) = 1 for each

e ∈ E. There are K vertices and K − 1 edges in G, leading to N = 2K − 1 network

elements. Define η, ϕ, δ, and c such that

η(k) = vk, ϕ[k] = 1, k = 1, 2, . . . , K, (7.6)

δ[k] = r(uk), c[k] = s(uk), k = 1, 2, . . . , K, (7.7)

η(K + k) = (vk, vk+1), ϕ[K + k] = 0, k = 1, 2, . . . , K − 1, (7.8)

δ[K + k] = 0, c[K + k] =∞, k = 1, 2, . . . , K − 1. (7.9)

Define the hardening budget to be B, and the desired hardness level to be H =

R+ (K + 1). Then I1 has a solution if and only if DHP has a solution. In addition,

if X is a solution to DHP, then S = {η(k)|X[k] = 1} is a solution to Knapsack

and vice versa. Since Knapsack is NP-hard, we have proved that DHP is NP-hard.

Since OHP is the optimization version of DHP, OHP is also NP-hard.

7.3.3 An Exact Algorithm

We design a branch and bound algorithm for computing an optimal solution

to OHP. The algorithm is listed in Algorithm 7.2. While the branch and bound

algorithm paradigm has been known for a long time, the bounding technique in our

algorithm is novel. Its effectiveness will be demonstrated in our evaluation results.

Theorem 7.5. Algorithm 7.2 (ExactBnB) always computes an optimal hardening

strategy. 2
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Algorithm 7.2: ExactBnB(G,N, η, ϕ, δ, c,Hbest,Xbest,B)
Input: G = (V,E, g) is a weighted attack graph; N = |V |+ |E| is the number of

network elements; η : {1, 2, . . . , N} 7→ V ∪ E is a one-to-one mapping; ϕ[k]
is 1 if η[k] is hardenable, 0 otherwise; δ[k] and c[k] are the added strength
and hardening cost for network element η[k] when ϕ[k] is 1; B is the budget
constraint for network hardening; Xbest is some hardening strategy; Hbest is
the height of the shortest attack trace after the network is hardened using
Xbest.

Output: An optimal hardening strategy given by Xbest[k], j = 1, 2, . . . , N together
with the height of the shortest attack trace after hardening using the
optimal strategy.

1 Create an array X[1 : N ] and an array csum[1 : N + 1];
2 csum[N + 1]← 0;
3 for k = N,N − 1, . . . , 1 do
4 if (ϕ[k] == 1) then
5 csum[k]← csum[k + 1] + c[k];

6 else
7 csum[k]← csum[k + 1];

8 B ← B;
9 Branch1(B, 1, X,Xbest,Hbest, G,N, η, ϕ, δ, c, csum);

10 Branch0(B, 1, X,Xbest,Hbest, G,N, η, ϕ, δ, c, csum);
11 Output Hbest and Xbest.

Proof. Algorithm 7.2 traverses a decision tree with 2K leaf vertices, while cutting

branches that do not contain a better solution whenever we know it. We use B

to denote the residual budget, which is the initial budget B minus the sum of the

costs of the subset of network elements selected to be hardened. In general, given

the values of X[j] for 1 ≤ j ≤ k − 1 such that X[j] ≤ ϕ[j] for 1 ≤ j ≤ k − 1 and∑k−1
j=1 X[j]× c[j] ≤ B, we decide whether to explore or cut the branch with X[k] = 1,

and the branch with X[k] = 0.

The Branch for X[k] = 1 does not exist if ϕ[k] = 0 or
∑k

j=1 X[j] × c[j] > B. If∑k
j=1X[j]×c[j]+

∑N
j=k+1 c[j]×ϕ[j] ≤ B, the best solution in the branch corresponding

to setting X[k] = 1 is to set X[j] = ϕ[j] for j = k + 1, . . . , N . In a nutshell, the
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Algorithm 7.3: Branch1(B, k,X,Xbest,Hbest, G,N, η, ϕ, δ, c, csum)

Input: Current Hbest and feasible values for X[1 : k − 1]
Output: Explore the branch for X[k] = 1

1 if (k > N or ϕ[k] == 0 or c[k] > B) then return;
2 X[k]← 1; B ← B − c[k];
3 if (k == N or csum[k + 1] ≤ B) then
4 X[j]← ϕ[j], j = k + 1, k + 2, . . . , N ;
5 Hnew ← H(Tsh(X));
6 if (Hnew > Hbest) then
7 Xbest ← X; Hbest ← Hnew;

8 else
9 X[j]← 0, j = k + 1, k + 2, . . . , N ;

10 Hnew ← H(Tsh(X));
11 if (Hnew > Hbest) then
12 Xbest ← X; Hbest ← Hnew;

13 Branch1(B, k + 1, X,Xbest,Hbest, G,N, η, ϕ, δ, c, csum);
14 Branch0(B, k + 1, X,Xbest,Hbest, G,N, η, ϕ, δ, c, csum);

15 B ← B + c(k);

Algorithm 7.4: Branch0(B, k,X,Xbest,Hbest, G,N, η, ϕ, δ, c, csum)

Input: Current Hbest and feasible values for X[1 : k − 1]
Output: Explore the branch for X[k] = 0

1 if (k > N) then return;
2 X[k]← 0;
3 if (k == N or csum[k + 1] ≤ B) then
4 X[j]← ϕ[j], j = k + 1, k + 2, . . . , N ;
5 Hnew ← H(Tsh(X));
6 if (Hnew > Hbest) then
7 Xbest ← X; Hbest ← Hnew;

8 else
9 X[j]← 0, j = k + 1, k + 2, . . . , N ;

10 Hnew ← H(Tsh(X));
11 if (Hnew > Hbest) then
12 Xbest ← X; Hbest ← Hnew;

13 Branch1(B, k + 1, X,Xbest,Hbest, G,N, η, ϕ, δ, c, csum);
14 Branch0(B, k + 1, X,Xbest,Hbest, G,N, η, ϕ, δ, c, csum);
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algorithm never cuts a branch that contains a better solution than the current best

solution. Therefore, the algorithm always computes an optimal solution to OHP. 2

7.3.4 A Heuristic Algorithm

Since OHP is NP-hard, we design a polynomial-time greedy heuristic algorithm

for computing a solution to OHP. This is listed in Algorithm 7.5. While our greedy

heuristic algorithm does not guarantee finding an optimal solution, extensive evaluation

results show that the heuristic algorithm produces close-to-optimal solutions.

Algorithm 7.5: Greedy(G,N, η, ϕ, δ, c,B)
Input: G,N, η, ϕ, δ, c: as in Algorithm 7.2; B: hardening budget.
Output: A feasible hardening strategy Xgrd.

1 Create a binary-valued array Xgrd[1 : N ];
2 Xgrd[k]← 0, k = 1, 2, . . . , N ;
3 Hgrd ← H(Tsh(Xgrd)); B ← B; done← 0;
4 while (done == 0) do
5 done← 1; Rbest ← 0; kbest ← 0;
6 for k = 1, 2, . . . , N do
7 if (Xgrd[k] < ϕ[k] and c[k] ≤ B) then
8 Xgrd[k]← 1;
9 Hnew ← H(Tsh(Xgrd)); Rnew ←

Hnew−Hgrd

c[k] ;
10 if (Rnew > Rbest) then
11 done← 0; Rbest ← Rnew; kbest ← k;

12 Xgrd[k]← 0;

13 if (done == 0) then
14 Xgrd(kbest)←1; B ← B−c[kbest]; Hgrd←H(Tsh(Xgrd));

15 output Xgrd and Hgrd;

Theorem 7.6. Algorithm 7.5 always finds a feasible hardening strategy. Its worst-case

running time is O(K2(m+ n log n)), where n = |V |, m = |E|, and K is the number

of hardenable network elements. 2
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Proof. Algorithm 7.5 only hardens hardenable network elements, and never

hardens a subset of network elements whose aggregated cost exceeds the given budget.

Therefore, it always produces a feasible hardening strategy. The algorithm performs

O(K) iterations, where each iteration requires the computation of O(K) shortest

attack traces. Therefore, the worst-case running time is O(K2(m+ n log n)). 2

7.3.5 Related Work on Network Hardening

Network hardening is an important problem in cyber security, and the attack

graph is an elegant tool to measure system-level vulnerabilities for performing network

hardening [27, 33–35, 63, 143, 146, 153]. Islam et al. [63] proposes heuristic approaches

to perform network hardening by patching a selected subset of vertices in the attack

graph with the lowest cost. However, only primitive fact vertices can be patched in [63],

thus their model is not general. Similarly, Dewri et al.[27] assumes that only primitive

fact vertices are patchable at different costs. It models the network hardening problem

as finding the optimal patching strategy that minimizes the cost and residual damage

to the system. However, Dewri et al.[27] applies the attack tree model [7] instead

of the attack graph, which has a simpler structure but makes strong assumptions

about attackers’ abilities. Durkota et al. [35] model the defender’s hardening strategy

as finding the optimal way to add honeypots to a networked system, by which the

defender can detect and mitigate attacks at certain costs. They proposed several

heuristic algorithms, albeit with limited scalability.

Another set of works takes the probabilistic metric [142] into account when studying

the network hardening problem. The network hardening framework proposed by [146]

assigns probabilities to the edges in attack graphs to incorporate the attack graph
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and HMM. Both attack cost and defense cost are modeled in [146] for conducting

cost-benefit security analysis. The cost-aware IoT network hardening solution in [153]

assigns a cost for removing exploits and initial conditions in the system, and applies

a greedy algorithm for finding a cost-effective solution to harden the system. Since

all paths to the attack goal need to be calculated to decide which exploits or initial

conditions to be removed, it faces scalability issues when the attack graph is large.

Our work has similar motivations of assigning costs and weights to the elements in

the attack graphs as that of existing research. However, our problem is more general

where all vertices and edges are hardenable. Instead of measuring the attacker’s

capability as the probability of reaching a specific state, e.g., conquering the attack

goal, we assume that the attacker always follows the shortest attack trace to launch

an attack. This assumption is intuitive and reasonable, and profiles the attacker’s

attacking strategy more accurately compared to the probabilistic model.

7.4 Performance Evaluation

To evaluate our proposed network hardening algorithms, we implemented both

algorithms and tested them in two types of scenarios. We introduce the network

topology in Section 7.4.1 and the derivation of the parameters in the attack graph of

the evaluation in Section 7.4.2. We present evaluation results in Section 7.4.3.

7.4.1 Network Topologies

Following the attack graph generation strategy in [40], we generated 11 (unweighted)

attack graphs from the devices and app configurations in IoT systems using MulVAL
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[99]. The basic flow of the attack graph generation is as follows. First, we profile an

IoT system by obtaining the details of IoT devices installed in the system, including

brand, model, network protocol, and firmware version. We also verify if there are

companion apps to these devices. We then query the CVE database [22] and gather

any vulnerabilities reported about the installed devices in the IoT system. To build

dependency relationships in the attack graph, we use NLP techniques to process the

descriptions and automation rules in the devices’ companion apps. We then combine

the vulnerability information and the dependency information and use MulVAL to

generate the attack graph for the system.

We studied 9 synthetic IoT systems based on real IoT devices and apps (systems

with numbered labels) and 2 real-world IoT systems from our smart home testbeds

(System A and System B). The IoT devices deployed in Systems A and B are listed in

Table 7.1. In total, 11 system configurations were studied and converted to attack

graphs. With an attack graph generated for a system, we then apply the approaches

discussed in Section 7.4.2 to obtain weighted attack graphs with both vul-only

parameters and random parameters for evaluation.

7.4.2 Evaluation Scenarios

We evaluated our algorithms on two types of scenarios:

(α) Only vulnerability vertices are hardenable. A vulnerability vertex is signified by

the vulExists keyword in the vertex’s description. Their weights w, costs c, and

added strength δ are systematically derived from the relevant CVE information,

detailed below. Under this scenario, we study a variation of the OHP problem.

Instead of trying to maximize the height of the shortest attack trace (SAT),
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Table 7.1. IoT Devices Deployed in Smart Home Testbeds

Device Name Device Type Protocols Home
Amazon Smart Plug Plug WiFi A
Amcrest ProHD Camera WiFi A
Arlo Q Camera Camera WiFi A
Arlo Ultra Camera WiFi A
August Doorbell Cam Pro Doorbell WiFi A
August Lock Lock WiFi A
Blink XT2 Camera WiFi A
Chamberlain Garage Control Sensor WiFi B
D-Link Water Sensor Sensor WiFi A & B
Gosund WiFi Smart Socket Plug WiFi A
Kangaroo Motion Sensor Sensor WiFi A & B
Philips Hue Bulb WiFi & Zigbee A
Reolink Camera Camera WiFi A
Ring Doorbell Doorbell WiFi A & B
Ring Spotlight Spotlight WiFi A
Schlage WiFi Deadbolt Lock WiFi A
Sengled SmartLED Bulb WiFi A
Smart Life Contact Sensor Sensor WiFi A & B
SmartThings Hub Hub WiFi & Zigbee A
Tessan Contact Sensor Sensor WiFi A & B
TP-Link Bulb Bulb WiFi A & B
TP-Link Plug Plug WiFi A & B
WeMo Plug Plug WiFi A

we aim to make the system secure by patching out critical vulnerabilities while

minimizing the total costs associated with patching the system. We call this type

of parameter assignment the vul-only type.

(β) Hardenable network elements are chosen randomly. Initial weights, costs, and

added strength for all network elements are randomly generated. For this scenario,

we follow OHP problem defined in Equations (7.1)-(7.4) to obtain a hardening

strategy X under budget B, where the SAT for the hardened attack graph

H(Tsh(X)) is maximized. We designate this type of parameter assignment as the

random type.

We now detail our approach to parameter assignment in both types of scenarios.

Hardenable elements ϕ: For scenario (α), we define ϕ[i] = 0 for i = |V | +

1, |V |+ 2, . . . , |V |+ |E|, and ϕ[i] = 1 if and only if η(i) is a vulnerability vertex in the

attack graph G, i = 1, 2, . . . , |V |. For scenario (β), we choose hardenable elements
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randomly. K =
∑N

i=1 ϕ[i] is the number of hardenable elements. For each attack

graph, we evaluate the algorithms with K = 16, K = 24, and K = 32.

Weights w: For scenario (α), weights for vulnerability vertices are calculated based

on the CVSS exploitability score of the CVE number associated with each vertex. Let

CV SSexpl(v) be this exploitability score, w(v) = (max(CV SSexpl)−CV SSexpl(v))×2.5,

where max(CV SSexpl) is 4, the maximum exploitability subscore in the CVSS 3.x

scoring system. Note that the higher the exploitability score is, the easier it is to

breach a vulnerable device. Thus, to represent the relative difficulty to breach the

device, it is necessary to deduct CV SSexpl(v) from the maximum exploitability score.

We multiply the final result by 2.5 to scale it to the range [0, 10] to be consistent with

the the weights in scenario (β). For network elements that are not hardenable, we

assign weights of zero to them. For scenario (β), weights for vertices and edges are

real numbers randomly chosen within the range [0, 10].

Added strength δ: In scenario (α), hardening a network element means that the

vulnerability is eliminated from the network and the attacker can no longer utilize the

vulnerability. Therefore, we define the added strength for a hardened vulnerability

vertex v to be a very large number H, i.e. δ(v) = H. We seek a minimum-cost

hardening strategy so that the height of a shortest attack trace in the hardened attack

graph is greater than or equal to H. For scenario (β), δ(z) for each hardenable element

z is randomized to be a real number in [0.05, 2.00] times w(z).

Hardening cost c: In scenario (α), because every vulnerability is resulted from a

weakness, we correlate the origin of the vulnerability, i.e., the weakness, and examine

how many identified vulnerabilities are affected by the same weakness. The hardening

cost c(v) for a vulnerability vertex v is then defined as the ratio between the vertex’s

CWE [87] score relative to the number of all CWEs as follows: c(v) = RCWE(v)
TCWE

× 10,
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where RCWE(v) is the rank of the CWE for vulnerability v and TCWE is the total

number of CWEs. The resulting cost will be in the range [0-10]. This cost represents

the amount of effort that is needed to remediate a vulnerability.

For scenario (β), c(z) for a hardenable element z is chosen to be a real number

in [0.30, 1.50] times δ(z). Note that for scenario (β), the generated parameters are

not meant to represent realistic network configurations or actual effects of hardening,

but rather to test whether our algorithms are effective for any general case of network

hardening problems. Also for a given attack graph, we fix the values of w, c, and δ

once they are generated, and we vary the hardenable network elements for each test

case in scenario (β).

7.4.3 Evaluation Results

We present the evaluation results for attack graphs generated in both scenarios

(and their associated hardening problems). All evaluation was done on a workstation

with i9-12900 16-core CPU, 64GB system memory, and Ubuntu 22.04 system.

For the vul-only type of graphs, we follow the parameter assignment described

in Section 7.4.2. There is only one test case per attack graph, since the vulnerability

vertices in an attack graph and their CVSS assessments are fixed. For the random

type of graphs, define ρ the percentage of the budget B over the cost of all hardenable

elements, i.e., ρ= B∑N
i=1 ϕ[i]×c[i]

. We further create two kinds of test suites.

(i) The suite with a fixed budget percentage ρ, but different attack graphs: We fix ρ to

0.3 so that the budget B will be 0.3 times the total cost of all hardenable elements

in an attack graph, and we create test cases with all 11 attack graphs. For each

attack graph, we further create cases where K = 16, 24, and 32, respectively. For
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each K we generate 10 different test cases. Recall that the network parameters

are set once they are generated, so each test case with the same attack graph

differs only in their selection of hardenable network elements and budget B.

(ii) The suite with a fixed attack graph, but different budget percentages ρ: We fix

System 9 as the target attack graph, but vary ρ to be one of the following values:

[0, 15, 30, 50, 70, 85, 100]. We generate cases with zero budget assigned all the way

up to the cases where the budget is enough to harden all network elements. Like

in (i), we create test cases where K = 16, 24, and 32, respectively. For each K,

we also generate 10 different test cases.

For each test suite, we run both the exact algorithm (Algorithm 7.2) and the

heuristic algorithm (Algorithm 7.5). Note that the exact algorithm will give the

optimal solution Xopt, where the height of the attack trace H(Tsh(Xopt)) is maximized

given the budget B.

7.4.3.1 Results for Scenario (α)

We apply the algorithms on vul-only graphs to find a hardening strategy Xopt

that secures the system while having the lowest total cost. We say that a system is

secure when the height of the SAT in the hardened attack graph is greater than or

equal to H. To ensure the hardening strategy Xopt has the minimum cost, we perform

a bisection search on the budget B and find the minimal B that affords a strategy to

secure the system.

Table 7.2 lists several key results from the experiments. We note that for all 11

systems, the procedure defined above was able to find a hardening strategy to secure

the system within 0.01 seconds.
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Table 7.2. Evaluation Results on Applying Network Hardening Techniques To Patch
Vulnerabilities in the System

System ID K
Running

Time
Strategy
Found?

Original
Cost

Optimal
Cost

Cost
Saving

System 1 25 0.0036s Yes 182.6 6.1 96.7%
System 2 17 0.0009s Yes 127.7 8.2 93.6%
System 3 14 0.0008s Yes 105.7 8.2 92.2%
System 4 9 0.0006s Yes 74.5 19.8 73.4%
System 5 9 0.0004s Yes 68.3 9.6 85.9%
System 6 4 < 0.0001s Yes 31.2 9.5 69.6%
System 7 4 < 0.0001s Yes 38.0 9.5 75.0%
System 8 4 < 0.0001s Yes 28.3 5.5 80.6%
System 9 1 < 0.0001s Yes 9.8 9.8 N/A
Testbed A 6 < 0.0001s Yes 50.6 10.0 80.2%
Testbed B 2 < 0.0001s Yes 15.1 6.6 56.3%

The results also reveal that in an attack graph, there can be a large number of

hardenable elements (vulnerabilities), but not all of them affect the overall security of

the system equally. In some cases, one can patch only a small subset of all vulnerable

vertices and still be able to secure the system. We list Original Cost as the combined

cost to harden all vulnerable vertices, and Optimal Cost as the optimized cost to

secure the system after performing the cost optimization procedure. In all attack

graphs in our test where K > 1, it is possible to cut down the costs to secure the

system by a significant amount, resulting in as much as 96.7% savings in hardening

cost as in the case of System 1.
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Figure 7.2. Relative SAT Heights for the Exact and the Heuristic Algorithms Across
Different Systems
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Table 7.3. Evaluation Results of Our Exact and Heuristic Network Hardening Algo-
rithm

System ID n m Height K Budget Heuristic Algorithm Exact Algorithm
Cost Height Time Cost Height Ratio Time

System 1 338 577 124.83
16 23.20 5.78 130.60 0.0004s 17.12 130.60 21.70% 0.1121s
24 36.34 9.88 133.90 0.0011s 32.08 133.90 12.03% 15.02s
32 50.50 24.02 147.77 0.0020s 46.58 147.97 8.01% 2802s

System 2 209 310 77.94
16 21.14 11.58 86.46 0.0003s 17.50 86.46 21.21% 0.0527s
24 34.01 19.90 90.38 0.0006s 27.49 90.38 8.86% 5.495s
32 42.84 18.59 89.56 0.0010s 38.66 89.56 6.62% 1041s

System 3 162 234 79.06
16 22.04 7.55 86.52 0.0002s 18.56 86.52 17.44% 0.0328s
24 28.40 15.73 94.57 0.0004s 25.63 96.25 12.54% 6.052s
32 36.21 23.05 98.34 0.0007s 30.67 98.39 7.31% 873.7s

System 4 130 182 228.02
16 26.05 19.72 243.12 0.0002s 17.42 244.63 20.21% 0.0281s
24 40.32 34.70 253.87 0.0004s 29.51 255.46 9.83% 3.571s
32 51.44 43.28 257.55 0.0006s 46.68 260.47 5.21% 454.5s

System 5 117 173 110.29
16 27.91 12.55 118.20 0.0001s 18.86 119.40 25.68% 0.0338s
24 47.07 22.78 127.49 0.0003s 38.07 128.20 15.95% 5.493s
32 59.77 29.22 129.37 0.0005s 54.59 129.37 10.92% 900.9s

System 6 37 39 94.80
16 21.95 17.82 116.77 < 0.0001s 17.40 117.07 8.72% 0.0028s
24 33.31 28.47 128.84 0.0001s 29.03 128.90 3.60% 0.2950s
32 44.68 41.18 114.07 0.0001s 41.59 144.07 1.81% 39.02s

System 7 36 35 72.11
16 24.19 21.59 97.96 < 0.0001s 18.10 98.82 16.06% 0.0052s
24 33.56 30.73 112.28 0.0001s 28.95 114.82 9.03% 0.7210s
32 42.44 39.03 123.17 0.0002s 35.64 124.50 6.38% 34.40s

System 8 35 44 106.01
16 21.67 16.73 122.71 < 0.0001s 17.88 124.12 27.07% 0.0076s
24 31.31 28.33 128.84 0.0001s 26.18 134.68 12.22% 0.8846s
32 44.78 40.79 145.04 0.0001s 41.71 147.30 7.32% 135.1s

System 9 25 26 165.84
16 24.25 22.82 197.94 < 0.0001s 17.72 198.51 28.90% 0.0041s
24 38.21 37.12 217.24 < 0.0001s 31.28 217.95 22.78% 0.8392s
32 52.42 51.69 238.24 0.0001s 50.96 242.62 16.78% 154.1s

Testbed A 37 42 61.91
16 15.22 13.38 82.55 < 0.0001s 12.59 83.28 25.93% 0.0090s
24 24.16 22.34 94.30 0.0001s 19.89 95.43 11.18% 0.9399s
32 27.01 25.51 96.29 0.0002s 23.94 98.40 8.72% 12.00s

Testbed B 10 11 55.36
16 15.19 12.68 72.45 < 0.0001s 12.71 72.87 34.38% 0.0026s
21 18.87 17.16 80.75 < 0.0001s 12.86 80.75 26.97% 0.0671s

7.4.3.2 Results for Scenario (β)-(i)

In Figure 7.2, we present the relative SAT heights for hardening strategies generated

by both the exact and the heuristic algorithms. This illustrates the improvements of

the heights of the SAT after running both algorithms and performing the hardening

strategy returned by the algorithms. Note that for Testbed B, we have results for

K = 16 and 21 only, as the system has only 21 network elements.

The exact algorithm is guaranteed to return an optimal hardening strategy Xopt
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within the budget B. Note that the optimal strategy is not necessarily unique, and

the algorithm does not guarantee the strategy is of minimum cost. Due to the “bound”

procedure in the algorithm, anytime when the residual budget is enough to harden all

the remaining elements, the algorithm will do so if the resulting height of the SAT

is better. This cuts down the running time but can result in more spending than

necessary. This is the reason that the exact algorithm sometimes produces a more

expensive strategy than the heuristic strategy, even if they achieve the same SAT

height. The data shows that the algorithm exhibits an exponential running time with

regard to K. However, due to the branch and bound strategy in the algorithm, the

running time in general is much faster than a brute-force approach.

On the other hand, the heuristic algorithm achieves a comparable performance to

the exact algorithm in many attack graphs. In some cases, the heuristic algorithm

finds the same optimal solution that the exact algorithm finds. Averaging all test

cases, the solution that the heuristic algorithm produces is approximately 96.81% as

good as our exact algorithm produces. In other words, the heuristic strategy yields on

average 96.81% of the increase in the height of SAT that an optimal strategy can do.

In addition, the heuristic algorithm runs quickly even in the largest cases, finishing

within 0.0002 seconds for all test cases.

Table 7.3 lists the results in this test suite. For each system, we show the number

of vertices and edges in the attack graph. The Height column indicates the height of

the SAT in the graph before any hardening. For each algorithm, we show the cost of

the hardening strategies along with the heights of the SAT in the hardened graph. We

also list the time taken to execute one test case. For the exact algorithm, we added

a ratio of the number of SAT queries made by the algorithm over that of the brute

force solution (which is 2K). Each (minor) row is averaged results over 10 test cases.
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Figure 7.3. Relative SAT Heights for the Exact and the Heuristic Algorithms With
Different Budget Percentages

7.4.3.3 Results for Scenario (β)-(ii)

We study also the behavior of the algorithms using the same attack graph (hence

identical parameters) but different budget constraints. Figure 7.3 shows the relative

heights of the SAT of both algorithms compared to that of the original graph when

K = 16, 24, and 32. While reaffirming the results found in Section 7.4.3.2, the results

also display that the difference between relative SAT heights is higher for medium

budgets and tapers off towards the extremes.

Intuitively, when the budget is low, neither of the two algorithms can do much

to harden the network. As the budget increases, the disparity between the two

algorithms begins to manifest. However, once the budget is sufficiently large, the two

algorithms can elect to harden most elements in the network, resulting again a similar

performance.

The figures also suggest a diminishing return as more budget is added. Indeed, as

the budget percentage ρ increases, the gains in SAT heights slow down, to a point

where virtually no improvement is made between ρ = 0.85 and ρ = 1.00.
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7.5 Conclusions

This study explores the problem of analyzing IoT system vulnerabilities and

network hardening. We first design a novel algorithm for computing a shortest

attack trace in a weighted attack graph. We demonstrate that our algorithm is more

robust and faster than the state-of-the-art [40]. In particular, our algorithm can

handle cycles in the attack graph properly, and works correctly regardless of whether

the attack graph contains an attack trace or not. We then formulate the network

hardening problem. We prove that the network hardening problem is NP-hard, and

design an exact algorithm and a polynomial-time heuristic algorithm to solve it.

Extensive evaluations show that our exact algorithm can compute optimal solutions

for reasonably sized problems, and our heuristic algorithm can efficiently produce near

optimal results.
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