
Continuous-Time Reinforcement Learning:

New Design Algorithms with Theoretical Insights and Performance Guarantees

by

Brent A. Wallace

A Dissertation Presented in Partial Fulfillment
of the Requirements for the Degree

Doctor of Philosophy

Approved December 2023 by the
Graduate Supervisory Committee:

Jennie Si, Chair
Spring M. Berman
Dimitri P. Bertsekas

Konstantinos S. Tsakalis

ARIZONA STATE UNIVERSITY

May 2024

ABSTRACT

This dissertation discusses continuous-time reinforcement learning (CT-RL) for

control of affine nonlinear systems. Continuous-time nonlinear optimal control prob-

lems hold great promise in real-world applications. After decades of development,

reinforcement learning (RL) has achieved some of the greatest successes as a general

nonlinear control design method. Yet as RL control has developed, CT-RL results

have greatly lagged their discrete-time RL (DT-RL) counterparts, especially in re-

gards to real-world applications. Current CT-RL algorithms generally fall into two

classes: adaptive dynamic programming (ADP), and actor-critic deep RL (DRL).

The first school of ADP methods features elegant theoretical results stemming from

adaptive and optimal control. Yet, they have not been shown effectively synthesizing

meaningful controllers. The second school of DRL has shown impressive learning

solutions, yet theoretical guarantees are still to be developed. A substantive analy-

sis uncovering the quantitative causes of the fundamental gap between CT and DT

remains to be conducted.

Thus, this work develops a first-of-its kind quantitative evaluation framework to

diagnose the performance limitations of the leading CT-RL methods. This disserta-

tion also introduces a suite of new CT-RL algorithms which offers both theoretical

and synthesis guarantees. The proposed design approach relies on three important

factors. First, for physical systems that feature physically-motivated dynamical par-

titions into distinct loops, the proposed decentralization method breaks the optimal

control problem into smaller subproblems. Second, the work introduces a new excita-

tion framework to improve persistence of excitation (PE) and numerical conditioning

via classical input/output insights. Third, the method scales the learning problem

via design-motivated invertible transformations of the system state variables in or-

der to modulate the algorithm learning regression for further increases in numerical

i

stability. This dissertation introduces a suite of (decentralized) excitable integral re-

inforcement learning (EIRL) algorithms implementing these paradigms. It rigorously

proves convergence, optimality, and closed-loop stability guarantees of the proposed

methods, which are demonstrated in comprehensive comparative studies with the

leading methods in ADP on a significant application problem of controlling an un-

stable, nonminimum phase hypersonic vehicle (HSV). It also conducts comprehensive

comparative studies with the leading DRL methods on three state-of-the-art (SOTA)

environments, revealing new performance/design insights.

ii

To my parents Anita & John Wallace,

and

my brother Ben Wallace

iii

ACKNOWLEDGMENTS

I would like to thank my advisor Dr. Jennie Si who has guided and supported

me immensely throughout my journey in graduate school. She has taught me so

much, both technical and non-technical, about how to be a successful researcher and

educator. She has also inspired my aspirations to one day follow in her footsteps as

a professor. I will forever be indebted to her.

I am also grateful to the members of my thesis committee, Dr. Spring M. Berman,

Dr. Dimitri P. Bertsekas, and Dr. Konstantinos S. Tsakalis for their continuous guid-

ance and support. Their insights have greatly helped the success of my research.

Furthermore, I would like to express my warmest thanks to Dr. Armando A. Ro-

driguez and Dr. Ying-Cheng Lai for their integral role in inspiring my pursuit of a

PhD as undergraduate, and for all of their support in my graduate research.

I would also like to thank Drs. Brett L. Kotschwar and Steven P. Kaliszewski

of the at Arizona State University (ASU) School of Mathematical and Statistical

Sciences for helping foster my love of mathematics, instrumental in this work.

It has been a pleasure to work alongside my fellow colleagues at ASU – Soham

Sarkar, Junmin Zhong, Ruofan Wu, Ling-Wei Kong, Kaustav Mondal, Sai Sravan

Manne, Shi Lu, Abdullah Altawaitan, and many others. I am honored to have worked

alongside these fellow minds to produce leading research.

Finally, I am grateful to my family and friends for their love and encouragement,

especially my parents Anita and John Wallace, my brother Ben Wallace, my lifelong

friends Ben Cohen, Michael Coughlin, Kathryn Chamberlin, and many more. I would

not be where I am today without them.

This research was supported by the National Science Foundation (NSF) under

Grants 1563921, 1808752, 2211740, and NSF Graduate Research Fellowship Grant

026257-001.

iv

TABLE OF CONTENTS

Page

LIST OF TABLES . xi

LIST OF FIGURES . xiii

CHAPTER

1 INTRODUCTION . 1

1.1 Motivation . 1

1.2 State of the Field, Related Work, and Challenges 2

1.3 Contributions . 12

1.4 Organization of Dissertation . 14

2 CONTINUOUS-TIME REINFORCEMENT LEARNING CONTROL:

A REVIEWOF THEORETICAL RESULTS, INSIGHTS ON PERFOR-

MANCE, AND NEEDS FOR NEW DESIGNS. 18

2.1 Problem Formulation . 18

2.2 Neural Network (NN) Structures Considered . 22

2.3 Algorithms and Training . 26

2.3.1 Integral Reinforcement Learning (IRL) [1] 26

2.3.2 Synchronous Policy Iteration (SPI) [2] . 28

2.3.3 Robust Adaptive Dynamic Programming (RADP) [3] 29

2.3.4 Continuous-Time Value Iteration (CT-VI) [4] 31

2.4 Theoretical Results . 32

2.4.1 IRL . 32

2.4.2 SPI . 33

2.4.3 RADP . 35

2.4.4 CT-VI . 36

2.4.5 Summary and Discussion of Methodologies 37

v

CHAPTER Page

2.5 Performance Evaluation Setup . 39

2.5.1 Setup – 2nd Order System . 40

2.5.2 Setup – Cart Inverted Pendulum System. 45

2.6 Performance Evaluation and Analysis – 2nd Order System 47

2.6.1 Evaluation 1 – Exact Minimal Bases . 47

2.6.2 Evaluation 2 – Critic Basis with N1 = 4 Terms 54

2.6.3 Evaluation 3 – Realistic Choice of Critic Basis 56

2.7 Performance Evaluation and Analysis – Cart Inverted Pendulum

System. 63

2.8 Discussion . 65

3 EXCITABLE INTEGRAL REINFORCEMENT LEARNING (EIRL) 71

3.1 Problem Formulation . 72

3.2 Algorithms and Training . 74

3.2.1 Single-Injection Excitable Integral Reinforcement Learning

(SI-EIRL) . 76

3.3 Decentralization . 80

3.3.1 Setup . 80

3.3.2 Single-Injection Decentralized Excitable Integral Reinforce-

ment Learning (SI-dEIRL) . 81

3.4 Multi-Injection (MI) . 83

3.4.1 Probing Noise Injection: Insights on a Fundamental Conflict

between RL and Classical Control Principles 83

3.4.2 Multi-Injection (MI) EIRL and dEIRL . 85

3.5 Modulation-Enhanced Excitation (MEE) . 88

vi

CHAPTER Page

3.5.1 A Motivating Example . 88

3.5.2 Kleinman’s Algorithm & Modulation . 91

3.5.3 (d)EIRL & Modulation: MEE Framework 92

3.6 Theoretical Results . 93

3.6.1 Convergence, Optimality, and Closed-Loop Stability of (d)EIRL 93

3.6.2 Modulation Invariance of (d)EIRL . 96

4 EVALUATION STUDY: EIRL SUITE VERSUS ADP ON HYPER-

SONIC VEHICLE (HSV) SYSTEM . 101

4.1 Setup and Hyperparameter Selection . 101

4.2 Evaluation 1: Conditioning and Convergence Study on Nominal

Model . 105

4.3 Evaluation 2: dEIRL Optimality Recovery Generalization with Re-

spect to Modeling Error . 111

4.4 Discussion . 115

5 EVALUATION STUDY: DEIRL VERSUS DEEP RL FITTED VALUE

ITERATION (FVI) ON THREE DIFFERENT ENVIRONMENTS 117

5.1 Implementation and Training Procedures . 117

5.1.1 Selection of Three Environments . 119

5.1.2 Training Procedures . 121

5.1.3 Evaluation Procedures . 123

5.2 Hyperparameter Selections . 125

5.2.1 Hyperparameter Selections: Shared Hyperparameters 125

5.2.2 Hyperparameter Selections: dEIRL . 127

5.2.3 Hyperparameter Selections: cFVI, rFVI 128

vii

CHAPTER Page

5.3 dEIRL Modeling Error and Initial Condition Ablation Study 130

5.4 Quantitative Comparisons between dEIRL and Deep RL FVIs 134

5.4.1 Average Return Generalization to System ICs 135

5.4.2 Cost Performance Generalization to Modeling Error 136

5.4.3 Critic Network Approximation Performance Generalization

to Modeling Error . 142

5.4.4 Closed-Loop Performance Generalization to Modeling Error . 147

5.5 Discussion . 151

6 EVALUATION STUDY: COMPREHENSIVE DEIRL ABLATIONSWITH

RESPECT TO MODELING ERRORS AND INITIAL CONDITIONS

ON HYPERSONIC VEHICLE MODEL . 153

6.1 Setup and Hyperparameter Selection . 153

6.1.1 Hyperparameter Selection . 153

6.1.2 Implementation and Training Procedures 155

6.1.3 Feedback Linearization (FBL) Benchmark Tested [5, 6]. 156

6.2 Frequency Response Performance Generalization to Modeling Error 157

6.2.1 Plots: Sensitivity at Error Se . 160

6.2.2 Plots: Complementary Sensitivity at Error Te 161

6.2.3 Plots: Sensitivity at Controls Su . 162

6.2.4 Plots: Complementary Sensitivity at Controls Tu 163

6.3 Closed-Loop Step Response Performance Generalization to Model-

ing Error . 164

6.3.1 Plots: Step Velocity Command. 168

6.3.2 Plots: Step FPA Command . 172

viii

CHAPTER Page

6.4 dEIRL Initial Condition Ablation Study . 176

6.4.1 Plots: dEIRL Controller Optimality Error versus Initial

Condition x0 . 179

6.4.2 Plots: dEIRL Worst-Case Algorithm Condition Number

versus Initial Condition x0 . 180

6.5 dEIRL Modeling Error Ablation Study . 181

6.5.1 Plots: dEIRL Controller Optimality Error versus Modeling

Error ν . 183

6.5.2 Plots: dEIRL Worst-Case Algorithm Condition Number

versus Modeling Error ν . 184

6.6 Closed-Loop Performance Robustness with Respect to RandomMod-

eling Error . 185

6.7 Discussion . 187

7 CONCLUSION, LIMITATION, AND DIRECTIONS OF FUTURE RE-

SEARCH . 189

REFERENCES . 192

APPENDIX

A PRELIMINARIES: THE SYMMETRIC KRONECKER PRODUCT AND

SYMMETRIC KRONECKER SUM . 205

B HSV MODEL AND DECENTRALIZED DESIGN FRAMEWORK 217

C PENDULUM MODEL AND DESIGN FRAMEWORK 225

D JET AIRCRAFTMODEL ANDDECENTRALIZED DESIGN FRAME-

WORK . 228

ix

CHAPTER Page

E DIFFERENTIAL DRIVE MOBILE ROBOT (DDMR) MODEL AND

DECENTRALIZED DESIGN FRAMEWORK . 232

x

LIST OF TABLES

Table Page

2.1 Relevant Terms and Definitions . 33

2.2 Summary of CT–RL Methodologies . 38

2.3 Exploration Noises for the First Three Evaluations 44

2.4 Hyperparameters for the First Three Evaluations . 44

2.5 Eval. 1: Critic Weight Error for Noise e3 (2.56) . 48

2.6 Eval. 1: Average Run Time (s) . 49

2.7 Evals. 1-3: Mean Condition Number . 50

2.8 Eval. 2: Critic Weight Error for Noise e3 (2.55) . 55

2.9 Eval. 3: Critic Weight Mean, Standard Deviation . 59

3.1 Data and Dynamical Information Required . 82

3.2 MEE Motivating Example: Max/Min Conditioning 90

3.3 Kleinman’s Algorithm and dEIRL: Symmetric Kronecker Product Al-

gebraic Structure under Modulation . 100

4.1 Learning Hyperparameters for Section 4 . 104

4.2 Eval. 1: Max/Min Conditioning. 106

4.3 Eval. 2: dEIRL Optimality Recovery . 112

4.4 Eval. 2: Closed-Loop Step Response Characteristics 114

5.1 dEIRL Hyperparameter Selections . 128

5.2 cFVI, rFVI Hyperparameter Selections . 129

5.3 Initial Condition x0 Ablation Optimality Error and Conditioning Data

– Pendulum . 132

5.4 Initial Condition x0 Ablation Optimality Error and Conditioning Data

– Jet Aircraft . 133

xi

Table Page

5.5 Initial Condition x0 Ablation Optimality Error and Conditioning Data

– DDMR . 134

5.6 Average Return and Success Rate on Three Environments 135

5.7 Pendulum Training Cost/Approximation Data . 139

5.8 Jet Aircraft Training Cost/Approximation Data . 140

5.9 DDMR Training Cost/Approximation Data . 141

5.10 Closed-Loop Performance Measures Generalization to Modeling Error ν 148

5.11 dEIRL Versus FVI: Algorithm Time/Data Complexity 150

6.1 Closed-Loop Performance Metrics . 156

6.2 Peak Closed-Loop Maps Versus Modeling Error ν . 158

6.3 Step Response Performance Metrics Versus Modeling Error ν 164

6.4 Initial Condition x0 Ablation Optimality Error and Conditioning Data . 176

6.5 Modeling Error ν Ablation Optimality Error and Conditioning Data . . . 181

6.6 Closed-Loop Performance Metrics Failure Percentage 185

C.1 Pendulum Model Parameters . 226

C.2 Pendulum Instability and Control Effectiveness Versus Modeling Error

Parameter ν (C.4) . 227

D.1 Jet Aircraft Model Parameters . 229

D.2 Jet Aircraft Phugoid and Short-Period Modes Versus Modeling Error

Parameter ν (D.2) . 230

E.1 DDMR Model Parameters . 234

E.2 DDMR Eigenvalues Versus Modeling Error Parameter ν (E.8) 236

xii

LIST OF FIGURES

Figure Page

2.1 Eval. 1: Data for Exploration Noise e1 (2.55), IC x0 = [1, 1]T . (a)

Learning-Phase State Trajectory x1(t). (b) Condition Number Versus

Iteration Count. 52

2.2 Eval. 2: Condition Number Versus Iteration Count for Exploration

Noise e1 (2.57), IC x0 = [1, 1]T . 55

2.3 Eval. 3: (a) Optimal Value V ∗ and LR Critic V̂lr. (b) Optimal Value

V ∗ and Final Critic V̂f for Exploration Noise e1 (2.55), IC x0 = [1, 1]T . 57

2.4 Eval. 3: Data for Exploration Noise e1 (2.55), IC x0 = [1, 1]T . Top:

(a) State Trajectory x1(t). (b) Condition Number Versus Iteration

Count. Bottom: Critic Weights ci Versus Iteration Count for (c) IRL,

(d) RADP. 58

2.5 Eval. 4: IRL State Trajectory x(t) for IC x0 = [1, 0, 15◦, 0]T 64

3.1 Standard Negative Feedback Structure. 75

3.2 EIRL Nonlinear Learning and Feedback Structure. 79

3.3 Closed-Loop Frequency Responses: The Probing Noise Injection Is-

sue, Visualized. (a): P -Sensitivity PSu = Tdiy. (b): Complementary

Sensitivity at the Error Te = Try. 84

4.1 Eval. 1: Condition Number Versus Iteration Count i. (a): Condition-

ing of the Original IRL Algorithm [1], SI-EIRL, EIRL, SI-dEIRL, and

dEIRL. (b): Conditioning of dEIRL Before and After MEE (Re-Scaled

from (a) for Legibility Purposes). 106

4.2 Eval. 1: Weight Responses svec(Pi) (3.18). (a): Original IRL Algo-

rithm [1]. (b): SI-EIRL (Section 3.2.1). 109

xiii

Figure Page

4.3 Closed-Loop 1◦ FPA Step Response for 25% Lift-Coefficient Modeling

Error νL = 0.75 (B.4). 114

5.1 dEIRL Controller Optimality Error
∥∥Ki∗,j −K∗

j

∥∥ Versus Modeling Er-

ror ν and IC x0 ∈ Gx0 Ablation Study Results. First Row: Loop

j = 1, Second Row: Loop j = 2. First Column: Pendulum (Note:

Single-Loop j = 1), Second Column: Jet Aircraft, Third Column:

DDMR. Gray: Controller Optimality Error of Nominal LQ Design at

25% Modeling Error. 131

5.2 dEIRL Iteration-Wise Max Condition Number max
i
κ(Ai,j) Versus Mod-

eling Error ν and IC x0 ∈ Gx0 Ablation Study Results. First Row:

Loop j = 1, Second Row: Loop j = 2. First Column: Pendulum

(Note: Single-Loop j = 1), Second Column: Jet Aircraft, Third Col-

umn: DDMR. 132

5.3 Learning Curves of cFVI and rFVI Obtained Over 20 Seeds for the Pen-

dulum (Left), Jet Aircraft (Middle), and DDMR (Right). The Shaded

Area Displays the Min/Max Range Between Seeds, as is Presented in

the Original Works [7, 8]. 135

5.4 Cost Performance Results of Pendulum Model. First Row: Cost Differ-

ence JcFV I−JdEIRL (3.2). Second Row: Cost Difference JrFV I−JdEIRL

(3.2). Left: Nominal Model ν = 1 (E.8). Middle: 10% Modeling Error

ν = 1.1. Right: 25% Modeling Error ν = 1.25. 139

xiv

Figure Page

5.5 Cost Performance Results of Jet Aircraft Model. First Row: Cost Dif-

ference JcFV I − JdEIRL (3.2). Second Row: Cost Difference JrFV I −

JdEIRL (3.2). Left: Nominal Model ν = 1 (C.4). Middle: 10% Model-

ing Error ν = 0.9. Right: 25% Modeling Error ν = 0.75. 140

5.6 Cost Performance Results of DDMR Model. First Row: Cost Differ-

ence JcFV I−JdEIRL (3.2). Second Row: Cost Difference JrFV I−JdEIRL

(3.2). Left: Nominal Model ν = 1 (E.8). Middle: 10% Modeling Error

ν = 1.1. Right: 25% Modeling Error ν = 1.25. 141

5.7 Critic NN Approximation Error J(x)−V (x) of Pendulum Model. Left:

Nominal Model ν = 1 (C.4). Middle: 10% Modeling Error ν = 1.1.

Right: 25% Modeling Error ν = 1.25. First Row: dEIRL. Second Row:

cFVI [7]. Third Row: rFVI [8]. 143

5.8 Critic NN Approximation Error J(x) − V (x) of Jet Aircraft Model.

Left: Nominal Model ν = 1 (D.2). Middle: 10% Error ν = 0.9. Right:

25% Error ν = 0.75. First Row: dEIRL. Second Row: cFVI [7]. Third

Row: rFVI [8]. 145

5.9 Critic NN Approximation Error J(x) − V (x) of DDMR Model. Left:

Nominal Model ν = 1 (E.8). Middle: 10% Modeling Error ν = 1.1.

Right: 25% Modeling Error ν = 1.25. First Row: dEIRL. Second

Row: cFVI [7]. Third Row: rFVI [8]. Note: rFVI Color Normalized

Independently for Legibility Purposes. 146

5.10 Swing-up Closed-Loop Response of Pendulum Model. Left: Nominal

Model ν = 1 (C.4). Middle: 10% Modeling Error ν = 1.1. Right: 25%

Modeling Error ν = 1.25. 147

xv

Figure Page

5.11 Closed-Loop Response of Jet Aircraft Model to 1 deg Step FPA Com-

mand. Left: Nominal Model ν = 1 (D.2). Middle: 10% Modeling

Error ν = 0.9. Right: 25% Modeling Error ν = 0.75. 149

5.12 Closed-Loop Response of DDMR Model to 30 deg/s Step Angular Ve-

locity Command. Left: Nominal Model ν = 1 (E.8). Middle: 10%

Modeling Error ν = 1.1. Right: 25% Modeling Error ν = 1.25. 150

6.1 Sensitivity at Error Se Versus Modeling Error ν. First Row: Lift Co-

efficient Sweep νL. Second Row: Drag Coefficient Sweep νD. Third

Row: Pitch Moment Coefficient Sweep νM. First Column: 0% Model-

ing Error. Second Column: 10% Modeling Error. Third Column: 25%

Modeling Error. 160

6.2 Complementary Sensitivity at Error Te Versus Modeling Error ν. First

Row: Lift Coefficient Sweep νL. Second Row: Drag Coefficient Sweep

νD. Third Row: Pitch Moment Coefficient Sweep νM. First Column:

0% Modeling Error. Second Column: 10% Modeling Error. Third

Column: 25% Modeling Error. 161

6.3 Sensitivity at Controls Su Versus Modeling Error ν. First Row: Lift

Coefficient Sweep νL. Second Row: Drag Coefficient Sweep νD. Third

Row: Pitch Moment Coefficient Sweep νM. First Column: 0% Model-

ing Error. Second Column: 10% Modeling Error. Third Column: 25%

Modeling Error. 162

xvi

Figure Page

6.4 Complementary Sensitivity at Controls Tu Versus Modeling Error ν.

First Row: Lift Coefficient Sweep νL. Second Row: Drag Coefficient

Sweep νD. Third Row: Pitch Moment Coefficient Sweep νM. First

Column: 0% Modeling Error. Second Column: 10% Modeling Error.

Third Column: 25% Modeling Error. 163

6.5 Velocity V Response to 100 ft/s Step-Velocity Command. First Row:

Lift Coefficient Sweep νL. Second Row: Drag Coefficient Sweep νD.

Third Row: Pitch Moment Coefficient Sweep νM. First Column: 0%

Modeling Error. Second Column: 10%Modeling Error. Third Column:

25% Modeling Error. 168

6.6 FPA γ Response to 100 ft/s Step-Velocity Command. First Row: Lift

Coefficient Sweep νL. Second Row: Drag Coefficient Sweep νD. Third

Row: Pitch Moment Coefficient Sweep νM. First Column: 0% Model-

ing Error. Second Column: 10% Modeling Error. Third Column: 25%

Modeling Error. 169

6.7 Throttle Setting δT Response to 100 ft/s Step-Velocity Command.

First Row: Lift Coefficient Sweep νL. Second Row: Drag Coefficient

Sweep νD. Third Row: Pitch Moment Coefficient Sweep νM. First

Column: 0% Modeling Error. Second Column: 10% Modeling Error.

Third Column: 25% Modeling Error. 170

xvii

Figure Page

6.8 Elevator Setting δE Response to 100 ft/s Step-Velocity Command.

First Row: Lift Coefficient Sweep νL. Second Row: Drag Coefficient

Sweep νD. Third Row: Pitch Moment Coefficient Sweep νM. First

Column: 0% Modeling Error. Second Column: 10% Modeling Error.

Third Column: 25% Modeling Error. 171

6.9 FPA γ Response to 1 deg Step-FPA Command. First Row: Lift Co-

efficient Sweep νL. Second Row: Drag Coefficient Sweep νD. Third

Row: Pitch Moment Coefficient Sweep νM. First Column: 0% Model-

ing Error. Second Column: 10% Modeling Error. Third Column: 25%

Modeling Error. 172

6.10 Velocity V Response to 1 deg Step-FPA Command. First Row: Lift

Coefficient Sweep νL. Second Row: Drag Coefficient Sweep νD. Third

Row: Pitch Moment Coefficient Sweep νM. First Column: 0% Model-

ing Error. Second Column: 10% Modeling Error. Third Column: 25%

Modeling Error. 173

6.11 Throttle Setting δT Response to 1 deg Step-FPA Command. First

Row: Lift Coefficient Sweep νL. Second Row: Drag Coefficient Sweep

νD. Third Row: Pitch Moment Coefficient Sweep νM. First Column:

0% Modeling Error. Second Column: 10% Modeling Error. Third

Column: 25% Modeling Error. 174

xviii

Figure Page

6.12 Elevator Setting δE Response to 1 deg Step-FPA Command. First

Row: Lift Coefficient Sweep νL. Second Row: Drag Coefficient Sweep

νD. Third Row: Pitch Moment Coefficient Sweep νM. First Column:

0% Modeling Error. Second Column: 10% Modeling Error. Third

Column: 25% Modeling Error. 175

6.13 dEIRL Controller Optimality Error
∥∥Ki∗,j −K∗

j

∥∥ Versus Initial Condi-

tion x0 for 0%, 10%, and 25% Modeling Errors ν. First Row: Velocity

Loop j = 1. Second Row: FPA Loop j = 2. Gray: Nominal Classical

Design. First Column: Lift Coefficient Sweep νL. Second Column:

Drag Coefficient Sweep νD. Third Column: Pitch Moment Coefficient

Sweep νM. 179

6.14 dEIRL Iteration-Wise Max Algorithm Condition Number max
i
κ(Ai,j)

Versus Initial Condition x0 for 0%, 10%, and 25% Modeling Errors ν.

First Row: Velocity Loop j = 1. Second Row: FPA Loop j = 2. First

Column: Lift Coefficient Sweep νL. Second Column: Drag Coefficient

Sweep νD. Third Column: Pitch Moment Coefficient Sweep νM. 180

6.15 dEIRL Controller Optimality Error
∥∥Ki∗,j −K∗

j

∥∥ Versus Modeling Er-

ror ν of up to 25%. First row: Velocity Loop j = 1. Second Row:

FPA Loop j = 2. Gray: Nominal Classical Design. First Column:

Lift/Drag νL/νD Sweep. Second Column: Lift/Pitch Moment νL/νM

Sweep. Third Column: Drag/Pitch Moment νD/νM Sweep. 183

xix

Figure Page

6.16 dEIRL Iteration-Wise Max Algorithm Condition Number max
i
κ(Ai,j)

Versus Modeling Error ν of up to 25%. First Row: Velocity Loop

j = 1. Second Row: FPA Loop j = 2. First Column: Lift/Drag νL/νD

Sweep. Second Column: Lift/Pitch Moment νL/νM Sweep. Third

Column: Drag/Pitch Moment νD/νM Sweep. 184

6.17 Closed-Loop Performance Metrics Failure Percentage (cf. Table 6.1 for

Definitions). 186

A.1 Visualization of the Sum, Row, and Column Indexing Maps s (A.1), r

(A.2), and c (A.3), Respectively, for n = 3.. 207

B.1 Trim Controls ue Versus Modeling Error ν. First Row: Trim Throttle

Setting δT,e Versus ν. Second Row: Trim Elevator Setting δE,e Versus

ν. First Column: Lift/Drag νL/νD Sweep. Second Column: Lift/Pitch

Moment νL/νM Sweep. Third Column: Drag/Pitch Moment νD/νM

Sweep. 220

B.2 Dynamic Properties Versus Modeling Error ν. First Row: RHPP Ver-

sus ν. Second Row: RHPZ Versus ν. Third Row: Z/P Ratio Versus

ν. First Column: Lift/Drag νL/νD Sweep. Second Column: Lift/Pitch

Moment νL/νM Sweep. Third Column: Drag/Pitch Moment νD/νM

Sweep. 222

B.3 Hierarchical Inner-Outer Loop Feedback Structure. 223

xx

Chapter 1

INTRODUCTION

1.1 Motivation

This work addresses control of continuous-time (CT) affine nonlinear systems.

Since the seminal works of Bode [9] and Nyquist [10], historically control systems

literature has been developed with a focus on the CT setting. Indeed, excellent

successes have been achieved in the disciplines of classical control [11, 12], nonlinear

systems [13, 14], optimal control [15, 16], adaptive control [17], and robust control

[18, 19] among many others, forming the basis of modern control systems today.

The method of Reinforcement Learning (RL) emerged systematically in the early

1980s [20, 21] and has since shed further insights on solving complex decision and

control problems via learning from data and approximation ideas, enabling it to prove

a numerically-effective approach to tackling the central “curse of dimensionality” in

dynamic programming (DP) [22]. Specifically, great successes have been achieved in

discrete-time reinforcement learning (DT-RL) [23–25], both in terms of theoretical

results [26–37] and applications successes [38–59].

On the other hand, results in continuous-time reinforcement learning (CT-RL),

are by comparison lacking in theoretical and applications successes. There remains

an immense need to develop CT-RL algorithms which can overcome these limitations

and synthesize real-world designs on the order of the aforementioned results in CT

classical control.

Indeed, there is no shortage of motivation to effectively tackle the continuous-time

nonlinear optimal control problem. From an applications standpoint, there is a wealth

1

of well-motivated real-world systems which are inherently continuous-time in nature.

In the central fields of robotics and autonomous vehicles, for instance, systems are nat-

urally modeled by the mechanics of Euler-Lagrange, which are coupled second-order

ordinary differential equations (ODEs) [60, 61]. In wastewater treatment, influent

and effluent flows are modeled as continuous fluid dynamical processes. Bacteria

and substrate concentration models are based on the continuous decay regeneration

theory [53]. Many chemical processes such as distillation columns [62] are also fun-

damentally continuous in nature and can be modeled by PDEs or nonlinear ODEs

under appropriate assumptions.

Furthermore, the lack of results in CT-RL has, to date, eluded insightful and

quantitative explanation by the field at large [63, 64]. Leading CT-RL focused review

works; e.g., [63], tend to summarize several CT-RL works only at a high level, they do

not substantively focus on underlying quantitative performance issues and important

design considerations, and their evaluations do not touch upon why and how the

CT-RL methods struggle to synthesize designs. An entirely novel comprehensive

performance diagnosis framework and new design approaches are needed.

1.2 State of the Field, Related Work, and Challenges

Background: Dynamic Programming (DP). The origins of modern ap-

proaches to optimal control problems are rooted in the 1960s with the inception

of dynamic programming (DP) by Bellman [22]. As the first conceptualization of

solving challenging nonlinear control problems using recursive methods readily im-

plementable on digital computers, DP has inspired influential works from numerous

authors [15, 21, 23, 65, 66]. While researchers recognize the great potential of opti-

mal control, the central “curse of dimensionality” has plagued the field and limited

applications. Reinforcement learning (RL) emerged as a systematic method in the

2

early 1980s [20, 21] with the potential to combat the curse of dimensionality. RL has

since become a major breakthrough for addressing key challenges in complex non-

linear control problems. The two original solution approaches to solving Bellman’s

principle of optimality, namely the policy iteration (PI) and value iteration (VI) al-

gorithms [21, 67] were developed in the RL setting in the context of Markov decision

processes (MDPs), and as a result many of the historic and current RL results have

been developed for MDP problems. Characteristic of these formulations is to treat

optimal decision and control problems stochastically in discrete state/action spaces

[68].

An important branch of research work on RL for decision and control is covered

under the scope of adaptive/approximate DP (ADP) [23, 65, 69, 70], which focuses on

using approximation and learning to solve the optimal control problem. The works of

Werbos [70–72] represent some of the earliest and most influential conceptualizations

of RL in the controls setting. As has become convention throughout the community,

we will henceforth use the terms RL and ADP interchangeably.

DT-RL Theoretical and Application Successes. DT-RL algorithms (cf. [24–

26] for review) have demonstrated excellent stability, convergence, and approximation

guarantees. They have also substantively addressed a variety of control design require-

ments, such as stability robustness [73], input saturation [74], and fault tolerance [75].

Additional representative theoretical works include [27–32] that are based on the PI

framework, and [33–37] that are based on the VI framework. Collectively, these re-

sults address important properties of learning convergence, solution optimality, and

system stability for discrete-time nonlinear systems.

Successful applications of DT-RL algorithms have provided further validation of

RL as perhaps the most promising and potentially powerful solution to complex con-

trol problems. These include discrete-time deep RL and policy gradient methods

3

[76–80], as well as Deep Q-Networks (DQNs) [39]. Deep RL methods have suc-

cessfully tackled problems in robotics applications [38], Atari games [39], and the

game of Go [40, 41], to name a few. DT-RL methods have also demonstrated great

successes in addressing complex continuous state and control problems. These re-

sults include energy-efficient data centers [42], aggressive ground robot position con-

trol [43, 44], power system stability enhancement [45–47], industrial process control

[48, 49], Apache helicopter stabilization, tracking, and reconfiguration control [50–

52], waste water treatment [53], and wearable robots to enable continuous and stable

walking [54–59].

Early Continuous-Time Optimal Control Numerical Methods 1960s-1990s.

Solutions to the optimal control problem can be obtained either via Pontryagin’s min-

imum principle (a necessary condition) or by solving the Hamilton-Jacobi-Bellman

(HJB) equation (a sufficient condition) [15]. Development of open-loop numerical

solution methods for solving the HJB equation began in the 1960s-1970s [81–83],

wherein the state and co-state equations obtained from the Hamiltonian formulation

of the optimal control problem were solved numerically as the solution to an associ-

ated two-point boundary-value problem. General partial differential equation (PDE)

solution methods were widely employed in solving the HJB equation in the early

1990s, when they became computationally feasible. These techniques included the

method of characteristics [84], series approximation [85], and finite-difference/finite-

element methods [86–88], each of which suffered from poor numerical conditioning

and high memory requirements due in large part to Bellman’s curse of dimension-

ality. In addition, the numerical methods did not address the issue of closed-loop

stability, particularly for finite-iteration and finite-series truncations [89]. Successive

approximation methods were developed to address dimensionality issues, such as the

seminal successive Galerkin approximation (SGA) algorithm of Beard and McLain

4

[89–91]. The SGA method reduced the HJB equation (a nonlinear, first-order PDE)

to a sequence of generalized-HJB (GHJB) equations (linear, first-order PDEs), each

of which were solved approximately using Galerkin projections. The SGA method is

PI-based and requires initialization by a stabilizing policy. It was one of the first to

provide comprehensive closed-loop stability results, with region of attraction contain-

ing that of the initial policy [89].

ADP CT-RL 2000s-Present. The algorithms developed through to the 1990s

were largely model-based offline methods. With increasing computational capacity

in the 2000s-2010s came the transition to partially model-free and model-free online

ADP methods [24]. It was in this period that Lewis and Abu-Khalaf published their

groundbreaking work on the constrained-input nonlinear H2 problem [92], which be-

gan to combine the operator equation approaches of Beard et al. [89–91] with learning

approximation ideas. These results would later be extended to the H∞ problem [93]

and culminated in [94]. During this time, Lewis also published a variety of other CT-

RL works in areas such as fuzzy logic [95], robot manipulators [96], and power systems

[97]. Vrabie and Lewis (2009) then greatly accelerated the transition to online ADP

methods with the development of their seminal integral reinforcement learning (IRL)

algorithm [1], a PI-based method whose policy evaluation and policy improvement

steps are carried out by means of an integral equivalent of the Bellman equation. IRL

does not require knowledge of system internal dynamics f , a significant formulation

achievement ushering in a new era of partially model-free and model-free ADP al-

gorithms. Shortly thereafter, Vamvoudakis and Lewis (2010) developed synchronous

policy iteration (SPI) [2], which by contrast updates the actor/critic weights inde-

pendently by means of modified Levenberg–Marquardt gradient-descent tuning laws.

As would become the case for many subsequent algorithms, SPI requires insertion of

probing noise and a persistence of excitation (PE) assumption to ensure proper learn-

5

ing and weight convergence. Vamvoudakis, Vrabie, and Lewis later combined SPI and

IRL in [98], the resulting hybrid SPI-IRL algorithm not requiring internal dynamics

f like IRL [1] and allowing for simultaneous dynamic tuning of the critic and actor

networks like SPI [2]. Modares, Lewis, and Naghibi-Sistani [99] implemented SPI

in conjunction with a system identifier neural network (NN) and experience replay

(ER), making SPI model-free.

Towards the 2010s to present, the various works of Z.-P. Jiang et al. have also

come to the forefront of ADP-based CT-RL developments. Y. Jiang and Z.-P. Jiang

(2014) developed Robust ADP (RADP) [3], which accommodates unknown nonlinear

matched and unmatched dynamical uncertainties. RADP represented one of the

first CT-RL algorithms to systematically address stability robustness alongside the

usual convergence and stability results. RADP collects data over a single window

and performs its PI on the same data for each iteration in an off-policy fashion. As

a trade-off of this clever data reuse, RADP requires injection of probing noise and

a PE-like assumption similar to SPI. Jiang and Jiang would later go on to apply

RADP to power systems [100, 101], sensorimotor control [102], and interconnected

systems [103]. From the mid 2010s to present, Jiang has developed two other novel

CT-RL algorithms. Jiang and Jiang (2015) developed global ADP (GADP) [104] for

polynomial nonlinear systems. GADP features a relaxed PI algorithm and guarantees

global asymptotic stability (GAS) of the closed-loop system. The authors proved that

under sufficient conditions, the optimal policy is polynomial and may be solved for

successively via a sum of squares (SOS) program which avoids NN approximation.

Jiang and Bian (2021) then developed a first-of-its kind VI algorithm [4] for CT

systems, which like its DT counterpart does not require an initial stabilizing policy.

This formulation also features an impressive suite of global stability results. Unlike

most ADP methodologies which are actor-critic network approaches, the developed

6

VI framework involves a conventional critic network in addition to a unique system

Hamiltonian network. The weights for both are tuned according to a temporal-

differential projection-based dynamic update.

Multiple authors besides Lewis and Jiang have made significant contributions to

ADP CT-RL. Wang, Liu, and Ma (2014) [105] developed an ADP methodology for

a class of uncertain CT nonlinear systems. An approximate optimal control law is

designed for a nominal system, and then a robustifying term is added to ensure that

the closed-loop system is UUB in the presence of dynamic uncertainties and NN ap-

proximation error. Yang, Liu, and Wang (2014) [106] addressed unknown nonlinear

systems with input constraints. The critic and actor networks are trained simulta-

neously in real time with gradient-descent-based tuning laws reminiscent to those of

SPI [2]. In a similar manner to SPI, the system states and network weights are shown

to be UUB. Yang, Wunsch, and Yin (2017) [107] showed that the Hamiltonian can

be used for TD-based optimal control of CT nonlinear systems. They developed a

Hamiltonian-based PI algorithm and ADP framework. Yaghmaie and Braun (2019)

[108] provided solution methods for input-constrained systems when the HJB equa-

tion does not admit a C1 solution using the method of vanishing viscosity. Li, Sun,

and Tong (2019) [109] developed a fuzzy fault-tolerant optimal control algorithm for

single-input-single-output (SISO) nonlinear systems. Zhao, Na, and Gao (2020) [110]

proposed a robust ADP approach for nonlinear systems with unmatched uncertainties

similar to RADP [3]. The robust control problem is transformed into an equivalent

optimal control problem, for which a critic NN and dynamic tuning algorithm are

introduced to find approximate optimal solutions.

ADP CT-RL Applications Challenges. The aforementioned ADP CT-RL meth-

ods have proven seminal to the development of the field, and they offer substantial

theoretical guarantees. However, in comparison to the comprehensive real-world suc-

7

cesses in DT-RL discussed above, the application studies of CT-RL remain relatively

limited. Survey of the leading CT-RL methods reveals that most address weight con-

vergence, uniform value/policy approximation, and closed-loop stability. However,

results in each of these three areas often require sufficient conditions (e.g., results

usually require “sufficiently many” basis functions to approximate the value and pol-

icy functions, etc.) The studies performed in this work reveal that the qualitative

nature of these conditions presents designers challenges in translating theoretical re-

sults to practical controller synthesis for their particular application. Another central

sufficient condition commonly required by these methods is that the system states be

persistently exciting (PE); that is, in response to sufficiently exciting inputs the sys-

tem states can be used in system identification and thus result in learning parameter

convergence. However, the algorithm results do not provide constructive methods for

testing or attaining PE, which proves a key challenge when applying these methods

to design learning controllers.

For the above reasons, we observe that CT-RL application works on real-world

systems generally fall short of implementing the CT-RL algorithms directly. For ex-

ample, [111] proposes a model-free CT-RL algorithm for attitude control of multiple

quadrotors, but the quadrotor model used neglects motor dynamics and assumes an

algebraic relationship between the rotor speeds and body torques. Similarly, [112]

implements a VI method for wheeled ground robots, but the model has to be reduced

to that of a wheel inverted pendulum system and then linearized in order to ac-

commodate the VI algorithm. Finally, [101] and [102] implement RADP [3] on power

systems and sensorimotor control, respectively, but the system dynamics are assumed

to be partially or fully linear so that the nonlinear RADP algorithm [3] simplifies to

solving a sequence of linear equations.

To the great credit of these ADP CT-RL works, it must be noted that the

8

continuous-time optimal control problem presents formidable structural challenges

not present in discrete time. DT-RL techniques focus on approximately solving the

Bellman equation [22] (a difference equation), as do many temporal difference (TD)

methods [113, 114]. However, these TD methods do not apply to solving the CT-RL

Hamilton-Jacobi-Bellman (HJB) equation [15] (a nonlinear partial differential equa-

tion (PDE)). Directly solving the HJB is more difficult from a numerics perspective.

Recent Developments in Deep CT-RL 2020s-Present. A handful of recent

works in deep CT-RL have begun to synthesize designs, but these results still are

limited in comparison to the substantial DT-RL successes discussed above. The

concept of applying function approximation to solve the Hamilton-Jacobi-Bellman

(HJB) equation traces back to the seminal work of Doya [115]. [116] develops a data-

driven Q-learning approach to Kleinman’s algorithm [117], but the method is limited

to linear systems. The authors of [118] focus on developing PI-based solutions to solve

the HJB equation. Their theoretical results may be comprehensive, but they are based

on quite stringent assumptions. [119] introduces a semi-discrete version of the HJB

equation, which allows for aQ-learning algorithm to use data collected in discrete time

without discretizing or approximating the system dynamics. The proposed method

was tested on some relatively simple OpenAI GYM benchmarks. The method is

promising, but the results still need improvement to be comparable to the state-

of-the-art, especially since hyperparameter tuning has a significant impact on the

results. [120] introduces a model-based approach which is based on learning time

differentials of environment dynamics in order to learn the optimal policy. The results

are limited to when there is no environment noise. A robust model-based optimal

control formulation based on fitted value iteration (FVI) is developed in [7, 8], where it

is shown applicable to cart-pole and real pendulum control problems. However, even

as a model-based approach, it still faces state distribution mismatch challenge and the

9

associated issue when scaling up to high-dimensional problems. Furthermore, the FVI

frameworks require data from on the order of ≈ 106 system trajectories to converge

on these simple examples, and they assume the system may be instantaneously re-

initialized to remain within an a priori state fitting grid. These deep RL algorithm

properties present issues in real-world control applications (especially in the flight

control applications considered in this work) where trajectory data is limited and

cannot be initialized arbitrarily. As is common with deep RL, FVIs also lack the key

convergence, optimality, and closed-loop stability guarantees required for mission-

critical control applications, as the fitting of the FVI value function approximator is

not necessarily a contraction [7, 8].

Design Limitations in Existing RL Methods of Control for Hypersonic

Vehicles (HSVs). To demonstrate substantive CT-RL results developed in this

work, we focus our flagship analyses on a significant unstable, nonminimum phase

hypersonic vehicle (HSV) application [5, 6, 121]. Rather than developing RL control

methods for general CT dynamical systems and applying them to HSVs, a number

of works develop methods specifically for HSV application. However, these existing

frameworks exhibit design limitations from the perspective of real-world flight control

[122]. For example, [123] develops a composite RL/observer-based attitude control

method for HSVs. However, the HSV model used is a simplified approximation of

the standard Wang and Stengel model [5, 6, 121] wherein Mach dependencies are

ignored in the aerodynamic coefficients, a significant modeling limitation in the high-

Mach hypersonic regime. The neural control methods developed in [124, 125] use

this same simplified model, and the model considered in the adaptive critic design

(ACD) methods [126, 127] also neglects Mach dependencies. Other ADP works such

as the backstepping-based neural framework [128], the feedback linearization frame-

work [129], and the sliding mode framework [130] require access to high-order partial

10

derivative knowledge of the dynamics, which is restrictive in a learning setting and

particularly susceptible to model uncertainty. The stability results of [123–127, 131]

are relatively limited boundedness results on the approximation and tracking error.

The results require that multiple complicated stability inequality conditions hold si-

multaneously pointwise along the closed-loop trajectories, and no constructive method

is provided for ensuring that the inequalities are met. The controller structures re-

sulting from these theoretical assumptions are highly complex, thereby preventing

numerical comparability to well-established classically-based methods of flight con-

trol [5, 6, 122, 132–135] and application of classical control insights more broadly

[11, 136].

Just as significantly, the existing RL-based HSV control works fail to present

substantive ablation studies of the effects of system modeling error on closed-loop

stability and performance of the learning control solution, either 1) only presenting

results on a nominal model, or 2) presenting results on the nominal model and a

single selection of error parameters. Such results are not sufficient for proving RL

methods on mission-critical flight control applications, especially for high-performance

flight systems such as HSVs. Furthermore, none of the leading methods present

ablation results on effects of varying system initial conditions, nor do they present

studies of underlying algorithm numerical properties (e.g., algorithm conditioning),

both particularly vital for RL methods in which data quality concerns are paramount

for proper excitation and learning solution quality [137]. In all, significantly increased

standards of algorithm numerical validation are needed to make RL methods reliably

applicable to flight control, and new RL evaluation frameworks tailored to aerospace

systems need to be developed.

11

1.3 Contributions

Fundamental Questions to be Addressed. Due to the illustrated gaps in knowl-

edge between discrete-time and continuous-time in both theory and application, the

first questions essential to the advancement of CT-RL are ones of diagnosis:

1). Why have CT-RL methodologies lagged so far behind their DT-RL counter-

parts, both in terms of theoretical/algorithm development and potential adop-

tion by real-world applications?

2). Why are substantial CT-RL applications works yet to be demonstrated in spite

of longstanding theoretical results?

It is therefore pivotal to have a comprehensive analysis focusing on CT-RL algorithm

insights and inherent limitations. Once these limitations have been diagnosed, the

field may move forward to questions of control synthesis:

3). Having quantitatively identified the key sources of CT-RL performance limita-

tions, how may we design new CT-RL algorithms which substantively address

these limitations in frameworks which supply both theoretical and real-world

synthesis guarantees?

Characterization of New Algorithms: Three Novel Constructive RL De-

sign Elements. This work proposes a numerics-driven, designer-centric framework

to improve algorithm learning quality – the first such approach in CT-RL. First,

for systems which exhibit a physically-motivated partition into distinct dynamical

loops, our proposed decentralization framework breaks the optimal control problem

into lower-dimensional subproblems in each of the loops, thereby reducing numerical

complexity and dimensionality as well as allowing decentralized physics-driven design

12

and troubleshooting. Second, we develop a multi-injection (MI) solution which re-

aligns the RL excitation framework with classical input/output insights. This creates

effective PE while greatly simplifying the process. Third, we introduce a modulation-

enhanced excitation (MEE) framework to prescale the learning weight regression via

nonsingular transformations of the system state variables, resulting in improved scal-

ing and numerics.

Contributions. Our contributions first address the CT-RL diagnosis issue:

1). We develop a novel learning algorithm performance diagnosis framework to

quantitatively identify the key performance limitations facing CT-RL algo-

rithms. This framework’s in-depth, designer-focused quantitative analyses re-

veal gaps between CT-RL theoretical promises and practical synthesis.

Having performed this first-of-its-kind diagnosis, we then substantively address the

remaining synthesis problem:

2). We introduce a novel RL design paradigm with three important decentraliza-

tion, multi-injection, and modulation-enhanced excitation design elements to

systematically improve PE/numerics.

3). We develop a novel suite of excitable integral reinforcement learning (EIRL)

algorithms combining these elements, and we systematically demonstrate how

application of each element successively improves conditioning performance rel-

ative to existing ADP methods, making these algorithms capable of realistic

and complex controller synthesis.

4). Leveraging classical control insights, we prove rigorous convergence, solution

optimality, and closed-loop stability guarantees of the new algorithms.

13

5). We conduct in-depth numerical evaluations of the proposed EIRL algorithms

on real-world application problems, demonstrating significant performance en-

hancements relative to the state-of-the-art CT-RL methods in both ADP and

deep RL.

Broad Applicability of Proposed Frameworks. We keep the MI framework for-

mulation general, illustrating that this idea may be readily applied to most existing

ADP-based RL control methods for PE/conditioning improvements. Meanwhile, a

variety of compelling real-world applications admit natural decentralizing dynamical

partitions. For example, in robotics applications, the Euler-Lagrange equations par-

tition states along the system degrees of freedom [60]. In particular, ground robot

dynamics decompose into a translational loop associated with the vehicle speed and

a rotational loop associated with the vehicle pose [138, 139]. Helicopter dynamics

admit partitions along each of the vehicle’s longitudinal, lateral, and vertical de-

grees of freedom, as well as each of its three rotational degrees of freedom [50–52].

Quadcopter/UAV dynamics partition in an entirely analogous fashion [140]. The lon-

gitudinal dynamics of aircraft also separate into a translational/velocity loop and a

rotational/flightpath angle loop [122, 141, 142]. This translational/rotational decen-

tralization has demonstrated great real-world success in classical control frameworks,

even for high-performance aerospace systems such as hypersonic vehicles (HSVs).

[132, 133, 135].

1.4 Organization of Dissertation

The first part of this dissertation develops the CT-RL performance diagnosis

framework in Section 2. This includes:

1). A formal definition of the continuous-time optimal control problem studied in

14

this work in Section 2.1.

2). Description of the neural networks, training, and theoretical results for each of

the four central ADP-based CT-RL methods [1–4] are discussed in Sections 2.2,

2.3, and 2.4, respectively.

3). The remaining sections (2.5, 2.6 and 2.7) provide comprehensive and quantita-

tive performance evaluations of the four methods, uncovering key performance

limitations and design insights.

4). Finally, we conclude our diagnostic study with a discussion in Section 2.8.

The second part develops the proposed suite of EIRL algorithms in Section 3:

1). We first define the basic problem formulation and dynamical assumptions of

the methods in Section Section 3.1.

2). We then develop the EIRL suite of algorithms in Section 3.2.

3). Finally, we proving convergence, solution optimality, and closed-loop stability

of the EIRL suite in Section 3.6.

The third part of this work consists of in-depth numerical performance evaluations

of the proposed EIRL methods in relation to the CT-RL state of the art:

1). Section 4 contains our initial algorithm development work evaluation studies on

a real-world hypersonic vehicle (HSV) model. Section 4.2 first systematically

demonstrates how application of decentralization, MI, and MEE successively

improves algorithm conditioning in comparison to the original ADP IRL algo-

rithm [1] on which EIRL is based. Section 4.3 focuses on the flagship decentral-

ized EIRL (dEIRL) method and conducts HSV lift-coefficient modeling error

ablation studies to evaluate dEIRL’s closed-loop optimality recovery capability.

15

2). Having demonstrated significant performance improvements over existing ADP

methods, our evaluations of Section 5 study dEIRL learning and closed-loop per-

formance in comparison to the leading continuous FVI (cFVI) [7] and robust

FVI (rFVI) [8] deep CT-RL methods. These studies focus on three different

pendulum, jet aircraft, and differential drive mobile robot (DDMR) environ-

ments, and they include ablations with respect to modeling error and initial

conditions. We evaluate the methods with respect to convergence/solution op-

timality, average return and policy cost performance, value function approxi-

mation performance, closed-loop performance, and numerical/parameter/data

complexity.

3). In our final evaluation of Section 6, we substantively combine all three decen-

tralization, MI, and MEE design elements in a comprehensive evaluation on the

flagship HSV system. This study evaluates dEIRL in comparison to classical

LQR and feedback linearization (FBL) methods with respect to:

� frequency response performance generalization with respect to varying

modeling error (Section 6.2);

� closed-loop step response performance generalization with respect to vary-

ing modeling error (Section 6.3);

� solution optimality and conditioning generalization with respect to varying

initial conditions and modeling error in a single parameter (Section 6.4);

� solution optimality and conditioning generalization with respect to deter-

ministic sweeps of simultaneous modeling errors in two parameters (Section

6.5);

� closed-loop performance generalization with respect to randomly-distributed

simultaneous modeling errors in all parameters (Section 6.6).

16

These evaluations study effects of multiple modeling errors in lift, drag, and

pitch moment coefficient. They comprise a comprehensive suite of 37 quantita-

tive learning, stability, frequency-domain, and closed-loop performance metrics

evaluated over a total of 12,872 independent learning trial ablations of modeling

error and initial conditions.

17

Chapter 2

CONTINUOUS-TIME REINFORCEMENT LEARNING CONTROL: A REVIEW

OF THEORETICAL RESULTS, INSIGHTS ON PERFORMANCE, AND NEEDS

FOR NEW DESIGNS

In this section, we develop the novel CT-RL performance diagnosis framework

motivated in the Introduction Section 1. We first provide a comprehensive review

of the four foundational CT-RL control algorithms [1–4] discussed in Section 1.2,

deciphering key theoretical assumptions/results and highlighting their significance to

a) the development of RL solutions to optimal control problems, and b) impact on

related literatures. We conduct in-depth, designer-focused quantitative analyses re-

vealing gaps between CT-RL theoretical promises and practical synthesis. We outline

the needs of future innovative approaches in CT-RL, motivating the algorithm devel-

opment to take place in Section 3. This CT-RL study was originally conducted in

[137].

2.1 Problem Formulation

Notation. Throughout this work, R, R+, Z, and N denote the sets of reals, non-

negative reals, integers, and naturals, respectively. For n ∈ N, we denote Rn as the

n-dimensional Euclidean space. ∥·∥ denotes the Euclidean norm on Rn or operator

norm for matrices, unless decorated otherwise. We refer the reader to [13, pp. 117]

for the definition of positive (semi)definite functions, and [13, pp. 144] for class K,

K∞ and KL functions. In this work, the set Ω ⊂ Rn is assumed to be compact and

contain the origin x = 0 in its interior.

Problem Formulation: Optimal Control Problem. The background provided

18

here follows largely from the works [90, 91]. Consider the nonlinear time-invariant

affine system,

ẋ = f(x) + g(x)u, (2.1)

where x ∈ Rn is the state vector, u : R+ → Rm is a measurable locally essentially

bounded control, f : Rn → Rn, and g : Rn → Rn×m. We make the following

assumptions on the system (2.1):

Assumption 2.1.1 ([91] Dynamical Assumptions). f and g are Lipschitz on Ω,

and f(0) = 0.

We denote x(t) as the solution at time t ≥ 0 to the ODE (2.1) with initial condition

x(0) = x0 ∈ Rn evolving under the control u(t) = µ(x(t)) given by the feedback

control law µ : Rn → Rm. Define the infinite horizon performance index

J(x0, µ) =

∫ ∞

0

r
(
x(τ), µ(x(τ))

)
dτ, (2.2)

where r : Rn×Rm → R+, r(x, u) = Q(x) + uTRu is the running cost and is assumed

to satisfy the following:

Assumption 2.1.2 ([91] Cost Structure Assumptions). Q : Rn → R+ is a

positive definite, monotonically-increasing function, and the system (2.1) is zero-state

observable through Q. R ∈ Rm×m satisfies R = RT > 0.

Definition 2.1.1 ([91] Admissible Policies). A control policy µ : Rn → Rm is

admissible with respect to the cost (2.2) on Ω, denoted µ ∈ A(Ω), if µ is continuous

on Ω, µ(0) = 0, µ stabilizes the system (2.1) on Ω (cf. [90, Definition 3.1.2]), and

J(x0, µ) in (2.2) is finite for all x0 ∈ Ω.

19

The optimal regulation problem is to find the optimal control µ∗ ∈ A(Ω) and its

associated optimal cost function V ∗ (if they exist) such that

V ∗(x0) = min
µ∈A(Ω)

J(x0, µ)

µ∗(x0) = arg min
µ∈A(Ω)

J(x0, µ)

= −1
2
R−1gT (x0)∇V ∗(x0)

, ∀x0 ∈ Ω, (2.3)

subject to the dynamics (2.1). Define the Hamiltonian function H : Rn ×Rm ×R1×n

as

H(x, u, p) = p [f(x) + g(x)u] + r(x, u). (2.4)

Definition 2.1.2 ([91] Generalized HJB (GHJB) Equation). For an admissible

control µ ∈ A(Ω), the function V ∈ C1(Ω) satisfies the GHJB equation, written

GHJB(V, µ) = 0, if

H
(
x, µ(x), (∇V (x))T

)
= 0, ∀x ∈ Ω, V (0) = 0. (2.5)

In the affine case, (2.5) is given by

∇V T [f + gµ] +Q+ µTRµ = 0, V (0) = 0. (2.6)

We next list the key properties of the GHJB equation.

Lemma 2.1.1 ([91, Lemma 8] GHJB Equation Properties). Suppose that the

system (2.1) satisfies Assumption 2.1.1, and that the cost structure (2.2) satisfies

Assumption 2.1.2. Then for each admissible policy µ ∈ A(Ω), there exists a unique

C1 solution V to the equation GHJB(V, µ) = 0 (2.5). V is a Lyapunov function on

20

Ω for the closed-loop system comprised of (2.1) and u = µ(x) (in particular, V is

positive definite). Furthermore, GHJB(V, µ) = 0 if and only if V (x) = J(x, µ), where

J is the performance index given in (2.2).

We next discuss the HJB equation and its fundamental importance to the optimal

control problem.

Definition 2.1.3 ([91] HJB Equation). The function V ∗ ∈ C1(Ω) satisfies the HJB

equation, written HJB(V ∗) = 0, if

HJB(V ∗) = GHJB
(
V ∗,−1

2
R−1gT∇V ∗) = 0, V ∗(0) = 0. (2.7)

In the affine case, (2.7) is given by

(∇V ∗)T f − 1

4
(∇V ∗)T gR−1gT∇V ∗ +Q = 0, V ∗(0) = 0. (2.8)

The following theorem establishes sufficient conditions for the existence and unique-

ness of solutions to the HJB equation (2.8). It also ties the solutions of the HJB

equation to the optimal control problem.

Theorem 2.1.1 ([90] HJB Equation Properties). Suppose that Assumptions

2.1.1 and 2.1.2 hold. Then there exists a unique positive definite C1 solution V ∗ to the

HJB equation (2.8), and V ∗ is the optimal value function in (2.3); i.e., the associated

control µ∗ given by (2.3) is admissible and uniquely minimizes the performance index

(2.2) over the admissible controls A(Ω).

Through the classical PI Algorithm 1, the GHJB equation (a first-order, linear

PDE) may be solved successively to search for the solution of the HJB equation (a

first-order, nonlinear PDE). Solving the GHJB PDE, although simpler than the HJB

21

PDE, is still a challenging problem. Subsequent sections outline numerically-tractable

methods by means of neural network approximation and ADP.

Algorithm 1 PI Algorithm.

1: Hyperparameters: Initial admissible policy µ0 ∈ A(Ω).
2: for i = 0, 1, . . . do
3: Policy Evaluation: Evaluate the performance index (2.2) for the policy µi by

solving GHJB(Vi, µi) = 0 (2.5).
4: Policy Improvement: Update the control by

µi+1(x) = arg min
v∈A(Ω)

{
H

(
x, v(x), (∇Vi(x))T

)}
= −1

2
R−1gT (x)∇Vi(x). (2.9)

5: end for

Theorem 2.1.2 ([90] PI Algorithm Properties). Let all hypotheses be as in

Theorem 2.1.1. Suppose that µ0 ∈ A(Ω) is admissible, and consider the sequences

{µi}∞i=0 and {Vi}∞i=0 generated by the PI Algorithm 1. Then the following hold:

(i) µi ∈ A(Ω) for all i ≥ 0;

(ii) Vi+1(x) ≤ Vi(x) for all x ∈ Ω, i ≥ 0;

(iii) Vi → V ∗ and µi → µ∗ uniformly on Ω.

(iv) If Υi denotes the basin of attraction of policy µi (i = 0, 1, . . .), and if Υ∗ denotes

the basin of attraction of µ∗, then for each i ≥ 0 we have Ω ⊂ Υi ⊂ Υi+1 ⊂ Υ∗.

2.2 Neural Network (NN) Structures Considered

In what follows, let {ϕj}∞j=1, {ψj}∞j=1, {θj}∞j=1, and {ψ̃j}∞j=1 be sequences of linearly

independent C1 basis functions which vanish at the origin, with ϕj, ψj, θj : Rn → R

and ψ̃j : Rn → R1×m for j ∈ N.

22

Critic Network. Consider the critic network

V ∗(x) = V̂ (x, c) + ϵ1(x), V̂ (x, c) = cTΦ(x), (2.10)

where N1 ∈ N, Φ : Rn → RN1 , Φ(x) =

[
ϕ1(x) · · · ϕN1(x)

]T
, c ∈ RN1 is the critic

weight vector, and ϵ1 : Ω→ R is the critic NN approximation error function. For the

sake of brevity, we shall whenever possible denote the critic (2.10) by V̂ (x).

Actor Network. Consider the actor network

µ∗(x) = µ̂(x) + ϵ2(x), (2.11)

where ϵ2 : Ω → Rm is the actor NN approximation error function. The considered

methodologies (IRL [1], SPI [2], RADP [3], and CT-VI [4]) use three distinct actor

networks µ̂ (2.11). The first structure, used by RADP [3], is given by

µ̂(x,W) = W TΨ(x), (2.12)

where N2 ∈ N, Ψ : Rn → RN2 , Ψ(x) =

[
ψ1(x) · · · ψN2(x)

]T
, and W ∈ RN2×m is

a weight matrix. The second structure, used by IRL [1] and SPI [2], is motivated by

the structural form of µ∗ assumed in (2.3)

µ̂(x,w) = −1

2
R−1gT (x)∇ΦT (x)w, (2.13)

where w ∈ RN2 is the actor weight vector. We note for this structure that N2 ← N1

is imposed, and knowledge of the input dynamics g is required. This is in contrast to

the structure (2.12), which is model-free. The third structure, used by CT-VI [4], is

discussed next.

23

Hamiltonian Network. Consider the Hamiltonian network

H∗(x, u) ≜ H
(
x, u, (∇V ∗(x))T

)
= Ĥ(x, u, v) + ϵ3(x, u), (2.14)

where the Hamiltonian function H is as defined in (2.4), and ϵ3 : Ω × Rm → R

is the Hamiltonian NN approximation error function. We consider the following

approximation structure for the Hamiltonian NN

Ĥ(x, u, v) = vTΣ(x, u) + (Q(x) + uTRu), (2.15)

where N3 ∈ N, v ∈ RN3 , w ∈ RN2 , v ≜

[
wT vT

]T
, Ψ̃ : Ω → RN2×m, Ψ̃(x) =[

ψ̃T1 (x) · · · ψ̃TN2
(x)

]T
, and Σ : Rn × Rm → RN2+N3 is defined as

Σ(x, u) =

 Ψ̃(x)u

Θ(x)

 . (2.16)

Here Θ : Rn → RN3 , Θ(x) =

[
θ1(x) · · · θN3(x)

]T
. We thus choose the following

basis for the Hamiltonian NN

{σj(x, u)}N2+N3+1
j=1 =

{
ψ̃j(x)u

}N2

j=1

⋃
{θj(x)}N3

j=1

⋃
{r(x, u)}. (2.17)

The selection of the basis functions (2.17), together with the definition of H∗(x, u)

(2.14), that V ∗(x) satisfies the HJB equation (2.8), and that given x ∈ Rn the approx-

imation (2.14) must hold for any u ∈ Rm, implies that the following approximations

24

are to be made:

wT Ψ̃(x) ≈ (∇V ∗(x))Tg(x) ∈ R1×m, (2.18)

vTΘ(x) ≈ (∇V ∗(x))Tf(x)

=
1

4
(∇V ∗(x))Tg(x)R−1gT (x)∇V ∗(x)−Q(x). (2.19)

We are now ready to define the actor network adopted by CT-VI [4], which is

given by

µ̂(x,w) = −1

2
R−1

(
wT Ψ̃(x)

)T
. (2.20)

Remark 2.2.1 (CT-VI Basis Selection). In [4, Section IV-B], the authors include

the control penalty function uTRu in the Hamiltonian network basis {σj(x, u)}N2+N3+1
j=1

(2.17) instead of the full running cost r(x, u). This basis selection, in turn, makes

the term −Q(x) in (2.19) disappear, which in principle reduces the complexity of

the required approximation. In spite of this intuition, we find the selection of basis

(2.17) to be more numerically reliable in practice. Therefore, we employ (2.17) in our

evaluations of Sections 2.6-2.7.

Remark 2.2.2 (Notation). In the single-input (m = 1) case, the RADP actor

weight matrix W ∈ RN2×m (2.12) becomes a weight vector which we naturally denote

w ∈ RN2 , as it is for the other three methods. Comparison of the RADP and CT-VI

actor implementations (2.12) and (2.20), respectively, reveals these two structures

to be identical modulo multiplication by the scalar term −1/2R. Thus, for CT-VI

we use the RADP activation functions {ψj}N2
j=1 in place of the activation functions

{ψ̃j}N2
j=1. We adopt these conventions in the evaluations of Sections 2.6-2.7, which

focus on single-input systems.

25

2.3 Algorithms and Training

We begin by defining some common notation. Each of these algorithms requires

a CT-RL learning time tf > 0 and associated learning window t ∈ [0, tf] over which

to collect state-action data. For the two PI-based algorithms (IRL and RADP),

we denote i as the iteration index and i∗ ∈ N as the final iteration. The PI-based

algorithms require collection of l ∈ N data samples per iteration. RADP reuses the

same data for each iteration, so we denote its sample times as {tk}lk=0 (i.e., 0 = t0 <

t1 < · · · < tl = tf). IRL requires new data at each iteration 0 ≤ i ≤ i∗, so we denote

its sample instants as {{tik}lk=0}i
∗
i=0 (i.e., 0 = t00 < t01 < · · · < t0l = t10 < · · · < ti

∗

l = tf).

The algorithms have various termination criteria, so to unify notation we use the

subscript “f” to denote an algorithm’s final output value of the respective parameter

(e.g., final critic weights cf , final critic network output V̂f).

2.3.1 Integral Reinforcement Learning (IRL) [1]

Given a state trajectory {x(t)}t∈R+ of the system (2.1), define ∆ϕj : R2
+ → R

(j = 1, . . . , N1) as ∆ϕj(t0, t1) = ϕj(x(t1)) − ϕj(x(t0)). Next, define ∆Φ : R2
+ → RN1

by,

∆Φ(t0, t1) =

∆ϕ1(t0, t1)

...

∆ϕN1(t0, t1)

 . (2.21)

26

For a strictly increasing sequence {tk}lk=0, define Aϕ : R
l+1
+ → Rl×N1 by

Aϕ(t0, . . . , tl) =

∆ΦT (t0, t1)

...

∆ΦT (tl−1, tl)

 . (2.22)

Next, for an admissible policy µ ∈ A(Ω), define the integral reinforcement function

ξ : R2
+ ×A(Ω)→ R+ by

ξ(t0, t1, µ) =

∫ t1

t0

(
Q(x) + µT (x)Rµ(x)

)
dτ. (2.23)

Similarly, define the function Ξ : Rl+1
+ ×A(Ω)→ Rl

+ by

Ξ
(
t0, . . . , tl, µ

)
=

ξ(t0, t1, µ)

...

ξ(tl−1, tl, µ)

 . (2.24)

At iteration i (i = 0, 1, . . .), IRL collects state trajectory data {x(tik)}lk=0 at the

time instants {tik}lk=0 under the control u = µ̂i(x). At t = til, it updates its weights

by solving the least-squares solution ci ∈ RN1 to the system of equations

Ai
IRL ci = −Ξ

(
ti0, . . . , t

i
l, µ̂i

)
,

Ai
IRL ≜ Aϕ(t

i
0, . . . , t

i
l) ∈ Rl×N1 , (2.25)

where Aϕ, Ξ are as defined in (2.22) and (2.24), respectively.

27

Algorithm 2 IRL Algorithm [1].

1: Hyperparameters: tf , i
∗, l, sample times {{tik}lk=0}i

∗
i=0, µ0 ∈ A(Ω), and IC

x0 ∈ Ω.
Initialization: Let µ̂0 ← µ0.

2: for i = 0 : i∗ do
3: Apply control u = µ̂i(x) to system (2.1) , collecting data {x(tik)}lk=0 and
{ξ(tik, tik+1, µ̂i)}l−1

k=0 (2.23).
4: Perform weight update ci (2.25) and policy update µ̂i+1(x)← µ̂(x, ci) (2.13).
5: end for
6: Apply final policy µ̂f = µ̂i∗+1.

2.3.2 Synchronous Policy Iteration (SPI) [2]

SPI updates its critic weights {c(t)}t∈[0,tf] over the learning window [0, tf] dynam-

ically via the tuning law

ċ = −α1
σ2
m2
s

[
σT2 c+ r(x, µ̂(x,w))

]
, (2.26)

where α1 > 0 is a tuning gain, µ̂(x,w) is given by the actor network (2.13), σ2(x) =

∇Φ(x) [f(x) + g(x)µ̂(x,w)], and ms(x) = (σT2 (x)σ2(x) + 1) is a normalization term.

Remark 2.3.1 (SPI Actor Tuning). The authors [2] prescribe the following actor

tuning law

ẇ = −α2

[(
F2w − F1

σT2
ms

c

)
− 1

4
D(x)w

σT2
m2
s

c

]
, (2.27)

where α2 > 0, F1 ∈ RN1 > 0, F2 ∈ RN1×N1 , F2 = F T
2 > 0 are tuning parameters, and

D(x) = ∇Φ(x)g(x)R−1gT (x)∇ΦT (x). After extensive exploration, we were unable

to find parameter values α2, F1, F2 which yield stable state trajectory and weight

responses for the examples studied in this work. In the code (found at [143]) for a

previous rendition [144] of the SPI algorithm [2], the authors implement the following

modified tuning law, which we observe to function properly and hence use throughout

28

this work instead of (2.27)

ẇ = −α2

[(
F2w − F2c

)
− 1

4
D(x)w

σT2
m2
s

c

]
. (2.28)

We note that after adopting the modified tuning law (2.28), the closed-loop stability

and convergence results for SPI [2] (cf. Theorems 2.4.3 and 2.4.4, respectively) are

no longer guaranteed. Examining the update (2.28) qualitatively, we note that the

rightmost terms in (2.28) vanish as ∥x∥ → 0 and as ∥x∥ → ∞. Thus, in these regimes

(2.28) can be approximated by ẇ ≈ −α2F2(w− c), which resembles a linear tracking

control law whereby the actor weights w(t) track the critic weights c(t).

Algorithm 3 SPI Algorithm [2].

1: Hyperparameters: tf , tuning gains α1, α2 > 0, F1 > 0, F2 = F T
2 > 0 (2.26), e,

µ0 ∈ A(Ω) (cf. Assumption 2.4.1), IC x0 ∈ Ω, c0 ∈ RN1 (cf. Remark 2.5.1), and
w0 ∈ RN1 such that µ̂(x,w0) ∈ A(Ω) (2.13).
Initialization: Let c(0)← c0, w(0)← w0.

2: for t ∈ [0, tf] do
3: Apply control u(t) = µ̂(x(t), w(t)) + e(t) (2.13) to system (2.1), tuning critic

weights c(t) via (2.26) and actor weights w(t) via (2.27) (or (2.28), cf. Remark
2.3.1).

4: end for
5: Terminate e. Apply final policy µ̂f (x) = µ̂(x,w(tf)) (2.13).

2.3.3 Robust Adaptive Dynamic Programming (RADP) [3]

In what follows, suppose that the system (2.1) evolves under the control u =

µ0(x) + e (cf. Assumption 2.4.2), generating the trajectory {x(t)}t∈R+ . For an ad-

missible policy µ ∈ A(Ω), define the function ∆ψ : R2
+ ×A(Ω)→ RmN2 by

∆ψ(t0, t1, µ) =

∫ t1

t0

[R (u− µ(x))]⊗Ψ(x) dτ, (2.29)

29

where ⊗ denotes the Kronecker tensor product. Given a strictly increasing sequence

{tk}lk=0 and a policy µ ∈ A(Ω), define Aψ : Rl+1
+ ×A(Ω)→ Rl×mN2 by

Aψ
(
t0, . . . , tl, µ

)
= 2

∆T
ψ(t0, t1, µ)

...

∆T
ψ(tl−1, tl, µ)

 . (2.30)

At iteration i (i = 0, 1, . . .) of the RADP algorithm, the weights ci ∈ RN1 , Wi ∈

RN2×m are solved for as the least-squares solution to the system of equations

Ai
RADP

 ci

vec(Wi)

 = −Ξ
(
t0, . . . , tl, µ̂i

)
,

Ai
RADP ≜

[
Aϕ(t0, . . . , tl) Aψ

(
t0, . . . , tl, µ̂i

)]
∈ Rl×(N1+mN2), (2.31)

where vec(W) ∈ RN2m denotes the vectorization of the matrix W ∈ RN2×m, and the

functions Aϕ, Ξ, Aψ are as defined in (2.22), (2.24), and (2.30), respectively.

Algorithm 4 RADP Algorithm [3].

1: Hyperparameters: tf , i
∗, l, sample times {tk}lk=0, e, µ0 ∈ A(Ω) (cf. Assump-

tion 2.4.2), IC x0 ∈ Ω, and W0 = 0.
Initialization: Let µ̂0(x)← µ̂(x,W0) (2.12).

2: Apply control u = µ0(x) + e to system (2.1), collecting state-action data
{(x(t), u(t))}t∈[0,tf].

3: for i = 0 : i∗ do
4: Calculate for policy µ̂i the data {ξ(tk, tk+1, µ̂i)}l−1

k=0 (2.23) and
{∆ψ(tk, tk+1, µ̂i)}l−1

k=0 (2.29).
5: Perform weight update ci, Wi (2.31) and policy update µ̂i+1(x) ← µ̂(x,Wi)

(2.12).
6: end for
7: Terminate e. Apply final policy µ̂f = µ̂i∗+1.

30

Remark 2.3.2 (RADP Robustness Results). The RADP algorithm as presented

in [3, Algorithm 1] adds a robustifying term to the final policy µ̂f = µ̂i∗+1 produced by

Algorithm 4 for its stability robustness results (cf. [3, Section III-B]). Yet, our initial

attempts to implement this robustness term were thwarted by closed-loop stability

issues we observe from Algorithm 4 in practice (cf. Sections 2.6-2.7). As noted by

the authors in [3, Remark 3.2], in the absence of dynamic uncertainties the RADP

algorithm may be run entirely without the developed robustifying term, which is the

procedure followed in this paper.

2.3.4 Continuous-Time Value Iteration (CT-VI) [4]

For CT-VI, a measurable essentially bounded input u (cf. Assumption 2.4.4)

is applied to the system (2.1) over the window [0, tf], generating the trajectory

{x(t)}t∈[0,tf]. After data has been collected, CT-VI then tunes its weights dynam-

ically over a learning time scale s ∈ [0, sf], which is independent of the system time

scale t ∈ [0, tf]. CT-VI updates its critic weights {c(s)}s∈[0,sf] via the tuning law

d

ds
c(s) = K−1

ϕ (tf)

∫ tf

0

Φ(x)Ĥ
(
x, µ̂(x,w(s)), v(s)

)
dτ, (2.32)

where

Kϕ(tf) =

∫ tf

0

Φ(x)ΦT (x)dτ ∈ RN1×N1 . (2.33)

CT-VI updates its actor weights {w(s)}s∈[0,sf] and Hamiltonian weights {v(s)}s∈[0,sf]

via the tuning law

v(s) = K−1
σ (tf)

∫ tf

0

Σ(x, u)

(
d

dτ
V̂ (x, c(s)) + r(x, u)

)
dτ, (2.34)

31

where v =

[
wT vT

]T
(cf. Section 2.2), and

Kσ(tf) =

∫ tf

0

Σ(x)ΣT (x)dτ ∈ R(N2+N3)×(N2+N3). (2.35)

Algorithm 5 CT-VI Algorithm [4].

1: Hyperparameters: tf , sf , control u (cf. Assumption 2.4.4), IC x0 ∈ Ω, c0 ∈ RN1

such that V̂ (x, c0) (2.10) is positive definite and radially unbounded, w0 = 0,
v0 = 0.
Initialization: Let c(0)← c0, w(0)← w0, v(0)← v0.

2: Apply control u to system (2.1), collecting state-action data {(x(t), u(t))}t∈[0,tf].
3: for s ∈ [0, sf] do
4: Tune critic weights c(s) via (2.32) and the actor, Hamiltonian weights w(s),
v(s) via (2.34).

5: end for
6: Apply final policy µ̂f (x) = µ̂(x,w(sf)) (2.20).

2.4 Theoretical Results

This section discusses the key assumptions and properties of the four algorithms

studied in this work. Throughout this section, we assume that the baseline hypotheses

of Section 2.1 hold, which ensure that the optimal control problem is well-posed. Table

2.1 lists the terms needed to understand subsequent analysis and provides specific

references to their definitions.

2.4.1 IRL

For IRL, the main convergence and stability results rely upon the following tech-

nical lemma, which is a restatement of [1, Lemma 3]:

Lemma 2.4.1. Suppose for admissible µ ∈ A(Ω) that the system (2.1) is simulated

under the control u = µ(x), generating the state trajectory {x(t)}t∈R+ . Given that the

32

Table 2.1: Relevant Terms and Definitions

Term Reference
Persistence of Excitation (PE) [17, Def. 4.3.1, pp. 177]

Lyapunov Stability,
[13, Def. 4.1, pp. 112]

Asymptotic Stability (AS)
Basin of Attraction, Global AS (GAS) [13, pp. 122]
Local AS (LAS), Regional AS (RAS),

[13, pp. 473]
Semiglobal Stabilization

Practical Stabilization (PS) [145, Def. 1.2.1, pp. 9]
Uniformly Ultimately Bounded (UUB) [13, Def. 4.6, pp. 169]

Input-to-State Stability (ISS) [13, Def. 4.7, pp. 175]

set {ϕj}N1
j=1 is linearly independent, for each t0 ≥ 0 and l ≥ N1 there exists a strictly

increasing sequence {tk}lk=1 such that the matrix Aϕ(t0, . . . , tl) ∈ Rl×N1 (2.22) has

full column rank N1.

We next move on to the key stability/convergence results.

Theorem 2.4.1 (IRL – Admissibility of Policies µ̂i). Suppose µ0 ∈ A(Ω) is

admissible. There exists N1,0 ∈ N such that whenever N1 ≥ N1,0, the policies {µ̂i}∞i=1

generated by Algorithm 2 are each admissible.

Theorem 2.4.2 (IRL – Uniform Approximation). For each ϵ > 0, there exist

N1,0, i0 ∈ N such that whenever N1 ≥ N1,0, and i
∗ ≥ i0, we have

∥∥∥V̂f − V ∗
∥∥∥
∞
< ϵ, ∥µ̂f − µ∗∥∞ < ϵ, (2.36)

where V̂f = V̂i∗ = V̂ (x, ci∗) (2.10) and µ̂f = µ̂i∗+1 = µ̂(x, ci∗) (2.13) are as generated

by Algorithm 2. Here ∥·∥∞ denotes the uniform norm on C(Ω).

2.4.2 SPI

As with many ADP algorithms, SPI [2] has a persistence of excitation (PE) re-

quirement.

33

Assumption 2.4.1 (SPI – PE Assumption). The signal σ1 = σ1/(σ
T
1 σ1 + 1),

σ1 = ∇Φ(x) [f(x) + g(x)µ∗(x)] is PE.

We also require the use of the following lemma.

Lemma 2.4.2 ([2, Lemma 1]). The solution ĉ∗ to the least squares minimization

(2.37) exists and is unique, where

ĉ∗ = min
c∈RN1

∥∥∥H (
x, µ∗(x),∇V̂ T (x, c)

)∥∥∥
L2(Ω)

= min
c∈RN1

∥∥cT∇Φ [f + gµ∗] + r(x, µ∗)
∥∥
L2(Ω)

. (2.37)

Before presenting the key stability and approximation results for SPI [2], we make

the note that they require application of original actor tuning law (2.27), which we

had to modify to (2.28) (cf. Remark 2.3.1 for discussion).

Theorem 2.4.3 (SPI – UUB Stability). Let tuning for the critic network (2.10)

be provided by (2.26) and tuning for the actor network (2.13) be provided by (2.27).

Suppose that tuning parameters are selected according to [2, Appendix]. Finally,

consider the system (2.1) simulated under the control u(t) = µ̂(x(t), w(t)) + e(t)

(2.13), and assume the PE Assumption 2.4.1 is satisfied. Then there exists N1,0 ∈ N

such that whenever N1 ≥ N1,0, the closed-loop system state x(t), critic error c̃ = ĉ∗−c

(2.37), and actor error w̃ = ĉ∗ − w are UUB.

Theorem 2.4.4 (SPI – Uniform Approximation). Let all hypotheses be as in

Theorem 2.4.3. Then for each ϵ > 0, there exists N1,0 ∈ N such that whenever N1 ≥

N1,0, there exists tf,0 = tf,0(N1) such that tf ≥ tf,0 implies the uniform approximation

result (2.36) holds for V̂f (x) = V̂ (x, c(tf)) (2.10) and µ̂f (x) = µ̂(x,w(tf)) (2.13).

34

2.4.3 RADP

For RADP [3], we require that the initial policy µ0 ∈ A(Ω) be admissible and

satisfy the following assumption.

Assumption 2.4.2. The policy µ0 ∈ A(Ω) is admissible and is such that for the

exploration noise e there exists a compact set Ω0 ⊂ Ω containing the origin in its

interior for which given any initial condition x0 ∈ Ω0, Ω is an invariant set for the

trajectory x(t) generated by the closed-loop system composed of (2.1) and u = µ0(x)+

e.

Assumption 2.4.3 (RADP – PE-Like Assumption). There exist l0 ∈ N and

δ > 0 such that for all l ≥ l0, we have

δIN1+mN2 ≤
1

l

l−1∑
k=0

ζi,kζ
T
i,k, ∀ i ≥ 0, (2.38)

where for k = 0, . . . , l − 1,

ζi,k =

 ∆Φ(tk, tk+1)

2∆ψ(tk, tk+1, µ̂i)

 ∈ RN1+mN2 , (2.39)

and the functions ∆Φ,∆ψ are as defined in (2.22) and (2.30), respectively.

We are now ready to present the key stability and approximation results for RADP

[3].

Theorem 2.4.5 (RADP – Admissibility of Policies µ̂i). Suppose that Assump-

tions 2.4.2 and 2.4.3 hold. There exist N1,0, N2,0 ∈ N such that whenever N1 ≥ N1,0

and N2 ≥ N2,0, the policies {µ̂i}∞i=1 generated by Algorithm 4 are each admissible.

35

Theorem 2.4.6 (RADP – Uniform Approximation). Suppose that Assumptions

2.4.2 and 2.4.3 hold. For each ϵ > 0, there exist N1,0, N2,0, i0 ∈ N such that whenever

N1 ≥ N1,0, N2 ≥ N2,0, and i∗ ≥ i0, the uniform approximation result (2.36) holds

for V̂f = V̂i∗ = V̂ (x, ci∗) (2.10) and µ̂f = µ̂i∗+1 = µ̂(x,Wi∗) (2.12) as generated by

Algorithm 4.

2.4.4 CT-VI

CT-VI [4] has a PE-like assumption which we outline here.

Assumption 2.4.4 (CT-VI – PE-Like Assumption). The measurable essentially

bounded input u is such that there exist δ > 0 and t0 > 0 such that for all tf ≥ t0,

the trajectory {x(t)}t∈[0,tf] under u remains in Ω, and

δIN1 <
1

tf
Kϕ(tf), δIN2+N3 <

1

tf
Kσ(tf), (2.40)

where the matrices Kϕ(tf), Kσ(tf) are as defined in (2.33) and (2.35), respectively.

We are now ready to move on to the key results.

Theorem 2.4.7 (CT-VI – Regional Practical Stabilization (RPS)). Suppose

that Assumption 2.4.4 holds. For each ϵ > 0 such that Bϵ(0) ⊂ Ω, there exist tf ,

sf > 0, N1, N2, N3 ∈ N such that

∇V ∗(x)T
[
f(x) + g(x)µ̂(x, c(sf))

]
< 0, ∀x ∈ Ω\Bϵ(0), (2.41)

the weights c(s), w(s), v(s) being tuned by Algorithm 5.

Remark 2.4.1. The results of Theorem 2.4.7 provided in the original CT-VI work

(cf. [4, Theroem 3]) actually guarantee semiglobal PS; i.e., the compact set Ω ⊂ Rn in

36

Theorem 2.4.7 may be made arbitrarily large. However, the definition of admissibility

in [4] requires policies to be GAS. In our context, admissible policies µ ∈ A(Ω) only

guarantee RAS on a fixed compact set Ω ⊂ Rn, so the associated stability results for

CT-VI are only regional when applied here. This subtlety is addressed by the authors

in [4, Remark 6].

Theorem 2.4.8 (CT-VI – Uniform Approximation). Suppose that Assumption

2.4.4 holds, and that Q is continuous. For each ϵ > 0, there exist N1,0, N2,0, N3,0 ∈ N,

tf , sf > 0, and compact Ωu ⊂ Rm containing u = 0 in its interior sufficiently large

such that whenever N1 ≥ N1,0, N2 ≥ N2,0, and N3 ≥ N3,0, we have that the uniform

approximation result (2.36) holds for V̂f (x) = V̂ (x, c(sf)) (2.10) and µ̂f = µ̂(x,w(sf))

(2.20) as generated by Algorithm 5, and

∥∥∥Ĥf −H∗
∥∥∥
∞
< ϵ, (2.42)

where Ĥf (x, u) = Ĥ(x, u, v(sf)) (2.15) as generated by Algorithm 5, and ∥·∥∞ in

(2.42) is the uniform norm on C(Ω× Ωu).

2.4.5 Summary and Discussion of Methodologies

Table 2.2 provides an overview of the essential features of the four methodologies

considered.

Remark 2.4.2 (Initial Admissible Policy). IRL, SPI, and RADP require an initial

admissible policy µ0 ∈ A(Ω). In contrast to IRL and RADP, which (modulo Assump-

tion 2.4.2 for RADP) are structurally unconstrained in their selection of µ0 ∈ A(Ω),

SPI requires that the initial policy µ0 be implementable in the actor network (2.13)

as µ0(x) = µ̂(x,w0) for some w0 ∈ RN1 . This is comparatively quite restrictive and

depends on the input dynamics g and critic basis functions {ϕj}N1
j=1 available.

37

Table 2.2: Summary of CT–RL Methodologies

Algorithm
Dynamics

PE?
Data Convergence Stability

Required Reuse? Results Results
IRL g No a No Uniform RAS
SPI f, g Yes No Uniform UUB b

RADP None Yes Yes Uniform RAS
CT-VI None Yes Yes Uniform RPS

aCf. Remark 2.4.4.

bCf. Remark 2.3.1.

Meanwhile, as is the case in the DT setting, strictly speaking CT-VI does not

require an initial stabilizing policy [4]. The authors [4] suggest re-initializing the

trajectory x(t) whenever it leaves Ω in the learning interval [0, tf] (cf. [4, Remark

3]). However, this is not a luxury afforded in a real-world online learning scenario, so

realistically speaking a designer will likely require an initial policy µ0 ∈ A(Ω) to run

CT-VI.

Remark 2.4.3 (Pseudoinversion, Conditioning). Three of the four algorithms

studied here (IRL, RADP, and CT-VI) require use of the Moore-Penrose pseudoin-

verse, for which condition number plays a fundamental role in solution accuracy and

sensitivity [146]. In the case of IRL and RADP, at iteration i the matrices Ai
IRL

(2.25) and Ai
RADP (2.31) are pseudoinverted to yield the least-squares solutions for

their respective weight updates. For CT-VI, in this work we implement the matrix

inverses K−1
ϕ (tf) (2.32) and K

−1
σ (tf) (2.34) via pseudoinversion for improved compu-

tation speed and accuracy.

Remark 2.4.4 (PE Assumptions). SPI relies on the PE Assumption 2.4.1, while

RADP and CT-VI rely on the PE-like Assumptions 2.4.3 and 2.4.4, respectively.

As has long been understood, for nonlinear systems there do not exist systematic

frameworks for verifying PE or for selecting a probing noise to ensure PE [2]. As we

38

will illustrate in Sections 2.6-2.7, in practice it is a challenge to excite the system to

yield quality state trajectory data, even for simple academic examples.

IRL, strictly speaking, does not have a PE requirement. However, performance of

this algorithm is still deeply tied to the quality of state trajectory data, as full column

rank of Ai
IRLRl×N1 is required at each iteration i for the least-squares weight update

(2.25). Lemma 2.4.1 furnishes the existence of sample instances to meet the rank

condition, but as will be seen in Sections 2.6-2.7, lack of ability to insert a probing

noise e makes it difficult to systematically ensure good conditioning.

2.5 Performance Evaluation Setup

In this section, we offer four sets of fundamental evaluations of the studied CT-RL

algorithms. Throughout we keep our focus from the perspective of a designer, working

from a ground-up assessment which illustrates performance effectiveness, efficiency,

limitations, and insights. The first three evaluations examine a second-order academic

system (2.43) to establish performance baselines and insights. The fourth evaluation

examines a cart inverted pendulum system (2.58) to assess the potential of real-world

implementability.

These studies were performed in MATLAB R2021a, on an NVIDIA RTX 2060,

Intel i7 (9th Gen) processor. All numerical integrations in this work are performed

in MATLAB’s adaptive ode45 solver to ensure solution accuracy. The complete

MATLAB software suite used to produce the data in this paper is available at [147].

39

2.5.1 Setup – 2nd Order System

The first three evaluations consider the following second-order academic system

from [1, Section 6.2]

f(x) =

 −x1 + x2 + 2x32

−1
2
(x1 + x2) +

1
2
x2(1 + 2x22) sin

2(x1)

 , g(x) =

 0

sin(x1)

 . (2.43)

Linearization reveals that the origin of this system is an unstable equilibrium point.

We run each algorithm over the IC sweep x(0) = [−1 : 0.25 : 1]2 \{(0, 0)}. In the first

three evaluations, a “trial” corresponds to each of the ICs. We define the running

cost as Q(x) = x21 + x22 + 2x42, R = 1. This example was constructed such that the

optimal value V ∗ and policy µ∗ are available in closed-form and are given by

V ∗(x) =
1

2
x21 + x22 + x42, (2.44)

µ∗(x) = − sin(x1)(x2 + 2x32). (2.45)

Basis Functions. Examining the optimal value V ∗ (2.44) and policy µ∗ (2.45), for

the first evaluation we select the following minimum-dimension critic basis (2.10)

Φ(x) =

x21

x22

x42

 , ∇Φ(x) =

2x1 0

0 2x2

0 4x32

 , (2.46)

By inspection of (2.44) and (2.46), the optimal critic weights are c∗ =
[
1
2
, 1, 1

]T
.

For the second evaluation, we increment the problem dimension by adding the non-

40

essential basis function ϕ4(x) = x1x2; i.e.,

Φ(x) =

[
x21 x22 x42 x1x2

]T
, (2.47)

which by inspection has optimal weights c∗ =
[
1
2
, 1, 1, 0

]T
. In the third evaluation, for

the sake of comparison we choose the critic basis as identical to that of the example it

was originally studied in [1, Section 6.2], with the essential basis function x42 removed;

i.e.,

Φ(x) =

[
x21 x22 x1x2 x41 x31x2 x21x

2
2 x1x

3
2

]T
. (2.48)

With the removal of this term, the optimal value function V ∗ (2.44) and policy µ∗

(2.45) can no longer be approximated exactly. This is a more realistic scenario than

the previous set of exact basis functions. Since it is well-known that in general there

is no closed-form solution to HJB equation, a designer would naturally bias their

selection towards such lower-order terms.

Recall that since the system (2.43) is single-input (i.e., m = 1), the same basis

functions may be used for the RADP actor basis (2.12) and the CT-VI actor ba-

sis (2.20) (cf. Remark 2.2.2). Throughout the first three evaluations, we use the

minimum-dimension basis

Ψ(x) = sin(x1)

 x2

x32

 . (2.49)

The optimal actor weights w∗ are given by w∗ = [−1, −2]T in the network (2.12),

w∗ = c∗ in the network (2.13), and w∗ = [2, 4]T in the network (2.20). After working

41

out the algebra, it can be checked that

1

4
(∇V ∗)T gR−1gT∇V ∗ = sin2(x1)

[
x22 + 4x42 + 4x62

]
. (2.50)

Examination of (2.50) and (2.19) motivates the minimal choice of Hamiltonian basis

Θ(x) =

sin2(x1)x
2
2

sin2(x1)x
4
2

sin2(x1)x
6
2

x21

x22

x42

, v∗ =

1

4

4

−1

−1

−2

. (2.51)

The first three terms in Θ(x) compose (2.50), while the last three terms compose

−Q(x) in (2.19) (cf. Remark 2.2.1 for discussion).

Initial Stabilizing Policy µ0. In [1], the authors use the initial stabilizing policy

µ0(x) = −
1

2
sin(x1)(3x2 − 0.2x21x2 + 12x32). (2.52)

However, examining the minimal critic basis Φ(x) and its Jacobian ∇Φ(x) (2.46),

we see that we do not have access to the x21x2 cross term for implementation of

(2.52) in the actor network (2.13). Thus, in the spirit of continuity and maintaining

a consistent comparison across the methodologies, we choose the similar stabilizing

policy

µ0(x) = −
1

2
sin(x1)(3x2 + 12x32) (2.53)

for the first two evaluations. For similar reasons, the critic basis (2.48) in the third

42

evaluation necessitates that modify the policy (2.53). We choose for the third evalu-

ation

µ0(x) = −5 sin(x1)x2. (2.54)

Exploration Noise e. We consider the following three default low-, medium-, and

high-excitation noises

e1(t) = 5 cos(t), e2(t) = 10 cos(t), e3(t) = 20 cos(t). (2.55)

In the first evaluation we further perturb e3 as

e3(t) = 20 cos(t) + cos(0.1t) (2.56)

because CT-VI exhibits convergence issues without the addition of the small low-

frequency term. Similarly, in the second evaluation we further perturb e1 as

e1(t) = 5 cos(t) + 0.25 cos(0.1t) (2.57)

because CT-VI fails to converge for a few of the initial conditions in the sweep with the

default exploration noise e1 (2.55). Furthermore, by our search no small-amplitude

perturbation of the exploration noise e3 (2.55) is able to make CT-VI converge for all

initial conditions in the second evaluation. As a result, in the second evaluation we

choose the default exploration noise e3 (2.55), and CT-VI is not run for this noise.

These selections are summarized in Table 2.3.

Hyperparameter and Weight Initialization. Hyperparameter selections are

listed in Table 2.4. We use a default learning time tf = 10s. IRL’s lack of probing

43

Table 2.3: Exploration Noises for the First Three Evaluations

Eval. e1(t) e2(t) e3(t)
1 (2.55) (2.55) (2.56)
2 (2.57) (2.55) (2.55)

3 a (2.55) N/A N/A

aNoises customized for each method to maximize chances of convergence. See Section 2.6.3 for
details.

noise necessitates a shorter learning time (cf. Section 2.6.1), whereas SPI’s dynamic

tuning laws require a longer learning time. For IRL, we collect l = 10 samples per iter-

ation, while for RADP we collect l = 50 samples (all at equally-spaced time instants).

We collect more points for RADP because its associated least-squares minimization

is higher-dimensional (N1 +N2, cf. (2.31)) than that of IRL (N1, cf. (2.25)).

Table 2.4: Hyperparameters for the First Three Evaluations

Eval. Alg. tf (s) sf (s) i∗ l

1, 2
IRL 5 N/A 5 10
SPI 500 N/A N/A N/A

RADP 10 N/A 5 50
CT-VI 10 125 N/A N/A

3
IRL 5 N/A 15 10
SPI 500 N/A N/A N/A

RADP 10 N/A 15 50
CT-VI 10 125 N/A N/A

Additional hyperparameters and initial weights are as follows. For SPI, we use

α1 = 10 in the critic tuning law (2.26) and α2 = 10, F2 = 5IN1 in the actor tuning law

(2.28). For IRL, we initialize the critic weights c0 to implement the policy µ0 (2.53)

in the actor structure (2.13) for the first two evaluations and the policy µ0 (2.54) in

the third evaluation. The actor weights w0 for SPI are set to identical values as the

IRL critic weights c0 for all evaluations. This initializes IRL and SPI with the same

policy µ0 in their shared actor network structure (2.13).

44

Remark 2.5.1 (SPI – Critic Weight Initialization). Technically speaking, the

initial critic weights c0 for SPI may be selected independently of the initial actor

weights w0. However, as noted in Remark 2.3.1, the modified actor tuning law (2.28)

implemented resembles a tracking control law which makes the actor weights track the

critic weights. Thus, if the initial critic weights c0 do not correspond to a stabilizing

policy in the actor network (2.13), we observe that closed-loop instability results as

the actor weights w(t) converge to the destabilizing critic weights c(t). Thus, in this

work we initialize critic and actor weights to the same values.

For RADP, we initialize the actor weights w0 = 0 as per Algorithm 4. Finally

for CT-VI as per Algorithm 5, we initialize the actor weights w0 = 0, Hamiltonian

weights v0 = 0, and critic weights c0 such that the initial critic network is given by

V̂ (x, c0) = x21 + x22.

2.5.2 Setup – Cart Inverted Pendulum System

The fourth and final evaluation considers the cart inverted pendulum system [11]

ẍ =
mplθ̇

2 sin θ −mpg sin θ cos θ + u

mc +mp sin
2 θ

,

θ̈ =
−ẍ
l

cos θ +
g

l
sin θ, (2.58)

where x is the cart position (measured in meters), θ is the pendulum angular dis-

placement (measured in radians relative to the upright position, clockwise positive),

u is the horizontal force applied to the cart, mc is the mass of the cart, mp is the

mass of the pendulum, l is the length of the pendulum, and g is the gravitational

field constant. We use the standard values mc = 1kg, mp = 0.1kg, l = 0.5m, and

g = 9.81m/s2. This simplified model assumes no cart or pendulum friction, and that

the mass of the pendulum is concentrated in a point at its end. With state vari-

45

ables

[
x1 x2 x3 x4

]T
=

[
x ẋ θ θ̇

]T
, the dynamical equations (2.58) may

be expressed in state-space form (2.1) as

f(x) =

x2
mp sinx3(lx24−g cosx3)

mc+mp sin2 x3

x4
sinx3(g

l
(mc+mp)−mpx24 cosx3)
mc+mp sin2 x3

, g(x) =

1

mc +mp sin
2 x3

0

1

0

− cosx3
l

.

(2.59)

We use the standard Q-R cost structure r(x, u) = xTQx + uTRu and the natural

choice Q = I4, R = 1.

Basis Functions. We note for this example that the running cost r(x, u) is an even

function of (x, u) and that the state dynamics f(x) + g(x)u is an odd function of

(x, u). It can be checked that this implies the optimal value function V ∗ is even and

the optimal policy µ∗ is odd. With this insight, we select as our critic basis {ϕj}N1
j=1

the even monomials of total degree two (i.e., N1 = 10). We select for the actor basis

{ψj}N2
j=1 the odd monomials of total degree less than or equal to three (i.e., N2 = 24).

Lastly, we select the Hamiltonian basis functions {θj}N3
j=1 also as the even monomials

of total degree two (i.e., N3 = N1 = 10). We believe these selections to be the natural

first-choice for a designer beginning their analysis of this system.

Initial Stabilizing Policy µ0. For the initial stabilizing policy µ0, we examine the

linearization (A,B) about the origin and design for it the linear quadratic regulator

(LQR) full-state feedback control law u(x) = Kx, where K = R−1BTP ∈ Rm×n, and

P ∈ Rn×n, P = P T > 0 is the unique positive definite solution of the Riccati equation

0 = ATP + PA− PBR−1BTP +Q. (2.60)

46

We use the locally-stabilizing nonlinear control law

µ0(x) = −R−1gT (x)Px. (2.61)

Exploration Noise e. We default to the exploration noise e(t) = e1(t) = 5 cos(t)

(2.55). With the policy µ0 (2.61) and initial condition x0 = [1, 0, 15◦, 0]T , this explo-

ration noise yields stable cart position oscillations on the order of 3m and pendulum

oscillations on the order of 20◦, so qualitatively the noise allows the four algorithms

to collect rich trajectory data under the initial stabilizing policy without exciting the

pendulum instability. We observe the initial policy to achieve stability for exploration

noise amplitudes of up to ∼ 7.5.

Hyperparameter and Weight Initialization. For IRL, we choose a learning time

tf = 5s. Since we have increased the number of critic basis functions to N1 = 10, we

increase the number of data points per iteration from l = 10 to l = 15. Number of

iterations i∗ for IRL is changed experimentally, so we leave discussion to Section 2.7.

For SPI, we choose a shorter collection window of tf = 100s for reasons explained in

Section 2.7. We choose all SPI tuning gains/matrices identical to those of Section 2.5.1

(modulo dimension increases). For RADP, we use i∗ = 20 iterations; otherwise, all

hyperparameters for RADP and CT-VI are chosen identical to those of the first three

evaluations. Finally, all weight initializations are performed identically to Section

2.5.1, now corresponding to the policy µ0 (2.61).

2.6 Performance Evaluation and Analysis – 2nd Order System

2.6.1 Evaluation 1 – Exact Minimal Bases

Results. IRL behaves well in regards to approximation and weight convergence. To

illustrate this point, Table 2.5 displays the mean, max, and standard deviation critic

47

weight errors ∥c∗ − cf∥ observed across the initial condition sweep for the exploration

noise e3 (2.56) in the first column, and the last three columns correspond to the three

respective weights in the basis (2.46). IRL exhibits a final critic weight error ∥c∗ − cf∥

of less than 10−9 for all trials. It also has a short average run time of around 0.15s

per trial, as seen in Table 2.6 which shows the average run time of each algorithm

over the IC sweep for the first evaluation.

Table 2.5: Eval. 1: Critic Weight Error for Noise e3 (2.56)

Algorithm Data ∥c∗ − cf∥ |c∗1 − cf,1| |c∗2 − cf,2| |c∗3 − cf,3|

IRL
mean 8.9e-11 5.15e-15 1.74e-14 8.9e-11
max 8.04e-10 1.68e-14 1.23e-13 8.04e-10
std 1.78e-10 3.37e-15 2.97e-14 1.78e-10

SPI
mean 1.07e-04 3.12e-06 7.35e-05 7.78e-05
max 1.33e-04 4.00e-06 9.15e-05 9.64e-05
std 6.09e-06 4.74e-07 4.21e-06 4.45e-06

RADP
mean 6.77 0.925 6.18 2.62
max 7.56 1.03 6.92 2.89
std 0.348 0.0628 0.333 0.127

CT-VI
mean 0.0169 0.00382 0.0155 0.00539
max 0.471 0.105 0.434 0.15
std 0.0744 0.0166 0.0686 0.0236

Next, we discuss conditioning. Table 2.7 shows the IC sweep average condition

number of the matrices pseudoinverted for IRL, RADP, and CT-VI for the first three

evaluations. In the case of IRL and RADP, the respective matrices Ai
IRL (2.25) and

Ai
RADP (2.31) change numerically with iteration count i, so we have taken the IC

sweep average over the final-iteration matrices Ai∗
IRL and Ai∗

RADP . IRL struggles with

significant conditioning issues, having an average final-iteration condition number on

the order of 105.

SPI also exhibits good convergence properties (Table 2.5). We note that conditioning

analyses do not apply to SPI, which is an adaptive/gradient-descent-based method

and does not require regression in its weight updates. However, these dynamic weight

48

Table 2.6: Eval. 1: Average Run Time (s)

Algorithm e1 e2 e3
IRL 0.14 0.15 0.15
SPI 2.96 2.99 3.17

RADP 0.20 0.21 0.23
CT-VI 9.15 17.21 23.00

updates require a significantly longer collection window tf = 500s to converge, and

thus SPI takes a much longer 3s on average to run (Table 2.6).

RADP achieves good approximation performance for the two smaller noises e1, e2

(2.55) (comparable numerically with that of IRL and SPI), but as seen in Table 2.5

this degrades for the large exploration noise e3 (2.56). Its mean critic weight error

∥c∗ − cf∥ is 6.77 with a standard deviation of only 0.348, suggesting that the error is

large across the sweep. RADP fares quite well with conditioning (Table 2.7), which

remains on the order of 10 for all exploration noises. It also has a short average run

time of around 0.2s per trial (Table 2.6).

CT-VI converges consistently overall for the smaller exploration noises e1, e2 (2.55),

with max final critic weight error ∥c∗ − cf∥ of less than 0.01 and max actor weight

error ∥w∗ − wf∥ of 0.238. The maximum Hamiltonian weight error ∥v∗ − vf∥ is higher

at 2.08 (observed for e2), but CT-VI exhibits a mean error ∥v∗ − vf∥ of only 0.0672

for this exploration noise, so the peak of 2.08 is an outlier. For the large excitation e3

(2.56) CT-VI performs well overall, with a mean critic weight error ∥c∗ − cf∥ of only

0.0169 (Table 2.5), but there are outliers in which the error gets as large as 0.471 at

maximum.

Like IRL, CT-VI struggles with conditioning. In Table 2.7, conditioning of the

matrix κ(Kϕ(tf)) averages on the order of 102 for all exploration noises and κ(Kσ(tf))

averages on the order of 106 for e1 and on the order of 104 for e2, e3. Since Kϕ(tf) ∈

RN1×N1 with N1 = 3 and Kσ(tf) ∈ R(N2+N3)×(N2+N3) with N2 +N3 = 8, it is expected

49

Table 2.7: Evals. 1-3: Mean Condition Number

Algorithm Matrix Eval. 1 Eval. 2 Eval. 3
a

e1 e2 e3 e1 e2 e3 e1

IRL
b

Ai∗
IRL 1.48e+05 “ “ 5.62e+05 “ “ 5.75e+11

RADP Ai∗
RADP 34.94 22.21 17.19 19.68 23.10 25.61 155.45

CT-VI Kϕ(tf) 207.66 631.69 413.30 366.14 866.12 N/A
c

6.17e+04
Kσ(tf) 6.96e+06 5.49e+04 4.87e+04 6.88e+06 5.49e+04 N/Ac 1.06e+07

aExploration noises e2, e3 not executed for Evaluation 3 (cf. Section 2.6.3 for details).

bNo exploration noise injected for IRL, so we put its data under the e1 column and leave its other
entries blank.

cCT-VI not executed for exploration noise e3 in Evaluation 2 (cf. Section 2.6.2 for details).

that in general the conditioning of Kσ(tf) will fare worse than that of Kϕ(tf). Evi-

dence of the demanding computational requirements of CT-VI is further witnessed in

Table 2.6. CT-VI requires by far the longest run time at 10-20s per trial. We note in

addition that run time for CT-VI increases substantially with increasing exploration

noise amplitude, more than doubling on average over the exploration noises tested.

Insights. 1) Algorithms Perform Well for Lower Excitations in Baseline

Example. For the lower excitations e1, e2 (2.55) all algorithms successfully converge

to the optimal weights regardless of the initial condition selected (with the exception

of a few outliers). Since this example is low-order and we have chosen exact bases, the

alignment between theoretical guarantees and observed synthesis is to be expected.

2) Algorithm Structure Significantly Impacts Conditioning and Numerical

Performance. We point the reader to Figure 2.1a, which displays the state trajec-

tory x1(t) corresponding to exploration noise e1 (2.55) and IC x0 = [1, 1]T . RADP

and CT-VI use the same trajectory data to perform their learning, yet CT-VI’s condi-

tioning is three orders of magnitude worse than RADP’s (cf. Table 2.7). This simple

example illustrates the stark impact of algorithm structure on inherent conditioning

and numerical properties. For this reason, conditioning should be considered in the

design process using similar approaches presented in this study, not just in post-hoc

50

analysis.

3) Avoid Large Excitation for RADP.We offer designers this general observation

of RADP: Across all evaluations conducted, RADP exhibits convergence issues for

large exploration noises. This is of practical concern to real-world designers, who are

in general concerned with achieving sufficient excitation to meet PE requirements.

We caution that over-excitation is a significant phenomenon which occurs even for

low-order academic examples.

Limitations. 1) CT-VI Numerical Complexity Issues Associated with Tun-

ing Structure. In this simple example, we have already experienced divergence

issues with CT-VI for the large exploration noise e3, which necessitates the addi-

tion of the low-frequency perturbation cos(0.1t) in (2.56). We believe these issues

can be explained by examining the tuning procedure of CT-VI in (2.32) and (2.34).

The Hamiltonian weights v(s) yielded by the pseudoinversion of Kσ(tf) in (2.34) are

nested in the integral (2.32) involved in the pseudoinversion of Kϕ(tf). The pseudoin-

version of Kϕ(tf) yields the derivative d
ds
c(s) in the critic weight tuning law (2.32),

which itself must be integrated with respect to the weight tuning time s. In sum,

the CT-VI algorithm comprises an alternating chain of two pseudoinversions sand-

wiched between three nested (vector-valued) integrations. When combined with the

high condition numbers seen in Table 2.7, we conclude that the weight convergence

issues stem from these numerical considerations. The run time of CT-VI exceeds that

of IRL and RADP by a factor of 100 (Table 2.6), a further empirical indication of

numerical complexity issues.

51

0 2 4 6 8 10

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4 IRL
RADP, VI

(a)

1 2 3 4 5
101

102

103

104

105

(b)

Figure 2.1: Eval. 1: Data for Exploration Noise e1 (2.55), IC x0 = [1, 1]T . (a)
Learning-Phase State Trajectory x1(t). (b) Condition Number Versus Iteration
Count.

2) IRL’s Lack of Probing Noise Causes Data Quality Degradation as State

is Regulated to Origin. The two PI-based algorithms (IRL and RADP) exhibit

vastly different conditioning properties (cf. Table 2.7). Returning to Figure 2.1a of-

fers clear explanation. Recall that IRL does not allow for insertion of a probing noise.

As the system is simulated under the initial stabilizing policy µ0 (2.53) and succes-

sive stabilizing policies µ̂1, . . . , µ̂i∗ , the state is regulated to the origin. Meanwhile,

examining the form of the i-th iteration weight update matrix Ai
IRL ∈ Rl×N1 (2.25)

(i = 0, . . . , i∗), we see that continuity of the state trajectory x(t) and continuity of

the critic basis functions Φ(x) implies that Ai
IRL vanishes as variations in the state

trajectory samples {x(tik)}lk=0 vanish. This explains the steep upward trend in IRL’s

iteration-wise condition number plotted in Figure 2.1b, beginning at around 10 for

i = 1 and increasing to almost 104 for i = 5. It is for this reason that a shorter

collection window tf = 5s is necessary for IRL. If the default tf = 10s used for the

other methods is chosen, the condition number κ
(
Ai∗
IRL

)
regularly exceeds 108 for

this example. We hence observe lack of probing noise insertion as a fundamental lim-

52

itation of the IRL methodology, even though strictly speaking it does not have a PE

requirement (cf. Table 2.2 and Remark 2.4.4). As a result of probing noise insertion,

RADP has access to richer trajectory data and its conditioning remains low.

For the same reasons, we make the note that the conditioning of IRL fares sig-

nificantly worse for ICs chosen nearer the origin. Thus, Figure 2.1b with the IC

x0 = [1, 1]T is a best-case across the sweep. In order to combat this condition-

ing issue, for each iteration i the authors [1, Section 6.2] collect data from multiple

trajectories with randomized initial conditions. While this is a legitimate learning

procedure, strictly speaking it is not permissible in an online learning scenario.

Remark 2.6.1. Concluding Remarks for Evaluation 1: The Curse of Con-

ditioning in CT-RL. After considering Table 2.7, Figure 2.1b, and the subsequent

analysis, we wish to characterize whether the observed conditioning issues are emer-

gent phenomena or if they are inherent to the CT-RL methodologies themselves.

Certainly, this is not an issue of dimensionality. The system (2.43) is second-

order and single-input, and the basis dimensions N1 = 3, N2 = 2, N3 = 6 are chosen

to be minimal for this problem. Real-world applications will inevitably be higher-

dimensional than this one.

Neither is this an issue of approximation. Indeed, the example was constructed

such that the optimal value V ∗ and policy µ∗ are available in closed-form, and the

bases chosen can achieve exact approximation.

Having ruled out the usual culprits of problem dimension and approximation error,

we consider that the fundamental conditioning issues illustrated here are intrinsic

to the algorithms themselves. For in many respects, the problem structure of this

evaluation represents the best-case performance that could be hoped for from these

algorithms. Unfortunately, we shall soon see that the underlying numerics compound

subsequent issues of dimensionality and approximation, altogether severely limiting

53

the applicability of these CT-RL methods to real-world design problems.

2.6.2 Evaluation 2 – Critic Basis with N1 = 4 Terms

Results. IRL achieves good approximation performance comparable with that of

the first evaluation for all probing noises. We present critic weight error data for the

exploration noise e3 (2.55) in Table 2.8. IRL achieves a critic weight error ∥c∗ − cf∥ of

less than 10−9 at max. Meanwhile, examination of Table 2.7 shows that the addition of

one critic basis function has increased IRL’s average conditioning by a factor of five to

5.6×105. For the sake of comparison, we have again plotted condition number versus

iteration count for the exploration noise e1 (2.57) and IC x0 = [1, 1]T in Figure 2.2.

Comparison with Figure 2.1b corroborates the trend in Table 2.7 that conditioning

has degraded across the board. In particular, the conditioning of IRL now approaches

the 105 mark for this trial, almost a tenfold increase from the previous evaluation.

This illustrates that IRL suffers from scalability issues.

Finally, addition of one basis function has not increased the run time of any

of the algorithms significantly, so we have omitted run time data here for the sake

of brevity. Note, however, that we wished to carry out more thorough analyses of

run time performance, but for all algorithms weight convergence issues halted these

evaluations before we could introduce sufficient dimensional scaling. Given that these

algorithms repeatedly use pseudoinversion which scales as ∼ O(l3), in principle run

time scaling will likely present significant challenges in the future.

SPI achieves a max critic weight error ∥c∗ − cf∥ of 0.0465 for exploration noises e1

(2.57) and e2 (2.55), and 0.0176 for e3 (Table 2.8). For all exploration noises, its actor

weight error ∥w∗ − wf∥ remains less than 0.001 at max.

RADP We again observe the pattern that RADP performs comparably to IRL and

SPI for small excitations but struggles for the large excitation e3 (2.55), with an

54

1 2 3 4 5
101

102

103

104

105

Figure 2.2: Eval. 2: Condition Number Versus Iteration Count for Exploration Noise
e1 (2.57), IC x0 = [1, 1]T .

Table 2.8: Eval. 2: Critic Weight Error for Noise e3 (2.55)

Alg. Data ∥∥c∗ − cf
∥∥ ∣∣c∗1 − cf,1

∣∣ ∣∣c∗2 − cf,2
∣∣ ∣∣c∗3 − cf,3

∣∣ ∣∣c∗4 − cf,4
∣∣

IRL
mean 1.54e-10 3.7e-14 7.8e-14 1.54e-10 8.91e-14
max 1.24e-09 2.3e-13 3.94e-13 1.24e-09 4.95e-13
std 2.56e-10 5.69e-14 8.66e-14 2.56e-10 1.16e-13

SPI
mean 0.0168 0.000803 0.00849 0.0143 0.00248
max 0.0176 0.000926 0.00883 0.0149 0.00268
std 0.00022 3.59e-05 0.000132 0.000199 7.46e-05

RADP
mean 2.87 0.468 2.62 1.09 0.0224
max 6.73 1.06 6.14 2.55 0.0997
std 2.76 0.45 2.51 1.04 0.0217

average critic weight error ∥c∗ − cf∥ of 2.87, max of 6.73, and standard deviation

of 2.76 (Table 2.8). Comparison of these numbers with those of Table 2.5 shows

that the max error is comparable for the two evaluations. Meanwhile, the mean

error for this evaluation (2.87) is smaller than that of the previous evaluation (6.77).

However, the present evaluation standard deviation (2.76) is a factor of ten higher

than previous (0.348). This anecdotally suggests that the addition of a basis function

to the critic (2.47) has made the weight convergence of RADP more volatile for large

exploration noises. In spite of these issues, RADP does zero the redundant basis

55

function ϕ4(x) = x1x2 (2.47) for e3 quite well overall (Table 2.8). Finally RADP’s

conditioning has remained low at approximately 20 (Table 2.7).

CT-VI is not run for the exploration noise e3 (2.55) due to convergence issues (cf.

Section 2.5.1 for discussion), so its data is absent in Table 2.8. It does achieve good

convergence properties for the smaller two excitations, for which its critic, actor, and

Hamiltonian weight errors remain less than 0.01 at max. Examining Table 2.7, the

conditioning ofKσ(tf) is nearly identical to the previous evaluation, which is expected

since the bases Ψ(x) (2.49) and Θ(x) (2.51) composing this matrix have remained

unchanged. On the other hand, the condition number κ (Kϕ(tf)) has increased from

208 in the previous evaluation to 366 for the exploration noise e1 (+76%) and from

632 to 866 for e2 (+37%).

Limitations. 1) Convergence and Conditioning Degradation with Addition

of One Critic Basis Function: Dimensional Scalability Concerns. IRL still

performs well in terms of convergence, but its conditioning has degraded significantly

as a result of the addition. SPI, the gradient-descent algorithm for which conditioning

issues do not apply, fares the best overall; its convergence properties remain largely

unchanged. RADP displays a slight degradation in conditioning and substantial in-

creases in weight volatility. Finally, CT-VI exhibits weight divergence on both the

low- and high-amplitude ends of the exploration noise spectrum, due in large part

to condition number increase of the matrix Kϕ(tf) (2.33) structurally affected by the

additional critic basis function. Now, all that remains is a central band of amplitudes

around e2(t) = 10 cos(t) for which this algorithm can run properly.

2.6.3 Evaluation 3 – Realistic Choice of Critic Basis

Now that the optimal value function V ∗ (2.44) cannot be approximated exactly

by our choice of critic basis (2.48), we first establish that good approximation is still

56

(a) (b)

Figure 2.3: Eval. 3: (a) Optimal Value V ∗ and LR Critic V̂lr. (b) Optimal Value V ∗

and Final Critic V̂f for Exploration Noise e1 (2.55), IC x0 = [1, 1]T .

achievable. We perform linear regression (LR) of the optimal value function V ∗ (2.44)

in the basis functions (2.48) over the box [−1, 1]2, yielding the L2([−1, 1]2)-optimal

weights,

clr =

[
0.2140 1.7436 0 0.2 0 0.1905 0

]T
. (2.62)

The associated LR critic V̂lr(x) = V̂ (x, clr) is plotted alongside the optimal value

function V ∗ (2.44) in Figure 2.3a. The approximation achieved is quite accurate by

visual inspection.

Results. IRL, RADP We begin our study with the two PI-based algorithms. Com-

parison of the conditioning data in Table 2.7 to the previous evaluation shows that

the conditioning for IRL has increased six orders of magnitude from 5.6 × 105 to

5.8× 1011. RADP conditioning has fared better, but it still has increased by a factor

of eight from 20 to 155. To analyze convergence properties, we plot the critic weights

ci versus iteration count i for IRL and RADP in Figures 2.4c and 2.4d, respectively.

These responses correspond to the exploration noise e1 (2.55) and IC x0 = [1, 1]T ,

57

which we observe as qualitatively representative.

0 2 4 6 8 10 12 14 16 18 20
-0.5

0

0.5

1

1.5

2

2.5

(a)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
102

104

106

108

1010

1012

(b)

0 5 10 15
-5

-4

-3

-2

-1

0

1

2

3

4

5

(c)

0 5 10 15
-6

-4

-2

0

2

4

6

(d)

Figure 2.4: Eval. 3: Data for Exploration Noise e1 (2.55), IC x0 = [1, 1]T . Top:
(a) State Trajectory x1(t). (b) Condition Number Versus Iteration Count. Bottom:
Critic Weights ci Versus Iteration Count for (c) IRL, (d) RADP.

One observes two distinct regimes of behavior for IRL in Figure 2.4c: An initial

phase from i = 1 to i = 10 iterations where the weights oscillate and drift, and a

second phase from i = 10 to i = 15 iterations where the weights begin to diverge.

The reason for the latter weight divergence is clear upon viewing the corresponding

x0 = [1, 1]T state trajectory data in Figure 2.4a. For IRL’s learning on t = [0, 5], the

58

latter third of the trajectory is near zero. We have thus encountered the same scenario

as in Section 2.6.1, where IRL struggles with conditioning in latter iterations as the

state trajectory approaches the origin. Now that the basis order has increased and

the basis functions can no longer achieve exact approximation, IRL cannot perform

its learning quickly enough to outpace data quality degradation.

The observed weight oscillations/drifting in the first i = 10 iterations of Figure

2.4c are readily explained by the iteration-wise condition number of Ai
IRL plotted

in Figure 2.4b. Here we observe that even for early iterations (when the quality of

trajectory data is relatively high), the conditioning of the IRL problem exceeds 104

across the board. By comparison to the previous evaluation (for which conditioning

begins on the order of 102) this is a 100-fold increase.

Table 2.9 displays the mean and standard deviation of each of the final critic

weights cf,j, j = 1, . . . , 7. As a result of poor conditioning, IRL exhibits large standard

deviations for the latter four weights. However, we do note that the weights cf,1, cf,2,

and cf,3 exhibit mean values of 0.5, 1, and ∼ 0, respectively, with near-zero standard

deviation. These mean values agree with the respective values of the optimal weights

c∗ for the exact basis (2.47). The critic weights for RADP, by contrast, have converged

in Figure 2.4d. Unfortunately, the values to which the weights converge are not

consistent across the IC sweep (Table 2.9).

Table 2.9: Eval. 3: Critic Weight Mean, Standard Deviation

Algorithm Data cf,1 cf,2 cf,3 cf,4 cf,5 cf,6 cf,7

IRL
mean 0.50 1.00 -3.1e-04 -0.58 0.87 -1.89 1.04
std 1.6e-04 9.0e-04 4.8e-04 0.57 1.03 1.33 1.07

RADP
mean 0.70 1.63 -0.24 -0.32 0.54 -1.11 1.03
std 0.19 0.39 0.25 0.45 0.91 0.94 0.82

Having rounded off the weight convergence analysis of IRL and RADP, it now

remains to examine the approximation errors of the final critics V̂f (x) = V̂ (x, cf)

59

(2.10) they produce in relation to the optimal value function V ∗ (2.44). We display

these functions in Figure 2.3b for exploration noise e1 (2.55) and IC x0 = [1, 1]T .

Unfortunately, both algorithms exhibit wide variation. Indeed, neither critic V̂f is

even positive definite.

SPI, CT-VI Unfortunately, the tuning of both of these algorithms breaks down for

this example. We run SPI for the IC x0 = [1, 1]T . After t = 35 seconds of tuning, the

weights are c(35) ≈ w(35) = [0.771, 1.972, 0.345, −0.234, −0.154, −0.0826, −0.179]T .

If the simulation is continued beyond t = 35s, the state trajectory diverges. A similar

phenomenon prevails regardless of the IC x0 in the sweep, the eventual divergence

occurring within the first couple dozen seconds of simulation. We test the policy

µ̂(x,w(35)) (2.13) corresponding to the actor weights w(35) without any exploration

noise to find that it is indeed stabilizing on [−1, 1]2. Thus, although the SPI tuning

has kept the actor weights w(t) stabilizing from t = 0 to t = 35, the actor network

shortly after µ̂(x,w(35)) is unable to reject the exploration noise e1 (2.55) amidst the

unstable dynamics of the system (2.43). This is discouraging, given that the explo-

ration noise e1 (2.55) chosen has the smallest amplitude of any tested in this work.

Indeed, SPI performs quite well for this exploration noise in previous evaluations.

For CT-VI, regardless of our choice of hyperparameters (i.e., probing noise e,

learning time tf) the weight tuning laws (2.32) and (2.34) diverge. We present CT-VI’s

average condition number data for the standard choices e = e1 (2.55) and tf = 10s

in Table 2.7. Compared to the previous evaluation, the average condition number

of Kσ(tf) for the exploration noise e1 has nearly doubled from 6.9 × 106 to 10.6 ×

106. Due to the increase in critic basis dimension from N1 = 4 to N1 = 7, the

condition number of Kϕ(tf) has increased two orders of magnitude from 366 to 6.2×

104. Unfortunately, we conclude that these sheer condition numbers render CT-VI

unusable for this example.

60

Limitations. 1) IRL Lack of Probing Noise Results in Hyperparameter

Deadlock. A designer assessing the performance of IRL in Figure 2.4c might be

tempted to reduce the learning time tf in hopes of restricting to higher-quality tra-

jectory data and thereby improving weight convergence. Alas, these efforts are not

fruitful. Recall in Section 2.6.1 we deduced that the regression matrix Ai
IRL (2.25)

vanishes as variations in the state trajectory samples {x(tik)}lk=0 vanish. This condi-

tion occurs as the differences in sample time instants {tik}lk=0 converge to zero; i.e.,

as learning time tf → 0, final iteration i∗ → ∞, or number of samples l → ∞. On

one hand, the increase in final iteration count from i∗ = 5 previously to i∗ = 15 here

is unavoidable: Generally speaking, higher-order problems require more iterations to

converge, and we observe this example as no exception. On the other hand, there

is little room to reduce the number of samples from l = 10, since l ≥ N1 = 7 is

needed for full column rank in the weight update (2.25). Thus, both of these hyper-

parameters have been virtually minimized to ensure best conditioning possible. It is

perhaps of no surprise then that we observe reducing the learning time tf (or increas-

ing sample count l and/or final iteration i∗, all of which we tried) only exacerbates

the poor early-iteration conditioning seen in Figure 2.4b, which in turn magnifies

the early-iteration weight oscillations in Figure 2.4c. With all options exhausted, we

unfortunately conclude that the designer is deadlocked in an effort to balance IRL

hyperparameter selection with the underlying numerics.

2) Conditioning Ceiling Causes Discrepancy Between Theoretical Approx-

imation Results and Observed Approximation Performance. Both IRL and

RADP guarantee uniform approximation of the optimal value function V ∗ on com-

pact subsets (cf. Theorems 2.4.2 and 2.4.6 respectively). We note the subtlety that

these approximation results are sufficient conditions which are not constructive; i.e.,

they don’t furnish estimates of the number of basis functions N1 required to achieve

61

a desired approximation ϵ > 0. The critic approximation issues observed in Figure

2.3b reveal that when increasing the critic basis dimension N1, a practical condi-

tioning ceiling incapacitates approximation performance long before the theoretical

threshold can be attained.

3) SPI Excitation Requirements Exceed Closed-Loop Stability Thresh-

olds. Unfortunately, the SPI instability issue cannot be remedied by decreasing the

exploration noise amplitude. For amplitudes ∼ 3.5 and above, the state eventually

diverges. For amplitudes below this threshold, the weight tuning freezes due to insuf-

ficient excitation. We further tried modulating the exploration noise by a decaying

exponential term; i.e., e(t) = 5 cos(t)e−at for decay rate a > 0. Unfortunately, these

efforts yield much the same qualitative behavior as varying the exploration noise am-

plitude. Thus, for SPI we are unable to find a balance between stability and sufficient

excitation. We believe these issues to be, in part, due to the modified actor tuning

law (2.28) which we had to adopt in this work (cf. Remark 2.3.1). Due to the actor

tuning modifications, the original stability guarantees provided in [2] no longer apply.

Remark 2.6.2. Concluding Remarks for Evaluations 1-3, Performance Lim-

itations. For this third evaluation, the two PI-based algorithms, IRL and RADP,

can be successfully run across the IC sweep. However, underlying conditioning issues

either render weight convergence inconsistent (RADP), or prevent convergence en-

tirely (IRL). The two dynamic tuning algorithms, SPI and CT-VI, cannot execute to

termination due to either closed-loop instability (SPI) or weight divergence (CT-VI).

In the case of SPI, our probing noise selection has to meet the conflicting demands

of disturbance rejection and sufficient excitation, for which a suitable balance cannot

be sought. In the case of CT-VI, conditioning degradation associated with increased

problem complexity has rendered its tuning laws numerically intractable. The new

phenomena observed for SPI aside, all of the key issues witnessed here are direct out-

62

growths of the novel diagnosis we performed in our first evaluation, now compounded

by the long-understood curses of dimensionality and approximation.

2.7 Performance Evaluation and Analysis – Cart Inverted Pendulum System

Having thoroughly analyzed the second-order academic example (2.43), we now

apply the fundamental design insights gained to the cart inverted pendulum system

(2.58), a benchmark control problem which has direct implications in real-world ap-

plications. We at first ran tests over the initial cart positions x0 = [−1 : 0.1 : 1]

m, pendulum angles θ0 = [−30 : 1 : 30] deg, and zero initial translational/rotational

velocities ẋ0 = 0 m/s, θ̇0 = 0 deg/s. However, in our analyses we encountered algo-

rithm performance issues of similar nature regardless of the IC chosen. Thus for the

purposes of illustration, here we examine the initial condition x0 = [1m, 0, 15◦, 0]T .

Results. IRL We recall from the analysis presented in Section 2.6.3 that, in general,

IRL conditioning degrades with increasing number of iterations i∗. Running IRL for

this example at i∗ = 2 is not problematic (although, of course, i∗ = 2 is insufficiently

many iterations for convergence). Running IRL for i∗ ≥ 3, on the other hand, yields

a new issue which has not been observed previously. We examine the state trajectory

data in Figure 2.5. Eventually, after i = 2 iterations, the critic weights are no longer

stabilizing, and state trajectory diverges. Due to poor conditioning (observed on the

order of 106 for this example), the critic weights ci oscillate drastically, which in turn

makes the policies µ̂i update abruptly and excite natural inverted pendulum insta-

bility. Corroborated by our insights gained in Section 2.6.3, decreasing the collection

time tf or increasing the number of samples l or number of iterations i∗ only worsens

the conditioning for this example.

SPI exhibits new behavior in this example as well. The weight tuning is observed

to freeze (i.e., the weights c(t), w(t) remain virtually constant over [0, tf]). After

63

0 0.5 1 1.5 2 2.5 3 3.5
-30

-25

-20

-15

-10

-5

0

5

10

15

Figure 2.5: Eval. 4: IRL State Trajectory x(t) for IC x0 = [1, 0, 15◦, 0]T .

diagnosis, we find the culprit to be the term σ2/m
2
s = σ2/(σ

T
2 σ2 + 1)2 ∈ RN1 in

the critic tuning law (2.26) vanishing across the state trajectory x(t). The critic

tuning law (2.26) is a Levenberg-Marquartdt algorithm modified by the authors [2]

where (σT2 σ2 + 1)2 is used for normalization instead of the usual (σT2 σ2 + 1) (cf. [2,

below Equation (23)]). Unfortunately, it is the squaring of this normalization term

(alongside σ2 ∈ RN1 having large norm across the trajectory) which has caused the

vanishing.

Naturally, a designer will increase the amplitude of the probing noise e or the critic

tuning gain α1 > 0 in an attempt to unfreeze the critic weight learning. Unfortunately,

increasing the amplitude of e from 5 to 7.5 does not fix the issue, and as we have noted

in Section 2.5.2, increasing the amplitude beyond this point makes the closed-loop

system unstable. Meanwhile, the critic weights still freeze when increasing the tuning

gain by a factor of 100 from α1 = 10 to α1 = 1000 (and for any intermediate selections

we tried). This analysis suggests that the modifications made to the Levenberg-

Marquartdt algorithm by [2] in the tuning law (2.26) have frozen the critic weight

learning for this higher-order example.

64

RADP Regardless of the IC or hyperparameters chosen, we were unable to yield a

stabilizing controller µ̂f = µ̂i∗+1 from RADP for this system. Similarly to the third

evaluation (cf. Table 2.9), RADP’s final weight values are observed to be highly

sensitive to IC x0. Furthermore, for some ICs (e.g., x0 = [1, 0, 30◦, 0]T), the weights

oscillate indefinitely and fail to converge. These convergence and stability issues are

likely a result of conditioning. For x0 = [1, 0, 15◦, 0]T , we observed the condition

number of Ai
RADP ∈ Rl×(N1+N2) (2.31) to exceed 108 for each iteration i (an increase

of six orders of magnitude from the previous evaluation). Given that the increment in

critic basis dimension is relatively minor (N1 = 7 in Section 2.6.3 to N1 = 10 here), we

attribute this drastic conditioning degradation to the increase in actor basis dimension

(from the minimal N2 = 2 actor basis in previous evaluations to the realistic N2 = 24

here).

CT-VI Previously-identified numerical issues persist as we transition toward a real-

world design problem. Regardless of hyperparameter selections, the weight responses

diverge. For the natural choices listed in Section 2.5.2, running the algorithm for the

initial condition x0 = [1, 0, 15◦, 0]T yields condition numbers of 7.8× 105 for Kϕ(tf)

and 5.2 × 1013 for Kσ(tf). Unfortunately, conditioning has claimed its last victim,

concluding our analysis of this example.

2.8 Discussion

This work provides an extensive review of four seminal CT-RL control methods

(IRL [1], SPI [2], RADP [3], and CT-VI [4]), discussing the key theoretical assump-

tions and results. Our review shows these methods to be well-principled in approach,

each offering an impressive suite of theoretical guarantees. All algorithms guaran-

tee uniform convergence to the optimal value and policy, which extends beyond the

baseline weight convergence results seen in the RL literature. Furthermore, each en-

65

sures closed-loop stability in one of its various notions. RADP even provides stability

robustness results.

These theoretical successes aside, our first-of-its-kind analytical framework illus-

trates through comprehensive evaluation studies a fundamental divergence between

CT-RL theoretical guarantees and controller synthesis performance. Our in-depth

evaluations lead us to posit that it is ultimately this analysis/synthesis discrepancy

which underpins the fundamental CT/DT gap in the RL control literature. As we

experienced difficulties in achieving realistic control performance goals when imple-

menting these algorithms on small-scale systems, we further analyzed step by step

what hinders their performance and why. Our observations are summarized below:

Challenges Facing the CT-RL Optimal Control Problem. To the credit of

the existing CT-RL algorithms, the CT-RL optimal control problem is considerably

more difficult than its DT-RL counterpart. Altogether, 1) combating the multitude

of structural challenges in continuous state, action, and time, alongside 2) the usual

dimensionality, approximation, and PE issues, while 3) rigorously proving conver-

gence, closed-loop stability, and other controls-centric performance guarantees proves

to be a three-pronged challenge perhaps unparalleled by any other problem in control

systems.

Design Challenges and Performance Limitations Facing Current CT-RL

Algorithms. 1) Systematically Achieving PE Proves Difficult. As noted in

Remark 2.4.4, there does not exist a systematic way to ensure the PE condition

for nonlinear systems. The evaluations conducted here reaffirm the severity of this

challenge. Indeed, as manifested empirically by the conditioning data seen in Table

2.7, collecting quality state trajectory data proves difficult, even for low-order systems

and bases. The challenge becomes especially acute for open-loop unstable systems,

where the designer must balance excitation within the confines of the disturbance

66

rejection capabilities of the controller. Here we note that SPI, which tunes its weights

via gradient descent and hence does not face conditioning concerns, still exhibits

significant PE issues, its weights either freezing due to insufficient excitation or failing

to stabilize when the excitation is increased.

2) Underlying Complexity of Existing Algorithms Causes Performance

Limitations. This work showcases the promising theoretical guarantees offered by

existing CT-RL algorithms. However, significant algorithm complexity is required in

order to prove these guarantees, resulting in numerical problems (e.g., CT-VI’s nested

pseudoinversion/integration tuning structure). Indeed, we pose conditioning issues as

central – and intrinsic – to these algorithms and their performance shortcomings. In

reality, the overly-complex nature of these algorithms makes them intractable.

3) Large Number of Hyperparameters Hinders Systematic Design. Another

side effect of the observed algorithm complexity is the large number of hyperparame-

ters required by each. For example, SPI requires the designer to choose the learning

time tf , probing noise e, tuning parameters α1, α2 > 0, F1 > 0, F2 = F T
2 > 0, as

well as initial weights c0, w0 – finding a selection which yields convergent weights is

a challenge in and of itself. We attempt to systematically select hyperparameters in

Section 2.5 and justify our rationale (e.g., selecting smaller learning time tf for IRL

to avoid data quality degradation, choosing a larger learning time tf for SPI to allow

its gradient-descent tuning laws to converge, etc.), but as we encounter performance

issues these efforts inevitably give way to haphazard algorithm-specific troubleshoot-

ing. Ultimately, not being able to systematically select hyperparameters to achieve

good performance for these design algorithms defeats the purpose of their theoretical

guarantees.

4) Dimensional Scalability Issues Limit Real-World Applicability. Bellman’s

curse of dimensionality has long explained scalability issues, but these algorithms

67

exhibit severe numerical breakdowns to even small increments in problem dimension

(e.g., addition of one basis function to the critic). Each eventually experiences weight

convergence issues and resultantly large approximation errors. Solutions are found to

be highly sensitive to initial conditions, signaling difficulty for generalizability.

Directions of Future Research. The limitations of CT-RL algorithms illustrated

by this work motivate several potentially fruitful and compelling directions of future

research:

1) Leveraging Established Classical Results. CT-RL is at the very early stages

of development. Practically-useful RL design methods validated by systematic per-

formance evaluations are needed. To this end, in the near future RL algorithm devel-

opment may benefit from adapting/incorporating classical and model-based architec-

tural features. Such innovations will allow RL algorithm designers to draw from well-

established and practically-tested classical theory to provide much-needed insights

on RL controller synthesis and to shed light on performance guarantees/limitations.

Conducting transparent “apples-to-apples” performance comparisons with classical

techniques is necessary to formalize CT-RL as a control method.

2) Taking Advantage of Modeling or Models. By virtue of capturing the

interacting dynamics between the agent and the environment, a well-developed model

may allow the learning controller to more efficiently explore the state space and

thereby improve value function approximation. Such models can be obtained from an

effective and efficient system identification process, or from a first-principles physical

model of the environment such as a kinematic model in the case of mechanical/robotic

systems.

Modeling may bring several additional benefits: 1) Modeling may reduce the

learning controller’s demand for training data and/or reduce the stringency of PE

requirements, thereby mitigating data deficiencies which commonly arise and hinder

68

learning control performance. 2) Incorporating a well-defined model structure directly

in the algorithm design may alleviate the numerical complexity issues illustrated in

this work to some extent. 3) An offline controller may be designed first to be used

before the online learning controller adapts to the specific task needs, and 4) The

learning controller may take advantage of system dynamics by rolling-out or planning

ahead in solving certain sequential decision and control problems.

Yet, it is important to note that a poorly-constructed model may defeat these pur-

poses and may even introduce additional adverse effects to the resulting controller.

Unfortunately, few systematic evaluations have been conducted on the effect of mod-

eling errors due to approximation by a neural network or other modeling methods.

Instead, often the existing neural-network dynamical approximation works simply as-

sume that the approximation error is within an ϵ bound, after which control results

are obtained by illustrating on small, handcrafted examples. Oftentimes these works

use simple neural networks with radial basis functions, which have rarely been as-

sociated with the most recent successes of neural network applications. Systematic

approaches and evaluations are called for to examine the trade-offs between the ad-

vantages of incorporating a model versus the adversities induced by inevitable model

inaccuracy. These issues are out of the scope of the current work, as little results have

been developed to directly account for them in a realistic problem-solving context.

3) Exploring Nonlinear Network Structures for Improved Approximation

/Scaling Performance. Each of the four methods studied here requires a linearly-

independent basis, which is by comparison a strong requirement, since almost none of

the successful demonstrations of RL control rely on linearly-independent bases. Fur-

thermore, CT-RL methods for control almost universally employ single-layer, linear

NN approximation structures (such as polynomial basis functions), which again is

not representative in comparison to the approximation capabilities of deep networks.

69

Future works which relax such assumptions and take advantage of deep networks

could perhaps improve the dimensional scaling and approximation issues exhibited

by current CT-RL algorithms. Along this vein, a fruitful future area of study may

try to explain why computation-based methods such as (deep) neural networks are

effective, at least in case studies and benchmark problems.

4) Performing Systematic Comparative Studies of CT-RL and DT-RL Al-

gorithms. As illustrated in Section 1, DT-RL methods have achieved great successes

in a variety of controls applications. Having now examined their CT counterparts,

a future study which delves into their inherent differences could perhaps shed light

on the CT/DT gap and thereby uncover new insights for future CT-RL algorithm

development. There is a need to investigate at the fundamental level what causes a

loss of learning efficiency in CT-RL methods, and how to flexibly collect data, reuse

data, and remove various theoretical constraints posed as assumptions in developing

the major control results.

Conclusion. These four CT-RL works are instrumental and have inspired an ever-

increasing number of follow-up results. This novel study has illustrated some key

areas in which to improve the seminal ideas developed by these works.

70

Chapter 3

EXCITABLE INTEGRAL REINFORCEMENT LEARNING (EIRL)

Having now conducted the first-of-its-kind CT-RL numerical diagnosis in Section

2, we arrive at the fundamental performance limitations of ADP-based CT-RL al-

gorithms enumerated in the Introduction Section 1. In sum, these algorithms face

significant design challenges due to their complexity, numerical conditioning, and di-

mensional scaling issues. Despite advanced theoretical results, existing ADP CT-RL

synthesis methods are inadequate in solving even small, academic problems.

The goal of this section is thus to introduce a suite of new (decentralized) excitable

integral reinforcement learning (EIRL) CT-RL algorithms for control of affine nonlin-

ear systems. Our design approach relies on three important factors. First, our meth-

ods are applicable to physical systems that can be partitioned into smaller subprob-

lems. This constructive consideration results in reduced dimensionality and greatly

improved intuitiveness of design. Second, we introduce a new excitation framework to

improve persistence of excitation (PE) and numerical conditioning performance via

classical input/output insights. Third, we develop a modulation-enhanced excitation

(MEE) to further improve scaling and numerics through design-motivated nonsin-

gular state transformations. We leverage Kleinman’s well-tested algorithm [117] to

rigorously prove convergence/stability guarantees of the developed methods. These

algorithms output an optimal LQR controller K∗ associated with the linearization

of the nonlinear dynamics under consideration. The EIRL algorithm was originally

developed in [148].

71

3.1 Problem Formulation

System. We consider the continuous-time nonlinear time-invariant affine system

ẋ = f(x) + g(x)u, (3.1)

where x ∈ Rn is the state vector, u ∈ Rm is the control vector, f : Rn → Rn, and

g : Rn → Rn×m. We assume that f and g are Lipschitz on a compact set Ω ⊂ Rn

containing the origin x = 0 in its interior, and that f(0) = 0. We consider the

quadratic cost

J(x0) =

∫ ∞

0

(xTQx+ uTRu) dτ, (3.2)

where Q ∈ Rn×n, Q = QT ≥ 0 and R ∈ Rm×m, R = RT > 0 are the state and control

penalty matrices, respectively.

LQR Problem (Background). The LQR problem considers the continuous-time

linear time-invariant system

ẋ = Ax+Bu, (3.3)

where x ∈ Rn, u ∈ Rm are the state and control vectors, respectively, A ∈ Rn×n, and

B ∈ Rn×m. We assume that (A,B) is stabilizable and (Q1/2, A) is detectable [136].

Under the above dynamical assumptions, the LQR optimal control u∗ associated

with the quadruple (A,B,Q,R) exists, is unique, and assumes the form of a full-state

feedback control law [136]

u∗ = −K∗x, (3.4)

72

where K∗ = R−1BTP ∗, and P ∗ ∈ Rn×n, P ∗ = P ∗T > 0 is the unique positive definite

solution to the control algebraic Riccati equation (CARE)

ATP ∗ + P ∗A− P ∗BR−1BTP ∗ +Q = 0. (3.5)

Kleinman’s Algorithm for Linear Systems [117]. We utilize some successive

approximation concepts from Kleinman’s algorithm together with state-action data

(x, u) from the nonlinear system (3.1) to achieve efficient nonlinear EIRL learning.

Kleinman’s algorithm iteratively solves for the optimal LQR control K∗ (3.4). Sup-

pose that K0 ∈ Rm×n is such that A−BK0 is Hurwitz. For iteration i (i = 0, 1, . . .),

let Pi ∈ Rn×n, Pi = P T
i > 0 be the symmetric positive definite solution of the algebraic

Lyapunov equation (ALE)

(A−BKi)
TPi + Pi(A−BKi) +KT

i RKi +Q = 0. (3.6)

Having solved the ALE Pi (3.6), the controller Ki+1 ∈ Rm×n is updated recursively

as

Ki+1 = R−1BTPi. (3.7)

Relevant Operators for Learning.

Definition 3.1.1. For n ∈ N, let

n ≜ n(n+1)
2

. (3.8)

For l ∈ N and a strictly increasing sequence {tk}lk=0, whenever x, y : [t0, tl] → Rn,

73

define the matrix δx,y ∈ Rl×n as

δx,y =

(
x(t1) + y(t0)

)T ⊗ (
x(t1)− y(t0)

)T(
x(t2) + y(t1)

)T ⊗ (
x(t2)− y(t1)

)T
...(

x(tl) + y(tl−1)
)T ⊗ (

x(tl)− y(tl−1)
)T

, (3.9)

where ⊗ denotes the symmetric Kronecker product (cf. Appendix A). Whenever x, y

are square-integrable, define Ix,y ∈ Rl×n as

Ix,y =

∫ t1
t0
xT ⊗ yT dτ∫ t2

t1
xT ⊗ yT dτ

...∫ tl
tl−1

xT ⊗ yT dτ

. (3.10)

3.2 Algorithms and Training

In the classical LQR problem, Kleinman’s algorithm [117] reduces the CARE, a

quadratic matrix equation, to an iterative sequence of algebraic Lyapunov equations

(ALEs), linear matrix equations. Inspired by Kleinman’s approach, EIRL and dEIRL

use state-action data generated by the nonlinear system (3.1) to iteratively solve the

CARE associated with its linearization via a sequence of simpler linear regression

problems. dEIRL reduces the dimension of the regressions by taking advantage of

the decentralized dynamical structure (3.21).

Single-Injection (SI) and Multi-Injection (MI). We first note that EIRL and

dEIRL can each be implemented with single-injection (SI) and multi-injection (MI)

modes. As such, we propose a suite of four CT-RL algorithms in this work. Figure 3.1

shows a standard negative feedback structure, consisting of a controller K and plant

74

P (each of which may be linear or nonlinear). For SI, a probing noise d is injected

at the plant input (cf. Figure 3.1). This is how probing noise is generally applied for

CT-RL algorithms [137]. In the case of MI, a reference command r, selected by the

designer to improve PE, is also injected. We will discuss these two modes further in

Sections 3.4.1 and 3.4.2.

r
reference
command

- -
e

error
K

Controller

-
u

control
f?

di
input

disturbance

-
up

P

Plant

-
yp f?
do

output

disturbance

-
y

actual
output

�

6−
f

f
6n
sensor
noise

Figure 3.1: Standard Negative Feedback Structure.

Critic Network Structure. The critic network is given by

V (x) = (x⊗x)T svec(Pi) (3.11)

where svec is the symmetric vectorization operator (cf. Appendix A), svec(Pi) ∈

Rn is the weight vector yielded from the EIRL learning regression (3.18) (discussed

shortly), and the basis (of dimension n) consists of the monomials of degree two

x⊗x ∈ Rn. Applying standard symmetric Kronecker product identities (Appendix

A) yields yields V (x) = (x⊗x)Tv(Pi) = xTPix – the same quadratic approximation

form of Kleinman’s algorithm.

Policy Structure. Once having solved for the value function approximator V (x)

(3.11), we construct a corresponding sequence of learning policies of the form u(x) =

−Kix (see Figure 3.1). We generate these policies Ki from the critic network weights

75

svec(Pi) (3.18) via the nonlinear EIRL learning procedure described below.

3.2.1 Single-Injection Excitable Integral Reinforcement Learning (SI-EIRL)

Given an iteration i ≥ 0, we use the method of integral reinforcement [1, 98, 149]

to construct a learning update for the next iteration policy u(x) = −Ki+1x. Let

t0 < t1 be given. The critic network approximates the integral cost J (3.2), which

implies that along environment trajectories, we have

V (x(t1))− V (x(t0)) ≈ J(x(t1))− J(x(t0)) =
∫ t1

t0

xTQx+ uTRudτ (3.12)

The right-hand-side of (3.12), called the integral reinforcement signal, requires only

state-action data (x, u) from the nonlinear system (3.1). (3.12) is exact only when

V = J , and the learning objective is to minimize the residual network approximation

error in (3.12). In order to recast (3.12) in a form amenable to regression, we first

rearrange the terms in (3.1) as

ẋ = w(x) + g(x)u+ Aix+BKix,

w(x) ≜ f(x)− Ax, Ai ≜ A−BKi. (3.13)

Here, the drift term w(x) ≜ f(x)−Ax ∈ Rn fully captures 1) the system nonlinearities,

2) dynamical coupling, and 3) possible model uncertainties, while A, B are known

nominal linearization terms of f , g in (3.1). We emphasize that the equation (3.13) is

still exact to the original nonlinear dynamics (3.1). Since (3.13) contains the current-

iterate policy Ki, it may be used to solve for the next-iterate policy Ki+1 when

combined with the integral reinforcement equation (3.12) as follows. We differentiate

76

the value function V along system trajectories, yielding

V (x(t1))− V (x(t0)) =

∫ t1

t0

d

dτ
{V (x)} dτ. (3.14)

Along the solutions of the nonlinear system (3.1), this is

V (x(t1))− V (x(t0)) = xT (t1)Pix(t1)− xT (t0)Pix(t0)

=

∫ t1

t0

[
2
(
w(x) + g(x)u+BKix

)T
Pix+ xT

(
ATi Pi + PiAi

)
x
]
dτ.

(3.15)

Applying standard symmetric Kronecker product algebraic identities (cf. Appendix

A) and rearranging terms, (3.15) becomes

[
− 2

∫ t1

t0

(
w(x) + g(x)u+BKix

)
⊗x dτ

+
(
x(t1) + x(t0)

)
⊗
(
x(t1)− x(t0)

)]T
svec(Pi)

=

[∫ t1

t0

x⊗x dτ
]T

svec
(
ATi Pi + PiAi

)
(3.16)

= −
[∫ t1

t0

x⊗x dτ
]T

svec
(
Q+KT

i RKi

)
, (3.17)

where the last equality (3.17) follows from the fact that Pi = P T
i > 0 satisfies the

ALE (3.6). The integral reinforcement equation (3.17) is now of the required form for

learning regression: The terms in brackets
[
− 2

∫ t1
t0
. . .

]T
svec(Pi) contain the system

trajectory integral and difference data and will form a single row of the learning

matrix Ai (3.19), multiplied on the right by the critic weight vector svec(Pi) ∈ Rn.

Meanwhile, the term in svec
(
Q + KT

i RKi

)
requires only integral state data x and

will form a single element of the learning vector bi (3.20).

77

We now use the integral reinforcement (3.17) (which comprises a single trajectory

sample) to construct the learning matrices Ai ∈ Rl×n, bi ∈ Rl (3.18) from l such

samples. Specifically, For l ∈ N and a strictly increasing sequence {tk}lk=0, applying

(3.17) at the sample instants {tk}lk=0 and manipulating further, we arrive at the

least-squares regression

Ai svec(Pi) = bi, (3.18)

where Ai ∈ Rl×n, bi ∈ Rl are given by

Ai = −2
[
Ix,w+gu + Ix,x

(
In⊗BKi

)T]
+ δx,x, (3.19)

bi = −Ix,x svec(Qi), Qi ≜ Q+KT
i RKi. (3.20)

Here, Ix,• ∈ Rl×n (3.10) and δx,x ∈ Rl×n (3.9) are simply “storage” matrices containing

integral data Ix,• ←
∫ tk
tk−1

x dτ and difference data δx,x ← x(tk) − x(tk−1) between

trajectory samples as they appear in the integral reinforcement equation (3.17).

Having solved for the critic weights svec(Pi) (3.18), we update the controller

Ki+1 with (3.7), after which we return to (3.27) to yield the next-iteration weights

svec(Pi+1), and so on. This nonlinear EIRL learning procedure is summarized in

Figure 3.2.

Remark 3.2.1 (EIRL Algorithm vs. Original IRL Formulation [1]: Probing

Noise, Data Reuse). EIRL accommodates learning in controller design via appro-

priate probing noise injection, which the original IRL algorithm [1] does not include

in its formulation. Lack of probing noise proves a practical design hindrance, as it

renders proper system excitation nearly impossible [137]. Furthermore, the symmet-

ric Kronecker product algebra derived for the term Ix,x
(
In⊗BKi

)T
= Ix,BKix (3.19),

78

-r f
−

-e
Policy Network

µi(x)
u Nonlinear Environment

ẋ = f(x) + g(x)u

-y

6
xr-

6x

Integral Reinforcement∫ tk
tk−1

xTQx+ µT
i Rµidτ

6

EIRL Learning Update

Ai svec(Pi) = bi

� ciValue Network

V (x)

EIRL Learning Loop

EIRL Feedback Loop

Figure 3.2: EIRL Nonlinear Learning and Feedback Structure.

enabled by Kleinman’s structure [117], allows the EIRL algorithm to reuse the same

state trajectory data collected under the initial stabilizing policy K0 for generation of

the sequence {Ki}∞i=1. This is in contrast to the original IRL formulation [1], which

for iteration i requires state-action data to be simulated under the stabilizing policy

Ki before updating to Ki+1.

Remark 3.2.2 (EIRL Algorithm vs. Subsequent IRL Formulation [149]:

Accommodating Nonlinear Systems, Dimensionality Reductions). The EIRL

formulation is inspired by [149], but EIRL offers various practical improvements.

Firstly, EIRL accommodates nonlinear systems, while [149] applies to linear systems

only. More importantly, comparing the learning regression (3.18) with [149, Equation

(11)], we see that (3.18) is lower-dimensional (n for EIRL versus n + mn in [149]).

This is because the controller Ki+1 ∈ Rm×n is no longer a part of the regression vector

in (3.18). As a result, knowledge of the system input dynamics g (and hence B) is

required in (3.18). Our tradeoff for reduced dimensionality in exchange for system

knowledge results in control solutions that were not achievable by previous methods,

which struggle for low-order academic examples (n = 2, m = 1) [137].

79

3.3 Decentralization

In this section, we illustrate how EIRL may be readily generalized to a decen-

tralized system which affords a physically-motivated dynamical partition with N ≥ 1

loops.

3.3.1 Setup

Consider a decentralized nonlinear system (f, g) of the following form. We present

N = 2 loops for illustration, but all results generalize to N > 2 loops:

 ẋ1

ẋ2

 =

 f1(x)

f2(x)

+

 g11(x) g12(x)

g21(x) g22(x)

 u1

u2

 . (3.21)

No assumptions are made on dynamic coupling between the loops; i.e., the loops

may be fully coupled. Here, xj ∈ Rnj , uj ∈ Rmj (j = 1, . . . , N) with
∑N

j=1 nj =

n and
∑N

j=1mj = m. For convenience, we define gj : Rn → Rnj×m, gj(x) =[
gj1(x) · · · gjN(x)

]
. We consider the block-diagonal Q-R cost structure

Q =

 Q1 0

0 Q2

 , R =

 R1 0

0 R2

 , (3.22)

where Qj ∈ Rnj×nj , Qj = QT
j ≥ 0, and Rj ∈ Rmj×mj , Rj = RT

j > 0 (j = 1, . . . , N).

Kleinman’s algorithm (Section 3.1) may be applied to a decentralized linear system

(A,B):

 ẋ1

ẋ2

 =

 A11 A12

A21 A22

 x1

x2

+

 B11 B12

B21 B22

 u1

u2

 , (3.23)

80

where we analogously define Bj =

[
Bj1 · · · BjN

]
∈ Rnj×m. This yields sequences

{Pi,j}∞i=0 in Rnj×nj and {Ki,j}∞i=1 in Rmj×nj from the ALE

(Ajj −BjjKi,j)
TPi,j + Pi,j(Ajj −BjjKi,j) +KT

i,jRjKi,j +Qj = 0. (3.24)

Thus, analogously to (3.11) the critic network for dEIRL is given by

V (x) =
N∑
j=1

Vj(xj), Vj(xj) = (xj ⊗xj)T svec(Pi,j) (3.25)

where now svec(Pi,j) ∈ Rnj is yielded from dEIRL learning (3.27), described subse-

quently.

3.3.2 Single-Injection Decentralized Excitable Integral Reinforcement Learning

(SI-dEIRL)

Let any loop 1 ≤ j ≤ N be given. Similarly to (3.13), rearranging terms in the

decentralized nonlinear dynamics (3.21) yields

ẋj = wj(x) + gj(x)u+ Ai,jxj +BjjKi,jxj,

wj(x) ≜ fj(x)− Ajjxj, Ai,j ≜ Ajj −BjjKi,j. (3.26)

Given designer-selected sample count lj ∈ N and sample instants {tk,j}
lj
k=0, following

a derivation entirely analogous to that presented in Section 3.2.1, we arrive at the

decentralized least-squares regression

Ai,j svec(Pi,j) = bi,j, (3.27)

81

where the learning matrices Ai,j ∈ Rlj×nj , bi,j ∈ Rlj are

Ai,j = −2
[
IB(xj ,wj+gju) + IB(xj ,xj)W

T
i,j

]
+ δxjxj , (3.28)

bi,j = −IB(xj ,xj)v(Qi,j), Qi,j ≜ Qj +KT
i,jRjKi,j (3.29)

and where Ixj ,• ∈ Rl×nj (3.10) and δxj ,xj ∈ Rl×nj (3.9) are defined analogously to the

respective matrices in the EIRL update (3.27). Having solved for the critic weights

svec(Pi,j) (3.27), we update the policy analogously to (3.7):

Ki+1,j = R−1
j BT

jjPi,j. (3.30)

Table 3.1: Data and Dynamical Information Required

System Type
EIRL dEIRL Loop j

Data Dyn a Data Dynamics b

Nonlin, Coupled (x, u) f , g (x, u) fj, gj
Lin, Coupled (x, u) B (x, u) Ajk (k ̸= j), Bj

Nonlin, Decoup (x, u) f , g (xj, uj) fj, gjj
Lin, Decoup (x, u) B (xj, uj) Bjj

aFor definitions: f , g (3.1), B (3.3).

bFor definitions: fj , gj , gjj (3.21), Ajk, Bj , Bjj (3.23).

Remark 3.3.1 (Dynamical Information of Physical Process Required). Ta-

ble 3.1 summarizes the state-action data and dynamical information required to run

EIRL and decentralized EIRL (dEIRL) in loop 1 ≤ j ≤ N . These physics-based

algorithms require a nominal model (f, g), which in turn leads to a nominal lineariza-

tion (A,B). However, they utilize state-action data (x, u) from the actual physical

process to learn the optimal policy for the true nonlinear dynamics. In the case the

system is linear, EIRL does not require knowledge of the drift dynamics A, a com-

mon feature of IRL-based algorithms [1, 98, 149]. Meanwhile for dEIRL, in the case

82

that the system is linear of the form (3.23), then wj(x) =
∑

k ̸=j Ajkxk. Knowledge

of the dominant diagonal drift dynamics term Ajj is no longer required; rather, the

designer only requires knowledge of the off-diagonal dynamics Ajk. In the case that

the system (3.21) is decoupled, fj is a function of xj only. Furthermore, in this case

gj(x)u = gjj(xj)uj. Altogether, this says that only collection of state-action data

(xj, uj) is required to run dEIRL in loop j, rather than the entire dataset (x, u).

Thus, dynamical decoupling implies algebraic decoupling in the dEIRL algorithm.

3.4 Multi-Injection (MI)

3.4.1 Probing Noise Injection: Insights on a Fundamental Conflict between RL and

Classical Control Principles

PE requirements are often invoked in proofs of CT-RL algorithm convergence in

ADP [1–4]. To achieve PE, in ADP it has long been standard practice to apply a

probing noise d to the system (3.1). Meanwhile in machine learning, extensive explo-

ration in the environment resulting in a vast number of data samples during learning

practically achieves PE [7, 8]. Unfortunately, the empirical analysis in [137] illus-

trates that a lack of constructive design to meet the requirement of PE introduces

myriad practical design complications in ADP, even for simple second-order exam-

ples. To gain insights on the issue, we first define a few relevant closed-loop maps.

Returning to Figure 3.1 in the case of a linear plant P and controller K, we define

the P -sensitivity PSu = Tdy as the closed-loop map from plant input disturbance d to

plant output y, and we define the complementary sensitivity at the error Te = Try as

the closed-loop map from reference command r to plant output y [136]. To illustrate

typical input/output behavior, Figure 3.3 shows these two closed-loop frequency re-

sponses for the nominal HSV design in Section 4 – both the exact MIMO frequency

83

response (blue solid curve) and SISO approximations in each of the loops (dashed

curves).

10-3 10-2 10-1 100 101 102
-60

-50

-40

-30

-20

-10

(a)

10-3 10-2 10-1 100 101 102
-20

-15

-10

-5

0

5

10

(b)

Figure 3.3: Closed-Loop Frequency Responses: The Probing Noise Injection Issue,
Visualized. (a): P -Sensitivity PSu = Tdiy. (b): Complementary Sensitivity at the
Error Te = Try.

Let us examine the frequency response in loop j = 2 of the HSV (associated

with flightpath angle y2 = γ, yellow dashed curve), which will turn out to be the

most numerically-troublesome in Section 4. Since probing noise is inserted at the

plant input, the effective closed-loop map from probing noise d to output y is the P -

sensitivity Tdy. With this in mind, one glance at the yellow dashed SISO Tdy response

in Figure 3.3a immediately reveals issues: Any probing noise will be attenuated by

at least −25 dB (a factor of about 20) as a best-case, and only so near frequencies

of ω ≈ 1 rad/s. Even more troubling, any probing noise frequency content below

ω ≈ 10−1 rad/s and above ω ≈ 2.5 rad/s will be attenuated by more than −40 dB

– a factor of 100. In light of this simple linear classical analysis, it is no wonder

that achieving sufficient system excitation via probing noise injection proves to be a

significant issue for the nonlinear flightpath angle learning in loop j = 2.

This real-world example illustrates a broader and more fundamental divergence

84

between RL and classical control. From a classical perspective, a control designer is

pleased by the P -sensitivity in Figure 3.3a; indeed, good input disturbance rejection

is a pillar of sound control system design [11, 136]. On the other hand, from an RL

perspective, a designer is troubled by such a P -sensitivity response, for a best-case

attenuation of −25 dB means that sufficient system excitation is likely impossible to

achieve within reasonable bounds of control effort. Hence, we arrive at the unfortunate

conclusion that the now-standard RL practice of probing noise injection has pitted

learning requirements diametrically at odds with classical control principles. This

motivates MI designs.

3.4.2 Multi-Injection (MI) EIRL and dEIRL

In light of the fundamental conflict illustrated in Section 3.4.1, the question natu-

rally arises: How may RL control algorithms be modified to accommodate an excita-

tion framework which is in alignment with classical control principles? The remedy

lies again in application of simple input-output intuitions. Just as input-disturbance

rejection is a pillar of good control system design, so too is (low-frequency) refer-

ence command following [11, 136]. Graphically representative of this principle is the

complementary sensitivity Try plotted in Figure 3.3b, which remains near 0 dB (i.e.,

unity y ≈ r) at low frequencies. We hence pose the following multi-injection solution:

Instead of inserting only a probing noise d at the plant input, we apply the control

u = −Ke+d, where the excitation Ke = K(r−y) (Figure 3.1) results from insertion

of a designed reference command r.

MI offers multiple benefits: First and foremost, reference command injection al-

lows the designer to modulate system excitation via the complementary sensitivity

map Try, which is much favorable in comparison to the P -sensitivity Tdy from an

input-output perspective (Figure 3.3). Second, the designer now has multiple excita-

85

tion “knobs” (namely, the usual probing noise d in addition to the reference command

r) to tweak in order to improve data quality. These excitations d, r may be determin-

istic (as we choose in our evaluations below, for continuity with the leading CT-RL

works [1–4] and to exploit the input-output insights discussed), or they may be cho-

sen as random noises if the designer sees fit for their application. In light of observed

CT-RL PE issues [137], this increased excitation flexibility is of great practical use.

Lastly, by virtue of lumping the additional reference command term r in the con-

trol u, MI doesn’t explicitly alter RL algorithm theoretical formulations and can be

readily implemented on nonlinear compensators in the general RL context. Specifi-

cally, suppose a CT-RL algorithm has been formulated under the standard probing

noise injection excitation framework; i.e., requires application of a control of the form

u = µ(x)+d for some stabilizing policy µ. Since the optimal control problem already

requires full-state information, it is not restrictive to designate a subset of the state

x as measurement variables y for reference injection. Suppose that p ≤ n variables

of the state x have been chosen so, and assume after possibly re-indexing that x has

the form x =
[
yT xTr

]T
, where xr ∈ Rn−p denotes the rest of the state. If we apply a

reference excitation r to the closed-loop system, note that the control

u = µ(e, xr) + d = µ(y, xr) + d̃, (3.31)

d̃ ≜ d+ (µ(e, xr)− µ(y, xr)) (3.32)

is also of the form u = µ(x) + d̃ required for execution. Since the probing noise d is

an excitation signal in RL formulations, the choice d = d̃ is permissible. Thus, MI

is a viable candidate for improving PE properties of existing RL methods involving

the usual probing noise formulation. In exchange for this enhanced MI excitation

tool, computational burden has increased slightly if the compensator K is dynamic

86

(which is the case, e.g., when integral augmentation is performed [11, 136]). In this

case, the excitation Ke needs to be simulated dynamically online, in addition to the

usual response Ky. However, we make the important notes that in spite of this slight

computational cost, MI does not affect dimensionality of the underlying learning

problem, nor does it impose additional requirements on system dynamics knowledge.

To conclude this section, we summarize the EIRL and dEIRL execution procedure

in Algorithm 6, both in their SI and MI modes.

Algorithm 6 EIRL/dEIRL Algorithm.

1: Hyperparameters: (Selection methods in Section 4.1).

� N ∈ N loops (N = 1: EIRL, N > 1: dEIRL).

In each loop j = 1, . . . , N :

� Cost Qj, Rj (3.2), stabilizing controller K0,j (3.30).

� Learning Params: Sample period Ts,j, number of samples lj, number of
iterations i∗j (cf. Table 4.1).

� Excitations: Probing noise dj, plus reference command rj for MI.

2: Data Collection: In each loop j = 1, . . . , N , apply
3: if SI then
4: dj
5: else if MI then
6: dj, rj
7: end if

to system (3.1), starting from initial condition x0 ∈ Rn simulating un-
der initial stabilizing policy K0,j, collecting environment state-action data{(
xj(kTs,j), uj(kTs,j)

)}lj
k=0

.
8: Learning:
9: for each loop j = 1, . . . , N do
10: for each algorithm iteration i = 0, . . . , i∗j do
11: Perform regression svec(Pi,j) (3.27).
12: Update critic NN Vj(xj)← (xj svecxj)

T svec(Pi,j) (3.25).
13: Perform inversion svec(Pi,j) 7→ Pi,j (Prop. ??).
14: Update policy Ki,j ← Ki+1,j (3.30).
15: end for
16: end for
17: Termination: Final policies Ki∗j ,j

(j = 1, . . . , N).

87

3.5 Modulation-Enhanced Excitation (MEE)

In this section, we develop our novel modulation-enhanced excitation (MEE)

framework, which uses invertible transformations of the system state variables in

order to modulate the (d)EIRL regression (3.27) for improved algorithm condition-

ing. This framework makes extensive use of the new symmetric Kronecker product

algebra developed in Appendix A.

3.5.1 A Motivating Example

First, we motivate the need for the developed MEE framework via an illustrative

example. Consider the system

 ẋ1

ẋ2

 =

 −1 0

0 −0.1

 x1

x2

+

 1 0

0 1

 u1

u2

 . (3.33)

The system (3.33) is a diagonal linear system consisting of a high-bandwidth loop

j = 1 (associated with x1, u1) and a low-bandwidth loop j = 2 (associated with

x2, u2). Such weakly-coupled two-loop systems with a decade separation in bandwidth

are quite common in real-world applications (e.g., the HSV example of Section 4).

Oftentimes, control/actuator saturation is a major concern for designing in hard-

ware, especially for RL excitation purposes in lower-bandwidth loops. For example,

in robotics applications, designers must consider the load specifications of the mo-

tors/servomechanisms, which have significant impact on achievable closed-loop per-

formance [43, 44]. In aerospace applications, control surface deflections have strict

bounds to avoid aerodynamic stall [122]. To account for control saturation concerns

in this example, suppose the designer has constraints of u1(t) ∈ [−1, 1] in the high-

bandwidth loop j = 1 and u2(t) ∈ [−0.1, 0.1] in the low-bandwidth loop j = 2. We

88

consider natural designer first-choices for the cost structure: Q = I2, R = diag(1, 10),

where the larger control penalty on u2 reflects the designer’s control saturation con-

cerns in this channel. Similarly, for EIRL’s hyperparameters, we select a sample

period Ts = 0.1 (i.e., a sample frequency approximately a decade above the highest-

bandwidth mode in the plant), i∗ = 5 iterations, and l = 5 data points. For probing

noises, we choose d1(t) = cos(t), d2(t) = 0.1 cos(0.1t), the amplitudes reflecting the

designer’s consideration of control saturation in each channel, and the frequencies

placed at the bandwidths of the respective loop modes.

Suppose that the designer opts for a single-loop design N = 1 (i.e., not using de-

centralization and hence executing EIRL (Section 3.2.1) rather than dEIRL (Section

3.3.2). Noting that the open-loop system (3.33) is stable, Theorem 3.6.2 (developed

in Section 3.6 shortly) guarantees that the stabilizing controller K0 = 0 ∈ R2×2 will

result in convergence of the (d)EIRL algorithm to the optimal controller K∗. Run-

ning EIRL, the final controller Ki∗ converges to within 1.62 × 10−9 of the optimal

K∗. However, the learning regression has a large peak condition number of 138.47

(cf. conditioning data in Table 3.2). Intuitively, the culprit stems from the max

control effort requirements placed in the low-bandwidth loop j = 2. As a result, the

designer can excite the low-bandwidth loop j = 2 at only a tenth the control effort

of the high-bandwidth loop j = 1. Since the probing noise frequencies were placed

at the respective loop bandwidths, the state response x1(t) in the high-bandwidth

loop exhibits approximately ten times the amplitude of the response x2(t) in the low-

bandwidth loop, resulting in scaling and thus conditioning issues in the regression

matrix Ai,j (3.28).

The designer’s insight to fix the issue is clear: The state response x2(t) in the

low-bandwidth loop needs to be scaled up by a factor of ten to improve scaling. This

raises the central questions: How may we address this significant scaling issue in a

89

systematic design framework which leverages physical insights (in this case, our satu-

ration constraints) while achieving excitation and thus good numerical conditioning?

Crucially, how can we ensure that such a framework preserves dEIRL’s key theoretical

convergence and closed-loop stability guarantees (to be developed in Section 3.6)?

In a real-world analogue to this scenario, the designer oftentimes has no physical

means of recourse to address these conditioning issues: The excitation level in the

high-bandwidth loop j = 1 cannot be reduced without degrading PE and hence learn-

ing performance in this loop. Furthermore, oftentimes unit scaling between unlike

physical measurements renders the equilibration of responses physically intractable

(e.g., in the HSV example studied in Section 4, velocity oscillations on the order of

100 ft/s are needed to achieve good PE in the translational loop, yet flightpath angle

oscillations on the order of 100 deg in the rotational loop are nonsensical). This sim-

ple example illustrates that the problem runs deeper: Even when the system has been

excited to the greatest possible extent, physical constraints and/or unit intermingling

may still leave the learning regression poorly conditioned. These fundamental design

concerns make the symmetric Kronecker product results of the next section all the

more vital.

Table 3.2: MEE Motivating Example: Max/Min Conditioning

Algorithm Loop j max
i

(κ(Ai,j)) min
i
(κ(Ai,j))

EIRL 1 138.47 36.04
EIRL

1 14.05 7.14
w/ MEE

dEIRL
1 1.00 1.00
2 1.00 1.00

Before developing the results, we here demonstrate how they intuitively solve

the problem: Choosing the natural modulation matrix S = diag(1, 10) ∈ GL(2)

drastically improves EIRL conditioning, reducing it by a factor of ten from 138.47

90

before MEE to 14.05 after MEE (Table 3.2). Thus, using little beyond common-

sense principles, MEE can offer conditioning reductions of an order of magnitude to

designers using the EIRL/dEIRL algorithm.

We conclude this section by employing a decentralized design (i.e., dEIRL) in each

of the N = 2 loops. Using identical hyperparameters, the resulting final controllers

Ki∗,1, Ki∗,2 converge to within 1.38× 10−11 and 1.49× 10−9 of the optimal controllers

K∗
1 , K

∗
2 in each loop, respectively. Furthermore, dEIRL has unity conditioning in each

loop (since the dimension of each is n1 = n2 = 1), illustrating the general principle

that dEIRL’s use of physically-motivated dynamical insights enables further learning

performance improvements.

3.5.2 Kleinman’s Algorithm & Modulation

Let a decentralized loop 1 ≤ j ≤ N be given, and suppose that K0,j ∈ Rmj×nj is

such that Ajj−BjjK0,j is Hurwitz in loop j. We may then apply Kleinman’s algorithm

(Section 3.1), yielding sequences {Pi,j}∞i=0 in Rnj×nj and {Ki,j}∞i=0 in Rmj×nj from the

ALE

ATi,jPi,j + Pi,jAi,j +Qi,j = 0. (3.34)

where the matrices Ai,j and Qi,j are given by (3.26) and (3.29), respectively. We have

seen, vis. (A.24) of Appendix A, that the ALE (3.34) is equivalent to the following

vectorized ALE regression

(Ai,j ⊕Ai,j)T svec(Pi,j) = − svec(Qi,j). (3.35)

91

Now, suppose S = diag(S1, . . . , SN) ∈ GL(n), Sj ∈ GL(nj) (j = 1, . . . , N), is any

nonsingular coordinate transformation x̃ = Sx, partitioned in the decentralized form

x̃j = Sjxj. (3.36)

This induces the following transformed LQR problem in loop j, associated with the

quadruple (Ãjj, B̃jj, Q̃j, Rj), where

Ãjj = SjAjjS
−1
j , B̃jj = SjBjj, Q̃j = S−T

j QjS
−1
j . (3.37)

By similarity, the controller K̃i,j = Ki,jS
−1
j is such that Ãi,j = Ãjj − B̃jjK̃i,j is

Hurwitz. This motivates the following modulated ALE

ÃTi,jP̃i,j + P̃i,jÃi,j + Q̃i,j = 0. (3.38)

Modulation by nonsingular coordinate transformations is common practice in the

study of matrix equations, oftentimes offering significant theoretical/numerical ad-

vantages for purposes of solving [150]. Nonsingular state transformations are also

commonly used in classical control of multivariable control systems to improve direc-

tionality properties [136].

3.5.3 (d)EIRL & Modulation: MEE Framework

Now, consider the analogue in the (d)EIRL algorithm. Associate with the nonsin-

gular coordinate transformation Sj ∈ GL(nj) the transformed problem (f̃j, g̃j, Q̃j, Rj)

in loop j, where

f̃j = Sj ◦ fj ◦ S−1, g̃j = Sj ◦ gj ◦ S−1. (3.39)

92

This induces the following modulated dEIRL least-squares regression, analogous to

(3.27), which we term the MEE regression for brevity:

Ãi,j svec(P̃i,j) = b̃i,j. (3.40)

We will develop the properties of the MEE regression in our subsequent theoretical

results of Section 3.6.

3.6 Theoretical Results

In this section, we prove key convergence, optimality, and closed-loop stability

guarantees of the presented methodologies. We also prove the key symmetric Kro-

necker product results which enable the use of MEE (Section 3.5) to further improve

algorithm numerical properties while preserving the original control solution before

modulation. Throughout this section, we assume that the baseline dynamical as-

sumptions outlined in Section 3.1 hold for well-posedness of the underlying optimal

control problem.

3.6.1 Convergence, Optimality, and Closed-Loop Stability of (d)EIRL

In order to develop the convergence, optimality, and closed-loop stability guaran-

tees of the (d)EIRL algorithm, we leverage the theoretical properties of Kleinman’s

algorithm:

Theorem 3.6.1 (Convergence, Optimality, and Closed-Loop Stability of

Kleinman’s Algorithm [117]). Let the assumptions of Section 3.1 hold. Then we

have the following:

(i) A−BKi is Hurwitz for all i ≥ 0.

93

(ii) P ∗ ≤ Pi+1 ≤ Pi for all i ≥ 0.

(iii) lim
i→∞

Ki = K∗, lim
i→∞

Pi = P ∗.

We now move on to EIRL. Before proceeding to the main theoretical results, we

require the following two lemmas:

Lemma 3.6.1. Suppose that the controller Ki ∈ Rm×n is stabilizing, and that the

matrix Ai ∈ Rl×n (3.19) has full column rank. Then Pi ∈ Rn×n, Pi = P T
i > 0 is

the unique positive definite solution to the ALE (3.6) if and only if Pi satisfies the

least-squares regression (3.18) at equality. In particular, the least-squares solution of

the EIRL algorithm (3.18) yields the solution of the associated ALE (3.6).

Proof: The forward direction was proved in (3.15)–(3.17). Conversely, suppose

svec(P) ∈ Rn minimizes the least-squares regression (3.18). Since Ai has full column

rank, the solution svec(P) ∈ Rn is unique. Moreover, letting Pi = P T
i > 0 be the

unique positive definite solution to the ALE (3.6), we have seen that svec(Pi) ∈

Rn satisfies (3.18) at equality. Thus, svec(P) = svec(Pi). Since svec is a bijection

(Proposition A.3.1), this implies P = Pi is the solution to the ALE (3.6). ■

Lemma 3.6.2. Suppose that l ∈ N and the sample instants {tk}lk=0 are chosen such

that the matrix Ix,x (3.10) has full column rank n. If Ki is stabilizing, then the matrix

Ai ∈ Rl×n (3.18) has full column rank n.

Proof: Follows similarly from the proof of [149, Lemma 6]. Suppose svec(P) ∈ Rn

is such that Ai svec(P) = 0. Then (3.16) (which holds for any symmetric matrix)

implies that Ai svec(P) = Ix,x svec(M), where M ∈ Rn×n, M =MT is given by

M = ATi P + PAi. (3.41)

94

(3.41) is an ALE, which since M = MT and since Ai = A− BKi is Hurwitz has the

unique solution P =
∫∞
0
eA

T
i τ (−M)eAiτ dτ [136]. Meanwhile, by full column rank of

Ix,x, that Ix,x svec(M) = 0 implies svec(M) = 0, or M = 0. Since M = 0, we see

P = 0, whence svec(P) = 0. Altogether, we have shown that Ai has a trivial right

null space, so it has full column rank. ■

Theorem 3.6.2 (Convergence, Optimality, and Closed-Loop Stability of

EIRL Algorithm). Suppose that l ∈ N and the sample instants {tk}lk=0 are chosen

such that the matrix Ix,x (3.10) has full column rank n. If K0 is such that A− BK0

is Hurwitz, then the EIRL algorithm and Kleinman’s algorithm are equivalent in

that the sequences {Pi}∞i=0 and {Ki}∞i=1 produced by both are identical. Thus, the

convergence, optimality, and stability conclusions of Kleinman’s algorithm (Theorem

3.6.1) hold for the EIRL algorithm as well.

Proof: Follows by induction on i, after application of Lemmas 3.6.2 and 3.6.1. ■

Entirely analogous versions of Lemmas 3.6.1 and 3.6.2 hold for the dEIRL algo-

rithm developed in Section 3.3.2, and hence the results of Theorem 3.6.2 extend to

the dEIRL algorithm:

Theorem 3.6.3 (Convergence, Optimality, and Closed-Loop Stability of

dEIRL Algorithm). Suppose for 1 ≤ j ≤ N that lj ∈ N and the sample instants

{tk,j}
lj
k=0 are chosen such that the matrix Ixj ,xj (3.10) has full column rank nj. If

K0,j is such that Ajj−BjjK0,j is Hurwitz, then the dEIRL algorithm and Kleinman’s

algorithm are equivalent in that the sequences {Pi,j}∞i=0 and {Ki,j}∞i=1 produced by

both are identical. Thus, the convergence, optimality, and closed-loop stability con-

clusions of Kleinman’s algorithm (Theorem 3.6.1) hold for the dEIRL algorithm as

well.

95

Remark 3.6.1 (dEIRL Algorithm: Decentralized Learning, with or without

Dynamic Coupling). The dEIRL algorithm (via Theorem 3.6.3) guarantees conver-

gence to the solution of the linear quadratic regulator problem associated with loop j:

(Ajj, Bjj, Qj, Rj) from state trajectory data generated by the nonlinear system (f, g)

(3.21), regardless of if (f, g) is dynamically coupled between loops j = 1, . . . , N . Note

that Theorem 3.6.3 involves only a fixed single loop 1 ≤ j ≤ N , both in terms of

assumptions and results. We in particular call attention to the crux of the hypotheses

required in Theorem 3.6.3: full-column rank of the matrix Ixj ,xj ∈ Rlj×nj (3.10). This

matrix places requirements on the quality of state trajectory data xj in loop j only.

Thus, the dEIRL algorithm is truly decentralized: The loops j = 1, . . . , N may be

updated entirely independently, and the designer may focus on data quality in the

individual loops rather than for the aggregate system. As a result, dEIRL offers sig-

nificant real-world benefits to designers in terms of dimensionality, allowing a single

higher-dimensional problem to be partitioned into lower-dimensional subproblems.

3.6.2 Modulation Invariance of (d)EIRL

In this section, develop the fundamental symmetric Kronecker product results

which form the basis of our proposed MEE framework (Section 3.5). The results

apply in their entirety to both the EIRL and dEIRL algorithms, but we will focus on

the dEIRL case here for simplicity. At this point in the development, two questions

are natural: 1) How do the original sequences {Pi,j}∞i=0, {Ki,j}∞i=0 (3.34) output by

Kleinman’s algorithm relate to the modulated sequences {P̃i,j}∞i=0, {K̃i,j}∞i=0 (3.38)?

Noting by Theorem 3.6.3 that dEIRL and Kleinman’s algorithm are equivalent, this

first question also addresses the relations between the respective sequences produced

by dEIRL. And, 2) How does prescaling interact with the symmetric Kronecker prod-

uct algebra developed in Appendix A? That is, how does prescaling affect the terms

96

in the ALE regression (3.35) and the dEIRL regression (3.27), and what structural

parallels exist between the two?

Theorem 3.6.4 (Kleinman’s Algorithm: Modulation Invariance). Pi,j ∈ Snj ,

Pi,j > 0 satisfies the ALE (3.34) if and only if P̃i,j = S−T
j Pi,jS

−1
j satisfies the modu-

lated ALE (3.38).

Proof: We have seen, vis. (A.24) of Appendix A, that the modulated ALE (3.38)

is equivalent to

(Ãi,j ⊕ Ãi,j)T svec(P̃i,j) = − svec(Q̃i,j). (3.42)

Applying the symmetric Kronecker product algebra of Proposition A.3.3, we may

expand (3.42) as

(Sj ⊗Sj)−T (Ai,j ⊕Ai,j)T (Sj ⊗Sj)T svec(P̃i,j)

= −(Sj ⊗Sj)−T svec(Qi,j). (3.43)

By Proposition A.3.3 5S)S), we may multiply both sides by (Sj ⊗Sj)T ∈ GL(nj),

yielding the equivalent regression

(Ai,j ⊕Ai,j)T (Sj ⊗Sj)T svec(P̃i,j) = − svec(Qi,j). (3.44)

However, from comparison of (3.44) and the symmetric vectorization of the original

ALE (3.35), we conclude that (Sj ⊗Sj)T svec(P̃i,j) = svec(Pi,j). Applying Proposition

97

A.3.3 again,

(Sj ⊗Sj)T svec(P̃i,j) = svec(π(STj P̃i,jSj))

= svec(STj P̃i,jSj). (3.45)

In all, STj P̃i,jSj = Pi,j, implying the desired result. The reverse direction follows by a

symmetric argument. ■

We now have a powerful answer to question 1) posed above: Kleinman’s algorithm

(and hence the dEIRL algorithm) is invariant with respect to nonsingular state mod-

ulation in the sense that if the sequences {P̃i,j}∞i=0, {K̃i,j}∞i=0 are generated under the

modulated problem with potentially-improved numerics, then the solution sequences

{Pi,j}∞i=0, {Ki,j}∞i=0 of the original problem may be backed out by

Pi,j = STj P̃i,jSj, Ki,j = K̃i,jSj. (3.46)

Furthermore, the above proof also answers question 2) in the case of Kleinman’s

algorithm: The modulated ALE regression (3.42) is equivalent to (3.44), in which we

observe the that the original ALE regression matrix (Ai,j ⊕Ai,j)T ∈ GL(nj) (3.35) is

multiplied on the right by the modulation matrix (Sj ⊗Sj)T ∈ GL(nj). The regression

target vector − svec(Qi,j) ∈ Rnj is unchanged between the original regression (3.35)

and equivalent modulated regression (3.44).

The symmetric Kronecker product algebraic results developed in Appendix A are

essential to the derivation of the MEE regression (3.40). In particular:

Proposition 3.6.1. The operations δx,y (3.9) and Ix,y (3.10) satisfy the following:

1) δAx,Ay = δx,y(A⊗A)T , A ∈ Rm×n.

2) IAx,Ay = Ix,y(A⊗A)T , A ∈ Rm×n.

98

3) IAx,Bx = Ix,x(A⊗B)T , A,B ∈ Rm×n.

Proof: Follows from Proposition A.3.3 6S). ■

These key algebraic properties enable the basis of our proposed MEE framework:

Theorem 3.6.5 (MEE Framework and the dEIRL Algorithm: Modulation

Invariance). Pi,j ∈ Snj , Pi,j > 0 satisfies the dEIRL regression (3.27) if and only

if P̃i,j = S−T
j Pi,jS

−1
j satisfies the MEE regression (3.40). Furthermore, the original

regression (3.27) and MEE regression (3.40) are related by

Ãi,j = Ai,j(Sj ⊗Sj)T , b̃i,j = bi,j. (3.47)

Proof: The first assertion follows immediately from Theorems 3.6.4 and 3.6.3. The

relation (3.47) follows from application of the symmetric Kronecker product algebra

developed in Propositions A.3.3 and 3.6.1. ■

Theorem 3.6.5 definitively concludes our answer to question 2) for the dEIRL

algorithm and our proposed MEE framework, revealing substantial parallels to the

classical Kleinman’s algorithm. Crucially, the dEIRL regression matrix Ai,j ∈ Rlj×nj

(3.28) is mutliplied on the right by the same modulation matrix (Sj ⊗Sj)T ∈ GL(nj)

to form the MEE regression matrix Ãi,j (3.40). As is the case with Kleinman’s algo-

rithm, the regression target vector bi,j ∈ Rlj (3.29) remains unchanged under MEE.

Furthermore, this vector is given by bi,j = −Ixj ,xj svec(Qi,j), which is simply the prod-

uct of the integral matrix Ixj ,xj (3.10) with the ALE regression vector − svec(Qi,j)

(3.35). The parallelisms under which these two algorithms interact with the symmet-

ric Kronecker product algebra developed in this work presents a significant practical

advantage to real-world control designers: The same physics-based prescaling insights

which readily apply to solving classical control problems may be ported directly to

dEIRL’s MEE framework. We summarize these key algebraic properties in Table 3.3.

99

Table 3.3: Kleinman’s Algorithm and dEIRL: Symmetric Kronecker Product Algebraic Structure under Modulation

Term Kleinman Loop j dEIRL Loop j

Original w/ Modulation Original w/ Modulation (MEE)

Dynamics Ajj , Bjj (3.23) SjAjjS
−1
j , SjBjj (3.37) fj , gj (3.21) Sj ◦ fj ◦ S−1, Sj ◦ gj ◦ S−1 (3.39)

Cost Structure Qj , Rj (3.22) S−T
j QjS

−1
j , Rj (3.37) Qj , Rj (3.22) S−T

j QjS
−1
j , Rj (3.37)

ALE Solution Pi,j (3.34) S−T
j Pi,jS

−1
j (3.46) Pi,j (3.34) S−T

j Pi,jS
−1
j (3.46)

Controller Ki,j (3.30) Ki,jS
−1
j (3.46) Ki,j (3.30) Ki,jS

−1
j (3.46)

Regression
(Ai,j ⊕Ai,j)

T (3.35) (Ai,j ⊕Ai,j)
T (Sj ⊗Sj)

T (3.44) Ai,j (3.28) Ai,j(Sj ⊗Sj)
T (3.47)

Matrix

Regression − svec(Qi,j) (3.35) − svec(Qi,j) (3.44) −Ixj ,xj
svec(Qi,j) (3.29) −Ixj ,xj

svec(Qi,j) (3.47)Target Vector

100

Chapter 4

EVALUATION STUDY: EIRL SUITE VERSUS ADP ON HYPERSONIC

VEHICLE (HSV) SYSTEM

The evaluations of this section are designed to show how application of our three

novel design elements decentralization (Section 3.3), multi-injection (Section 3.4), and

modulation-enhanced excitation (Section 3.5) successively improve algorithm numer-

ical performance. We demonstrate these design elements on a significant unstable,

nonminimum phase HSV application, comparing numerical performance to the origi-

nal ADP-based IRL algorithm [1] and to the ADP numerical performance evaluations

of Section 2. For an in-depth analysis of the HSV model considered in this evaluation,

please see Appendix B.

4.1 Setup and Hyperparameter Selection

HSV Longitudinal Model. Consider the following HSV longitudinal model [5, 6,

121]

V̇ =
T cosα−D

m
− µ sin γ

r2
,

γ̇ =
L+ T sinα

mV
− (µ− V 2r) cos γ

V r2
,

θ̇ = q,

q̇ =
M
Iyy

,

ḣ = V sin γ, (4.1)

where V is the vehicle airspeed, γ is the flightpath angle (FPA), α is the angle of

attack (AOA), θ ≜ α+γ is the pitch attitude, q is the pitch rate, and h is the vehicle

101

altitude. Here r(h) = h + RE is the total distance from the earth’s center to the

vehicle, RE = 20, 903, 500 ft is the radius of the earth, and µ = GmE = 1.39 × 1016

ft3/s2, where G is Newton’s gravitational constant and mE is the mass of the earth.

L,D, T,M are the lift, drag, thrust, and pitching moment, respectively. Expressions

for these terms can be found in Appendix B, where we conduct an in-depth analysis

of this HSV model.

These studies consider a single modeling error parameter νL ∈ R (B.4) which

is unknown (nominally 1) representing modeling error in the basic lift increment

coefficient CL,α. The system (B.1) is fifth-order, with states x = [V, γ, θ, q, h]T . The

controls are u = [δT , δE]
T , and we examine the outputs y = [V, γ]T . As in [5], we

study a steady level flight cruise condition qe = 0, γe = 0◦, at Me = 15, he = 110, 000

ft, which corresponds to an equilibrium airspeed Ve = 15, 060 ft/s. At this flight

condition, the vehicle is trimmed at αe = 1.7704◦ by the controls δT,e = 0.1756

(Te = 4.4966× 104 lb), δE,e = −0.3947◦.

Hyperparameter Selection. For sake of comparison, we hold all hyperparameter

selections constant across Evaluations 1 and 2.

Cost Structure. We select cost by applying classically-based optimal control prin-

ciples [11, 136]. In the velocity loop j = 1, we choose the state penalty Q1 = I2

and control penalty R1 = 15, while in the FPA loop j = 2 we choose the state

penalty Q2 = diag(1, 1, 0, 0) and control penalty R2 = 0.01. These cost structure

parameters were selected to yield optimal designs K∗
1 (4.5), K∗

2 (4.6), which achieve

closed-loop step response specifications comparable to previous works [132–134]: A

90% rise time in velocity tr,V,90% = 31.99 s and FPA tr,γ,90% = 4.56 s, a 1% settling

time in velocity ts,V,1% = 78.18 s and FPA ts,γ,1% = 8.643 s, percent overshoot in

velocity Mp,V = 4.24% and FPA Mp,γ = 3.988%. Next, using the decentralized con-

trol method described in [132, 134] (which performs decentralized LQR designs on

102

simplified versions of the diagonal plant terms Pjj), we arrive at the following initial

stabilizing controllers

K0,1 =

[
0.2582 4.3570

]
, (4.2)

K0,2 =

[
10.0000 26.3299 1.6501 1.0124

]
, (4.3)

K0 =

 K0,1 0

0 K0,2

 . (4.4)

Excitation Signals. For the exploration noise d (used by all methods except the

original IRL formulation [1]) we choose d1(t) = 0.1 sin
(
2π
25
t
)
+ 0.1 sin

(
2π
250
t
)
+ 0.2 and

d2(t) = 10 sin
(
2π
6
t
)
+5 cos

(
2π
50
t
)
+2.5 sin

(
2π
25
t
)
. It is no coincidence for the noises d1,

d2 that we have placed the dominant terms at the frequencies ω = 2π
25
≈ 0.25 rad/s and

ω = 2π
6
≈ 1 rad/s, respectively – the peak P -sensitivity Tdy frequencies in the respec-

tive channels (cf. Figure 3.3a). This choice maximizes the excitation efficiency. For

the reference command r (used in the MI mode only), we choose r1(t) = 10 cos
(
2π
10
t
)
+

10 sin
(
2π
25
t
)
+ 50 sin

(
2π
200
t
)
and r2(t) = 0.02 cos

(
2π
3
t
)
+ 0.1 sin

(
2π
6
t
)
+ 0.25 sin

(
2π
15
t
)
.

Similarly to the probing noise excitations d1, d2, we have chosen the dominant terms

in r1, r2 corresponding to the input/output behavior of the complementary sensitivity

map Try in Figure 3.3b.

Learning Hyperparameters. We systematically select these parameters based on

insights of the system physics and natural dynamical behavior. These include sample

period Ts = tk − tk−1, number of samples collected l, and number of iterations i∗.

Selections for all methods are summarized in Table 4.1. The parameters for the

original IRL algorithm [1] were selected as the ones with the best condition number

from those over a range of candidates. As has been systematically demonstrated in

the CT-RL comparative study [137], a relatively short sample period Ts = 0.15 s is

103

favorable for the original IRL algorithm [1] due to the lack of ability to insert probing

noise d (see Section 4.2 for further discussion). Also, l = 25 data samples yields the

best numerical conditioning results consistent with prior analyses performed in [137],

and i∗ = 5 iterations is run as with the other algorithms. Lastly, for IRL we use the

critic basis functions x⊗x in order to minimize its critic network dimensionality, the

same choice we make for EIRL (cf. Section 3.2 for discussion).

Table 4.1: Learning Hyperparameters for Section 4

Algorithm Loop j Ts,j (s) lj i∗j
IRL (old) [1] 1 0.15 25 5

EIRL 1 5 25 5

dEIRL
1 6 15 5
2 2 25 5

Meanwhile, for dEIRL the designer can select the sample period Ts,j in accor-

dance with the natural bandwidth of the dynamics in the respective loop j – a crucial

numerical advantage of decentralization. In this example, the complementary sensi-

tivity response Try in Figure 3.3b shows that the velocity j = 1 and FPA j = 2 loops

are separated by a decade in bandwidth. As such, using a single sample period to

capture the dynamical features of both of these loops is naturally troublesome. Reaf-

firming these intuitions experimentally, a longer sample period Ts,1 = 6 s is observed

numerically-favorable in the lower-bandwidth velocity loop, while a shorter sample

period Ts,2 = 2 s is favorable in the higher-bandwidth FPA loop. In the case of EIRL,

the designer is afforded the luxury of probing noise injection (and/or reference com-

mand injection in the MI case), but is still required to choose a single sample period

Ts. It is then intuitive that a sample period Ts = 5 s (i.e., between the favorable

dEIRL selections Ts,2 = 2 s and Ts,1 = 6 s) is observed to yield the best conditioning

for EIRL.

For selection of the number of data points l, we note that this system has regression

104

dimensions n = 21, n1 = 3, n2 = 10, which serve as lower bounds for the number

of samples collected in the respective regression. The lower dimensionality of the

velocity loop j = 1 allows for fewer data points l1 = 15 to be collected for dEIRL

than for the other methods, which indeed proved numerically favorable.

System Initial Conditions (ICs). Since the original IRL algorithm [1] does not

allow probing noise injection, the only means of excitation available to the designer

is initialization of the system away from trim xe. To this end, for the original IRL

algorithm [1], we initialize the HSV at the airspeed V0 = Ve + 1000 ft/s and FPA

γ0 = γe+2◦ = 2◦, and otherwise all remaining ICs are set to trim. For the algorithms

developed in this work, we need not bother with this practice and hence initialize the

system at trim x0 = xe.

Hardware, Software. These evaluations were performed in MATLAB R2021a, on

an NVIDIA RTX 2060, Intel i7 (9th Gen) processor. All numerical integrations in this

work are performed in MATLAB’s adaptive ode45 solver to ensure solution accuracy.

All code developed for this work can be found at [151].

4.2 Evaluation 1: Conditioning and Convergence Study on Nominal Model

In this section, we demonstrate conditioning and convergence effectiveness [137]

of EIRL and dEIRL. Specifically, we first show the significant conditioning reduction

moving from the original IRL formulation [1] to any of the methods developed here.

Second, we illustrate the successive conditioning improvements associated with multi-

injection (SI → MI) and decentralization (EIRL → dEIRL). As a convention, we

include the prefix SI- (e.g., SI-EIRL) to make explicit when an algorithm is in SI

mode; otherwise, without a prefix the algorithm is assumed to be in MI mode (e.g.,

EIRL). For this comparative study, we consider the nominal HSV model described in

Section 4.1 (i.e., zero lift-coefficient modeling error ν = 1 (B.4)).

105

0 1 2 3 4
100

105

1010

1015

1020

(a)

0 1 2 3 4
102

103

104

(b)

Figure 4.1: Eval. 1: Condition Number Versus Iteration Count i. (a): Condition-
ing of the Original IRL Algorithm [1], SI-EIRL, EIRL, SI-dEIRL, and dEIRL. (b):
Conditioning of dEIRL Before and After MEE (Re-Scaled from (a) for Legibility Pur-
poses).

Table 4.2: Eval. 1: Max/Min Conditioning

Algorithm Loop j max
i

(κ(Ai,j)) min
i
(κ(Ai,j)) imaxκ iminκ

IRL (old) 1 5.00e+17 3.97e+11 4 0
SI-EIRL 1 7.52e+06 7.34e+06 1 0
EIRL 1 8.79e+05 8.27e+05 1 0

SI-dEIRL
1 193.19 193.16 0 1
2 1.97e+04 1.93e+04 1 0

dEIRL
1 123.26 123.25 0 1
2 4.81e+03 4.74e+03 1 0

dEIRL 1 123.26 123.25 0 1
w/ MEE 2 220.13 213.53 1 0

Before we begin, we motivate why conditioning is integral to the study of CT-

RL algorithm learning performance [137]. Existing ADP-based CT-RL algorithms

which use linear regressions in the form of Equations (3.18) and (3.27) to yield their

NN weights exhibit condition numbers on the order of κ(Θ) ≈ 105 − 1011 for simple

second-order academic examples [137, Table VII]. The original IRL algorithm [1] has

conditioning of κ(Ai) = 5 × 1017 in this HSV study (cf. Table 4.2). It is then to

106

be expected that IRL’s NN weights exhibit large oscillations on the order of 8,000

and fail to converge (cf. Figure 4.2a). The culprit stifling the learning performance

of IRL (and of the existing ADP-based CT-RL suite, more broadly [137]) is poor

conditioning. It is thus vital that future works show rigorous numerical conditioning

studies when proving new CT-RL algorithms.

Conditioning Analysis. The entirety of this analysis is summarized in Figure 4.1a

and Table 4.2. Figure 4.1a displays the iteration-wise condition number of each of the

methods studied (i.e., of the matrix Ai (3.19) for IRL [1] and EIRL, and Ai,j, j = 1, 2

(3.28) for dEIRL). Table 4.2 displays the maximum and minimum of the conditioning

data presented in Figure 4.1a (i.e., taken over iteration 0 ≤ i ≤ i∗− 1), alongside the

iteration of max conditioning imaxκ and min conditioning iminκ. Figure 4.1a reveals

that the original IRL algorithm [1] suffers from the worst conditioning of the methods

presented, featuring a monotonic increase from 4× 1011 at i = 0 to 5× 1017 at i = 4

(Table 4.2). Conditioning on this order in a monotonic degradation pattern has

been demonstrated by IRL previously and is associated with PE issues as the system

approaches the origin under the stabilizing policyK0 without probing noise excitation

(cf. [137, Section IX-A] for in-depth analysis). By contrast, SI-EIRL (which naturally

possesses the worst conditioning properties of the methods developed here, by virtue

of not taking advantage of MI or decentralization) features steady conditioning on

the order of 7.5 × 106 (Table 4.2). This represents an eleven order of magnitude

improvement in worst-case conditioning over prior ADP methods.

Remark 4.2.1 (Multi-Injection: An Order of Magnitude Reduction in Con-

ditioning). Moving down Table 4.2, the effect of MI is generally an order of magni-

tude conditioning reduction. Conditioning of SI-EIRL is on the order of 7.5×106, and

EIRL 8.5×105. SI-dEIRL in loop j = 2 has conditioning on the order of 2×104, and

dEIRL 4.81×103 in this loop. The one case where this trend does not hold is in dEIRL

107

loop j = 1, wherein SI-dEIRL conditioning is 193 and dEIRL 123. We attribute the

less dramatic reduction to diminishing returns associated with the already-favorable

conditioning in this loop, although a reduction of 36% is still significant.

Remark 4.2.2 (Decentralization: A Two-to-Four Order of Magnitude Re-

duction in Conditioning). Examining Table 4.2 again, we see that decentraliza-

tion achieves numerical improvements even more impressive than those of MI. Moving

from SI-EIRL to its decentralized SI-dEIRL counterpart, conditioning is reduced from

7.5 × 106 to 193 in loop j = 1 and 2 × 104 in loop j = 2 – a reduction of four and

two orders of magnitude, respectively. The trend is similar from EIRL (8.5× 105) to

dEIRL (123 in loop j = 1 and 4.81 × 103 in loop j = 2), a respective reduction of

three and two orders of magnitude.

Remark 4.2.3 (Modulation-Enhanced Excitation: An Order of Magnitude

Reduction in Conditioning). Examination of Table 4.2 shows that worst-case

conditioning is already acceptable in the velocity loop j = 1 at 124.38. Thus, no

modulation S1 = I2 in loop j = 1 is necessary. However, conditioning in the higher-

dimensional, unstable, nonminimum phase FPA loop j = 2 is worse at 4.81×103. Fur-

thermore, just as in the motivating example studied in Section 3.5.1, a few minutes of

investigation yields a physically-intuitive explanation of the cause of the conditioning

issue. Within the FPA loop j = 2 is the FPA subsystem γ itself (stable, nonminimum

phase), alongside the attitude subsystem θ, q (unstable, minimum phase). The FPA

dynamics have a bandwidth roughly a decade below that of the attitude dynamics.

As a result, the pitch θ generally exhibits larger responses than the FPA, and the

pitch rate q by virtue of differentiation magnifies this response amplitude discrepancy.

As can be seen, this simple radians/degrees conversion reduces worst-case condi-

tioning by factor of 25 from 4.81 × 103 without MEE to 220.13 with MEE, a condi-

108

tioning reduction observed iteration-wise across the board in Figure 4.1b. In light of

the higher dimension and dynamical challenges associated with the FPA loop j = 2, a

near equalization of the conditioning in this loop with that of the velocity loop j = 1

is a substantial real-world numerical result.

Remark 4.2.4 (Decentralization, Multi-Injection, and Modulation-Enhanced

Excitation: The Curses of Conditioning and Dimensionality Mollified). In

all, the cumulative numerical improvements from the original IRL formulation [1] to

dEIRL with MEE represent momentous reductions of fifteen orders of magnitude in

worst-case conditioning. Moving from SI-EIRL to successive application of MI and

decentralization reduces conditioning by four orders of magnitude in loop j = 1 and

three orders of magnitude in loop j = 2, and MEE reduces the conditioning by an

additional order of magnitude in loop j = 2.

0 1 2 3 4
-4000

-3000

-2000

-1000

0

1000

2000

3000

4000

(a)

0 1 2 3 4
-500

0

500

1000

1500

2000

2500

(b)

Figure 4.2: Eval. 1: Weight Responses svec(Pi) (3.18). (a): Original IRL Algorithm
[1]. (b): SI-EIRL (Section 3.2.1).

Convergence/Solution Optimality Analysis. This model has the following op-

109

timal LQ controllers

K∗
1 =

[
0.2582 4.3577

]
, (4.5)

K∗
2 =

[
10.0000 26.3393 1.6514 0.9921

]
, (4.6)

K∗ =

 0.2581 4.3622 0.0074 0.0814 0.0000 0.0001

-0.2865 -1.1120 9.9959 26.3120 1.6512 0.9921

 . (4.7)

We have plotted the weight responses for the original IRL algorithm [1] in Figure

4.2a. Due to poor conditioning (Figure 4.1a, Table 4.2), the weights update erratically

and fail to converge. This same qualitative weight behavior was illustrated system-

atically in [137, Figure 4c] on a simple second-order academic example (for which

conditioning was on the order of 1011), so it is not surprising that we encounter it for

the HSV here. For comparison, we have plotted the corresponding weight responses

for SI-EIRL in Figure 4.2b. These two methods use the same basis functions, yet the

SI-EIRL weights converge nicely in the i∗ = 5 iterations. Since SI-EIRL naturally

has the worst conditioning properties of the methods developed in this work, Figure

4.2b represents the “worst-case” weight response of the proposed methods.

Remark 4.2.5 (All Proposed Methods Deliver Real-World Synthesis Guar-

antees). Each of the proposed methods successfully converges to their respective op-

timal controller K∗. Indeed, the largest final controller error ∥Ki∗ −K∗∥ exhibited by

any of the methods is only 4.63×10−3 (by SI-EIRL). For comparison, dEIRL exhibits

final controller errors ∥Ki∗,1 −K∗
1∥ = 1.11 × 10−6 and ∥Ki∗,2 −K∗

2∥ = 2.70 × 10−5.

Thus, this evaluation study affirms that the proposed methods achieve real-world con-

vergence performance in exact accordance with their theoretical guarantees (Section

3.6) – perhaps a first in ADP-based CT-RL [137].

110

Sample/Training Time Efficiency. Due to leveraging Kleinman’s structure (cf.

Section 3.1) in combination with nonlinear state-action data (x, u), these EIRL algo-

rithms have high data/time efficiency. All of the proposed methods require at most

l = 25 trajectory data samples (cf. Table 4.1). As a result of this data efficiency,

the developed methods all converge in 2.74 seconds of training time at most (longest:

dEIRL).

4.3 Evaluation 2: dEIRL Optimality Recovery Generalization with Respect to

Modeling Error

Having now demonstrated a systematic framework for improving learning nu-

merics through an in-depth conditioning analysis of the developed algorithms, for

this study we hone our focus to the flagship method: dEIRL. Having demonstrated

dEIRL’s convergence properties on the nominal HSV model νL = 1 (B.4), we now

analyze its convergence when the model is perturbed from the nominal model to

νL = 0.9 (a 10% modeling error) and νL = 0.75 (a 25% modeling error), resulting in

a more challenging control problem (cf. Appendix B.2 for discussion).

Conditioning Analysis. Before delving into the main convergence results, we first

provide a brief conditioning analysis. For νL = 0.9, dEIRL has max conditioning

max
i

(κ(Ai,1)) = 111.13 and max
i

(κ(Ai,2)) = 259.64, while for νL = 0.75, dEIRL

has max conditioning max
i

(κ(Ai,1)) = 90.89 and max
i

(κ(Ai,2)) = 268.01. Overall,

conditioning has remained largely unchanged in the velocity loop j = 1 (cf. Table

4.2). Even in the higher-dimensional, unstable, nonminimum-phase FPA loop j = 2

directly affected by the lift-coefficient modeling error νL (B.4), conditioning perfor-

mance has only degraded slightly. In sum, dEIRL possesses inherently-favorable con-

ditioning properties which are robust with respect to (even severe) modeling errors –

a vital real-world performance validation.

111

Convergence/Solution Optimality Analysis. Running dEIRL for i∗ = 5 itera-

tions and νL = 0.9, we have

Ki∗,1 =

[
0.2582 4.3579

]
, (4.8)

K∗
1 =

[
0.2582 4.3580

]
, (4.9)

Ki∗,2 =

[
10.0171 27.1052 1.5828 0.9741

]
, (4.10)

K∗
2 =

[
10.0000 27.0327 1.5685 0.9671

]
. (4.11)

For νL = 0.75, we have

Ki∗,1 =

[
0.2582 4.3585

]
, (4.12)

K∗
1 =

[
0.2582 4.3586

]
, (4.13)

Ki∗,2 =

[
10.0397 28.5706 1.4712 0.9539

]
, (4.14)

K∗
2 =

[
10.0000 28.2496 1.4303 0.9238

]
. (4.15)

In Table 4.3, we show the controller error reduction
∥∥Ki,j −K∗

j

∥∥ from the initial

controllers K0,1 (4.2), K0,2 (4.3) (i.e., the nominal decentralized LQR controllers [132,

134]) to the final controllers Ki∗,1 (4.8), (4.12) and Ki∗,2 (4.10), (4.14), respectively.

Table 4.3: Eval. 2: dEIRL Optimality Recovery

νL (B.4) Loop j

∥∥Ki,j −K∗
j

∥∥ % Reduction

i = 0 (Nom. LQ) i = i∗ i = 0→ i∗

0.9
1 9.10e-04 2.30e-05 97.5
2 0.709 0.0761 89.3

0.75
1 0.00151 7.30e-05 95.2
2 1.934 0.327 83.1

Remark 4.3.1 (dEIRL Solution Optimality Recovery). Examining Table 4.3,

112

for the 10% modeling error νL = 0.9, dEIRL reduces controller optimality error by

at least an order of magnitude in each loop. For the 25% modeling error νL = 0.75,

dEIRL reduces controller optimality error by at least 80% in each loop. It is at this

point intuitive that dEIRL converges closer to the optimal controllers for the smaller

10% modeling error than for the severe 25% modeling error, and that reductions are

more significant in the velocity loop j = 1 than in the FPA loop j = 2.

This capability is one of great practical utility. Previously, if a designer synthesized

an initial LQR controller K0,j (i.e., optimal with respect to the nominal linear drift

dynamics Ajj), they had to content themselves with this design and had no real-world

means of improvement. Here we demonstrate that, via a nominal model (νL = 1),

dEIRL outputs a controller Ki∗,j significantly closer to the optimal K∗
j than the

original estimate K0,j.

Closed-Loop Performance Analysis. Having illustrated that dEIRL numerically

recovers the optimal controllers K∗
j in each loop, we conclude this section with an

analysis of how it recovers optimal closed-loop performance. To this end, we issue

a 100 ft/s step-velocity command and a 1◦ step-FPA command to the (nonlinear,

coupled) perturbed HSV models, simulating under the nominal LQ controllers K0,j

(νL = 1), dEIRL controllers Ki∗,j, and optimal LQ controllers K∗
j (νL ̸= 1). The

resulting closed-loop step response characteristics in each loop j are listed in Table 4.4,

including the 90% rise time tr,yj ,90%, 1% settling time ts,yj ,1%, and percent overshoot

Mp,yj (j = 1, 2).

113

Table 4.4: Eval. 2: Closed-Loop Step Response Characteristics

νL (B.4) Loop j Algorithm
tr,yj ,90% ts,yj ,1% Mp,yj

(s) (s) (%)

0.9

1
Nom. LQ 32.33 78.34 4.25
dEIRL 31.99 78.26 4.24
Opt. LQ 31.94 78.27 4.24

2
Nom. LQ 4.75 9.97 7.11
dEIRL 4.80 9.33 5.26
Opt. LQ 4.52 9.16 5.12

0.75

1
Nom. LQ 32.33 78.76 4.27
dEIRL 31.62 78.11 4.25
Opt. LQ 32.17 78.41 4.25

2
Nom. LQ 5.13 16.75 12.41
dEIRL 4.85 10.28 7.98
Opt. LQ 4.65 10.01 7.59

0 2 4 6 8 10 12 14 16 18 20
-0.2

0

0.2

0.4

0.6

0.8

1

1.2

Figure 4.3: Closed-Loop 1◦ FPA Step Response for 25% Lift-Coefficient Modeling
Error νL = 0.75 (B.4).

114

As can be seen in Table 4.4, dEIRL successfully recovers the closed-loop step

response characteristics of the optimal LQ controllers. The performance recovery is

most apparent in the FPA loop j = 2, where for the severe modeling error νL = 0.75

the performance of the nominal LQ controller is significantly degraded compared to

that of dEIRL and the optimal. In particular, the 1% FPA settling time ts,γ,1% of the

nominal LQ controller is almost 17 s, and only 10 s for dEIRL and the optimal LQ.

Similarly, percent overshoot in FPA Mp,γ is over 12% for the nominal LQ controller,

and only 8% for dEIRL and the optimal LQ. The corresponding FPA step response for

the 25% lift-coefficient modeling error νL = 0.75 is plotted in Figure 4.3. Corroborated

numerically by Table 4.4, Figure 4.3 shows that dEIRL has qualitatively recovered

the LQ-optimal closed-loop step response performance in spite of the severe 25%

modeling error. As a brief aside, the first t = 1 s of the FPA response in Figure 4.3

exhibits the characteristic inverse nonminimum phase behavior attributable to the

parasitic downward lift induced by pitch-up elevator deflections δE.

4.4 Discussion

This evaluation presents a suite of innovative CT-RL algorithms to address the

performance limitations facing ADP-based CT-RL algorithms discovered in Section

2. We develop these new algorithms with accompanying results on theoretical conver-

gence and stability guarantees. Our in-depth quantitative performance evaluations of

the four algorithms show that decentralization, MI, and MEE (i.e., the dEIRL algo-

rithm) achieve conditioning reductions of multiple orders of magnitude. Furthermore,

evaluations show convergence and stability results corroborating theoretical analysis,

and that the algorithms successfully recover the optimal controller and closed-loop

performance in the presence of severe modeling errors. Altogether, our numerical

studies demonstrate that dEIRL is a highly intuitive and effective design tool. This

115

is a significant step forward from results of previous CT-RL algorithms, which ul-

timately fail to synthesize stabilizing designs even for simple academic systems (cf.

Section 2).

We would like to point out that decentralization allows the designer to select

learning parameters optimized to the inherent physics of each loop, rather than being

forced to select a single set of “middle-ground” parameters which fails to adequately

address individual-loop learning needs (cf. Section 4.1). Furthermore, weak dynam-

ical coupling means that the excitation selections dj, rj in one loop have little effect

on data quality in other loops, and the rest of the hyperparameters have no inter-loop

effects. This allows the designer to troubleshoot at the individual loop level, greatly

simplifying the design process. With all the demonstrated benefits of decentraliza-

tion, it is noted that this decentralization is physics-driven, with many important

applications in areas such as robotics and aerial vehicles.

116

Chapter 5

EVALUATION STUDY: DEIRL VERSUS DEEP RL FITTED VALUE

ITERATION (FVI) ON THREE DIFFERENT ENVIRONMENTS

5.1 Implementation and Training Procedures

In this section, we first demonstrate how dEIRL learning generalizes with respect

to systematic and simultaneous sweeps of 1) system initial conditions (ICs) and 2)

system modeling error on the three environments studied. In particular, we focus

analysis on how dEIRL delivers its convergence, solution optimality, and closed-loop

stability guarantees of Section 3.6 in practical learning control problems.

We then provide a comprehensive evaluation of our proposed dEIRL method in com-

parison to the SOTA deep CT-RL works in FVI [7, 8], including performance gener-

alization with respect to system ICs and modeling error.

Baselines. In reporting evaluation results below, we use the following short-form

descriptions for the baseline methods tested:

� “Continuous FVI (cFVI)”: SOTA deep CT-RL method developed in [7].

� “Robust FVI (rFVI)”: Robust variant of SOTA FVI method developed in [8].

� “Nominal LQ”: The classical LQR design performed on the nominal lineariza-

tion (A,B) of the nonlinear system (f, g) (3.1). Unlike dEIRL, the nominal LQ

fails to take into account 1) system nonlinearity, and 2) model uncertainty.

� “Optimal LQ”: The classical LQR design performed on the linearization of

the actual nonlinear process (f, g) (3.1) (i.e., the linearization includes model-

117

ing error). Unlike dEIRL, the optimal LQR fails to take into account system

nonlinearity.

Performance Measures. In these studies, we provide comprehensive evaluations

of standard performance measures in: average reward, convergence speed, learn-

ing success rate, generalization with respect to system ICs and modeling error, and

time/data/free parameter complexity. In addition, analyze performance with respect

to the following learning control measures:

� Cost Performance: The infinite-horizon cost J(x0) (3.2) delivered by the policy

in the nonlinear optimal control task. As a note, in controls conventions the

cost J(x0) > 0 is a positive number to be minimized (lower = better).

� Estimation Error: The difference J(x) − V (x) between the cost J(x) at state

x ∈ Rn and the value function approximation V (x) at x ∈ Rn. It is desired

that the estimation error J − V be as small in magnitude as possible (so the

critic is accurate), and negative whenever it deviates from zero (so the critic

underestimates actual policy performance).

� Policy Optimality Error: The difference ∥µ−K∗∥ in operator norm between a

given policy µ and the optimal control K∗.

In addition, we measure the following closed-loop time-domain performance measures

which are central to the continuous-time nonlinear dynamical control task studied:

� 90% Rise Time tr,y,90%: The time taken for the closed-loop response y(t) to rise

to 90% of its commanded value.

� 1% Settling Time ts,y,1%: The time taken for the closed-loop response y(t) to

settle within ±1% of its commanded value.

118

� Percent Overshoot Mp,y: The maximum by which the closed-loop response y(t)

exceeds the step reference command r(t) ≡ r. Expressed in percent as a ratio

of the size of the command r as follows

Mp,y = max
t≥0

{
y(t)− r

r

}
× 100%. (5.1)

All Code/Data Available. All dEIRL code and datasets for this study are available

in Supplemental and at [152]. All FVI results [7, 8] are generated by the open-source

code developed by the authors available at [153].

Hardware. These studies were performed in MATLAB R2022b, on an NVIDIA

RTX 2060, Intel i7 (9th Gen) processor. All numerical integrations in this work are

performed in MATLAB’s adaptive ode45 solver to ensure solution accuracy.

Software. All dEIRL code and datasets developed for this work is available in

Supplemental and at [152]. All FVI results [7, 8] were generated from the open-

source repository developed by the authors [153].

5.1.1 Selection of Three Environments

Extensive evaluations of dEIRL are performed on three environments: a pen-

dulum, jet aircraft, and differential drive mobile robot (DDMR). In-depth analyses

of these three systems can be found in Appendices C, D, and E, respectively. The

119

dynamics of the environments are given by

θ̇ = ω

ω̇ = mgL
2I

sin θ + τ
I

V̇ = mcd
m̂
ω2 − 2β

m̂r2
V + kt

m̂kgr
iar +

kt
m̂kgr

ial

ω̇ = −mcd

Î
ωV − βd2w

2Îr2
ω + dwkt

2Îkgr
iar − dwkt

2Îkgr
ial

i̇ar = −kgkb
lar

V − kgkbdw
2lar

ω − ra
la
iar +

1
2la
ea +

1
2la

∆ea

i̇al = −kgkb
lar

V + kgkbdw
2lar

ω − ra
la
ial +

1
2la
ea − 1

2la
∆ea

(5.2)

V̇

γ̇

q̇

α̇

=

−DV −g cosαe 0 0

LV

Ve
0 0 Lα

Ve

0 0 Mq Mα

−LV

Ve
0 1 −Lα

Ve

V

γ

q

α

+

TδT 0

0 0

0 MδE

0 0

 δT

δE

 .

(5.3)

Pendulum. This system (5.2, left) has states x = (θ, ω), where θ is the pendulum

angle (measured zero pointing upward, positive counterclockwise), ω is the pendulum

angular velocity, and the single-input control u = τ is the torque applied to the

pendulum base.

Jet Aircraft. This system (5.3) has states x = (V, γ, q, α), where V is the airspeed,

γ is the flightpath angle (FPA), q is the pitch rate, and α is the angle of attack

(AOA). It has controls u = (δT , δE), where δT is the throttle setting (associated with

the airspeed V in the translational loop j = 1), and δE is the elevator deflection

(associated with the FPA γ and attitude q, α in the rotational loop j = 2).

Differential drive mobile robot (DDMR). This system (5.2, right) also lends

itself to decentralization, with states x = (V, ω, iar , ial), where V is the velocity, ω is

the angular velocity, and iar , ial are the right and left DC motor armature currents,

respectively. The controls are u = (ea,∆ea), where ea is the average of the armature

120

voltages applied to the right and left DC motors (associated with the speed V in

the translational loop j = 1), and ∆ea is the difference of the right/left voltages

(associated with the rotational velocity ω in the rotational loop j = 2).

5.1.2 Training Procedures

An episode is initialized by resetting the environment at a given initial condition

x0, and the environment is simulated out to the training horizon T required for the

respective algorithm in order to collect the resulting state-action data (x, u).

Learning Trial: dEIRL. Due to dEIRL’s data efficiency (requiring only on the order

of l = 20 total trajectory samples), state-action data (x, u) from a single episode (i.e.,

initialized at single IC x0) provides sufficient data to execute learning for a single seed

to algorithm termination after i∗ iterations. This low data complexity allows dEIRL

to use online data collected from the actual physical process (i.e., with modeling error

ν ̸= 1).

Learning Trial: FVIs. Deep RL FVIs, on the other hand, have higher data com-

plexity to train their deep network approximators and require training data from over

5 million epsiodes to execute to learning completion (cf. Table 5.11), for details see

[7, 8]. As a result, the only practical means of training FVI is in simulation. Since

the modeling error ν for a given system is not known a priori, this means that FVI

must train on the nominal model (modulo adversary perturbations in the rFVI case

[8]). Thus, the results presented in this work for FVI are attained through training

on the nominal model ν = 1, a training procedure identical to that presented by the

original authors in [7, 8].

Initial Condition (IC) Generation. System ICs for training are generated via

the following uniform distrubutions U for the pendulum, jet aircraft, and DDMR,

121

respectively:

x0 ∼ U(±π rad,±8 rad/s), (5.4)

x0 ∼ U(±15 ft/s,±3 deg,±30 deg/s,±10 deg), (5.5)

x0 ∼ U(±3 m/s,±90 deg/s,±0 A,±0 A). (5.6)

As a note: For the pendulum system, we have chosen the identical uniform distribu-

tion U (5.4) for state initialization as is chosen in the original FVI benchmark studies

[7, 8].

The only exception to the above IC generation procedure is the systematic grid

sweeps conducted in the dEIRL initial condition and modeling error generalization

studies of Section 5.3. Here, the initial conditions x0 are swept over a grid of values

x0 ∈ Gx0 . The IC grids Gx0 for the pendulum, jet aircraft, and DDMR are given

respectively as:

Gx0 = [−π
3
: π

6
: π

3
] rad × [−π

3
: π

6
: π

3
] rad/s, (5.7)

Gx0 = [90 : 2 : 110] ft/s × [−2 : 0.5 : 2] deg, (5.8)

Gx0 = [1.5 : 0.125 : 2.5] m/s × [−30 : 5 : 30] rad/s, (5.9)

where all other ICs for the higher-order jet aircraft and DDMR environments are set

to zero. Note that for all systems in this work, the IC grid Gx0 is centered about the

respective equilibrium point xe (cf. Appendices C–E for discussion of equilibria of

each system).

Modeling Error Generation. In the modeling error generalization studies of Sec-

tions 5.3 and 5.4, the environment modeling error ν is swept over a grid of values

ν ∈ Gν . The modeling erro grids Gν for the pendulum, jet aircraft, and DDMR are

122

given respectively as:

Gν = [1 : 0.01 : 1.25], (5.10)

Gν = [1 : −0.025 : 0.75], (5.11)

Gν = [1 : 0.025 : 1.25]. (5.12)

The direction of the perturbation (i.e., ν > 1 or ν < 1) is chosen to maximize

the difficulty of the respective learning problem (cf. Appendices C-E for in-depth

discussion).

5.1.3 Evaluation Procedures

dEIRL Combined Initial Condition/Modeling Error Generalization Study

(Section 5.3). Here, dEIRL is run over the combined trial space (x0, ν) ∈ Gx0×Gν ,

where the respective IC grids Gx0 for each environment are given by (5.7)–(5.9) and

the respective modeling error grids Gν for each environment are given by (5.10)–

(5.12). This corresponds to 1,620 learning trials for the pendulum (81 ICs x0 × 20

modeling errors ν), 1,089 trials for the jet (99 x0 × 11 ν), and 1,287 trials for the

DDMR (117 x0 × 11 ν).

dEIRL and FVIs Return Initial Condition Generalization Study (Section

5.4.1). dEIRL, cFVI, and rFVI are trained over 20 seeds with data generated by the

nominal model ν = 1 and system ICs initialized over the uniform training distributions

U given by (5.4)–(5.6). At each algorithm iteration, the return of the trained policies

is evaluated over 100 episodes of the environment. For evaluation, system ICs for

training are generated via the following uniform distrubutions U for the pendulum,

123

jet aircraft, and DDMR, respectively:

x0 ∼ U(±π rad,±0.01 rad/s), (5.13)

x0 ∼ U(±10 ft/s,±2 deg,±0.01 deg/s,±0.01 deg), (5.14)

x0 ∼ U(±0.5 m/s,±30 deg/s,±0 A,±0 A). (5.15)

As a note: For the pendulum system, we have chosen the identical uniform distri-

bution U (5.13) for state initialization as is chosen in the original FVI benchmark

studies [7, 8].

dEIRL and FVIs Cost, Estimation Error, and Closed-Loop Performance

Generalization Study (Sections 5.4.2–5.4.4). dEIRL, cFVI, and rFVI are trained

according to the training procedure described in Section 5.1. For display purposes of

generating the surface plots in Figures 5.4–5.9, we then select a single seed for each

algorithm for evaluation and present data for 0%, 10%, and 25% modeling errors. For

FVIs, we choose random number seed 42, the same as was chosen for evaluation in

original works [7, 8]. For dEIRL, we initialize its single-episode learning trajectory

at the system equilibrium x0 = xe. The resulting final policies are then evaluated

with respect to their relative costs JxFV I(x) − JdEIRL(x) (3.2) and value function

approximation errors J(x)−V (x) for all states x in the following evaluation grids Gx

for the pendulum, jet aircraft, and DDMR, respectively:

Gx = [−60 : 0.5 : 60] deg × [−60 : 0.5 : 60] deg/s, (5.16)

Gx = [90 : 2 : 110] ft/s × [−2 : 0.1 : 2] deg, (5.17)

Gx = [1.5 : 0.125 : 2.5] m/s × [−30 : 5 : 30] rad/s, (5.18)

where all other ICs for the higher-order jet aircraft and DDMR environments are set

124

to zero. Note that for all systems in this work, as is the case with the IC grids Gx0

(5.7)–(5.7) the evaluation grids Gx (5.16)–(5.16) are centered about the respective

equilibrium point xe (cf. Appendices C–E for discussion of equilibria of each system).

It is these grids which are used to generate the surface plots of Figures 5.4–5.9, and

the corresponding tabular data in Tables 5.7–5.10.

Finally, for the closed-loop response evaluations, we issue step reference commands

these trained policies in each input/output channel of the three environments at 0%,

10%, and 25% modeling error. For the pendulum, we study swing-up performance

by initializing at full displacement θ0 = π, θ̇0 = 0 and issuing a reference command

r(t) = 0 rad (upright position). For the jet aircraft and DDMR, we initialize ICs to

equilibrium x0 = xe. For the jet, we issue a reference command in velocity y1 = V

of r1(t) = 110 ft/s (i.e., 10 ft/s faster than equilibrium Ve = 100 ft/s), and we issue

a reference command in flightpath angle y2 = γ of r2(t) = 1 deg. For the DDMR,

we issue a reference command in velocity y1 = V of r1(t) = 3 m/s (i.e., 1 m/s faster

than equilibrium Ve = 2 m/s), and we issue a reference command in angular velocity

y2 = ω of r2(t) = 30 deg/s. It is these issued reference commands which generate the

closed-loop responses in Figures 5.10–5.12 and corresponding tabular data in Table

5.10.

5.2 Hyperparameter Selections

5.2.1 Hyperparameter Selections: Shared Hyperparameters

State, Control Penalty Gains. For the pendulum, we use identical penalty selec-

tions to those in the original cFVI studies [7, 8]; namely,

Q1 = diag(1, 0.1), R1 = 0.5. (5.19)

125

For the jet aircraft, consider the decentralized design framework described in Sec-

tion D.2. We choose the following cost structure

Q1 = diag(0.005, 0.05), R1 = 5,

Q2 = diag(0.5, 1, 0, 0), R2 = 1. (5.20)

These state/control penalties were chosen to yield optimal LQ controllers K∗
1 (D.5),

K∗
2 (D.6) achieving nominal closed-loop step response specifications comparable to

existing benchmarks [122]: A 90% rise time in speed tr,V,90% = 9.297 s and FPA

tr,γ,90% = 4.52 s, a 1% settling time in speed ts,V,1% = 14.47 s and FPA ts,γ,1% = 7.20

s, percent overshoot in speed Mp,V = 0.09% and FPA Mp,γ = 0.25%.

For the DDMR, consider the decentralized design framework described in Section

E.2. We choose the following cost structure

Q1 = 10I2, R1 = 0.75,

Q2 = diag(25, 7.5), R2 = 1. (5.21)

These state/control penalties were chosen to yield optimal LQ controllers K∗
1 (E.9),

K∗
2 (E.10) achieving nominal closed-loop step response specifications comparable to

existing benchmarks [43, 44]: A 90% rise time in speed tr,V,90% = 3.778 s and angular

velocity tr,ω,90% = 1.27 s, a 1% settling time in speed ts,V,1% = 5.556 s and angular

velocity ts,ω,1% = 6.73 s, percent overshoot in speed Mp,V = 0% and angular velocity

Mp,ω = 16.9%.

126

5.2.2 Hyperparameter Selections: dEIRL

Initial Stabilizing Controller. For the pendulum, we use the initial stabilizing

controller

K0,1 =

[
13.5108 5.8316

]
, (5.22)

which we obtained from cost structure selections Q1 = diag(0.5, 0.25), and R1 = 0.01.

For the jet aircraft in loop j (j = 1, 2), we use the initial stabilizing controllers

K0,1 =

[
0.0316 0.1168

]
, (5.23)

K0,2 =

[
−1.7321 −3.4191 −0.3427 −0.9709

]
, (5.24)

which we obtained from a decentralized design with cost structure selections Q1 =

0.01I2, R1 = 10, Q2 = diag(1.5, 2.5, 0, 0), and R2 = 0.5. For the DDMR in loop j

(j = 1, 2), we use the initial stabilizing controllers

K0,1 =

[
2.2361 3.4966

]
, (5.25)

K0,2 =

[
8.6603 12.4403

]
, (5.26)

which we obtained from a decentralized design with cost structure selectionsQ1 = 5I2,

R1 = 1, Q2 = diag(7.5, 2.5), and R2 = 0.1.

The remainder of the dEIRL hyperparameter selections can be found in Table

5.1. Examination of Table 5.1 shows that these hyperparameter selections comprise

little more than “round-number” designer first-choices, requiring only insights of the

system dynamics and a few minutes of trial-and-error to obtain.

127

Table 5.1: dEIRL Hyperparameter Selections

Hyperparameter Pendulum Jet Aircraft DDMR

Loop j = 1 Loop j = 1 Loop j = 2 Loop j = 1 Loop j = 2

Sample Period Ts,j (s) 1 2 0.5 4 1
Number of Samples lj 15 15 30 20 15

Final Iteration i∗j 5 5 5 5 5

Ref Cmd rj 10 sin(2π
10
t) 5 sin(2π

50
t) 0.1 sin(2π

2.5
t) 2 sin(2π

10
t) 5 sin(2π

50
t)

(deg | m/s, deg | m/s, deg/s) +5 sin(2π
5
t) +10 sin(2π

25
t) +0.1 sin(2π

1.5
t) + sin(2π

5
t) +5 sin(2π

5
t)

+5 sin(2π
2.5
t)

Initial Controller K0,j (5.22) (5.23) (5.24) (5.25) (5.26)

5.2.3 Hyperparameter Selections: cFVI, rFVI

As with our selections of the pendulum model structure and parameters (cf. Sec-

tion C), for our pendulum studies we have selected hyperparameters identical to those

of the original cFVI/rFVI evaluations [7, 8], with two exceptions. In [7, 8], the authors

use a logcos control penalty function scaled so that its curvature at the origin u = 0 is

2R; i.e., so that its curvature agrees with that of a quadratic penalty uTRu. In order

to make comparisons consistent across the methods studied, and in order to produce

a more widely-applicable performance benchmark for real-world designers, we have

decided to apply the standard quadratic control penalty uTRu for all methods. Like-

wise, the authors in [7, 8] wrap the penalty function of the pendulum angle state to

be periodic in [0, 2π), a practice which we have dropped for consistency of comparison

and generalizability of benchmarking. Finally, due to these changes we observed that

more iterations were necessary for rFVI to converge in training the pendulum system

(cf. Figure 5.3), so we increased its iteration count from 100 previously [7, 8] to 150

here (cf. Table 5.2).

For the jet and DDMR examples that are new to FVIs, we have chosen hyper-

parameters in light of the successes achieved by the selections in [7, 8], tailored to

maximize learning performance for these specific systems.

Hyperparameter selections for cFVI and rFVI can be found in Table 5.2. These

128

parameter selections are overall quite standard and have indeed demonstrated great

learning performance successes on second-order, unstable systems in previous studies

[7, 8].

Table 5.2: cFVI, rFVI Hyperparameter Selections

Hyperparameter
Pendulum Jet Aircraft DDMR

cFVI rFVI cFVI rFVI cFVI rFVI

Time Step (s) 0.008 0.008 0.008 0.008 0.008 0.008
Time Horizon (s) 5 5 20 20 5 5
Discounting γ 0.99 0.99 0.99 0.99 0.99 0.99

Network Dimension [3× 96] [3× 96] [3× 96] [3× 96] [3× 96] [3× 96]
Ensemble 4 4 4 4 4 4
Activation Tanh Tanh Tanh Tanh Tanh Tanh

Learning Rate 1e-5 1e-5 3e-5 3e-5 3e-5 3e-5
Weight Decay 1e-6 1e-6 1e-6 1e-6 1e-6 1e-6

Hidden Layer Gain 1.41 1.41 1.41 1.41 1.41 1.41
Output Layer Gain 1.00 1.00 1.00 1.00 1.00 1.00
Output Layer Bias -0.1 -0.1 -0.1 -0.1 -0.1 -0.1

Diagonal Softplus Gain βL 1.0 1.0 7.5 7.5 1.0 1.0
Batch Size 256 128 256 256 256 256
Batches 200 200 200 200 200 200

Eligibility Trace 0.85 0.85 0.85 0.85 0.85 0.85
n-step Trace Weight 1e-4 1e-4 1e-4 1e-4 1e-4 1e-4

Iterations 100 150 100 100 100 100
Epochs/Iteration 20 20 20 20 20 20

State Adversary ∥ξx∥max 0.0 0.025 0.0 0.025 0.0 0.025
Action Adversary ∥ξu∥max 0.0 0.1 0.0 0.1 0.0 0.1
Model Adversary ∥ξθ∥max 0.0 0.15 0.0 0.1 0.0 0.009
Obs Adversary ∥ξo∥max 0.0 0.025 0.0 0.025 0.0 0.025

129

5.3 dEIRL Modeling Error and Initial Condition Ablation Study

When benchmarking the characteristics of a new RL control framework, stud-

ies must address the central question: Does the RL algorithm deliver better per-

formance than existing, well-established classical methods? In this evaluation, we

provide substantive quantitative analysis demonstrating that dEIRL offers significant

performance improvements over classical LQR. In short, in the face of severe modeling

errors, for all systems dEIRL reliably delivers a 90% reduction in operator-norm er-

ror with respect to the optimal controller over a nominal LQR design. In the process

of substantiating this claim, we also establish the key convergence and conditioning

properties of dEIRL with respect to significant variations in 1) system initial condi-

tions x0 ∈ Gx0 (5.9), and 2) modeling error ν ∈ Gν (5.12). For a detailed discussion of

the dynamical models, see Appendices C–E. All hyperparameter selections and defi-

nitions of the performance metrics examined in these studies can be found in Section

5.1.

Solution Optimality Generalization. A complete evaluation of dEIRL over a

systematic sweep of ICs and modeling errors for all three environments can be found

in Tables 5.3–5.5. Running dEIRL over the IC sweep x0 ∈ Gx0 for varying modeling

errors ν ∈ Gν , we plot dEIRL’s controller optimality error
∥∥Ki∗,j −K∗

j

∥∥ over the

sweep in Figure 5.1. Tables 5.3, 5.4, and 5.5 provide worst-case, mean, and standard

deviation data of the metrics presented in Figures 5.1 for the pendulum, jet, and

DDMR, respectively.

dEIRL Training on Nominal Model. Examining dEIRL’s nominal-model learn-

ing ν = 1 in Figure 5.1 (blue curve) and Tables 5.3–5.5, we see that dEIRL success-

fully converges to the optimal controller for the nominal model ν = 1 regardless of

the IC chosen for all systems. Indeed, dEIRL exhibits a worst-case controller error

130

Figure 5.1: dEIRL Controller Optimality Error
∥∥Ki∗,j −K∗

j

∥∥ Versus Modeling Error
ν and IC x0 ∈ Gx0 Ablation Study Results. First Row: Loop j = 1, Second Row:
Loop j = 2. First Column: Pendulum (Note: Single-Loop j = 1), Second Column:
Jet Aircraft, Third Column: DDMR. Gray: Controller Optimality Error of Nominal
LQ Design at 25% Modeling Error.

∥Ki∗,1 −K∗
1∥ = 3.71 × 10−5 for the pendulum system. For the jet aircraft, dEIRL

has worst-case controller errors of ∥Ki∗,1 −K∗
1∥ = 2.55 × 10−15 in the translational

loop j = 1 and ∥Ki∗,2 −K∗
2∥ = 2.42 × 10−8 in the rotational loop j = 2. For the

DDMR, dEIRL has worst-case controller errors of ∥Ki∗,1 −K∗
1∥ = 4.78× 10−9 in the

translational loop j = 1 and ∥Ki∗,2 −K∗
2∥ = 5.17× 10−5 in the rotational loop j = 2.

Thus, dEIRL matches the optimal performance of classical LQR when training on a

nominal model and achieves real-world convergence performance in accordance with

its theoretical guarantees (cf. Section 3.6). As a comparison, the FVIs also converge

nicely, but they still exhibit appreciable variance between seeds (cf. Figure 5.3).

We next examine how dEIRL’s solution optimality generalizes with respect to

initial conditions x0 when modeling error is introduced. As a worst case observed

over the IC grid x0 ∈ Gx0 and in the presence of the most severe 25% modeling error

131

Table 5.3: Initial Condition x0 Ablation Optimality Error and Conditioning Data –
Pendulum

ν
Data ∥Ki,1 −K∗

1∥ max
i
κ(Ai,1)

Over Nom dEIRL % Reduc
dEIRL

Gx0 LQ i = i∗ Nom→dEIRL

0%
worst

0
3.71e-05 N/A a 42.25

avg 1.75e-05 N/A 23.17
std 1.19e-05 N/A 11.82

10%
worst

1.04
0.06 94.12 39.12

avg 0.03 96.75 22.82
std 0.01 0.53 10.79

25%
worst

2.61
0.20 92.18 39.64

avg 0.13 95.21 25.56
std 0.01 0.54 10.34

aNot applicable for the nominal model ν = 1.

Figure 5.2: dEIRL Iteration-Wise Max Condition Number max
i
κ(Ai,j) Versus Mod-

eling Error ν and IC x0 ∈ Gx0 Ablation Study Results. First Row: Loop j = 1,
Second Row: Loop j = 2. First Column: Pendulum (Note: Single-Loop j = 1),
Second Column: Jet Aircraft, Third Column: DDMR.

132

tested, dEIRL converges to within 0.20, 1.78×10−8, and 0.32 of the optimal policy K∗

for the pendulum, jet, and DDMR, respectively. By comparison, the optimality errors

of the nominal LQ controllers K0 are 2.61, 0.13, and 1.74, respectively. Thus, for the

pendulum we see that dEIRL’s policy error ∥Ki∗ −K∗∥ is at most 0.20/2.61 (8%) the

policy error of the nominal LQ design ∥K0 −K∗∥; i.e., a reduction of at least 92%

for a given initial condition x0 ∈ Gx0 . Similarly, dEIRL offers a reduction of at least

99.99% and 81% from the nominal LQ design for the jet and DDMR, respectively,

thus demonstrating generalizability of learning with respect to environment errors.

Table 5.4: Initial Condition x0 Ablation Optimality Error and Conditioning Data –
Jet Aircraft

ν
Data

∥∥Ki,1 −K∗
1

∥∥ ∥∥Ki,2 −K∗
2

∥∥ max
i
κ(Ai,1) max

i
κ(Ai,2)

Over Nom dEIRL % Reduc Nom dEIRL % Reduc dEIRL dEIRL
Gx0 LQ i = i∗ Nom→dEIRL LQ i = i∗ Nom→dEIRL

0%
worst

0
2.55e-15 N/A

a

0
2.42e-08 N/Aa 11.32 432.07

avg 1.61e-15 N/A 1.93e-08 N/A 10.87 195.13
std 4.09e-16 N/A 2.54e-09 N/A 0.31 86.28

10%
worst

0
2.66e-15 N/A

b

0.05
2.15e-08 99.99 11.32 483.68

avg 1.49e-15 N/A 1.71e-08 99.99 10.87 217.39
std 3.76e-16 N/A 2.29e-09 7.06e-06 0.31 104.41

25%
worst

0
2.27e-15 N/Ab

0.13
1.79e-08 99.99 11.33 676.39

avg 1.26e-15 N/A 1.38e-08 99.99 10.88 290.91
std 3.29e-16 N/A 1.94e-09 1.55e-06 0.31 159.55

aNot applicable for the nominal model ν = 1.

bModeling error ν does not affect optimal controller K∗
1 in loop j = 1 for the jet aircraft (cf.

Appendix D.2).

Conditioning Generalization. Running dEIRL over the IC sweep x0 ∈ Gx0 for

varying modeling errors ν ∈ Gν , we plot dEIRL’s iteration-wise max condition number

max
i
κ(Ai,j) for each learning trial over the sweep in Figure 5.2. Tables 5.3, 5.4, and

5.5 provide worst-case, mean, and standard deviation data of the metrics presented

in Figure 5.2 for the pendulum, jet, and DDMR, respectively.

Examining Figure 5.2, we see that conditioning remains low for the pendulum

at less than 42.25 regardless of the IC or modeling error (Table 5.3). For the jet

aircraft, conditioning remains low in the lower-dimensional translational loop j = 1

133

at less than 11.33 regardless of IC or modeling error. Meanwhile, conditioning is

higher in the higher-dimensional rotational/FPA loop j = 2, where it is seen that the

worst-case IC sweep conditioning increases from 432.07 to 6776.39 from 0% to 25%

modeling error (Table 5.4). Conditioning on this order is to be expected for the FPA

loop on an aircraft longitudinal model, as we have seen in our previous evaluation

study on the HSV (cf. Table 4.2). Finally, conditioning remains low in both loops of

the DDMR at a max of 5.36 in the translational loop j = 1 and a max of 58.46 in the

rotational loop j = 2 (Table 5.5). Overall, dEIRL conditioning generalizes very well

with respect to a combination of varying ICs x0 ∈ Gx0 and modeling errors ν ∈ Gν

for each of these three CT-RL environments.

Table 5.5: Initial Condition x0 Ablation Optimality Error and Conditioning Data –
DDMR

ν
Data

∥∥Ki,1 −K∗
1

∥∥ ∥∥Ki,2 −K∗
2

∥∥ max
i
κ(Ai,1) max

i
κ(Ai,2)

Over Nom dEIRL % Reduc Nom dEIRL % Reduc dEIRL dEIRL
Gx0 LQ i = i∗ Nom→dEIRL LQ i = i∗ Nom→dEIRL

0%
worst

0
4.78e-09 N/A

a

0
5.17e-05 N/Aa 5.36 58.46

avg 4.67e-09 N/A 1.19e-05 N/A 5.33 54.52
std 5.56e-11 N/A 9.06e-06 N/A 0.02 3.79

10%
worst

0
1.03e-04 N/A

b

0.68
0.10 84.85 5.36 55.02

avg 1.03e-04 N/A 0.06 91.06 5.33 51.46
std 3.31e-07 N/A 0.03 4.07 0.02 3.38

25%
worst

0
3.08e-04 N/Ab

1.74
0.32 81.35 5.36 50.57

avg 3.05e-04 N/A 0.10 94.25 5.33 47.52
std 9.56e-07 N/A 0.06 3.23 0.02 2.87

aNot applicable for the nominal model ν = 1.

bModeling error ν does not affect optimal controllerK∗
1 in loop j = 1 for the DDMR (cf. Appendix

E.2).

5.4 Quantitative Comparisons between dEIRL and Deep RL FVIs

This evaluation focuses on comparing our current dEIRL to the leading deep RL

FVIs [7, 8]. Training and evaluation procedures for all algorithms are described in

detail in Section 5.1.

134

5.4.1 Average Return Generalization to System ICs

dEIRL, cFVI, and rFVI are trained with trajectory data generated by the same

training uniform IC distribution for each of the respective environments, and the

average return is then evaluated over the respective evaluation uniform IC distribu-

tion. These distributions are given in Section 5.1. The learning curves are plotted

in Figure 5.3 over 20 training seeds, and the average return, variance, and success

rate is tabulated in Table 5.6. As a note, for this optimal regulation dynamic control

task we define “success” as a policy achieving closed-loop stability with respect to

the environment dynamics (f, g) (3.1).

0 50 100 150
-50

-45

-40

-35

-30

-25

-20

-15

-10

-5

0

0 10 20 30 40 50 60 70 80 90 100
-500

-450

-400

-350

-300

-250

-200

-150

-100

-50

0

0 10 20 30 40 50 60 70 80 90 100
-50

-45

-40

-35

-30

-25

-20

-15

-10

-5

0

Figure 5.3: Learning Curves of cFVI and rFVI Obtained Over 20 Seeds for the
Pendulum (Left), Jet Aircraft (Middle), and DDMR (Right). The Shaded Area
Displays the Min/Max Range Between Seeds, as is Presented in the Original Works
[7, 8].

Table 5.6: Average Return and Success Rate on Three Environments

Algorithm
Pendulum Jet aircraft DDMR

Success Return Success Return Success Return
[%] [µ± 2σ] [%] [µ± 2σ] [%] [µ± 2σ]

dEIRL 100 -12.17 ± 2.30 100 -8.26 ± 1.21 100 -3.69 ± 0.51

cFVI 100 -8.85 ± 1.12 100 -20.50 ± 7.26 100 -4.12 ± 0.44

rFVI 100 -16.58 ± 5.36 100 -23.37 ± 16.04 100 -4.32 ± 0.46

As can be seen from Table 5.3, all methods successfully stabilize the closed-loop

135

system for the three environments. The FVI algorithms exhibit overall consistent

learning behavior as shown in the original works [7, 8], a result confirmed indepen-

dently here on SOTA environments. Indeed, cFVI edges out dEIRL’s IC generaliza-

tion on the pendulum, delivering a higher average return and lower variance. However,

for all environments dEIRL converges much more quickly (within 5-10 iterations) than

the FVIs (usually 50-100 iterations). On the two higher-dimensional, multi-input jet

aircraft and DDMR models studied, dEIRL exhibits the best average return and

the lowest variance. For instance, Table 5.6 shows that dEIRL exhibits a return of

−8.26± 1.21, followed by cFVI’s −20.50± 7.26 and then by rFVI’s −23.37± 16.04.

Overall, rFVI tends to exhibit the lowest return and highest variance with respect to

varying ICs.

5.4.2 Cost Performance Generalization to Modeling Error

Figure 5.4 shows the cost difference JcFV I−JdEIRL between cFVI and dEIRL (first

row), and the difference JrFV I−JdEIRL between rFVI and dEIRL (second row) for the

nominal pendulum model ν = 1 (left column), a 10% modeling error ν = 1.1 (middle

column), and a 25% modeling error ν = 1.25 (right column). Note that wherever

this difference is positive, dEIRL delivers better performance than the respective FVI

algorithm. Table 5.7 presents the corresponding min, max, average, and standard

deviation data. Figure 5.5 and Table 5.8 are laid out analogously for the jet aircraft,

and Figure 5.6 and Table 5.9 are laid out analogously for the DDMR.

Several key trends emerge from Tables 5.7–5.9: 1) dEIRL achieves the lowest cost

for all three systems as modeling error ν is increased, and the best modeling error gen-

eralization overall. 2) For both multi-loop systems (i.e., the jet and DDMR), dEIRL

achieves lowest cost pointwise, regardless of modeling error. 3) The FVIs perform

quite well. Indeed, the top left plot of Figure 5.4 shows that cFVI performance edges

136

out that of dEIRL for the nominal pendulum far from the origin x = 0. However,

when modeling error is introduced (top middle 10%, top right 25%), cFVI perfor-

mance degrades significantly, a trend we observe for all three systems (see individual

analyses below). By contrast, rFVI degradation is less pronounced, but at the cost

of inferior overall performance.

Cost Performance – Pendulum. In short, dEIRL and cFVI perform compara-

bly overall, cFVI edging out dEIRL near the nominal model but degrading with

increasing modeling error. By contrast, rFVI’s performance is significantly worse

than dEIRL’s or cFVI’s. Examining the first row of Figure 5.4, the dEIRL and cFVI

policies deliver highly comparable cost performance J in a large region around the

origin for the nominal model ν = 1 and 10% modeling error ν = 1.1. Toward the

fringes of the test domain, the performance of cFVI edges out that of dEIRL slightly,

by as much as −0.243 (Table 5.7). Specifically, cFVI performs better near the cor-

ners x = (−60,−60) and x = (60, 60); i.e., for large initial pendulum displacements

and velocities in the direction of the displacement. This is perhaps intuitive, since

these trajectories depart furthest from the origin. Here, the pendulum nonlinearities

are strongest, and cFVI’s deep network will have an approximation advantage over

dEIRL’s quadratic cost approximator. However, we note that is precisely in these

two regions that the performance of cFVI degrades the heaviest in relation to dEIRL

when the modeling error is increased. For a 25% modeling error ν = 1.25, the top

right plot of Figure 5.4 shows that in these corners the dEIRL policy is far superior,

by as much as 0.499 at max (Table 5.7).

Meanwhile, the second row of Figure 5.4 shows that rFVI performs comparably to

dEIRL and cFVI near the origin, but its policy performance degrades significantly on

the same fringes. Indeed, Table 5.7 shows that dEIRL exhibits lower cost pointwise

relative to rFVI, and rFVI’s worst-case cost increases from 6.50 at nominal to 8.59 at

137

the 25% modeling error relative to dEIRL. Overall, the cost performance of dEIRL

and cFVI are much more comparable, and rFVI exhibits the worst performance across

the board.

Cost Performance – Jet Aircraft. For the jet aircraft, dEIRL perhaps enjoys the

largest performance advantage over the FVIs of any of the systems tested. Exam-

ination of the jet cost data in Table 5.8 shows that dEIRL delivers the lowest cost

pointwise regardless of modeling error. Furthermore, the cost discrepancy between

the FVIs and dEIRL is the largest of the three systems tested, averaging at least 3.08

for cFVI and 3.72 for rFVI. rFVI’s degradation is less severe than cFVI’s, but rFVI

delivers inferior cost performance overall, as much as 10.34 higher than dEIRL’s at

max. Meanwhile, examining Figure 5.5 shows that cFVI and rFVI exhibit similar

cost performance behavior for this system. Both compare well with dEIRL for lower

initial airspeeds V , but a large performance discrepancy develops at higher airspeeds.

The discrepancy is seen to be slightly worse in the rFVI case.

Cost Performance – DDMR. Figure 5.6 shows the cost difference data for the

DDMR. Note that dEIRL delivers lower cost J than cFVI and rFVI pointwise, re-

gardless of modeling error – an important result for training on this more complicated

real-world DDMR system. The performance of cFVI in relation to dEIRL degrades

with increasing modeling error, the maximum performance discrepancy JcFV I−JdEIRL

increasing by 50% from 0.273 on the nominal model ν = 1 to 0.414 at ν = 1.25 (cf.

Table 5.9). On the other hand, rFVI’s performance improves with modeling error,

its max performance discrepancy decreasing from 2.27 at ν = 1 to 1.60 at ν = 1.25.

Nevertheless, as with the pendulum system, rFVI exhibits the worst overall cost per-

formance of the three methods.

138

Figure 5.4: Cost Performance Results of PendulumModel. First Row: Cost Difference
JcFV I − JdEIRL (3.2). Second Row: Cost Difference JrFV I − JdEIRL (3.2). Left:
Nominal Model ν = 1 (E.8). Middle: 10% Modeling Error ν = 1.1. Right: 25%
Modeling Error ν = 1.25.

Table 5.7: Pendulum Training Cost/Approximation Data

Function Data ν (C.4)

1 1.1 1.25

JcFV I − JdEIRL
min -0.230 -0.24 -0.02
max 4.63e-04 0.04 0.51
avg -0.02 -0.01 0.12
std 0.04 0.04 0.12

JrFV I − JdEIRL
min -1.33e-06 2.43e-06 -3.81e-04
max 7.72 8.80 10.27
avg 2.16 2.50 2.99
std 1.92 2.20 2.61

J(x)− V (x) dEIRL

min -1.76 -2.28 -3.24
max 1.93e-04 0.01 0.043
avg -0.26 -0.325 -0.44
std 0.35 0.45 0.63

J(x)− V (x) cFVI

min -0.02 -0.01 -0.01
max 0.03 2.75 8.29
avg -4.07e-03 0.63 1.88
std 0.01 0.61 1.83

J(x)− V (x) rFVI

min -11.80 -7.98 -1.54
max -0.04e-04 -1.42e-03 -1.42e-03
avg -3.11 -2.16 -0.54
std 2.81 1.93 0.44

139

90 95 100 105 110
-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

0

1

2

3

4

5

6

7

8

9

10

90 95 100 105 110
-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

0

1

2

3

4

5

6

7

8

9

10

90 95 100 105 110
-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

0

1

2

3

4

5

6

7

8

9

10

90 95 100 105 110
-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

0

1

2

3

4

5

6

7

8

9

10

90 95 100 105 110
-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

0

1

2

3

4

5

6

7

8

9

10

90 95 100 105 110
-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

0

1

2

3

4

5

6

7

8

9

10

Figure 5.5: Cost Performance Results of Jet Aircraft Model. First Row: Cost Differ-
ence JcFV I − JdEIRL (3.2). Second Row: Cost Difference JrFV I − JdEIRL (3.2). Left:
Nominal Model ν = 1 (C.4). Middle: 10% Modeling Error ν = 0.9. Right: 25%
Modeling Error ν = 0.75.

Table 5.8: Jet Aircraft Training Cost/Approximation Data

Function Data ν (D.2)

1 0.9 0.75

JcFV I − JdEIRL
min 0.00 0.00 0.00
max 8.04 7.90 8.57
avg 3.08 3.25 3.74
std 1.80 1.82 1.98

JrFV I − JdEIRL
min 0.00 0.00 0.00
max 10.15 10.23 10.34
avg 3.72 3.86 4.22
std 2.23 2.24 2.29

J(x)− V (x) dEIRL

min 0.00 0.00 0.00
max 11.77 13.01 15.66
avg 3.15 3.43 4.01
std 2.75 3.00 3.52

J(x)− V (x) cFVI

min -0.46 -0.14 -5.90e-04
max 31.29 32.33 35.82
avg 8.28 8.72 9.81
std 6.57 6.69 7.14

J(x)− V (x) rFVI

min -3.44 -3.12 -2.42
max 32.75 33.73 36.30
avg 7.93 8.35 9.30
std 7.16 7.26 7.56

140

1.5 2 2.5
-30

-20

-10

0

10

20

30

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

1.5 2 2.5
-30

-20

-10

0

10

20

30

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

1.5 2 2.5
-30

-20

-10

0

10

20

30

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

1.5 2 2.5
-30

-20

-10

0

10

20

30

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

2.2

1.5 2 2.5
-30

-20

-10

0

10

20

30

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

2.2

1.5 2 2.5
-30

-20

-10

0

10

20

30

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

2.2

Figure 5.6: Cost Performance Results of DDMR Model. First Row: Cost Difference
JcFV I − JdEIRL (3.2). Second Row: Cost Difference JrFV I − JdEIRL (3.2). Left:
Nominal Model ν = 1 (E.8). Middle: 10% Modeling Error ν = 1.1. Right: 25%
Modeling Error ν = 1.25.

Table 5.9: DDMR Training Cost/Approximation Data

Function Data ν (E.8)

1 1.1 1.25

JcFV I − JdEIRL
min 1.11e-05 1.07e-05 1.08e-05
max 0.27 0.28 0.41
avg 0.09 0.09 0.13
std 0.08 0.08 0.11

JrFV I − JdEIRL
min 1.77e-03 1.77e-03 1.77e-03
max 2.27 1.99 1.60
avg 0.63 0.56 0.46
std 0.54 0.47 0.38

J(x)− V (x) dEIRL

min -0.70 -0.76 -0.93
max 0.82 0.99 1.15
avg 0.01 0.02 0.01
std 0.20 0.23 0.27

J(x)− V (x) cFVI

min -0.01 -1.05e-03 -1.05e-03
max 0.33 0.806 1.80
avg 0.10 0.24 0.50
std 0.09 0.16 0.38

J(x)− V (x) rFVI

min -6.08 -5.80 -5.36
max 3.15e-04 3.31e-04 3.57e-04
avg -1.79 -1.72 -1.60
std 1.30 1.23 1.13

141

5.4.3 Critic Network Approximation Performance Generalization to Modeling

Error

Figures 5.7, 5.8, and 5.9 show the the critic network error J − V for dEIRL (first

row), cFVI (second row), and rFVI (third row) for the pendulum, jet, and DDMR

systems, respectively. In general, it is desirable for the difference J − V to be as

small in magnitude as possible (so the critic is accurate) and to be negative if it does

deviate from zero (so the critic underestimates the policy performance).

Generally speaking, as is the case with cost performance, dEIRL exhbits the small-

est critic network error when modeling error is introduced and the best generalization

overall. cFVI does an excellent job of approximating its policy cost for the nominal

model but experiences significant degradation. For example, Table 5.9 for the DDMR

shows that cFVI’s worst-case critic error increases by 454% from ν = 1 to ν = 1.25,

as compared to dEIRL’s 39%. Meanwhile, rFVI struggles with cost approximation

to a larger degree than dEIRL or cFVI; however, rFVI’s worst-case cost approxima-

tion improves from 6.08 at nominal to 5.36 at 25% modeling error (cf. Table 5.9),

demonstrating favorable generalization.

142

Approximation Performance – Pendulum. Examining Figure 5.9, the overall

picture is clear: dEIRL exhibits the most consistent approximation performance,

while the performance of the two FVI methods is much more sensitive to modeling

error.

Figure 5.7: Critic NN Approximation Error J(x) − V (x) of Pendulum Model. Left:
Nominal Model ν = 1 (C.4). Middle: 10% Modeling Error ν = 1.1. Right: 25%
Modeling Error ν = 1.25. First Row: dEIRL. Second Row: cFVI [7]. Third Row:
rFVI [8].

dEIRL’s network is highly accurate in a large region around the origin and slightly

underestimates the policy performance toward the fringes. This underestimation in-

143

creases in magnitude monotonically with the modeling error. However, the degra-

dation is gradual, beginning at a worst-case approximation error of −1.758 for the

nominal model ν = 1 and decreasing to only −3.24 for a 25% modeling error ν = 1.25

(Table 5.7).

cFVI’s critic does an excellent job of approximating the policy cost for the nomi-

nal model ν = 1, the two functions falling within 0.0338 of each other at max (Table

5.7). Given cFVI’s deep network critic structure, such approximation performance

is intuitive. However, with the introduction of a 10% modeling error ν = 1.1, the

critic approximation quality degrades significantly. Examining Table 5.7, cFVI over-

estimates its policy’s performance by 0.627 on average, 2.75 at max for ν = 1.1,

compared to dEIRL’s underestimation by only −0.325 on average, −2.28 at min for

the same modeling error. Thus, for even mild modeling errors, dEIRL exhibits an

underestimation behavior preferable to the overestimation behavior of cFVI, and in

magnitude dEIRL’s critic error is approximately half that of cFVI on average. We

note that cFVI also tends to overestimate its policy performance for the DDMR sys-

tem as well (see below), suggesting this is a common performance characteristic of

the method. The discrepancies grow more pronounced as we move to the severe 25%

modeling error ν = 1.25. Here, dEIRL underestimates its policy performance by

−3.24 at minimum, −0.444 on average. In comparison, cFVI overestimates its policy

performance by 8.29 at max, 1.88 on average.

On the other hand, rFVI’s approximation performance is poor for the nominal

model and actually improves with increasing modeling error. rFVI underestimates

its policy performance by −10.37 at worst for the nominal model, improving to −6.82

and −1.34 for 10% and 25% modeling errors, respectively. Thus, we conclude that

rFVI’s value function has successfully adapted to its modeling error adversary ξθ, at

the cost of inferior performance for models closer to the nominal.

144

Approximation Performance – Jet Aircraft. dEIRL definitively surpasses the

FVIs in approximation performance. Examination of Table 5.8 shows that the worst-

case critic network error for dEIRL on the nominal model is only 11.77, compared to

cFVI’s 31.29 and rFVI’s 32.75. Similar results hold when modeling error is introduced.

The approximation performance seen visually in Figure 5.8 shows that dEIRL achieves

low approximation error across the state domain. Meanwhile, cFVI and rFVI exhibit

similar behavior and both struggle at higher airspeeds V .

90 95 100 105 110
-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

0

5

10

15

20

25

30

35

90 95 100 105 110
-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

0

5

10

15

20

25

30

35

90 95 100 105 110
-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

0

5

10

15

20

25

30

35

90 95 100 105 110
-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

0

5

10

15

20

25

30

35

90 95 100 105 110
-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

0

5

10

15

20

25

30

35

90 95 100 105 110
-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

0

5

10

15

20

25

30

35

90 95 100 105 110
-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

0

5

10

15

20

25

30

35

90 95 100 105 110
-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

0

5

10

15

20

25

30

35

90 95 100 105 110
-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

0

5

10

15

20

25

30

35

Figure 5.8: Critic NN Approximation Error J(x)− V (x) of Jet Aircraft Model. Left:
Nominal Model ν = 1 (D.2). Middle: 10% Error ν = 0.9. Right: 25% Error ν = 0.75.
First Row: dEIRL. Second Row: cFVI [7]. Third Row: rFVI [8].

145

Approximation Performance – DDMR. We display the critic approximation

error J − V of dEIRL, cFVI, and rFVI in Figure 5.9, laid out analogously to Figure

5.7. Overall, the trends are similar to those of the pendulum: dEIRL exhbits the most

consistent approximation performance, while the performance of the FVI methods is

more sensitive to modeling error.

1.5 2 2.5
-30

-20

-10

0

10

20

30

-0.5

0

0.5

1

1.5

1.5 2 2.5
-30

-20

-10

0

10

20

30

-0.5

0

0.5

1

1.5

1.5 2 2.5
-30

-20

-10

0

10

20

30

-0.5

0

0.5

1

1.5

1.5 2 2.5
-30

-20

-10

0

10

20

30

-0.5

0

0.5

1

1.5

1.5 2 2.5
-30

-20

-10

0

10

20

30

-0.5

0

0.5

1

1.5

1.5 2 2.5
-30

-20

-10

0

10

20

30

-0.5

0

0.5

1

1.5

1.5 2 2.5
-30

-20

-10

0

10

20

30

-6

-5

-4

-3

-2

-1

0

1

1.5 2 2.5
-30

-20

-10

0

10

20

30

-6

-5

-4

-3

-2

-1

0

1

1.5 2 2.5
-30

-20

-10

0

10

20

30

-6

-5

-4

-3

-2

-1

0

1

Figure 5.9: Critic NN Approximation Error J(x) − V (x) of DDMR Model. Left:
Nominal Model ν = 1 (E.8). Middle: 10% Modeling Error ν = 1.1. Right: 25%
Modeling Error ν = 1.25. First Row: dEIRL. Second Row: cFVI [7]. Third Row:
rFVI [8]. Note: rFVI Color Normalized Independently for Legibility Purposes.

146

cFVI does an excellent job of cost approximation in the case of the nominal model

ν = 1, edging out the approximation performance of dEIRL on the corners of the test

grid. However, dEIRL exhibits much more consistent cost approximation perfor-

mance in the face of modeling error. Indeed, as with the pendulum system, the

approximation advantage of cFVI is lost when modeling error is introduced, eventu-

ally overestimating by up to 1.80 at max for the 25% modeling error to dEIRL’s 1.15.

Meanwhile, rFVI struggles the most with cost approximation, universally underesti-

mating its policy performance by on the order of −6 at minimum.

5.4.4 Closed-Loop Performance Generalization to Modeling Error

Figures 5.10, 5.11, and 5.12 plot the closed-loop step responses of the tested meth-

ods on the pendulum, jet, and DDMR (respectively) at 0%, 10%, and 25% modeling

errors. The step response metrics corresponding to these figures can be found in

Table 5.10. Overall, the FVI responses are either sluggish and/or exhibit large over-

shoot when compared to dEIRL. As corroborated by Section 5.3, dEIRL recovers the

closed-loop performance of the optimal policy for all systems and outperforms the

nominal classical LQ design.

0 0.5 1 1.5 2 2.5
-20

0

20

40

60

80

100

120

140

160

180

0 0.5 1 1.5 2 2.5
-20

0

20

40

60

80

100

120

140

160

180

0 0.5 1 1.5 2 2.5
-20

0

20

40

60

80

100

120

140

160

180

Figure 5.10: Swing-up Closed-Loop Response of Pendulum Model. Left: Nominal
Model ν = 1 (C.4). Middle: 10% Modeling Error ν = 1.1. Right: 25% Modeling
Error ν = 1.25.

147

Table 5.10: Closed-Loop Performance Measures Generalization to Modeling Error ν

System Alg ts,y,1% (s) tr,y,90% (s) Mp,y (%)

ν 0% 10% 25% 0% 10% 25% 0% 10% 25%

Pendulum
y = θ

dEIRL 1.16 1.16 1.18 0.67 0.71 0.74 0.00 0.01 0.07
cFVI 1.80 1.80 1.95 1.10 1.19 1.36 0.00 0.02 0.19
rFVI 1.52 1.54 1.53 0.85 0.88 0.90 0.00 0.03 0.03
Opt LQ 1.16 1.22 1.28 0.67 0.70 0.74 0.00 0.02 0.01
Nom LQ 1.16 0.99 2.12 0.67 0.65 0.71 0.00 0.65 3.09

Jet
Aircraft
y1 = V

dEIRL 14.42 14.62 14.41 9.61 9.41 9.31 0.09 0.10 0.11
cFVI 18.58 18.33 17.97 9.92 9.98 10.07 0.00 0.00 0.00
rFVI 19.20 18.96 18.83 10.28 10.35 10.59 0.00 0.00 0.00
Opt LQ 14.42 14.62 14.41 9.61 9.41 9.31 0.09 0.10 0.11
Nom LQ 14.42 14.36 14.27 9.61 9.47 9.51 0.09 0.10 0.12

y2 = γ

dEIRL 7.17 6.99 6.44 4.43 4.49 4.44 0.25 0.36 0.69
cFVI 14.42 14.67 15.20 3.91 3.99 4.16 14.68 16.53 19.96
rFVI 17.88 18.18 18.58 4.00 4.10 4.23 15.63 17.41 20.60
Opt LQ 7.17 6.99 6.44 4.43 4.49 4.44 0.25 0.36 0.69
Nom LQ 7.17 6.67 8.81 4.43 4.39 4.42 0.25 0.37 1.11

DDMR
y1 = V

dEIRL 5.33 5.33 5.33 3.83 3.83 3.83 0.43 0.43 0.43
cFVI 5.45 5.46 5.52 3.94 3.96 3.77 0.55 0.55 0.55
rFVI 5.77 5.78 5.88 3.75 3.67 3.77 0.10 0.10 0.10
Opt LQ 5.33 5.33 5.33 3.83 3.83 3.83 0.43 0.43 0.43
Nom LQ 5.33 5.33 5.33 3.83 3.83 3.83 0.43 0.43 0.43

y2 = ω

dEIRL 6.68 6.87 7.44 1.24 1.19 1.19 16.93 18.76 21.06
cFVI 12.81 12.12 11.69 1.28 1.22 1.16 26.02 30.74 38.93
rFVI 17.51 17.51 17.67 1.53 1.51 1.38 12.06 13.81 16.72
Opt LQ 6.68 7.26 7.43 1.24 1.19 1.18 16.93 18.65 21.11
Nom LQ 6.68 6.66 6.15 1.24 1.18 1.13 16.93 20.45 26.64

Closed-Loop Performance – Pendulum.We now study the swing-up performance

of dEIRL, cFVI, the optimal LQ controller, and the nominal LQ controller (i.e.,

optimal for the nominal model ν = 1). Figure 5.10 shows these responses for the

nominal model ν = 1 (left), for a 10% modeling error ν = 1.1 (middle), and for a 25%

modeling error ν = 1.25 (right). As can be seen, the cFVI exhibits the most sluggish

response, followed by rFVI. dEIRL and the LQ controllers are the most responsive.

cFVI/rFVI exhibit relatively slow closed-loop responses for the DDMR system as

well (see below), suggesting that FVI tends to train to the control penalty more

heavily. Regardless of the modeling error, dEIRL successfully recovers the closed-

loop performance if the optimal LQ controller. As seen by the increased overshoot of

148

the nominal LQ controller in the middle and rightmost plots of Figure 5.10, dEIRL

successfully outperforms the classical LQR design in the face of modeling error.

Closed-Loop Performance – Jet Aircraft. Figure 5.11 plots the closed-loop re-

sponses to a 1 deg step FPA command. As can be seen, dEIRL exhibits a nice,

monotonic response with no overshoot. By contrast, the FVIs exhibit a large over-

shoot transient and comparatively high settling time. The overshoot increases for

both FVI algorithms as the modeling error increases.

0 2 4 6 8 10 12 14 16 18 20
0

0.2

0.4

0.6

0.8

1

1.2

1.4

0 2 4 6 8 10 12 14 16 18 20
0

0.2

0.4

0.6

0.8

1

1.2

1.4

0 2 4 6 8 10 12 14 16 18 20
0

0.2

0.4

0.6

0.8

1

1.2

1.4

Figure 5.11: Closed-Loop Response of Jet Aircraft Model to 1 deg Step FPA Com-
mand. Left: Nominal Model ν = 1 (D.2). Middle: 10% Modeling Error ν = 0.9.
Right: 25% Modeling Error ν = 0.75.

Closed-Loop Performance – DDMR. We study the closed-loop responses of

dEIRL, cFVI, rFVI, the optimal LQ controller, and the nominal LQ controller to

a 30 deg/s step angular velocity command in Figure 5.12. As can be seen, regardless

of the modeling error ν, the closed-loop response of the cFVI controller has simi-

lar rise time to dEIRL, but with significant overshoot and slow settling time. The

cFVI overshoot increases with increasing modeling error. Meanwhile, the rFVI re-

sponse has similar overshoot to dEIRL, but with relatively long rise time and very

sluggish settling time. Regardless of the modeling error, dEIRL successfully recovers

the closed-loop performance of the optimal LQ controller. As seen by the increased

overshoot of the nominal LQ controller in the middle and rightmost plots of Figure

149

5.12, dEIRL successfully outperforms the classical LQR design.

0 1 2 3 4 5 6 7 8 9 10
0

5

10

15

20

25

30

35

40

45

0 1 2 3 4 5 6 7 8 9 10
0

5

10

15

20

25

30

35

40

45

0 1 2 3 4 5 6 7 8 9 10
0

5

10

15

20

25

30

35

40

45

Figure 5.12: Closed-Loop Response of DDMR Model to 30 deg/s Step Angular Ve-
locity Command. Left: Nominal Model ν = 1 (E.8). Middle: 10% Modeling Error
ν = 1.1. Right: 25% Modeling Error ν = 1.25.

Algorithm Time/Data/Parameter Complexity. Table 5.11 lists key algorithm

complexity parameters for dEIRL and FVIs. On the DDMR, for example, the ratio

of dEIRL/FVI for simulations required: 1/5,000,000, data samples: 1/6,000,000, net-

work weights: 1/12,000, training epochs: 1/400, number of hyperparameters: 1/4,

and training time: 1/3,000. As a result, we are able to conduct 160 times the number

of learning trials for dEIRL in these studies than for FVI.

Table 5.11: dEIRL Versus FVI: Algorithm Time/Data Complexity

Parameter Pendulum Jet Aircraft DDMR
dEIRL cFVI/rFVI dEIRL cFVI/rFVI dEIRL cFVI/rFVI

Simulations 1 1.05e+07 1 5.12e+06 1 5.12e+06
Required / 3.84e+06

Data Samples 15 3.45e+08 45 2.30e+08 35 2.30e+08
Required / 1.73e+08

NN Weights 3 79,104 13 79,104 6 79,104
Epochs Required 5 2,000 5 2,000 5 2,000

/ 3,000
Avg Training Time 0.17 6.88e+03 4.25 8.18e+03 2.58 6.30e+03

(s) a / 8.98e+03 / 7.98e+03 / 6.04e+03
Trials/Seeds Tested 1,640 b 20 1,109 20 1,307 20

aAveraged over 20 seeds (cf. Section 5.4.1).

bIncludes 20 seeds in IC ablation (Section 5.4.1), plus sweeps over IC grids x0 ∈ Gx0
and modeling

error grids ν ∈ Gν (Section 5.3).

150

5.5 Discussion

In the context of current ADP and deep RL CT-RL methods, we formulate

a model-based dEIRL algorithm which leverages nonlinear learning alongside in-

put/output insights of the environment and Kleinman control structures for data

efficiency. dEIRL leads to new CT-RL results on SOTA environments (jet aircraft

and DDMR ground robot new to CT-RL). All three CT-RL classes represent different

approaches to the learning control problem. dEIRL presents theoretical guarantees,

and its learning performance at least matches, and often outperforms, the SOTA

deep RL FVIs in terms of 1) policy cost performance, 2) critic network approxima-

tion performance, 3) closed-loop time-domain performance, 4) algorithm data/time

efficiency, and 5) generalization to modeling error. Yet, dEIRL’s efficiency requires

knowledge of the environment, and dEIRL only considers Q-R cost structures (3.2).

Meanwhile, ADP presents strong analytical results and may not require knowledge

of the environment (f, g), but these methods have not been proven for meaningful

applications, as only evaluations of simple systems with known optimal solutions are

available. Furthermore, ADPs generally restrict to Q-R cost as well. Finally, deep

RL FVIs are learning-driven methods with significant empirical promise and gener-

alizability, as independently verified by the new SOTA evaluations we conduct on

these algorithms in Section 5.4. These methods also consider flexible cost structures

including dense/sparse costs. However, FVIs require the most dynamic knowledge of

the three classes, and theoretical results are yet to be developed.

We provide a much-needed first-of-its-kind quantitative performance evaluation of

classical-based dEIRL and deep FVI CT-RL methods, revealing the following key in-

sights: 1) FVI’s developed training procedure [7] in computer simulation on a nominal

model makes cFVI particularly sensitive to modeling error performance degradation.

151

rFVI attempts to robustify this vulnerability by training under adversarial input [8],

which ultimately mitigates degradation at the cost of inferior overall performance.

By contrast, dEIRL enables more focused policy training on a single simulation trial

collected from the actual system. 2) FVIs exhibit significant time/data complexity

in relation to dEIRL, requiring three orders of magnitude more time and six orders

of magnitude more simulations to train. 3) dEIRL exhibits a clear cost, approxima-

tion, and time-domain performance advantage for the higher-order, multi-loop sys-

tems studied in this work, empirically validating our physics-based decentralization

paradigm developed for these systems.

152

Chapter 6

EVALUATION STUDY: COMPREHENSIVE DEIRL ABLATIONS WITH

RESPECT TO MODELING ERRORS AND INITIAL CONDITIONS ON

HYPERSONIC VEHICLE MODEL

6.1 Setup and Hyperparameter Selection

These evaluations were performed in MATLAB R2022b, on an NVIDIA RTX 2060,

Intel i7 (9th Gen) processor. All numerical integrations in this work are performed in

MATLAB’s adaptive ode45 solver to ensure solution accuracy. All code and datasets

developed for this work can be found at [154].

6.1.1 Hyperparameter Selection

Cost Structure. We select penalty matrices Q1 = diag(1.5, 5), R1 = 7.5 in the

velocity loop j = 1 and Q2 = diag(100, 150, 0.5, 0), R2 = 1 in the FPA loop j =

2. These penalties were chosen such that the resulting optimal LQR controllers

achieve the closed-loop design Specifications B.3.1 on the nominal nonlinear HSV

model (frequency response and step response characteristics given in Tables 6.2 and

6.3, respectively).

Excitation Signals. We choose the exploration noise d, and reference command r

based on the preliminary studies conducted on this HSV model [148], which generally

place the dominant frequency content near the peak of the respective closed-loop

map (i.e., the P -sensitivity Tdi→y and complementary sensitivity Tr→y, respectively)

in order to maximize excitation efficiency. For the exploration noise d, we choose

d1(t) = 0.01 cos
(

2π
250
t
)
and d2(t) = sin

(
2π
6
t
)
+ 1.5 cos

(
2π
25
t
)
+ cos

(
2π
100
t
)
. For the

153

reference command r, we choose r1(t) = 5 cos
(
2π
10
t
)
+ 5 sin

(
2π
25
t
)
+ 50 sin

(
2π
100
t
)
and

r2(t) = 0.03 sin
(
2π
6
t
)
+ 0.015 sin

(
2π
15
t
)
.

Learning Hyperparameters. We systematically select these parameters based on

insights of the system physics and natural dynamical behavior. These include sample

period Ts = tk− tk−1, number of samples collected l, number of iterations i∗, and ini-

tial stabilizing controller K0. For sample period, we choose Ts,1 = 6 s in the velocity

loop j = 1, and a shorter Ts,2 = 2 s in the FPA loop j = 2 to capture the trajec-

tory features of the higher-bandwidth dynamics. For number of samples, we choose

l1 = 15, l2 = 25 – higher in the FPA loop j = 2 because this loop is higher-dimensional

(n1 = 2, n2 = 4). For the number of iterations, i∗1 = i∗2 = 10 was observed sufficient

for learning convergence. Lastly, we choose initial stabilizing controllers K0,1, K0,2.

In general, these controllers may be chosen arbitrary, as long as they are stabiliz-

ing (Theorem 3.6.3). However, for sake of comparison with a nominal classical LQR

design, we initialize these as LQR controllers with associated penalties Q10 = I2,

R10 = 12.5, Q20 = diag(1, 1, 0, 0), R20 = 0.025. These penalties were chosen such

that the nominal LQR design K0 = diag(K0,1, K0,2) satisfies the same closed-loop

design Specification B.3.1 which we require of the optimal LQR design. As an aside,

one could just as well make the choice Q10 = Q1, R10 = R1, Q20 = Q2, R20 = R2; i.e.,

select the initial controller as the LQR design optimal for the nominal model. This is

the practice followed in the initial evaluations conducted in Section 4, wherein dEIRL

exhibits controller optimality reductions
∥∥K0,j −K∗

j

∥∥ → ∥∥Ki∗,j −K∗
j

∥∥ on the order

of 90% as modeling error is introduced (cf. Table 4.3). Since this capability is al-

ready well-documented, here we choose to present the algorithm a more “challenging”

learning problem from the perspective of convergence by initializing the parameters

to a controller in specification but further in norm from the optimal.

154

6.1.2 Implementation and Training Procedures

Modeling Errors ν Tested. The trials of Sections 6.2, 6.4, and 6.3 study the

effects of perturbing a single modeling error parameter in lift coefficient νL (B.4),

drag coefficient νD (B.6), and pitch moment coefficient νM (B.8). For these trials,

the modeling errors are tested over the following grids of values

GνL = [1 : −0.025 : 0.75], GνD = [1 : 0.025 : 1.25], GνM = [1 : 0.025 : 1.25],

(6.1)

i.e., 0%–25% modeling error with a step size of 2.5%. The direction of the respec-

tive perturbation (ν > 1 or ν < 1) is chosen as the direction which decreases the

HSV’s RHPZ/RHPP ratio, thereby presenting the algorithm with the greatest possi-

ble learning challenge. The modeling error ablation of Section 6.5 studies modeling

error in two parameters simultaneously, over sweep grids in lift/drag of GνL × GνD ,

lift/pitch moment GνL ×GνM , and drag/pitch moment GνD ×GνM . Finally, the ran-

dom modeling error ablation of Section 6.6 studies 10,000 trials of modeling error,

wherein all three parameters are simultaneously perturbed, each in a uniform distribu-

tion U(0.9, 1.1) (10% bidirectional disturbance). We choose this uniform distribution

to keep our results comparable to the leading CT-RL numerical studies in deep RL

[7, 8], which favor uniform distributions in modeling error in order to increase weight

on the edge cases of the distribution.

System Initial Conditions (ICs) x0 Tested. Section 6.4 performs dEIRL learning

ablations with respect to varying ICs x0 over the following grid of values

Gx0 = [−100 : 25 : 100] ft/s× [−1 : 0.25 : 1] deg, (6.2)

155

Table 6.1: Closed-Loop Performance Metrics

Metric Number Indicator Function Design Requirement

1 IS Closed-loop stability

2 (3) IV,ts,10%25 (IV,ts,10%50) 10% settling time ≤ 25 s (50 s)
4 (5) IV,ts,1%75 (IV,ts,1%100) 1% settling time ≤ 75 s (100 s)
6 (7) IV,tr,90%25 (IV,tr,90%30) 90% rise time ≤ 25 s (30 s)
8 (9) IV,Mp5 (IV,Mp10) Percent overshoot ≤ 5% (10%)
10 (11) IV,δT 20 (IV,δT 25) Maximum change in throttle setting δT ≤ 20% (25%)
12 (13) IV,δE0.25 (IV,δE0.5) Maximum change in elevator δE ≤ 0.25 deg (0.5 deg)
14 (15) IV,∆γ0.01 (IV,∆γ0.05) Maximum change in FPA γ ≤ 0.01 deg (0.05 deg)

16 (17) Iγ,ts,10%7.5 (Iγ,ts,10%10) 10% settling time ≤ 7.5 s (10 s)
18 (19) Iγ,ts,1%10 (Iγ,ts,1%15) 1% settling time ≤ 10 s (15 s)
20 (21) Iγ,tr,90%5 (Iγ,tr,90%7.5) 90% rise time ≤ 5 s (7.5 s)
22 (23) Iγ,Mp5 (Iγ,Mp10) Percent overshoot ≤ 5% (10%)
24 (25) Iγ,δT 25 (Iγ,δT 50) Maximum change in throttle setting δT ≤ 25% (50%)
26 (27) Iγ,δE5 (Iγ,δE7.5) Maximum change in elevator δE ≤ 5 deg (7.5 deg)
28 (29) Iγ,∆V 0.15 (Iγ,∆V 0.25) Maximum change in velocity V ≤ 0.15% (0.25%)

meanwhile, the remainder of the state variables are initialized to their trim values xe.

We choose these grid bounds because the closed-loop performance metrics studied in

Section 6.6 (cf. Table 6.1) study specifications on velocity commands of 100 ft/s and

FPA commands of 1 deg. For the studies of Sections 6.2, 6.5, 6.3, and 6.6 which focus

on modeling error effects, ICs are set to trim x0 = xe.

Algorithm Conditioning. This work presents in-depth studies of dEIRL algorithm

conditioning, which has proven a central numerical design limitation for existing CT-

RL algorithms [137]. Given a particular learning trial (i.e., associated with a fixed set

of modeling error parameters ν and initial conditions x0), we examine the iteration-

wise max conditioning defined as max
0≤i≤i∗−1

κ(Ai,j) (j = 1, 2), where Ai,j is the dEIRL

learning regression matrix (3.27). This yields the worst-case conditioning exhibited

by the algorithm over all iterations of execution for a given learning trial.

6.1.3 Feedback Linearization (FBL) Benchmark Tested [5, 6].

In order to present comparative analyses of dEIRL performance against lead-

ing classical flight control methods, in this work we study the same robust FBL

156

control framework for which this HSV model was originally developed as demon-

stration [5, 6]. For this method, we select the following LQ parameters for its

feedback-linearized performance: Q1 = diag(8.54×10−6, 0.34, 0.86, 47.93), R1 = 0.89,

Q2 = diag(0.5, 0.3, 1, 0.5), R2 = 0.35. The parameters Q1, R1 for the velocity loop

j = 1 are chosen identical to the robust control framework [5], whose optimization is

configured to minimize failure percentage of closed-loop performance metrics based

upon 100 ft/s step velocity commands (cf. Table 6.1). Thus, to prevent biasing re-

sults against FBL, our learning IC ablation results in Section 6.4 and our closed-loop

response performance results in Sections 6.3 and 6.6 also study 100 ft/s velocity re-

sponses. Meanwhile, [5, 6] study outputs y = [V, h]T , so for the parameters Q2, R2 in

the FPA loop j = 2, we make selections to satisfy the closed-loop performance Spec-

ifications B.3.1 and hence make FBL numerically-comparable to the other methods.

6.2 Frequency Response Performance Generalization to Modeling Error

In this study, we examine the frequency response performance of the nominal

LQ, dEIRL, and optimal LQ with respect to the sensitivity Se, Su and complemen-

tary sensitivity Te, Tu at the error e and controls u, respectively (cf. Figure B.3).

We examine these maps at 0%, 10%, and 25% modeling errors in lift coefficient νL

(B.4), drag coefficient νD (B.6), and pitch moment coefficient νM (B.8). The peak

closed-loop map data is summarized in Table 6.2, and we have plotted the frequency

responses of the sensitivity and complementary sensitivity Se, Te, Su, Tu at the error

e and controls u with respect to varying modeling error ν in Figures 6.1–6.4.

Examining Table 6.2, we note that regardless of the modeling error tested (in lift

νL, drag νD, or pitching moment νM), and regardless of the severity of the model-

ing error (0%–25%), dEIRL successfully recovers the closed-loop frequency response

properties of the optimal controller. Indeed, regardless of the modeling error type or

157

Table 6.2: Peak Closed-Loop Maps Versus Modeling Error ν

ν
∥Se∥H∞ ∥Te∥H∞ ∥Su∥H∞ ∥Tu∥H∞

Nom dEIRL Opt Nom dEIRL Opt Nom dEIRL Opt Nom dEIRL Opt

0% 6.05 4.76 4.76 4.50 3.29 3.29 0.10 0.07 0.07 5.14 4.17 4.17

10%
L 5.56 4.69 4.70 4.33 3.42 3.30 0.06 0.03 0.08 4.68 3.88 4.12
D 6.05 4.76 4.76 4.50 3.29 3.29 0.10 0.07 0.07 5.14 4.18 4.17
M 7.29 4.86 4.59 5.71 3.88 3.22 1.95 0.01 0.07 6.83 3.77 4.40

25%
L 4.91 4.62 4.60 4.33 3.68 3.31 0.06 0.02 0.11 4.01 3.33 4.03
D 6.06 4.77 4.76 4.50 3.28 3.29 0.10 0.07 0.07 5.15 4.19 4.17
M 10.32 5.07 4.31 9.17 4.05 3.09 7.74 0.03 0.06 10.68 4.18 4.70

value, dEIRL recovers the H∞ norm of the optimal controller for all maps to within

0.96 dB at max (worst: Te for 25% pitch moment modeling error). In the absence of

modeling error, the nominal LQR controller achieves closed-loop peaking comparable

to dEIRL and the optimal at the controls u (to be expected, since these methods all

inherit LQR performance guarantees at the controls [136]), and its peaking is only

slightly higher at the error e. The nominal design’s peaking in the sensitivity at the

controls is ∥Su∥H∞ ≈ 0 dB, similar to dEIRL and the optimal controller. As a note,

LQR guarantees ∥Su∥H∞ = 0 dB [136], the slight numerical deviations observed from

the theoretical guarantee arising from the decentralized controller structure (cf. Ap-

pendix B.3). The nominal’s peak in the complementary sensitivity at the controls

is ∥Tu∥H∞ is also comparable (5.14 dB) to dEIRL and the optimal (4.17 dB). As a

note, LQR guarantees ∥Tu∥H∞ ≤ 6 dB [136]. Meanwhile, the nominal’s peaking at

the error e is comparable to that of dEIRL and the optimal, generally within 1 dB.

Furthermore, by virtue of recovery of the optimal closed-loop performance for

a given modeling error, dEIRL’s peaking degrades little with respect to increasing

modeling error. The worst-case increase in H∞ norm for any map and modeling error

type is for the complementary sensitivity at the error Te with respect to pitch moment

modeling error νM, for which dEIRL’s peak ∥Te∥H∞ increases by 0.76 dB from 3.29

dB at 0% modeling error to 4.05 dB at 25% modeling error.

By contrast, the nominal LQR controller’s closed-loop frequency response perfor-

158

mance degrades significantly with respect to modeling error. The degradation is most

pronounced with respect to modeling error in pitching moment coefficient νM, as pic-

tured at the error e in Figures 6.1 and 6.2. As can be seen, the peaking for dEIRL

and the optimal remains relatively constant, dEIRL successfully capturing the opti-

mal closed-loop response. Meanwhile, the nominal’s peaking increases significantly

from 0% to 25% modeling error: 6.05 dB to 10.32 dB (Se), and 4.33 dB to 9.17 dB

(Te). Similar increases are observed at the controls u (cf. Table 6.2). At the controls

u, the nominal’s peaking increases from 0% to 25% modeling error: 0.10 dB to 7.74

dB (Su), and 5.14 dB to 10.68 dB (Tu).

159

6.2.1 Plots: Sensitivity at Error Se

10-3 10-2 10-1 100 101 102
-20

-15

-10

-5

0

5

10

10-3 10-2 10-1 100 101 102
-20

-15

-10

-5

0

5

10

10-3 10-2 10-1 100 101 102
-20

-15

-10

-5

0

5

10

10-3 10-2 10-1 100 101 102
-20

-15

-10

-5

0

5

10

10-3 10-2 10-1 100 101 102
-20

-15

-10

-5

0

5

10

10-3 10-2 10-1 100 101 102
-20

-15

-10

-5

0

5

10

10-3 10-2 10-1 100 101 102
-20

-15

-10

-5

0

5

10

10-3 10-2 10-1 100 101 102
-20

-15

-10

-5

0

5

10

10-3 10-2 10-1 100 101 102
-20

-15

-10

-5

0

5

10

Figure 6.1: Sensitivity at Error Se Versus Modeling Error ν. First Row: Lift Coeffi-
cient Sweep νL. Second Row: Drag Coefficient Sweep νD. Third Row: Pitch Moment
Coefficient Sweep νM. First Column: 0% Modeling Error. Second Column: 10%
Modeling Error. Third Column: 25% Modeling Error.

160

6.2.2 Plots: Complementary Sensitivity at Error Te

10-3 10-2 10-1 100 101 102
-20

-15

-10

-5

0

5

10

10-3 10-2 10-1 100 101 102
-20

-15

-10

-5

0

5

10

10-3 10-2 10-1 100 101 102
-20

-15

-10

-5

0

5

10

10-3 10-2 10-1 100 101 102
-20

-15

-10

-5

0

5

10

10-3 10-2 10-1 100 101 102
-20

-15

-10

-5

0

5

10

10-3 10-2 10-1 100 101 102
-20

-15

-10

-5

0

5

10

10-3 10-2 10-1 100 101 102
-20

-15

-10

-5

0

5

10

10-3 10-2 10-1 100 101 102
-20

-15

-10

-5

0

5

10

10-3 10-2 10-1 100 101 102
-20

-15

-10

-5

0

5

10

Figure 6.2: Complementary Sensitivity at Error Te Versus Modeling Error ν. First
Row: Lift Coefficient Sweep νL. Second Row: Drag Coefficient Sweep νD. Third
Row: Pitch Moment Coefficient Sweep νM. First Column: 0% Modeling Error.
Second Column: 10% Modeling Error. Third Column: 25% Modeling Error.

161

6.2.3 Plots: Sensitivity at Controls Su

10-3 10-2 10-1 100 101 102
-20

-15

-10

-5

0

5

10

10-3 10-2 10-1 100 101 102
-20

-15

-10

-5

0

5

10

10-3 10-2 10-1 100 101 102
-20

-15

-10

-5

0

5

10

10-3 10-2 10-1 100 101 102
-20

-15

-10

-5

0

5

10

10-3 10-2 10-1 100 101 102
-20

-15

-10

-5

0

5

10

10-3 10-2 10-1 100 101 102
-20

-15

-10

-5

0

5

10

10-3 10-2 10-1 100 101 102
-20

-15

-10

-5

0

5

10

10-3 10-2 10-1 100 101 102
-20

-15

-10

-5

0

5

10

10-3 10-2 10-1 100 101 102
-20

-15

-10

-5

0

5

10

Figure 6.3: Sensitivity at Controls Su Versus Modeling Error ν. First Row: Lift
Coefficient Sweep νL. Second Row: Drag Coefficient Sweep νD. Third Row: Pitch
Moment Coefficient Sweep νM. First Column: 0% Modeling Error. Second Column:
10% Modeling Error. Third Column: 25% Modeling Error.

162

6.2.4 Plots: Complementary Sensitivity at Controls Tu

10-3 10-2 10-1 100 101 102
-20

-15

-10

-5

0

5

10

10-3 10-2 10-1 100 101 102
-20

-15

-10

-5

0

5

10

10-3 10-2 10-1 100 101 102
-20

-15

-10

-5

0

5

10

10-3 10-2 10-1 100 101 102
-20

-15

-10

-5

0

5

10

10-3 10-2 10-1 100 101 102
-20

-15

-10

-5

0

5

10

10-3 10-2 10-1 100 101 102
-20

-15

-10

-5

0

5

10

10-3 10-2 10-1 100 101 102
-20

-15

-10

-5

0

5

10

10-3 10-2 10-1 100 101 102
-20

-15

-10

-5

0

5

10

10-3 10-2 10-1 100 101 102
-20

-15

-10

-5

0

5

10

Figure 6.4: Complementary Sensitivity at Controls Tu Versus Modeling Error ν. First
Row: Lift Coefficient Sweep νL. Second Row: Drag Coefficient Sweep νD. Third Row:
Pitch Moment Coefficient Sweep νM. First Column: 0% Modeling Error. Second
Column: 10% Modeling Error. Third Column: 25% Modeling Error.

163

6.3 Closed-Loop Step Response Performance Generalization to Modeling Error

In this study, we examine how closed-loop step response characteristics for the

tested methods generalize with respect to increasing modeling error ν. Specifically,

Table 6.3 displays the 1% settling time ts,yj ,1%, 90% rise time tr,yj ,90%, and percent

overshoot Mp,yj when issuing a step reference command in velocity j = 1 (y1 = V)

and FPA j = 2 (y2 = γ) for the nominal LQR controller, dEIRL, the optimal LQR

controller, and FBL [5, 6] (cf. Section 6.1.3). These step responses are issued at 0%,

10%, and 25% modeling errors in lift coefficient νL (B.4), drag coefficient νD (B.6),

and pitch moment coefficient νM (B.8). The system output and control responses to

a step velocity command V are plotted for varying modeling errors in Figures 6.5–

6.8 corresponding to the velocity j = 1 data in Table 6.3. The system output and

control responses to a step FPA command γ are plotted for varying modeling errors

in Figures 6.9–6.12 corresponding to the FPA j = 2 data in Table 6.3.

Table 6.3: Step Response Performance Metrics Versus Modeling Error ν

j ν
ts,yj,1% tr,yj,90% Mp,yj

Nom dEIRL Opt FBL Nom dEIRL Opt FBL Nom dEIRL Opt FBL

1

0% 72.87 59.79 59.79 47.76 32.18 24.47 24.47 31.83 2.92 4.00 4.00 0.97

L 73.06 59.68 60.16 47.78 32.72 24.43 24.49 31.77 2.94 4.00 4.00 0.97

10% D 73.37 61.26 59.86 49.01 32.82 24.42 24.54 32.48 2.97 4.16 4.00 0.88

M 72.72 59.68 60.11 48.28 32.32 24.19 24.71 31.99 2.92 4.00 4.00 0.94

L 73.50 59.64 60.20 47.83 32.84 24.19 24.65 31.84 2.99 4.00 4.01 0.96

25% D 74.44 63.27 60.77 50.72 33.46 25.03 25.21 33.36 3.06 4.50 4.02 0.76

M 72.55 59.59 59.59 48.83 31.87 24.33 24.67 32.43 2.93 4.00 4.00 0.89

2

0% 9.55 9.81 9.81 9.23 5.35 5.38 5.38 4.62 3.43 1.93 1.93 3.74

L 15.11 10.82 10.85 10.52 5.51 5.33 5.27 4.78 6.56 3.53 3.06 6.57

10% D 9.55 9.82 9.815 9.30 5.36 5.39 5.38 4.61 3.42 1.89 1.93 3.74

M 12.02 9.99 10.16 7.39 4.94 5.13 5.23 4.46 1.91 4.15 2.32 2.56

L 19.81 11.85 12.17 15.71 5.71 5.37 5.36 5.06 11.92 7.00 5.10 11.32

25% D 9.56 9.84 9.83 9.25 5.36 5.40 5.39 4.65 3.40 1.84 1.92 3.75

M 16.75 10.03 10.93 9.95 4.73 5.22 5.30 4.19 0.95 4.51 2.97 2.11

Step Velocity Command. Overall, the velocity closed-loop step response perfor-

mance fares well with respect to varying modeling errors. All methods maintain a

1% settling time in velocity ts,V,1% of less than 75 s and a 90% rise time in velocity

164

tr,V,90% of less than 35 s regardless of the modeling error type and severity. Percent

overshoot also remains low at less than 5% for all methods, the lowest being FBL

at ≈ 1%, followed by the nominal at ≈ 3%, then dEIRL and the optimal at ≈ 4%.

Crucially, dEIRL recovers the closed-loop velocity command following properties of

the optimal controller. Regardless of the modeling error introduced, dEIRL’s 1% rise

time remains within 2.50 s of the optimal (a 4.1% change), 90% settling time within

0.52 s of the optimal (a 2.0% change), and percent overshoot within 0.48% of the

optimal (an 11.9% change).

Deviations in FPA due to step velocity commands are minimal for all methods,

remaining less than 0.04◦ at max (Figure 6.6), and peak elevator deflection deviation

δE from trim remains less than 1◦ (Figure 6.8). dEIRL, the optimal controller, and

FBL all use similar throttle control effort δT , whose peaks reach on the order of 0.35–

0.4 depending on the modeling error and remain within ±0.02 of each other between

the three methods (Figure 6.7). The nominal LQ design uses less control effort,

peaking between 0.31–0.36. This comes at the cost of increased settling time (≈ 73 s

for the nominal design versus ≈ 60 s for dEIRL and the optimal and ≈ 50 s for FBL),

thus giving rise to a tradeoff between settling time and control effort. However, all

methods remain within the 75 s velocity settling time Specification B.3.1.

Step FPA Command. Comparatively speaking, closed-loop performance degra-

dation is more pronounced in the FPA response, dEIRL and the optimal exhibiting

a performance edge over the nominal and FBL. Nominally, all methods achieve the

original performance Specifications B.3.1 of a 1% FPA settling time ts,γ,1% ≤ 10 s and

percent overshoot Mp,γ ≤ 5%. The 90% FPA rise time tr,γ,90% is also low at less than

5.5 s for all methods. Intuitively, the closed-loop FPA performance degrades less for

modeling errors in the drag coefficient (which primarily affects the velocity dynamics);

however, lift and pitching moment coefficient errors significantly impact performance

165

(Figure 6.9). For instance, from 0% to 25% lift coefficient modeling error, the 1%

settling time ts,γ,1% increases to 19.81 s (a +75% change) for the nominal LQR and

15.71 s (+70%) for FBL, taking these methods well out of the 10 s design specifi-

cation. Meanwhile, degradation for dEIRL and the optimal LQR is less pronounced

at 11.85 s (+21%) and 12.17 s (+24%), respectively. From this same 0% to 25% lift

coefficient modeling error, percent overshoot in FPA Mp,γ increases to 11.92% for the

nominal LQR and 11.32% for FBL. Meanwhile, dEIRL increases to only 7.00%, and

the optimal LQR to 5.10%.

Elevator control effort to a step FPA command is comparable among all meth-

ods, typically remaining within ±2 deg (Figure 6.12). For the nominal system, FBL

exhibits virtually-zero deviations in velocity in its response to a step FPA command;

meanwhile, the nominal LQR, dEIRL, and optimal LQR controllers all feature a

velocity dip transient of 25–30 ft/s in their responses (Figure 6.10). The near-zero

velocity deviations achieved by FBL are a direct result of its decoupling inversion of

the system dynamics [5, 6], which guarantees that the output in the velocity channel

remains unaffected by commands issued in the FPA channel. However, when modeling

error is introduced, the FBL controller no longer achieves exact dynamical inversion,

resulting in velocity dips of up to 15 ft/s in amplitude (Figure 6.10). Furthermore,

this decoupling inversion of the velocity dynamics requires large control effort in the

throttle channel δT (Figure 6.11), a phenomenon well-understood of FBL generally

[14] and observed on this HSV model previously [5, 6]. Peak throttle setting for the

nominal, dEIRL, and optimal controllers as a result of issuing a step FPA command

is comparable at 0.35–0.4. Meanwhile, FBL’s throttle peaks at 0.75 nominally, and

by up to 1.05 when modeling error is introduced.

It should be noted that, when a severe 25% pitch moment coefficient modeling

error νM is introduced, percent overshoot of the nominal LQR (0.95%) and FBL

166

(2.11%) outperforms that of dEIRL (4.51%) and the optimal LQR (2.97%). However,

Examination of Figure 6.9 (bottom right) shows the reason for the lower percent

overshoot achieved by the nominal LQR and FBL: Both of these controllers exhibit

an undesirable inverse FPA response occurring after the overshoot, resulting in FPA

undershoot before the response settles. On the other hand, dEIRL and the optimal

LQR do not exhibit such inverse behavior and maintain responses qualitatively similar

to the nominal model response.

167

6.3.1 Plots: Step Velocity Command

0 10 20 30 40 50 60 70 80 90 100
-20

0

20

40

60

80

100

120

0 10 20 30 40 50 60 70 80 90 100
-20

0

20

40

60

80

100

120

0 10 20 30 40 50 60 70 80 90 100
-20

0

20

40

60

80

100

120

0 10 20 30 40 50 60 70 80 90 100
-20

0

20

40

60

80

100

120

0 10 20 30 40 50 60 70 80 90 100
-20

0

20

40

60

80

100

120

0 10 20 30 40 50 60 70 80 90 100
-20

0

20

40

60

80

100

120

0 10 20 30 40 50 60 70 80 90 100
-20

0

20

40

60

80

100

120

0 10 20 30 40 50 60 70 80 90 100
-20

0

20

40

60

80

100

120

0 10 20 30 40 50 60 70 80 90 100
-20

0

20

40

60

80

100

120

Figure 6.5: Velocity V Response to 100 ft/s Step-Velocity Command. First Row: Lift
Coefficient Sweep νL. Second Row: Drag Coefficient Sweep νD. Third Row: Pitch
Moment Coefficient Sweep νM. First Column: 0% Modeling Error. Second Column:
10% Modeling Error. Third Column: 25% Modeling Error.

168

0 10 20 30 40 50 60 70 80 90 100
-2

0

2

4

6

8

10

12
10-4

0 10 20 30 40 50 60 70 80 90 100
-12

-10

-8

-6

-4

-2

0

2

4
10-3

0 10 20 30 40 50 60 70 80 90 100
-0.03

-0.025

-0.02

-0.015

-0.01

-0.005

0

0.005

0.01

0 10 20 30 40 50 60 70 80 90 100
-2

0

2

4

6

8

10

12
10-4

0 10 20 30 40 50 60 70 80 90 100
-2

0

2

4

6

8

10

12
10-4

0 10 20 30 40 50 60 70 80 90 100
-2

0

2

4

6

8

10

12
10-4

0 10 20 30 40 50 60 70 80 90 100
-2

0

2

4

6

8

10

12
10-4

0 10 20 30 40 50 60 70 80 90 100
-2

0

2

4

6

8

10

12

14
10-3

0 10 20 30 40 50 60 70 80 90 100
-0.01

-0.005

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

Figure 6.6: FPA γ Response to 100 ft/s Step-Velocity Command. First Row: Lift
Coefficient Sweep νL. Second Row: Drag Coefficient Sweep νD. Third Row: Pitch
Moment Coefficient Sweep νM. First Column: 0% Modeling Error. Second Column:
10% Modeling Error. Third Column: 25% Modeling Error.

169

0 10 20 30 40 50 60 70 80 90 100
0.16

0.18

0.2

0.22

0.24

0.26

0.28

0.3

0.32

0.34

0.36

0 10 20 30 40 50 60 70 80 90 100
0.15

0.2

0.25

0.3

0.35

0.4

0 10 20 30 40 50 60 70 80 90 100
0.15

0.2

0.25

0.3

0.35

0.4

0 10 20 30 40 50 60 70 80 90 100
0.16

0.18

0.2

0.22

0.24

0.26

0.28

0.3

0.32

0.34

0.36

0 10 20 30 40 50 60 70 80 90 100
0.15

0.2

0.25

0.3

0.35

0.4

0 10 20 30 40 50 60 70 80 90 100
0.15

0.2

0.25

0.3

0.35

0.4

0.45

0 10 20 30 40 50 60 70 80 90 100
0.16

0.18

0.2

0.22

0.24

0.26

0.28

0.3

0.32

0.34

0.36

0 10 20 30 40 50 60 70 80 90 100
0.16

0.18

0.2

0.22

0.24

0.26

0.28

0.3

0.32

0.34

0.36

0 10 20 30 40 50 60 70 80 90 100
0.16

0.18

0.2

0.22

0.24

0.26

0.28

0.3

0.32

0.34

0.36

Figure 6.7: Throttle Setting δT Response to 100 ft/s Step-Velocity Command. First
Row: Lift Coefficient Sweep νL. Second Row: Drag Coefficient Sweep νD. Third
Row: Pitch Moment Coefficient Sweep νM. First Column: 0% Modeling Error.
Second Column: 10% Modeling Error. Third Column: 25% Modeling Error.

170

0 10 20 30 40 50 60 70 80 90 100
-0.41

-0.405

-0.4

-0.395

-0.39

-0.385

-0.38

-0.375

-0.37

-0.365

0 10 20 30 40 50 60 70 80 90 100
-0.55

-0.5

-0.45

-0.4

-0.35

-0.3

-0.25

-0.2

-0.15

-0.1

-0.05

0 10 20 30 40 50 60 70 80 90 100
-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0 10 20 30 40 50 60 70 80 90 100
-0.41

-0.405

-0.4

-0.395

-0.39

-0.385

-0.38

-0.375

-0.37

-0.365

0 10 20 30 40 50 60 70 80 90 100
-0.41

-0.405

-0.4

-0.395

-0.39

-0.385

-0.38

-0.375

-0.37

-0.365

0 10 20 30 40 50 60 70 80 90 100
-0.405

-0.4

-0.395

-0.39

-0.385

-0.38

-0.375

-0.37

-0.365

0 10 20 30 40 50 60 70 80 90 100
-0.41

-0.405

-0.4

-0.395

-0.39

-0.385

-0.38

-0.375

-0.37

-0.365

0 10 20 30 40 50 60 70 80 90 100
-0.75

-0.7

-0.65

-0.6

-0.55

-0.5

-0.45

-0.4

-0.35

0 10 20 30 40 50 60 70 80 90 100
-1.3

-1.2

-1.1

-1

-0.9

-0.8

-0.7

-0.6

-0.5

-0.4

-0.3

Figure 6.8: Elevator Setting δE Response to 100 ft/s Step-Velocity Command. First
Row: Lift Coefficient Sweep νL. Second Row: Drag Coefficient Sweep νD. Third
Row: Pitch Moment Coefficient Sweep νM. First Column: 0% Modeling Error.
Second Column: 10% Modeling Error. Third Column: 25% Modeling Error.

171

6.3.2 Plots: Step FPA Command

0 2 4 6 8 10 12 14 16 18 20
-0.2

0

0.2

0.4

0.6

0.8

1

1.2

0 2 4 6 8 10 12 14 16 18 20
-0.2

0

0.2

0.4

0.6

0.8

1

1.2

0 2 4 6 8 10 12 14 16 18 20
-0.2

0

0.2

0.4

0.6

0.8

1

1.2

0 2 4 6 8 10 12 14 16 18 20
-0.2

0

0.2

0.4

0.6

0.8

1

1.2

0 2 4 6 8 10 12 14 16 18 20
-0.2

0

0.2

0.4

0.6

0.8

1

1.2

0 2 4 6 8 10 12 14 16 18 20
-0.2

0

0.2

0.4

0.6

0.8

1

1.2

0 2 4 6 8 10 12 14 16 18 20
-0.2

0

0.2

0.4

0.6

0.8

1

1.2

0 2 4 6 8 10 12 14 16 18 20
-0.2

0

0.2

0.4

0.6

0.8

1

1.2

0 2 4 6 8 10 12 14 16 18 20
-0.2

0

0.2

0.4

0.6

0.8

1

1.2

Figure 6.9: FPA γ Response to 1 deg Step-FPA Command. First Row: Lift Coefficient
Sweep νL. Second Row: Drag Coefficient Sweep νD. Third Row: Pitch Moment
Coefficient Sweep νM. First Column: 0% Modeling Error. Second Column: 10%
Modeling Error. Third Column: 25% Modeling Error.

172

0 2 4 6 8 10 12 14 16 18 20
-35

-30

-25

-20

-15

-10

-5

0

5

0 2 4 6 8 10 12 14 16 18 20
-40

-35

-30

-25

-20

-15

-10

-5

0

5

10

0 2 4 6 8 10 12 14 16 18 20
-60

-50

-40

-30

-20

-10

0

10

0 2 4 6 8 10 12 14 16 18 20
-35

-30

-25

-20

-15

-10

-5

0

5

0 2 4 6 8 10 12 14 16 18 20
-40

-35

-30

-25

-20

-15

-10

-5

0

5

0 2 4 6 8 10 12 14 16 18 20
-45

-40

-35

-30

-25

-20

-15

-10

-5

0

5

0 2 4 6 8 10 12 14 16 18 20
-35

-30

-25

-20

-15

-10

-5

0

5

0 2 4 6 8 10 12 14 16 18 20
-35

-30

-25

-20

-15

-10

-5

0

5

0 2 4 6 8 10 12 14 16 18 20
-35

-30

-25

-20

-15

-10

-5

0

5

Figure 6.10: Velocity V Response to 1 deg Step-FPA Command. First Row: Lift
Coefficient Sweep νL. Second Row: Drag Coefficient Sweep νD. Third Row: Pitch
Moment Coefficient Sweep νM. First Column: 0% Modeling Error. Second Column:
10% Modeling Error. Third Column: 25% Modeling Error.

173

0 2 4 6 8 10 12 14 16 18 20
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0 2 4 6 8 10 12 14 16 18 20
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

0 2 4 6 8 10 12 14 16 18 20
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

0 2 4 6 8 10 12 14 16 18 20
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0 2 4 6 8 10 12 14 16 18 20
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0 2 4 6 8 10 12 14 16 18 20
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0 2 4 6 8 10 12 14 16 18 20
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0 2 4 6 8 10 12 14 16 18 20
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0 2 4 6 8 10 12 14 16 18 20
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Figure 6.11: Throttle Setting δT Response to 1 deg Step-FPA Command. First Row:
Lift Coefficient Sweep νL. Second Row: Drag Coefficient Sweep νD. Third Row:
Pitch Moment Coefficient Sweep νM. First Column: 0% Modeling Error. Second
Column: 10% Modeling Error. Third Column: 25% Modeling Error.

174

0 2 4 6 8 10 12 14 16 18 20
-2

-1.5

-1

-0.5

0

0.5

1

1.5

0 2 4 6 8 10 12 14 16 18 20
-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

0 2 4 6 8 10 12 14 16 18 20
-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

0 2 4 6 8 10 12 14 16 18 20
-2

-1.5

-1

-0.5

0

0.5

1

1.5

0 2 4 6 8 10 12 14 16 18 20
-2

-1.5

-1

-0.5

0

0.5

1

1.5

0 2 4 6 8 10 12 14 16 18 20
-2

-1.5

-1

-0.5

0

0.5

1

1.5

0 2 4 6 8 10 12 14 16 18 20
-2

-1.5

-1

-0.5

0

0.5

1

1.5

0 2 4 6 8 10 12 14 16 18 20
-3

-2.5

-2

-1.5

-1

-0.5

0

0.5

1

1.5

0 2 4 6 8 10 12 14 16 18 20
-5

-4

-3

-2

-1

0

1

Figure 6.12: Elevator Setting δE Response to 1 deg Step-FPA Command. First Row:
Lift Coefficient Sweep νL. Second Row: Drag Coefficient Sweep νD. Third Row:
Pitch Moment Coefficient Sweep νM. First Column: 0% Modeling Error. Second
Column: 10% Modeling Error. Third Column: 25% Modeling Error.

175

6.4 dEIRL Initial Condition Ablation Study

In this study, we run dEIRL for each initial condition over the IC grid x0 ∈ Gx0

(6.2), and at varying modeling errors 0%–25% in each of the modeling error grids GνL ,

GνD , and GνM (6.1). This section hence comprises a total of 2,511 independent learn-

ing trials. Table 6.4 displays the nominal controller optimality error
∥∥K0,j −K∗

j

∥∥,
dEIRL’s optimality error

∥∥Ki∗,j −K∗
j

∥∥, and the percent reduction in optimality er-

ror from nominal → dEIRL (i.e., i = 0 → i∗) in each loop j = 1 (velocity V) and

j = 2 (FPA γ) for the IC sweep. Table 6.4 also includes dEIRL’s iteration-wise max

learning regression conditioning max
i
κ(Ai,j), j = 1, 2. All performance measures

include worst, average, and standard deviation data (each taken over the IC grid

x0 ∈ Gx0). The controller optimality error and conditioning data presented in Table

6.4 is visually plotted in Figures 6.13 and 6.14, respectively.

Table 6.4: Initial Condition x0 Ablation Optimality Error and Conditioning Data

ν

Over ∥Ki,1 − K∗
1 ∥ ∥Ki,2 − K∗

2 ∥ max
i

κ(Ai,1) max
i

κ(Ai,2)

Gx0 Nom dEIRL % Reduc Nom dEIRL % Reduc
dEIRL dEIRL

(6.2) i = 0 i = i∗ i = 0 → i∗ i = 0 i = i∗ i = 0 → i∗

0%

worst

1.23

1.01e-09 99.99

11.59

9.30e-06 99.99 460.01 293.50

avg 5.64e-10 99.99 6.21e-06 99.99 170.35 288.02

std 2.51e-10 2.04e-08 9.39e-07 8.10e-06 89.01 3.32

10%

L

worst

1.23

2.24e-05 99.99

12.46

0.09 99.29 457.42 259.64

avg 2.24e-05 99.99 0.08 99.36 168.24 248.90

std 1.63e-10 1.32e-08 0.01 0.04 86.28 5.27

D

worst

1.23

0.46 62.75

11.58

0.01 99.90 491.95 294.09

avg 0.23 81.05 0.01 99.91 174.51 288.56

std 0.10 8.14 4.00e-04 3.48e-03 95.61 3.32

M
worst

1.23

1.11e-06 99.99

11.81

0.84 92.89 473.65 265.48

avg 1.11e-06 99.99 0.75 93.63 171.16 260.18

std 4.31e-10 3.50e-08 0.05 0.42 90.58 3.08

25%

L

worst

1.23

7.32e-05 99.99

14.08

0.38 97.31 456.93 268.01

avg 7.32e-05 99.99 0.28 97.98 164.94 255.64

std 2.77e-10 2.25e-08 0.06 0.41 82.39 6.62

D

worst

1.23

1.15 6.84

11.57

0.029 99.74 545.80 294.99

avg 0.57 54.00 0.027 99.77 181.20 289.41

std 0.25 20.25 1.01e-03 0.01 107.31 3.33

M
worst

1.23

1.34e-05 99.99

12.24

1.52 87.58 538.49 728.94

avg 1.34e-05 99.99 0.64 94.74 178.69 702.17

std 1.59e-09 1.29e-07 0.37 3.02 103.61 8.68

Solution Optimality Generalization. Table 6.4 and Figure 6.4 show that, regard-

176

less of the modeling error type tested (in lift νL, drag νD, or pitching moment νM),

and regardless of the severity of the modeling error (0%–25%), dEIRL successfully

recovers optimality of the controller in each loop j = 1, 2 for all initial conditions

tested in the grid x0 ∈ Gx0 ; i.e., dEIRL achieves small optimality error
∥∥Ki∗,j −K∗

j

∥∥.
Indeed, regardless of the IC, modeling error type, and modeling error value tested,

dEIRL’s controller optimality error
∥∥Ki∗,j −K∗

j

∥∥ remains within 1.52 in both loops

j = 1, 2. It is intuitive that the worst-case of 1.52 occurs in the higher-dimensional,

unstable, nonminimum phase FPA loop j = 2 at the most severe 25% pitch moment

coefficient νM modeling error tested. By contrast, the nominal LQR controller’s

respective optimality error is ∥K0,2 −K∗
2∥ = 12.24, almost a factor of ten larger.

Importantly, dEIRL achieves significant percent reductions in controller optimal-

ity error relative to the nominal LQR design, even for severe modeling errors. For

example, at 25% modeling error in the more dynamically-challenging FPA loop j = 2,

dEIRL achieves a worst-case percent reduction from nominal to dEIRL over the IC

grid x0 ∈ Gx0 of 97.31% for lift coefficient modeling error νL, 99.74% for drag νD, and

87.58% for pitch moment νM. Thus, dEIRL exhibits excellent learning generalization

with respect to varying system initial conditions x0, even in the face of severe model

uncertainty. As a result, for recovery of controller optimality, a designer is at least a

factor of ten times better off from running dEIRL than opting for a nominal classical

LQR design.

The exception observed to this rule is in examining drag coefficient modeling error

νD in the velocity loop j = 1; intuitively, drag modeling error is observed to have the

greatest effect on dEIRL’s performance in the velocity loop of the types tested (Figure

6.13, top middle). At 10% drag coefficient modeling error, dEIRL reduces optimality

error by 62.75% relative to the nominal at worst-case, 81.05% on average. At 25% drag

coefficient modeling error, dEIRL reduces optimality error by only 6.84% at worst-

177

case. Even so, dEIRL achieves an average reduction of 54% for this modeling error

(a factor of two reduction), still a marked improvement in closed-loop performance

relative to the nominal classical design.

Algorithm Conditioning Generalization. dEIRL’s conditioning remains highly

consistent with respect to varying system initial conditions x0 ∈ Gx0 , demonstrating

good IC learning generalization. In the velocity loop j = 1, conditioning maxes on

the order of 460-470 at worst-case over the IC grid for all modeling error types ν and

averages on the order of 170-180. Meanwhile, in the higher-dimensional FPA loop

j = 2, conditioning remains relatively unchanged for varying initial conditions x0 ∈

Gx0 when lift νL and drag νD coefficient modeling errors are introduced, maxing in

the range 260-300 and averaging in the range 240-290 regardless of the modeling error

severity. Meanwhile, conditioning degradation in this loop j = 2 is more pronounced

with respect to pitching moment coefficient modeling error νM, the worst-case over the

IC grid increasing from 293.50 nominally to 728.94 at 25% modeling error. However,

conditioning on this order (< 103) is a significant improvement from existing ADP-

based CT-RL control algorithms, which our studies of Section 4 exhibit conditioning

on the order of 1016 for this HSV system (cf. Table 4.2) and in our studies of Section

2.6 exhibit conditioning on the order of 1011 for academic second-order single-input

examples (cf. Table 2.7). Lastly, even though the conditioning degradation is more

pronounced in the FPA loop j = 2, this loop exhibits the lowest numerical sensitivity

with respect to varying initial conditions x0 ∈ Gx0 , as IC standard deviations for

conditioning in this loop remain less than 10 regardless of the modeling error tested.

178

6.4.1 Plots: dEIRL Controller Optimality Error versus Initial Condition x0

Figure 6.13: dEIRL Controller Optimality Error
∥∥Ki∗,j −K∗

j

∥∥ Versus Initial Condi-
tion x0 for 0%, 10%, and 25% Modeling Errors ν. First Row: Velocity Loop j = 1.
Second Row: FPA Loop j = 2. Gray: Nominal Classical Design. First Column: Lift
Coefficient Sweep νL. Second Column: Drag Coefficient Sweep νD. Third Column:
Pitch Moment Coefficient Sweep νM.

179

6.4.2 Plots: dEIRL Worst-Case Algorithm Condition Number versus Initial

Condition x0

Figure 6.14: dEIRL Iteration-Wise Max Algorithm Condition Number max
i
κ(Ai,j)

Versus Initial Condition x0 for 0%, 10%, and 25% Modeling Errors ν. First Row:
Velocity Loop j = 1. Second Row: FPA Loop j = 2. First Column: Lift Coefficient
Sweep νL. Second Column: Drag Coefficient Sweep νD. Third Column: Pitch Mo-
ment Coefficient Sweep νM.

180

6.5 dEIRL Modeling Error Ablation Study

In this study, we run dEIRL for simultaneous modeling errors ranging from 0%–

25% in lift/drag over the grid Gν = GνL ×GνD (6.1), lift/pitch moment Gν = GνL ×

GνM , and drag/pitch moment Gν = GνD ×GνM when initialized at trim ICs x0 = xe.

This section hence comprises a total of 361 independent learning trials. Table 6.5

displays the nominal controller optimality error
∥∥K0,j −K∗

j

∥∥, dEIRL’s optimality

error
∥∥Ki∗,j −K∗

j

∥∥, and the percent reduction in optimality error from nominal →

dEIRL in each loop j = 1 (velocity V), j = 2 (FPA γ), as well as dEIRL’s iteration-

wise max learning regression conditioning max
i
κ(Ai,j), j = 1, 2. All performance

measures include worst, average, and standard deviation data (each taken over the

respective 0%–25% modeling error grids tested ν ∈ Gν). The controller optimality

error and conditioning data presented in Table 6.4 is visually plotted in Figures 6.13

and 6.14, respectively.

Table 6.5: Modeling Error ν Ablation Optimality Error and Conditioning Data

ν

Over ∥Ki,1 − K∗
1 ∥ ∥Ki,2 − K∗

2 ∥ max
i

κ(Ai,1) max
i

κ(Ai,2)

Gν Nom dEIRL % Reduc Nom dEIRL % Reduc
dEIRL dEIRL

(6.1) i = 0 i = i∗ i = 0 → i∗ i = 0 i = i∗ i = 0 → i∗

L/D

worst 1.23 0.14 88.29 14.08 1.11 92.09 101.25 289.66

avg 1.23 0.05 95.63 12.75 0.123 99.05 98.29 258.39

std 3.27e-04 0.04 3.49 0.79 0.15 1.09 1.81 13.81

L/M
worst 1.23 7.32e-05 99.99 14.96 3.94 73.67 95.48 698.40

avg 1.23 2.03e-05 99.99 13.11 1.00 92.42 93.78 231.06

std 2.90e-04 1.85e-05 1.50e-03 0.86 0.68 4.90 1.48 101.66

D/M
worst 1.23 0.12 90.17 12.25 1.42 88.26 100.85 793.94

avg 1.23 0.04 96.90 11.89 0.61 94.92 96.20 365.64

std 9.33e-05 0.03 2.52 0.21 0.41 3.41 2.64 148.36

Solution Optimality Generalization. dEIRL’s learning generalizes robustly with

respect to severe and simultaneous modeling errors, achieving a percent reduction

in controller optimality error relative to the nominal LQR design of at least 88.29%

in the velocity loop j = 1 and at least 73.67% in the FPA loop j = 2 regardless

of the modeling error type and severity. For simultaneous lift/drag modeling errors,

181

optimality error from
∥∥K0,j −K∗

j

∥∥ → ∥∥Ki∗,j −K∗
j

∥∥ (i.e., from nominal → dEIRL)

averages 1.23→ 0.05 (95.63% reduction) in the velocity loop j = 1, and 12.75→ 0.123

(99.05% reduction) in the FPA loop j = 2. Similar average reductions are observed for

the simultaneous lift/pitch moment and drag/pitch moment modeling error ablations.

Meanwhile, the worst-case (i.e., smallest) reduction in optimality error across the

board occurs in the higher-dimensional, unstable, nonmimimum phase FPA loop j = 2

for simultaneous lift/pitch moment modeling error, at 73.67%. This still represents a

significant reduction by a factor of 3/4. Furthermore, the reduction averages 92.42%

for this modeling error ablation with a standard deviation of only 4.90%, so the

worst-case 73.67% is an outlier.

Algorithm Conditioning Generalization. Conditioning performance in the ve-

locity loop j = 1 exhibits little variation with respect to modeling error, varying from

95–101 at worst case with standard deviation 2.64 or less for all ablations. Condi-

tioning in the FPA loop j = 2 is more volatile, which given the higher regression

dimensionality and dynamical features is to be expected. For the lift/drag ablation,

conditioning remains low at a max of 289.66. Meanwhile, conditioning degradation

is more pronounced for both of the ablations involving the pitch moment coefficient;

i.e., the lift/pitch moment and drag/pitch moment sweeps. For the lift/pitch moment

ablation, average conditioning remains low at 231.06; however, it reaches a worst-case

of 698.40. Conditioning fares the worst for the drag/pitch moment ablation, averag-

ing 365.64 and reaching 793.94 at max. However, relative to the existing ADP-based

performance of existing ADP-based CT-RL algorithms (cf. Sections 4 and 2.6) condi-

tioning less than 103 for this system with simultaneous modeling errors is a significant

result.

.

182

6.5.1 Plots: dEIRL Controller Optimality Error versus Modeling Error ν

Figure 6.15: dEIRL Controller Optimality Error
∥∥Ki∗,j −K∗

j

∥∥ Versus Modeling Error
ν of up to 25%. First row: Velocity Loop j = 1. Second Row: FPA Loop j = 2.
Gray: Nominal Classical Design. First Column: Lift/Drag νL/νD Sweep. Second
Column: Lift/Pitch Moment νL/νM Sweep. Third Column: Drag/Pitch Moment
νD/νM Sweep.

183

6.5.2 Plots: dEIRL Worst-Case Algorithm Condition Number versus Modeling

Error ν

Figure 6.16: dEIRL Iteration-Wise Max Algorithm Condition Number max
i
κ(Ai,j)

Versus Modeling Error ν of up to 25%. First Row: Velocity Loop j = 1. Second Row:
FPA Loop j = 2. First Column: Lift/Drag νL/νD Sweep. Second Column: Lift/Pitch
Moment νL/νM Sweep. Third Column: Drag/Pitch Moment νD/νM Sweep.

184

6.6 Closed-Loop Performance Robustness with Respect to Random Modeling Error

In this study, we statistically examine how often the methods meet the 29 closed-

loop step response performance metrics defined in Table 6.1 when random modeling

error is introduced simultaneously in each parameter: lift coefficient νL (B.4), drag

coefficient νD (B.6), and pitch moment coefficient νM (B.8) (cf. Section 6.1 for com-

plete numerical setup). We test 10,000 random trials of modeling error and assemble

the failure percentages of each of the metrics in in Table 6.6 and Figure 6.17.

Table 6.6: Closed-Loop Performance Metrics Failure Percentage

Metric Number Indicator Function
Failure Percentage (%)

Nom dEIRL Opt FBL

1 IS 0 0 0 0

2 (3) IV,ts,10%25 (IV,ts,10%50) 100 (0) 0.3 (0) 2.7 (0) 100 (0)
4 (5) IV,ts,1%75 (IV,ts,1%100) 0 (0) 0 (0) 0 (0) 17.3 (0)
6 (7) IV,tr,90%25 (IV,tr,90%30) 100 (100) 0.3 (0) 2.7 (0) 100 (100)
8 (9) IV,Mp5 (IV,Mp10) 0 (0) 0 (0) 0 (0) 0 (0)
10 (11) IV,δT 20 (IV,δT 25) 0 (0) 0 (0) 4.9 (0) 5.9 (0)
12 (13) IV,δE0.25 (IV,δE0.5) 19.0 (0) 40.0 (0.7) 16.6 (0) 17.4 (0)
14 (15) IV,∆γ0.01 (IV,∆γ0.05) 27.7 (0) 0.4 (0) 13.5 (0) 21.0 (0)

16 (17) Iγ,ts,10%7.5 (Iγ,ts,10%10) 0 (0) 0 (0) 0 (0) 0 (0)
18 (19) Iγ,ts,1%10 (Iγ,ts,1%15) 73.4 (10.4) 42.6 (0) 44.7 (0) 30.0 (0)
20 (21) Iγ,tr,90%5 (Iγ,tr,90%7.5) 95.0 (0) 99.9 (0) 100 (0) 0 (0)
22 (23) Iγ,Mp5 (Iγ,Mp10) 25.3 (0) 3.4 (0) 0 (0) 28.4 (0)
24 (25) Iγ,δT 25 (Iγ,δT 50) 0 (0) 0.2 (0) 2.3 (0) 100 (100)
26 (27) Iγ,δE5 (Iγ,δE7.5) 0 (0) 0 (0) 0 (0) 0 (0)
28 (29) Iγ,∆V 0.15 (Iγ,∆V 0.25) 52.9 (0) 22.5 (0) 25.5 (0) 0 (0)

Step Velocity Command. Firstly, all designs successfully stabilize the closed-loop

system for the 10,000 random trials; i.e., each exhibits a failure rate of 0% in the

stability metric IS (metric 1). In comparison to the nominal LQR and FBL, dEIRL

and the optimal LQR are 97% more likely to meet the tight 10% settling time (metric

2), while all designs achieve the less stringent 10% settling time (metric 3), and similar

results hold for the 90% settling time (metrics 6, 7). Meanwhile, for the 1% velocity

settling time (metrics 4, 5), all designs meet specification with the exception of FBL

185

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
0

10

20

30

40

50

60

70

80

90

100

16 17 18 19 20 21 22 23 24 25 26 27 28 29
0

10

20

30

40

50

60

70

80

90

100

Figure 6.17: Closed-Loop Performance Metrics Failure Percentage (cf. Table 6.1 for
Definitions).

at a 17% failure rate on the tighter metric 4. All designs meet the percent overshoot

specifications (metrics 8, 9). For throttle control effort in metrics 10, 11, all methods

meet the specifications except for failure rates in the optimal LQR and FBL of 4.9%

and 5.9%, respectively. The area where dEIRL struggles the most is in the more

stringent elevator control effort specification (IV,δE0.25 metric 12, or a max 0.25 deg

elevator deflection deviation), with a failure rate of 40%. By comparison, this is 21%

higher than the nominal LQR (19%), 23.4% higher than the optimal LQR (16.6%),

and 22.6% higher than FBL (17.4%). However, elevator deflections of 0.25 deg are

small, and dEIRL meets the less stringent specification of 0.5 deg (metric 13) with

only a 0.7% failure rate. Meanwhile, in FPA deviations as a result of issuing a step

velocity command (metrics 14, 15), dEIRL has a 27% less likelihood of failure than

the nominal LQR, 13% less than the optimal LQR, and 21% less than FBL.

Step FPA Command. All designs perform well in the 10% FPA settling time

specifications (metrics 16, 17), each achieving a 0% failure rate. Meanwhile for the

1% settling time specifications (metrics 18, 19), dEIRL and the optimal LQR perform

comparably in the stringent metric 18 (Iγ,ts,1%10), failing at similar percentages of

186

42.6% and 44.7%, respectively. Comparatively, dEIRL is 31% less likely to fail metric

18 than the nominal LQR (73.4%), and 13% more likely than FBL (30%). Similarly,

FBL far outperforms the nominal LQR, dEIRL, and the optimal in the stringent

90% FPA rise time metric 20. However, as a consequence of fast rise/settling time,

FBL exhibits the highest overshoot of the methods tested (metrics 22, 23) with a

failure rate of 28.4% in metric 22, compared to dEIRL and optimal LQR failure rates

of 3.4% and 0%, respectively. This points to a statistical tradeoff between meeting

rise/settling time and overshoot specifications when modeling error is introduced.

Another distinct tradeoff emerges between deviations in velocity due to a step

FPA command (metrics 28, 29) and the max throttle control exerted to mitigate

the velocity deviation (metrics 24, 25). On one hand, FBL achieves superior velocity

deviation performance, with a failure rate of 0% in the more stringent deviation metric

28. This is followed by dEIRL (22.5%), the optimal LQR (25.5%, similar to dEIRL),

and the nominal LQR (52.9%, highest). This performance characteristic of FBL was

observed in the step response trials of Section 6.3 (cf. Figure 6.10); fundamentally,

they are a direct result of FBL’s decoupling inversion of the system dynamics [5, 6].

However, FBL requires applying large throttle control δT in order to minimize the

velocity dip transient caused by the FPA command (cf. Figure 6.11). As a result, it

fails both throttle setting metrics 24, 25 at a rate of 100%. By comparison, the largest

failure rate for these metrics between the nominal LQR, dEIRL, and the optimal

LQR is only 2.3% (by the optimal LQR on metric 24). Intuitively, allowable velocity

deviations and throttle control effort must be traded off for issued FPA commands.

6.7 Discussion

This study presents a newly-developed quantitative performance evaluation frame-

work for RL algorithms in aerospace applications. These studies reveal that the

187

proposed dEIRL algorithm successfully recovers the optimal controller in the face of

significant model uncertainty and initial conditions. dEIRL thus also recovers optimal

closed-loop reference command following performance, results which hold statistically

when the modeling error is randomly distributed. The proposed evaluation suite tests

37 learning/closed-loop design metrics on over 12,872 independent learning trials, a

significant improvement from the tests performed in previous RL-based control works

for HSVs (cf. Section 1). Our developed evaluation framework may be used for future

RL control works, providing a comprehensive empirical valuation which is essential

for real-world flight implementation.

188

Chapter 7

CONCLUSION, LIMITATION, AND DIRECTIONS OF FUTURE RESEARCH

The field of CT-RL owes great acknowledgment to the seminal works in ADP,

which have achieved substantial theoretical results transformative to the development

of learning control in the continuous-time setting. ADP’s fundamental learning and

approximation ideas have inspired a growing body of results in CT-RL, and the prin-

ciples developed by these ADP works were instrumental in developing the methods

presented in this dissertation. Nevertheless, in this work we develop a first-of-its-

kind CT-RL algorithm performance diagnosis framework to quantitatively identify

the key performance limitations facing ADP-based CT-RL algorithms. This frame-

work’s in-depth, designer-focused quantitative analyses reveals gaps between CT-RL

theoretical promises and practical synthesis. These analyses show that CT-RL algo-

rithms face fundamental performance limitations due dimensional scaling issues and

a lack of persistence of excitation (PE) resulting in algorithm numerical issues. Fur-

thermore, these CT-RL methods exhibit significant design complexity, which make

them difficult for real-world designers to use.

In response to these algorithm learning issues, we develop a designer-centric ap-

proach to CT-RL via our suite of excitable integral reinforcement learning (EIRL)

algorithms. We propose a three-prong numerical approach of 1) decentralization to

break down the optimal control problem into lower-dimensional subproblems along

physically-motivated dynamical partitions, 2) multi-injection (MI) to realign RL ex-

citation with classical input/output insights for improved PE, and 3) modulation-

enhanced excitation (MEE) to further improve scaling and numerics through design-

motivated nonsingular state transformations.

189

In order to substantively demonstrate (d)EIRL’s performance enhancements over

existing ADP-based CT-RL methods [1–4], we conduct in-depth numerical evalua-

tions on a real-world unstable, nonminimum phase hypersonic vehicle (HSV) system.

Our evaluations show that the EIRL suite exhibits numerical conditioning improve-

ments of many orders of magnitude relative to leading ADP-based CT-RL results.

We also demonstrate that the flagship dEIRL method achieves recovery of the opti-

mal controller in the face of significant HSV modeling errors and initial conditions.

Altogether, these evaluations show that our two new RL design paradigms enable the

proposed EIRL suite to become one of the first CT-RL methods to deliver both theo-

retical and real-world synthesis guarantees. dEIRL also recovers optimal closed-loop

reference command following performance, results which hold statistically when the

modeling error is randomly distributed.

We also evaluate dEIRL’s performance relative to the leading deep CT-RL FVI

methods [7, 8] on three pendulum, jet aircraft, and ground robot environments. These

studies reveal advantages for dEIRL over deep RL FVI with respect to time/data com-

plexity, dEIRL requiring three orders of magnitude less time and seven orders of mag-

nitude less simulations to train. dEIRL also exhibits a clear cost, approximation, and

time-domain performance advantage for the higher-order, multi-loop systems stud-

ied in this work, empirically validating our physics-based decentralization paradigm

developed for these systems.

This dissertation presents fundamental performance improvements to the CT-RL

state of the field. Nevertheless, future extensions of this work will likely achieve

yet further enhancements. Additional numerical studies on a variety of dynamical

systems will also be crucial to cementing the numerical performance of the proposed

methods. In particular, benchmarking against the recently-developed fitted value

iteration (FVI) CT-RL works in deep RL [7, 8] on the flagship HSV system will be

190

highly illustrative, as these new methods show great numerical promise. Given the

empirically-demonstrated results on the challenging HSV system, we are confident

that EIRL will produce highly competitive closed-loop performance for these newly-

considered systems and control methods.

Furthermore, this work focuses on the control of affine nonlinear systems. Meth-

ods to substantively address general nonlinear systems require innovative new ideas,

analyses of performance limitations, and substantial evaluations in meaningful ap-

plications in order to achieve success in what we have demonstrated is a uniquely-

challenging CT-RL control context. These methods face yet further challenges from

those seen for affine nonlinear systems. A fundamental hurdle arises in effectively

approximating the general nonlinear dynamical structure in these problems. Fur-

thermore, for general nonlinear systems, there does not exist a closed-form relation

between the optimal policy and the gradient of the HJB solution, as is the case in

the affine-nonlinear context. New ideas in learning and approximation must be de-

veloped to address these considerations. Fortunately, the principles developed in this

work (both in algorithm numerical conditioning analysis, and in the physics-based,

classical-control approach to improving learning quality) will likely serve as great

starting points to address these new challenges, as these ideas have been successful

in tackling general nonlinear control problems outside the RL field.

191

REFERENCES

[1] D. Vrabie and F. L. Lewis, “Neural network approach to continuous-time direct
adaptive optimal control for partially unknown nonlinear systems,” Neur. Net.,
vol. 22, no. 3, pp. 237–246, 2009.

[2] K. G. Vamvoudakis and F. L. Lewis, “Online actor–critic algorithm to solve the
continuous-time infinite horizon optimal control problem,” Automatica, vol. 46,
no. 5, pp. 878–888, 2010.

[3] Y. Jiang and Z.-P. Jiang, “Robust adaptive dynamic programming and feedback
stabilization of nonlinear systems,” IEEE TNNLS, vol. 25, no. 5, pp. 882–893,
Jan. 2014.

[4] T. Bian and Z.-P. Jiang, “Reinforcement learning and adaptive optimal con-
trol for continuous-time nonlinear systems: A value iteration approach,” IEEE
TNNLS, vol. 33, no. 7, pp. 2781–2790, Jul. 2022.

[5] Q. Wang and R. F. Stengel, “Robust nonlinear control of a hypersonic aircraft,”
AIAA J. Guid., Contr., & Dyn., vol. 23, no. 4, pp. 577–585, Jul. 2000.

[6] C. I. Marrison and R. F. Stengel, “Design of robust control systems for a hy-
personic aircraft,” AIAA J. Guid., Contr., & Dyn., vol. 21, no. 1, pp. 58–63,
Jan. 1998.

[7] M. Lutter, S. Mannor, J. Peters, D. Fox, and A. Garg, “Value iteration in
continuous actions, states and time,” in Proc. 38th Int. Conf. Mach. Learn.
(ICML), vol. 139, Jul. 2021, pp. 7224–7234.

[8] M. Lutter et al., “Continuous-time fitted value iteration for robust policies,”
IEEE Trans. Patt. Anal. Mach. Intel., vol. 45, no. 5, pp. 5534–5548, May 2023.

[9] H. W. Bode, Network Analysis and Feedback Amplifier Design. New York, NY,
USA: D. Van Nostrand, 1945.

[10] H. Nyquist, “Regeneration theory,” Bell System Tech. J., vol. 11, pp. 126–147,
1932.

[11] K. Ogata, Modern Control Engineering, 3rd ed. Upper Saddle River, NJ, USA:
Prentice Hall, 1997.

[12] A. A. Rodriguez, Analysis and Design of Feedback Control Systems. Tempe,
AZ, USA: CONTROL3D, 2003.

[13] H. K. Khalil, Nonlinear Systems, 3rd ed. Upper Saddle River, NJ, USA:
Prentice Hall, 2002.

[14] A. Isidori, Nonlinear Control Systems: An Introduction. Berlin, Germany:
Springer Verlag, 1985.

192

[15] F. L. Lewis, D. Vrabie, and V. L. Syrmos, Optimal Control, 3rd ed. John
Wiley & Sons, 2012.

[16] M. Athans and P. L. Falb, Optimal control: An introduction to the theory and
its applications, 1st ed. Mineola, NY, USA: McGraw-Hill, 1966.

[17] P. A. Ioannou and J. Sun, Robust Adaptive Control. Upper Saddle River, NJ,
USA: Prentice Hall, 1995.

[18] F. Lin, Robust Control Design: An Optimal Control Approach. West Sussex,
England: John Wiley & Sons, 2007.

[19] Z.-P. Jiang, A. R. Teel, and L. Praly, “Small-gain theorem for ISS systems and
applications,” Math. Contr., Sig., Syst., vol. 7, no. 4, p. 95–120, Jun. 1994.

[20] A. G. Barto, R. S. Sutton, and C. W. Anderson, “Neuronlike adaptive elements
that can solve difficult learning control problems,” IEEE Trans. Syst., Man,
Cybern., vol. 13, no. 5, pp. 835–846, Oct. 1983.

[21] R. S. Sutton and A. G. Barto, Reinforcement Learning: An Introduction. Cam-
bridge, MA, USA: MIT Press, 1998.

[22] R. E. Bellman, Dynamic Programming. Princeton, NJ, USA: Princeton Uni-
versity Press, 1957.

[23] J. Si, A. G. Barto, W. B. Powell, and D. C. Wunsch, Handbook of Learning and
Approximate Dynamic Programming. Piscataway, NJ, USA: Wiley, 2004.

[24] F. L. Lewis, D. Vrabie, and K. G. Vamvoudakis, “Reinforcement learning and
feedback control: Using natural decision methods to design optimal adaptive
controllers,” IEEE Contr. Syst. Mag., vol. 32, pp. 76–105, 2012.

[25] B. Kiumarsi, K. G. Vamvoudakis, H. Modares, and F. L. Lewis, “Optimal and
autonomous control using reinforcement learning: A survey,” IEEE TNNLS,
vol. 29, no. 6, pp. 2042–2062, Jun. 2018.

[26] B. Recht, “A tour of reinforcement learning: The view from continuous control,”
Ann. Rev. Control, Robot., Auton. Syst., vol. 2, no. 1, pp. 253–279, 2019.

[27] C. Mu, D. Wang, and H. He, “Novel iterative neural dynamic programming
for data-based approximate optimal control design,” Automatica, vol. 81, pp.
240–252, Jul. 2017.

[28] D. Liu and Q. Wei, “Policy iteration adaptive dynamic programming algorithm
for discrete-time nonlinear systems,” IEEE TNNLS, vol. 25, no. 3, pp. 621–634,
Mar. 2014.

[29] Q. Wei, D. Liu, Q. Lin, and R. Song, “Discrete-time optimal control via local
policy iteration adaptive dynamic programming,” IEEE Trans. Cybern., vol. 47,
no. 10, pp. 3367–3379, Oct. 2016.

193

[30] W. Guo, J. Si, F. Liu, and S. Mei, “Policy approximation in policy iteration
approximate dynamic programming for discrete-time nonlinear systems,” IEEE
TNNLS, vol. 29, no. 7, pp. 2794–2807, Jul. 2018.

[31] D. Liu, Q. Wei, and P. Yan, “Generalized policy iteration adaptive dynamic
programming for discrete-time nonlinear systems,” IEEE Trans. Syst., Man,
Cybern. – A: Syst., vol. 45, no. 12, pp. 1577–1591, May 2015.

[32] X. Gao, J. Si, Y. Wen, M. Li, and H. Huang, “Reinforcement learning con-
trol of robotic knee with human-in-the-loop by flexible policy iteration,” IEEE
TNNLS, vol. 33, no. 10, pp. 5873–5887, May 2021.

[33] A. Al-Tamimi, F. L. Lewis, and M. Abu-Khalaf, “Discrete-time nonlinear HJB
solution using approximate dynamic programming: Convergence proof,” IEEE
Trans. Syst., Man, Cybern. – B: Cybern., vol. 38, no. 4, pp. 943–949, Aug. 2008.

[34] D. Wang, D. Liu, Q. Wei, D. Zhao, and N. Jin, “Optimal control of unknown
nonaffine nonlinear discrete-time systems based on adaptive dynamic program-
ming,” Automatica, vol. 48, no. 8, pp. 1825–1832, Aug. 2012.

[35] F. Liu, J. Sun, J. Si, W. Guo, and S. Mei, “A boundedness result for the direct
heuristic dynamic programming,” Neur. Net., vol. 32, pp. 229–235, Aug. 2012.

[36] D. Liu and Q. Wei, “Finite-approximation-error-based optimal control approach
for discrete-time nonlinear systems,” IEEE Trans. Cybern., vol. 43, no. 2, pp.
779–789, Apr. 2013.

[37] Q. Wei, F.-Y. Wang, D. Liu, and X. Yang, “Finite-approximation-error-based
discrete-time iterative adaptive dynamic programming,” IEEE Trans. Cybern.,
vol. 44, no. 12, pp. 2820–2833, Sep. 2014.

[38] S. Levine, C. Finn, T. Darrell, and P. Abbeel, “End-to-end training of deep
visuomotor policies,” J. Mach. Learn. Res., vol. 17, no. 1, pp. 1334–1373, Jan.
2016.

[39] V. Minh et al., “Human-level control through deep reinforcement learning,”
Nature, vol. 518, no. 7540, pp. 529–533, Feb. 2015.

[40] D. Silver et al., “Mastering the game of go with deep neural networks and tree
search,” Nature, vol. 529, no. 7587, pp. 484–489, Jan. 2016.

[41] ——, “Mastering the game of go without human knowledge,” Nature, vol. 550,
no. 7676, pp. 354–359, Oct. 2017.

[42] F. Farahnakian, P. Lijeberg, and J. Plosila, “Energy-efficient virtual machines
consolidation in cloud data centers using reinforcement learning,” in 2014 22nd
Euromicro Int. Conf. Par., Dist., Net.-Based Proc., Feb. 2014, pp. 500–507.

[43] K. Mondal, A. A. Rodriguez, S. S. Manne, N. Das, and B. A. Wallace, “Com-
parison of kinematic and dynamic model based linear model predictive control
of non-holonomic robot for trajectory tracking: Critical trade-offs addressed,”
in Proc. IASTED Int. Conf. Mech. Contr., Dec. 2019, pp. 9–17.

194

[44] K. Mondal, B. A. Wallace, and A. A. Rodriguez, “Stability versus maneuver-
ability of non-holonomic differential drive wheeled robot: Focus on aggressive
position control strategies,” in 2020 IEEE CCTA, Aug. 2020, pp. 388–395.

[45] C. Lu, J. Si, and X. Xie, “Direct heuristic dynamic programming for damping
oscillations in a large power system,” IEEE Trans. Syst., Man, Cybern. – B:
Cybern., vol. 38, no. 4, pp. 1008–1013, Aug. 2008.

[46] W. Guo, F. Liu, J. Si, D. He, R. Harley, and S. Mei, “Approximate dynamic
programming based supplementary reactive power control for DFIG wind farm
to enhance power system stability,” Neurocomp., vol. 170, pp. 417–427, Dec.
2015.

[47] ——, “Online supplementary ADP learning controller design and application
to power system frequency control with large-scale wind energy integration,”
IEEE TNNLS, vol. 27, no. 8, pp. 1748–1761, Aug. 2016.

[48] Q. Wei and D. Liu, “Data-driven neuro-optimal temperature control of wa-
ter–gas shift reaction using stable iterative adaptive dynamic programming,”
IEEE Trans. Indus. Electr., vol. 61, no. 11, pp. 6399–6408, Jan. 2014.

[49] Y. Jiang, J. Fan, T. Chai, and F. L. Lewis, “Dual-rate operational optimal
control for flotation industrial process with unknown operational model,” IEEE
Trans. Indus. Electr., vol. 66, no. 6, pp. 4587–4599, Jun. 2019.

[50] R. Enns and J. Si, “Apache helicopter stabilization using neural dynamic pro-
gramming,” AIAA J. Guid., Contr., & Dyn., vol. 25, no. 1, pp. 19–25, Jan.
2002.

[51] ——, “Helicopter trimming and tracking control using direct neural dynamic
programming,” IEEE TNN, vol. 14, no. 4, pp. 929–939, Jul. 2003.

[52] ——, “Helicopter flight-control reconfiguration for main rotor actuator failures,”
AIAA J. Guid., Contr., & Dyn., vol. 26, no. 4, pp. 572–584, Jul. 2003.

[53] Q. Yang, W. Cao, W. Meng, and J. Si, “Reinforcement-learning-based track-
ing control of waste water treatment process under realistic system conditions
and control performance requirements,” IEEE Trans. Syst., Man, Cybern. – A:
Syst., vol. 52, no. 8, pp. 5284–5294, Aug. 2022.

[54] Y. Wen, M. Liu, J. Si, and H. Huang., “Adaptive control of powered trans-
femoral prostheses based on adaptive dynamic programming,” in 2016 38th
Ann. Int. Conf. IEEE Engin. Med. Bio. Soc., Aug. 2016, pp. 500–507.

[55] Y. Wen, J. Si, X. Gao, S. Huang, and H. Huang, “A new powered lower limb
prosthesis control framework based on adaptive dynamic programming,” IEEE
TNNLS, vol. 28, no. 9, pp. 2215–2220, Sep. 2017.

[56] Y. Wen, J. Si, A. Brandt, X. Gao, and H. Huang, “Online reinforcement learn-
ing control for the personalization of a robotic knee prosthesis,” IEEE Trans.
Cybern., vol. 50, no. 6, pp. 2346–2356, Jan. 2019.

195

[57] R. Wu, M. Li, Z. Yao, W. Liu, J. Si, and H. Huang, “Reinforcement learning
impedance control of a robotic prosthesis to coordinate with human intact knee
motion,” IEEE Robo. & Auto. Lett., vol. 7, no. 3, pp. 7014–7020, Jun. 2022.

[58] M. Li, Y. Wen, X. Gao, J. Si, and H. Huang, “Toward expedited impedance
tuning of a robotic prosthesis for personalized gait assistance by reinforcement
learning control,” IEEE Trans. Robo., vol. 38, no. 1, pp. 407–420, Feb. 2022.

[59] R. Wu, J. Zhong, B. A. Wallace, X. Gao, H. Huang, and J. Si, “Human-robotic
prosthesis as collaborating agents for symmetrical walking,” in Adv. Neur. Info.
Proc. Syst. (NeurIPS), vol. 36, Nov. 2022, pp. 1–15.

[60] J. J. Craig, Introduction to Robotics: Mechanics and Control., 3rd ed. Upper
Saddle River, NJ, USA: Pearson Education, 2005.

[61] R. Abraham and J. E. Marsden, Foundations of Mechanics, 2nd ed. Redwood
City, CA, USA: Addison-Wesley, 1978.

[62] M. Morari and E. Zafiriou, Robust Process Control. Englewood Cliffs, NJ,
USA: Prentice Hall, 1989.

[63] Y. Zhu and D. Zhao, “Comprehensive comparison of online ADP algorithms for
continuous-time optimal control,” Artif. Intel. Rev., vol. 49, pp. 531–547, 2018.

[64] F. L. Lewis and D. Vrabie, “Reinforcement learning and adaptive dynamic
programming for feedback control,” IEEE Circ. Syst. Mag., vol. 9, no. 2, pp.
32–50, Aug. 2009.

[65] D. P. Bertsekas, Dynamic Programming and Optimal Control, 3rd ed. Belmont,
MA, USA: Athena Scientific, 2005.

[66] M. L. Puterman, Markov Decision Processes: Discrete Stochastic Dynamic Pro-
gramming. New York, NY, USA: Wiley, 1994.

[67] R. Howard, Dynamic Programming and Markov Processes. Cambridge, MA,
USA: MIT Press, 1960.

[68] D. P. Bertsekas and J. N. Tsitsiklis, Neuro-Dynamic Programming. Belmont,
MA, USA: Athena Scientific, 1996.

[69] F. Y. Wang, H. Zhang, and D. Liu, “Adaptive dynamic programming: An
introduction,” IEEE Comput. Intel. Mag., vol. 4, no. 2, pp. 39–47, May 2009.

[70] P. J. Werbos, “Neural networks for control and system identification,” in Proc.
28th IEEE CDC, Dec. 1989, pp. 260–265.

[71] ——, A Menu of Designs for Reinforcement Learing Over Time. Cambridge,
MA, USA: MIT Press, 1991.

196

[72] ——, “Approximate dynamic programming for real-time control and neural
modeling,” in Handbook of Intelligent Control: Neural, Fuzzy, and Adaptive
Approaches, D. A. White and D. A. Sofge, Eds. New York, NY, USA: Van
Nostrand, 1992.

[73] D. Wang, D. Liu, H. Li, and H. Ma, “An approximate optimal control approach
for robust stabilization of a class of discrete-time nonlinear systems with un-
certainties,” IEEE Trans. Syst., Man, Cybern. – A: Syst., vol. 46, no. 5, pp.
713–717, May 2016.

[74] P. He and S. Jagannathan, “Reinforcement learning neural-network-based con-
troller for nonlinear discrete-time systems with input constraints,” IEEE Trans.
Syst., Man, Cybern. – B: Cybern., vol. 43, no. 2, pp. 779–789, Apr. 2013.

[75] P. Zhang, Y. Yuan, and L. Guo, “Fault-tolerant optimal control for discrete-
time nonlinear system subjected to input saturation: A dynamic event-triggered
approach,” IEEE Trans. Cybern., vol. 51, no. 6, pp. 2956–2968, Jun. 2021.

[76] J. Si and Y.-T. Wang, “Online learning control by association and reinforce-
ment,” IEEE TNN, vol. 12, no. 2, pp. 264–276, Mar. 2001.

[77] R. Hafner and M. Riedmiller, “Reinforcement learning in feedback control:
Challenges and benchmarks from technical process control,” Mach. Learn.,
vol. 84, no. 1, pp. 137–169, Feb. 2011.

[78] D. Silver, G. Lever, N. Heess, T. Degris, D. Wierstra, and M. Riedmiller, “De-
terministic policy gradient algorithms,” in Proc. 31st Int. Conf. Mach. Learn.
(ICML), Jan. 2014, pp. 387–395.

[79] R. Lillicrap, P. Timothy, J. J. Hunt, A. Pritzel, N. Heess, T. Erez, Y. Tassa,
D. Silver, and D. Wierstra, “Continuous control with deep reinforcement learn-
ing,” arXiv preprint arXiv:1509.02971, 2015.

[80] Y. Hou, L. Liu, Q. Wei, X. Xu, and C. Chen, “A novel DDPG method with
prioritized experience replay,” in 2017 IEEE Int. Conf. Syst., Man, Cybern.,
Oct. 2017, pp. 316–321.

[81] A. E. Bryson and W. F. Denham, “A steepest-ascent method for solving op-
timum programming problems,” ASME J. Appl. Mech., vol. 29, pp. 247–257,
Jun. 1962.

[82] D. E. Kirk, Optimal Control Theory. Englewood Cliffs, NJ, USA: Prentice-Hall,
1970.

[83] A. P. Sage and C. C. White III, Optimum Systems Control, 2nd ed. Englewood
Cliffs, NJ, USA: Prentice-Hall, 1970.

[84] K. A. Wise and J. L. Sedwick, “Successive approximation solution of the hji
equation,” in Proc. 33rd IEEE CDC, vol. 2, Dec. 1994, pp. 1387–1391.

197

[85] J. Huang and C.-F. Lin, “Numerical approach to computing nonlinear H∞

control laws,” AIAA J. Guid., Contr., & Dyn., vol. 18, pp. 989–994, 1995.

[86] M. G. Grandall, H. Ishii, and P.-L. Lions, “User’s guide to viscosity solutions
of second order partial differential equations,” Bulletin of the AMS, vol. 27, pp.
1–67, 1992.

[87] H. J. Kushner, “Numerical methods for stochastic control problems in contin-
uous time,” SIAM J. Control Opt., vol. 28, pp. 999–1048, 1990.

[88] W. H. Fleming and H. M. Soner, Controlled Markov Processes and Viscosity
Solutions. Berlin, Germany: Springer Verlag, 1993.

[89] R. W. Beard and T. T. McLain, “Successive galerkin approximation algortihms
for nonlinear optimal and robust control,” Int. J. Contr., vol. 71, pp. 717–743,
1998.

[90] R. W. Beard, “Improving the closed-loop performance of nonlinear systems,”
Ph.D. thesis, Rensselaer Poly. Inst., Troy, NY, USA, Oct. 1995.

[91] R. W. Beard, G. N. Saridis, and J. T. Wen, “Galerkin approximations of the
generalized Hamilton-Jacobi-Bellman equation,” Automatica, vol. 33, no. 12,
pp. 2159–2177, Jun. 1997.

[92] M. Abu-Khalaf and F. L. Lewis, “Nearly optimal control laws for nonlinear
systems with saturating actuators using a neural network hjb approach,” Au-
tomatica, vol. 41, no. 5, pp. 779–791, May 2005.

[93] F. L. Lewis, M. Abu-Khalaf, and J. Huang, “Hamilton-Jacobi-Isaacs formula-
tion for constrained input systems: Neural network solution,” IFAC, vol. 37,
no. 21, pp. 1–6, Dec. 2004.

[94] M. Abu-Khalaf and F. L. Lewis, Nonlinear H2/H∞ Constrained Feedback Con-
trol. Berlin, Germany: Springer Verlag, 2006.

[95] O. Kuljaca and F. L. Lewis, “Fuzzy logic/neural network adaptive critic con-
troller design,” in Proc. 41st IEEE CDC, Dec. 2002, pp. 3356–3361.

[96] X. Ren, A. B. Rad, and F. L. Lewis, “Neural network-based compensation
control of robot manipulators with unknown dynamics,” in Proc. 2007 IEEE
ACC, Jul. 2007, pp. 13–18.

[97] O. Kuljaca, F. L. Lewis, and S. Tesnjak, “Neural network frequency control for
thermal power systems,” in Proc. 43rd IEEE CDC(IEEE Cat. No. 04CH37601),
vol. 5, Dec. 2004, pp. 3509–3514.

[98] K. G. Vamvoudakis, D. Vrabie, and F. L. Lewis, “Online adaptive algorithm for
optimal control with integral reinforcement learning,” Int. J. Rob. Opt. Contr.,
vol. 24, no. 17, pp. 2686–2710, 2014.

198

[99] H. Modares, F. L. Lewis, and M.-B. Naghibi-Sistani, “Adaptive optimal con-
trol of unknown constrained-input systems using policy iteration and neural
networks,” IEEE TNNLS, vol. 24, no. 10, pp. 1513–1525, Oct. 2013.

[100] Y. Jiang and Z.-P. Jiang, “Robust adaptive dynamic programming for large-
scale systems with an application to multimachine power systems,” IEEE Trans.
Circ. and Sys. – II: Express Briefs, vol. 59, no. 10, pp. 693–697, Oct. 2012.

[101] ——, “Robust adaptive dynamic programming with an application to power
systems,” IEEE TNN, vol. 24, pp. 1150–1156, Jul. 2013.

[102] ——, “Adaptive dynamic programming as a theory of sensorimotor control,”
Bio. Cybern., vol. 108, no. 4, pp. 459–473, 2014.

[103] W. Gao, Y. Jiang, Z.-P. Jiang, and T. Chai, “Output-feedback adaptive optimal
control of interconnected systems based on robust adaptive dynamic program-
ming,” Automatica, vol. 72, pp. 37–45, Oct. 2016.

[104] Y. Jiang and J. Z.-P., “Global adaptive dynamic programming for continuous-
time nonlinear systems,” IEEE TAC, vol. 60, no. 11, pp. 2197–2929, Nov. 2015.

[105] D. Wang, D. Liu, and H. Ma, “Neural-network-based robust optimal control
design for a class of uncertain nonlinear systems via adaptive dynamic pro-
gramming,” Info. Sci., vol. 282, pp. 167–179, Oct. 2014.

[106] X. Yang, D. Liu, and D. Wang, “Reinforcement learning for adaptive optimal
control of unknown continuous-time nonlinear systems with input constraints,”
Int. J. Contr., vol. 87, no. 3, pp. 553–566, 2014.

[107] Y. Yang, D. Wunsch, and Y. Yin, “Hamiltonian-driven adaptive dynamic pro-
gramming for continuous nonlinear dynamical systems,” IEEE TNNLS, vol. 28,
no. 8, pp. 1929–1940, Feb. 2017.

[108] F. A. Yaghmaie and D. J. Braun, “Reinforcement learning for a class of
continuous-time input constrained optimal control problems,” Automatica,
vol. 99, pp. 221–227, Jan. 2019.

[109] Y. Li, K. Sun, and S. Tong, “Observer-based adaptive fuzzy fault-tolerant op-
timal control for SISO nonlinear systems,” IEEE Trans. Cybern., vol. 49, no. 2,
pp. 649–661, Feb. 2019.

[110] J. Zhao, J. Na, and G. Gao, “Adaptive dynamic programming based robust
control of nonlinear systems with unmatched uncertainties,” Neurocomp., vol.
395, pp. 56–65, Jun. 2020.

[111] H. Liu, W. Zhao, F. L. Lewis, Z.-P. Jiang, and H. Modares, “Attitude synchro-
nization for multiple quadrotors using reinforcement learning,” in 2019 IEEE
CCC, Jul. 2019, pp. 2480–2483.

199

[112] L. Cui, S. Wang, J. Zhang, D. Zhang, J. Lai, Y. Zheng, Z. Zhang, and Z.-P.
Jiang, “Learning-based balance control of wheel-legged robots,” IEEE Robo. &
Auto. Lett., vol. 6, no. 4, pp. 7667–7674, 2021.

[113] J. N. Tsitsiklis and B. Van Roy, “Analysis of temporal-difference learning with
function approximation,” Adv. Neur. Info. Proc. Sys., vol. 9, pp. 1075–1081,
1996.

[114] ——, “Analysis of temporal-difference learning with function approximation,”
IEEE TAC, vol. 42, no. 5, pp. 674–690, May 1997.

[115] K. Doya, “Reinforcement learning in continuous time and space,” Neural
Comp., vol. 12, no. 1, pp. 219–245, Jan. 2000.

[116] C. Possieri and M. Sassano, “Q-learning for continuous-time linear systems: A
data-driven implementation of the Kleinman algorithm,” IEEE Trans. Syst.,
Man, Cybern. – A: Syst., vol. 52, no. 10, pp. 6487–6497, Oct. 2022.

[117] D. Kleinman, “On an iterative technique for Riccati equation computations,”
IEEE TAC, vol. 13, no. 1, pp. 114–115, Feb. 1968.

[118] J. Lee and R. S. Sutton, “Policy iterations for reinforcement learning problems
in continuous time and space–Fundamental theory and methods,” Automatica,
vol. 126, p. 109421, Apr. 2021.

[119] J. Kim, J. Shin, and I. Yang, “Hamilton-Jacobi deep Q-learning for determin-
istic continuous-time systems with Lipschitz continuous controls,” J. Mach.
Learn. Res., vol. 22, no. 1, pp. 9363–9396, Sep. 2021.

[120] C. Yildiz, M. Heinonen, and H. Lähdesmäki, “Continuous-time model-based
reinforcement learning,” in Proc. 38th Int. Conf. Mach. Learn. (ICML), Jul.
2021, pp. 12 009–12 018.

[121] J. D. Shaughnessy, S. Z. Pinckney, J. D. McMinn, C. I. Cruz, and M.-L. Kel-
ley, “Hypersonic vehicle simulation model: Winged-cone configuration,” NASA
TM-102610, Nov. 1990.

[122] R. F. Stengel, Flight Dynamics, 2nd ed. Princeton, NJ, USA: Princeton Uni-
versity Press, 2022.

[123] S. Zhao, J. Wang, H. Xu, and B. Wang, “Composite observer-based optimal
attitude-tracking control with reinforcement learning for hypersonic vehicles,”
IEEE Trans. Cybern., vol. 53, no. 2, pp. 913–926, Feb. 2023.

[124] B. Xu, D. Wang, F. Sun, and Z. Shi, “Direct neural control of hypersonic flight
vehicles with prediction model in discrete time,” Neurocomp., vol. 115, pp. 39–
48, Sep. 2013.

[125] B. Xu, C. Yang, and Y. Pan, “Global neural dynamic surface tracking control
of strict-feedback systems with application to hypersonic flight vehicle,” IEEE
TNNLS, vol. 26, no. 10, pp. 2563–2575, Aug. 2015.

200

[126] X. Bu, Y. Xiao, and H. Lei, “An adaptive critic design-based fuzzy neural
controller for hypersonic vehicles: Predefined behavioral nonaffine control,”
IEEE/ASME Trans. Mechatron., vol. 24, no. 4, pp. 1871–1881, Aug. 2019.

[127] X. Bu and Q. Qi, “Fuzzy optimal tracking control of hypersonic flight vehicles
via single-network adaptive critic design,” IEEE Trans. Fuzzy Syst., vol. 30,
no. 1, pp. 270–278, Jan. 2022.

[128] Q. Qi and X. Bu, “Adaptive dynamic programing design for the neural control
of hypersonic flight vehicles,” J. Franklin. Inst., vol. 358, no. 16, pp. 8169–8192,
Oct. 2021.

[129] X. Tao, J. Yi, X. Pu, and T. Xiong, “State-estimator-integrated robust adap-
tive tracking control for flexible air-breathing hypersonic vehicle with noisy
measurements,” IEEE Trans. Instrum. Meas., vol. 68, no. 11, pp. 4285–4299,
Nov. 2019.

[130] C. Mu, Z. Ni, C. Sun, and H. He, “Air-breathing hypersonic vehicle tracking
control based on adaptive dynamic programming,” IEEE TNNLS, vol. 28, no. 3,
pp. 584–598, Mar. 2017.

[131] H.-Y. Qiao, H. Meng, M.-J. Wang, W. Ke, and J.-G. Sun, “Adaptive control
for hypersonic vehicle with input saturation and state constraints,” Aero. Sci.
Tech., vol. 84, pp. 107–119, Jan. 2019.

[132] J. Dickeson, A. A. Rodriguez, S. Sridharan, J. Benevides, and D. Soloway,
“Decentralized control of an airbreathing scramjet-powered hypersonic vehicle,”
in AIAA Guid., Nav., Contr. Conf. Exhib., Aug. 2009, pp. 1–25, AIAA 2009-
6281.

[133] J. Dickeson, A. A. Rodriguez, S. Sridharan, D. Soloway, A. Korad, J. Khatri,
J. Benavides, A. Kelkar, and J. Vogel, “Control-relevant modeling, analysis,
and design for scramjet-powered hypersonic vehicles,” in AIAA/DLR/DGLR
Int. Space Planes Hyper. Syst. Tech. Conf., Oct. 2009, pp. 1–45, AIAA 2009-
7287.

[134] J. J. Dickeson, “Control relevant modeling and design of scramjet-powered hy-
personic vehicles,” Ph.D. thesis, Arizona State University, Tempe, AZ, USA,
2012.

[135] J. T. Parker, A. Serrani, S. Yurkovich, M. A. Bolender, and D. B. Doman,
“Approximate feedback linearization of an air-breathing hypersonic vehicle,” in
AIAA Guid., Nav., Contr. Conf. Exhib., Aug. 2006, pp. 1–16, AIAA 2006-6556.

[136] A. A. Rodriguez, Analysis and Design of Multivariable Feedback Control Sys-
tems. Tempe, AZ, USA: CONTROL3D, 2004.

[137] B. A. Wallace and J. Si, “Continuous-time reinforcement learning control: A re-
view of theoretical results, insights on performance, and needs for new designs,”
IEEE TNNLS, Feb. 2023.

201

[138] R. Dhaouadi and A. Abu Hatab, “Dynamic modelling of differential-drive mo-
bile robots using lagrange and newton-euler methodologies: A unified frame-
work,” Adv. Robo. Auto., vol. 2, no. 2, pp. 1–7, Jan. 2013.

[139] K. Mondal, “Dynamics, directional maneuverability and optimization based
multivariable control of nonholonomic differential drive mobile robots,” Ph.D.
thesis, Arizona State University, Department of Electrical Engineering, Tempe,
AZ, USA, Dec. 2021.

[140] P. Wang, Z. Man, Z. Cao, J. Zheng, and Y. Zhao, “Dynamics modelling and
linear control of quadcopter,” in IEEE Int. Conf. Adv. Mech. Syst. (ICAMechS),
Nov. 2016, pp. 498–503.

[141] M. A. Bolender and D. B. Doman, “Flight path angle dynamics of air-breathing
hypersonic vehicles,” in AIAA Guid., Nav., Contr. Conf. Exhib., Aug. 2006,
AIAA 2006-6692.

[142] ——, “Nonlinear longitudinal dynamical model of an air-breathing hypersonic
vehicle,” J. Spacecraft Rockets, vol. 44, no. 2, pp. 374–387, Mar. 2007.

[143] https://lewisgroup.uta.edu/code/Software%20from%20Research.htm,
Accessed: 2022-04-08.

[144] K. G. Vamvoudakis, D. Vrabie, and F. L. Lewis, “Online policy iteration based
algorithms to solve the continuous-time infinite horizon optimal control prob-
lem,” IEEE Symp. ADPRL, pp. 36–41, Mar. 2009.

[145] V. Lakshmikantham, S. Leela, and A. A. Martynyuk, Practical Stability of Non-
linear Systems. Singapore: World Scientific Publishing Co., 1990.

[146] N. J. Higham, Accuracy and Stability of Numerical Algorithms, 2nd ed.
Philadelphia, PA, USA: SIAM, 2002.

[147] B. A. Wallace and J. Si, “TNNLS-2022 – CT-RL Optimal Control,” https:
//github.com/bawalla2/TNNLS-2022--CT-RL-Optimal-Control.git, Accessed:
2022-12-01.

[148] ——, “Physics-based integral reinforcement learning: New control design algo-
rithms with theoretical insights and performance guarantees,” IEEE TNNLS,
May 2023, in Review. arXiv preprint available: https://arxiv.org/abs/2307.
08920.

[149] Y. Jiang and Z.-P. Jiang, “Computational adaptive optimal control for
continuous-time linear systems with completely unknown dynamics,” Automat-
ica, vol. 48, no. 10, pp. 2699–2704, Oct. 2012.

[150] R. A. Horn, Topics in Matrix Analysis. Cambridge, UK: Cambridge University
Press, 1991.

[151] B. A. Wallace and J. Si, “TNNLS 2023 – dEIRL,” Available: https://github.
com/bawalla2/TNNLS-2023---dEIRL, Accessed: 2023-05-25.

202

https://lewisgroup.uta.edu/code/Software%20from%20Research.htm
https://github.com/bawalla2/TNNLS-2022--CT-RL-Optimal-Control.git
https://github.com/bawalla2/TNNLS-2022--CT-RL-Optimal-Control.git
https://arxiv.org/abs/2307.08920
https://arxiv.org/abs/2307.08920
https://github.com/bawalla2/TNNLS-2023---dEIRL
https://github.com/bawalla2/TNNLS-2023---dEIRL

[152] ——, “RCI (JMLR 2024),” https://github.com/bawalla2/JMLR-2024, 2024.

[153] M. Lutter et al., “Continuous & robust fitted value iteration,” https://github.
com/milutter/value iteration, 2023, Accessed: 2023-01-12.

[154] B. A. Wallace and J. Si, “AIAA JGCD 2024 RL HSV,” Available: https://
github.com/bawalla2/AIAA-JGCD-2024-RL-HSV, Accessed: 2023-11-02.

[155] F. Alizadeh, J. A. Haeberly, and M. Overton, “Primal-dual interior-point meth-
ods for semidefinite programming: Convergence rates, stability and numerical
results,” SIAM J. Opt., vol. 8, no. 3, pp. 746–768, Aug. 1998.

[156] M. J. Todd, K. C. Toh, and R. H. Tütüncü, “On the Nesterov–Todd direction
in semidefinite programming,” SIAM J. Opt., vol. 8, no. 3, pp. 769–796, Aug.
1998.

[157] A. Tunçel and H. Wolkowicz, “Strengthened existence and uniqueness condi-
tions for search directions in semidefinite programming,” Lin. Alg. Apps., vol.
400, pp. 31–60, May 2005.

[158] N. Kalantarova and A. Tunçel, “On the spectral structure of jordan-kronecker
products of symmetric and skew-symmetric matrices,” Lin. Alg. Apps., vol. 608,
pp. 343–362, Jan. 2021.

[159] N. Kalantarova, “Spectral properties of structured kronecker products and their
applications,” Ph.D. thesis, University of Waterloo, Department of Combina-
torics and Optimization, Waterloo, Ontario, CA, May 2019.

[160] J. W. Brewer, “Kronecker products and matrix calculus in system theory,”
IEEE Circ. Syst., vol. 25, no. 9, pp. 772–781, Sep. 1978.

[161] J. M. Lee, Introduction to Smooth Manifolds, 2nd ed. New York, NY, USA:
Springer, 2013.

[162] H. Xu, M. D. Mirmirani, and P. A. Ioannou, “Robust neural adaptive control of
a hypersonic aircraft,” in AIAA Guid., Nav., Contr. Conf. Exhib., Aug. 2003,
pp. 1–8, AIAA 2003-5641.

[163] ——, “Adaptive sliding mode control design for a hypersonic flight vehicle,”
AIAA J. Guid., Contr., & Dyn., vol. 27, no. 5, pp. 829–838, Sep. 2004.

[164] M. A. Bolender and D. B. Doman, “A non-linear model for the longitudinal
dynamics of a hypersonic air-breathing vehicle,” in AIAA Guid., Nav., Contr.
Conf. Exhib., Aug. 2005, pp. 1–22, AIAA 2005-6255.

[165] P. T. Soderman and T. N. Aiken, “Full-scale wind-tunnel tests of a small un-
powered jet aircraft with a T-tail,” NASA-TN-D-6573, Nov. 1971.

[166] A. A. Rodriguez, J. Dickeson, O. Cifdaloz, A. Kelkar, J. Vogel, D. Soloway,
R. McCullen, J. Benavides, and S. Sridharan, “Modeling and control of
scramjet-powered hypersonic vehicles: Challenges, trends, and tradeoffs,” in
AIAA Guid., Nav., Contr. Conf. Exhib., Aug. 2008, pp. 1–40, AIAA 2008-6793.

203

https://github.com/bawalla2/JMLR-2024
https://github.com/milutter/value_iteration
https://github.com/milutter/value_iteration
https://github.com/bawalla2/AIAA-JGCD-2024-RL-HSV
https://github.com/bawalla2/AIAA-JGCD-2024-RL-HSV

[167] J. Hauser, S. Sastry, and G. Meyer, “Nonlinear control design for slightly
non-minimum phase systems: Application to V/STOL aircraft,” Automatica,
vol. 28, no. 4, pp. 665–679, Jul. 1992.

204

APPENDIX A

PRELIMINARIES: THE SYMMETRIC KRONECKER PRODUCT AND
SYMMETRIC KRONECKER SUM

205

In this section, we first provide an overview of the symmetric Kronecker product,
summarizing the notable developments to-date. We then derive a construction of the
map and prove new key properties necessary for the development of the proposed
modulation-enhanced excitation (MEE) framework (cf. Section 3.5).

A.1 Overview of Developments to-Date

The symmetric Kronecker product was originally devised in [155] for application
to semidefinite programming as an operation on square-symmetric matrices. In this
context, it was shown that the symmetric Kronecker product ⊗ is symmetric as a
bilinear form: A⊗B = B⊗A, and that (A⊗A)−1 = A−1⊗A−1 in the case A is
invertible. The spectrum of A⊗B was identified in the case that A,B are symmetric
and commute. The symmetric Kronecker product was then extended in [156] to an
operation on arbitrary square matrices. [156] identified many key algebraic properties
analogous to those of the standard Kronecker product, including the usual transpo-
sition, mixed product, and mixed vector product identities. The spectrum of A⊗A
was identified in the general square matrix case. [157] then identified eigenpair rela-
tionships and definiteness characterizations: that positive (semi)definiteness of A⊗B
is equivalent to that of A ⊗ B. More recently, the works [158, 159] provide spectral
interlacing properties of the related Jordan-Kronecker product.

Notably, prior works to date have treated the symmetric Kronecker product as
an operation only on square matrices A,B ∈ Rn×n, which we here generalize to
rectangular matricesA,B ∈ Rm×n. Among other advantages, this allows us to identify
the eigenstructure of A⊗B as relating to the symmetric Kronecker products x⊗ y
of eigenvectors x, y of A and B – a critical parallel to the well-known result of the
standard Kronecker product. We also prove new properties in the square case which
will be essential to the development of MEE. Importantly, we introduce the concept
of the symmetric Kronecker sum ⊕, proving algebraic, spectral, and exponentiation
properties, as well as its role in characteriing existence/uniqueness of solutions to
ALEs.

A.2 Construction

Notation. We denote ⟨·, ·⟩F as the Frobenius inner product on Rm×n. Let ⊗, vec
denote the usual Kronecker product and vectorization operations, respectively, and
mat = vec−1 [160]. For any concepts pertaining to differential geometry, this work
follows the notational conventions of the standard text [161]. For n ∈ N, let GL(n) ⊂
Rn×n denote the (real) general linear group of square invertible n × n matrices. Let

Sn ⊂ Rn×n denote the subspace of symmetric matrices, and let n ≜ n(n+1)
2

denote the
dimension of Sn.

Prior formulations of the symmetric Kronecker product [155–159] first define the
product implicitly, but here we move straight to an explicit construction. For n ∈ N,
let {Ei}ni=1 denote the orthonormal basis for (Sn, ⟨·, ·⟩F) enumerated as follows. Define

206

s : {0, . . . , n} → {0, . . . , n}, r, c : {1, . . . , n} → {1, . . . , n} by

s(j) =

j∑
i=1

(n− (i− 1)), (A.1)

r(j) = p, s(p− 1) < j ≤ s(p), (A.2)

c(j) = (r(j)− 1) +
(
j − s

(
r(j)− 1

))
. (A.3)

When necessary, we will add subscripts sn, rn, cn to these maps to make their as-
sociated dimension n explicit. Note that {(r(j), c(j))}nj=1 is given by (1, 1), (1, 2),
. . . , (1, n), (2, 2), (2, 3), . . . , (2, n), (3, 3), . . . , (n − 1, n), (n, n). This associates the
index 1 ≤ j ≤ n with its corresponding row/column index (r(j), c(j)) on/above the
diagonal, beginning at the first row/column and moving left to right, up to down
(cf. Figure A.1). These maps have not been defined explicitly in the constructions of
prior works [155–159]; however, subsequently they will show great utility in indexing
operations for proving properties of the symmetric Kronecker product, especially in
developing our results for the rectangular-matrix case. Letting {ei}ni=1 denote the
standard basis on Rn, we are now ready to enumerate the orthonormal basis {Ej}nj=1
as

Ej =

{
er(j)e

T
c(j), r(j) = c(j),

√
2
2

(
er(j)e

T
c(j) + ec(j)e

T
r(j)

)
, r(j) < c(j).

(A.4)

s(0) = 0

1 2 3 = n

s(1) = 3

4 5 = j

s(2) = 5

6 = n

s(3) = 6

(r, c) (1, 1) (1, 2) (1, 3)

(2, 2) (2, 3)

(3, 3)

r(j) = 2

c(j) = 3

Figure A.1: Visualization of the Sum, Row, and Column Indexing Maps s (A.1), r
(A.2), and c (A.3), Respectively, for n = 3.

Define W ∈ Rn×n2
as

W =

 vecT (E1)
...

vecT (En)

 . (A.5)

Whenever necessary, we will also add a subscript Wn ∈ Rn×n2
to this matrix to make

its dimensions explicit.

Definition A.2.1 (Symmetric Vectorization, Orthogonal Projection). Define

207

svec : Sn → Rn and π : Rn×n → Sn by

svec(P) =
[
p1,1,

√
2p1,2, . . . ,

√
2p1,n, p2,2,

√
2p2,3, . . . ,

√
2pn−1,n, pn,n

]T
=

[
⟨P,E1⟩F , . . . , ⟨P,En⟩F

]T
, (A.6)

π(A) =
A+ AT

2
, (A.7)

and define smat = svec−1 : Rn → Sn. We will discuss the properties of these operators
shortly (cf. Proposition A.3.1).

Definition A.2.2 (The Symmetric Kronecker Product). Define the symmetric
Kronecker product ⊗ : Rm×n × Rm×n → Rm×n as

A⊗B = Wm (A⊗B)W T
n . (A.8)

Definition A.2.3 (The Symmetric Kronecker Sum). Define the symmetric Kro-
necker sum ⊕ : Rn×n × Rn×n → Rn×n as

A⊕B = A⊗ I + I ⊗B = (A+B)⊗ I. (A.9)

A.3 Properties

We begin this section by outlining the interaction of the vectorization operations
vec, svec with the Frobenius inner product on matrix spaces.

Proposition A.3.1 (Vectorization and Frobenius Hilbert Space Structure).

1) vec : (Rm×n, ⟨·, ·⟩F)→ (Rmn, ⟨·, ·⟩) is a Hilbert space isomorphism; i.e., a linear
bijection for which vecT (A) vec(B) = ⟨A,B⟩F , A,B ∈ Rm×n.

1S) svec : (Sn, ⟨·, ·⟩F) → (Rn, ⟨·, ·⟩) is a Hilbert space isomorphism; i.e., a linear
bijection for which svecT (A) svec(B) = ⟨A,B⟩F , A,B ∈ Sn.

2) In the square-matrix case, the operators vec, svec interact with the Hilbert space
structure of (Rn×n, ⟨·, ·⟩F) via the following commutative diagram:

(Rn×n, ⟨·, ·⟩F) (Sn, ⟨·, ·⟩F)

(
Rn2

, ⟨·, ·⟩
)

(vec(Sn), ⟨·, ·⟩) (Rn, ⟨·, ·⟩)

π

⊥ proj.

∼=vec ∼=vec ∼=
svec

WTW

⊥ proj.

mat

W
∼=

mat

WT

smat
(A.10)

where W ∈ Rn×n2
is given by (A.5), and ∼= denotes Hilbert space isomorphism.

In (A.10), vec(Sn) ⊂ Rn2
is often called the space of symmetric vectors [158, 159].

The operator π (A.7) and the matrix W TW ∈ Rn2×n2
are the orthogonal projec-

tions onto the symmetric matrices and symmetric vectors, respectively. Furthermore,

208

(A.10) shows that the order of vectorization and projection may be swapped by in-
terchanging these two projections.

We recall the general result from linear algebra that, given an n-dimensional real
vector space V , any basis {xi}ni=1 for V establishes a linear isomorphism V ↔ Rn

between Euclidean space and elements of V via their (unique) representation in the

basis. In the case considered, the symmetric vectors vec(Sn) ⊂ Rn2
comprise an n-

dimensional subspace spanned by the (orthonormal) basis {vec(Ei)}ni=1 (A.4). W ∈
Rn2×n is the matrix representation of the linear isomorphism vec(Sn)↔ Rn. Indeed,
invoking the Hilbert space structure of vec(Sn), orthonormality of {vec(Ei)}ni=1 implies
the i-th coefficient representation (i = 1, . . . , n) of an element vec(P) ∈ vec(Sn) is
given by ⟨vec(P), vec(Ei)⟩ = ⟨P,Ei⟩F , which is precisely the action of W (A.5).
Similarly, examination of (A.6) immediately shows that the symmetric vectorization
svec is the Euclidean space correspondence Sn ↔ Rn associated with the orthonormal
basis {Ei}ni=1. In all, (A.10) illustrates that svec = W ◦ vec, a composition of Hilbert
space isomorphisms, is itself a Hilbert space isomorphism. Meanwhile, vec viewed as a
map Sn → Rn2

“vectorizes” elements of Sn into the Euclidean space Rn2
isometrically,

but vec is not onto. Thus, svec is the natural Hilbert space isomorphism of study on
the symmetric matrices, as vec is to Rn×n.

Having formally related the properties of the vectorization operations vec and
svec, it is perhaps of no surprise that svec algebraically interacts with the symmetric
Kronecker product ⊗ in an entirely analogous fashion to the interaction between vec
and the Kronecker product ⊗.

Proposition A.3.2 (Kronecker Product Properties). For the sake of complete-
ness and for comparison to the newly-developed results for the symmetric Kronecker
product, we list the following well-known properties of the standard Kronecker prod-
uct:

1) ⊗ : Rm×n × Rp×q → Rmp×nq is bilinear.

2) ⊗ is not symmetric; i.e., A⊗B ̸= B ⊗ A, in general.

3) (A⊗B) vec(C) = vec(BCAT), A ∈ Rm×n, B ∈ Rp×q, C ∈ Rq×n.

4) (A⊗B)T = AT ⊗BT , A ∈ Rm×n, B ∈ Rp×q.

5) (A⊗B)−1 = A−1 ⊗B−1, A ∈ GL(n), B ∈ GL(m).

6) (A⊗B)(C ⊗D) = AC ⊗BD, A ∈ Rm×n, B ∈ Rp×q, C ∈ Rn×r, D ∈ Rq×s.

7) For square matrices A ∈ Rn×n and B ∈ Rm×m, if σ(A) = {λi | i = 1, . . . , n}
and σ(B) = {µj | j = 1, . . . ,m}, then σ(A ⊗ B) = {λiµj | i = 1, . . . , n, j =
1, . . . ,m}. Furthermore, if xi ∈ Cn, yj ∈ Cm are eigenvectors corresponding to
the eigenvalues λi of A and µj of B, respectively, then xi ⊗ yj is an eigenvector
corresponding to the eigenvalue λiµj of A⊗B.

8) A⊗ I is symmetric if and only if A is, A ∈ Rn×n.

9) If A ∈ Sm, B ∈ Sn are symmetric positive definite, then so is A⊗B.

209

10) A⊗B = 0 if and only if at least one A,B = 0, A ∈ Rm×n, B ∈ Rp×q.

11) det(A⊗B) = det(A)m det(B)n, A ∈ Rm×m, B ∈ Rn×n.

12) For A ∈ Rm×m, B ∈ Rn×n, if A,B are diagonal, then A ⊗ B is diagonal. If
A,B ̸= 0 and A⊗B is diagonal, then A,B are diagonal.

13) For A ∈ Rm×m, B ∈ Rn×n, A ⊗ B = Imn if and only if A = λIm, B = 1
λ
In for

some λ ̸= 0.

14) The map Φ : GL(n)→ GL+(n2),

Φ(A) = A⊗ A, A ∈ GL(n), (A.11)

is a Lie group homomorphism with kerΦ = {±I}. Φ|GL+(n) : GL+(n) →
GL+(n2) is an injective Lie group homomorphism if and only if n is odd. In the
case n is odd, Φ(GL(n)) = Φ(GL+(n)) ↪→ GL+(n2) is connected. In the case
n is even, Φ(GL(n)) has two connected components Φ(GL+(n)),Φ(GL−(n)) ↪→
GL+(n2).

Proof: 1))–13)) are standard results; see, e.g., [150, 160]. Enumerating A =
{ai,j}mi,j=1, B = {bk,l}nk,l=1, 12)) and 13)) follow from the Kronecker product indexing
identity:

(A⊗B)(i−1)n+k,(j−1)n+l = ai,jbk,l,

i, j = 1, . . . ,m, k, l = 1, . . . , n. (A.12)

For 14)), that Φ is a group homomorphism follows from 6)), and that kerΦ = {±I}
follows from 13)). For smoothness, identifying Rn×n ∼= Rn2

, Rn2×n2 ∼= Rn4
, the map

A 7→ A ⊗ A : Rn×n → Rn2×n2
is polynomial in its coordinates, hence smooth. Thus,

since GL(n) ↪→ Rn×n is an open subset, it follows that Φ : GL(n)→ Rn2×n2
is smooth

by restriction of the domain [161, Theorem 5.27]. But that Φ(GL(n)) ⊂ GL+(n2)

follows from 11)), so since GL+(n2) ↪→ GL(n2) ↪→ Rn2×n2
, we may then restrict the

codomain as well [161, Theorem 5.29], yielding Φ : GL(n) → GL+(n2) is smooth.
The remaining claims are straightforward, noting that −I ∈ GL−(n) if and only if n
is odd. ■

Proposition A.3.3 (Symmetric Kronecker Product Properties). The sym-
metric Kronecker product has the following properties developed previously in the in
the square-matrix case [156], generalized here to rectangular matrices:

1S) ⊗ : Rm×n × Rm×n → Rm×n is bilinear.

2S) ⊗ is symmetric; i.e., A⊗B = B⊗A, A,B ∈ Rm×n.

3S) (A⊗B) svec(π(C)) = svec(π(Bπ(C)AT)), A,B ∈ Rm×n, C ∈ Rn×n.

4S) (A⊗B)T = AT ⊗BT , A,B ∈ Rm×n.

210

5S) (A⊗A)−1 = A−1 ⊗ A−1, A ∈ GL(n). However, (A⊗B)−1 ̸= A−1⊗B−1 for
A,B ∈ GL(n), in general. Indeed, A,B ∈ GL(n) does not imply A⊗B ∈
GL(n).

6S) a) (A⊗B)(C ⊗D) = 1
2
(AC ⊗BD + AD⊗BC), A,B ∈ Rm×n, C,D ∈ Rn×p.

b) (A⊗B)(C ⊗C) = AC ⊗BC, A,B ∈ Rm×n, C ∈ Rn×p.

c) (C ⊗C)(A⊗B) = CA⊗CB, A,B ∈ Rm×n, C ∈ Rp×m.

7S) a) For a square matrix A ∈ Rn×n, if σ(A) = {λi | i = 1, . . . , n}, then
σ(A⊗A) = {λiλj | 1 ≤ i ≤ j ≤ n}. Furthermore, if xi, xj ∈ Cn are
eigenvectors corresponding to the eigenvalues λi, λj of A, respectively, then
xi⊗xj is an eigenvector corresponding to the eigenvalue λiλj of A⊗A.

b) Suppose that A,B ∈ Rn×n are simultaneously diagonalizable with common
basis of eigenvectors {xi}ni=1. If σ(A) = {λi | i = 1, . . . , n} and σ(B) =
{µj | j = 1, . . . , n} are the eigenvalues of A and B corresponding to the
respective eigenvectors {xi}ni=1, then
σ(A⊗B) =

{
1
2
(λiµj + λjµi) | 1 ≤ i ≤ j ≤ n

}
. Furthermore, xi⊗xj is an

eigenvector corresponding to the eigenvalue 1
2
(λiµj + λjµi) of A⊗B.

c) Suppose that A,B ∈ Rn×n share two eigenvectors x, y ∈ Cn. If Ax = λ1x,
Bx = µ1x, Ay = λ2y, By = µ2y, then x⊗ y is an eigenvector of A⊗B
corresponding to the eigenvalue 1

2
(λ1µ2 + λ2µ1).

8S) A⊗ I is symmetric if and only if A is, A ∈ Rn×n.

9S) If A,B ∈ Sn are symmetric positive definite, then so is A⊗B.

10S) A⊗B = 0 if and only if at least one A,B = 0, A,B ∈ Rm×n.

In addition, the following newly-proved results are essential for the dEIRL MEE
framework developed subsequently:

11S) det(A⊗A) = det(A)n+1, A ∈ Rn×n.

12S) For A,B ∈ Rn×n, if A,B are diagonal, then A⊗B is diagonal. If A,B are
nonzero on each diagonal entry and A⊗B is diagonal, then A,B are diagonal.

13S) For A,B ∈ Rn×n, A⊗B = In if and only if A = λIn, B = 1
λ
In for some λ ̸= 0.

14S) The map Φ : GL(n)→ GL(n),

Φ(A) = A⊗A, A ∈ GL(n), (A.13)

is a Lie group homomorphism with kerΦ = {±I}. Φ|GL+(n) : GL+(n) →
GL+(n) is an injective Lie group homomorphism if and only if n is odd. In the
case n is odd, Φ(GL(n)) = Φ(GL+(n)) ↪→ GL+(n) is connected. In the case
n is even, Φ(GL(n)) has two connected components Φ(GL+(n)) ↪→ GL+(n),
Φ(GL−(n)) ↪→ GL−(n).

211

Proof: Aside from 7S)c), 1S)–9S) were proved in [156] in the square-matrix case.
Here, we generalize 1S)–4S), 6S) to the rectangular-matrix case, and the arguments
are similar. 3S), in particular, follows from the commutative diagram (A.10).

7S)Sa), 7S)Sb) were originally proved in [156] and are well-understood, but be-
cause prior works on the symmetric Kronecker product define it only as an operation
on square matrices, they have missed that xi⊗xj constitute the eigenvectors of A⊗B
– an important and intuitive result paralleling that of the usual Kronecker product
(cf. Proposition A.3.2 7))). 7S)Sb) was proved in [156] in the case of commuting
square matrices A,B ∈ Sn, but simultaneous diagonalizability is the key property
enabling this result. Underpinning the arguments in 7S)Sa) and 7S)Sb) is 7S)Sc),
which we prove here because it will be illustrative subsequently. With all terms as in
the hypotheses of 7S)Sc), we first note the subtlety that x, y ̸= 0 implies x⊗ y ̸= 0, by
10S) (proven below, independently of this result). Next, applying the now-generalized
mixed product identity 6S), we have

(A⊗B)(x⊗ y) = 1

2
(Ax⊗By + Ay⊗Bx)

=
1

2
(λ1µ2 + λ2µ1) x⊗ y. (A.14)

The authors are unaware of 11S)–14S) being proved previously. 11S) follows from
7S)Sa). For 10S), 12S)–14S), we employ the indexing maps r (A.2) and c (A.3), which
together with the mixed product identity 6S) yield the symmetric Kronecker product
indexing identity (A.15). Straightforward application of (A.15) yields 10S), 12S), and
13S).

(A⊗B)i,j =

arm(i),rn(j)brm(i),rn(j), rm(i) = cm(i), rn(j) = cn(j),√
2
2

(
arm(i),rn(j)brm(i),cn(j) + arm(i),cn(j)brm(i),rn(j)

)
, rm(i) = cm(i), rn(j) < cn(j),√

2
2

(
arm(i),rn(j)bcm(i),rn(j) + acm(i),rn(j)brm(i),rn(j)

)
, rm(i) < cm(i), rn(j) = cn(j),

1
2

(
arm(i),rn(j)bcm(i),cn(j) + arm(i),cn(j)bcm(i),rn(j)

+acm(i),rn(j)brm(i),cn(j) + acm(i),cn(j)brm(i),rn(j)

)
, rm(i) < cm(i), rn(j) < cn(j),

i = 1, . . . ,m, j = 1, . . . , n. (A.15)

Finally, 14S) follows from 12S) and 13S) in an analogous argument to the one
presented in the proof of Proposition A.3.2 14)). ■

Remark A.3.1 (On the Eigenstructure of the Symmetric Kronecker Prod-
uct). Equation (A.14) elucidates a key issue surrounding the eigenstructure of the
symmetric Kronecker product: In general, given eigenvectors Ax = λ1x, By = µ2y of
A,B ∈ Rn×n, the first term in the expansion Ax⊗By = λ1µ2 x⊗ y always factors in
the desired fashion. Yet, the second term Ay⊗Bx = Bx⊗Ay need not be a scalar
multiple of x⊗ y, since x is not an eigenvector of B and y is not an eigenvector of A,
in general. Naturally, this makes the eigenstructure of the symmetric Kronecker prod-
uct a significantly more complicated object of study than that of the usual Kronecker
product, cf. [156, 158, 159].

As a note, the eigenstructure results of Proposition 7S) require the symmetric
Kronecker product as a map on complex matrices (specifically, when eigenvectors are

212

complex-valued). As is the case with the standard Kronecker product, the necessary
results may developed for the complex case. Following the practice of previous works
[155–159], we avoid carrying out this process explicitly here to maintain scope.

Remark A.3.2. For a counterexample illustrating the point of Proposition A.3.3
5S), consider A = diag(1,−1), B = I2 ∈ GL(2). Then A⊗B = 1

2
A⊕A =

diag(1, 0,−1) /∈ GL(2). The key here is that A possesses eigenvalues σ(A) = {±1}
symmetric with respect to the origin (cf. Proposition A.3.6). Note further on this
point that σ(A⊕A) = {1 + 1, 1− 1,−1− 1}.
Remark A.3.3. The strengthened hypotheses for the converse direction of Proposi-
tion A.3.3 12S) in relation to Proposition A.3.2 12)) are necessary. Indeed, in the case
n = 2, consider A = e2e

T
1 ∈ R2×2. Then A,AT ̸= 0, and neither of these matrices are

diagonal, yet A⊗AT = diag(0, 1
2
, 0) is diagonal. Note that A,AT are zero on their

diagonals.

Remark A.3.4 (Lie Group Homomorphisms Φ, Φ). The Lie Group homomor-
phism Φ in Proposition A.3.3 14S) is relevant to the MEE framework developed in
Section 3.5. To maintain subsequent emphasis on the symmetric Kronecker product
algebra, we will after this section avoid labeling this map explicitly. We have included
construction of its Kronecker product counterpart Φ in Proposition A.3.2 14)) for com-
pleteness. By virtue of the bilinearity of the (symmetric) Kronecker product, these ho-
momorphisms are homogeneous of degree two. For intuition, consider the case n = 1.
Then n = 1, r1 ≡ 1 (A.2), c1 ≡ 1 (A.3), {Ei}1i=1 = {1} (A.4), andW1 = 1 (A.5). In all,
⊗ = ⊗ are both given by scalar multiplication, and Φ(a) = Φ(a) = a2 (we will thus fo-
cus on Φ). Here, Φ : GL(1) = R\{0} → GL+(1) = (0,∞). This is a group homomor-
phism: Φ(ab) = abab = aabb = Φ(a)Φ(b), which is polynomial in the global coordinate
on R\{0} ↪→ R and on (0,∞) ↪→ R, hence smooth. Note also that Φ(a) = a2 = 1
if and only if a ∈ {±1}. Finally, Φ|GL+(1) : GL+(1) = (0,∞) → GL+(1) = (0,∞) is

a Lie group isomorphism onto its image Φ|GL+(1) ((0,∞)) = Φ((0,∞)) = (0,∞) (a

connected subgroup of GL+(1) = (0,∞)); in particular, the map a 7→ a2 : (0,∞) →
(0,∞) is a diffeomorphism.

In the above, Φ|GL+(1) : GL+(1)→ GL+(1) is a Lie group isomorphism in its own

right. However, in the case n > 1, Φ|GL+(n) : GL+(n) → GL+(n) is not a Lie group
isomorphism. In the case n is even, it fails to be injective. Meanwhile, for all n > 1, Φ
fails to be onto GL+(n). For otherwise Φ would be a surjective map of constant rank,
hence a submersion by the global rank theorem [161, Theorem 4.14]; i.e., rank(Φ) = n
– a contradiction of the fact that rank(Φ) ≤ min{n, n} = n < n always. A similar
argument prevails for Φ.

Having discussed the (symmetric) Kronecker product, we now move on to the
(symmetric) Kronecker sum. We first recall the spectral result in the standard case:

Proposition A.3.4. (Eigenstructure of The Kronecker Sum
[150, Theorem 4.4.5]). For square matrices A ∈ Rn×n and B ∈ Rm×m, if σ(A) =
{λi | i = 1, . . . , n} and σ(B) = {µj | j = 1, . . . ,m}, then σ(A ⊕ B) = {λi + µj |
i = 1, . . . , n, j = 1, . . . ,m}. Furthermore, if xi ∈ Cn, yj ∈ Cm are eigenvectors
corresponding to the eigenvalues λi of A and µj of B, respectively, then xi ⊗ yj is an
eigenvector corresponding to the eigenvalue λi + µj of A⊕B.

213

While the eigenstructure of the Kronecker sum is quite intuitive, the eigenstruc-
ture of the symmetric Kronecker sum is more complicated, owing to the complica-
tions inherited from the symmetric Kronecker product (cf. Remark A.3.1). In the
simultaneously-diagonalizable case, the result of Proposition 7S)b), developed origi-
nally in [156], may be applied to the symmetric Kronecker sum as follows:

Proposition A.3.5 (Eigenstructure of The Symmetric Kronecker Sum (Si-
multaneously Diagonalizable Case)). Suppose that A,B ∈ Rn×n are simultane-
ously diagonalizable with common basis of eigenvectors {xi}ni=1. If σ(A) = {λi | i =
1, . . . , n} and σ(B) = {µj | j = 1, . . . , n} are the eigenvalues of A and B correspond-
ing to the respective eigenvectors {xi}ni=1, then
σ(A⊕B) =

{
1
2
(λi + µi + λj + µj) | 1 ≤ i ≤ j ≤ n

}
. Furthermore, xi⊗xj is an eigen-

vector corresponding to the eigenvalue 1
2
(λi + µi + λj + µj) of A⊕B.

For our purposes, Proposition A.3.5 is too restrictive. The following property will
be useful shortly:

Lemma A.3.1 (Partial Eigenstructure of The Symmetric Kronecker Sum).
Suppose that A,B ∈ Rn×n share two eigenvectors x, y ∈ Cn. If Ax = λ1x, Bx = µ1x,
Ay = λ2y, By = µ2y, then x⊗ y is an eigenvector of A⊕B corresponding to the
eigenvalue 1

2
(λ1 + µ1 + λ2 + µ2).

Proof: Follows from Proposition A.3.3 7S)Sc). ■
Lemma A.3.1 allows us to enumerate the eigenstructure of A⊕A, a special case

relevant to ALEs.

Proposition A.3.6 (Eigenstructure of The Symmetric Kronecker Sum A⊕A).
For a square matrix A ∈ Rn×n, if σ(A) = {λi | i = 1, . . . , n}, then σ(A⊕A) =
{λi + λj | 1 ≤ i ≤ j ≤ n}. Furthermore, if xi, xj ∈ Cn are eigenvectors corre-
sponding to the eigenvalues λi, λj of A, respectively, then xi⊗xj is an eigenvector
corresponding to the eigenvalue λi + λj of A⊕A.

Proof: Follows from Lemma A.3.1. ■
Having discussed eigenstructure, we move on to the key exponentiation identity

involving the (symmetric) Kronecker sum:

Proposition A.3.7 (Exponentiation of the Kronecker Sum [150]). Let A ∈
Rm×m, B ∈ Rn×n be given.

1) (A⊗ I)k = Ak ⊗ I, and (I ⊗B)k = I ⊗Bk, k ≥ 0.

2) exp(A⊕B) = exp(A)⊗ exp(B).

The analogue holds for the symmetric Kronecker sum in the case A = B:

Proposition A.3.8 (Exponentiation of the Symmetric Kronecker Sum). Let
A,B ∈ Rn×n be given.

1S) (A⊗ I)k = (I ⊗A)k is given by the following binomial expansion

(A⊗ I)k = 1

2k

k∑
i=0

(
k

i

)
Ak−i⊗Ai, k ≥ 0. (A.16)

214

2S) exp(A⊕A) = exp(A)⊗ exp(A). However, in general
exp(A⊕B) ̸= exp(A)⊗ exp(B).

Proof: Proving that (A.16) holds is a quick algebraic check following from the
mixed product identity of Proposition A.3.3 6S). 2S) follows from (A.16) after exam-
ining the partial sums of exp(A⊕A) and exp(A)⊗ exp(A). ■

Remark A.3.5. For a counterexample illustrating the point of Proposition A.3.8
2S), consider the same matrices as in Remark A.3.2: A = diag(1,−1), B = I2. Then

exp(A⊕B) = diag(e2, e, 1),

exp(A)⊗ exp(B) = diag

(
e2,

e2 + 1

2
, 1

)
. (A.17)

A.4 Symmetric Kronecker Products in Algebraic Lyapunov Equations (ALEs)

As is well-known, the Kronecker product plays an important role in characteriz-
ing existence and uniqueness of solutions to ALEs [150]. We illustrate in this sec-
tion that the symmetric Kronecker product algebra developed above also provides
this same characterization under symmetric conditions. Substantively, the algebra is
structurally identical to the standard case.

Definition A.4.1 (Algebraic Lyapunov Equation (ALE)). GivenA ∈ Rn×n, B ∈
Rn×m, consider the following algebraic Lyapunov equation (ALE)

ATX +XA+B = 0. (A.18)

Proposition A.4.1 (ALE Existence and Uniqueness of Solutions). Let σ(A) =
{λi | i = 1, . . . , n}. There exists a unique solution X ∈ Rn×m of the ALE (A.18) if
and only if λi + λj ̸= 0 for all 1 ≤ i, j ≤ n.

Proof: This proof is quite standard; see, e.g., [150, 160]. However, we include it
here to illustrate structural parallels to the analogous results developed shortly for
the symmetric Kronecker product. Applying the identities in Proposition A.3.2, we
see that (A.18) is equivalent to

vec(ATX +XA) = (A⊕ A)T vec(X) = − vec(B). (A.19)

Thus, the ALE (A.18) has a unique solution if and only if (A ⊕ A)T ∈ GL(n2).
Applying Proposition A.3.4, σ((A ⊕ A)T) = {λi + λj | i, j = 1, . . . , n}, from which
the result follows. ■

Proposition A.4.2 (ALE Existence and Uniqueness of Solutions: Stable
Systems
[136, Proposition 5.2.1]). Suppose A ∈ Rn×n is Hurwitz, and Q ∈ Sn. Consider
the ALE

ATP + PA+Q = 0. (A.20)

215

1) The unique solution is the symmetric matrix

P =

∫ ∞

0

eA
T tQeAtdt. (A.21)

2) If Q is positive (semi)definite, then P is positive (semi)definite.

3) If Q is positive semidefinite, then P is positive definite if and only if (Q1/2, A)
is detectable.

Remark A.4.1 (Symmetric Kronecker Algebra of the ALE (A.20)). Consider
the ALE (A.20). Applying Proposition A.4.2, we know P ∈ Sn. We may then apply
the symmetric Kronecker product algebra in Proposition A.3.3, yielding

svec(ATP + PA) = − svec(Q). (A.22)

Now, applying Proposition A.3.3 3S), the left-hand-side of (A.22) becomes,

2 svec(π(PA)) = 2(AT ⊗ I) svec(P) = (A⊕A)T svec(P). (A.23)

Altogether, the ALE (A.20) is equivalent to the following:

svec(ATP + PA) = (A⊕A)T svec(P) = − svec(Q). (A.24)

The reader is encouraged to compare Equations (A.19) and (A.24), which precisely
motivates our definition of the symmetric Kronecker sum ⊕ as the natural analogue
to the Kronecker sum ⊕. The structural parallels extend further: Note by Proposition
A.3.6 that σ((A⊕A)T) = {λi + λj | 1 ≤ i ≤ j ≤ n}. Thus, in the case Q ∈ Sn, the
symmetric Kronecker sum may be used to characterize existence and uniqueness of
solutions to the ALE (A.20) in an entirely similar argument to the one used in the
proof of Proposition A.4.1. Here, the square-symmetric nature of the matrix Q ∈ Sn
has enabled an effective reduction is dimensionality of the problem from n2 to n.

216

APPENDIX B

HSV MODEL AND DECENTRALIZED DESIGN FRAMEWORK

217

B.1 HSV Model

The HSV model used in this study is the standard Wang and Stengel model
developed in [5, 6] based on NASA Langley’s winged-cone tabular aeropropulsive data
[121]. This model has served as a standard testbed for HSV control development
and has since been used in seminal classically-based works such as [162, 163], and
simplified variants of it have been used in state-of-the-art RL-based control works
such as [123–125]. The model presented here is identical to the original [5, 6], with
two exceptions: First, we add an elevator-lift increment coefficient CL,δE (B.5) from
data in [121] to capture nonminimum phase behavior. Second, we remove angle of
attack (AOA) dependence from the thrust coefficient CT (B.11), as thrust coefficient
AOA dependencies were considered negligible in the original propulsion model [121,
pp. 12], and it was removed in subsequent studies [162, 163]. Consider the following
HSV longitudinal model

V̇ =
T cosα−D

m
− µ sin γ

r2
,

γ̇ =
L+ T sinα

mV
− (µ− V 2r) cos γ

V r2
,

θ̇ = q,

q̇ =
M
Iyy

,

ḣ = V sin γ, (B.1)

where V is the vehicle airspeed, γ is the flightpath angle (FPA), α is the angle of
attack (AOA), θ ≜ α+γ is the pitch attitude, q is the pitch rate, and h is the vehicle
altitude. Here r(h) = h + RE is the total distance from the earth’s center to the
vehicle, RE = 20, 903, 500 ft is the radius of the earth, and µ = GmE = 1.39 × 1016

ft3/s2, where G is Newton’s gravitational constant and mE is the mass of the earth.
L,D, T,M are the lift, drag, thrust, and pitching moment, respectively, and are given
by

L =
1

2
ρV 2SCL, D =

1

2
ρV 2SCD, T =

1

2
ρV 2SCT , M =

1

2
ρV 2ScCM, (B.2)

where ρ is the local air density, S = 3603 ft2 is the wing planform area, and c = 80 ft
is the mean aerodynamic chord of the wing. Air density ρ and speed of sound a are

modeled as functions of altitude h by ρ = 0.00238e−
h

24,000 , a = 8.99× 10−9h2− 9.16×
10−4h+ 996, and Mach number M ≜ V

a
. CL, CD, CM, and CT are given by

CL = CL,α + CL,δE , (B.3)

CL,α = νL α

(
0.493 +

1.91

M

)
, (B.4)

CL,δE =
(
−0.2356α2 − 0.004518α− 0.02913

)
δE, (B.5)

CD = νD 0.0082
(
171α2 + 1.15α + 1

) (
0.0012M2 − 0.054M + 1

)
, (B.6)

218

CM = CM,α + CM,q + CM,δE , (B.7)

CM,α = νM 10−4
(
0.06− e−

M
3

) (
−6565α2 + 6875α + 1

)
, (B.8)

CM,q =

(
qc

2V

)
(−0.025M + 1.37)

(
−6.83α2 + 0.303α− 0.23

)
, (B.9)

CM,δE = 0.0292(δE − α), (B.10)

CT =

{
0.0105

(
1 + 17

M

)
(1 + 0.15)δT , δT < 1

0.0105
(
1 + 17

M

)
(1 + 0.15δT), δT ≥ 1,

(B.11)

where δE is the elevator deflection, δT is the throttle setting, and νL, νD, νM ∈ R
are unknown parameters (nominally 1) representing modeling error in the basic lift
increment coefficient CL,α (B.4), drag coefficient CD (B.6), and basic pitch moment
coefficient CM,α (B.8), respectively. The system (B.1) is fifth-order, with states x =
[V, γ, θ, q, h]⊺. The controls are u = [δT , δE]

⊺, and we examine the outputs y =
[V, γ]⊺. As in [5, 6], we study a steady level flight cruise condition qe = 0, γe = 0◦, at
Me = 15, he = 110, 000 ft, which corresponds to an equilibrium airspeed Ve = 15, 060
ft/s. At this flight condition, the vehicle is trimmed at αe = 1.7704◦ by the controls
δT,e = 0.1756 (Te = 4.4966× 104 lb), δE,e = −0.3947◦.
HSV Dynamical Challenges: Instability, Nonminimum Phase. The HSV
model studied here encompasses a variety of dynamical challenges facing real-world
flight control designers. Firstly, the HSV is open-loop unstable. Linearization of the
model about the equilibrium flight condition (xe, ue) has open-loop eigenvalues at
s = −0.8291, 0.7165 (short-period modes), s = −0.00001± 0.0276j (phugoid modes),
and s = 0.0005 (altitude mode). The dominant unstable short-period right half plane
pole (RHPP) at s = 0.7165 is associated with the vehicle pitch-up instability (long
vehicle forebody, aftward-set center of mass). As is commonplace with tail-controlled
aircraft, the elevator-FPA map is nonminimum phase [164]. The linearized plant
has transmission zeros at s = 8.3938,−8.4620, the right half plane zero (RHPZ) at
s = 8.3938 being attributable to the elevator-FPA map (negative lift increment in
response to pitch-up elevator deflections).

B.2 Analysis of Static and Dynamic Properties versus Modeling Error

Static Properties. Fig. B.1 plots the trim controls ue (i.e., trim throttle setting
δT,e and trim elevator setting δE,e) for 0%–25% modeling errors in lift/drag νL/νD,
lift/pitch moment νL/νM, and drag/pitch moment νD/νM.

Intuitively, the top row of Fig. B.1 shows that the trim throttle setting δT,e is
most heavily influenced by increasing drag coefficient CD caused by increases in the
modeling error parameter νD 1→ 1.25, which generally causes increases from ≈ 0.18
nominally to ≈ 0.24 at 25% modeling error. Trim throttle δT,e varies the second most
to decreasing lift coefficient CL caused by decreases in the modeling error parameter νL
1→ 0.75 (qualitatively: Decreased lift efficiency ⇒ increased trim AOA required ⇒
increased drag at trim⇒ increased trim throttle δT,e required). Finally, trim throttle
varies little with modeling errors in pitching moment coefficient νM, an intuitive
result.

Meanwhile, the bottom row of Fig. B.1 shows that the trim elevator setting

219

δE,e is most heavily influenced by increasing pitch moment coefficient CM caused
by increases in the modeling error parameter νM 1 → 1.25, which generally causes
decreases from ≈ −0.4◦ nominally to ≈ −1.0◦ at 25% modeling error. Trim elevator
δE,e varies the second most to decreasing lift coefficient CL caused by decreases in the
modeling error νL 1→ 0.75 (qualitatively: decreased lift efficiency ⇒ increased trim
AOA required ⇒ increased pitch-up moment at trim ⇒ more negative trim elevator
deflection δT,e required). Finally, trim throttle varies little with modeling errors in
drag moment coefficient νD, an intuitive result.

Figure B.1: Trim Controls ue Versus Modeling Error ν. First Row: Trim Throttle
Setting δT,e Versus ν. Second Row: Trim Elevator Setting δE,e Versus ν. First
Column: Lift/Drag νL/νD Sweep. Second Column: Lift/Pitch Moment νL/νM Sweep.
Third Column: Drag/Pitch Moment νD/νM Sweep.

Dynamic Properties. Fig. B.2 plots dynamic properties of the HSV model for
the same sweeps of modeling error described in Fig. B.1, including the HSV right
half plane pole (RHPP) location, right half plane zero (RHPZ) location, and the
RHPZ/RHPP ratio (or simply the Z/P ratio). As a note, in this study we specifically
chose the direction of the respective perturbation (i.e., ν > 1 or ν < 1) as the
one which decreases the system Z/P ratio, thereby imposing a more difficult control
problem on the proposed method.

As can be seen from the top row of Fig. B.2, the RHPP location is most heavily
dependent on increasing pitch moment coefficient CM caused by increases in the mod-
eling error parameter νM 1→ 1.25, which almost doubles the speed of the instability
from ≈ 0.7 nominally to ≈ 1.2 at 25% modeling error. This result is intuitive, as an
increased pitch moment coefficient will lead to larger pitching moments and hence a
faster pitch-up instability. The RHPP location varies the second most to decreasing
lift coefficient CL caused by decreases in the modeling error νL 1 → 0.75 (qualita-

220

tively: decreased lift efficiency⇒ increased trim AOA required⇒ increased pitch-up
moment sensitivity at trim⇒ faster instability). Finally, the RHPP varies little with
modeling errors in drag moment coefficient νD, an intuitive result. Meanwhile, the
middle row of Fig. B.2 shows that the RHPZ location is most heavily influenced by
modeling errors in lift coefficient νL (decreasing from ≈ 8.5 nominally to ≈ 7.25 at
25% modeling error) and by comparison varies relatively little with respect to model-
ing errors in drag coefficient νD and pitch moment coefficient νM; and intuitive result
since the nonminimum phase behavior of the tail-controlled HSV model occurs in the
elevator-FPA map.

Bringing this together, the bottom row of Fig. B.2 shows that the Z/P ratio is
most heavily impacted by the near-doubling of the RHPP location due to increasing
pitch moment modeling error νM 1 → 1.25 (which causes a near-halving of the Z/P
ratio from ≈ 12 nominally to a much more formidable ≈ 6 at 25% modeling error).
Comparatively speaking, the variations in the Z/P ratio caused by lift coefficient
modeling error are less pronounced (decreasing from ≈ 11.8 nominally to ≈ 10.6 at
25% modeling error). This decrease is caused primarily by the decreasing RHPZ
location, which was observed to be less severe than the RHPP variations due to pitch
moment error νM. Finally, since the RHPP and RHPZ are both little affected by
drag moment coefficient modeling error νD, the Z/P ratio varies little with respect to
this error, as well.

221

Figure B.2: Dynamic Properties Versus Modeling Error ν. First Row: RHPP Versus
ν. Second Row: RHPZ Versus ν. Third Row: Z/P Ratio Versus ν. First Column:
Lift/Drag νL/νD Sweep. Second Column: Lift/Pitch Moment νL/νM Sweep. Third
Column: Drag/Pitch Moment νD/νM Sweep.

B.3 HSV Decentralized Hierarchical Inner-Outer Loop Control Framework

This work implements a decentralized design methodology structurally-identical
to the framework [132] developed for HSVs and extensively tested on HSVs. Thus,
our RL-based framework inherits significant advantages from classically-based perfor-
mance guarantees. Here, controllers are designed separately for the weakly-coupled
velocity subsystem (associated with the airspeed V and throttle control δT) and ro-
tational subsystem (associated with the FPA γ, attitude θ, q, and elevator control
δE). As in [132], for controllability reasons we do not feed back altitude h in the
control design, though altitude is still included in the nonlinear simulation. In order
to achieve zero steady-state error to step reference commands, we augment the plant
at the output with the integrator bank z =

∫
y dτ = [zV , zγ]

⊺ =
[∫
V dτ,

∫
γ dτ

]⊺
.

For dEIRL, the state/control vectors are thus partitioned as x1 = [zV , V]⊺, u1 = δT
(n1 = 2, m1 = 1) and x2 = [zγ, γ, θ, q]

⊺, u2 = δE (n2 = 4, m2 = 1). Applying the LQ

222

servo design framework [11, 136] to each of the loops yields an LQ-optimal decentral-
ized controller K = diag(K∗

1 , K
∗
2). We have depicted the decentralized hierarchical

feedback structure [132] in Fig. B.3. Here, xr = [θ, q]T comprises the inner-loop
feedback states, and the inner-loop controller Kin and outer-loop controller Kout are
given by

Kin(s) =

[
0 0
gizi gi

]
, Kout(s) =

[
KV (s) 0

0 Kγ(s)

]
=

[
g1(s+z1)

s
0

0 g2(s+z2)
s

]
.

(B.12)

This results in the following hierarchical control framework [132]:

� Velocity Loop j = 1: Single-Loop PI Control. Control of the velocity
subsystem will consist of a single PI controller KV (B.12). The velocity loop
will be lower-bandwidth due to the natural low-bandwidth nature of the velocity
loop j = 1.

� Flightpath Loop j = 2: Hierarchical PD-Inner (Attitude), PI-Outer
(FPA) Loop Control. An inner-loop PD controller Kin (B.12) will be used
for the pitch subsystem xr = [θ, q]T . Fundamentally, this controller takes ad-
vantage of 1) the naturally high bandwidth of the elevator-pitch map, and 2)
its minimum phase dynamics in order to provide sufficient closed-loop band-
width to stabilize the natural pitch-up instability. The high bandwidth of the
pitch inner loop will also facilitate design of an outer-loop PI FPA controller Kγ

(B.12). Having stabilized the high-bandwidth inner pitch loop, this outer FPA
loop can be sufficiently low-bandwidth to avoid excitation of the nonminimum
phase elevator-FPA dynamics.

As in [132], reference command pre-filters are also introduced: W1 = z1
s+z1

for

velocity commands, W2 =
z2
s+z2

for FPA commands (not pictured in Fig. B.3). After
simple block diagram algebra, it is immediate that the dEIRL control structure K =
diag(K∗

1 , K
∗
2) is identical to (B.12) with the identification K∗

1 =
[
g1z1 g1

]
, K∗

2 =[
g2z2 g2 gizi gi

]
. It is thus these optimal LQ controller parameters which the

proposed dEIRL method will learn online.

-
r f

−

e
- Kout

-
uo f -

uf - ?

di
up

f?ni

f?
no

P
-

yp

xr

-
yf?do

��
eiui

Kin

6−

�

6

Figure B.3: Hierarchical Inner-Outer Loop Feedback Structure.

Associated with the feedback system in Fig. B.3, we define the following closed-
loop maps. The sensitivity at the error signal is defined as Se ≜ Tr→e, the comple-
mentary sensitivity as Te ≜ Tr→y. The sensitivity at the control signal (plant input)

is defined as Su ≜ Tdi→up , the complementary sensitivity as Tu ≜ Tdi→y.

223

Specification B.3.1 (Closed-Loop Design Specifications). A design is termed
“acceptable” when it meets the following:

� 0% steady-state error to step reference commands r.

� 0% steady-state error to step input disturbances di.

� Velocity: 1% settling time ts,V,1% ≤ 75 s, overshootMp,V ≤ 5% throttle δT ≤ 0.4
for rV ≤ 100 ft/s.

� FPA: 1% settling time ts,γ,1% ≤ 10 s, overshoot Mp,γ ≤ 5%, elevator |δE| ≤ 5◦

for rγ ≤ 1 deg.

� Peak Closed-Loop Maps: ∥Se∥H∞ , ∥Te∥H∞ , ∥Su∥H∞ , ∥Tu∥H∞ ≤ 6 dB.

224

APPENDIX C

PENDULUM MODEL AND DESIGN FRAMEWORK

225

C.1 Pendulum Model

We consider the identical pendulum model used in the cFVI evaluations [7, 8] for
this work, which has the following equations of motion

θ̇ = ω,

ω̇ =
mgL

2I
sin θ +

1

I
τ, (C.1)

where θ is the pendulum angle (measured zero pointing upward, positive counter-
clockwise), ω is the pendulum angular velocity, and τ is the torque applied to the
pendulum base. The numerical values of all model constants are chosen identical to
the cFVI evaluations [7, 8] and are available in Table C.1.

The system (C.1) is second-order, with states x = [θ, ω]T and control u = τ . We
examine the output y = θ; i.e., control of the pendulum angle θ. We examine the
upright pendulum equilibrium xe = [θe, ωe]

T = [0 rad, 0 rad/s]T . At this upright
condition, the pendulum is trimmed by the control τe = 0 N-m.

Table C.1: Pendulum Model Parameters

Definition Symbol Value
Pendulum length L L0 = 1 m (nominal)
Pendulum mass m 1 kg

Gravitational field constant g 9.81 m/s2

Pendulum moment of inertia I 1
3
mL2

Remark C.1.1 (Pendulum Dynamical Structure). The pendulum length L is a
central physical parameter in the dynamics (C.1). Firstly, increasing the pendulum
length L increases its rotational inertia I in the square of the length; resultantly, (C.1)
shows that the torque τ required to achieve the same angular acceleration increases
with the square of the pendulum length L. The pendulum length L also determines
the severity of the upright pendulum instability. Linearization of (C.1) about the
upright equilibrium yields[

θ̇
ω̇

]
=

[
0 1

mgL
2I

0

] [
θ
ω

]
+

[
0
1
I

]
τ. (C.2)

Examination the linearization (C.2) shows that the system has modes

s = ±
√

3
2

√
g
L
. (C.3)

The real, imaginary-axis-symmetric pair of poles (C.3) is a common feature of in-
verted pendulum systems. We notice that the bandwidth of these modes are inversely
proportional to the square root of the pendulum length L; i.e., a shorter pendulum
increases the instability and system bandwidth. A longer pendulum reduces the in-
stability, but it also reduces system bandwidth. Combined with the above discussion

226

of the reduced control effectiveness associated with increased pendulum length, these
first-principles analyses have significant implications for practical robotics design.
Generally speaking, taller robotic systems with inverted pendulum instabilities will
require significantly more actuator effort to achieve control objectives than shorter
systems.

In the studies conducted in this work, we will focus on how modeling errors in
the pendulum length L affect the pendulum dynamics and learning performance.
Specifically, we study modeling errors of the form

L = ν L0, (C.4)

where L0 ∈ R is a nominal value of the pendulum length, and ν ∈ R is the modeling
error parameter (nominally 1). As ν > 1 increases, L > L0 increases, and our prior
discussion shows that the system becomes more sluggish and requires greater control
effort. Table C.2 shows the inverted pendulum instability and control effectiveness
constant 1

I
as a function of the modeling error ν (C.4). As predicted in (C.3), the

system instability reduces with increasing pendulum length. Control effectiveness
is highly sensitive to changes in pendulum length, decreasing by 17% for a 10%
modeling error ν = 1.1 and by 36% for a 25% modeling error ν = 1.25. Increases in
the pendulum length will thus result in degraded closed-loop performance.

Table C.2: Pendulum Instability and Control Effectiveness Versus Modeling Error
Parameter ν (C.4)

ν (C.4) Unstable Mode Location (C.3) Control Effectiveness 1
I

1 (nom) 3.8360 3
1.1 3.6575 2.4793
1.25 3.4310 1.9200

C.2 Pendulum Control Framework

The pendulum system (C.1) is fundamentally a single-loop system j = 1. Thus,
we do not employ the multi-loop decentralization techniques of dEIRL for this sys-
tem. We do wish to highlight the great dynamical flexibility of dEIRL discussed in
Section 3.1: dEIRL generalizes to any integer number of loops j ∈ N, and this in-
cludes the single-loop case j = 1. The optimal LQ controller K∗

1 is a function of the
modeling error ν, so when necessary we will show explicit dependence by the notation
K∗

1(ν). For the model parameters in Table C.1 and cost structure selections (5.19),
the pendulum has the following optimal LQ controllers

K∗
1(1) = [10.0098 2.6217] , (C.5)

K∗
1(1.1) = [10.9733 3.0086] , (C.6)

K∗
1(1.25) = [12.4235 3.6251] , (C.7)

As can be seen, the optimal controller K∗
1(ν) is heavily dependent on the modeling

error ν (C.4).

227

APPENDIX D

JET AIRCRAFT MODEL AND DECENTRALIZED DESIGN FRAMEWORK

228

D.1 Jet Aircraft Model

Consider the following T-tailed small jet airplane model [122, 165] V̇
γ̇
q̇
α̇

 =

−DV −g cosαe 0 0
LV

Ve
0 0 Lα

Ve
0 0 Mq Mα

−LV

Ve
0 1 −Lα

Ve

 V
γ
q
α

+

 TδT 0
0 0
0 MδE
0 0

[
δT
δE

]
, (D.1)

where V is the vehicle airspeed, γ is the flightpath angle (FPA), q is the pitch rate,
and α is the vehicle angle of attack (AOA). As is standard in aerospace circles, here a
subscript denotes a partial derivative with respect to the particular variable (e.g., DV

denotes the dimensional aerodynamic derivative of drag D with respect to airspeed
V). For definitions of the parameters and their numerical values, see Table D.1. This
jet airplane model is a central example of the standard flight control text [122], and
it was constructed from aerodynamic data obtained by full-scale wind tunnel tests
conducted by NASA [165].

The jet (D.1) is fourth-order, with states x = [V, γ, q, α]T and controls u =

[δT , δE]
T . We examine a level steady flight condition γe = 0, qe = 0 at a cruising

airspeed Ve = 100 m/s and altitude he = 1000 m (Mach Me ≈ 0.3). At this flight
condition, the vehicle is trimmed at an angle of attack αe = 3.4006 deg by the controls
ue = [δT,e, δE,e]

T = [0.2135, 0 deg]T .

Table D.1: Jet Aircraft Model Parameters

Definition Symbol Value
Lift/AOA aero deriv Lα Lα0 = 127.9 N/rad (nominal)

Lift/airspeed aero deriv LV 0.190 N/(m/s)
Drag/airspeed aero deriv DV 1.850 N/(m/s)
Moment/AOA aero deriv Mα -798.56 N-m/rad

Moment/pitch rate aero deriv Mq -127.94 N-m/(rad/s)
Thrust/throttle setting control deriv TδT 4.6645 N/-

Moment/elevator control deriv MδE -9.069 N-m/rad
Gravitational field constant g 9.81 m/s2

Remark D.1.1 (Jet Aircraft Minimum Phase Behavior). We note in (D.1)
that the (2, 2) element of the input gain matrix B is assumed zero; i.e., elevator
deflections δE do not directly impact the FPA derivative γ̇. As a result, the jet
model (D.1) is minimum phase. However, in reality tail-controlled aircraft feature
lift/elevator parasitic couplings in this location which cause them to be nonminimum
phase [141, 166]. Nevertheless, the assumption made in the development of this model
[122] is quite standard in modeling for flight control design [5, 6, 167].

Remark D.1.2 (Jet Aircraft Decentralized Dynamical Structure). The jet
aircraft studied here is a multi-input system which naturally lends itself to a decen-
tralized dynamical structure. The throttle δT is associated with the airspeed V in

229

the translational loop j = 1, and the elevator δE is associated with the FPA γ and
attitude q, α in the rotational loop j = 2. Indeed, this decentralized structure is
general to aviation systems [122], even high-performance hypersonic vehicles (HSVs)
[5, 6, 132–135].

The lift/AOA derivative Lα determines the lift efficiency of the aircraft and is
hence a central aerodynamic parameter in any aviation system. As with any aero-
dynamic modeling process, it is also subject to large modeling errors and sensitivity
to changes in flight condition [122, 142]. Thus, in this work we study the effects of
modeling error ν on the lift/AOA dimensional aerodynamic derivative as

Lα = ν Lα0, (D.2)

where Lα0 ∈ R is the nominal value of the lift/AOA aerodynamic derivative, and
ν ∈ R is the modeling error parameter (nominally 1). As ν < 1 decreases, the vehicle
exhibits decreased lift efficiency, leading to a more difficult control problem [122]. The
jet aircraft (D.1) has the following characteristic equation and natural modes

ϕ(s) =
(
s2 + 2ζphs+ ωnph

) (
s2 + 2ζsps+ ωnsp

)
, (D.3)

sph = −ζphωnph
± jωnph

√
1− ζ2ph, ssp = −ζspωnsp ± jωnsp

√
1− ζ2sp. (D.4)

The first pair of modes sph (D.4) is the phugoid mode, associated with the trans-
lational dynamics via exchanges in kinetic and potential energy (i.e., with coupled
oscillations between the airspeed V and FPA γ). They are generally slow and lightly
damped. The second pair ssp (D.4) is called the short-period mode and is associated
with the rotational dynamics via exchanges between rotational energy and aeroelastic
energy (i.e., with coupled oscillations between the pitch rate q and AOA α). If the
vehicle is designed so the center of gravity (c.g.) lies forward the center of pressure
(c.p.), they are generally fast, stable, and lightly damped (as is the case here). If
the c.p. lies forward the c.g., they are generally real, imaginary-axis symmetric, one
stable and the other unstable.

We have plotted these modes as a function of the modeling error paramer ν (D.2)
in Table D.2. As can be seen, the damping of both modes decreases with decreased
lift efficiency ν < 1, and the short-period modes get closer to the imaginary axis; i.e.,
less stable.

Table D.2: Jet Aircraft Phugoid and Short-Period Modes Versus Modeling Error
Parameter ν (D.2)

ν (D.2) sph ζph ωnph
ssp ζsp ωnsp

1 (nom) −0.00849± j0.119 0.0709 0.120 −1.28± j2.83 0.412 3.10
0.9 −0.00853± j0.120 0.0708 0.121 −1.22± j2.83 0.395 3.08
0.75 −0.00863± j0.120 0.0705 0.122 −1.12± j2.82 0.369 3.04

230

D.2 Jet Aircraft Decentralized Control Framework

This work implements a decentralized design methodology, wherein controllers are
designed separately for the weakly-coupled translational subsystem (associated with
the airspeed V and throttle setting δT) and rotational subsystem (associated with the
FPA γ, attitude q, α, and elevator δE). In order to achieve zero steady-state error
to step reference commands, we augment the plant at the output with the integrator

bank z =
∫
y dτ = [zV , zγ]

T =
[∫
V dτ,

∫
γ dτ

]T
. For dEIRL, the state/control

vectors are thus partitioned as x1 = [zV , V]T , u1 = δT (n1 = 2, m1 = 1) and x2 =

[zγ, γ, q, α]
T , u2 = δE (n2 = 4, m2 = 1). Applying the LQ servo design framework

[136] to each of the loops yields a proportional-integral (PI) speed controller K∗
1 and a

PI/PD FPA/attitude inner-outer loop controllerK∗
2 . It is these optimal LQ controller

parameters which dEIRL will learn online. In general, the optimal LQ controllers K∗
j

(j = 1, 2) are functions of the modeling error ν, so when necessary we will show
explicit dependence by the notation K∗

j (ν). For the model parameters in Table D.1
and cost structure selections (5.20), the jet aircraft has the following optimal LQ
controllers

K∗
1(ν) = [0.0316 0.1496] , (D.5)

K∗
2(1) = [−0.7071 −1.7089 −0.1960 −0.4251] , (D.6)

K∗
2(0.9) = [−0.7071 −1.7403 −0.1858 −0.3944] , (D.7)

K∗
2(0.75) = [−0.7071 −1.8014 −0.1687 −0.3450] . (D.8)

As can be seen from (D.5), the optimal controller K∗
1 in the translational loop j = 1

is independent of the modeling error ν. This is because the lift/AOA derivative Lα
enters dynamically into the FPA γ and AOA α equations in (D.1), so the modeling
error only affects the dynamics in the rotational loop j = 2.

231

APPENDIX E

DIFFERENTIAL DRIVE MOBILE ROBOT (DDMR) MODEL AND
DECENTRALIZED DESIGN FRAMEWORK

232

E.1 DDMR Model

Consider the following DDMR model [43, 44, 138, 139]

V̇ = −2β
m̂r2

V + mcd
m̂
ω2 + kt

m̂kgr
iar +

kt
m̂kgr

ial ,

ω̇ = − βd2w
2Îr2

ω − mcd

Î
ωV + dwkt

2Îkgr
iar − dwkt

2Îkgr
ial ,

i̇ar = −kgkb
lar

V − kgkbdw
2lar

ω − ra
la
iar +

1
2la
ea +

1
2la

∆ea
i̇al = −kgkb

lar
V + kgkbdw

2lar
ω − ra

la
ial +

1
2la
ea − 1

2la
∆ea

(E.1)

where V is the robot speed (measured positive forward), ω is the robot angular
velocity (measured positive counterclockwise), and iar , ial are the right and left DC
motor armature currents, respectively. We provide definitions and numerical values of
all model constants in Table E.1. It should be noted that these parameter selections
are standard and were obtained empirically from actual hardware [139].

The system (E.1) is fourth-order, with states x = [V, ω, iar , ial]
T . The controls

are u = [ea, ∆ea]
T , where ea =

ea,r+ea,l
2

is the average of the armature voltages ea,r, ea,l
applied to the right and left wheels, respectively, and ∆ea = ea,r−ea,l is the difference
of the armature voltages. We examine the outputs y = [V, ω]T ; i.e., control of the
DDMR speed V and angular velocity ω. We examine the equilibrium forward cruise
condition xe = [Ve, ωe, iar,e, ial,e]

T = [2 m/s, 0 rad/s, 0.68A, 0.68A]T . At this cruise
condition, the DDMR is trimmed by the controls ea,e = 3.9115 V, ∆ea,e = 0 V.

Remark E.1.1 (DDMR Dynamical Structure). Assuming that the motor arma-
ture inductance la ≈ 0 (which has proven a reasonable approximation – if included,
the motor dynamics have poles on the order of s = −106), then the DDMR model
(E.1) reduces to [139]

V̇ =
−2β
m̂r2

V +
mcd

m̂
ω2 +

2kt
m̂kgrar

ea,

ω̇ = − βd
2
w

2Îr2
ω − mcd

Î
ωV +

dwkt

2Îkgrar
∆ea. (E.2)

We will use this model for purposes of first-principles analysis here. We also use it as
the design model for the methods studied to improve numerics. Examination of the
DDMR model (E.2) quickly reveals a natural dynamical partition of the form (3.21).
The translational loop j = 1 consists of the speed state V and is associated with the
average voltage control ea. The rotational loop j = 2 consists of the angular velocity
state ω and is associated with the differential voltage control ∆ea.

The (signed) distance d that the vehicle center of gravity (c.g.) lies forward the
wheelbase is a central physical parameter in the dynamics of the DDMR (E.2). Firstly,
the c.g./wheelbase separation d determines the strength of the coupling terms in (E.2)
(i.e., the second term in each state equation). Indeed, (E.2) shows that when d = 0,
the translational and rotational dynamics of the DDMR decouple – why placing the
robot c.g. on the wheel axis is a common design choice in the DDMR community

233

Table E.1: DDMR Model Parameters

Definition Symbol Value
c.g./wheelbase separation d d0 = -6 cm (nominal)
Mass of robot chassis mc 3.963 kg
Mass of single wheel mw 0.659 kg

Wheel motor moment of inertia Iw 570 µkg-m2

Total vehicle moment of inertia I 0.224 kg-m2

Radius of wheels r 3.85 cm
Length of robot chassis l 44 cm
Width of robot chassis w 34 cm

Distance between wheels at midpoint dw 34 cm
Motor armature inductance la 13.2 µH
Motor armature resistance ra 3.01 Ohm
Motor gear up/down ratio kg 1
Motor back EMF constant kb 0.075 V/(rad/s)
Motor torque constant kt 0.075 (N-m)/A
Speed damping constant β 7.4 µN-m-s

Total vehicle mass m mc + 2mw

Effective mass m̂ m+ 2Iw
r2

Effective moment of inertia Î I + d2wIw
2r2

Effective damping constant β β + ktkb
ra

[43, 44, 139].
The c.g./wheelbase separation d also determines the stability properties of the

DDMR. Loosely speaking, placing the vehicle c.g. forward the wheelbase d >> 0
renders the rotational dynamics ω stable: Perturbations in the robot’s rotational pose
make the friction forces acting on the wheelbase induce torques on the vehicle which
counter the direction of the perturbation. Conversely, placing the wheelbase forward
the c.g. d << 0 results in directional instability for similar reasons. This stability
behavior is entirely analogous to the longitudinal dynamics of aircraft, wherein pitch-
up instabilities occur if and only if the vehicle center of pressure (playing the analogous
role of the wheelbase as the center of forces acting on the vehicle) lies forward the
c.g. [122] (see Appendix D).

More concretely, given an equilibrium xe = [Ve, ωe]
T of (E.2), the following con-

trols ue = [ea,e, ∆ea,e]
T achieve equilibrium

ea,e = −
m̂kgrar

2kt

(
− 2β

m̂r2
Ve +

mcd

m̂
ω2
e

)
,

∆ea,e =
2Îkgrar

dwkt

(
mcd

Î
Veωe +

βd2w

2Îr2
ωe

)
, (E.3)

234

and linearization about the equilibrium (xe, ue) yields[
V̇
ω̇

]
=

[
−2β
m̂r2

2mcdωe

m̂
−mcdωe

Î

(
−mcdVe

Î
− βd2w

2Îr2

)][
V
ω

]
+

[
2kt

m̂kgrar
0

0 dwkt
2Îkgrar

][
ea
∆ea

]
. (E.4)

Note from examination of the linearization (E.4) that, reaffirming our insights of the
nonlinear dynamics (E.2), the DDMR decouples when d = 0; i.e., when the vehicle
c.g. is placed on the wheelbase. Decoupling of the linearized model also occurs when
ωe = 0 (studied here), in which case examination (E.4) shows that the DDMR has
open-loop eigenvalues at s = sV , sω, where

sV ≜
−2β
m̂r2

, (E.5)

sω ≜ −
(
mcVe

Î
d+

βd2w

2Îr2

)
. (E.6)

The first mode sV (E.5) is a stable speed damping mode arising from wheel friction and
the electro-mechanical damping characteristics of the motors. The second mode sω
(E.6) determines the stability properties of the rotational dynamics. (E.6) shows that
the following critical value dMS of the c.g./wheelbase separation results in marginal
stability:

dMS = − βd2w
2mcVer2

. (E.7)

For d > dMS, the DDMR is stable. For d < dMS, the DDMR is unstable. Note in the
case of zero speed/motor damping β = 0 that dMS = 0; i.e., the DDMR is stable if
and only the vehicle c.g. lies forward the wheel axis d > 0 – numerically reaffirming
the physical intuitions discussed above. More generally, (E.6) shows that greater
translational damping β increases the stability of the DDMR rotational dynamics.
For the DDMR parameters studied (cf. Table E.1), dMS = −0.92 cm, so the nominal
c.g./wheelbase separation d0 = −6 cm results in a directionally-unstable system.

In the studies conducted in this work, we will focus on how modeling errors in the
c.g./wheelbase separation d affect the DDMR dynamics and learning performance.
Specifically, we study modeling errors of the form

d = ν d0, (E.8)

where d0 ∈ R is a nominal value of the c.g./wheelbase separation, and ν ∈ R is the
modeling error parameter (nominally 1). As ν > 1 increases, d < d0 < dMS < 0
decreases, and (E.6) shows that the system becomes more unstable. Table E.2 shows
the effect of DDMR eigenvalues as a function of the modeling error parameter ν
(E.8). The DDMR directional instability is highly sensitive to modeling errors ν in
the c.g./wheelbase separation d. As predicted by (E.5), the speed mode sV is stable
and independent of the c.g/wheelbase separation d.

235

Table E.2: DDMR Eigenvalues Versus Modeling Error Parameter ν (E.8)

ν (E.8) Speed Mode sV (E.5) Angular Velocity Mode sω (E.6)
1 (nom) -0.4184 1.6343

1.1 -0.4184 1.8274
1.25 -0.4184 2.1171

E.2 DDMR Decentralized Control Framework

This work implements a decentralized design methodology, wherein controllers are
designed separately for the weakly-coupled translational subsystem (associated with
the speed V and average voltage control ea) and rotational subsystem (associated
with the angular velocity ω and differential voltage control ∆ea). In order to achieve
zero steady-state error to step reference commands, we augment the plant at the

output with the integrator bank z =
∫
y dτ = [zV , zω]

T =
[∫
V dτ,

∫
ω dτ

]T
. For

dEIRL, the state/control vectors are thus partitioned as x1 = [zV , V]T , u1 = ea
(n1 = 2, m1 = 1) and x2 = [zω, ω]

T , u2 = ∆ea (n2 = 2, m2 = 1). Applying the LQ
servo design framework [136] to each of the loops yields a proportional-integral (PI)
speed controller K∗

1 and a PI angular velocity controller K∗
2 . It is these optimal LQ

controller parameters which dEIRL will learn online. For the model parameters in
Table E.1 and cost structure selections (5.21), the DDMR has the following optimal
LQ controllers

K∗
1(ν) = [3.6515 5.2062] , (E.9)

K∗
2(1) = [5.0000 10.2344] , (E.10)

K∗
2(1.1) = [5.0000 10.9164] , (E.11)

K∗
2(1.25) = [5.0000 11.9718] . (E.12)

As can be seen from (E.9), the optimal controller K∗
1 in the translational loop j = 1

is independent of the modeling error ν. This is immediately seen from examination
of the linearized dynamics (E.4), wherein we observe that the diagonal terms in A,B
pertaining to the speed V are independent of the c.g./wheelbase separation d, hence of
the modeling error ν. On the other hand, the optimal controller K∗

2 in the rotational
loop j = 2 is heavily dependent on the modeling error ν.

236

	LIST OF TABLES
	LIST OF FIGURES
	1
	2
	3
	4
	5
	6
	7
	REFERENCES
	A
	B
	C
	D
	E

