
Neuron-based Digital and Mixed-signal Circuit Design:

From ASIC to SIMD Processors

by

Ankit Wagle

A Dissertation Presented in Partial Fulfillment
of the Requirements for the Degree

Doctor of Philosophy

Approved February 2023 by the
Graduate Supervisory Committee:

Sarma Vrudhula, Chair
Sunil Khatri

Aviral Shrivastava
Jae-Sun Seo
Fengbo Ren

ARIZONA STATE UNIVERSITY

May 2023

ABSTRACT

Among the many challenges facing circuit designers in deep sub-micron technologies,

power, performance, area (PPA) and process variations are perhaps the most critical.

Since existing strategies for reducing power and boosting the performance of the cir-

cuit designs have already matured to saturation, it is necessary to explore alternate

unconventional strategies. This investigation focuses on using perceptrons to enhance

PPA in digital circuits and starts by constructing the perceptron using a combina-

tion of complementary metal-oxide-semiconductor (CMOS) and flash technology. The

use of flash enables the perceptron to have a variable delay, and functionality, making

them robust to process, voltage, and temperature variations. By replacing parts of an

application-specific integrated circuit (ASIC) with these perceptrons, improvements

of up to 30% in the area and 20% in power can be achieved without affecting per-

formance. Furthermore, the ability to vary the delay of a perceptron enables circuit

designers to fix setup and hold-time violations post-fabrication, while reprogram-

ming the functionality enables the obfuscation of the circuits. The study extends to

field-programmable gate arrays (FPGAs), showing that traditional FPGA architec-

tures can also achieve improved PPA by replacing some Look-Up-Tables (LUTs) with

perceptrons. Considering that replacing parts of traditional digital circuits provides

significant improvements in PPA, a natural extension was to see whether circuits

built dedicatedly using perceptrons as its compute unit would lead to improvements

in energy efficiency. This was demonstrated by developing perceptron-based compute

elements and constructing an architecture using these elements for Quantized Neural

Network acceleration. The resulting circuit delivered up to 50 times more energy

efficiency compared to a CMOS-based accelerator without using standard low-power

techniques such as voltage scaling and approximate computing.

i

DEDICATION

To my parents, my little sister, and my precious little cat

for enriching my life and inspiring me to reach for the stars.

ii

ACKNOWLEDGMENTS

Writing a dissertation is a long and challenging journey, and I am grateful to have

had the support of so many people along the way.

I want to thank my advisor, Prof. Sarma Vrudhula, for being an exceptional

mentor. His expertise, guidance, and encouragement have been crucial in shaping this

dissertation. Prof. Vrudhula taught me that writing is nature’s way of correcting bad

thinking, while math is nature’s way of correcting bad writing. He also emphasized the

importance of using a mathematical framework to transform ideas into innovations,

leveraging existing optimization techniques. I look forward to continuing to learn

from him in the years to come.

I was fortunate to collaborate with Prof. Sunil Khatri during my Ph.D. His

initial discussion with Prof. Vrudhula about integrating flash transistors in threshold

gates significantly boosted the work presented in this dissertation and led to further

innovations. Prof. Khatri taught me not only valuable academic skills, but also the

importance of working hard and enjoying life to the fullest.

I would like to extend special thanks to Jinghua Yang, for her utmost support in

the formative years of my Ph.D. She taught me the discipline I needed as a student

in the Ph.D. program. I will forever be grateful for her support.

I owe a great debt of gratitude to Gian Singh, whose dedication and contributions

to the development of flash-based threshold logic have been of utmost importance.

I am also grateful to my colleagues Niranjan Kulkarni, Elham Azari, Mehdi

Ghasemirahagi, Soroush Heidari, and Shail Dave, who have provided a supportive

and encouraging environment throughout my academic journey.

A huge thanks to Lisa for enabling me to handle conferences, grants, events, etc.,

among many other things that not only allowed me to showcase my research but also

have fun doing it. I will always treasure these memories.

iii

I am deeply grateful for the resources provided by Alphacore, which have been

instrumental in allowing me to conduct the research I set out to accomplish. A special

thanks to Phanindra Kumar Bikkina and Esko Mikkola.

I am grateful to my colleagues at Maxlinear, specifically Parthasarathy Gopal

and Anitha Yella, for introducing me to real-world challenges and teaching me how

to tackle them. Sarathy’s outstanding knowledge and clear communication style

continue to inspire me, and learning from him was vital for my Ph.D. program.

Meanwhile, Anitha taught me the importance of perseverance in the face of challenges,

having overcome struggles of her own, and helped me prepare for similar obstacles.

I want to extend a heartfelt thank you to my committee members, Prof. Jae-Sun

Seo, Prof. Aviral Shrivastava, and Prof. Fengbo Ren. Prof. Seo consistently ensured

I had the resources necessary for my research and understood its requirements. Prof.

Shrivastava expanded my knowledge of computer architecture, particularly data reuse.

Prof. Ren played a key role in my research, as he motivated us to focus on BNN

accelerator design in his class and provided valuable feedback.

I would like to thank sponsoring agencies National Science Foundation (NSF)

I/UCRC Center for Embedded Systems from NSF grant # 1361926 and other NSF

grants #1701241, #2008244 for supporting this work.

I would also like to thank the faculty and staff of the School of Computing and

Augmented Intelligence (SCAI) for the guidance, resources, and opportunities.

I want to give a big shoutout to my uncle, Prof. Datta Gaitonde, whose ex-

tensive experience as a professor and mentor has provided me with a well-rounded

understanding of the program’s expectations, requirements, and goals.

Finally, I would like to express my gratitude to my parents and my sister, who

have supported and encouraged me throughout my life. I will always be grateful for

their unwavering support.

iv

TABLE OF CONTENTS

Page

LIST OF TABLES . ix

LIST OF FIGURES . xiv

CHAPTER

1 INTRODUCTION . 1

1.0.1 Process Technology . 3

1.0.2 Circuit/ Logic Design . 4

1.0.3 Architectural Design . 7

1.0.4 Algorithm Selection . 8

1.1 Research Contribution and Dissertation Outline 11

1.1.1 Design of Binary Perceptrons Using CMOS and Flash Tran-

sistors and Its Integration into ASICs . 11

1.1.2 Embedding Binary Perceptrons in an FPGA Architecture . . . 12

1.1.3 Hardware Acceleration of BNNs and QNNs Using Perceptrons 13

2 BACKGROUND . 16

2.1 Threshold Functions and Threshold Gates . 16

2.1.1 Threshold Functions . 16

2.1.2 Perceptron Learning Algorithm (Pla) . 17

2.1.3 Determining Threshold Function Weights with Ilp 17

2.1.4 Standard Operations Using Threshold Functions 19

2.1.5 Threshold Gates . 21

3 STANDARD CELL PERCEPTRON . 24

3.1 Introduction . 24

3.1.1 FTL in ASIC Design – Overview . 25

3.1.2 Main Contributions . 26

v

CHAPTER Page

3.2 Background . 29

3.2.1 Threshold Logic Gates . 29

3.3 Flash Threshold Logic (FTL) Cell . 30

3.4 Architecture for programming FTL cells . 33

3.5 Computing the relationship between the weights and the VT values

for an FTL cell . 34

3.5.1 Overview . 34

3.5.2 Algorithm mPLA0 . 36

3.5.3 Algorithm mPLA+: Improving Noise Tolerance 39

3.5.4 Algorithm mPLA++: Optimizing Yield . 40

3.6 Experimental Results . 43

3.6.1 Experiment Setup . 43

3.6.2 Training Iterations . 44

3.6.3 Individual Cell Area, Delay, and Power Comparison 44

3.6.4 Delay Distributions . 46

3.6.5 Dynamic Voltage Scaling . 47

3.6.6 Number of programming pulses . 47

3.6.7 Experiments on Training for Robustness 49

3.6.8 Robustness Against PVT Variations . 50

3.6.9 Robustness Against V T Drift . 51

3.6.10 Post-fabrication Timing Correction . 53

3.6.11 Delay Optimal Synthesis of ASICs with FTLs 55

3.7 Conclusion . 58

4 THRESHOLD LOGIC FPGA . 60

vi

CHAPTER Page

4.1 IntroductionWagle and Vrudhula (2021) . 60

4.1.1 Organization of the Chapter . 62

4.2 Related Work . 63

4.3 TLFPGA Architecture . 65

4.4 TLFPGA Design and Mapping Flow . 71

4.5 Threshold Cell Mapping . 72

4.5.1 Problem Definition . 73

4.5.2 Threshold Cell Mapping Algorithm (TCM) 74

4.6 Placement-aware Remapping . 81

4.7 Experimental Results . 82

4.7.1 Experimental Setup . 84

4.7.2 Impact of Pipelining on TLFPGA . 84

4.7.3 Results of Mapping Complex Circuits on TLFPGA 91

4.7.4 Validation of VPR Models by Physical Design. 92

4.8 Conclusion . 97

5 QNN ASIC ACCELERATOR USING THRESHOLD GATES. 98

5.1 Introduction . 98

5.2 Overview of the Paper . 102

5.3 TULIP-PE Implementation . 104

5.3.1 Hardware Architecture of TULIP-PE . 104

5.3.2 Mapping Primitive Operations to TULIP-PE 106

5.4 Top Level Architecture of TULIP . 109

5.5 Scheduling a Compute Graph on TULIP-PE . 112

5.5.1 Existing Solutions and Their Limitations 115

vii

CHAPTER Page

5.5.2 Decomposing the Compute Graph Scheduling Problem 117

5.6 Enhancing Data-reuse Using TULIP-PEs . 125

5.7 Experimental Results . 127

5.7.1 Experimental Setup . 127

5.7.2 Evaluation of TULIP-PE Against MAC 129

5.7.3 Evaluation of the TULIP Architecture . 131

5.8 Conclusion . 136

6 CONCLUSION AND EXTENSIONS . 139

6.1 Extensions . 139

6.1.1 Threshold Logic Processing in Memory (PIM) Architectures 139

6.1.2 Circuit Obfuscation . 143

6.1.3 Threshold Logic Tamper-proof Mechanism for Scan-chain

Locking . 146

REFERENCES . 148

APPENDIX

A CONVERGENCE PROOF:

PERCEPTRON LEARNING ALGORITHM . 169

B ALL 5-INPUT THRESHOLD FUNCTIONS . 175

C FLASH TRANSISTORS . 181

D ENERGY EFFICIENCY OF TULIP . 195

E PUBLISHED PRIOR WORKS . 199

viii

LIST OF TABLES

Table Page

2.1 Survey of Threshold Logic Realizations of Commonly Used Functions

in the Literature . 20

2.2 Survey of Threshold Logic Gate Architectures in the Literature 22

3.1 Delay, Total Power and Power-Delay-Product (PDP) of FTL35, Trained at

VDD = 0.9V , and C0 = C1 = 0.1fF . 48

3.2 Delay Values of FTL35 = [3, 3, 2, 1, 1; 8], Trained for Robustness Using

Various Capacitor Values (fF). 50

3.3 Yield When mPLA++ and mPLA0 (On-Chip) Are Used for Programming

Instances of FTL35 = [3, 3, 2, 1, 1; 8]. 51

3.4 Robustness Against VT Drift for FTL Cells Programmed with All 117 Thresh-

old Functions of up to 5 inputs. 53

3.5 Improvement in Area, Power, and Wirelength Improvement in ASICs

with FTL Integrated, over Conventional ASICs, Without Trading off

Performance. Average Improvements Are Calculated Using the Geo-

metric mean. 55

3.6 Runtime and Peak Memory Usage for the Synthesis of ASIC designs. . . 57

3.7 Detection of NPN Equivalents of Threshold Functions Using a Library

of 117 5-Input FTL cells. 58

4.1 Delay and Power for LUTs (With DFFs) and TLC. Compared to LUT-4, a

TLC Is 3.8X Faster and 38% Lower Power in 40nm, and Is 2X Faster and

31% Lower Power in 28nm. 69

ix

Table Page

4.2 Tile Area of FPGA vs. TLFPGA in (A) 40nm and (B) 28nm. Replacement

of a Large LUT with a Small TLC Helps Shrink the Tile Size. NOTE: These

Numbers Do Not Include the Area of Inter-Tile Routing Resources, as They

Are Subject to Change Based on the Number of tiles. 71

4.3 Track-Count and Frequency Trade-off Using VPR for Simultaneous

Improvements of TLFPGA over FPGA. Solution 1 Is Generated Us-

ing the Default Settings of VPR, While Solution 2 Is Generating by

Prioritizing the Maximum Frequency in VPR. 87

4.4 Percentage Improvements in TLFPGA as Compared to Standard FPGA

in 40nm for OpenCores Circuits for LUT-6 (L-6) and LUT-7 (L-7)

50x50 TLFPGA; Results Are Extracted Using VPR. Models Used for

VPR Are Based on the Tile Structures Placed and Routed Using Ca-

dence Innovus®. Stages(x,y) Indicates That X Is the Original Num-

ber of Pipeline Stages in the Circuit, to Which Y Pipeline Stages Were

Added. TLC:LUT Ratio Is Reported in percentage. 88

4.5 Percentage Improvements in TLFPGA as Compared to Standard FPGA

in 28nm for OpenCores Circuits for LUT-6 (L-6) and LUT-7 (L-7)

50x50 TLFPGA; Results Are Extracted Using VPR. Models Used for

VPR Are Based on the Tile Structures Placed and Routed Using Ca-

dence Innovus®. Stages(x,y) Indicates That X Is the Original Num-

ber of Pipeline Stages in the Circuit, to Which Y Pipeline Stages Were

Added. TLC:LUT Ratio Is Reported in percentage. 89

x

Table Page

4.6 Comparison of Area and Power of a Tile in 8x8 LUT-7 FPGA vs. a Tile

in LUT-7 TLFPGA Tile with a Track-Width of 96 in X and Y Directions

Using (A) 40nm and (B) 28nm Technology. Power Is Reported Using Static

Power Analysis. Physical Layout of Tiles Include the Cells Required for

Intra-Tile routing. 92

4.7 Comparison of Power (mW) for the Physical Layout of 8x8 LUT-7 FPGA

vs. LUT-7 TLFPGA with a Track-Width of 96 in X and Y Directions Using

(A) 40nm and (B) 28nm FDSOI Technology. Using TCM, Additional Power

Reduction Is Expected. However, This Is Not Included During the Static

Power analysis. 93

4.8 28nm FDSOI . 94

4.9 Comparison of Instance Count for 8x8 LUT-7 FPGA vs. LUT-7 TLFPGA

Physical Layout with a Track-Width of 96 in X and Y Directions Using (A)

40nm and (B) 28nm. 94

4.10 Comparison of Area for 8x8 LUT-7 FPGA vs. LUT-7 TLFPGA Physical

Layout with a Track-Width of 96 in X and Y Directions Using (A) 40nm

and (B) 28nm technology. 95

5.1 Mapping Primitive Operations to Binary Neuron . 108

5.2 Notation for ILP Used to Solve the Primitive Scheduling Problem 119

5.3 Number of ILP Parameters and Run-Time for Solving Primitive Schedul-

ing Problem, for Compute Graphs That Represent Neurons with Varying

Number of inputs. 123

xi

Table Page

5.4 Gate and Delay Complexity of MAC Units and TULIP-PEs. TULIP-PEs

Match the Delay and Gate Complexity of MAC Units When R = mn.

However, Since There Are Now R TULIP-PEs for Every MAC Unit, the In-

creased Parallelism Promotes Data Sharing, Thereby Improving Data Reuse

by a Factor of R. 126

5.5 Binary Neuron Comparison: Hardware Neuron Versus Standard Cell Neu-

ron, Operating at 434MHz (Time Period:2300ps). κ Indicates the Index of

Neuron in a cluster. 128

5.6 Comparison of Fully Reconfigurable MAC Unit Based on YodaNN Archi-

tecture Andri et al. (2017), with a TULIP-PE (K=5), for Computing a

288 Input Weighted Sum (32 Input Channels, Kernel =3x3). TULIP-PE Is

15.8X Smaller than the MAC Unit. PDP: Power Delay Product 130

5.7 Energy Efficiency (En. Eff (TOPS/J)) and Throughput (Perf. (GOPS/s))

of TULIP and an Equivalent MAC-Unit Based Benchmark Architecture

for CIFAR-10 Classification. K Indicates the Number of Neurons Used in

Each Cluster. Two Variants of TULIP Are Shown: One Tuned for Energy

Efficiency, While the Other Is Tuned for performance. 132

5.8 Energy Efficiency (En. Eff (TOPS/J)) and Throughput (Perf. (GOPS/s))

of TULIP and an Equivalent MAC-Unit Based Benchmark Architecture

for ImageNet Classification. K Indicates the Number of Neurons Used in

Each Cluster. Two Variants of TULIP Are Shown: One Tuned for Energy

Efficiency, While the Other Is Tuned for performance. 133

xii

Table Page

6.1 Latency and Energy Comparison for Executing Graph Matching Index

Problem and DNA Sequence Mapping AlgorithmMyers (1999) on Dif-

ferent Platforms Normalized to CIDAN. Graph Matching Index Prob-

lem Is Carried out on Three Data Sets; Facebook, Amazon, Dblp 142

B.1 List of All 117 Unique 5-Input Threshold Functions 176

C.2 Comparison of Various Properties of Embedded Flash Devices 189

D.1 Metric Notation for a MAC Unit and a TULIP-PE 196

D.2 Metric Comparison of a MAC Unit Relative to a TULIP-PE 196

D.3 Metric Comparison of a MAC Unit Relative to α TULIP-PEs 197

D.4 Energy Efficiency and Throughput Comparison of a MAC Unit Rela-

tive to α TULIP-PEs . 197

xiii

LIST OF FIGURES

Figure Page

1.1 State of the Art for Improving Performance, Power, and Area (PPA) of

Circuits . 2

1.2 Process Technology: Advancements in Semiconductor Manufacturing Pro-

cesses That Allow for the Creation of More Energy-Efficient Electronic Com-

ponents, Such as Transistors, with Improved Performance, Reduced Power

Consumption, and Increased Reliability. 4

1.3 Logic Design: Approaches Such as Clock Gating, Power Gating, Etc. with

the Aim of Minimizing Power Consumption While Maintaining the Perfor-

mance and Functionality of the circuit. 5

1.4 Conventional Hardware-Level Low Power Techniques Survey. Values

Indicate the Percentage of Users Using the Associated technique. 6

1.5 Architectural Design: Design Approaches for Computer Systems and Com-

ponents That Aim to Reduce Energy Consumption and Improve Energy

efficiency. 9

1.6 Algorithm Selection: Methods Used in Software Development That Aim to

Reduce the Energy Consumption of a System, Such as Optimizing the Use

of Resources, Reducing Computational Complexity, and Balancing Perfor-

mance and Energy consumption. 10

3.1 (a) FTL Schematic, (B) Functional Equivalent . 24

3.2 Use of FTL in ASIC design. 25

3.3 Organization of the Chapter . 28

3.4 FTL Cell Architecture Showing LIN, RIN, Sense Amplifier (SA), Latch

(LA), and Programming Logic (PL). 30

3.5 Programming Scan Chain for FTL Cells in an ASIC. 31

xiv

Figure Page

3.6 Transformation from Boolean Space to Conductance space. 36

3.7 Conductance GL and GR of FTL Cell Programmed for F = [4, 1, 1, 1, 1; 5]

Using mPLA0 and mPLA+ ([TT, 0.9V, 25◦C]). 40

3.8 Iteration Count for mPLA+ for All 117 Functions of 5 or Fewer variables. . . 44

3.9 PPA Improvements of FTL over CMOS Implementations. Simulations Done

at 25◦C Assuming a 20% Input Switching activity. 46

3.10 Delay Histogram of FTL35 and CMOS35 with 100K Monte Carlo Simula-

tions. PV T = [TT, 0.9V, 25◦C]. 47

3.11 Number of High Voltage (HiV) Pulses Needed to Program the FTL Cells

with All 117 Threshold Functions of up to 5 Inputs . 48

3.12 Delay of an FTL Cell for Threshold Functions, with the Process (SS, TT,

FF), Voltage (0.81 V, 0.9 V, 0.99 V), and Temperature (0◦C, 25◦C, 55◦C)

variations. 52

3.13 Datapath to Demonstrate Post-Fabrication Timing Corrections. 53

3.14 Post-Fabrication Setup-Time Correction Using an FTL cell. 54

3.15 Post-Fabrication Hold-Time Correction Using an FTL cell. 54

3.16 Distribution of Threshold Functions in 32-Bit Multiplier When Syn-

thesized Using FTL Cells with Zero-Delay Zero-power. 59

4.1 Organization of the Chapter . 62

4.2 Sample Tile Structure for (A) FPGA and (B) TLFPGA. Two of the LUTs

in (A) Have Been Replaced with TLCs in (b). 65

4.3 Threshold Logic Cell (TLC) Structure. the Sense Amplifier Detects the

Difference in Conductivity of the Left and Right Input Networks and Sets

the Outputs N1 and N2 accordingly. 67

xv

Figure Page

4.4 Logic Absorption. Part of the Logic Cone Driving the DFF Is a Threshold

Function abc ∨ abd. That Logic and the DFF Are Replaced by a Single TLC. 69

4.5 Cluster Size of 10 for TLFPGA; a TLC Typically Gets Inputs from Four

Variables. the Number of LUTS in Each TLC Is Set to Four to Ensure

Sufficient LUTs to Feed the TLCs Within a Single tile. 70

4.6 Modified OpenFPGA Flow for TLFPGA . 73

4.7 Logic Replication During Threshold Cell Mapping: Logic Cell a Is Repli-

cated, so That It Can Be Mapped to a TLC (Represented Using Threshold

Function boundary). 77

4.8 Reduction in Circuit Implementation Cost in a TLFPGA as Compared to

an FPGA. the Cost of Mapping the Circuit to a TLFPGA Is Lower than

the Cost of Mapping the Same Circuit to an FPGA. 78

4.9 Placement-Aware Remapping: Clustering Algorithm in VPR Requires Two

Tiles to Implement the Example Circuit G on a TLFPGA. Inter-Tile Rout-

ing Delay Will Be Added to the Inputs of T3, as Its Inputs Are Generated in

Another Tile. Instead, If the Function of T3 Is Re-Mapped to an LUT, Then

the Clustering Algorithm Only Requires One Tile to Implement G on the

TLFPGA. This Improves Tile Utilization, and Removes Inter-Tile Routing

Delay from the Inputs of T3 Thereby Improving the Overall performance. . . 81

4.10 Average Percentage Reduction (Based on Geomean) in the Number of (A)

BLE Configuration Registers, (B) Multiplexers, (C) Area and (D) Power in

TLFPGA as Compared to FPGA for ISCAS-85 Circuits (Higher Is better). . 83

xvi

Figure Page

4.11 Fraction of Circuits That Showed Improvements in the Number of (A) BLE

Configuration Registers, (B) Multiplexers, (C) Area and (D) Power in TLF-

PGA as Compared to FPGA for ISCAS-85 Circuits (Higher Is better). 84

4.12 Improvements in Maximum Frequency and Track-Count for LUT-6 TLF-

PGA over LUT-6 FPGA for All ISCAS-85 Circuits in 40nm and 28nm.

X-Axis Represents Circuit indices. 86

4.13 Physical Layout of an 8x8 Prototype TLFPGA in (A) 40nm and (C) 28nm

Generated Using Cadence Innovus®; Verilog for the TLFPGA Was Gener-

ated Using Modified OpenFPGA Flow. Dynamic Power Reduction in Small

Designs, When Mapped to the Physical Post-Layout Version of FPGA and

TLFPGA in (B) 40nm and (D) 28nm. 90

5.1 Organization of the Chapter . 103

5.2 Architecture of a TULIP-PE, Consisting of Four Clusters and Four Local

Registers. Each Cluster Contains K Neurons (K=5). 104

5.3 the Hardware Neuron and Its Connections with Inputs, Local Registers, and

Other neurons. 105

5.4 3-Bit Carry Lookahead Adder Using Binary Neurons That Add Two 3-Bit

Numbers A and B. 106

5.5 TULIP Top Level Architecture: Controller Configures the Processing Units.

the Input Pixels and Weights Are Sent Through Image and Kernel Buffers.

the Output of the Processing Units Is Collected in the Output Buffers Before

Sending It Back to the memory. 110

xvii

Figure Page

5.6 Data Reuse Opportunities in 2-D Convolution: Each Input Pixel Can Be

Reused bK2O2/I2c Times and Each Kernel Weight Is Reused O2 Times for

One Output Dimension. Each Dimension of the Input (L) Is Reused M times.111

5.7 Mapping a Node of a QNN to TULIP-PE as an Equivalent Compute Graph

M . for Illustration Purposes, K = 1, i.e. One Neuron Is Used in Each cluster.112

5.8 Scheduling Graphs of Threshold Functions on Binary Neurons A) Compute

Graph G and Time-Extended Resource Graph R B) Compatibility Graph

of G and R. C) Mapping Solution of G to R. 116

5.9 Example to Illustrate Primitive Scheduling Problem. the Output of Each

Node in the Primitive Graph P Is Stored in the Local Registers of TULIP-PE.122

5.10 Addition Operation, Adder-Tree, Accumulation, and Comparison Using

TULIP-PE Architecture. Depending on the Number of Neurons Available

in Each Cluster, the Scheduler Can Automatically Tune the Schedule for

the Best performance. 125

5.11 Layout of TULIP Architecture in TSMC 40nm-LP . 131

5.12 Improvements of TULIP-PE (Using Five Neurons per Cluster) over Equiv-

alent MAC-Unit Based Benchmark Circuit, for Various Neural networks. . . . 134

5.13 Improvements of TULIP-PE (With Varying Number of Active Neurons in

Each Cluster) over Equivalent MAC-Unit Based Benchmark Circuit, for

ImageNet Classification Using ResNet-34. 135

5.14 Trading off Energy Efficiency (En. Eff (TOPS/J)) with Accuracy (%) for

ImageNet Classification Using TULIP Architecture. Full Prec. Acc. Indi-

cates Top the 1% Accuracy When Using 32-Bit Integers and weights. 137

6.1 Architecture of Threshold Logic Processing element. 140

xviii

Figure Page

6.2 Threshold Logic Processing Element Array (TLPEA) Connected to Banks

in a DRAM device. 141

6.3 Throughput (A) and Energy-Efficiency (B) Comparison of CIDAN-XE Against

the State-of-the-Art Architectures When Computing ALEXNET. 143

6.4 Scan Chain Locking Mechanism Using FTL Cells (Neurons) 147

C.1 Cross Section of Flash transistors. 182

C.2 Vth Distribution in a Multi-Level-Cell . 186

C.3 Vth of Cells Programmed to Different States in a Memory Array 186

xix

Chapter 1

INTRODUCTION

For the past four decades, the overwhelming majority of digital microelectronics cir-

cuits have been designed using Complementary Metal Oxide Semiconductor (CMOS)

technology. During that period, CMOS technology has undergone over 20 process

generations, with each new generation doubling the transistor density and increasing

the performance by 40% every generation. Around two decades ago, trends showed

that the exponential increase in power consumption would halt further increases in

transistor density and performance. The feared rise in power consumption was largely

brought under control by various techniques that included device design and fabri-

cation, circuit architecture, dynamic voltage, and frequency control, the transition

to multi-core processors, and the development of energy-aware algorithms. A visible

demonstration of decades of advances is the recent (2022) announcement of the Apple

M2 chip with 20B transistorsapp (2020). This is over a 700,000X increase in transis-

tor density over the first commercial microprocessor – the Intel 4004 released in 1971,

which had 2,300 transistors on a 12 mm2 die. The extraordinary advances in digital

microelectronics have not just been due to technological strides, but substantial inno-

vation in design methodology and automation also had to take place. This includes

the development of highly scalable optimization algorithms for performance, power,

and area (PPA) applicable to both logic and physical domains, the standardization

of circuit and logic primitives, and the implementation of the algorithms in software

tools.

Figure 1.1 shows the many techniques developed over the past several decades to

enhance the performance, power, and area of digital systems. They include advances

1

Figure 1.1: State of the Art for Improving Performance, Power, and Area (PPA) of Circuits

in (1) process technology device design and fabrication), (2) circuit and logic design,

(3) architectural level design, and (4) algorithm design. Each of these techniques is

2

discussed in further detail below:

1.0.1 Process Technology

Technology scaling refers to improving or reducing the size of transistors, while

maintaining or improving their performance. This results in an increase in the number

of transistors that can fit onto a single IC. This leads to more compact and efficient

circuits, as well as an increase in performance, such as higher clock speeds, greater

storage capacity, and improved power efficiency. This is achieved through the devel-

opment of new manufacturing processes, such as fully depleted silicon-on-insulator

FETs (FDSOI) and fin-based FETs (FinFETs), which are more energy-efficient and

offer improved performance compared to basic planar transistor structures (FETs).

Despite the progress in silicon-based circuits, technology scaling faces many chal-

lenges, including a lack of robustness and the large costs of manufacturing ICs. As

a result, researchers are also exploring new devices for specific purposes and ap-

plications as they offer unique features and properties suited for those applications

without compromising on the robustness and cost constraints set by those applica-

tions. These emerging devices include PRAM (Phase-Change-based device), ReRAM

(Filament Type device), and MRAM (Spintronic device), among many others. Of-

ten, emerging devices can also contribute to the demand for computing power by

being applied in extreme environments and conditions that silicon cannot, or provide

higher density and better performance with low power. However, they are still far

from being commercially viable for mass manufacturing. Popular techniques related

to process-technology that are used to improve energy efficiency are summarized in

Figure 1.2.

3

Figure 1.2: Process Technology: Advancements in Semiconductor Manufacturing Pro-

cesses That Allow for the Creation of More Energy-Efficient Electronic Components, Such

as Transistors, with Improved Performance, Reduced Power Consumption, and Increased

Reliability.

1.0.2 Circuit/ Logic Design

Circuit/logic design techniques aim to reduce the power consumption of an in-

tegrated circuit (IC) without affecting its operation. Some techniques include clock4

Figure 1.3: Logic Design: Approaches Such as Clock Gating, Power Gating, Etc. with the

Aim of Minimizing Power Consumption While Maintaining the Performance and Function-

ality of the circuit.

5

gating, power gating, multiple voltage design, dynamic voltage and frequency scaling,

memory gating, data gating, and pipelining, as shown in Figure 1.3. These techniques

help control power consumption by turning off or scaling power to unused parts of the

circuit, partitioning the logic into power domains with different voltage lines, adjust-

ing voltage and frequency at run-time, enabling only used memory, blocking unused

data, and adding extra register stages in the data path to improve timing.

Figure 1.4: Conventional Hardware-Level Low Power Techniques Survey. Values

Indicate the Percentage of Users Using the Associated technique.

Based on a recent survey from 446 VLSI design engineers, Figure 1.4 shows the

popular circuit-level low-power techniques used in the industry for ASICs and FPGAs.

While clock gating, power gating, and DVFS are predominantly popular and are

used by most engineers, several low-power techniques such as memory caching, mem-

ory banking, register sharing, register file architecture, register cloning, etc., are not

used as often, primarily due to one or more of the following reasons:

6

1. They are harder to implement by anyone other than the engineer coding the

RTL (unlike techniques such as clock-gating)

2. Techniques such as register sharing, memory caching, etc., that worked in one

node may not work as effectively in the next node.

3. It takes lots of different tool runs, such as RTL synthesis, simulation, power

analysis, etc., to evaluate these techniques.

4. They are often not compatible with industry-standard design flows and tech-

niques.

5. They compromise the robustness of the circuit.

For the classification discussed above, a clear conclusion is that the ease of inte-

gration of a low-power technique directly determines how often designers would use

it. The work presented in this dissertation is designed to seamlessly integrate with

industry-standard design flows and provide improvements on top of the conventional

low-power techniques that already exist in the industry.

1.0.3 Architectural Design

Architectural design techniques aim to optimize the energy efficiency of integrated

circuits (ICs) by constructing and integrating hardware blocks. Some of the notable

techniques Vasilakis et al. (2017); Corporation (2019); Palacharla et al. (1997); Henry

et al. (1999); Sohi et al. (1995); Fisher (1981); Tomasulo (1967); Lee et al. (2010);

Raoux et al. (2008); Wong et al. (2010); Research (2020); Chen et al. (2010); Bhat-

tacharjee et al. (2017); Mehonic et al. (2020); Wong et al. (2012); Ha (2018); Ha

et al. (2016); Liu et al. (2012); Chang et al. (2017); Mutlu et al. (2020); Li and Luo

(2016); Tech (2018b,a); Jouppi et al. (2017); Chen et al. (2016); Gao et al. (2017);

7

Farabet et al. (2011); Li et al. (2018); Akopyan et al. (2015); Furber (2014); Davies

et al. (2018); Haj-Yahya et al. (2019); Lee (2016), shown in Figure 1.5 include the use

of multi-core architectures, instruction-level parallelism, mitigating the memory wall

using advanced memory-based techniques, construction of domain-specific architec-

tures, dataflow (non-Von Neumann) architectures, and power delivery miniaturization

and use of reconfigurable power delivery networks. Most of these techniques require

architecture exploration based on the application being supported.

1.0.4 Algorithm Selection

To reduce power consumption at the algorithmic level, several techniques (shown

in Figure 1.6) are used, such as writing efficient code, code refactoringMenshawy

et al. (2021), workload orchestration, silicon-aware coding, and minimizing data trans-

portation through distributed computing and caching. Writing efficient code involves

designing algorithms that use fewer instructions or require fewer memory accesses,

leading to reduced energy consumption. Code refactoring involves restructuring ex-

isting code to enhance its energy efficiency. Workload orchestration involves moving

cloud workloads based on renewable energy sources, and offloading computation from

mobile devices to servers. Silicon-aware coding exploits the energy management ca-

pabilities of modern chipsets to reduce energy use. Minimizing data transportation

through distributed computing and caching involves caching content locally to mini-

mize buffering and reduce the energy used for transport.

The techniques identified in Figure 1.1 seem to be exhaustive, and there do not

seem to be any fundamentally new approaches to improving the PPA of CMOS digital

system. This dissertation presents another method for improving the PPA of CMOS

digital circuits that is unlike any of the techniques shown in Figure 1.1.

This dissertation aims to show that significant improvements in the performance,

8

Figure 1.5: Architectural Design: Design Approaches for Computer Systems and Compo-

nents That Aim to Reduce Energy Consumption and Improve Energy efficiency.

9

Figure 1.6: Algorithm Selection: Methods Used in Software Development That Aim to

Reduce the Energy Consumption of a System, Such as Optimizing the Use of Resources,

Reducing Computational Complexity, and Balancing Performance and Energy consumption.

10

power, and area of digital VLSI circuits can still be achieved by integrating uncon-

ventional but CMOS-compatible device technologies and unconventional circuit and

system architectures with conventional CMOS circuits and design methodologies.

Specifically, the unconventional approach being explored is the design of a perceptron,

a digital-analog-digital circuit, as a conventional standard cell using programmable

conductance devices such as flash transistors.

1.1 Research Contribution and Dissertation Outline

The research presented in this dissertation builds upon existing work by Niranjan

et al. Kulkarni et al. (2016b) on integrating perceptrons in ASICs for improving the

performance, power, area (PPA), and energy efficiency of digital circuits. The associ-

ated contributions are explained later in this section. The work in this dissertation is

divided into three main parts, each of which focuses on a specific aspect of enhancing

PPA and energy efficiency in digital circuits.

1.1.1 Design of Binary Perceptrons Using CMOS and Flash Transistors and Its

Integration into ASICs

This part of the dissertation demonstrates the benefits of using of perceptrons

(binary neurons) as logic primitives, to be integrated into existing ASIC designs,

as well as reconfigurable architectures for PPA improvements. Similar work has al-

ready been explored by several other researchers, including Niranjan et al. Kulkarni

et al. (2016a); Yang et al. (2015) who demonstrated significant improvements in the

area and power of an IC through post-fabrication results. However, almost all the

prior perceptron designsBeiu (2003); Celinski et al. (2003); Kulkarni et al. (2016a);

Mozaffari et al. (2018) exclusively used CMOS technology, which limited the potential

utility of those perceptrons.

11

This work improves upon the existing perceptron designs by using a combination

of CMOS and flash transistors. The introduction of flash transistors to these designs

notably improves the number of functions that the perceptron can implement (28 to

117 Boolean functions) Muroga (1971b). Furthermore, since the threshold voltages

of the flash transistors can be changed post-fabrication, this property further enables

the perceptrons to not only have variable delays and functionality post-fabrication,

but also be significantly more robust to process, voltage and temperature (PVT)

variations.

The perceptron discussed in this work offers several opportunities for improved

circuit design. Similar to prior work, this perceptron can be used to improve the

PPA of an ASIC. However, due to its delay flexibility, it is now possible to also fix

setup and hold time violations post-fabrication using these perceptrons. It is also

possible to obfuscate circuits from the foundry, as functions can only be assigned to

the perceptrons post-fabrication using a special programming method. Since the flash

transistors are reprogrammable, they can also be used to revert the effects of aging

on the perceptrons.

1.1.2 Embedding Binary Perceptrons in an FPGA Architecture

FPGAs are one of the most popular platforms when it comes to applications that

require reconfigurable architectures, and are often used for machine learning and IoT

applications. The traditional FPGAs are constructed using lookup tables (LUTs),

that can be reconfigured to implement various functions. Most of the research in

the improvement of energy efficiency of the FPGA architectures deal with circuit-

level techniques Ahmed and Rose (2004); Feng et al. (2018); Anderson et al. (2012);

Goncalves et al. (2013); Nukala et al. (2012); Sampath et al. (2015) such as sweeping

the size of LUTs, use of emerging devices, etc., and algorithm-level techniques Pan

12

and Liu (1996); Li et al. (2001); Lin et al. (2006); Kao and Lai (1999); Lipatov and

Tiunov (2017) such as mapping and routing of logic to the LUTs. While a lot of work

has been done on the algorithm-level, relatively much less work has been done on

the circuit-level techniques. This part of the dissertation contributes to circuit-level

techniques by introducing a new architecture, referred to as threshold logic FPGA

(TLFPGA). This architecture is constructed by replacing a few of the LUTs from

an FPGA architecture with perceptrons. Such integration of perceptrons is radically

different from existing approaches that improve the PPA of an FPGA. We show

that by using the TLFPGA architecture, especially for deeply pipelined circuits, it

is possible to gain significant area, power, and performance improvements over the

classic FPGA architecture, by strategically mapping the circuits to the perceptrons.

Furthermore, the presented work is compatible with the conventional FPGA flow, and

is compatible with all the innovations that were done at the algorithm-level. While

the evaluation for this work was only done using 28nm technology node, future work

has been planned in 40nm for comparison across nodes.

1.1.3 Hardware Acceleration of BNNs and QNNs Using Perceptrons

The acceleration of neural networks (NN) is one of the most important applications

in the field of IC design today Hinton et al. (2012); Krizhevsky et al. (2012); Ren et al.

(2015); Hunt et al. (1992); Liang and Hu (2015); He et al. (2015). The chips built for

this application need to handle data-and-compute-intensive workloadsSimonyan and

Zisserman (2014); Nurvitadhi et al. (2017). Some of these ICs are expected to deliver

real-time performance using a battery as their energy source for portable applications.

Researchers in the field of accelerator-design use several circuit-level techniques such

as approximate computing Zhang et al. (2015), voltage scaling, frequency scaling, etc.,

and use data-reuse strategies such as loop unrolling Ma et al. (2018), cache memory

13

managementPisarchyk and Lee (2020), etc. to improve the PPA of these accelerators.

The circuit-level techniques generally come at the cost of either performance, area, or

accuracy of the neural network being inferred. Meanwhile, the data-reuse strategies

Park et al. (2016) are already quite mature, and can be exhaustively explored through

automated tools.

Quantized Neural Networks (QNNs)Hubara et al. (2017) are a type of neural

network where the weights and activations are represented using a limited number

of discrete values instead of continuous values. They were developed as a way of

reducing memory usage and computation time slightly trading off accuracy, making

it possible to deploy deep learning models on devices with limited computational

resources. QNNs are represented as a directed acyclic graph (DAG), where the nodes

represent quantized operations and the edges represent the flow of quantized values.

The operations performed at each node can be simple arithmetic operations like

addition and multiplication, but with quantized values. The output of one node serves

as the input to the next node in the graph, and the final output is the prediction of

the network.

Hardware accelerators used to execute QNNs use MAC units (described later

in Chapter 5) to calculate the weighted sum of inputs. For all the other operations

needed to execute QNNs, separate dedicated hardware blocks are needed. As a result,

these accelerators face two major issues. The first issue is that a MAC unit always

performs operations of maximum bit-width regardless of the bit-width of its operands.

The second issue is that the use of dedicated blocks for less frequently used operations

wastes area and consumes leakage power when these blocks are kept dormant.

This part of the dissertation presents an alternate hardware accelerator for QNNs

called TULIP. It consists of special processing elements called TULIP-PEs constructed

using a combination of perceptrons and local registers. TULIP-PEs can be used to

14

execute compute graphs in which each node is either an addition, comparison, or

logic operation. These processing elements solve the previously mentioned issues as

follows:

1. TULIP-PEs can be reconfigured to execute operations of custom bit-width that

match the size of its operands, as opposed to always performing max bit-width

operations as is done in MAC units.

2. Since TULIP-PEs can compute any compute graph that can be decomposed

into addition, comparison, and logic operations, all the operations needed for

QNNs can be evaluated on the same hardware, thereby eliminating the need for

adding dedicated hardware for less frequently used operations.

TULIP-PEs, when used to construct a QNN accelerator, also enhance the reuse

of data fetched from memory. This is because a TULIP-PE is much smaller than a

MAC unit. As a result, if several TULIP-PEs are used in the same area as a MAC

unit, they can simultaneously initiate multiple operations that share the fetched input

data.

15

Chapter 2

BACKGROUND

A threshold function is a type of Boolean function that is used to determine

whether the weighted sum of its inputs exceeds a certain threshold value. It is im-

plemented by a perceptron, which is a type of hardware circuit that can perform this

computation. This chapter introduces threshold functions and provides an overview

of various perceptron architectures that have been developed in the past to implement

them.

2.1 Threshold Functions and Threshold Gates

2.1.1 Threshold Functions

Threshold functions are an interesting and valuable subset of Boolean functions.

They were first proposed in 1943 as simple models of neurons McCulloch and Pitts

(1988), which generated substantial work on neural networks – a subject that has

been revived recently with the emergence of machine learning. The use of threshold

logic in digital design and synthesis was extensively investigated in the 1960s and

1970s, culminating in two authoritative works Mullin (1966); Muroga (1971c).

A threshold logic function f(x1, · · · , xn) Muroga (1971a) is a unate Boolean func-

tion whose on-set and off-set are linearly separable, i.e., there exists a vector of weights

W = (w1, w2, · · · , wn)1 and a threshold T such that

1W.L.O.G, weights can be assumed to be positive integers Siu et al. (1995), and for a given truth

table of a threshold function, there is a weight vector whose sum is minimum Siu et al. (1995).

16

f(x1, x2, · · · , xn) = 1⇔
n∑
i=1

wixi ≥ T, (2.1)

where
∑

here denotes the arithmetic sum. A threshold function can be equiva-

lently represented by (W , T) = (w1, w2, · · · , wn;T).

2.1.2 Perceptron Learning Algorithm (Pla)

The Perceptron Learning Algorithm (PLA) was developed by Frank Rosenblatt

in the 1950s and is considered to be the first artificial neural network algorithm. It

is used to determine the weights corresponding to a given threshold function. PLA

starts with an initial weight vector W and threshold T , and selects an ON-set or an

OFF-set minterm x incorrectly classified by W. It then adjusts W and T to classify

x correctly. The pseudo-code of PLA is shown in Algorithm 1. The remarkable

property of this algorithm is that it is guaranteed to converge if the given function is

a threshold function.

Why PLA works: The update step in PLA (Lines 7,9) is the critical part of the

Algorithm 1. The if -statement, on line 7, determines if [W, T] correctly classifies the

input minterm x. When the decision boundary correctly classifies a minterm, nothing

updates. However, when misclassification occurs, the decision boundary is updated in

the “right direction” to prevent misclassification from occurring again. This addition

moves the boundary in the right direction because the new [W, T] better classifies

the input minterm x.

2.1.3 Determining Threshold Function Weights with Ilp

Another technique to determine the weights of a threshold function is to use

Integer linear programming (ILP), which entails formulating the problem as an op-

timization problem with binary variables. The objective function is to minimize the

17

Algorithm 1 Perceptron Learning Algorithm

Input: P ← On-terms, N ← Off-terms

Output: [W,T]

1: W = [0, 0, ...0]

2: T = 1

3: convergence = FALSE

4: while !convergence do

5: Pick a random minterm x

6: if x ∈ P and x ·W < T then

7: W = W + x, T = T − 1

8: else if x ∈ N and x ·W ≥ T then

9: W = W− x, T = T + 1

10: else if All minterms produced expected output with [W,T] then

11: convergence = TRUE

12: end if

13: end while

sum of weights and threshold, such that all the minterms of a given truth table are

correctly classified. The binary variables can be used to model the threshold, such

that if the weighted sum of the inputs exceeds the threshold, the output is 1, and if

it is less than the threshold, the output is 0. The ILP problem can then be solved

to find the optimal weights that satisfy the constraints and optimize the objective

function.

The advantages of using integer linear programming (ILP) over the PLA include:

• Global optimality: ILP can guarantee finding the global optimal solution,

while the PLA only converges to a feasible solution.

• Interpretability: ILP solutions are more interpretable, as the weights and

18

thresholds can have direct physical meaning, whereas the weights and thresh-

olds produced by the perceptron algorithm may not have a straightforward

interpretation. For instance, for an OR function, an ILP may generate the

weights to be [1, 1; 1], whereas PLA may generate [5, 3; 1]. Although both sets

of weight-threshold representations indicate an OR function, weight set [1, 1; 1]

is more interpretable because it shows that the weightage of both inputs in this

OR function is the same.

• Scalability: ILP can be computationally expensive for large-scale problems,

while the perceptron algorithm is computationally efficient and scalable.

It is worth noting that the choice between ILP and the perceptron algorithm

depends on the specific problem and requirements. In some cases, the perceptron

algorithm may be sufficient and faster, while in others, ILP may be necessary to

handle complex constraints or to guarantee global optimality.

2.1.4 Standard Operations Using Threshold Functions

Many Boolean functions that commonly occur in logic circuits, particularly arith-

metic operations, are threshold functions. Examples include parity, comparison, ad-

dition, multiplication, division, modulo, counter, exponent, and many more. This

subsection will discuss how these functions can be constructed using threshold logic,

and what the gate and depth complexity of each implementation is.

Let C be a directed acyclic graph where the nodes represent the threshold func-

tions of their inputs, and the edges represent the flow of data between the nodes. The

variables s and d represent the number of nodes and the maximum node depth in

C, respectively. Using this notation, Table 2.1 summarizes prior results on threshold

logic networks for realizing some of the frequently occurring functions in ASICs. For

19

Table 2.1: Survey of Threshold Logic Realizations of Commonly Used Functions in

the Literature

Function Without Fan-in Bounds With Fan-in Bounds

Parity

An n-input parity function PARn(X) can

be computed using a depth d+1 threshold circuit

with O(dn1/d) gates.

An n-input parity function PARn(X) can be

computed using a threshold logic circuit of depth

O(d log n/log m), having

O(dn/m1−1/d) gates.

Comparison

The comparison of two n-bit integers can be

computed by a threshold logic circuit of depth

3 AND-OR circuits with 3n gates. Siu et al. (1991).

The comparison of two n-bit integers can be

computed by a threshold logic circuit of depth

d(2n/(m− 1))e with d(2n/(m− 1))e

gates. Here, m > 3.Wagle et al. (2020a)

Addition

The sum of two n-bit integers can be computed by a

threshold logic circuit of depth 3 AND-OR circuits with

O(n2) gates.Siu et al. (1991)

The sum of two n-bit integers can be

computed by a threshold logic circuit of depth

2 having 2n gates, with all the weights of

the threshold functions bounded by 2n

and a fanin of m=2n+1. Ramos et al. (2003)

Symmetric functions

A symmetric function of n variables, can be implemented

using a depth-3 polynomial size threshold circuit having

O(
√∑n

j=1wj) threshold gates.Siu et al. (1991)

Any n-variable symmetric function can be

computed by a threshold logic circuit of depth

O(d log n/log m) of edge complexity

O(2−d/2nm1/(2d−1)√log m).

Multiplication
Multiplication of two n-bit numbers can be implemented

using a depth-4 polynomial size threshold circuit.Siu et al. (1991)

The product of two n-bit integers can be

computed by a threshold logic circuit of depth

O(d log n/log m) of edge complexity

O(2−d/2n2m1/(2d−1)√log m).Siu et al. (1991)

Matrix Multiplication

The product of two N by N matrices can be computed

by a threshold logic circuit of constant depth O(d), having

O(Nω+O(γd)) gates. Here, ω < 3 and γ < 1 are constants.

d is a positive integer.

Construct by decomposing a threshold logic

network without fan-in bounds using the

algorithm presented in Annampedu and Wagh (2013b).

Sorting

Let X1,X2...Xn be n-input n integers. These

integers can be sorted using a threshold network of depth

3, with polynomially bounded number of gates. We call

this sorter a basic sorter. Shi et al. (2014)

Construct by decomposing a threshold logic

network without fan-in bounds using the

algorithm presented in Annampedu and Wagh (2013b).

Division

The division of two n-bit integers x and y, i,e. x/y can be

performed using a threshold logic network of depth 4,

with polynomially bounded number of gates.Siu et al. (1991)

Construct by decomposing a threshold logic

network without fan-in bounds using the

algorithm presented in Annampedu and Wagh (2013b).

Counter

The number of ones in a bus of N-bits can be counted using

a threshold logic network of depth 2, with polynomially

bounded number of gates.Minnick (1961)

Construct by decomposing a threshold logic

network without fan-in bounds using the

algorithm presented in Annampedu and Wagh (2013b).

Modulo

If X is an n-bit integer, and m is an integer polynomially

bounded by n, then X mod m can be computed using a

depth-2 threshold circuit.Siu et al. (1991)

Construct by decomposing a threshold logic

network without fan-in bounds using the

algorithm presented in Annampedu and Wagh (2013b).

Exponent
If X is an n-bit integer, then Z=Xn can be implemented

using a depth-4 polynomial size threshold circuit.Siu et al. (1991)

Construct by decomposing a threshold logic

network without fan-in bounds using the

algorithm presented in Annampedu and Wagh (2013b).

Arbitrary Functions

Any Boolean function of n variables can be computed

by a depth-3 threshold circuit having O(2n/2)

threshold gates. Such a circuit would have at-least

O(2n/3) threshold gates.Siu et al. (1991)

Construct by decomposing a threshold logic

network without fan-in bounds using the

algorithm presented in Annampedu and Wagh (2013b).

20

all the Boolean functions for which a threshold network exists, but without fan-in

bounds, Annampedu et al. Annampedu and Wagh (2013b) demonstrated that such

networks can be decomposed into a network of threshold gates with a fixed fanin.

However, it must be noted that the gate count that results from the work presented

in Annampedu et al. Annampedu and Wagh (2013b) is very high.

Although a large body of theoretical work related to the node count, depth, and

complexity analysis of networks of threshold functions exists, many of these works

have never been realized on chip due to the lack of an energy-efficient solution needed

to execute large fan-in threshold functions on hardware. In this dissertation, Chapter

5 will discuss how to decompose large networks of threshold functions into addition,

comparison, and logic operations so that they can be executed on hardware in an

energy-efficient manner.

2.1.5 Threshold Gates

This subsection presents a survey of a variety of threshold logic gate implementa-

tions available in the literature. Table 2.2 summarizes the properties of each of these

gates.

The prior work on threshold logic has used different technologies such as bulk

CMOS, flash devices, capacitance networks, memristors, RRAMs, etc., to design both

sequential and combinational gates.

21

Table 2.2: Survey of Threshold Logic Gate Architectures in the Literature

TL gate
Technology

(nm)
Fan-in Device Stage Cell Type

Ozdemir et al. (1996) 1200 255 Bulk CMOS +CAP Silicon Sequential

Bohossian et al. (1998) 2000 16 Bulk CMOS +Flash CMOS Silicon Combinational

Bobba and Hajj (2000) 180 No info in the paper Bulk CMOS Spice Sequential

Padure et al. (2001) 1600
High (Quantification

missing)
Bulk CMOS +CAP Spice Sequential

Padure et al. (2002) 2500
NA. Spice

simulations only
Bulk CMOS Spice Sequential

Rodriguez-Villegas et al. (2002) 350 No info in paper Bulk CMOS +Flash CMOS Silicon Combinational

Padure et al. (2003) 250 64 Bulk CMOS Silicon Sequential

López-Garćıa et al. (2004) 600 127 Bulk CMOS +CAP Layout Sequential

Kaya et al. (2007b) 100 12
DGMOSFET

Bulk CMOS
TCAD Sequential

Rajendran et al. (2010) 45 No info in paper Bulk CMOS +Memristor Spice Sequential

Rothenbuhler et al. (2013) 240 2 Bulk CMOS +Memristor Silicon Sequential

Dara et al. (2012) 45 150 Bulk CMOS Spice Sequential

Yang et al. (2014a) 65 7 (majority gate) Bulk CMOS +RRAM Layout Sequential

Kulkarni et al. (2016b) 65 7 (majority gate) Bulk CMOS Silicon Sequential

FTL (Dissertation work) 40 5
Bulk CMOS

+Flash CMOS
Layout Sequential

22

Threshold gates used to be built with a combination of pull-up/pull-down net-

works and operational amplifiers (OPAMPs), which led to a fan-in of over 64 (As

shown in Table 2.2) but consumed a lot of power and were not ideal for low-power

applications. To reduce power consumption, sense amplifiers were proposed to re-

place OPAMPs in threshold gates, but this resulted in a decrease in fan-in due to

the reduced time window for the evaluation of the threshold function. As process

technology advanced, there was increased error offset in sense amplifiers, increased

variability in the weights of the threshold function, and increased vulnerability to volt-

age and EMIR fluctuations, which further reduced the fan-in of threshold gates to 5

with limited support for all 5-input threshold functions. This dissertation presents

a threshold gate that uses a current-controlled non-volatile transistor to improve the

area, power, performance, and robustness of the threshold gate in smaller technology

nodes while providing full support for all 5-input threshold functions.

23

Chapter 3

STANDARD CELL PERCEPTRON

3.1 Introduction

In this chapter Wagle et al. (2022a), we introduce a new programmable ASIC

primitive, referred to as a flash threshold logic (FTL) cell. FTL cells are used to

replace parts of an ASIC that are threshold functions more efficiently than their

equivalent standard-cell counterparts, in a way that substantially improves the area

and power consumption of an ASIC, without increasing its delay. It is a mixed-

signal circuit that is designed as a standard cell so that it is fully compatible with

conventional CMOS logic synthesis, technology mapping, and place-and-route tools.

Figure 3.1: (a) FTL Schematic, (B) Functional Equivalent

An FTL cell of n inputs realizes any threshold function of n or fewer variables.

Figure 3.1(a) shows a block diagram of an FTL cell, in which the weights W are shown

as internal parameters of the cell and Figure 3.1(b) shows its functional equivalent.

The schematic is meant to convey that the input-output behavior of an FTL cell may

be viewed as an edge-triggered, multi-input flip-flop, whose output is the value of a

threshold function, that is internally latched at the rising edge of the clock signal

CLK.

24

(a) A Logic netlist.

(b) Identifying Threshold

Functions in TFI Cones of

Flip-Flops

(c) An FTL-CMOS Logic

Hybrid

Figure 3.2: Use of FTL in ASIC design.

A distinctive characteristic of the FTL cell design is that the actual threshold

function realized by an FTL instance within an ASIC is programmed after the circuit is

manufactured. An FTL-based ASIC integrates flash or floating gate Cai et al. (2013a)

transistors along with conventional MOSFETs within the FTL cell. Thus, unlike

many of the emerging technologies Perricone et al. (2017); Yang et al. (2014b); Gupta

and Jha (2005); Berezowski and Vrudhula (2005), an FTL cell employs mature IC

technologies (CMOS and Flash) that are routinely integrated today and commercially

manufactured with high yields.

3.1.1 FTL in ASIC Design – Overview

Before proceeding to the details of FTL design, it will be instructive to understand

how it can be used in an ASIC Kulkarni et al. (2016a), and how it can improve

performance, power, and area.

Consider the logic netlist shown in Figure 3.2a which has two registered outputs

F and G. Suppose that the transitive fan-in (TFI) cones of F and G are traversed

and two subcircuits labeled A and B (see Figure 3.2b) are found, such that A and

B are threshold functions of their inputs. The remaining subcircuit is labeled as C.

25

Suppose that subcircuits A and B are replaced by FTL cells, which are to be later

programmed to realize A and B. This replacement is shown in Figure 3.2c, where the

FTL cells are shown as black boxes. Now, subcircuit C would be re-synthesized to

account for the changes in the delay of FTL cells and the new loads that the inputs

of the FTL cells present to the outputs of C. There are two reasons why the circuit

in Figure 3.2c would have improved power, performance and area.

1. Subcircuits A and B and the two flip-flops are each replaced by an FTL cell

which has much fewer transistors, resulting in a significant reduction in area

and power.

2. The clock-to-Q delay of FTL cells turns out to be much less than the total delay

(combinational logic delay plus clock-to-Q delay of DFF) of subcircuits A and

B, which results in creating a substantial amount of slack (required time minus

arrival time) on the outputs of subcircuit C. This in turn will allow synthesis

and technology mapping tools to reduce the logic area of subcircuit C. The

extent of the improvement depends on how the logic is absorbed into the FTL

cell.

Note that the reason why the FTL cells are shown as black boxes in Figure 3.2c

is to convey the fact that their functions are not known at the time of fabrication

because the flash transistors are programmed after the chip is manufactured.

3.1.2 Main Contributions

1. An FTL cell is a mixed-signal circuit that is implemented as a standard cell.

The new design incorporates flash transistors, which allow its function to be

programmed after fabrication.

26

2. The set of threshold voltages of the flash transistors in an FTL cell serve as a

proxy for the weights [W , T]. The weights can be realized with great fidelity

because the flash transistors can be programmed with high precision Cai et al.

(2013a). However, the relationship between the weights and threshold voltages

is a non-linear and multi-valued mapping that depends on the complex electrical

and layout characteristics of the MOSFETs and flash transistors. We present a

new algorithm called the modified perceptron learning algorithm (mPLA) Rosen-

blatt (1958) that works in concert with HSPICE and learns a mapping between

the weights and threshold voltages. The mPLA algorithm also maximizes the

noise tolerance and robustness of the FTL cell in the presence of process and

environmental variations.

3. We present an efficient architecture and methodology for programming the

threshold voltages of each flash transistor within each FTL cell that is em-

bedded in an ASIC. We also demonstrate how the post-fabrication threshold

voltage assignment capability can be used to improve functional yield and cor-

rect timing errors.

4. FTL cells are designed as standard cells to be compatible with existing CMOS

design methodologies and tools. We demonstrate this compatibility by using

commercial CAD tools to perform synthesis, technology mapping, and place-

and-route of several complex function blocks with FTL cells included in the

cell library. The results show that automatic embedding of FTL cells results in

substantial improvements in the area, power, and wirelength, without sacrificing

performance.

The remainder of this chapter is organized as follows. Section 3.2 gives a very

brief overview of threshold logic and flash transistor technology. Sections 3.3, 3.4,

27

Figure 3.3: Organization of the Chapter

3.5 and 3.6 contain the main body of this work. The architecture and operation of

the FTL cell are described in Section 3.3. Section 3.4 explains the mechanism for

programming FTL cells once they are embedded in an ASIC, using a separate scan

chain reserved for that purpose. Section 3.5 describes the mapping between the

weights of a threshold function and the threshold voltages of the flash transistors in

the FTL, considering factors such as robustness to noise, process variations and circuit

delay. Section 3.6 contains an extensive set of experimental results, demonstrating the

significant improvements in PPA of FTL cells over their CMOS equivalents both at

cell-level and when they are integrated into ASICs. It also includes results validating

several uses of post-fabrication programming/tuning of the flash devices. Conclusions

appear in Section 3.7.

28

3.2 Background

3.2.1 Threshold Logic Gates

Since 1960s then there has been a substantial body of work on new circuit ar-

chitectures and implementations of threshold logic. Surveys of designs prior to 2003

appear in Beiu et al. (2003); Beiu (2003); Celinski et al. (2003), detailing over fifty

different implementations. The earlier works and even later ones such as Lageweg

et al. (2002); Mozaffari et al. (2018); Zhang et al. (2005); Annampedu and Wagh

(2013a); Mozaffari and Tragoudas (2018); Kaya et al. (2007a); Yang et al. (2014b),

have not been integrated into mainstream VLSI design. It is, however, still is very

valuable to develop efficient implementations of threshold functions. This is due to

the fact that many Boolean functions that require large AND/OR networks can be

realized by smaller, fixed depth threshold networks Siu et al. (1995) and nearly 70%

of the functions in two standard cell libraries (observed in a 65nm and a 40nm library

from different vendors) are threshold functions.

Recently, Kulkarni et al. (2016a) reported an architecture of a threshold gate

and showed how it can be integrated with the standard-cell ASIC design methodol-

ogy using commercial tools. Unlike our approach, Kulkarni et al. (2016a) uses only

CMOS devices. In addition, they reported significant improvements in PPA of an

actual silicon implementation of ASIC with threshold gates Yang et al. (2015). Their

architecture, however, severely limits the number of threshold functions that can

be implemented because the width of the transistors are made proportional to the

weights. This limits the fan-in and consequently, only 12 of the 117 threshold func-

tions of 5 or fewer inputs were implemented in Kulkarni et al. (2016a). In contrast,

our work implements all 117 threshold functions of 5 or fewer inputs because of the

use of flash transistors.

29

Figure 3.4: FTL Cell Architecture Showing LIN, RIN, Sense Amplifier (SA), Latch (LA),

and Programming Logic (PL).

3.3 Flash Threshold Logic (FTL) Cell

Figure 3.4 shows the architecture of the FTL cell. It has five main components:

(i) the left input network (LIN), (ii) the right input network (RIN), (iii) a sense

amplifier (SA), (iv) an output latch (LA), and (v) a flash transistor programming

logic (PL). The LIN and RIN consist of two sets of inputs (`1, · · · , `n) and (r1, · · · , rn),

respectively, with each input in series with a flash transistor. In our implementation,

`i = ri = xi for all i. The state of the inputs and the threshold voltages of the

flash transistors determines the conductance of the LIN and RIN. The assignment of

signals to the LIN and RIN is done to ensure sufficient difference in their conductance

across all minterms.

There are two differential signals N1 and N2 in an FTL cell, which serve as

inputs to an SR latch. When [N1, N2] = [0, 1] ([1, 0]), the latch is set (reset) and the

output Y = 1(0). The magnitudes of the two sides of the inequality in the definition

of a threshold function (see Equation 2.1) are mapped to the conductance GL of

the LIN and GR of the RIN. Ideally, the mapping is such that [N1, N2] = [0, 1] ⇔

30

GL > GR and [N1, N2] = [1, 0] ⇔ GL < GR. As stated earlier, the flash transistor

threshold voltages serve as a proxy to the weights of the threshold function – the

higher the weight, the lower will be the threshold voltage. For a given threshold

function, this non-linear monotonic relationship is learnt using a modified perceptron

learning algorithm described in Section 3.5.

Figure 3.5: Programming Scan Chain for FTL Cells in an ASIC.

The FTL cell has four modes: regular, erase, programming and scan-testing mode.

The V T values of the flash transistors are set in the programming mode and erased

in the erase mode. The logic operation of an FTL cell takes place in regular mode.

FTL Regular Mode: (PROG = ERASE = 0, TE = 0,HiV = 0). Assume that the

V T s of the flash transistors have been set to appropriate values corresponding to the

weights of the threshold function, and their gates are being driven to 1 by setting

FTi to VDD. When CLK = 0, the circuit is reset. In this phase, the nodes N5 and

N6 of LIN and RIN are connected to the supply, N5 = N6 = 0, and N1 = N2 = 1.

Therefore, the output Y remains unchanged.

Assume now that an on-set minterm is applied to the inputs in the LIN and RIN.

With properly assigned V T values to the flash transistors, suppose that GL > GR for

the given minterm. When CLK : 0 → 1, both the LIN and RIN will conduct, and

N5 and N6 will both transition from 0 → 1. Assuming GL > GR, N5 rises faster

than N6, and hence N5 will make M7 active before N6 makes M8 active. This

will start to discharge N1 before N2. When N1 falls below the threshold voltage of

31

M6, it will stop further discharge of N2, and turn on M3, resulting in N2 : 0 → 1.

Finally, [N1,N2] = [0,1] sets the SR latch, resulting in Y = 1. For an off-set minterm,

GL < GR, and [N1, N2] = [1, 0] resulting in Y = 0.

FTL Program, Erase and Scan-testing mode: Figure 3.4 shows a circuit block

labeled PL (programming logic) that generates the signals to select and program the

FTL cells at the chip-level. Details of the programming architecture and protocol

are given in Section 3.4. During flash-programming of a single FTL, the PL redirects

HiV to FT i, to program the ith flash transistor.

FTL Programming Mode: (ERASE=0, PROG=1, CLK =0, HiV =20V, TE=0).

The ERASE and PROG signals turn on M12 and M13 and turn off M14. In this state,

the source of the flash transistor is floating while the drain and bulk are connected

to the ground. Activating the appropriate signals in the PL unit causes high voltage

pulses to be applied to the HiV line and the gate of the flash transistor to set the

desired threshold voltage (V T).

FTL Erase Mode: (ERASE=1, PROG=1, CLK =0, HiV =-20V, TE=0). The

ERASE signal turns off M12. Both the source and drain of the flash transistors

are floating in this state, while the bulk is connected to the ground. Using the PL

unit, the gate terminals of all the flash transistors in the FTL are connected to HiV .

A negative high voltage pulse at HiV in this state will tunnel the charge from the

floating gate, thereby erasing the flash transistor.

FTL Scan-testing Mode: (ERASE=0, PROG=0, CLK =0, HiV =0, TE=1). The

scan-testing mechanism in the FTL cells is implemented in the same way as described

in Kulkarni et al. (2016a). It uses the test enable (TE) and test input (TI and T̄ I)

signals. In this mode, TE acts as the clock with the main clock CLK = 0. Hence

the scan-testing chains for the D flip-flops and FTL cells are kept separate. The

procedure to inject data into the scan-testing chain of FTL cells is straightforward.

32

On each TE cycle, the bit to be scanned in is applied to TI. Then TE : 0→ 1, which

causes either N1 or N2 to discharge, resulting in the output latch being set or reset.

This process is repeated to load all FTLs with the data in a test vector. Transistors

M26 and M27 block potential DC paths from VDD to VSS during testing.

Note that the problem of read and write disturb Bez et al. (2003); Cai et al. (2015)

found in NAND flash memories do not exist with an FTL cell because there is only

one flash transistor in each stack in the input network. Also, the problem of write

endurance Boboila and Desnoyers (2010) in flash memories, which refers to a limit

on the number of writes (from 10K - 100K cycles), is not an issue with FTL cells,

because an FTL cell would be programmed or erased only a handful of times over the

life of the design.

3.4 Architecture for programming FTL cells

In this section, we describe the programming architecture used for FTL cells

embedded in an ASIC. This architecture individually addresses the flash transistors

of the FTL cells and then redirects HiV pulses to them. Although this architecture is

a part of the ASIC, its use ends once the FTL cells are programmed. Therefore, its

design must meet its functional requirements without severely impacting the overall

area and wirelength of the ASIC. This is achieved by a scan-chain programming

architecture.

Figure 3.5 shows the structure of the programming scan chain. Each stage of

this chain consists of an FTL cell with its programming logic and a select cell that

identifies the FTL cell to be programmed. Suppose that the FTL cells realize all

threshold functions of n or fewer variables.1 Then each such cell has 2n + 2 flash

transistors. Suppose further that there are N FTL cells. Initially, all Qis are set to

1In the experimental results, n = 5.

33

1. Then cell i is selected by making Qi = Qi−1 = 0, while all other Qs remain at

1. Thus, clocking in the appropriate sequence using PCLK selects cell i. Since each

FTL cell has 2n + 2 flash cells, a global decoder with log(2n + 2) inputs and 2n + 2

outputs is used. These outputs of the decoder activate the appropriate path for the

HiV pulses to the inputs of the flash transistors of the selected FTL cell.

The programming architecture involves the use of high-voltage nets. In the physi-

cal layout, the high voltage wires are bundled, and wire-shielding Mehri and Masoumi

(2015) is used to avoid any cross-talk due to high voltage signals to the other low

voltage lines and transistors. Programming is done with a dedicated scan chain, and

all the associated high-voltage nets are systematically bundled and shielded. This

results in reducing the total wirelength of those nets. Furthermore, since it is a linear

iterative array, it easily scales to accommodate any number of cells.

Assuming that FTL cells use floating gate transistors, the program and erase

modes require +20V and -20V (HiV) pulses to be applied to their inputs (see Section

C). Note that other flash technologies such as SONOS Nii et al. (2020), MONOS-

Tsuda et al. (2016), and High-K Metal Gate (HKMG) Khan et al. (2019b) require

similar infrastructure for programming and erasure, but may differ in the voltage

levels of the pulses.

3.5 Computing the relationship between the weights and the VT values for an FTL

cell

3.5.1 Overview

Let V T`(f) = (V T`0(f), · · · , V T`n(f)), and V Tr(f) = (V Tr0(f), · · · , V Trn(f))

denote the threshold voltages of the flash transistors in the LIN and RIN of an FTL,

respectively (see Figure 3.4). Further, let V T (f) = (V T`(f),V Tr(f)). In this

34

section, we present an algorithm to determine these voltages for an FTL to realize a

given threshold function f having a weight vector [W , T].

To configure an FTL, the method described herein determines V T (f) for each f

a priori, using models that include circuit parasitics and global and local process vari-

ations in the device and circuit parameters. This is to ensure that an overwhelming

majority (� 99%) of the FTL instances on a chip can be programmed by attempting

at most a few pre-computed values of V T (f). The remaining small fraction of FTLs

for which a feasible, model-based V T (f) could not be found, can be programmed

directly on the chip.

Let GL(x|V T (f)) and GR(x|V T (f)) for x ∈ Bn, denote the conductance of the

LIN and RIN as functions of a minterm x of f and the flash transistor threshold

voltages. Henceforth, for clarity, we refer to GL(x|V T (f)) and GR(x|V T (f)) as GL

and GR respectively.

The problem is to find a V T (f) that determines a mapping between the Boolean

space Bn and the conductance space (GL, GR) such that, in the ideal case,

GR < GL, if f(x) = 1

GR > GL, if f(x) = 0.

(3.1)

This mapping, depicted in Figure 3.6, is one-to-many, since there can be many (an

uncountable number) feasible values of V T (f) for a given f with a weight vector

[W , T].

In practice, to avoid variations due to parasitics which could make the circuit

behavior erroneous, we require finding a subset of the feasible set where

GR < GL −∆L, if f(x) = 1

GR > GL + ∆R, if f(x) = 0

(3.2)

for some some sufficiently large ∆L ∈ (0, GL) and ∆R ∈ (0, GR). Note that ∆L and

∆R are related due to the constraints imposed by the truth table.

35

Figure 3.6: Transformation from Boolean Space to Conductance space.

Our approach to find V T (f) consists of three steps which are implemented by

Algorithms mPLA0, mPLA+, and mPLA++. These are described in the following

sections.

3.5.2 Algorithm mPLA0

Algorithm mPLA0 is a modified version of the classical perceptron learning algo-

rithm (PLA) Rosenblatt (1958) that works in concert with HSPICE (for verifying the

truth table of f) to search through the space of values of V T (f) until each minterm

(a point in the (GL, GR) space) of f is correctly classified. It does this by iteratively

adjusting the threshold voltages of flash transistors such that points in the conduc-

tance space that correspond to the on-set and off-set minterms satisfy the constraints

in Equation 3.2 (see Figure 3.6). It calls HSPICE (line 3 of Algorithm mPLA0) to

determine whether any point falls above or below the lines corresponding to these

inequalities. Since a layout extracted FTL circuit is being used, the circuit para-

sitics are accounted for in the HSPICE simulation. Consequently, Algorithm mPLA0

implicitly finds values of ∆L and ∆R.

36

Algorithm mPLA0 Modified Perceptron Learning Algorithm

Input: Truth table TT of threshold function f

Output: V T0 to program FTL cells with f

1: Initialize V T0

2: for k = 0 to kmax− 1 do

3: OT = SPICE(V T0) // Truth table from simulation

4: if TT and OT disagree on some minterm m then

5: if TT(m)==1 then

6: Update V T0: decrement (increment) the V T of every active transistor in LIN

(RIN) that is ’1’ in m by δ

7: else

8: Update V T0: increment (decrement) the VT of every active transistor in LIN

(RIN) that is ’1’ in m by δ

9: end if

10: else

11: Break

12: end if

13: end for

Given the truth table (TT) of f , mPLA0 applies all the minterms of f to the FTL

cell and records the HSPICE response in OT (output table). If TT (m) 6= OT (m), for

some minterm m, then the constraint in Equation 3.2 was not satisfied. In such a case,

mPLA0 adjusts the values of V T 0(f) (Algorithm mPLA0 line 4-9) associated with

the active input transistors within the interval [δ, VDD − δ], by a minimum increment

δ, according to Equation 3.3. Here, m` (mr) is a binary vector that identifies the

active input transistors in the LIN (RIN).

37

VTk+1
` =


VTk

` − δm` if m ·W ≥ T

VTk
` + δm` if m ·W < T

VTk+1
r =


VTk

r + δmr if m ·W ≥ T

VTk
r − δmr if m ·W < T

(3.3)

The term δml (or δmr) is a vector that has a value δ at all locations in LIN

(RIN), which are 1 for a minterm m, and zero elsewhere. For instance, consider the

threshold function b + c ≥ a + T . Let m = 110 be an on-set minterm that was

incorrectly evaluated. If TT (m) 6= OT (m) then GR > GL −∆L. Therefore GL needs

to be increased (threshold voltages corresponding to the flash transistors of b and c

will be decreased) and GR needs to be decreased (threshold voltages corresponding

to the flash transistors of a and T will be increased) for minterm m. Consequently,

the threshold voltages of all the flash transistors associated with the active input

transistors should be decreased (increased) by δ in the LIN (RIN). A similar change

is made if m is an off-set minterm. This is what is expressed in Equation (3.3).

V T 0(f) is the value returned by Algorithm mPLA0.

If a given set of points in Bn is linearly separable (i.e. a threshold function), then

the PLA algorithm will terminate in a finite number of iterations Siu et al. (1995); Mc-

Culloch and Pitts (1988). Similarly, given a threshold function f , a sufficiently small δ

and an FTL instance for which there exists a feasible V T (f), Algorithm mPLA0 will

terminate in a finite number of steps (see Siu et al. (1995) for proof of termination).

For an n-input threshold function, the upper bound on the number of iterations of

the PLA given in Siu et al. (1995) becomes kmax = 2(n + 1)||V T 0(f)||2/δ2. For

instance, with n = 5 and δ = .02V , kmax = 3000||V T 0(f)||2.

38

3.5.3 Algorithm mPLA+: Improving Noise Tolerance

Algorithm mPLA0 does not consider the relative location of the points with respect

to the metastability region defined by the lines GR = GL−∆L and GR = GL+∆R (see

Figure 3.6b). Even though minterms are classified correctly, they can be arbitrarily

close to the metastability region. The further a minterm is from this region, the easier

(and faster and more robust) it will be for the sense amplifier to detect the difference

between N5 and N6, and discharge the appropriate side (N1 or N2) first. Thus,

maximizing ∆L and ∆R within the feasible set will maximize its noise tolerance.

Algorithm mPLA+ repeatedly calls mPLA0 to maximize ∆L and ∆R. It does

this by introducing a hypothetical capacitance C1 on node N5 (which is introduced in

HSPICE) when classifying an on-set minterm, and determining the maximum value of

C1 for which Algorithm mPLA0 converges. This modification handicaps node N5 and

directs the algorithm to find a solution, that will result in an increased gap between

GL and GR. Similarly, we add a capacitance C0 on node N6, when classifying an

off-set minterm. Since the values of ∆L and ∆R are linearly proportional to C1 and

C0, respectively, the separation between the lines GR = GL−∆L and GR = GL + ∆R

increases, which in turn forces the training algorithm to produce a threshold voltage

assignment V T+(f) in a more robust (and also faster) FTL cell. Note that C1 and

C0 are only used during HSPICE simulations, and are not part of the actual FTL

cell.

Figure 3.7 shows the results of running Algorithms mPLA0 and mPLA+ on a test

function (Muroga (1971c)) f115(a, b, c, d, e) : (W , T) = [4, 1, 1, 1, 1; 5] = a(b+c+d+e).

It is a plot of the minterms in the conductivity space that was obtained by using

HSPICE after programming the FTL using V T 0(f) and V T+(f). The largest values

of C1 and C0 for which a feasible solution was obtained was 0.1fF . The plot shows

39

that training with the hypothetical capacitance values separates the two closest on-set

and off-set minterms in the conductivity space by more than five times. Furthermore,

the delay of an FTL programmed with V T+(f) will be smaller than the one that is

programmed with V T 0(f).

Figure 3.7: Conductance GL and GR of FTL Cell Programmed for F = [4, 1, 1, 1, 1; 5]

Using mPLA0 and mPLA+ ([TT, 0.9V, 25◦C]).

3.5.4 Algorithm mPLA++: Optimizing Yield

The threshold voltages V T+(f) computed by the mPLA+ are aimed at achieving

maximal separation between the on-set and off-set minterms based on model-based

estimates of parasitics. This has the twin advantages of increasing the noise margin

and reducing the delay. Despite this, inevitable manufacturing variations can still

result in reducing the difference between GL and GR associated with V T+(f) of the

two closest minterms, which may result in the incorrect evaluation of the intended

threshold function. In this section, we present a predictive technique to pre-compute

a small set of V T s(f) for each threshold function f which would cover a very high

percentage of manufactured variations.

40

Among the N manufactured FTL cells programmed to realize function f using

V T+(f), suppose that Ne were erroneous and let {FTL1(f),FTL2(f), · · · ,FTLNe(f)}

be the erroneous instances. The problem is to find individual threshold voltage as-

signments for each of these Ne instances so that each will correctly realize f . Our

approach is motivated by two observations.

First, each erroneous function in {f ei , 1 ≤ i ≤ Ne} is itself a threshold function.

This is simply due to the fact that by construction, an FTL cell only computes thresh-

old functions (see Figure 3.1). Second, our experiments show that a large number of

different instances of an FTL cell, which are reprogrammed with V T+(f) and are to

realize the same function f , realize the same erroneous function f e. This suggests that

all the erroneous FTL cell instances can be grouped into a few equivalence classes,

called error-types, with two FTLs belonging to the same error-type if they realize the

same erroneous function.

Given a threshold function f , Algorithm mPLA++ first generates a set of NMC

Monte Carlo (MC) instances of an FTL cell and identifies the Ne erroneous instances

(i.e. those when programmed with V T+(f) do not realize f). The Ne erroneous

instances are grouped into Mf error-types. Let f ei , 1 ≤ i ≤Mf , denote the logic func-

tions of the distinct error-types observed in a sample of N FTLs. Algorithm mPLA++

selects one MC instance from each error-type class and computes one V T+(f) as-

signment for that instance using mPLA+. It returns a set of threshold assignments,

V T++(f) = {V T+(f e1),V T+(f e2), · · · ,V T+(f eMf
)}, (3.4)

one for each error-type for each function f .

Results presented in Section 3.6 show that using the V T+(f ei) computed for one

FTL instance from ith error-type (1 ≤ i ≤ Mf) resulted in all the instances of the

same error-type correctly realizing f . This works because instances that have the

41

Algorithm mPLA++ Modified Perceptron Learning Algorithm Accounting for Process

Variations

Input: TT of f , NMC

Output: V T++(f) to program FTL cells with f

1: Execute mPLA+ to compute V T+(f)

2: Using MC sampling of the parameter space, generate NMC(f) instances of an FTL cell,

and program them with V T+(f).

3: Among the set of NMC instances, let Ne be the number of instances, which when

programmed with V T+(f), realize a function other than f , and among these Ne, let

Mf be the number of erroneous functions that are distinct.

4: Execute the mPLA+ on one MC instance from each of the Mf erroneous functions to

obtain

{V T++(f)} = {V T+(fe1), · · · ,V T+(feMf
).}

same error-type share similar parasitic variations. Thus, all instances of our sample

of FTL cells were correctly programmed using one distinct V T+(f ei) for each error-

type.

There is no guarantee that the erroneous functions found in a sample set NMC

will capture all manufacturing outcomes. This means that there may be some man-

ufactured FTLs that could not be correctly programmed using any of the threshold

voltage vectors computed by Algorithm mPLA++. For these remaining FTLs, our

approach is to apply Algorithm mPLA0 directly on the chip. In each iteration of

mPLA0, the step that adjusts the threshold voltages of flash transistors is replaced

by the application of an appropriate number of positive or negative pulses to the FTL

cell on the chip using the programming scan chain. This capability of correcting the

function of a cell after fabrication to increase yield is a signature attribute of the

42

proposed design methodology.

3.6 Experimental Results

3.6.1 Experiment Setup

An FTL cell with n = 5 (see Figure 3.4 in Section 3.3) was designed, and a

complete layout (including the programming devices) was created using the TSMC

40nm LP library. It was laid out as a double-height cell requiring 24 tracks. The

flash transistor models were obtained from Abusultan and Khatri (2016a) and were

suitably modified to reflect the characteristics and variations of the TSMC 40nm LP

library. The design rules for the flash transistors were obtained from ITRS. The

standard cell area of the FTL was 15.6 µm2.

There are a total of 117 distinct positive-form threshold functions of five or fewer

variables. A numbered list of these is given in Muroga (1971c). The one cell that was

designed was copied 117 times, and each was trained to realize one of the 117 threshold

functions. In this section, we use the same numbering scheme as in Muroga (1971c)

to identify the functions. The FTL cell trained to implement the threshold function

numbered n in Muroga (1971c) will be referred to as FTLn, and the corresponding

CMOS implementation will be denoted as CMOSn. The threshold function itself will

be denoted as fn. Note: In all the bar charts shown in this section, the numbers

on the x-axis identify the threshold function. Function f0 is a buffer and is omitted

because this would correspond to a DFF, which by itself would never be replaced by

an FTL in an ASIC. The first function shown is f1, which is a two-input AND.

43

3.6.2 Training Iterations

mPLA+ was used to train the FTL cell for robustness (see Section 3.5.3) for all

117 functions. Figure 3.8 shows the number of iterations needed for training each of

the 117 functions. The actual number of iterations was about 10X lower than the

theoretical upper bound, presented in Section 3.5.2.

Figure 3.8: Iteration Count for mPLA+ for All 117 Functions of 5 or Fewer variables.

3.6.3 Individual Cell Area, Delay, and Power Comparison

All 117 threshold functions of five or fewer variables were implemented using FTL

cells. These functions were also synthesized by Cadence Genus and placed and routed

using Cadence Innovus, using the conventional TSMC 40nm LP standard cells. Two

sets of experiments were performed to compare the CMOS equivalent designs to the

FTL cells: (1) delay optimal and (2) area optimal synthesis. The results comparing

the total delay (sum of logic delay, setup-time, and clock-to-Q delay), area, and

power of these circuits and the corresponding FTL implementations are shown in

Figures 3.9(a) and 3.9(b), respectively.

The results show that FTL cells have the advantage of speed. Optimizing their

CMOS equivalents to meet the delay of the corresponding FTL cells forces the syn-

thesis algorithms to use high drive strength cells (larger area) for the combinational

44

logic and larger DFFs. As the FTL implementations are faster than the fastest CMOS

equivalent implementation, delay optimal synthesis results in an across-the-board im-

provement in all FTL cells in delay, area, and power.

When synthesizing individual cells for the minimum area, FTL cells are still uni-

formly faster. However, the synthesis algorithm now uses the smallest combinational

cells and DFFs in the CMOS equivalents. In this case, although the CMOS imple-

mentations of simpler functions are much smaller than their FTL equivalents (see

Figure 3.9(b)), the FLT versions are still smaller for 74 out of 117 functions because

the logic absorbed by the FTL cell results in greater area savings than the smaller

drive strength cells used in the CMOS equivalents.

The dynamic power of every FTL implementation is higher than its CMOS equiv-

alent for area optimal synthesis. The reasons for this are (1) an FTL cell resets and

then evaluates its function on every clock cycle and (2) the much smaller switched

capacitance of the low-drive strengths of the combinational logic in the CMOS equiv-

alents. Figure 3.9(a) shows that FTL cells have a much lower power-delay product

(i.e. energy) when their CMOS equivalents are synthesized for minimum delay. Fig-

ure 3.9(c) shows that this is also true for the majority of the CMOS equivalents when

they are synthesized for the minimum area. Hence, FTL cells are, in general, more

energy efficient.

Figures 3.9(d) and 3.9(e) show a comparison of the leakage power of FTL cells

and their CMOS equivalents. The leakage of FTL cells is practically independent of

the function, and in the case of delay optimal synthesis, it is far lower than every

CMOS equivalent circuit. Exactly the opposite is true for the area optimal synthesis

due to reduced sizes of the combinational cells and DFFs. In these plots, the circuit

indices are ordered by increasing area. The area trend lines show that the leakage

increases with the area for the CMOS implementations.

45

Figure 3.9: PPA Improvements of FTL over CMOS Implementations. Simulations Done

at 25◦C Assuming a 20% Input Switching activity.

3.6.4 Delay Distributions

This experiment compares the distributions of delays of FTL and CMOS imple-

mentations. We show the results for the threshold function f35 with a weight vector

[W ;T] = [3, 3, 2, 1, 1; 8]. The PVT corner setting was [TT, 0.9V, 25◦C]. 100K Monte

Carlo instances were generated for both FTL35 and CMOS35. Each of the 100K

FTL instances was verified against the truth table for functional correctness, for both

FTL35 and CMOS35. Figure 3.10 shows the histogram of delays for both circuits.

These demonstrate the delay advantage of the FTL cell over its CMOS equivalent,

even in the presence of process variations. The difference in standard deviation be-

tween the two is insignificant. Note that the FTL instances with large delays can be

46

re-programmed to reduce the delay further. This capability is not possible for the

CMOS versions.

Figure 3.10: Delay Histogram of FTL35 and CMOS35 with 100K Monte Carlo Simula-

tions. PV T = [TT, 0.9V, 25◦C].

3.6.5 Dynamic Voltage Scaling

Voltage scaling is a common mechanism to trade off performance against power.

Table 3.1 shows the results of training FTL35 at 0.9V . The FTL cell was programmed

with the determined set of flash threshold voltages, and then operated over the voltage

range [0.8V, 1.1V]. To ensure proper operation across all voltages, the gate voltages

of the flash transistors were scaled accordingly. This result demonstrates how a

single V T+(f) assignment can be used for dynamic voltage scaling. The delay of the

FTL35 varies by 2.5X (its CMOS equivalent by 2.8X), power varies by 5.9X (CMOS

equivalent by 1.9X), and the PDP (energy) varies by 2.3X (CMOS equivalent by

1.43X), as the supply voltage varies over [0.8V, 1.1V].

3.6.6 Number of programming pulses

Figure 3.11 shows the number of high voltage pulses needed to program the 117

threshold functions. The number of high voltage pulses is estimated, assuming that

47

Supply

Voltage (V)

Flash Gate

Voltage (V)

Power

(uW)

Delay

(ps)
PDP

0.8 0.8 14.3 198.1 2837.1

0.85 0.825 20.5 157.6 3228.7

0.9 0.85 26.1 130.2 3396.9

0.95 0.875 40.3 111.2 4482.7

1 0.9 53.1 97.0 5148.6

1.05 0.925 76.0 86.4 6562.9

1.1 0.95 85.0 78.2 6644.0

Table 3.1: Delay, Total Power and Power-Delay-Product (PDP) of FTL35, Trained at

VDD = 0.9V , and C0 = C1 = 0.1fF .

each high voltage pulse would increment the threshold voltage of a flash transistor by

20mV. This assumption will vary across flash transistors. As shown in Figure 3.11,

the number of high voltage pulses needed to program a given FTL cell increases with

an increase in the number of variables of the threshold function being implemented.

Figure 3.11: Number of High Voltage (HiV) Pulses Needed to Program the FTL Cells with

All 117 Threshold Functions of up to 5 Inputs

48

3.6.7 Experiments on Training for Robustness

In this section, we present the results of Algorithms mPLA+, and mPLA++ for

training FTL cells taking into account parasitics and manufacturing variations. The

test functionf35(a, b, c, d, e) : (W , T) = [3, 3, 2, 1, 1; 8] = ab(c+de) was chosen for this

evaluation as this function generated the most number of error-types (Mf=61) out

of all the 117 threshold functions when Monte Carlo simulations were run on 20K

training samples.

The first experiment consisted of training FTL35 using mPLA+ for various values

of the capacitances C1 and C0, and for each solution, extracting the delay values.

The results for this experiment are as shown in Table 3.2. There are two impor-

tant observations to be made here. First, even though the weights of the inputs d

and e are equal, the corresponding flash transistors (V4 and V5) may be assigned

different threshold voltages. This is because mPLA+ compensated for the irregular

layout parasitics of both the flash transistors using threshold voltages to realize equal

weights. Second, the delay improves with increasing robustness, as discussed earlier

in Section 3.5.3. This is because the separation between the lines GR = GL−∆L and

GR = GL + ∆R increases with an increase in C1 and C0. This increased separation

results in a higher voltage difference at the inputs of the sense amplifier, which leads

to a faster evaluation of the FTL cell.

The second experiment was aimed at validating mPLA++. We used f35 as a

test function. The first step is to create the database {V T++(f35)}. Algorithm

mPLA++ was given f35 and NMC = 20K as inputs. The erroneous instances were

grouped into Mf35 = 61 error-types. Algorithm mPLA++ generated {V T++(f35)} =

{V T+(f e35,1), · · · ,V T+(f e35,61)}.

Next, 100K new MC instances were generated and programmed first with V T+(f35).

49

C1, Average Vt Values (V) Delay

C0 (V1, V2, V3, V4, V5;Vl0, Vr0) (ps)

0 0.64, 0.64, 0.66, 0.70, 0.72; 1.00, 0.58 224

0.01 0.60, 0.60, 0.64, 0.68, 0.70; 1.00, 0.50 178

0.02 0.60, 0.60, 0.64, 0.68, 0.70; 1.00, 0.50 178

0.05 0.60, 0.60, 0.64, 0.70, 0.70; 1.00, 0.50 172

0.1 0.56, 0.56, 0.60, 0.66, 0.66; 1.00, 0.42 163

0.15 0.52, 0.54, 0.58, 0.64, 0.64; 1.00, 0.34 154

Table 3.2: Delay Values of FTL35 = [3, 3, 2, 1, 1; 8], Trained for Robustness Using Various

Capacitor Values (fF).

Among the erroneous instances, 99.96% of them were one of 61 error-types that were

previously found. When each FTL cell in group j, (1 ≤ j ≤ 61) was programmed

with the threshold voltage set V T+(f35,j), all the erroneous instances correctly com-

puted f35. The remaining .04% of the 100K were correctly programmed by executing

mPLA0 directly to the chip, starting with V T+(f35). This required fewer than five

iterations on average for the instances. Since f35 had the most failure types, all of

the other 117 functions, which exhibit fewer failure types, would be equally easy to

program correctly in the presence of variations. Thus, all errors caused by process

variations were corrected, with the vast majority requiring a single, precomputed VT

set and a small fraction requiring on-chip programming.

3.6.8 Robustness Against PVT Variations

Figure 3.12 shows the delay variations in delay of five sample threshold functions

w.r.t process, temperature, and voltage variations. As expected, FTL cells are slowest

in the SS corner and fastest in the FF corner. Furthermore, as the process moves from

50

Stage Procedure Yield (%)

Training (20K instances)

Mf=61
mPLA++ 100%

Testing (100K instances)
mPLA++ 99.96%

mPLA0 (On-chip) 100%

Table 3.3: Yield When mPLA++ and mPLA0 (On-Chip) Are Used for Programming In-

stances of FTL35 = [3, 3, 2, 1, 1; 8].

the SS corner to the FF corner, the delay improves, as expected. When the voltage

increases from 0.81 V to 0.99 V, the delay improves. The FTL cells were also tested

for reliability for the consumer temperature range of 0◦C, 25◦C, and 55◦C. This result

demonstrates that a V T+(f) solution, generated using TT 0.9V 25◦C, can reliably

work with PVT variations.

3.6.9 Robustness Against V T Drift

Over the lifetime of an FTL cell, the charge stored in the gate of flash transistors

eventually leaks into the channel due to the deterioration of thin oxide layer Degraeve

et al. (1999), signal disturbances Bersuker et al. (2001), etc. This leakage effectively

changes the V T of the flash transistors. By extension, it also changes the weights

programmed on the FTL cell. Table 3.4 shows the effect of decreasing V T on the

threshold functions programmed on the FTL cells. All 117 FTL cells operated cor-

rectly with a V T drift of up to 5mV . Beyond 5mv, some cells failed. However, after

testing, their V T s can be reprogrammed to compensate for this drift. Furthermore,

all the FTL cells that were selected by Genus when synthesizing ASIC designs (See

Section 3.6.11) operated correctly with 20mV drift in V T .

51

Figure 3.12: Delay of an FTL Cell for Threshold Functions, with the Process (SS, TT,

FF), Voltage (0.81 V, 0.9 V, 0.99 V), and Temperature (0◦C, 25◦C, 55◦C) variations.

52

Vt Drift (mV) % FTL cells operated correctly

1 100

2 100

5 100

10 96.55

Table 3.4: Robustness Against VT Drift for FTL Cells Programmed with All 117 Threshold

Functions of up to 5 inputs.

3.6.10 Post-fabrication Timing Correction

The experiments described in Sections 3.6.7, 3.6.4 and 3.6.5 demonstrate the flex-

ibility of FTL due to the possibility of configuring its function after fabrication. This

characteristic can also be used to correct timing errors.

Figure 3.13: Datapath to Demonstrate Post-Fabrication Timing Corrections.

Figure 3.13 shows a small datapath that was constructed to demonstrate how

to correct setup-time and hold-time violations after fabrication in an FTL design.

The datapath consists of clock-to-Q (C2Q) delay, combinational delay (D2D), and

DFF specifications for setup (DFF setup) and hold (DFF hold) times. The clock is

skewed by an appropriate amount ∆, to generate either a setup-time or a hold-time

53

Figure 3.14: Post-Fabrication Setup-Time Correction Using an FTL cell.

Figure 3.15: Post-Fabrication Hold-Time Correction Using an FTL cell.

violation. The violations are corrected by reprogramming the FTL cell to produce

different C2Q values.

Figure 3.14(a) shows how the data launched from FTL X misses the target clock

edge at DFF Y, thereby violating setup-time. Figure 3.14(b) shows that decreasing

the C2Q of FTL X fixes the setup-time violation. Similarly, Figure 3.15(a) shows how

the data launched from FTL X is captured by the target clock edge at DFF Y one

cycle early, thereby violating hold-time. Figure 3.15(b) shows that increasing the C2Q

of FTL X fixes the setup-time violation. Note that we can extend post-fabrication

VT adjustment to mitigate delay increases due to aging.

54

3.6.11 Delay Optimal Synthesis of ASICs with FTLs

Conventional FTL-integrated Improvements

Design
Freq.

(MHz)

Std.

Cells
DFF

Area

(µm2)

Power

(mW)

Wire-

length

(µm)

Std.

Cells
DFF/FTL

Area

(µm2)

Power

(mW)

Wire-

length

(µm)

Area Power
Wire-

length

Prog.

Time

(µsec)

Mul 417 19536 343 51855 6.00 118906 11493 272/71 32339 4.64 88592 37.6% 22.7% 25.5% 204.3

Filter 406 53588 529 157482 36.26 436000 41711 281/248 107420 28.41 322400 31.8% 21.6% 26.1% 585.8

FPU 392 48992 1734 132655 27.82 484096 40937 1693/41 98879 24.14 406091 25.5% 13.2% 16.1% 113.2

FFT 667 156242 9614 443356 100.14 1405565 140650 9286/328 368509 86.62 1199160 16.9% 13.5% 14.7% 807.1

SHA 308 33204 2161 109170 15.95 396267 26511 2147/14 66001 13.23 343852 39.5% 17.1% 13.2% 47.9

Avg. 139290 25 425689 96468 21 343504 30.7% 17.7% 19.3% 351.7

Table 3.5: Improvement in Area, Power, and Wirelength Improvement in ASICs

with FTL Integrated, over Conventional ASICs, Without Trading off Performance.

Average Improvements Are Calculated Using the Geometric mean.

In this section, we show how commercial design tools can accommodate FTL cells

in synthesis, and placement and routing. Five circuit blocks were synthesized using

the 40nm TSMC standard cell library, which was augmented with FTLs to realize

117 positive forms of all 5-input threshold functions. This was done by creating one

cell and making 117 copies and then determining the VT s of the flash transistors and

signal assignments to realize each threshold function. Then each FTL standard cell

was characterized in a conventional way. Only the positive forms of the threshold

functions were included in the library to keep the increase in the library size to

a minimum (about 7%) and to exploit the capability of Genus to recognize NPN

equivalents of the cells (see below).

The ASIC benchmarks are: 1) 32-bit Wallace multiplier (Mul), 2) 28-bit FIR

filter (FIR), 3) 64-bit floating-point unit multiplier, 4) 16-bit Fast Fourier Transform

(FFT), and 5) 512-bit Secure Hash Algorithm (SHA). Designs were synthesized using

Cadence Genus and then placed and routed using Cadence Innovus. Standard cell

libraries for FTL cells were characterized using Synopsys HSPICE and generated in

55

Liberty format. Timing checks were performed using cross-corner analysis at {SS,

125C, 0.81V}, {TT, 25C, 0.9V} and {FF, 0C, 0.99V} corners. After placement

and routing, the select cells and the FTL programming logic cells (see Figure 3.5

are paired. Then engineering change order (ECO) commands stitch the programming

scan chain. Since the latter uses high-voltage nets, shielding nets are added to protect

neighboring nets from high-voltage signals. Both versions of each ASIC were verified

using Cadence Conformal.

The results of synthesis and P&R, summarized in Table 3.5, demonstrate signifi-

cant improvements in the area (30.7%), power (17.7%), and wirelength (19.3%) aver-

aged over the designs. These improvements include the overhead of the programming

infrastructure described in Section 3.4, which was less than 5% in the worst case.

Note that these across-the-board improvements were obtained under delay-optimal

synthesis. This would not be the case for area-optimal synthesis.

Wherever it was beneficial to improve timing, Genus found and replaced threshold

logic cones (not necessarily maximal fanout-free cones) driving DFFs with the appro-

priate FTL cell. This led to a reduction in the number of standard cells. It ranged

from 10% to 42%. There are two causes for this reduction. First is the absorption

of part of the fanin cone that is a threshold function driving the DFF into the FTL.

This eliminates all those cells. A second source is the reduction of the subcircuit (e.g.

C in Figure 3.2b) that feeds the fanin cone. The significant speed advantage of the

FTL cell creates large positive slack at the outputs of the feeder subcircuit. Conse-

quently, to meet timing, Genus re-synthesizes the feeder with slower logic. Standard

logic primitives such as inverters, 2-input gates, 3-input gates, inverters, and even

AOI/OAI gates are reduced, and the number of complex cells increases, reducing the

total cell count.

The last column of Table 3.5 shows estimates of the time (i.e., number of pulses)

56

required to program the FTL cells, which increases linearly with the number of FTLs.

Although the actual programming time will depend on the technology, it is expected

to be on the order of microseconds Richter (2014).

Table 3.6 shows the run-time of Genus during synthesis, for all the ASIC designs.

While the inclusion of all the 117 FTL cells increases the library size slightly (about

7%), FTL cells allow faster timing closure by generating positive slack. Table 3.6 also

shows the peak memory usage of Genus during synthesis, for all the ASIC designs. The

peak memory requirements are almost identical even after adding the 117 threshold

functions in the library.

Runtime(sec) Peak memory (MB)

Conv. FTL-integ. Conv. FTL-integ.

Multiplier 1451 636 1269 1292

Filter 2596 2893 1401 1439

FPU 2947 2724 1273 1262

FFT 3102 2653 1421 1416

SHA 1838 1790 1297 1292

Table 3.6: Runtime and Peak Memory Usage for the Synthesis of ASIC designs.

To demonstrate that Genus can recognize NPN equivalences of positive-form

threshold functions, we selected a number of threshold functions and negated and

permuted their inputs and negated their output. Table 3.7 shows the result of one of

the more complex functions. The interpretation of Table 3.7 is as follows. Consider

the threshold function ab+ ace+ ade+ bcd+ acd. The weight-threshold description

is [4, 3, 2, 2, 1; 7] = 4a+ 3b+ 2c+ 2c+ d ≥ 7, which is an FTL93. When Genus found

a sub-circuit with input negation, āb + āc̄e + āde + bcd + ac̄d, , it replaced it with

an FTL93 with ā and c̄ driving inputs a and c. The last row shows that Genus can

57

Threshold

function
Verilog description of NPN equivalent Synthesis result

ab+ace+ade

+bcd+acd
y <= ((4*a) + (3*b) + (2*c) + (2*d) + (1*e)) >= 7 ? 1:0; FTL 93 (4,3,2,2,1;7)

[4,3,2,2,1;7] y <= ((4*(!a)) + (3*b) + (2*(!c)) + (2*d) + (1*e)) >= 7 ? 1:0;
FTL 93 (4,3,2,2,1;7) and

two inverters for ”a” and ”c”

y <= !((4*(!b)) + (3*c) + (2*(!d)) + (2*a) + (1*e)) >= 7 ? 1:0;
FTL 94 (4,3,2,2,1;6) and

three inverters for ”a”, ”c” and ”e”

Table 3.7: Detection of NPN Equivalents of Threshold Functions Using a Library of

117 5-Input FTL cells.

detect output negation and maps it to a different cell FTL94 whose positive form is

[4, 3, 2, 2, 1; 6] = 4a + 3b + 2c + 2c + d ≥ 6. In each case, the synthesis tool detected

the threshold functions and their NPN equivalents, and added inverters as necessary,

without using any additional standard logic gates such as AND, OR, etc.

The last experiment conducted was aimed at discovering what threshold functions

would be detected if there were no area or delay constraints. Figure 3.16 shows

all possible threshold functions that could be detected in the 32-bit Wallace tree

multiplier. The multiplier has 343 DFFs. Excluding the 64 input DFFs, all 279

remaining DFFs and cones of logic feeding them were replaced by FTL cells, showing

that complex multi-level logic circuits that are threshold functions frequently occur

in logic circuits, and synthesis tools can recognize them.

3.7 Conclusion

In this chapter, we demonstrated that there could be substantial value in going be-

yond the traditional use of flash technology as memory and using it in CMOS logic.

58

Figure 3.16: Distribution of Threshold Functions in 32-Bit Multiplier When Synthe-

sized Using FTL Cells with Zero-Delay Zero-power.

Unlike many emerging memory technologies, flash technology is mature and com-

patible with CMOS fabrication. Using flash transistors in conjunction with CMOS

transistors, we developed a design of a binary neuron, referred to as FTL, that can

realize a large number of threshold functions in a single standard cell. We demon-

strated several novel features of an FTL cell: (1) it is a configurable standard cell,

whose function can be configured after fabrication; (2) the configuration is achieved

by conventional techniques of tuning the threshold voltages of flash transistors with

high fidelity; (3) its design could be optimized to make it very robust in the presence

of circuit parasitics and to improve robustness also improves its performance; (4) the

ability to tune its performance after fabrication provides a novel way to improve the

yield in the presence of process variations and correct timing errors; (5) it was de-

signed so that it can automatically be embedded within ASICs using commercial CAD

tools, and resulting in significantly improved area and power while still operating at

the maximum possible frequency.

59

Chapter 4

THRESHOLD LOGIC FPGA

4.1 IntroductionWagle and Vrudhula (2021)

Techniques for improving the power, performance (clock frequency) and area

(PPA) of circuits to be implemented on FPGAs have matured over three decades Chen

et al. (2006); Kuon et al. (2008). Interest in this topic has resurged due to the in-

creasing use of FPGAs for implementing compute-intensive algorithms that arise in

machine learning such as deep neural networks (DNNs) Zhou and Jiang (2015); Ma

et al. (2017), augmented reality Guimarães et al. (2007) or virtual reality Fohl and

Hemmer (2015). Broadly speaking, techniques for improving the PPA of FPGA im-

plementations fall into two, inter-related approaches: (1) improving design mapping

algorithms and (2) modifying the architecture of the basic logic element (BLE) (also

referred to as Configurable Logic Block or CLB), which is most often implemented by

a look-up table (LUT) circuit. Extensive optimizations of design mapping algorithms

targetting general netlists have taken place over two decades, and are now part of

design tools offered by FGPA manufacturers. However, the focus of improving de-

sign mapping algorithms has now shifted to a specific class of applications such as

DNNs Moolchandani et al. (2021).

Research into alternate BLE architectures has received less attention, partly be-

cause there is little opportunity to improve the design of static CMOS logic circuits.

Most of the variations in the design of the BLE have included changing the support

set and the set of functions implemented by LUTs Ahmed and Rose (2004); Feng

et al. (2018); Anderson et al. (2012). More recently, BLE architectures employing

60

various memristor-type devices have been proposed, such as RRAM, STT-MTJ and

DWT Tang et al. (2016); Perricone et al. (2017). Although existing literature claims

that these will result in ultra-compact and energy-efficient FPGAs, large-scale, com-

mercial demonstration is still far away.

In this chapter, a different structure of a BLE is described, resulting in a new

architecture for an FPGA, referred to here as threshold logic FPGA (TLFPGA). The

main features of the new design are as follows. The BLE comprises a conventional

LUT and a CMOS digital implementation of a threshold logic cell (TLC), commonly

known as a perceptron or a binary neuron. Such a BLE provides ways to explore

performance-area tradeoffs that are not present with conventional BLEs. This leads

to a new design mapping algorithm that exploits the presence of conventional LUTs

and TLCs, resulting in significant improvements in PPA.

As the BLEs in a TLFPGA are designed with conventional CMOS devices, TLF-

PGAs are compatible with existing design tools and can be manufactured today. A

detailed evaluation of circuits mapped to FPGAs and TLFGPA is done, exploring

BLEs with different sizes of LUTs and a fixed number of TLCs. The FPGAs and

TLFPGAs were designed down to the layout level using the public domain FPGA

design tools VPR Betz and Rose (1997), OpenFPGA Liu (2014), and Genus® for

synthesis and Innovus® for placement and routing. Estimates for performance and

power are based on simulation of netlists with all parasitics extracted from the layouts.

The circuit benchmarks that were mapped to the FPGAs and TLFPGAs include the

traditional set of ISCAS-85 as well as larger and more complex function blocks from

OpenCores.

61

Figure 4.1: Organization of the Chapter

4.1.1 Organization of the Chapter

Section 4.2 briefly describes the published research for improving FPGA archi-

tectures and how the present work fits in this research. Section 4.3 then describes

the TLFPGA architecture and compares LUT-n1 for n = 4, 5, 6, 7 with a TLC-7 in

terms of area, delay, and power. Section 4.4 describes the design flow that results in

a complete layout of the FPGA and TLFPGA. Sections 4.5 and 4.6 describe the logic

mapping algorithm. Experimental results using standard benchmark circuits and

larger complex function blocks are presented in Section 4.7. Section 4.8 concludes

this chapter.

1LUT-n refers to an LUT whose support set is n.

62

4.2 Related Work

Prior efforts to improve the PPA of FPGAs focused on the design mapping al-

gorithms or re-architecting the BLE. Design mapping algorithms are central to au-

tomating FPGA design. One of the earliest is FlowMap Cong and Yuzheng Ding

(1994), which showed that FPGA technology mapping minimizing logic-depth can

be solved optimally in polynomial time. They reported up to a 7% reduction in the

depth of mapped benchmark circuits. This was subsequently extended in the work by

Cong et al. Cong and Ding (1994), in which estimated interconnect delays are used

to minimize the delay. In the method described by Pan et al. Pan and Liu (1996),

retiming is done during technology mapping to reduce area and power. PowerMap,

proposed by Hao et al. Li et al. (2001), reduces the area and power without sacrificing

performance by selectively applying depth-optimal LUT mapping for timing-critical

paths and area-optimal LUT mapping for non-critical paths. Tang et al. Tang et al.

(2005) proposed rewiring as a way to replace connections without altering the func-

tion, and demonstrated a substantial (17%) reduction in the number of LUTs when

compared to several previously reported methods. The method proposed by Lin et

al. Lin et al. (2006) performs clustering and mapping simultaneously, resulting in a

significant performance improvement, albeit with an area penalty. Based on this par-

tial review, it is clear that the domain of mapping algorithms have been extensively

researched and as a result, FPGA manufacturers offer them as part of their suite of

design tools.

Approaches to modifying the building blocks of an FPGA have mostly examined

how different sizes of LUTs would impact performance and area, through empirical

evaluations of benchmark circuits. Ahmed et al. Ahmed and Rose (2004) shows that

an LUT-4 is better for reducing area and an LUT-6 is better for improving perfor-

63

mance. Anderson et al. Anderson et al. (2012) used an extended LUT-5 structure and

showed a 9% reduction in the area with a 5% performance penalty. Feng et al. Feng

et al. (2018) constructed an LUT-7 with reduced functionality, by interconnecting

two LUT-4 circuits. This reduced the area by 9.5%, with a small (1.6%) reduction in

performance. Instead of exploring the different variations of the LUTs, the approach

described in this chapter replaces a few LUTs in a BLE with TLCs. Although a TLC

supports a smaller set of functions as compared to an LUT with the same support set,

TLCs are significantly smaller, faster, and consume much less power than an LUT

Kulkarni et al. (2014); Wagle et al. (2018a). On a significant number of benchmark

circuits, their use leads to simultaneous improvements in the PPA after mapping. On

circuits where there is a small degradation in performance, the track-count reduces

substantially.

Several researchers have also explored the use of emerging devices in FPGAs.

Goncalves et al. Goncalves et al. (2013) presented a radiation-hardened FPGA, built

using MTJs (Magnetic Tunnel Junctions). The work presented by Nukala et al. Nukala

et al. (2012) used STT-MTJ (Spin Torque Transfer-Magnetic Tunnelling Junction)

devices that were used to construct TLC-based logic elements. Their architecture al-

lows the mapping of complex logic circuits into an extremely compact area, while also

simultaneously delivering power improvements. Sampath et al. Sampath et al. (2015)

used MTJs to implement both the LUT and the interconnect fabric to achieve area

reductions. Kumar et al. Kumar et al. (2014) also used MTJs to implement LUTs,

focusing on improving the delay and the energy-delay product. Cong et al. Cong

and Xiao (2011) used memristor-based interconnects to reduce the area, power, and

delay footprint of interconnects needed in an FPGA. Although these technologies

are still under development and not yet viable commercially, existing literature pro-

vides compelling evidence that they have the potential for realizing ultra-compact

64

Figure 4.2: Sample Tile Structure for (A) FPGA and (B) TLFPGA. Two of the LUTs in

(A) Have Been Replaced with TLCs in (b).

and energy-efficient FPGAs. The work presented in this chapter focuses on building

FPGAs using TLCs that are constructed using conventional CMOS transistors and

can therefore be fabricated easily using currently existing technologies.

4.3 TLFPGA Architecture

Figure 4.2 shows the structure of a standard FPGA tile and a TLFPGA tile. Each

tile is a cluster of ten BLEs, with configuration registers and multiplexers (mux) that

are used to program the BLEs. In the FPGA tile, all the BLEs are LUTs, whereas

the BLEs in the TLFPGA tile are eight LUTs and two TLCs. The reason for having

this specific distribution of LUTs and TLCs will be explained later in this section.

Operation of a TLC: The transistor-level structure of the TLC is shown in Fig-

ure 4.3. It consists of four components: a sense amplifier, a latch, a left input network,

and a right input network. The circuit is designed to operate in two phases: Reset

phase and Evaluation phase. In the reset phase, the clock signal CLK = 0. N5 and N6

are discharged in this phase, which in turn discharges all the paths from N1 and N2

to the ground line. The transistors M1 and M4 pull up the outputs of N1 and N2 to

1. In the evaluation phase, CLK transitions from 0 → 1. Assume the inputs arrived

65

before the clock started transitioning. As soon as CLK transitions, N5 and N6 start

charging through the left and the right input network respectively. M13 and M14

are turned OFF, and both N5 and N6 will rise to 1. Without the loss of generality,

assume that the left input network has a higher conductivity than the right input

network during the evaluation phase. Subsequently, N5 will rise before N6, and turns

M7 on. Prior to the evaluation, N1 and N2 were both 1. Therefore, M5 is active when

M7 turns on. This discharges N1 through M5 and M7. The discharge of N1 stops

the further discharge of N2 by turning off M6 and turning on M3. Consequently, the

final values of the outputs are N1 = 0, N2 = 1, which resets the output latch. If the

right input network had high conductivity, the result would have been N1 = 1, N2 =

0, which results in setting the latch. Notice the extra transistors M9 and M10. These

are feedback transistors that help ensure that once the clock transition completes,

further changes on the inputs will not affect the output.

The assignment of signals to the left and the right input networks is done to ensure

that their conductivities are never equal over all the minterms of the function. This

avoids incorrect evaluation by the sense amplifier. Consequently, transistors in the

input networks are sized to minimum width to ensure that the input networks do not

transition too quickly for the sense amplifier to evaluate. Transistors M2, M3, M5,

M6, M7, M8, M13, and M14 are sized to 4 times the minimum width to reduce the

overall clock to Q delay of a TLC. All the other transistors are sized to minimum

width to keep the parasitics and the leakage power low.

Configuration registers are used to optionally invert the polarity of the inputs to

the TLC. A configuration register Ri = 0 if input Xi is to appear in positive polarity,

and Ri = 1 if Xi is to be complemented.

For the TLC to properly realize a threshold function, the predicate shown in Equa-

tion 2.1 has to be converted to a strict inequality, and the variables in Equation 2.1

66

Figure 4.3: Threshold Logic Cell (TLC) Structure. the Sense Amplifier Detects the

Difference in Conductivity of the Left and Right Input Networks and Sets the Outputs N1

and N2 accordingly.

have to be mapped to its inputs. Thus, Equation 2.1 is replaced with
∑n

i=1 2wixi >

2T − 1. As the signals driving the input networks are complementary, to realize this

inequality the same number of literals representing a signal must appear in both net-

works. For example, consider f(a, b, c) = a ∨ bc ≡ 2a+ b+ c ≥ 2 ≡ 4a+ 2b+ 2c > 3.

This is rewritten as 2a + b + c + 1 > 2(1 − a) + (1 − b) + (1 − c). Therefore the

signals assigned to left input network in Figure 4.3 would be X1 = a, X2 = a, X3 = b,

X4 = c, X5 = 1, X6 = 1, and X7 = 0, and Ri = 1, for i = 1, 2, · · · 7.

Note that this particular signal assignment just requires the seven XORs and

configuration registers to program the TLCs and does not need any extra control

mechanism. Besides, signal replication does not influence the required track-count in

the TLFPGA. The configuration registers of a TLC can be programmed alongside

the configuration registers of other LUTs in the FPGA. For this chapter, they were

67

programmed using a scan chain mechanism.

The advantages of the TLC have already been validated using 65nm technology

in Yang et al. (2015); Kulkarni et al. (2016a). A TLC-based Wallace multiplier ASIC

was fabricated, and then compared against a functionally equivalent, conventional

standard cell implementation on the same die. Both simulation and chip measurement

results demonstrated a 24% drop in area, 33% drop in dynamic power, 50% drop in

leakage power, and 45% drop in wirelength, without any degradation in performance.

Such significant improvements were also demonstrated for other designs in Kulkarni

et al. (2016a).

TLC vs LUT: Tables 4.1a and 4.1b show a comparison of the delay and power of a

TLC and several LUTs, all designed as standard cells in 40nm bulk CMOS and 28nm

FDSOI.

A TLC-7 can realize all 4-input threshold functions and a subset of 5, 6, and

7-input threshold functions. These functions occur frequently in practical circuits.

Figure 4.4 shows how logic absorption is performed. If part of a logic cone that drives

the D-input of a flipflop happens to be a threshold function of some set of internal

signals that can be realized by a TLC-7, then that part along with the flipflop can be

replaced by a single TLC-7 cell. The remaining part of the cone that is not absorbed

into a TLC is called the feeder circuit. Thus, a key step in mapping circuits to a

TLFPGA is to identify threshold functions that are part of the logic cone driving

flipflops. Note that logic absorption can always be done because the basic logic gates

(e.g. AND, OR, NAND) are threshold functions.

TLC Tile vs LUT Tile: Subcircuits of numerous arithmetic and control circuits

turn out to be threshold functions of some internal signals, and a vast majority have

a support set of four variables. This means that each output of the feeder circuit

(see Figure 4.4) could be mapped to an LUT. Hence, clustering four LUTs with a

68

BLE Type Config. Regs MUX/XOR Delay (ps) Power (µW)

LUT-4 16 15 549 35.0

LUT-5 32 31 613 42.4

LUT-6 64 63 881 64.9

LUT-7 128 127 916 124.7

TLC 7 7 143.5 26.1

(a) 40nm

BLE Type Config. Regs MUX/XOR Delay (ps) Power (µW)

LUT-4 16 15 220 33.2

LUT-5 32 31 226 64.0

LUT-6 64 63 294 125.0

LUT-7 128 127 331 248.0

TLC 7 7 109 22.8

(b) 28nm FDSOI

Table 4.1: Delay and Power for LUTs (With DFFs) and TLC. Compared to LUT-4, a TLC

Is 3.8X Faster and 38% Lower Power in 40nm, and Is 2X Faster and 31% Lower Power in

28nm.

Figure 4.4: Logic Absorption. Part of the Logic Cone Driving the DFF Is a Threshold

Function abc ∨ abd. That Logic and the DFF Are Replaced by a Single TLC.

69

single TLC would allow the routing between the LUTs and the inputs of the TLC

to remain within a single tile, thereby reducing the inter-tile routing. This leads to

an improvement in the overall performance of the circuit. Since a cluster size of 5

is too small for practical circuits, and does not adequately provide for TLC to TLC

intra-tile routing, a cluster size of 10 BLEs was chosen. Therefore, by extension, a

cluster of 8 LUTs and 2 TLCs was chosen for a TLFPGA tile. Figure 4.5 depicts a

typical cluster.

Figure 4.5: Cluster Size of 10 for TLFPGA; a TLC Typically Gets Inputs from Four

Variables. the Number of LUTS in Each TLC Is Set to Four to Ensure Sufficient LUTs to

Feed the TLCs Within a Single tile.

In order to study the effect of LUT sizes on the area, power, and performance of

a TLFPGA, tiles with 4, 5, 6, and 7-input LUTs were designed. Since a tile in the

TLFPGA contains fewer configuration registers and BLE multiplexers as compared to

a standard LUT tile, it is significantly smaller than an LUT tile. This is demonstrated

in both 40nm and 28nm technology using Table 4.2a and Table 4.2b respectively.

At both individual cell level, and tile level, the TLFPGA results in a substantial

reduction in the area over the FPGA. Later in Section 4.7, it is shown that the use of

the TLFPGA architecture improves the PPA by reducing both the logic and routing

resources during technology mapping.

70

K LUT-K FPGA (µm2) LUT-K TLFPGA (µm2) Improvement (%)

4 572 524 8.3%

5 1144 982 14.2%

6 2088 1737 16.8%

7 4047 3305 18.4%

(a) 40nm

K LUT-K FPGA (µm2) LUT-K TLFPGA (µm2) Improvement (%)

4 192 176 8.3%

5 272 236 13.2%

6 428 353 17.5%

7 780 617 20.9%

(b) 28nm FDSOI

Table 4.2: Tile Area of FPGA vs. TLFPGA in (A) 40nm and (B) 28nm. Replacement of a

Large LUT with a Small TLC Helps Shrink the Tile Size. NOTE: These Numbers Do Not

Include the Area of Inter-Tile Routing Resources, as They Are Subject to Change Based

on the Number of tiles.

4.4 TLFPGA Design and Mapping Flow

This section describes two flows (sequence of steps) needed for the development

of a TLFPGA. These are shown in Figures 4.6(a) and 4.6(b). The first, called FPGA

Generation Flow, is used to design the TLFPGA, while the second, called FPGA

Mapping Flow, is used to map the designs to the TLFPGA. Both these flows were

created based on the OpenFPGA flow originally presented in Liu (2014). All the

modifications done to the original flow are shown in yellow boxes in the figures. They

have been explained later in this section.

Figure 4.6 (a) shows the automated flow used to generate an FPGA/TLFPGA

architecture. The inputs to this flow are the parameters that define the FPGA, which

71

include tile count, tile interface, cluster size, and the number of tracks. OpenFPGA

builds the Verilog description based on these parameters. After generating the Ver-

ilog, the desired number of LUTs in the Verilog of the tile is replaced with TLCs.

After integrating all the blocks in the TLFPGA, standard synthesis, placement, and

routing are performed on the resulting Verilog specification of the TLFPGA. Finally,

the flow generates a parasitic extracted Verilog from the TLFPGA layout. The char-

acteristics of this placed and routed TLFPGA are used to build the TLFPGA model

for VPR (Versatile Packing, Placement, and Routing are public domain FPGA design

tools Betz and Rose (1997)).

Figure 4.6 (b) shows the flow used to map a circuit to an FPGA/TLFPGA. It is

a modified version of the design steps in OpenFPGALiu (2014), used to generate the

bit-stream file for the TLFPGA. The bit-stream generator was modified to support

the programming of TLCs. The sequence of steps is as follows. A behavioral netlist

is synthesized to a logic gate network. Then threshold cell mapping (TCM) is per-

formed on this netlist (Section 4.5), followed by LUT mapping using ABCBrayton

and Mishchenko (2010), to generate a BLE mapped netlist. The TCM is a new al-

gorithm that is specific to a TLFPGA and is not a part of the conventional FPGA

FlowFarooq et al. (2012). VPR places and routes the BLE mapped netlist. Finally,

OpenFPGA uses the final placement and routing results to generate the bit-stream

file required to program the TLFPGA.

4.5 Threshold Cell Mapping

In this section, an algorithm to map a general logic network G onto a TLFPGA is

presented, with the goal of improving one or more of area, power, and performance,

without degrading any of them. The algorithm first maps subnetworks of G onto

TLCs, followed by mapping the remaining parts of G to LUTs.

72

Figure 4.6: Modified OpenFPGA Flow for TLFPGA

4.5.1 Problem Definition

A given logic network is represented as a graph G = (V,E), where V = CL∪FF ,

is the set of nodes and E = {(si, Di)|si ∈ V,Di ⊂ V } is the set of edges. CL is the

set of combinational logic gates, FF is the set of flipflops, si is a source node of a

connection, and Di is the set of sink nodes of a connection. A logic cone LCi ⊂ CL

associated with flipflop ffi is a set of nodes such that there is a path from each node

in LCi to the node that connects to ffi. |LCi| is number of inputs of LCi.

A logic cone with p or fewer inputs and its associated flipflop can be realized by a

73

TLC with p inputs, if the Boolean function of the logic cone is a threshold function

of its inputs. On the other hand, an LUT with q inputs can be used to realize the

combinational part of a logic cone with q or fewer inputs, including or excluding

the corresponding flipflop. In this way, the LUT is more general than a TLC. The

technology mapping problem for the TLFPGA is to optimally map subgraphs of a

given logic network to a network of TLCs and LUTs, with the goal of minimizing the

latency, followed by minimizing the area, i.e. total number of BLEs.

4.5.2 Threshold Cell Mapping Algorithm (TCM)

In this section, an algorithm based on sound heuristics to map a logic network G

onto a TLFPGA is presented, with the aim of improving the overall PPA compared

to an equivalent network made up of only LUTs. The pseudo-code for this algorithm

is shown in Algorithm 4.

Let GF = (FF,ED) denote an undirected graph on the set of flipflop nodes FF

in G, and the set of edges ED = {(ffi, ffj)|∃k 3 LCi ∩ LCk 6= φ, LCj ∩ LCk 6= φ}.

That is, two flipflops in GF have an edge if their logic cones overlap or if their logic

cones overlap with another common logic cone. By definition GF is a an equivalence

relation and hence it consists of a collection of components, each of which is a clique.

Hence GF = {Q1, Q2, · · ·QK}, where Qx denotes a clique on FF . Note that TCM

can be performed on each clique independently as the logic cones do not overlap.

After performing static timing analysis Cortadella and Sapatnekar (2017) on G

with a given technology and cell library, each flipflop in FF will be assigned a slack

value, which the maximum difference between the required arrival time and the actual

arrival time of a signal at a flipflop’s input. The lower the value of the slack, the

more timing critical is the flipflop. The flipflops in each clique Qx ∈ GF are sorted

in increasing order of their slack values. Let SF denote the sorted set of flipflops.

74

We iterate through the elements of SF (See Algorithm 4 line 4) and apply an

algorithm called TCM-single (Pseudo-code shown in Algorithm 5). For ffi ∈ SF ,

LCi is a single output logic network. A cut in LCi is a set of edges, whose removal

disconnects the output from all of its inputs. The procedure TCM-single iteratively

selects a cut, and determines whether or not the logic function of the LCi is a threshold

function of its cut signals Kulkarni et al. (2016a); Kulkarni and Vrudhula (2016).

In Kulkarni and Vrudhula (2016), a fast and general cut-enumeration algorithm based

on network flow is presented. A much simpler and greedier procedure was later

described in Kulkarni et al. (2016a). This new algorithm can be easily modified with

constraints specific to the present application. In this chapter, the cut-enumeration

algorithm in Kulkarni et al. (2016a) is applied to each LCi corresponding to each

component of GF , with the following constraints.

1. Library constraint: The cut enumeration is restricted to subcircuits that

realize a given set of threshold functions, namely those whose support set is p or

less (See Algorithm 5 line 5A). Since these checks are applied to unate Boolean

functions, matching the function in a library using a function hash table is

very fast. Note that TCM when applied to a logic cone LC always succeeds,

because a single logic gate driving a flipflop is a valid threshold cut. The signal

assignment method described in Section 4.3 determines the configuration bits

needed to configure the TLC for the chosen threshold function. For creating a

hash table of all the threshold functions a TLC can implement, the constraint

shown in Equation 4.1 is used, which involves the number of input variables (n)

and the total weight (W) and the threshold (T) (see Equation 2.1), the fact

that the weights and threshold are integers, and the signal assignment to the

left and right input networks are complementary.

75

n = max(W, 2T −W + 1) (4.1)

We create a hash table of all threshold functions of a given number of variables

based on the above constraint. Given n, the maximum value of T will be

Tmax = dn
2
e. So, all values of T from 1 to Tmax and all values of W are evaluated,

distributing each over the number of variable from 1 to n. TCM is much faster

with hash tables as opposed to the ILP solvers used in prior works.

2. Cell fanout constraint: Suppose a subcircuit (a feasible threshold function)

of a logic cone LCi associated with a flipflop ffi is replaced by a TLC. Let

g be a gate in the given subcircuit that has fanout to a logic cone associated

with another flipflop, ffj. Then the cone of the logic associated with g must

be replicated within LCj. This is shown in Figure 4.7. It is clear that logic

replication reduces the fanout of the cell by one each time the cell’s functionality

is replicated. Since excessive logic replication tends to increase the overall LUT

requirements, logic replication is restricted to only cells with a fanout of 2. (See

Algorithm 5 line 5B)

3. Complex gate constraint: The purpose of this constraint is to avoid mapping

TLCs to logic functions that are better implemented using LUTs. Industry-

standard synthesis tools generally use complex gates (e.g., half-adders) to im-

plement these functions. Although a complex gate Ci can be decomposed into

simpler threshold functions, such a decomposition typically leads to a complex

structure that contains a fanout of 2 or more. To avoid increasing fanouts in

the circuit during TCM, complex gates are directly mapped to LUTs instead of

decomposing them into threshold functions. (See Algorithm 5 line 5C)

We now describe the reasoning behind how subcircuits are replaced with LUTs

76

A

B D Q

CK

D QC

A B D Q

D QCA

LOGIC CONE
REPLICATION

LUT BOUNDARY THRESHOLD FUNCTION BOUNDARY

CK

CK

CK

Figure 4.7: Logic Replication During Threshold Cell Mapping: Logic Cell a Is Replicated,

so That It Can Be Mapped to a TLC (Represented Using Threshold Function boundary).

or TLCs. Let di,0 and ni,0 denote the LUT depth (number of levels) and LUT area

(number of LUTs) that would result when a logic cone LCi associated with flipflop

ffi is mapped to LUTs only. Suppose when enumerating cuts in a logic cone LCi,

r feasible threshold cuts, Li,j, j = 1, 2, · · · r, are found. Let L̃i,j, j = 1, 2, · · · r be the

corresponding subcircuits that are in LCi − Li,j, j = 1, 2, · · · r. That is, L̃i,j is the

logic that is in the logic cone LCi but not in the cut Li,j. All the logic in L̃i,j is

mapped to LUTs, each resulting in a corresponding logic depth di,j, j = 1, 2, · · · r,

and correspond area (number of LUTs) ni,j, j = 1, 2, · · · r.

For timing-critical flipflops ffi (i.e., flipflops with zero slack), the cut Li,j is iden-

tified as a possible candidate for replacement by a TLC if di,j = min(di,1, di,2 · · · di,r)

(Algorithm 5 line 13-16). Similarly, for all other non-timing critical flipflops, the cut

Li,j is a candidate if ni,j = min(d = ni,1, ni,2 · · ·ni,r) (Algorithm 5 line 18-21). The

TCM-single algorithm maps the subcircuit Li,j in logic cone LCi of a timing critical

flipflop ffi to a TLC only if di,j < di.0. For non timing critical flipflops ffi, the

criterion is ni,j|< ni,0. Note that this approach ensures that the logic depth is never

increased by TCM-single, ensuring that the speed is never degraded.

77

Figure 4.8 shows an example of how mapping a TLC to a circuit helps reduce

the number of LUTs that are needed. When a TLC is mapped to the circuit, which

was originally mapped exclusively to LUTs, the mapping of the LUTs changes. As a

result, the overall number of LUTs reduces by 1 when a TLC is mapped to the circuit

in the example.

D Q

CK

THRESHOLD CELL
MAPPING

ORIGINAL MAPPING WITHOUT THRESHOLD LOGIC

NEW MAPPING WITH THRESHOLD LOGIC

OLD CIRCUIT COST=3*LUT

NEW CIRCUIT COST= 2*LUT + THRESHOLD LOGIC
CELL

THRESHOLD
LOGIC CELL

CK

I1
I2
I3
I4

LUT BOUNDARY

THRESHOLD FUNCTION BOUNDARY

Figure 4.8: Reduction in Circuit Implementation Cost in a TLFPGA as Compared to an

FPGA. the Cost of Mapping the Circuit to a TLFPGA Is Lower than the Cost of Mapping

the Same Circuit to an FPGA.

TCM iterates through all the flipflops in G. During each iteration, it maps TLCs

to flipflops only when they lead to an improvement in performance or area. An

additional global constraint on the total number of TLCs that can be mapped to G

is imposed. The purpose of this constraint is to improve the utilization of the tiles

78

of TLFPGA. Since the TLFPGA tile architecture has an LUT to TLC ratio of 4:1,

maintaining that ratio globally allows the placement algorithm to proportionately

pack the LUTs and TLCs in each tile, such that there are fewer unused BLEs in the

tiles that were used. Maintaining the 4:1 LUT:TLC ratio, priority is given to the

timing-critical flipflops for mapping to the TLCs (See Algorithm 4 line 3, 7-8). Once

the TCM iterates through all the flipflops, G is transformed into a network of TLCs

and logic gates. Finally, all the remaining logic gates that were not mapped to TLCs

are mapped to LUTs. This step delivers the final output of TCM, which is a network

of LUTs and TLCs. Once TCM is done, VPR takes G, and places and routes the

design on the TLFPGA architecture. It must be noted that TCM is applicable to

any arbitrary sized TLC, and not just a TLC of size 7.

Algorithm 4 TCM: Pseudo Code for Mapping All Suitable Subcircuits in a Netlist G to

TLCs

Input: G = (V,E), where V = CL ∪ FF, ffi ∈ FF, LCi ⊂ CL and

E = {(si,Di)|si ∈ V,Di ⊂ V}

Output: Gmapped:: G mapped to TLCs and LUTs

1: GF = (FF,ED) where ED = {(ffi, ffj)|∃k 3 LCi ∩ LCk 6= φ,LCj ∩ LCk 6= φ}

2: for Qx ∈ GF do

3: SFx = sort based on descending timing criticality(Qx)

4: for ffi ∈ SFx do

5: G = TCM-single(ffi)

6: Gmapped = Perform LUT mapping on G

7: if LUT:TLC ratio in Gmapped < 4:1 then

8: End TCM

9: end if

10: end for

11: end for

79

Algorithm 5 TCM-Single: Algorithm to Map a TLC to a Given Flipflop and Its Logic

Cone
Input: ffi, G

Output: Updated G

1: LCi = Input Logic Cone(ffi)

2: LCLUTi = Map LUTs to LCi

3: di,0 = logic depth (LCLUTi)

4: ni,0 = number of LUTs (LCLUTi)

5: Li = Enumerate logic cuts on LCi originating from ffi, with the following constraints:

1. Library Constraint: Subcircuit extracted by enumerated cut must be realizable

using a TLC-7

2. Fanout Constraint: Cells can only be included in a cut if their fanout does not

exceed 2

3. Complex Cell Constraint: Complex gates that can be better implemented

using LUTs are not included in the cut.

6: for Li,j ∈ Li do

7: L̃i,j = LCi − Li,j

8: L̃LUTi,j = Map LUTs to L̃j, j

9: di,j = logic depth (L̃LUTi,j)

10: ni,j = number of LUTs (L̃LUTi,j)

11: end for

12: if ffi is timing-critical then

13: Li, di = Li,j , di,j , if di,j == min (di,1, di,2, .., di,r)

14: if di ≤ di,0 then

15: G = Replace ffi and Li in G with TLC

16: end if

17: else

18: Li, ni = Li,j , ni,j , if ni,j == min (ni,1, ni,2, .., ni,r)

19: if ni ≤ ni,0 and di ≤ di,0 then

20: G = Replace ffi and Li in G with TLC

21: end if

22: end if

80

4.6 Placement-aware Remapping

Figure 4.9: Placement-Aware Remapping: Clustering Algorithm in VPR Requires Two

Tiles to Implement the Example Circuit G on a TLFPGA. Inter-Tile Routing Delay Will

Be Added to the Inputs of T3, as Its Inputs Are Generated in Another Tile. Instead, If the

Function of T3 Is Re-Mapped to an LUT, Then the Clustering Algorithm Only Requires

One Tile to Implement G on the TLFPGA. This Improves Tile Utilization, and Removes

Inter-Tile Routing Delay from the Inputs of T3 Thereby Improving the Overall performance.

TCM transforms a given netlist G into a network of LUTs and TLCs, which is

then placed and routed by VPR. Before placing and routing G on TLFPGA, VPR

creates multiple clusters (packing algorithm Betz and Rose (1997)) of the LUTs and

TLCs of G, such that each cluster can be implemented using a single tile of TLFPGA.

Here, the sub-goal of VPR is to minimize the number of clusters, without degrading

the performance. Consider the example circuit G in Figure 4.9, made of 4 LUTs (L1,

L2, L3, and L4) and 3 TLCs (T1, T2, and T3). Since each tile can only contain two

TLCs, VPR packs T1 and T2 on one tile, and T3 on another tile. Since T3 is not in

the same tile as its input logic cone, an inter-tile routing delay is introduced at the

inputs of T3, which degrades the overall performance of G. A heuristic algorithm to

81

improve the clustering of LUTs and TLCs is used, as follows. In this algorithm, TLCs

which receive inputs from other clusters are re-mapped to an LUT in one of those

clusters that can accommodate an additional LUT. In the example, the function of

T3 is remapped to an LUT, such that remapped G is now a network of 5 LUTs and 2

TLCs. VPR can now fit the remapped G in a single cluster, and remove the inter-tile

routing from the inputs of T3. Similar to this example, the heuristic algorithm also

remaps LUTs to TLCs, when LUTs get their inputs from other clusters which have

available TLCs, and if the function of the LUT can be implemented using the TLC.

This feature is important, as LUTs and TLCs can be used interchangeably during

mapping to improve the overall PPA. To the best of our knowledge, most mapping

algorithms designed for heterogeneous FPGA architectures do not re-map the logic

of one basic logic element (BLE) with another (for example, LUT-6 re-mapped to

LUT-4 or vice versa). Due to the lack of re-mapping algorithms, FPGA architectures

are made homogeneous (one type of LUT) so that LUTs can be packed as tightly

as possible, in the available tiles. The use of a placement-aware mapping algorithm,

although very simple, enables tighter packing of tiles even when using a heterogeneous

architecture.

4.7 Experimental Results

This section presents an evaluation of the TLFPGA architecture. Three separate

sets of experiments were conducted: The first set of experiments (Subsection 4.7.2)

was aimed at demonstrating how the PPA improvement depends on the ratio of the

amount of logic absorbed into a TLC to the amount of logic that is left behind

(see Figure 3). The higher the ratio, the greater the improvement in PPA. The

motivation behind this experiment stems from the fact that a TLC can be viewed as

an edge triggered, multi-input flipflop that realizes a threshold function of its inputs.

82

An equivalent static CMOS logic circuit would often require several levels of logic

gates. For this reason, a set of combinational benchmark circuits (ISCAS-85) were

selected, and pipeline stages were introduced by adding flipflops between levels of

logic, and then applied the TCM procedure that replaces flipflops and portion of

their cones with a single TLC. One to nine pipeline stages were introduced in each

of ten selected ISCAS-85 circuits and the resulting 90 circuits were mapped to an

FPGA and a TLFPGA. Evaluations were done using VPR.

The second set of experiments (Subsection 4.7.3) was carried out to explore how

TLFPGA performs against a conventional FPGA design across several measures. For

this, more realistic circuits from the OpenCores benchmark suite were chosen. These

circuits were also pipelined until the logic depth of the critical path was between eight

to twelve levels. These were determined to allow for a sufficient number of LUTs and

TLCs to be used in the TCM algorithm. These evaluations were also done using

VPR.

Finally, the third set of experiments (Subsection 4.7.4) was conducted using a

small physically designed layout of a TLFPGA, to validate the evaluation results

from VPR.

Figure 4.10: Average Percentage Reduction (Based on Geomean) in the Number of (A)

BLE Configuration Registers, (B) Multiplexers, (C) Area and (D) Power in TLFPGA as

Compared to FPGA for ISCAS-85 Circuits (Higher Is better).

83

Figure 4.11: Fraction of Circuits That Showed Improvements in the Number of (A) BLE

Configuration Registers, (B) Multiplexers, (C) Area and (D) Power in TLFPGA as Com-

pared to FPGA for ISCAS-85 Circuits (Higher Is better).

4.7.1 Experimental Setup

The TLFPGA architecture was evaluated using ISCAS-85 and OpenCores bench-

mark circuits. Evaluations were conducted for two technologies: 40nm and 28nm

FDSOI. The evaluation of the 28nm FDSOI from STMicroelectronics was done at

Slow/Slow 0.9V V DD 125◦C simulation corner, while the 40nm-LP CMOS from

TSMC was done at Slow/Slow 0.81V V DD 125◦C. All measures such as per-

formance, power, area, track-count, etc. are computed based on layout extracted

netlists. Tool-related details for all the experiments are included in their respective

subsections.

Note that during the experiments, TCM could find very few, if any, subcircuits

with a support greater than four. So in order to realize all threshold functions of

support four and a few larger ones, a TLC-7 was chosen for the experiments.

4.7.2 Impact of Pipelining on TLFPGA

VPR requires model files to place and route the FPGA architectures. To get

the most reliable results using VPR, models of the FPGA and the TLFPGA were

84

generated based on their respective layout parasitics. The layouts of the tile structures

were placed and routed using Cadence Innovus®.

Figure 4.10 shows the percentage improvement in the BLE-parameters of a TLF-

PGA as compared to an FPGA for both 40nm and 28nm. Improvements in the

technology-independent parameters such as configuration registers and muxes indi-

cate that the TLFPGA can potentially offer benefits at other technology nodes as well.

This is further demonstrated as both 40nm and 28nm showed consistent improvements

in technology-independent parameters. Minor differences in these parameters between

the two technologies are due to the technology-dependent tradeoffs being made by

employing heuristics. The results show that both technology-independent parameters

and technology-dependent parameters such as area and power improve with increas-

ing number of pipeline stages. This is a consequence of the TLC replacing a flipflop

and part of a combinational logic cone.

Figure 4.10 also shows that for a circuit with a fixed number of pipeline stages, as

the sizes of the LUTs increase, the advantages of using a TLFPGA over an FPGA also

increase. This is due to the exponential increase in the BLE configuration registers

and muxes as the size of the LUT increases. The number of configuration registers

and XORs remains constant for the TLC. Hence, when the LUT requirements are

reduced during technology mapping, there is a substantial reduction in the area and

power requirements, which in turn results in significantly higher improvements when

the TLFPGA is used. Figure 4.12 shows the improvement in the maximum frequency

(performance) and track-count in the ISCAS-85 circuits when comparing an LUT-6

FPGA with an LUT-6 TLFPGA in 40nm and 28nm respectively. Generally, the rout-

ing algorithms in VPR either trade-off performance for track-count, or track-count

for performance. This is because fewer tracks result in a drop in routing power, but

the signals may have to take longer routes to fit within the limited number of tracks.

85

Conversely, a higher number of tracks may improve performance because signals can

now utilize the available tracks to take the shortest path from their source to their

destination. The simultaneous average improvement (Calculated using geomean) in

both the parameters indicates that one parameter was not traded off for the other.

This observation is further proven by observing that 54% of the circuits in 28nm

showed a clear improvement in both frequency (5%) and track-count (2.3%), while

only 4% of the circuits showed a simultaneous degradation in both the parameters. In

40nm, while the average performance of the TLFPGA is the same as an FPGA, there

was a 6% improvement in the track-count. These results show that the performance

and track-count improvements gained from the use of TLFPGA are consistent across

technologies.

Figure 4.12: Improvements in Maximum Frequency and Track-Count for LUT-6 TLFPGA

over LUT-6 FPGA for All ISCAS-85 Circuits in 40nm and 28nm. X-Axis Represents Circuit

indices.

86

% Improvement

Solution 1

% Improvement

Solution 2

Circuit
Pipeline

Stages
Tracks

Maximum

Frequency
Tracks

Maximum

Frequency

C432 9 17.4 -4.6 13.0 0.0

C499 2 17.4 -8.3 8.7 1.3

C6288 5 17.1 -2.4 11.4 2.3

Table 4.3: Track-Count and Frequency Trade-off Using VPR for Simultaneous Im-

provements of TLFPGA over FPGA. Solution 1 Is Generated Using the Default Set-

tings of VPR, While Solution 2 Is Generating by Prioritizing the Maximum Frequency

in VPR.

87

Circuit set 1 LUT-K Config Regs Mux Count CLB Area CLB Power Critical Path Freq Track count TLC:LUT Stages

K=6 K=7 K=6 K=7 K=6 K=7 K=6 K=7 K=6 K=7 K=6 K=7 K=6 K=7 K=6 K=7 K=6 K=7 K=6 K=7

64-bit Adder 18.1 24.7 15.1 22.0 15.0 21.9 12.0 18.8 7.0 14.2 2.3 10.9 2.4 12.2 5.0 0.0 25.0 25.0 (0,8) (0,8)

64-bit Comparator 3.5 5.7 3.0 4.4 3.0 4.4 2.5 3.0 1.6 0.8 16.2 8.2 19.4 8.9 0.0 0.0 4.9 24.9 (0,10) (0,10)

32-bit Multiplier 44.9 40.0 40.0 37.8 39.9 37.8 35.1 35.3 26.8 31.6 2.9 6.0 3.0 6.4 0.0 0.0 25.0 25.0 (0,10) (0,10)

8-bit Hartley FFT 12.1 13.4 10.8 12.2 10.8 12.2 9.6 10.9 7.6 8.9 1.6 6.5 1.6 7.0 0.0 0.0 12.6 25.0 (0,2) (0,2)

16-dit Divider 20.6 20.6 18.2 19.4 18.2 19.4 15.8 18.0 11.8 16.0 1.0 0.0 1.0 0.0 4.8 5.0 25.0 25.0 (0,6) (0,6)

32-bit Filter 5.6 10.8 4.7 10.0 4.7 10.0 3.9 9.1 2.5 7.8 25.7 -9.0 34.6 -8.3 9.4 12.5 8.0 15.8 (6,6) (6,6)

Geomean 18.8 20.0 16.3 18.4 16.3 18.4 13.9 16.5 10.0 13.8 8.8 4.0 9.7 4.2 3.3 3.0 18.3 25.0

Circuit-set-2 LUT Config Regs Mux Count CLB Area CLB Power Critical Path Freq Track count TLC:LUT Stages

K=6 K=7 K=6 K=7 K=6 K=7 K=6 K=7 K=6 K=7 K=6 K=7 K=6 K=7 K=6 K=7 K=6 K=7 K=6 K=7

32-bit CRC 8.7 6.8 6.9 5.8 6.8 5.8 4.9 4.7 1.7 3.0 2.8 11.7 2.8 13.3 0.0 0.0 19.0 19.5 (1,0) (1,0)

8-bit Encoder 16.7 20.0 11.4 17.8 11.3 17.8 5.7 15.3 -3.4 11.6 15.8 0.0 18.7 0.0 0.0 0.0 25.0 25.0 (1,0) (1,0)

24-bit Logarithm 19.8 21.1 16.5 19.0 16.5 19.0 13.0 16.7 7.4 13.3 0.7 24.1 0.7 31.7 0.0 0.0 25.0 25.0 (6,0) (6,0)

4-bit Cordic 22.4 19.9 20.0 18.8 19.9 18.8 17.4 17.6 13.3 15.7 1.4 3.5 1.4 3.6 0.0 0.0 25.0 24.8 (4,0) (4,0)

Geomean 17.0 17.1 13.8 15.5 13.8 15.5 10.4 13.7 5.0 11.1 5.4 10.3 5.7 11.5 0.0 0.0 25.0 25.0

Table 4.4: Percentage Improvements in TLFPGA as Compared to Standard FPGA in 40nm for OpenCores Circuits for

LUT-6 (L-6) and LUT-7 (L-7) 50x50 TLFPGA; Results Are Extracted Using VPR. Models Used for VPR Are Based on

the Tile Structures Placed and Routed Using Cadence Innovus®. Stages(x,y) Indicates That X Is the Original Number

of Pipeline Stages in the Circuit, to Which Y Pipeline Stages Were Added. TLC:LUT Ratio Is Reported in percentage.

88

Circuit set 1 LUT-K Config Regs Mux Count CLB Area CLB Power Critical Path Freq Track count TLC:LUT Stages

K=6 K=7 K=6 K=7 K=6 K=7 K=6 K=7 K=6 K=7 K=6 K=7 K=6 K=7 K=6 K=7 K=6 K=7 K=6 K=7

64-bit Adder 18.1 18.1 15.2 15.2 15.1 15.1 9.8 9.8 13.1 57.4 8.3 8.3 9.0 9.0 0.0 0.0 25.0 25.0 (0,8) (0,8)

64-bit Comparator 3.5 3.5 3.0 3.0 3.0 3.0 2.1 2.1 3.5 52.4 15.2 15.2 17.9 17.9 0.0 0.0 4.9 24.9 (0,10) (0,10)

32-bit Multiplier 44.9 44.9 40.1 40.1 40.0 40.0 31.5 31.5 44.9 69.7 22.9 22.9 29.7 29.7 0.0 0.0 25.0 25.0 (0,10) (0,10)

8-bit Hartley FFT 12.1 12.1 10.9 10.9 10.9 10.9 8.7 8.7 12.1 56.3 7.8 7.8 8.5 8.5 0.0 0.0 12.6 25.0 (0,2) (0,2)

16-dit Divider 20.6 20.6 18.3 18.3 18.2 18.2 14.0 14.0 20.6 59.9 4.4 4.4 4.6 4.6 0.0 0.0 25.0 25.0 (0,6) (0,6)

32-bit Filter 5.6 5.6 4.8 4.8 4.7 4.7 3.3 3.3 5.6 55.0 17.3 17.3 21.0 21.0 3.1 3.1 8.0 15.8 (6,6) (6,6)

Geomean 18.8 20.0 16.3 18.4 16.3 18.4 12.2 17.3 18.0 58.9 12.9 8.5 14.8 9.3 0.5 2.0 18.3 25.0

Circuit-set-2 LUT Config Regs Mux Count CLB Area CLB Power Critical Path Freq Track count TLC:LUT Stages

K=6 K=7 K=6 K=7 K=6 K=7 K=6 K=7 K=6 K=7 K=6 K=7 K=6 K=7 K=6 K=7 K=6 K=7 K=6 K=7

32-bit CRC 21.7 6.8 15.5 5.8 15.4 5.8 4.2 5.2 21.7 53.0 1.9 3.9 2.0 4.1 0.0 0.0 25.0 19.5 (1,0) (1,0)

8-bit Encoder 16.7 20.0 11.4 17.8 11.3 17.8 1.7 16.4 16.7 59.6 3.3 0.0 3.5 0.0 0.0 0.0 25.0 25.0 (1,0) (1,0)

24-bit Logarithm 19.8 21.1 16.5 19.0 16.5 19.0 10.6 17.7 19.8 60.1 6.7 9.6 7.2 10.7 0.0 3.8 25.0 25.0 (6,0) (6,0)

4-bit Cordic 22.4 19.9 20.0 18.8 19.9 18.8 15.6 18.1 22.4 59.6 9.4 8.9 10.4 9.7 0.0 21.1 25.0 24.8 (4,0) (4,0)

Geomean 20.2 17.1 15.9 15.5 15.8 15.5 8.2 14.5 20.2 58.2 5.4 5.7 5.7 6.0 0.0 6.7 25.0 25.0

Table 4.5: Percentage Improvements in TLFPGA as Compared to Standard FPGA in 28nm for OpenCores Circuits for

LUT-6 (L-6) and LUT-7 (L-7) 50x50 TLFPGA; Results Are Extracted Using VPR. Models Used for VPR Are Based on

the Tile Structures Placed and Routed Using Cadence Innovus®. Stages(x,y) Indicates That X Is the Original Number

of Pipeline Stages in the Circuit, to Which Y Pipeline Stages Were Added. TLC:LUT Ratio Is Reported in percentage.

89

Figure 4.13: Physical Layout of an 8x8 Prototype TLFPGA in (A) 40nm and (C) 28nm

Generated Using Cadence Innovus®; Verilog for the TLFPGA Was Generated Using Mod-

ified OpenFPGA Flow. Dynamic Power Reduction in Small Designs, When Mapped to the

Physical Post-Layout Version of FPGA and TLFPGA in (B) 40nm and (D) 28nm.

Table 4.3 shows simultaneous improvements in track-count and frequency for a

few circuits implemented in TLFPGA over FPGA, when the trade-offs are balanced

using VPR. First, the circuits are mapped to an FPGA (baseline) and the TLFPGA

(Solution 1) using the default settings in VPR. Solution 1 had a better track-count

than the baseline but had a lower maximum frequency. In an attempt to balance

the frequency to track-count trade-off, the circuits were re-mapped to the TLFPGA

(Solution 2) by enabling all the timing-driven optimizations in VPR. Solution 2 is

better than the baseline in terms of both frequency and track-count, which shows

that the solutions generated by TLFPGA are superior to the FPGA, and are not a

result of trade-offs.

90

To observe the number of ISCAS-85 circuits benefiting from the TLFPGA ar-

chitecture, Figure 4.11 is plotted for both 40nm and 28nm technologies. It can be

observed that as the number of pipeline stages increases, the number of circuits ben-

efiting from the TLFPGA architecture also increases. This is because more pipeline

stages create more opportunities to map the TLCs, subsequently allowing the circuit

to draw the benefits of the TLFPGA architecture in a better way.

4.7.3 Results of Mapping Complex Circuits on TLFPGA

Although the ISCAS-85 circuits help us study the effect of pipelining on the TLF-

PGA, they may not properly represent the industrial designs that are currently avail-

able. Hence, benchmark circuits from OpenCores were additionally used to evaluate

the TLFPGA. The benchmark circuits are divided into two groups: Circuit-set-1 and

Circuit-set-2. Pipeline stages were added to the circuits in Circuit-set-1 so that their

logic depth is in the range of 8-12 logic gates. This was done as most of the circuits

in this group were combinational circuits. For circuits in Circuit-set-2, no additional

pipeline stages were added. Tables 4.4 and 4.5 show the improvements in various

parameters for the OpenCores circuits for both 40nm and 28nm respectively. This

shows that the improvements gained from using the TLFPGA are consistent across

technologies even for more practical circuits.

An additional experiment was also done to find the overhead in PPA due to the

TLCs, if a circuit doesn’t use any TLCs. The mean (geometric) degradation in the

BLE area was found to be 2.7%, performance was 0.1%, BLE power was 0%, while

the routing power improved by 1%. disabling the use of TLCs does not degrade the

PPA in any appreciable degree. This shows that the overhead of TLCs is very small

when not used but its benefits can be significant when used.

91

Parameter FPGA Tile TLFPGA Tile % Reduction

Area 8001.3 µm2 6935.3 µm2 13.3%

Internal Power 17.9 µW 14.9µW 17.0%

Switching Power 32.1 µW 25.6µW 20.0%

Leakage Power 17.8 µW 14.8µW 16.8%

Total Power 53.5 µW 43.5µW 18.8%

(a) 40nm

Parameter FPGA Tile TLFPGA Tile % Reduction

Area 1054.6 µm2 870.5 µm2 17.5%

Internal power 13.7 µW 11.2 µW 18.0%

Switching power 8.8 µW 7.4 µW 15.9%

Leakage power 10.4 µW 8.7 µW 16.6%

Total power 32.9 µW 27.3 µW 17.0%

(b) 28nm FDSOI

Table 4.6: Comparison of Area and Power of a Tile in 8x8 LUT-7 FPGA vs. a Tile in

LUT-7 TLFPGA Tile with a Track-Width of 96 in X and Y Directions Using (A) 40nm and

(B) 28nm Technology. Power Is Reported Using Static Power Analysis. Physical Layout of

Tiles Include the Cells Required for Intra-Tile routing.

4.7.4 Validation of VPR Models by Physical Design

The results in this subsection are generated using the parasitic-extracted netlists

from Cadence Innovus®. Physical layouts of 8x8 FPGA and TLFPGA were con-

structed using Cadence Genus® and Innovus® in both 40nm (Figure 4.13(a)) and

28nm (Figure 4.13(c)) technologies. The track-count for both the architectures was

92

Table 4.7: Comparison of Power (mW) for the Physical Layout of 8x8 LUT-7 FPGA vs.

LUT-7 TLFPGA with a Track-Width of 96 in X and Y Directions Using (A) 40nm and (B)

28nm FDSOI Technology. Using TCM, Additional Power Reduction Is Expected. However,

This Is Not Included During the Static Power analysis.

(a) 40nm FPGA TLFPGA Drop %

Internal Switching Leak Total Internal Switching Leak Total Internal Switching Leak Total

CLB 5.74 10.26 1.14 17.14 4.76 8.20 0.95 13.91 17.0% 20.0% 16.8% 18.8%

Switchbox 1.41 1.65 0.21 3.27 1.40 1.64 0.21 3.24 0.9% 0.6% 0.0% 0.7%

Crossbar 2.88 4.89 0.64 8.40 2.84 4.73 0.64 8.21 1.1% 3.1% -0.1% 2.2%

IO Config 0.00 0.02 0.00 0.02 0.00 0.02 0.00 0.02 0.0% 0.0% 0.0% 0.0%

Total 10.02 16.82 1.98 28.82 9.00 14.60 1.79 25.39 10.2% 13.2% 9.6% 11.9%

(b) 28nm FPGA TLFPGA Drop %

Internal Switching Leak Total Internal Switching Leak Total Internal Switching Leak Total

CLB 1.72 5.47 0.75 7.94 1.32 4.73 0.62 6.67 23.4% 13.4% 17.9% 16.0%

Switchbox 1.12 3.56 0.50 5.19 1.08 3.44 0.50 5.02 3.9% 3.5% 0.1% 3.3%

Crossbar 5.00 2.79 2.38 10.17 4.99 2.68 2.38 10.06 0.1% 3.9% 0.0% 1.1%

IO Config 0.02 0.06 0.01 0.10 0.02 0.06 0.01 0.10 3.7% -2.5% -5.6% -1.4%

Total 7.87 11.88 3.65 23.41 7.42 10.92 3.52 21.85 5.7% 8.1% 3.7% 6.6%

set to 96, and the cluster size was set to 10.

Tables 4.6a and 4.6b compare the power of a LUT-7 FPGA tile versus LUT-

7 TLFPGA tile in both 40nm and 28nm respectively. Additionally, Tables 4.6a

and 4.6b also compare the area in both the technologies. It can be observed that

in both the technologies, the TLFPGA is substantially smaller than the FPGA tile,

and consumes much lesser power. Note that these tables report the area and power

numbers of the full tile, which includes inter-tile and intra-tile routing resources as

well.

The improvements gained at the tile-level also extend to the full-scale architecture.

Table 4.7 show the static power analysis comparison of both the FPGA and TLFPGA

93

FPGA TLFPGA

Count Proportion Count Proportion

CLB 30800 12.2% 25816 10.5%

IO Config 5312 2.1% 5312 2.2%

Crossbar 172492 68.5% 172498 69.9%

Switchbox 43060 17.1% 43066 17.5%

Total 251664 100% 246692 100%

(a) 40nm

FPGA TLFPGA

Count Proportion Count Proportion

CLB 51968 15.5% 40576 12.5%

IO Config 2688 0.8% 2688 0.8%

Crossbar 216896 64.5% 216896 66.8%

Switchbox 64507 19.2% 64478 19.9%

Total 336059 100.0% 324638 100.0%

Table 4.8: 28nm FDSOI

Table 4.9: Comparison of Instance Count for 8x8 LUT-7 FPGA vs. LUT-7 TLFPGA

Physical Layout with a Track-Width of 96 in X and Y Directions Using (A) 40nm and (B)

28nm.

in both 40nm and 28nm respectively. These tables also indicate that the power

consumed by a TLFPGA is lesser than the power consumed by an FPGA. This is

because the components used to build the TLFPGA tiles consume lower power than

their FPGA counterparts. Additional power drops, which are not part of the static

power analysis, come through the use of the TCM algorithm, as described in Sec. 4.5.

94

FPGA TLFPGA

Area Proportion Area Proportion

(µm2) (µm2)

CLB 38970 8.0% 32352 6.8%

IO Config 14056 2.9% 14056 2.9%

Crossbar 380917 78.6% 380920 79.7%

Switchbox 50856 10.5% 50856 10.6%

Total 478099 100% 478184 100%

(a) 40nm

FPGA TLFPGA

Area Proportion Area Proportion

(µm2) (µm2)

CLB 66658 17.2% 53728 14.3%

IO Config 9651 2.5% 9651 2.6%

Crossbar 253620 65.4% 253620 67.6%

Switchbox 57985 14.9% 57966 15.5%

Total 387916 100.0% 374966 100.0%

(b) 28nm FDSOI

Table 4.10: Comparison of Area for 8x8 LUT-7 FPGA vs. LUT-7 TLFPGA Physical

Layout with a Track-Width of 96 in X and Y Directions Using (A) 40nm and (B) 28nm

technology.

Tables 4.8a and 4.8 show the instance count breakdown for the FPGA and the

TLFPGA in both 40nm and 28nm respectively. Across both technologies, a clear drop

in the instance count is observed. Note that the percentage improvement in overall

95

instance count may change depending on the number of instances that are present

in the routing configuration. Furthermore, Tables 4.10a and 4.10b show the area

breakdown for the FPGA and the TLFPGA in both 40nm and 28nm respectively.

Observations from these tables show a clear improvement in the area at the full

architecture level.

This evaluation was performed based on certain placement and routing settings.

However, the results are subject to change based on the implementation strategy.

This is because the area of the physical layout is dependent on both the cell type and

the drive strengths of the cells. Therefore, if a certain architecture uses faster/slower

interconnects or BLEs, the percentage improvements in the reported parameters will

vary accordingly. These results are not meant to show the final area and power re-

sults, but instead to show the potential improvements that can be gained from using

the TLFPGA architecture in a real environment. For the experimental results in this

chapter, all the combinational loops that arise due to the interconnect structures of

the FPGA and the TLFPGA were set as false paths during the placement and rout-

ing of these architectures. Minimum-sized buffers, inverters, and multiplexers were

added for the interconnects to satisfy slew-rate constraints. Although this method

is not ideal for a real FPGA design, it lets us generate and evaluate the FPGA ar-

chitectures using a fully automated flow very quickly (Kim and Anderson (2015);

Tang et al. (2019)). Due to the complexities in modeling accurate timing constraints

and populating them in VPR models, the size of the FPGA and the TLFPGA was

limited to 8x8. The small size of these architectures allowed us to avoid major timing

violations. Due to the lack of timing constraints during the placement and routing of

both these architectures, it is harder for the tool to set appropriate drive strengths

for all the gates, and therefore the area is almost the same for both the FPGA and

the TLFPGA post-layout.

96

A parasitic extracted Verilog netlist of an 8x8 FPGA and TLFPGA layout was

used to map three of the ISCAS-85 circuits. A 300MHz clock was used to extract the

power. Tables included in Figure 4.13(b) and 4.13(d) show that all the three circuits

show improvement in overall dynamic power in both 40nm and 28nm respectively.

4.8 Conclusion

The architecture of an FPGA has remained almost the same since its inception.

Therefore, for this chapter, radically different building blocks called TLCs were inte-

grated alongside LUTs to enhance the area, power and performance of a traditional

FPGA. TLCs are CMOS-compatible logic blocks that implement threshold functions.

They have a negligible area footprint. When used in an FPGA, they offer significant

PPA improvements, and yet incur negligible PPA degradation when not used. All

the benefits in this chapter were evaluated using ISCAS circuits, as well as a few

of the OpenCores circuits. Additionally, a few of the designs were also mapped to

placed and routed versions of FPGA and TLFPGA to demonstrate real improve-

ments. Since the PPA improvements depend on the amount of logic absorbed into

a TLC to the amount of logic that is mapped to the LUTs, there may be scope for

additional improvements if larger TLCs are used.

97

Chapter 5

QNN ASIC ACCELERATOR USING THRESHOLD GATES

5.1 Introduction

Deep neural networks (DNNs) have been remarkably successful in numerous appli-

cations of pattern recognition and data mining, including speech recognition, image

classification, object recognition and detection, autonomous vehicles and robotics, rec-

ommendation systems, and many more. Consequently, they have become the dom-

inant algorithmic framework in machine learning. DNNs are computationally and

energetically intensive algorithms that perform billions of floating point multiply-

accumulate operations on very large dimensional datasets, some involving tens of

billions of parameters Fedus et al. (2022). Because training of large networks en-

tails much greater computational effort and storage than inference, it is performed

on high-performance servers with numerous CPU and GPU cores.

The energy cost and the environmental impact of training and inference of large

DNNs are fast becoming unsustainable. Ref. Strubell et al. (2020) presents an analysis

of the energy consumed in the training of several large NN models on various high-

performance commercial multicore GPUs. For instance, training of the GPT-3 model

with 175B parameters using NVidia’s A100 with 1024 GPUs would consume 936 MWh

of energy and take 34 days at a cost of $4.6M. Models even larger than the GPT-3

are being developed Fedus et al. (2022).

Improvements in energy efficiency of DNNs are not just limited to high-performance

servers or desktop machines. The latest “midrange” and “high-end” mobile SoCs Kim

et al. (2020); Liu et al. (2022) are being equipped with custom NN hardware accel-

98

erators to perform inference on mobile (e.g. mostly smartphones) and edge devices

(e.g., IoT devices deployed in numerous spaces) for many of the above applications.

The energy efficiency of inference on battery-powered devices is also of critical im-

portance in terms of value to the customer and environmental impact. Given the

rapid proliferation of ML techniques, several orders of magnitude improvement in

energy efficiency over CPU-GPU implementations for training and inference of DNNs

is needed for ML technology to be sustainable.

ASIC and FPGA are the two alternates to CPU-GPU implementations. Purely

digital ASIC implementations are obtained by synthesis of custom logic blocks for

specific operations such as 2-D convolution, inner product, matrix multiplication,

and others Andri et al. (2017); Sze et al. (2017), each optimized for throughput and

energy efficiency. Analog and mixed-signal solutions implement the inner product

of fixed-weight matrices and input vectors by summing currents in crossbar arrays,

where the weights are realized by various types of resistive elements (ReRAM Sun

et al. (2018), MTJ Fan and Angizi (2017), Flash Guo et al. (2017b). Although orders

of magnitude improvements in energy efficiency are reported, scalability and accuracy

pose significant challenges.

Although ASICs have much greater energy efficiency and throughput than CPU-

GPU implementations, they incur a very high cost because they are either restricted

to specific NNs or due to the use of custom hardware blocks for each operation,

the repertoire of operations implemented in hardware remains fixed. For both en-

ergy efficiency and throughput, FPGAs provide an intermediate solution to ASICs

and CPU-GPU implementations Nurvitadhi et al. (2017). The reconfigurability of

FPGAs, the availability of DSPs, and the fact that 90% of the operations are con-

volutions has made FPGAs ideal candidates for automatic mapping of NNs, with

the goal of minimizing latency subject to energy constraints or vice versa Nurvitadhi

99

et al. (2017).

Regardless of whether it is an FPGA or ASIC implementation, throughput and

energy efficiency can also be improved by modifying the structure of the NN. This

includes tuning the hyper-parameters Wang et al. (2018, 2020), or modifying the

network structure by removing the weights and connectionsLuo et al. (2017); Yang

et al. (2017), or by altering the degree of quantizationWu et al. (2016); Wang et al.

(2017). Another category of methods focuses on reducing the huge energy expendi-

ture for moving data between the processor and off-chip memory, which is especially

acute in NNs because of the large number of weights involved. The techniques to

mitigate this include maximizing the reuse of data fetched from memory Yue et al.

(2020); Luo et al. (2020), or transferring compressed data from the memory to the

processor Ahanonu et al. (2018); Cheng et al. (2018).

Of the many available techniques for modifying NN structure, quantization re-

mains the best way to achieve high energy efficiency and reduce computation time Trusov

et al. (2021); Nagel et al. (2021), especially for energy-constrained systems. Quan-

tization refers to using smaller bit-widths for the weights and/or the inputs during

training, reducing them from 32-bit values to anywhere from 8-bit to 1-bit values. The

term BNN refers to neural networks with 1-bit weights and inputs. Anything larger

than that, but below full 32-bit precision is referred to as QNN. Quantization takes

advantage of the fact that the accuracy of NNs is not very sensitive to substantial

reductions in bit-widths until some critical value. Depending on the network, 4-bit

to 1-bit QNNs for mobile applications provide an excellent tradeoff between energy

efficiency and throughput versus accuracy Nagel et al. (2021).

This chapter presents a new ASIC design, called TULIP, for improving the en-

ergy efficiency of QNNs when performing inference. TULIP’s unique features are

summarized below.

100

1. TULIP is a scalable SIMD machine that consists of a collection of concurrently

executing processing elements (PEs). The architecture of the TULIP-PE is

radically different from PEs used in any other QNN accelerator Andri et al.

(2017); Moons et al. (2018); Nakahara et al. (2016); Sun et al. (2018). It consists

of a small network of binary neurons, referred to as standard cell neuron (SCN),

each with a small, fixed fanin.

2. An SCN is a clocked logic cell that computes a threshold function of its inputs,

on a clock edge. It is a mixed-signal circuit, whose inputs and outputs are logic

signals but internally it computes the inner-product and threshold operation

of a neuron, i.e. f(x1, · · · , xn|w1, · · · , wn, T) =
∑n

i wixi ≥ T . Implemented as

a standard cell, and after optimized for robustness and accounting for process

variations, it is just a little larger than a conventional D-type flip-flop Wagle

et al. (2022b). The SCNs in a TULIP-PE can be configured at run-time to

execute all the operations of a QNN, namely the accumulation of partial sums,

comparison, max-pooling, and RELU. Consequently, only a single processing

element is required to implement all the operations in a QNN, and switching

between operations is accomplished by supplying an appropriate set of logic

signals to its inputs, which incurs no extra overhead in terms of area, power, or

delay.

3. Unlike conventional PEs that are designed to operate at maximum bit-width

(determined at design-time), the bit precision of TULIP-PEs can be changed

within a single cycle without incurring a delay or energy penalty. This charac-

teristic also enables making trade-offs between energy efficiency and accuracy

at run-time.

4. Against the state-of-the-art MAC units used in QNN accelerators Andri et al.

101

(2017), the TULIP-PE is ≈ 16X smaller and consumes 125X less power. Al-

though it is 9.6X slower, this is compensated by replicating 16 PEs and operat-

ing TULIP in a SIMD mode, executing multiple workloads in parallel that share

inputs, which reduces the need to repeatedly fetch data from off-chip memory.

5. Since the SCNs in the TULIP-PE have limited fanin, much larger inner product

calculations have to first be decomposed into smaller bit-width operations and

then scheduled on the TULIP-PEs. For this, a novel routing-aware resource-

constrained scheduling algorithm is presented that maps the nodes of a QNN

onto TULIP-PEs.

6. The combined effect of the low area of TULIP-PE, the uniformity of the com-

putation at the individual node and network levels, and the mapping algorithm

results in an improvement of up to 50X in energy efficiency for QNNs over a

MAC based design for the same area and performance of a MAC based design.

Note that a preliminary version of this work appears in Wagle et al. (2020a). This

chapter includes substantial changes to architecture and extends support for a wide

variety of QNNs while also significantly improving energy efficiency. In addition,

extensive evaluations of TULIP on a wide variety of neural networks are included.

5.2 Overview of the Paper

Quantized Neural Networks (QNNs) are CNNs whose 32-bit input and weight

values are converted into 8-bit to 1-bit values. In general, QNNs are directed graphs,

where the vertices represent N-bit operations from a repertoire of operations: ad-

dition, comparison, multiplication, pooling, ReLU, and logic. We introduce a new

SIMD architecture TULIP for accelerating QNNs. This architecture consists of a set

of processing elements called TULIP-PEs, which are constructed using binary neu-

102

rons. Each TULIP-PE can execute a K-bit primitive operation (namely addition,

comparison, or logic) at any given time. Since any QNN operation can be decom-

posed into a dataflow graph of primitive operations, the core of the chapter deals

with scheduling a general directed dataflow graph of primitives on the TULIP-PE

architecture. The first part of this chapter deals with the top-level architecture of

the TULIP and the hardware architecture of its TULIP-PEs, while the second part

of the chapter provides details of how computation is done on TULIP-PEs.

Figure 5.1: Organization of the Chapter

Sections 5.3, and 5.4 describe the architecture of the TULIP-PE and the top-level

architecture of TULIP respectively. Section 5.5 then presents the scheduling algo-

rithm needed to execute each node of the QNN on a TULIP-PE. Section 5.6 then

describes how the small size of the TULIP-PEs enables us to deploy a number of

them in the same space as a conventional processing unit, thereby enabling better

weight reuse. Finally, Section 5.7 presents both quantitative and qualitative evalu-

103

ation of TULIP-PEs and the TULIP architecture against equivalent state-of-the-art

architectures.

5.3 TULIP-PE Implementation

This section first describes the hardware architecture of TULIP-PE and the moti-

vation behind its design. Then, it describes how primitive operations (K-bit addition,

comparison, and logic) are mapped to TULIP-PE, and also how the larger operations

of a QNN such as addition, multiplication, etc., can be decomposed into primitive

operations.

5.3.1 Hardware Architecture of TULIP-PE

Figure 5.2: Architecture of a TULIP-PE, Consisting of Four Clusters and Four Local

Registers. Each Cluster Contains K Neurons (K=5).

A QNN consists of several layers, usually, they are convolution, activation, pooling

layers, etc. Conventionally when designing PEs, the focus is on efficiently accelerating

the convolution layers as they make up for the largest share of the total computation

time and energy. As a result, a typical PE in a QNN accelerator would consist of a

multiply-and-accumulate (MAC) unit, that computes the weighted sum of inputs of

104

Figure 5.3: the Hardware Neuron and Its Connections with Inputs, Local Registers, and

Other neurons.

a convolution layer.

The architecture of a TULIP-PE is designed much differently than a MAC unit,

to enable the following features:

1. The TULIP-PE is designed to be over an order of magnitude smaller than a

MAC unit, i.e. multiple TULIP-PEs can fit in the same area as a single MAC

unit. When multiple TULIP-PEs run in parallel and share common inputs,

they improve data reuse, and reduce off-chip memory usage.

2. It is designed to support all the layers of a QNN and not just the convolution

layers. As a result, dedicated hardware blocks for other layers like pooling and

activation are no longer needed in the hardware architecture.

3. Its design enables bit-level reconfigurability. This means that the bit-width

of the hardware can be controlled depending on the operation, without any

over-provisioning; unlike MAC units that are constructed to support maximum

bit-width and avoid bit overflow of operations.

In order to understand how the TULIP-PE enables the above features, it is first

necessary to describe its hardware architecture. A TULIP-PE (Figure 5.2) contains

105

Figure 5.4: 3-Bit Carry Lookahead Adder Using Binary Neurons That Add Two 3-Bit

Numbers A and B.

four clusters, each cluster containing K neurons each (Reasons explained in Section

5.3.2). The neurons in each cluster are labeled Nκ, where κ is the index of the neuron

in a cluster. As shown in Figure 5.3, each neuron is connected to external inputs,

its 16-bit local register (latch-based), and its neighboring neurons using multiplexers.

Inter-neuron communication is implemented using multiplexers. Each neuron shares

its output and its inputs with other neurons.

5.3.2 Mapping Primitive Operations to TULIP-PE

The TULIP-PE supports all the layers in a QNN by decomposing the layer’s

operations (such as multiplication, ReLU, etc.) into primitive operations and then

computing them sequentially. Therefore, the construction of TULIP-PE is based

on optimizing energy efficiency and performance for primitive operations, which are

in-turn implemented using threshold functions as follows.

1. K-bit Addition (ADDK(A,B,C0))

Let Ci+1 denote the carryout of stage i, i ≥ 0. A carry lookahead of size i means

that Ci is expressed as a function of Aj, Bj and C0, 1 ≤ j ≤ i − 1. While the

106

carryout function is a threshold function regardless of the size of the lookahead,

the sum function Si is a threshold function of carryout Ci+1 and carryin Ci.

Hence the ith carry bit and sum bits can be expressed as threshold functions as

follows:

(5.1)Ci ≡ C0 +

i−1∑
j=0

2jAj −
i−1∑
j=0

2jBj ≥ 1 ∀i ∈ [1, ..,K]

(5.2)Si ≡ Ai + 2Ci+1 −Bi − Ci ≥ 1 ∀i ∈ [0, ..,K − 1]

2. K-bit Comparison (COMPK(A,B,C))

Given two K-bit numbers A and B, the predicate A > B can be computed

using a K-bit comparator that uses threshold functions. If A = B, the value C

(which represents the previous result; default = 0) propagates to the output. It

can be represented using the following threshold function:

(5.3)Y ≡ C +
K−1∑
i=0

2iAi −
K−1∑
i=0

2iBi ≥ 1

3. K-bit Bitwise Logic operations (LK(A,B)orLK(A)) Given twoK-bit num-

bers A and B, a K-bit LK (=AND, OR, NAND or NOR) operation on A and

B can be performed using K threshold functionsMuroga (1971b). For instance,

each bit of the K-input AND gate is implemented as Yi ≡ Ai + Bi ≥ 2 ∀i ∈

[0, .., K − 1]. Similarly, each bit of LK (=NOT) operation on A can be per-

formed using the threshold function Yi ≡ 2Ai ≥ 1 ∀i ∈ [0, .., K−1]. K-input LK

(=XOR or XNOR) on A and B is implemented using a network of a two-input

and a three-input threshold functionMuroga (1971b) for each output bit.

In a TULIP-PE, each cluster’s ith neuron (i ∈ [1, K]) computes the ith significant

bit of a primitive operation’s output. Therefore, we construct a new threshold func-

tion Qi for the ith neuron, that contains the threshold functions of the ith significant

107

bit of sum, carry, comparison, and logic operations (See Equation 5.1, 5.2 and 5.3).

Qi is defined as follows:

Qi = Z0 +
i−1∑
j=0

2jXj ≥ Z1 +
i−1∑
j=0

2jYj, 1 ≤ i ≤ K. (5.4)

Primitive ith bit Q Z0 X Z1 Y

ADDK Carry Qi C0 Ai−1..0 0 Bi−1..0

Sum Q2 Ci Ai Ci−1 Bi

COMPK Compare Qi C Ai−1..0 0 Bi−1..0

LK AND Q2 Ai Bi 1 0

OR Q2 Ai Bi 0 0

NAND Q2 Ai Bi 0 0

NOR Q2 Ai Bi 1 0

NOT Q2 Ai 0 0 0

Table 5.1: Mapping Primitive Operations to Binary Neuron

A neuron can switch between its designated functions by appropriately assigning

signals to Equation 5.4 and controlling their polarity, as shown in Table 5.1. Further-

more, a neuron indexed i can support all the functions supported by neurons indexed

i− 1 or lower. Note that unused signals are set to 0.

TULIP-PE requires a minimum of four clusters to ensure a single cycle delay

between the launch of any two consecutive primitive operations. Considering that

each primitive operation can be represented as a two-level (or one-level) computation

of threshold functions, only two clusters are needed to perform the computation at

any given time (compute mode), while the remaining two clusters are needed to

read operands from their respective local registers and share them with the first two

clusters (routing mode). The clusters switch between the compute and routing mode

108

depending on the local registers in which the operands are stored, and the local

register in which the output must be written to.

Note that the number of bits that can be processed in each cycle increases as the

number of neurons in each cluster (K) increases, i.e., better performance. However,

as seen in Equation 5.4, as K increases, the fan-in of the binary neuron increases.

Since there is a maximum fan-in limitation of the binary neuronWagle et al. (2022b),

K is set to 5 for this paper.

Operations of a QNN that have a bitwidth N (> K), i.e. N-bit addition, accu-

mulation, comparison, multiplication, pooling, ReLU, and logic operations, are de-

composed into primitive operations, as follows: N-bit addition, comparison, or logic

operations are decomposed into a cascade of dN/Ke primitives. N-bit multiplication

of two operands A and B is done by first generating partial products (using N-bit

AND operations), and then adding them using a log2(N)-level adder tree (tree of

addition operations) to generate the final result. ReLU can be expressed by first

comparing the operand with 0, and then performing a bit-wise AND of the operand

with the result of the comparison. The Maximum operation on two N -bit numbers

A and B is realized by first comparing A and B to generate an output Y , after which

an AND operation is used to generate intermediate results AY (= A if A > B, else

0) and BY (= B if A ≤ B, else 0). Finally, adding the two intermediate results

yields the maximum value out of A and B. Max-pooling operation is realized by

constructing a binary tree of Maximum operation.

5.4 Top Level Architecture of TULIP

This section presents the top-level hardware architecture of TULIP, which is used

to accelerate QNNs. As shown in Figure 5.5, it consists of four major components:

an image buffer (stores input pixels), a kernel buffer (stores weights), a R × C grid

109

Figure 5.5: TULIP Top Level Architecture: Controller Configures the Processing Units.

the Input Pixels and Weights Are Sent Through Image and Kernel Buffers. the Output

of the Processing Units Is Collected in the Output Buffers Before Sending It Back to the

memory.

of TULIP-PEs (performs computation), and a controller (sends necessary control

signals). TULIP-PEs in the same row share input pixels, and TULIP-PEs in the

same column share weights. In order to execute QNNs on this architecture, the

following two problems must be solved.

The first problem entails scheduling the nodes of a QNN (Illustrated in Figure

5.7a)) onto the 2-D grid of processing elements (Figure 5.5). This scheduling depends

on the arrangement of the processing elements and the size of the input and weight

buffers. This schedule must also achieve high utilization of processing elements and

minimize access to off-chip memory. This problem has been addressed by numerous

other implementations, resulting in a collection of heuristic algorithms Chen et al.

(2016); Andri et al. (2017); Ma et al. (2019b); Dave et al. (2019). Their heuristic

110

algorithms minimize data fetches from the external memory by exploiting the QNN’s

underlying structure that is based on 2D convolution, which is implemented as nested

loops in the software. Consider the 2D convolution illustrated in Figure 5.6. The

dimensions of the input image are (I, I, L), output image are (O,O,M) and weights

are (K,K,L,M). For this convolution, the opportunities for data reuse are as follows:

1. Each input pixel can be reused bK2O2/I2c times when computing one dimension

of the output image.

2. Each kernel weight is reused O2 times.

3. Each dimension of the input (L) is reused M times.

Existing heuristic algorithms can be used to assign the nodes of a given QNN to

the TULIP-PEs, in a way that maximizes the reuse of input pixels and weights (listed

above) and achieves high energy efficiency.

Figure 5.6: Data Reuse Opportunities in 2-D Convolution: Each Input Pixel Can Be

Reused bK2O2/I2c Times and Each Kernel Weight Is Reused O2 Times for One Output

Dimension. Each Dimension of the Input (L) Is Reused M times.

Each node of the QNN is a dataflow graph itself. Therefore, the second problem,

which is the main focus of this paper, is to discuss how this dataflow graph is scheduled

on the TULIP-PE, and is discussed in further detail in the following sections.

111

5.5 Scheduling a Compute Graph on TULIP-PE

Figure 5.7: Mapping a Node of a QNN to TULIP-PE as an Equivalent Compute Graph

M . for Illustration Purposes, K = 1, i.e. One Neuron Is Used in Each cluster.

Section 5.4 described how TULIP-PEs are integrated in the top-level TULIP ar-

chitecture and how nodes of a QNN are assigned to them. Since each QNN node is a

dataflow graph itself, this section addresses the problem of scheduling this dataflow

graph on a TULIP-PE.

Let M be a graph that represents a node of a given QNN. Figure 5.7b shows an

example of M . It is defined using Definition 5.5.1 as follows:

112

Definition 5.5.1 (Compute Graph M(VM , EM)). It is a directed acyclic graph where

each node v ∈ VM represents an operation of a QNN, such as addition, comparison,

logic, multiplication, ReLU, or maximum. Each edge e ∈ EM represents a data

dependency between the operations.

In order to schedule M on the TULIP-PE, it must undergo two levels of trans-

formations; so that each node of the resulting graph is a threshold function that can

be mapped to a binary neuron in the TULIP-PE. We first describe the necessary

transformations on M , and then discuss the problem of scheduling the transformed

graph to the TULIP-PE.

The first transformation of M involves the decomposition of each vertex v ∈ VM

into an equivalent subgraph of primitive operations that computes the same function,

as shown in Figure 5.7c. The resultant graph is called a primitive graph P and is

defined using Definition 5.5.2 as follows:

Definition 5.5.2 (Primitive Graph P (VP , EP)). It is a directed acyclic graph where

each node v ∈ VP represents a K-input primitive operation, i.e. K-bit addition,

comparison, or logic. Each edge e ∈ EP represents a data dependency between the

primitive operations.

The second transformation involves further decomposition of each primitive oper-

ation v ∈ VP into an equivalent subgraph of threshold functions, as shown in Figure

5.7d. The resultant graph is called a threshold graph G and is defined using Definition

5.5.3 as follows:

Definition 5.5.3 (Threshold Graph G(VG, EG)). It is a directed acyclic graph where

each node v ∈ VG is a threshold function and each edge eu,v ∈ EG represents the data

dependency between two threshold functions u and v.

113

Finally, each threshold function of G is scheduled on the TULIP-PE architecture.

Figure 5.7e illustrates how the threshold functions of the primitive ADDK are sched-

uled to the binary neurons of TULIP-PE. Data stored in the local registers of clusters

1 and 4 are read by clusters 2 and 3 to generate the sum and carry bits. The problem

of scheduling G to TULIP-PE is discussed in further detail below.

TULIP-PE is represented as a so-called time-extended resource graph in order to

schedule G on it. It represents the TULIP-PE as a resource at various instances of

time, and is described using Definition 5.5.4 as follows:

Definition 5.5.4 (Time Extended Resource Graph R(VR, ER, T)). It is a directed

acyclic graph where each node v ∈ VR is a resource that represents a tuple (v′, t) of

a neuron (or a local register) v′ in TULIP-PE and time t ∈ [0, T). An edge between

two resources u : (u′, t) and v : (v′, t + 1) is represented as (u′, v′, t) and it indicates

that the output of u′ is given as an input to v′ at time t. Edges don’t exist between

resources if they differ by more than 1 unit of time, or if there is no physical datapath

between their associated neurons (or local registers).

Using the notation discussed above, the problem of scheduling of G to R is for-

mulated as follows:

Problem 1 (Compute graph scheduling problem). The problem is to construct a

time extended resource graph R of minimum extension (smallest T) for which

1. there exists a surjective mapping M : V ∗R → VG, where V ∗R ⊂ VR, such that for

each neuron v ∈ V ∗R can implement the threshold function v′ ∈ VG mapped to

it.

2. for every arc in (u, v) ∈ EG, there is a path P = (u′, r1, ,rn, v
′) such that u′

114

is a neuron associated u, v′ is a neuron associated v, and r1, .., rn are nodes of

R that facilitate the datapath between u and v.

It must be noted that the TULIP-PE architecture is similar to a CGRA archi-

tecture. A CGRA consists of a systematic arrangement of compute units, such that

each compute unit is connected to its neighboring compute unit through multiplex-

ers. The TULIP-PE also consists of a systematic arrangement of binary neurons

interconnected through multiplexers. Therefore, Problem 1 is similar to the problem

of scheduling compute graphs on a CGRAs. It has already proven as an NP-complete

Hamzeh et al. (2012) problem.

5.5.1 Existing Solutions and Their Limitations

Existing solutions that map arbitrary graphs to CGRA can also be used to map

graphs to the TULIP-PE architecture. Several state-of-the-art CGRA scheduling al-

gorithms in the literature Hamzeh et al. (2014); Chen et al. (2021); Canesche et al.

(2021); Balasubramanian and Shrivastava (2020); Balasubramanian et al. (2018) typ-

ically involve the following three steps (Pseudo-code in Algorithm 1): First, the tuples

are enumerated (Algorithm-1, line 2), where each tuple (o, p, t) represents a unique

mapping of an operation o on a neuron p at a time t . Second, an edge between two

nodes is added if they can coexist without any resource or data-dependency conflicts.

The resultant graph is called a compatibility graph (Algorithm-1, line 3). Figure 5.8

shows an example of a compatibility graph C that is constructed using the G and

R. Third, from this graph, the algorithm generates a maximum clique of tuples that

are compatible (Algorithm-1, line 4). In Figure 5.8 (b), the tuples (A,R1, 1) and

(B,R2, 2) are compatible, and form a clique. Since this clique contains a mapping for

all the nodes of G (Algorithm-1, lines 5-6), this clique represents a feasible schedule,

as shown in Figure 5.8 (c). If the above procedure does not result in a feasible schedul-

115

ing solution, then either G is transformed to make conflicting mappings compatible,

or the total schedule time T is increased (Algorithm-1, line 9), before re-running the

procedure again.

Algorithm 1 Mapping Compute Graph G to Resource Graph R

Input: G, R

Output: φ : VG → VR, ξ : EG → ER

1: for looper = 0 to max limit do

2: VC = enumerate mappings(VG, VR)

3: C = create compatibility graph(VC)

4: M = maximal clique (C)

5: if |M |≡ |G| then

6: φ, ξ = extract mapping (M)

7: break

8: else

9: G = Transform (G)

10: end if

11: end for

Figure 5.8: Scheduling Graphs of Threshold Functions on Binary Neurons A) Compute

Graph G and Time-Extended Resource Graph R B) Compatibility Graph of G and R. C)

Mapping Solution of G to R.

116

Algorithm-1 takes an impractically large amount of time when the nodes in G

are over 50. This is because the size of the compatibility graph C increases by a

factor of W = (|VG|)2 as the number of nodes in G increases and the time needed

to find a maximal clique in C requires at-most O(W 8) steps Dave et al. (2018).

However, Algorithm-1 is still required because it is the only algorithm that considers

the constraints of the hardware while performing the scheduling. Therefore, there

is a need to approach Problem 1 using a more sophisticated algorithm that allows

us to run Algorithm-1 on G part by part (partitioning G), instead of processing all

the nodes of G at once. This approach is made possible by the proposed algorithm,

which is discussed later in Section 5.5.2. By partitioning G, the overall execution

time drops significantly. For analysis sake, if we assume that G is partitioned into

D parts, then the size of the compatibility graph Ci for each partition i now only

increases by a factor of W ′ = (
∑

i|VG|/Ci)2 = W/D2. As a result, the time needed

to find a maximal clique of all Ci requires at-most O(W 8/D15).

Note that traditional high-level scheduling algorithms (used for task allocation to

CPUsKu and De Micheli (1991); Landwehr et al. (1994)) do not apply when perform-

ing scheduling on TULIP-PE. This is because, unlike high-level scheduling algorithms,

routing-aware scheduling algorithms used for CGRAs generate a valid schedule while

also honoring the routing constraints that arise due to the physical limitations (band-

width, connectivity, etc.) of the hardware.

5.5.2 Decomposing the Compute Graph Scheduling Problem

The previous subsection showed that the compute graph scheduling problem can

be solved using Algorithm-1, but takes an impractically large amount of time when

the number of nodes in G is high. Instead of using Algorithm-1 naively, this chapter

proposes a different approach. Before transforming the primitive graph P to G, we

117

first identify the order in which the primitives are executed on TULIP-PE and how

their outputs are stored in the local registers. Once this is known, each primitive can

then be scheduled separately using Algorithm-1, within its designated time slot. As

a result, the time complexity of mapping G → R reduces substantially, because the

above procedure is equivalent to partitioning G into smaller subgraphs that represent

primitives. This two-step process is represented using the following two sub-problems:

Problem 2 (Primitive scheduling problem). Given a primitive graph P , the problem

is to identify the order in which the nodes of VP must be scheduled on a TULIP-PE,

such that

1. The execution time of P on a TULIP-PE is minimized.

2. A local register is allocated for storing the output of each node in VP , in a way

that does not exceed the maximum capacity of the local registers, at any time

in the schedule.

3. The data-dependency of each node in VP is satisfied in the schedule.

4. The schedule adheres to the hardware constraints of TULIP-PE.

Problem 3 (Primitive mapping problem). For each primitive vi ∈ VP , let vi → Gi =

(Vi, Ei) be an equivalent graph of threshold functions. Then the problem is to find

a feasible mapping Gi → R, given the local registers from which the input data is

fetched and output data is stored.

The primitive scheduling problem (Problem 2) is an NP-Complete problem. Its

proof is discussed later in this section. It can be solved by representing it as an integer

linear programming (ILP) formulation, given below. This formulation is based on the

high-level scheduling algorithm presented in Landwehr et al. (1994), but the proposed

118

Notation Description

sv Time at which storage of node v begins

ev Time at which storage of node v ends

B Size of each local register

L Total number of local registers

T
Maximum time required to execute all the

primitives on R; T = 2|VP |.

Y
Positive constant greater than T,

for ILP purposes only

S
Positive constant less than 1,

for ILP purposes only

J [0, .., L− 1]

π [0, .., T − 1]

u ≺ v u is the immediate predecessor of v

E Makespan (execution time) of P on TULIP-PE

Table 5.2: Notation for ILP Used to Solve the Primitive Scheduling Problem

ILP also adds routing constraints (explained later). Table 5.2 lists the notation used

in the proposed ILP. The primitive scheduling problem has to establish bindings

between operations v, time steps t, and resources (local registers) r. Such bindings

can be represented using triple-indexed binary decision variables, shown in Equation

5.5.

χv,t,r =


1 if v is mapped to r at time t

0 otherwise

(5.5)

Using the above equation, two additional binding variables are derived: ρv,r, which

represents the mapping of v with local register r, and τv,t which represents the map-

119

ping of v with time t. These variables are used to express resource and time-specific

constraints respectively.

ρv,r =


1 if ∃t, χv,t,r = 1

0 otherwise

(5.6)

τv,t =


1 if ∃r, χv,t,r = 1

0 otherwise

(5.7)

With the goal of minimizing the makespan (execution time) of P on TULIP-PE,

the following constraints are needed to define the set of feasible solutions:

Minimize E such that (5.8)

I. Resource availability constraints: These constraints are added to ensure that the

local registers are not over-utilized. The first constraint (Equation 5.9) ensures that

the storage used by a local register r at any time t must never exceed the maximum

capacity B.

∀r ∈ J, ∀t ∈ π :
∑
∀v∈VP

χv,j,t ≤ B (5.9)

The second constraint (Equation 5.10) expresses the relationship between the vari-

ables ρ and χ.

∀v ∈ VP , ∀r ∈ J, ∀t ∈ π : χv,j,t ≤ rv,j ≤
∑
∀t∈π

χv,j,t (5.10)

The third constraint (Equation 5.11) ensures that each primitive’s output is stored

in only one local register.

∀v ∈ VP :
∑
∀r∈J

ρv,r = 1 (5.11)

120

2. Precedence constraints: Constraint in Equation 5.12 is added to ensure that the

data dependency due to the precedence relationship between any two primitives u

and v is satisfied in the schedule.

∀u, v ∈ VP such that u ≺ v : su < sv ≤ eu (5.12)

For the example schedule shown in Figure 5.9, su = 1, eu = 2, and sv = 2.

3. Timing validity constraints:

These constraints ensure that the start and end times of all the nodes are valid and

feasible (Equation 5.13), and that the start times of any two nodes are not equal

(Equation 5.14). In Equation 5.14, the temporary variable x = 1 if the start time

su > sv and x = 0 if su < sv.

∀v ∈ VP : 0 ≤ sv < ev ≤ T (5.13)

∀u, v ∈ VP , u 6= v : Y − S ≥ Y × x+ sv − su ≥ S (5.14)

The following constraints are added to set the value of τv,t. This variable indicates if

the output of node v is stored at time t. To set τ , two additional variables θ and λ

are introduced. The variable θv,t = 1 if t is greater (or equal) than the start time of

node v, and is 0 otherwise (Equation 5.15). Similarly, the variable λv,t = 1 if t is less

(or equal) than the start time of node v, and is 0 otherwise (Equation 5.16). Finally,

τv,t = 1 if both θv,t = λv,t = 1, and is 0 otherwise (Equation 5.17).

∀v ∈ VP , ∀t ∈ π : t+ 1 ≤ sv + Y × θv,t ≤ t+ Y (5.15)

t− 1 ≤ ev − Y × λv,t ≤ t− Y (5.16)

θv,t + λv,t − 1 ≤ τv,t ≤ θv,t, λv,t (5.17)

Constraint in Equation 5.18 is added to identify the end time of the last primitive

121

that will be scheduled on TULIP-PE; so that it can be minimized in the objective

function. Minimizing this end time (E) is equivalent to minimizing the makespan

(execution time) of P on TULIP-PE.

∀v ∈ VP : ev ≤ E (5.18)

Figure 5.9: Example to Illustrate Primitive Scheduling Problem. the Output of Each Node

in the Primitive Graph P Is Stored in the Local Registers of TULIP-PE.

4. Routing constraints:

The following constraints ensure that the data-routing capabilities of local registers

are not violated, and are explained as follows. A local register can perform either a

read or a write operation at any given time, but not both simultaneously. Therefore,

two nodes that share an edge cannot be assigned to the same local register. In Figure

5.9, since u is the immediate predecessor of v, the output of u is stored in different

local register than v. While the output of u is read from a local register, the output of

v is simultaneously written to a different local register (Equation 5.19). Furthermore,

two sibling nodes cannot be assigned the same local register. As shown in Figure 5.9,

u and v are immediate predecessors of w. Therefore, u and v cannot have the same

122

local register. This constraint is because the local registers supply only one operand

to each primitive in TULIP-PE. As a result, we need two separate local registers to

provide two operands (Equation 5.20).

∀u, v ∈ VP , ∀r ∈ J, u ≺ v : ρu,r + ρv,r ≤ 1 (5.19)

∀u, v, w ∈ VP , ∀r ∈ J, u, v ≺ w : ρu,r + ρv,r ≤ 1 (5.20)

Neuron

inputs
Parameters

Time

(Sec)

Local Reg

Size (B)

64 6.88E+03 0.04 2

128 2.81E+04 0.12 2

256 1.14E+05 0.49 3

512 4.56E+05 2.14 4

1024 1.83E+06 9.32 4

2048 7.33E+06 41.82 4

4096 2.93E+07 216.46 5

Table 5.3: Number of ILP Parameters and Run-Time for Solving Primitive Scheduling

Problem, for Compute Graphs That Represent Neurons with Varying Number of inputs.

Table 5.3 shows the number of parameters that are generated when running the

ILP for compute graphs that represent neurons with a varying number of inputs. For

even the largest size neurons, the time required to run the ILP is very less.

Proof of NP Completeness: In the primitive scheduling problem, routing constraints

specify that if two primitive nodes that share an edge, or if two sibling primitive

nodes exist, they cannot be assigned the same local register. Since there are four local

123

registers, the problem of allocating registers to primitive operations is equivalent to a

k-coloring problem (where k equals 4) (NP CompleteAppel and Haken (1978)). Here,

the primitives represent the nodes of the graph to be colored, and the local registers

represent the colors that need to be assigned. Therefore, the primitive scheduling

problem is also an NP-complete problem.

Algorithm to map primitive operations to R: The problem of mapping the

threshold functions of each primitive Gi to the resource graph R, i.e. Gi → R can be

solved using Algorithm 1.

Finally, the solutions from both the algorithms discussed in this sub-section are

combined to form a single schedule that maps G to R.

The algorithm described above enables TULIP-PE to modify its schedule depend-

ing on the number of neurons enabled in each cluster. Figure 5.10 a) and b) show

how the schedule of addition operation can be varied based on the available neurons

(denoted by K). For example, assume that we need to execute an addition operation

of two 4-bit numbers, X and Y. TULIP-PE uses five cycles (4 cycles before the next

primitive can be launched) to finish its addition operation if only one neuron (K=1) is

enabled in each cluster. However, if the number of neurons in each cluster is doubled

(K=2), the schedule can be re-adjusted to finish the addition operation in four cycles

(3 cycles before the next primitive can be launched). If all five neurons are enabled

in each cluster, then TULIP-PE would only require two cycles (1 cycle before the

next primitive can be launched) to finish the addition operation. This critical feature

enables a run-time trade-off between delay and energy efficiency on the TULIP-PE.

Furthermore, if some neurons in the manufactured chip stop working, those neurons

can be bypassed by modifying the schedule.

124

Figure 5.10: Addition Operation, Adder-Tree, Accumulation, and Comparison Using

TULIP-PE Architecture. Depending on the Number of Neurons Available in Each Cluster,

the Scheduler Can Automatically Tune the Schedule for the Best performance.

5.6 Enhancing Data-reuse Using TULIP-PEs

This section provides the theoretical basis of how the use of TULIP-PEs enhances

data-reuse, as compared to a MAC unit. This is done by comparing the delay and

area complexity of both the processing elements as follows: Let m and n be the

number of bits needed to represent inputs and weights respectively. If both the

processing elements need to multiply and accumulate N such pairs, then the area

complexity of the MAC unitGarland and Gregg (2018) and the TULIP-PE is O(mn)

and O(1) respectively. The area complexity of TULIP-PE is a constant because the

125

hardware does not change irrespective of the workload. The delay complexity of

the MAC unitGarland and Gregg (2018) and the TULIP-PE is O(N) and O(mnN)

respectively. TULIP-PE has a worse delay complexity than a MAC unit because it

processes each operation K bits at a time. Although the TULIP-PE is smaller, it is

much slower than a MAC unit. Note that these trade-offs change when MACs and

TULIP-PEs are analyzed in a SIMD architecture.

Gate

complexity

Delay

complexity

1 MAC Unit O(mn) O(N)

1 TULIP-PE O(1) O(mnN)

Row of C MAC units O(Cmn) O(N/C)

Grid of R× C TULIP-PEs O(CR) O(mnN/CR)

Table 5.4: Gate and Delay Complexity of MAC Units and TULIP-PEs. TULIP-PEs

Match the Delay and Gate Complexity of MAC Units When R = mn. However, Since

There Are Now R TULIP-PEs for Every MAC Unit, the Increased Parallelism Promotes

Data Sharing, Thereby Improving Data Reuse by a Factor of R.

Consider the following two SIMD architectures. First is the baseline architecture,

which consists of a row of C MAC units. We use this architecture as a reference. Sec-

ond is the TULIP architecture, with a grid of R×C grid of TULIP-PEs. The baseline

has a gate complexity of O(Cmn) and a delay complexity of O(N/C). Similarly,

TULIP has a gate complexity of O(CR) and a delay complexity of O(mnN/CR).

TULIP can match the area and delay complexity of the baseline by setting R = mn.

However, TULIP is still better than the baseline. This is because the grid arrange-

ment provides higher opportunities for weight reuse. If we assume that a workload

of R×C graphs will be processed by both the architectures, then the baseline would

126

fetch each weight R times whereas the TULIP would fetch each weight just once.

As a result, significant energy-efficiency improvements are observed by enhancing the

data-reuse. The complexity analysis discussed above is summarized in Table 5.4.

Note that the concept discussed above has already been used in other design set-

tings. For instance, processor designers often choose to use several slower cores instead

of using fewer faster cores, to enhance the energy-efficiency without compromising on

throughput. The work presented in this chapter also uses this concept, but at the

level of processing elements. TULIP replaces the traditionally used MAC units with

slower but more energy-efficient TULIP-PEs.

5.7 Experimental Results

5.7.1 Experimental Setup

TULIP architecture was evaluated using TSMC 40nm LP library. Synthesis was

done using Cadence Genus, and then the placement and routing were done using

Cadence Innovus. Timing checks were performed using cross-corner analysis at {SS,

125C, 0.81V}, {TT, 25C, 0.9V} and {FF, 0C, 0.99V}.

Table 5.5 demonstrates that a binary hardware neuron is substantially better

than its conventional CMOS standard cell equivalent in terms of area, power, and

delay. This advantage is significant since TULIP uses this hardware neuron for all

operations (Computation of partial sums, comparison, RELU, and max pool). TULIP

was synthesized and placed using TSMC 40nm-LP standard cells with Cadence Genus

and Innovus (Figure 5.11). The VCD file generated using real QNN workloads was

used for power analysis to model switching activity accurately.

For comparison against an equivalent baseline architecture, we chose a recent 1-

bit QNN accelerator named YodaNN Andri et al. (2017), designed in 65nm UMC

127

Binary neuron Logic equivalent Improvement (X)

κ
Area

(um2)

Power

(uW)

Area

(um2)

Power

(uW)
Area Power

1 15.6 6.93 33 10.23 2.12 1.47

2 15.6 7.79 44 11.92 2.82 1.53

3 15.6 8.82 88 22.31 5.64 2.53

4 16.7 9.38 104 36.35 6.67 3.88

5 16.7 9.68 216 48.12 13.85 4.97

Table 5.5: Binary Neuron Comparison: Hardware Neuron Versus Standard Cell Neuron,

Operating at 434MHz (Time Period:2300ps). κ Indicates the Index of Neuron in a cluster.

technology. Then, we modified the same architecture to add support for 2 to 4-bit

QNNs. To make a fair comparison, we implemented the entire baseline design in

the same technology as TULIP (40nm-LP from TSMC) and synthesized, placed, and

routed both the designs. TULIP and Baseline were both designed for up to 12-bit

inputs and 4-bit weights. The 12-bit inputs are only needed for handling integer layers

of a QNN. Therefore, we added clock gating appropriately whenever fewer input bits

were used. Both the baseline as well as TULIP architecture support kernel sizes of 3,

5, and 7.

Other ASIC architectures are available in the literature, such as XNORBIN Al

Bahou et al. (2018), which use more advanced memory techniques to improve energy

efficiency. However, these architectures do not support integer layers and are unsuit-

able for comparison. Although the original paper of YodaNNAndri et al. (2017) does

not report the throughput and energy efficiency for fully connected layers, we esti-

mate the throughput and power by performing an element-wise matrix multiplication

using the MAC units present in their architecture. There are a few other ASIC archi-

128

tectures Knag et al. (2020); Moons et al. (2018) that deliver higher energy-efficiency

than the TULIP architecture. However, these architectures can only support kernels

of size 2 and only 1-bit QNNs. Furthermore, these architectures have never been

demonstrated for processing large neural networks such as the ones used for Ima-

genet Classification, using the reported energy-efficiency. Meanwhile, TULIP delivers

high-energy efficiency, while also delivering support for all the kernel sizes available

in the common neural networks.

5.7.2 Evaluation of TULIP-PE Against MAC

In Table 5.6, the baseline 18-bit reconfigurable MAC unit based on the design

present in YodaNNAndri et al. (2017) is compared against the TULIP-PE module

with five neurons in each cluster. Note that both the MAC unit and TULIP-PE

can compute integer as well as quantized layers. In large QNN architectures such

as AlexnetRastegari et al. (2016), the initial layers are integer layers, while the rest

are quantized. Since the computation technique between Baseline and TULIP signif-

icantly differs for quantized layers, the comparison of the MAC and the TULIP-PE is

made for the quantized layers. Both modules perform the weighted sum for quantized

activations and quantized weights. The MAC unit realizes accumulation by multiply-

ing and accumulating one window in each cycle. Meanwhile, TULIP-PE treats the

weighted sum as a compute graph consisting of multiplication operations connected

to an adder-tree. This is important because TULIP realizes adders, multipliers, etc.,

of custom bit widths, thereby eliminating the loss of energy incurred by MAC unit

that uses max-width addition and multiplication operation in every cycle. Based on

Table 5.6, we note that the TULIP-PE is 15.8X smaller than the MAC unit and

consumes up to 125X less power. However, it consumes 9.5X more time than the

MAC unit since it performs bit-level addition. As a result, the power delay product

129

Bit

width
1 2 3 4

Tulip

PE

Power

(mW)
0.18 0.18 0.18 0.18

Cycles

(#)
155 170 227 307

Time

(ns)
356.5 391.0 522.1 706.1

PDP

(pJ)
65.5 71.8 95.9 129.7

MAC Unit

Power

(mW)
2.6 8.0 16.2 22.6

Cycles

(#)
32 32 32 32

Time

(ns)
73.6 73.6 73.6 73.6

PDP

(pJ)
189.4 590.3 1193.8 1666.3

Ratio

(X=B/T)
PDP 2.9 8.2 12.4 12.8

Table 5.6: Comparison of Fully Reconfigurable MAC Unit Based on YodaNN Architecture

Andri et al. (2017), with a TULIP-PE (K=5), for Computing a 288 Input Weighted Sum

(32 Input Channels, Kernel =3x3). TULIP-PE Is 15.8X Smaller than the MAC Unit. PDP:

Power Delay Product

of a TULIP-PE is up to 5.8X lower than the MAC unit while at the same time being

15.8X smaller than the MAC.

130

Furthermore, since a MAC unit cannot compute operations such as comparison,

max-pooling, etc., the data is sent to other parts of the chip for these operations

in Andri et al. (2017). However, the TULIP-PE can preserve the data locality and

perform the comparison and max-pooling operations internally without moving the

data to other modules, saving additional energy.

Technology TSMC 40LP

Area 10.6 mm2

L2/L1/ 693K/327K/

Kernel Area 2203K µm2

Processing Unit. Area 2677K µm2

Controller Area 10K µm2

Std. Cells 2958K

Nets 1584K

Wirelength (m) 88.7

Metal Layers 6

Figure 5.11: Layout of TULIP Architecture in TSMC 40nm-LP

5.7.3 Evaluation of the TULIP Architecture

For this paper, TULIP was designed with 256 TULIP-PEs to ensure that the chip

area of TULIP matches that of the baseline architecture. However, the number of

processing units in TULIP can be scaled to suit the application, if needed.

Tables 5.7 and 5.8 show the energy-efficiency and throughput values for various

neural networks (at varying bit-precisions), accelerated using both the TULIP and

baseline architecture. For TULIP, two sets of results are presented: 1) TULIP tuned

for best energy-efficiency, and 2) TULIP tuned for best throughput. Here, tuning

131

I/W

bits

Benchmark TULIP-Q for En. Eff. TULIP-Q for Perf

En. Eff. Perf. En. Eff. Perf. K En. Eff. Perf. K

(a) AlexNet

1 3.1 66.6 63.6 (20.9X) 73.2 (1.1X) 3 45.1 (14.8X) 74.5 (1.1X) 5

2 1.0 66.6 45.7 (46.2X) 67.7 (1.0X) 3 38.7 (39.1X) 72.6 (1.1X) 5

3 0.5 66.6 23.6 (48.2X) 67.6 (1.0X) 5 23.6 (48.2X) 67.6 (1.0X) 5

4 0.4 66.6 12.2 (34.8X) 61.6 (0.9X) 5 12.2 (34.8X) 61.6 (0.9X) 5

(b) ResNet18

1 2.4 31.6 51.3 (21.2X) 36.2 (1.1X) 3 35.4 (14.6X) 36.8 (1.2X) 5

2 0.8 31.6 35.3 (44.7X) 33.1 (1.0X) 3 29.7 (37.6X) 35.3 (1.1X) 5

3 0.4 31.6 17.7 (45.4X) 32.5 (1.0X) 5 17.7 (45.4X) 32.5 (1.0X) 5

4 0.3 31.6 9.0 (32.2X) 29.5 (0.9X) 5 9.0 (32.2X) 29.5 (0.9X) 5

(c) ResNet20

1 2.3 53.3 57.6 (25.3X) 75.1 (1.4X) 3 39.6 (17.4X) 77.6 (1.5X) 5

2 0.7 53.3 39.4 (53.2X) 62.9 (1.2X) 3 33.1 (44.8X) 71.3 (1.3X) 5

3 0.4 53.3 19.7 (54.6X) 60.8 (1.1X) 5 19.7 (54.7X) 60.8 (1.1X) 5

4 0.3 53.3 10.0 (38.5X) 51.1 (1.0X) 5 10.0 (38.5X) 51.1 (1.0X) 5

Table 5.7: Energy Efficiency (En. Eff (TOPS/J)) and Throughput (Perf. (GOPS/s)) of

TULIP and an Equivalent MAC-Unit Based Benchmark Architecture for CIFAR-10 Classi-

fication. K Indicates the Number of Neurons Used in Each Cluster. Two Variants of TULIP

Are Shown: One Tuned for Energy Efficiency, While the Other Is Tuned for performance.

132

I/W

bits

Benchmark TULIP-Q for En. Eff. TULIP-Q for Perf

En. Eff. Perf. En. Eff. Perf. K En. Eff. Perf. K

(a) AlexNet

1 4.3 123.2 9.3 (2.2X) 125.4 (1.0X) 3 9.0 (2.1X) 127.5 (1.0X) 5

2 1.7 123.2 9.0 (5.2X) 116.3 (0.9X) 3 8.8 (5.1X) 124.7 (1.0X) 5

3 0.9 123.2 8.1 (9.0X) 116.3 (0.9X) 5 8.1 (9.0X) 116.3 (0.9X) 5

4 0.7 123.2 6.9 (10.4X) 106.5 (0.9X) 5 6.9 (10.4X) 106.5 (0.9X) 5

(b) ResNet18

1 3.2 84.6 57.5 (18.1X) 97.9 (1.2X) 3 42.5 (13.4X) 100.1 (1.2X) 5

2 1.0 84.6 42.8 (41.2X) 88.3 (1.0X) 3 36.9 (35.5X) 96.6 (1.1X) 5

3 0.5 84.6 23.3 (44.8X) 87.9 (1.0X) 5 23.3 (44.8X) 87.9 (1.0X) 5

4 0.4 84.6 12.4 (33.5X) 78.3 (0.9X) 5 12.3 (33.4X) 78.3 (0.9X) 5

(c) ResNet34

1 3.1 88.2 73.9 (23.8X) 102.3 (1.2X) 3 49.9 (16.1X) 104.8 (1.2X) 5

2 1.0 88.2 50.5 (50.5X) 91.4 (1.0X) 3 42.1 (42.1X) 100.8 (1.1X) 5

3 0.5 88.2 24.8 (49.5X) 91.0 (1.0X) 5 24.8 (49.5X) 91.0 (1.0X) 5

4 0.4 88.2 12.4 (35.5X) 80.4 (0.9X) 5 12.4 (35.5X) 80.4 (0.9X) 5

Table 5.8: Energy Efficiency (En. Eff (TOPS/J)) and Throughput (Perf. (GOPS/s)) of

TULIP and an Equivalent MAC-Unit Based Benchmark Architecture for ImageNet Classi-

fication. K Indicates the Number of Neurons Used in Each Cluster. Two Variants of TULIP

Are Shown: One Tuned for Energy Efficiency, While the Other Is Tuned for performance.

133

(a) Improvements in Energy Efficiency

(b) Improvements in Throughput (Perf. (GOPS/s))

Figure 5.12: Improvements of TULIP-PE (Using Five Neurons per Cluster) over Equivalent

MAC-Unit Based Benchmark Circuit, for Various Neural networks.

is done by changing the number of active neurons in each cluster. Based on the

results presented in both the tables, TULIP shows consistent improvement in energy-

efficiency over the baseline for all the neural networks.

134

(a) Improvements in Energy Efficiency

(b) Improvements in Throughput (Perf. (GOPS/s))

Figure 5.13: Improvements of TULIP-PE (With Varying Number of Active Neurons in

Each Cluster) over Equivalent MAC-Unit Based Benchmark Circuit, for ImageNet Classi-

fication Using ResNet-34.

As shown in Figure 5.12a, TULIP consistently demonstrates an order of magni-

tude higher improvements in energy-efficiency for all variants of the neural networks.

This is primarily attributed to the fact that TULIP realizes adders, multipliers, etc.,

of custom bit widths, thereby eliminating the waste incurred by conventional accu-

mulation methods that use max-width operators in every cycle. This, coupled with

the improved weight-reuse, significantly enhances the overall energy-efficiency against

the baseline architecture. The corresponding throughput improvements are shown in

135

Figure 5.12b. As the bit-precision of the neural network increases, the throughput de-

creases. The drop in throughput is because an increase in the bit-precision increases

the number of bits that need to be processed for each operation.

Figure 5.13b shows that the throughput increases as the number of neurons in

each cluster increases. Although this graph is restricted to the inference of Imagenet

classification using ResNet-34, this trend applies to other neural networks as well.

The increase in the throughput is because the increase in the number of neurons

allows each operation to execute faster on the TULIP-PE. By appropriately choos-

ing the right configuration, it is possible to match the throughput of the Baseline

(or even improve it) while gaining significant energy-efficiency improvements. The

corresponding energy-efficiency improvements are shown in Figure 5.13a.

Figure 5.14 demonstrates how the TULIP architecture can be used to trade-off

energy-efficiency and accuracy at runtime for neural networks used for ImageNet

classification task. As the bit-precision increases, the energy-efficiency decreases but

accuracy increases. Consequently, depending on the application, we can tweak the

accuracy at run-time to optimize energy-efficiency and throughput. For instance, in

standby mode, we can operate TULIP using 1-bit precision to get the best energy-

efficiency for tolerable accuracy. Meanwhile, in high-accuracy mode improves the

accuracy for a short duration at the cost of energy-efficiency.

5.8 Conclusion

This chapter is the first implementation of TULIP, a QNN accelerator that uses

current-mode binary neurons. TULIP demonstrates up to 30X-50X improvement in

energy efficiency against a state-of-the-art QNN hardware accelerator without using

the standard low power techniques such as voltage scaling and approximate comput-

ing. The TULIP design uses the same area as the baseline QNN architecture. It gains

136

(a) ImageNet/AlexNet

(b) ImageNet/ResNet 18

(c) ImageNet/ResNet 34

Figure 5.14: Trading off Energy Efficiency (En. Eff (TOPS/J)) with Accuracy (%) for

ImageNet Classification Using TULIP Architecture. Full Prec. Acc. Indicates Top the 1%

Accuracy When Using 32-Bit Integers and weights.

137

energy-efficiency because it uses optimal bit-width operators instead of max-width

operators like in an accumulator. The improvements are further boosted since the

processing elements (TULIP-PEs) are built using a unique arrangement of hardware

neurons. These neurons enable function-reconfigurability without sacrificing perfor-

mance or energy-efficiency. Due to this feature, TULIP-PEs can switch between the

various operations of a QNN, such as multiplication, ReLU, etc. while preserving data

locality. They have extremely low area and power footprint compared to the existing

realizations of the same function. As a result, many TULIP-PEs can be deployed

in the same area as an equivalent MAC unit, and run several operations in parallel.

Increased parallelism enhances data reuse significantly, further improving the energy

efficiency.

138

Chapter 6

CONCLUSION AND EXTENSIONS

The research presented in this dissertation shows promising results in terms of sub-

stantially improving the performance, power, and area of ASICs as well as FPGAs.

It warrants further study of the use of perceptrons in building energy-efficient archi-

tectures. This chapter outlines some open problems and new ideas not covered in this

dissertation.

6.1 Extensions

6.1.1 Threshold Logic Processing in Memory (PIM) Architectures

The processing in the memory computing paradigm has been very effective in

removing the memory wall barrier in the traditional Von-Neumann architectures.

The data transfers from the external main memory to the processor are two orders

of magnitude slower and consumes three orders of magnitude more energy. The

PIM architectures substantially reduce the data transfers on the memory channel,

thereby, increasing the throughput and energy efficiency of several data-intensive ap-

plications. The data-intensive applications include large-scale encryption/decryption

programs Myers (1999), large-scale graph processing, bio-informatics, machine learn-

ing, etc.

The data-intensive applications are mostly based on a basic set of operations

such as bit-wise logic operation, addition, comparison, multiplications, etc. The FTL

cell and TULIP-PE can perform these operations with a small area footprint and

consume substantially less power than the CMOS implementations. The FTL cell

139

can be programmed to perform multiple threshold functions, which can be selected

during runtime using control bits. A threshold logic processing element (TLPE)

design using FTL cells is shown in the Figure 6.1.

Figure 6.1: Architecture of Threshold Logic Processing element.

A TLPE consists of one FTL cell to perform computations, two latches L1 and

L2 to temporarily store the output, and four XOR gates to invert the signals from

the banks. The FTL cells is designed to implement a subset of the threshold function

[-2,1,1,1,1,1;T], where T is selected during operation to be 1 or 2. The inputs to the

processing element can be inverted using control signals C0-C3 or optionally disabled

using enable signals enli. The threshold and the remaining two inputs of the FTL cell

are enabled or disabled by signals enri. The TLPE is designed to perform basic logic

operations (NOT, (N)OR, (N)AND, X(N)OR) and addition operation of 3 bits.

Figure 6.2 shows the integration of the threshold logic processing element (TLPE)

within the DRAM memory chip. An array of TLPE (TLPEA) of size N is connected

to four banks in the memory chip, where N is the number of bits in a row of the

bank latched into the sense amplifiers (BLSA). There is one TLPEA for a set of four

140

Figure 6.2: Threshold Logic Processing Element Array (TLPEA) Connected to Banks in

a DRAM device.

banks in one DRAM chip. A TLPEA accepts N-bit input vectors B1, B2, B3 and B4

from all the four banks as shown in Figure 6.2. For bitwise operation in this work,

at most two out of four banks are activated using a four-bank activation window

(tFAW) to get the operands. Consequently, only two out of four inputs to the TLPE

are enabled by external control signals. The output of the TLPE array TLPEA-OP

is connected to the column decoder and write driver block as shown in Figure 6.2.

Using the control signals and the write drivers driven by the TLPEA-OP, the result

of the computations is written back to one of the four banks. During the computation

phase, the column decoder selects all the bitlines of the selected bank.

The evaluation of TLPE is carried on several practical applications such as AES,

Graph Matching Index problem, and DNA sequence mapping algorithm Myers (1999).

Their latency and energy comparison against the benchmark architectures is shown

141

Table 6.1: Latency and Energy Comparison for Executing Graph Matching Index

Problem and DNA Sequence Mapping AlgorithmMyers (1999) on Different Platforms

Normalized to CIDAN. Graph Matching Index Problem Is Carried out on Three Data

Sets; Facebook, Amazon, Dblp

Latency (CIDAN =1) Energy (CIDAN=1)

Workload Graph Matching Index DNA sequence Mapping Graph Matching Index DNA sequence Mapping

ReDRAM 3.24 3.14 1.96 2.12

Ambit 4.32 4.35 2.61 2.88

in Table 6.1.

The TULIP-PE is also shown to perform various operations of the artificial neu-

ral networks (binary and quantized) with a substantially smaller area footprint and

power than a conventional MAC unit. Due to these advantages, the TULIP-PE can

be seamlessly integrated with the DRAM memory banks. The resulting process-

ing in memory (PIM) architecture achieves an average throughput improvement of

72X/5.4X and energy efficiency improvement of 244X/29X over CPU/GPU.

Figure 6.3(A) shows the throughput, and Figure 6.3(B) shows the energy efficiency

of CIDAN-XE (PIM architecture with TULIP-PEs) in different evaluation modes

versus the other architectures using the ALEXNET workload with an input image size

of 224x224x3. DRISA has the highest throughput using the binary-weighted (BW)

implementation of ALEXNET. CIDAN-XE in the 8-bit BW mode has a comparable

throughput to DRISA with a 5.6X higher energy efficiency. DrAcc operating in 8-bit

ternary weight (TW) mode has the highest energy efficiency among the prior PIM

architectures which is comparable to CIDAN-XE 8-bit TW mode. CIDAN-XE 8-bit

TW has about 1.2X higher throughput when DrAcc is operated in its high throughput

configuration. In this configuration, the latency of DrAcc is 386.4s, whereas, the

latency of CIDAN-XE 8-bit TW is 9.7ms which is three orders of magnitude less

142

than the DrAcc. In high-speed mode, DrAcc has a latency of 275ms which is still

28X more than the CIDAN-XE 8-bit TW while the DrAcc’s throughput drops to

3.63 Frames/s. CIDAN-XE 8-bit TW has a throughput of 102 Frames/s. Hence,

CIDAN-XE is a high throughput and highly energy-efficient architecture and shows

considerable improvements over the prior PIM architectures.

Figure 6.3: Throughput (A) and Energy-Efficiency (B) Comparison of CIDAN-XE Against

the State-of-the-Art Architectures When Computing ALEXNET.

6.1.2 Circuit Obfuscation

Counterfeit integrated circuits (ICs) pose a major threat to national security and

can cause significant financial losses for the US semiconductor industry, potentially

reaching billions of dollars. IC counterfeiting has been occurring for many years

143

and has traditionally involved relatively simple techniques like recycling, relabeling,

and repackaging, which do not require access to advanced manufacturing. However,

there are now opportunities for attackers to infiltrate the IC supply chain at the

manufacturing stage by modifying designs using advanced tools and technologies.

These opportunities arose because the vast majority of ICs that are used in the US

and sold by US companies globally are manufactured outside the US. In the absence

of any form of protection, access to the layout database removes any and all barriers

to counterfeiting or reverse engineering.

In the most recent and comprehensive survey of IC counterfeiting , there are seven

types of counterfeiting: (1) recycling, (2) relabeling and repackaging, (3) illegal man-

ufacturing, (4) low-spec components, (5) cloning and reverse engineering, (6) forgery,

and (7) structural modifications. A variety of techniques have been developed to

detect and prevent each of these types of counterfeiting. Among these counterfeiting

methods, (3) and (7) require access to foundry and testing facilities, and (5) requires

specialized equipment to deconstruct the design after fabrication through a process

called delayering.

An attacker may attempt to study the design of a circuit to understand how it

functions, potentially with the goal of stealing the design and/or the manufactured

circuit or selling the design and/or the manufactured circuit illegally. To accomplish

these objectives, the attacker must overcome any IP protection measures that may

have been implemented in the ASIC. It is assumed that the attacker has access to

design information, including (a) the protected netlist and knowledge of the defense

techniques used in the ASIC to protect the design, as well as information about the

inputs, registers, and/or memory elements that implement these defense techniques,

but does not know the target design or how it is implemented in the ASIC architec-

ture. The attacker also has access to reverse engineering tools to transform the target

144

layout to any desired level of abstraction. (b) Any parametric operating bounds of

the IC that may be revealed from the process design kits provided by the foundry, as

well as information about standard cell designs and their delay, power, area, capac-

itance values, leakage, design rules, simulation models, and layout. (c) A legitimate

operating chip that the attacker may obtain from the market or through theft.

One way to prevent counterfeiting by a foundry or unauthorized access is through

a technique known as logic locking. Logic locking is a technique to secure integrated

circuits (ICs) by inserting logic gates with additional control inputs into the circuit.

The set of all these control inputs serves as a secret key that must be set to a specific

value for the circuit to operate correctly. The key must be stored in tamper-proof

memory. Logic locking can help prevent counterfeiting or unauthorized access to the

IC. However, it can also come with drawbacks, such as increased PPA requirements.

Earlier logic locking techniques were found to be vulnerable to a type of attack called

Boolean SATisfiability (SAT), and keys could be discovered within minutes using

this method. As a result, several logic-locking techniques resistant to SAT attacks

have been developed. Although these techniques make it exponentially more time-

consuming to perform a SAT attack by increasing the search space for the keys, the

PPA overhead is still there. Another way to secure ICs is through split manufac-

turing, where the untrusted foundry produces all but the top metal layers of the

IC, and the fully trusted foundry produces the top metal layers. This approach can

increase production time and cost and also degrade performance, power usage, and

area requirements. Instead of logic locking, an alternate method is proposed in this

subsection that involves the use of FTL cells, which obfuscates not only the circuit

but also improves the area, power, and performance in the process. Further details

are provided below.

A 5-input FTL cell can be programmed in 94,570 ways (with some input vari-

145

ations not counted). Its function is only determined when its flash transistors are

programmed with their specific threshold voltages by the user. Therefore, the at-

tacker (or even the foundry itself) does not know the gate’s function at the time of

manufacturing. For an attacker, it is nearly impossible to determine all the possible

ways to program the FTL cells of a digital block, with even as few as 30 FTL cells.

This is because the number of possibilities is extremely large (in the order of 10120).

Another important security feature of designs that use FTL cells is the ability

to include a kill switch that can render the circuit inoperable. The charge stored in

the flash transistors of an FTL cell can be disrupted to disable the circuit until it

is returned to the user. Once returned, the circuit can be reprogrammed to restore

its original functionality. Due to the clear advantages of an FTL cell’s use in circuit

obfuscation, this topic warrants further study.

6.1.3 Threshold Logic Tamper-proof Mechanism for Scan-chain Locking

The function of an FTL cell can be changed post-fabrication. Using this property,

we construct a state machine using a combination of FTL cells that acts as a lock for

scan chains, as shown in Figure 6.4. An authenticated user unlocks this mechanism

by programming each FTL cell in the state machine with the correct functionality,

initializing the state, and then running the state machine for a pre-determined number

of clock cycles. The final state acts as the key that unlocks the testing scan chains.

Once the circuit is unlocked, the authenticated user erases the functionality of the

state machine by erasing the flash transistors, thereby making the state-machine

tamper-proof. For an unauthenticated user, who requires access to the circuit’s test

mechanisms for reverse engineering, the path to unlocking the chip is practically

infeasible. This is because unlocking the chip would require identifying the correct

functionality of each FTL cell, and then determining the correct initial state for the

146

state machine.

Figure 6.4: Scan Chain Locking Mechanism Using FTL Cells (Neurons)

147

REFERENCES

“A Highly Reliable 2-Bits/Cell Split-Gate Flash Memory Cell With a New Program-
Disturbs Immune Array Configuration”, IEEE Transactions on Electron De-
vices 61, 7, 2350–2356, URL http://ieeexplore.ieee.org/document/6828772/
(2014).

“”The Apple M1 is the first ARM-based chipset for Macs with the fastest CPU
cores and top iGPU”. GSMArena.com. Retrieved 2020-11-11”, (2020), URL
https://www.gsmarena.com/.

Kao, C.-C. and Y.-T. Lai, “A routability and performance driven technol-
ogy mapping algorithm for LUT based FPGA designs”, in “ISCAS’99. Pro-
ceedings of the 1999 IEEE International Symposium on Circuits and Sys-
tems VLSI (Cat. No.99CH36349)”, vol. 1, pp. 474–477 (IEEE, 1999), URL
http://ieeexplore.ieee.org/document/777928/.

Kim, J. H. and J. H. Anderson, “Synthesizable FPGA fabrics targetable by the
Verilog-to-Routing (VTR) CAD flow”, in “2015 25th International Conference on
Field Programmable Logic and Applications (FPL)”, pp. 1–8 (IEEE, 2015), URL
http://ieeexplore.ieee.org/document/7293955/.

Li, H., W.-K. Mak and S. Katkoori, “LUT-based FPGA technology map-
ping for power minimization with optimal depth”, in “Proceedings IEEE
Computer Society Workshop on VLSI 2001. Emerging Technologies for
VLSI Systems”, pp. 123–128 (IEEE Computer Society, 2001), URL
http://ieeexplore.ieee.org/document/923150/.

Pan, P. and C. Liu, “Technology Mapping of Sequential Circuits for LUT-
Based FPGAs for Performance”, in “Fourth International ACM Sympo-
sium on Field-Programmable Gate Arrays”, pp. 58–64 (IEEE, 1996), URL
http://ieeexplore.ieee.org/document/1377287/.

Abusultan, M. and S. Khatri, “Implementing low power digital circuits using flash de-
vices”, in “2016 IEEE 34th International Conference on Computer Design (ICCD)”,
pp. 109–116 (2016a).

Abusultan, M. and S. P. Khatri, “Exploring static and dynamic flash-based
FPGA design topologies”, in “2016 IEEE 34th International Conference on Com-
puter Design (ICCD)”, pp. 416–419 (IEEE, Scottsdale, AZ, USA, 2016b), URL
http://ieeexplore.ieee.org/document/7753317/.

Abusultan, M. and S. P. Khatri, “A Ternary-Valued, Floating Gate Transistor-
Based Circuit Design Approach”, in “2016 IEEE Computer Society Annual Sympo-
sium on VLSI (ISVLSI)”, pp. 719–724 (IEEE, Pittsburgh, PA, USA, 2016c), URL
http://ieeexplore.ieee.org/document/7560286/.

148

Agrawal, V., V. Prabhakar, K. Ramkumar, L. Hinh, S. Saha, S. Samanta and
R. Kapre, “In-Memory Computing array using 40nm multibit SONOS achieving
100 TOPS/W energy efficiency for Deep Neural Network Edge Inference Acceler-
ators”, in “2020 IEEE International Memory Workshop (IMW)”, pp. 1–4 (2020),
iSSN: 2573-7503.

Ahanonu, E., M. Marcellin and A. Bilgin, “Lossless image compression using re-
versible integer wavelet transforms and convolutional neural networks”, in “2018
Data Compression Conference”, pp. 395–395 (2018).

Ahmed, E. and J. Rose, “The effect of LUT and cluster size on deep-
submicron FPGA performance and density”, IEEE Transactions on
Very Large Scale Integration (VLSI) Systems 12, 3, 288–298, URL
http://ieeexplore.ieee.org/document/1281800/ (2004).

Akopyan, F., J. Sawada, A. Cassidy, R. Alvarez-Icaza, J. Arthur, P. Merolla, N. Imam,
Y. Nakamura, P. Datta, G.-J. Nam et al., “Truenorth: Design and tool flow of a
65 mw 1 million neuron programmable neurosynaptic chip”, IEEE Transactions
on Computer-Aided Design of Integrated Circuits and Systems 34, 10, 1537–1557
(2015).

Al Bahou, A., G. Karunaratne, R. Andri, L. Cavigelli and L. Benini, “XNORBIN: A
95 TOp/s/W hardware accelerator for binary convolutional neural networks”, in
“2018 IEEE Symposium in Low-Power and High-Speed Chips (COOL CHIPS)”,
pp. 1–3 (2018).

Anderson, J. H., Q. Wang and C. Ravishankar, “Raising FPGA Logic
Density Through Synthesis-Inspired Architecture”, IEEE Transactions on
Very Large Scale Integration (VLSI) Systems 20, 3, 537–550, URL
http://ieeexplore.ieee.org/document/5711708/ (2012).

Andri, R., L. Cavigelli, D. Rossi and L. Benini, “YodaNN: An Architecture for Ul-
tralow Power Binary-Weight CNN Acceleration”, IEEE Transactions on Computer-
Aided Design of Integrated Circuits and Systems PP, 1–1 (2017).

Annampedu, V. and M. Wagh, “Decomposition of threshold functions into bounded
fan-in threshold functions”, Information and Computation 227, 84–101 (2013a).

Annampedu, V. and M. D. Wagh, “Decomposition of threshold functions into
bounded fan-in threshold functions”, Information and Computation 227, 84–101
(2013b).

Appel, K. and W. Haken, The Four-Color Problem, pp. 153–180 (Springer New York,
New York, NY, 1978), URL https://doi.org/10.1007/978-1-4613-9435-8_7.

Azari, E., A. Wagle, S. Khatri and S. Vrudhula, “A statistical methodology for post-
fabrication weight tuning in a binary perceptron”, in “2020 21st International Sym-
posium on Quality Electronic Design (ISQED)”, pp. 141–148 (IEEE, 2020).

149

Balasubramanian, M., S. Dave, A. Shrivastava and R. Jeyapaul, “Laser: A hard-
ware/software approach to accelerate complicated loops on cgras”, in “2018 De-
sign, Automation and Test in Europe Conference and Exhibition (DATE)”, pp.
1069–1074 (2018).

Balasubramanian, M. and A. Shrivastava, “Crimson: Compute-intensive loop acceler-
ation by randomized iterative modulo scheduling and optimized mapping on cgras”,
IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems
39, 11, 3300–3310 (2020).

Bartoli, J., V. Della Marca, J. Delalleau, A. Regnier, S. Niel, F. La Rosa, J. Postel-
Pellerin and F. Lalande, “A new non-volatile memory cell based on the flash ar-
chitecture for embedded low energy applications: ATW (Asymmetrical Tunnel
Window)”, in “2014 International Semiconductor Conference (CAS)”, pp. 117–120
(IEEE, Sinaia, 2014), URL https://ieeexplore.ieee.org/document/6966409/.

Bayat, F. M., X. Guo, M. Klachko, N. Do, K. Likharev and D. Strukov,
“Model-based high-precision tuning of NOR flash memory cells for ana-
log computing applications”, in “2016 74th Annual Device Research
Conference (DRC)”, pp. 1–2 (IEEE, Newark, DE, USA, 2016), URL
http://ieeexplore.ieee.org/document/7548449/.

Beiu, V., “A survey of perceptron circuit complexity results”, in “Proceedings of the
International Joint Conference on Neural Networks, 2003.”, vol. 2, pp. 989–994
(IEEE, 2003), URL http://ieeexplore.ieee.org/document/1223825/.

Beiu, V., J. Quintana and M. Avedillo, “VLSI implementations of threshold logic- a
comprehensive survey”, IEEE Transactions on Neural Networks 14, 5, 1217–1243
(2003).

Berezowski, K. and S. Vrudhula, “Automatic design of binary and multiple-valued
logic gates on RTD series”, in “8th Euromicro Conference on Digital System Design
(DSD’05)”, p. 139–142 (2005).

Bersuker, G., Y. Jeon and H. Huff, “Degradation of thin oxides during electrical
stress”, Microelectronics Reliability 41, 12, 1923s–1931 (2001).

Betz, V. and J. Rose, “VPR: A new packing, placement and routing tool for FPGA re-
search”, in “Proceedings of the 7th International Workshop on Field-Programmable
Logic and Applications”, FPL ’97, pp. 213–222 (Springer-Verlag, 1997).

Bez, R., E. Camerlenghi, A. Modelli and A. Visconti, “Introduction to flash memory”,
Proceedings of the IEEE 91, 4, 489–502 (2003).

Bhattacharjee, D., R. Devadoss and A. Chattopadhyay, “Revamp: Reram based vliw
architecture for in-memory computing”, in “Design, Automation Test in Europe
Conference Exhibition (DATE), 2017”, pp. 782–787 (IEEE, USA, 2017).

Bobba, S. and I. Hajj, “Current-mode threshold logic gates”, in “Proceedings 2000
International Conference on Computer Design”, p. 235–240 (IEEE Comput. Soc,
2000), URL http://ieeexplore.ieee.org/document/878291/.

150

Boboila, S. and P. Desnoyers, “Write endurance in flash drives: Measurements and
analysis”, in “Proceedings of the 8th USENIX Conference on File and Storage
Technologies”, FAST’10 (2010).

Bohossian, V., P. Hasler and J. Bruck, “Programmable neural logic”, IEEE Trans-
actions on Components, Packaging, and Manufacturing Technology: Part B 21, 4,
346–351 (1998).

Brayton, R. and A. Mishchenko, “ABC: An Academic Industrial-Strength Verifica-
tion Tool”, in “Computer Aided Verification”, edited by T. Touili, B. Cook and
P. Jackson, Lecture Notes in Computer Science, pp. 24–40 (Springer, 2010).

Cai, Y., E. F. Haratsch, O. Mutlu and K. Mai, “Threshold voltage distribution in
MLC NAND flash memory: Characterization, analysis, and modeling”, in “2013
Design, Automation Test in Europe Conference Exhibition (DATE)”, pp. 1285–
1290 (2013a).

Cai, Y., E. F. Haratsch, O. Mutlu and K. Mai, “Threshold Voltage Distribution in
MLC NAND Flash Memory: Characterization, Analysis and Modeling”, in “De-
sign, Automation & Test in Europe Conference & Exhibition (DATE), 2013”,
pp. 1285–1290 (IEEE Conference Publications, Grenoble, France, 2013b), URL
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=6513712.

Cai, Y., Y. Luo, S. Ghose and O. Mutlu, “Read Disturb Errors in MLC NAND
Flash Memory: Characterization, Mitigation, and Recovery”, in “2015 45th Annual
IEEE/IFIP International Conference on Dependable Systems and Networks”, p.
438–449 (IEEE, 2015), URL https://ieeexplore.ieee.org/document/7266871.

Canesche, M., M. Menezes, W. Carvalho, F. S. Torres, P. Jamieson, J. A. Nacif and
R. Ferreira, “Traversal: A fast and adaptive graph-based placement and routing
for cgras”, IEEE Transactions on Computer-Aided Design of Integrated Circuits
and Systems 40, 8, 1600–1612 (2021).

Celinski, P., S. D. Cotofana, J. Lopez, S. F. Al-Sarawi and D. Abbott, “State
of the art in CMOS threshold logic VLSI gate implementations and applica-
tions”, in “VLSI Circuits and Systems”, vol. 5117, pp. 53–64 (SPIE, 2003), URL
https://doi.org/10.1117/12.497792.

Chang, K. K., A. G. Yağlıkçı, S. Ghose, A. Agrawal, N. Chatterjee, A. Kashyap,
D. Lee, M. O’Connor, H. Hassan and O. Mutlu, “Understanding reduced-voltage
operation in modern dram devices: Experimental characterization, analysis, and
mechanisms”, Proc. ACM Meas. Anal. Comput. Syst. 1, 1, 50–92 (2017).

Chen, D., J. Cong and P. Pan, “FPGA Design Automation: A Survey”, Foun-
dations and Trends® in Electronic Design Automation 1, 3, 195–334, URL
http://www.nowpublishers.com/article/Details/EDA-003 (2006).

Chen, E., D. Lottis, A. Driskill-Smith, D. Druist, V. Nikitin, S. Watts, X. Tang and
D. Apalkov, “Non-volatile spin-transfer torque ram (stt-ram)”, in “68th Device
Research Conference”, pp. 249–252 (IEEE, USA, 2010).

151

Chen, Y., J. Emer and V. Sze, “Eyeriss: A spatial architecture for energy-efficient
dataflow for convolutional neural networks”, in “2016 ACM/IEEE ISCA”, pp. 367–
379 (2016).

Chen, Y., Z. Zhao, J. Jiang, G. He, Z. Mao and W. Sheng, “Reducing memory access
conflicts with loop transformation and data reuse on coarse-grained reconfigurable
architecture”, in “2021 Design, Automation and Test in Europe Conference and
Exhibition (DATE)”, pp. 124–129 (2021).

Chen, Y.-H., J. Emer and V. Sze, “Eyeriss: A spatial architecture for energy-efficient
dataflow for convolutional neural networks”, in “2016 ACM/IEEE 43rd Annual
International Symposium on Computer Architecture (ISCA)”, pp. 367–379 (IEEE,
USA, 2016).

Cheng, Y., D. Wang, P. Zhou and T. Zhang, “Model compression and acceleration
for deep neural networks: The principles, progress, and challenges”, IEEE Signal
Processing Magazine 35, 1, 126–136 (2018).

Cho, I. W., B. R. Lim, J. Kim, S. S. Kim, K. C. Kim, B. J. Lee, G. J. Bae, N. I.
Lee, S. H. Kim, K. W. Koh, H. Kang, M. K. Seo, S. W. Kim, S. H. Hwang,
D. Y. Lee, M. C. Kim, S. D. Chae, S. A. Seo and C. W. Kim, “Full integration
and characterization of Localized ONO Memory (LONOM) for embedded flash
technology”, in “Digest of Technical Papers. 2004 Symposium on VLSI Technology,
2004.”, pp. 240–241 (2004).

Chu, Y. S., Y. H. Wang, C. Y. Wang, Y. H. Lee, A. C. Kang, R. Ranjan, W. T.
Chu, T. C. Ong, H. W. Chin and K. Wu, “Split-gate flash memory for automotive
embedded applications”, in “2011 International Reliability Physics Symposium”,
pp. 6B.1.1–6B.1.5 (2011), iSSN: 1938-1891.

Chung, C.-P. and K.-S. Chang-Liao, “A Highly Scalable Single Poly-Silicon Embedded
Electrically Erasable Programmable Read Only Memory With Tungsten Control
Gate by Full CMOS Process”, IEEE Electron Device Letters 36, 4, 336–338, URL
http://ieeexplore.ieee.org/document/7047219/ (2015).

Cong, J. and Y. Ding, “On nominal delay minimization in LUT-
based FPGA technology mapping”, Integration 18, 1, 73–94, URL
https://linkinghub.elsevier.com/retrieve/pii/0167926094900124 (1994).

Cong, J. and B. Xiao, “mrFPGA: A novel FPGA architecture with memristor-based
reconfiguration”, in “2011 IEEE/ACM International Symposium on Nanoscale Ar-
chitectures”, pp. 1–8 (2011).

Cong, J. and Yuzheng Ding, “FlowMap: an optimal technology mapping algorithm
for delay optimization in lookup-table based FPGA designs”, IEEE Transactions
on Computer-Aided Design of Integrated Circuits and Systems 13, 1, 1–12, URL
http://ieeexplore.ieee.org/document/273754/ (1994).

Corporation, I., “Lakefield: Hybrid cpu with foveros technology”,
https://newsroom.intel.com/press-kits/lakefield/ (2019).

152

Cortadella, J. and S. Sapatnekar, Static timing analysis, pp. 133–154 (CRC Press,
2017).

Cui, Z.-Y., M.-H. Choi, Y.-S. Kim, H.-G. Lee, K.-W. Kim and N.-S. Kim, “Single
poly-EEPROM with stacked MIM and n-well capacitor”, Electronics Letters 45,
3, 185 (2009).

Cuppens, R., C. Hartgring, J. Verwey and H. Peek, “An EEPROM for microproces-
sors and custom logic”, in “1984 IEEE International Solid-State Circuits Confer-
ence. Digest of Technical Papers”, vol. XXVII, pp. 268–269 (1984).

Dagan, H., A. Teman, A. Fish, E. Pikhay, V. Dayan and Y. Roizin, “A low-cost low-
power non-volatile memory for RFID applications”, in “2012 IEEE International
Symposium on Circuits and Systems (ISCAS)”, pp. 1827–1830 (2012), iSSN: 2158-
1525.

Dara, C. B., T. Haniotakis and S. Tragoudas, “Delay analysis for an n-input current
mode threshold logic gate”, in “2012 IEEE Computer Society Annual Symposium
on VLSI”, p. 344–349 (2012).

Dave, S., M. Balasubramanian and A. Shrivastava, “Ramp: Resource-aware map-
ping for cgras”, in “2018 55th ACM/ESDA/IEEE Design Automation Conference
(DAC)”, pp. 1–6 (2018).

Dave, S., Y. Kim, S. Avancha, K. Lee and A. Shrivastava, “Dmazerunner: Executing
perfectly nested loops on dataflow accelerators”, ACM Trans. Embed. Comput.
Syst. 18, 5s, URL https://doi.org/10.1145/3358198 (2019).

Davies, M., N. Srinivasa, T.-H. Lin, G. Chinya, Y. Cao, S. H. Choday, G. Dimou,
P. Joshi, N. Imam, S. Jain et al., “Loihi: A neuromorphic manycore processor with
on-chip learning”, IEEE Micro 38, 1, 82–99 (2018).

Dechu, S., M. Goparaju and S. Tragoudas, “A Metric of Tolerance for the Man-
ufacturing Defects of Threshold Logic Gates”, in “2006 21st IEEE International
Symposium on Defect and Fault Tolerance in VLSI Systems”, p. 318–326 (2006).

Degraeve, R., B. Kaczer and G. Groeseneken, “Degradation and breakdown in thin
oxide layers: mechanisms, models and reliability prediction”, Microelectronics Re-
liability 39, 10, 1445–1460 (1999).

Dube, A., A. Wagle, G. Singh and S. Vrudhula, “Tunable precision control for ap-
proximate image filtering in an in-memory architecture with embedded neurons”, in
“Proceedings of the 41st IEEE/ACM International Conference on Computer-Aided
Design”, pp. 1–9 (2022).

Fan, D. and S. Angizi, “Energy efficient in-memory binary deep neural network ac-
celerator with dual-mode sot-mram”, in “2017 IEEE International Conference on
Computer Design (ICCD)”, pp. 609–612 (2017).

153

Farabet, C., B. Martini, B. Corda, P. Akselrod, E. Culurciello and Y. LeCun, “Neu-
flow: A runtime reconfigurable dataflow processor for vision”, in “Computer Vi-
sion and Pattern Recognition Workshops (CVPRW), 2011 IEEE Computer Society
Conference on”, pp. 109–116, IEEE (IEEE, USA, 2011).

Farooq, U., Z. Marrakchi and H. Mehrez, FPGA Architectures: An Overview
(Springer New York, 2012).

Fedorov, V. V., M. Abusultan and S. P. Khatri, “An area-efficient Ternary CAM de-
sign using floating gate transistors”, in “2014 IEEE 32nd International Conference
on Computer Design (ICCD)”, pp. 55–60 (IEEE, Seoul, South Korea, 2014), URL
http://ieeexplore.ieee.org/document/6974662/.

Fedorov, V. V., M. Abusultan and S. P. Khatri, “FTCAM: An Area-Efficient Flash-
Based Ternary CAM Design”, IEEE Transactions on Computers 65, 8, 2652–2658,
URL http://ieeexplore.ieee.org/document/7303918/ (2016).

Fedus, W., B. Zoph and N. Shazeer, “Switch transformers: Scaling to trillion param-
eter models with simple and efficient sparsity”, Journal of Machine Learning Re-
search 23, 120, 1–39, URL http://jmlr.org/papers/v23/21-0998.html (2022).

Feng, W., J. Greene and A. Mishchenko, “Improving FPGA Performance with a S44
LUT Structure”, in “Proceedings of the 2018 ACM/SIGDA International Sympo-
sium on Field-Programmable Gate Arrays”, pp. 61––66 (ACM, 2018).

Fisher, J. A., “Trace scheduling: A technique for global microcode compaction”,
IEEE Trans. Comput. 30, 7, 478–490 (1981).

Fohl, W. and D. Hemmer, “An FPGA-Based Virtual Reality Audio System”, Journal
of The Audio Engineering Society (2015).

Fowler, R. and L. Nordheim, “Electron Emission in Intense Electric Fields”, Proc.
Royal Soc. of London. Series A 119, 781 (1928).

Furber, S., “Spinnnaker: The world’s biggest noc”, in “Networks-on-Chip (NoCS),
2014 Eighth IEEE/ACM International Symposium on”, pp. ii–ii, IEEE (IEEE,
USA, 2014).

Gao, M., J. Pu, X. Yang, M. Horowitz and C. Kozyrakis, “Tetris: Scalable and effi-
cient neural network acceleration with 3d memory”, in “Proceedings of the Twenty-
Second International Conference on Architectural Support for Programming Lan-
guages and Operating Systems”, pp. 751–764, ACM (Association for Computer
Machinery, USA, 2017).

Garland, J. and D. Gregg, “Low complexity multiply-accumulate units for convolu-
tional neural networks with weight-sharing”, ACM Trans. Archit. Code Optim. 15,
3, URL https://doi.org/10.1145/3233300 (2018).

Gogl, D., G. Burbach, H. Fiedler, M. Verbeck and C. Zimmermann, “A single-
poly EEPROM cell in SIMOX technology for high-temperature applications up
to 250/spl deg/C”, IEEE Electron Device Letters 18, 11, 541–543 (1997).

154

Goncalves, O., G. Prenat, G. Di Pendina and B. Dieny, “Non-volatile FP-
GAs based on spintronic devices”, in “Proceedings of the 50th Annual De-
sign Automation Conference on - DAC ’13”, p. 1 (ACM Press, 2013), URL
http://dl.acm.org/citation.cfm?doid=2463209.2488889.

Guimarães, G. F., J. P. S. M. Lima, J. M. X. N. Teixeira, G. D. Silva, V. Te-
ichrieb and J. Kelner, “FPGA infrastructure for the development of augmented
reality applications”, in “Proceedings of the 20th annual conference on Integrated
circuits and systems design - SBCCI ’07”, p. 336 (ACM Press, 2007), URL
http://dl.acm.org/citation.cfm?doid=1284480.1284568.

Guo, X., F. M. Bayat, M. Bavandpour, M. Klachko, M. R. Mahmoodi, M. Prezioso,
K. K. Likharev and D. B. Strukov, “Fast, energy-efficient, robust, and re-
producible mixed-signal neuromorphic classifier based on embedded NOR flash
memory technology”, in “2017 IEEE International Electron Devices Meet-
ing (IEDM)”, pp. 6.5.1–6.5.4 (IEEE, San Francisco, CA, USA, 2017a), URL
http://ieeexplore.ieee.org/document/8268341/.

Guo, X., F. M. Bayat, M. Bavandpour, M. Klachko, M. M.R., M. Prezioso,
K. Likharev and D. Strukov, “Fast, energy-efficient, robust, and reproducible
mixed-signal neuromorphic classifier based on embedded NOR flash memory tech-
nology”, in “2017 IEEE International Electron Devices Meeting (IEDM)”, pp.
6.5.1–6.5.4 (2017b).

Gupta, P. and N. Jha, “An Algorithm for Nanopipelining of RTD-Based Circuits and
Architectures”, IEEE Transactions On Nanotechnology 4, 2, 159–167 (2005).

Ha, H., “Understanding and improving the energy efficiency of dram, phd thesis,
stanford university”, URL https://searchworks.stanford.edu/view/12819402
(2018).

Ha, H., A. Pedram, S. Richardson, S. Kvatinsky and M. Horowitz, “Improving en-
ergy efficiency of dram by exploiting half page row access”, in “The 49th Annual
IEEE/ACM International Symposium on Microarchitecture”, MICRO-49 (IEEE
Press, USA, 2016).

Haj-Yahya, J., E. Rotem, A. Mendelson and A. Chattopadhyay, “A comprehensive
evaluation of power delivery schemes for modern microprocessors”, in “20th Inter-
national Symposium on Quality Electronic Design (ISQED)”, pp. 123–130 (IEEE,
USA, 2019).

Hamzeh, M., A. Shrivastava and S. Vrudhula, “Epimap: Using epimorphism to map
applications on cgras”, in “Proceedings of the 49 Design Automation Conference
(DAC)”, (San Diego, CA, 2012).

Hamzeh, M., A. Shrivastava and S. Vrudhula, “Branch-aware loop mapping on cgras”,
in “2014 51st ACM/EDAC/IEEE Design Automation Conference (DAC)”, pp. 1–6
(2014).

155

Hang-Ting Lue, Tzu-Hsuan Hsu, Szu-Yu Wang, Erh-Kun Lai, Kuang-Yeu Hsieh, Rich
Liu and Chih-Yuan Lu, “study of incremental step pulse programming (ISPP)
and STI edge effect of BE-SONOS NAND Flash”, in “2008 IEEE International
Reliability Physics Symposium”, pp. 693–694 (2008), iSSN: 1938-1891.

He, K., X. Zhang, S. Ren and J. Sun, “Delving deep into rectifiers: Surpassing human-
level performance on imagenet classification”, 2015 IEEE International Conference
on Computer Vision (ICCV) pp. 1026–1034 (2015).

Henry, D., B. Kuszmaul and V. Viswanath, “The ultrascalar processor-an asymptot-
ically scalable superscalar microarchitecture”, in “Proceedings 20th Anniversary
Conference on Advanced Research in VLSI”, pp. 256–273 (IEEE, USA, 1999).

Hinton, G., L. Deng, D. Yu, G. Dahl, A. Mohamed, N. Jaitly, A. Senior, V. Vanhoucke,
P. Nguyen, B. Kingsbury and T. Sainath, “Deep neural networks for acoustic mod-
eling in speech recognition”, IEEE Signal Processing Magazine 29, 82–97 (2012).

Hubara, I., M. Courbariaux, D. Soudry, R. El-Yaniv and Y. Bengio, “Quantized neu-
ral networks: Training neural networks with low precision weights and activations”,
J. Mach. Learn. Res. 18, 1, 6869–6898 (2017).

Hunt, K., D. Sbarbaro, R. Zbikowski and P. Gawthrop, “Neural net-
works for control systems survey”, Automatica 28, 6, 1083 – 1112, URL
http://www.sciencedirect.com/science/article/pii/000510989290053I
(1992).

Jouppi, N. P., C. Young, N. Patil, D. Patterson, G. Agrawal, R. Bajwa, S. Bates,
S. Bhatia, N. Boden, A. Borchers et al., “In-datacenter performance analysis of a
tensor processing unit”, in “Computer Architecture (ISCA), 2017 ACM/IEEE 44th
Annual International Symposium on”, pp. 1–12, IEEE (IEEE, USA, 2017).

Jung, S.-G., K.-W. Lee, K.-S. Kim, S.-W. Shin, S.-S. Lee, J.-C. Om, G.-H. Bae and J.-
H. Lee, “Modeling of $V {\rm th}$ Shift in nand Flash-Memory Cell Device Con-
sidering Crosstalk and Short-Channel Effects”, IEEE Transactions on Electron De-
vices 55, 4, 1020–1026, URL http://ieeexplore.ieee.org/document/4475401/
(2008).

Kaya, S., H. Hamed, D. Ting and G. Creech, “Reconfigurable threshold logic
gates with nanoscale DG-MOSFETs”, Solid-State Electronics 51, 10, 1301–1307,
URL https://linkinghub.elsevier.com/retrieve/pii/S0038110107002857
(2007a).

Kaya, S., H. F. Hamed, D. T. Ting and G. Creech, “Reconfigurable threshold
logic gates with nanoscale dg-mosfets”, Solid-State Electronics 51, 10, 1301–1307
(2007b).

Khan, F., M. S. Han, D. Moy, R. Katz, L. Jiang, E. Banghart, N. Robson, T. Kirihata,
J. C. S. Woo and S. S. Iyer, “Design Optimization and Modeling of Charge Trap
Transistors (CTTs) in 14 nm FinFET Technologies”, IEEE Electron Device Let-
ters 40, 7, 1100–1103, URL https://ieeexplore.ieee.org/document/8726301/
(2019a).

156

Khan, F., D. Moy, D. Anand, E. Schroeder, R. Katz, L. Jiang, E. Banghart, N. Rob-
son and T. Kirihata, “Turning Logic Transistors into Secure, Multi-Time Pro-
grammable, Embedded Non-Volatile Memory Elements for 14 nm FINFET Tech-
nologies and Beyond”, in “2019 Symposium on VLSI Technology”, pp. T116––T117
(IEEE, 2019b), URL https://ieeexplore.ieee.org/document/8776510/.

Khatri, S. P., S. Vrudhula, M. Abusultan, K. Bharathi, S.-W. Chu, C.-Y. Lee, K. R.
Scott, G. Singh and A. Wagle, “Flash: A “forgotten” technology in vlsi design”,
in “Frontiers of Quality Electronic Design (QED)”, pp. 67–136 (Springer, Cham,
2023).

Kim, M., J. Kim, G. Park, L. Everson, H. Kim, S. Song, S. Lee and C. H. Kim,
“A 68 Parallel Row Access Neuromorphic Core with 22K Multi-Level Synapses
Based on Logic-Compatible Embedded Flash Memory Technology”, in “2018 IEEE
International Electron Devices Meeting (IEDM)”, pp. 15.4.1–15.4.4 (IEEE, San
Francisco, CA, 2018), URL https://ieeexplore.ieee.org/document/8614599/.

Kim, S., J. Lee, S. Kang, J. Lee and H.-J. Yoo, “A power-efficient cnn accelerator with
similar feature skipping for face recognition in mobile devices”, IEEE Transactions
on Circuits and Systems I: Regular Papers 67, 4, 1181–1193 (2020).

Knag, P. C., G. K. Chen, H. E. Sumbul, R. Kumar, M. A. Anders,
H. Kaul, S. K. Hsu, A. Agarwal, M. Kar, S. Kim and et al., “A 617
tops/w all digital binary neural network accelerator in 10nm finfet cmos”,
in “2020 IEEE Symposium on VLSI Circuits”, p. 1–2 (IEEE, 2020), URL
https://ieeexplore.ieee.org/document/9162949/.

Kono, T., T. Ito, T. Tsuruda, T. Nishiyama, T. Nagasawa, T. Ogawa, Y. Kawashima,
H. Hidaka and T. Yamauchi, “40-nm Embedded Split-Gate MONOS (SG-
MONOS) Flash Macros for Automotive With 160-MHz Random Access for Code
and Endurance Over 10 M Cycles for Data at the Junction Temperature of
170 $ˆ{\circ}$C”, IEEE Journal of Solid-State Circuits 49, 1, 154–166, URL
http://ieeexplore.ieee.org/document/6612753/ (2014).

Krizhevsky, A., I. Sutskever and G. Hinton, “Imagenet classification with deep convo-
lutional neural networks”, in “Advances in Neural Information Processing Systems
25”, edited by F. Pereira, C. J. C. Burges, L. Bottou and K. Q. Weinberger, pp.
1097–1105 (Curran Associates, Inc., 2012).

Ku, D. and G. De Micheli, “Relative scheduling under timing constraints”, in “Pro-
ceedings of the 27th ACM/IEEE Design Automation Conference”, DAC ’90, p.
59–64 (Association for Computing Machinery, New York, NY, USA, 1991), URL
https://doi.org/10.1145/123186.123227.

Kulkarni, N. and S. Vrudhula, “Efficient Enumeration of Unidirectional Cuts for
Technology Mapping of Boolean Networks”, (2016).

Kulkarni, N., J. Yang, J. Seo and S. Vrudhula, “Reducing Power, Leakage, and
Area of Standard-Cell ASICs Using Threshold Logic Flip-Flops”, IEEE Trans-
actions on Very Large Scale Integration (VLSI) Systems 24, 9, 2873–2886, URL
http://ieeexplore.ieee.org/document/7430367/ (2016a).

157

Kulkarni, N., J. Yang, J.-S. Seo and S. Vrudhula, “Reducing power, leakage, and area
of standard-cell asics using threshold logic flip-flops”, IEEE Transactions on Very
Large Scale Integration (VLSI) Systems 24, 9, 2873–2886 (2016b).

Kulkarni, N., J. Yang and S. Vrudhula, “A fast, energy efficient, field
programmable threshold-logic array”, in “2014 International Conference on
Field-Programmable Technology (FPT)”, pp. 300–305 (IEEE, 2014), URL
http://ieeexplore.ieee.org/document/7082804/.

Kumar, T. N., H. A. F. Almurib and F. Lombardi, “A novel design of a memristor-
based look-up table (LUT) for FPGA”, in “2014 IEEE Asia Pacific Confer-
ence on Circuits and Systems (APCCAS)”, pp. 703–706 (IEEE, 2014), URL
http://ieeexplore.ieee.org/document/7032878/.

Kuon, I., R. Tessier and J. Rose, FPGA architecture: survey and challenges, no. 2,2
in Foundations and trends in electronic design automation (Now Publ, 2008).

Lageweg, C. R., S. D. Cotofana and S. Vassiliadis, “A full adder implementation
using set based linear threshold gates”, in “Proceedings 9th IEEE International
conference on electronics, circuits and systems - ICECS 2002”, pp. 665–669 (2002).

Landwehr, B., P. Marwedel and R. Dömer, “Oscar: optimum simultaneous schedul-
ing, allocation and resource binding based on integer programming”, pp. 90–95
(1994).

Lee, B. C., E. Ipek, O. Mutlu and D. Burger, “Phase change memory architecture
and the quest for scalability”, Commun. ACM 53, 7, 99–106 (2010).

Lee, W., “Tutorial: Design and optimization of power delivery networks”, IEIE Trans-
actions on Smart Processing and Computing 5, 349–357 (2016).

Lee, Y. K., B. Seo, T.-K. Yu, B. Lee, E. Kim, C. Jeon, W. Park, Y. Kim,
D. Lee, H. Lee and S. Cho, “A 45-nm logic compatible 4Mb-split-gate em-
bedded flash with 1M-cycling-endurance”, in “2014 IEEE 6th International
Memory Workshop (IMW)”, pp. 1–4 (IEEE, Taipei, Taiwan, 2014), URL
http://ieeexplore.ieee.org/document/6849369/.

Li, J., G. Yan, W. Lu, S. Jiang, S. Gong, J. Wu and X. Li, “Smartshuttle: Opti-
mizing off-chip memory accesses for deep learning accelerators”, in “2018 Design,
Automation & Test in Europe Conference & Exhibition (DATE)”, pp. 343–348,
IEEE (IEEE, USA, 2018).

Li, P. and Y. Luo, “P4gpu: Accelerate packet processing of a p4 program with a cpu-
gpu heterogeneous architecture”, in “2016 ACM/IEEE Symposium on Architec-
tures for Networking and Communications Systems (ANCS)”, pp. 125–126 (IEEE,
USA, 2016).

Liang, M. and X. Hu, “Recurrent convolutional neural network for object recogni-
tion”, in “The IEEE Conference on Computer Vision and Pattern Recognition
(CVPR)”, (2015).

158

Lin, J. Y., D. Chen and J. Cong, “Optimal simultaneous mapping and cluster-
ing for FPGA delay optimization”, in “Proceedings of the 43rd annual con-
ference on Design automation - DAC ’06”, p. 472 (ACM Press, 2006), URL
http://portal.acm.org/citation.cfm?doid=1146909.1147035.

Lipatov, I. A. and I. V. Tiunov, “Performance-driven technology mapping for XC5510
family FPGAs”, in “2017 IEEE Conference of Russian Young Researchers in Elec-
trical and Electronic Engineering (EIConRus)”, pp. 477–479 (IEEE, 2017), URL
http://ieeexplore.ieee.org/document/7910595/.

Liu, H. J., “Archipelago - An Open Source FPGA with
Toolflow Support”, in “Thesis”, (UC Berkeley, 2014), URL
https://www2.eecs.berkeley.edu/Pubs/TechRpts/2014/EECS-2014-43.pdf.

Liu, J., B. Jaiyen, R. Veras and O. Mutlu, “Raidr: Retention-aware intelligent dram
refresh”, in “Proceedings of the 39th Annual International Symposium on Com-
puter Architecture”, ISCA ’12, p. 1–12 (IEEE Computer Society, USA, 2012).

Liu, Z., P. N. Whatmough, Y. Zhu and M. Mattina, “S2ta: Exploiting struc-
tured sparsity for energy-efficient mobile cnn acceleration”, in “2022 IEEE In-
ternational Symposium on High-Performance Computer Architecture (HPCA)”,
pp. 573–586 (IEEE Computer Society, Los Alamitos, CA, USA, 2022), URL
https://doi.ieeecomputersociety.org/10.1109/HPCA53966.2022.00049.

Luo, C., J. Diao and C. Chen, “Fullreuse: A novel reram-based cnn accelerator reusing
data in multiple levels”, in “2020 IEEE 5th International Conference on Integrated
Circuits and Microsystems (ICICM)”, pp. 177–183 (2020).

Luo, J.-H., J. Wu and W. Lin, “Thinet: A filter level pruning method for deep neu-
ral network compression”, in “2017 IEEE International Conference on Computer
Vision (ICCV)”, pp. 5068–5076 (2017).

Luo, L. Q., Z. Q. Teo, Y. J. Kong, F. X. Deng, J. Q. Liu, F. Zhang, X. S. Cai,
K. M. Tan, K. Y. Lim, P. Khoo, S. M. Jung, S. Y. Siah, D. Shum, C. M. Wang,
J. C. Xing, G. Y. Liu, Y. Diao, G. M. Lin, L. Tee, S. M. Lemke, P. Ghaz-
avi, X. Liu, N. Do, K. L. Pey and K. Shubhakar, “Functionality Demonstration
of a High-Density 2.5V Self-Aligned Split-Gate NVM Cell Embedded into 40nm
CMOS Logic Process for Automotive Microcontrollers”, in “2016 IEEE 8th Inter-
national Memory Workshop (IMW)”, pp. 1–4 (IEEE, Paris, France, 2016), URL
http://ieeexplore.ieee.org/document/7495271/.

López-Garćıa, J., J. Fernández-Ramos and A. Gago-Bohórquez, “A balanced capaci-
tive threshold-logic gate”, Analog Integrated Circuits and Signal Processing 40, 1,
61–69 (2004).

Ma, S., M. Donato, S. K. Lee, D. Brooks and G.-Y. Wei, “Fully-CMOS Multi-Level
Embedded Non-Volatile Memory Devices With Reliable Long-Term Retention for
Efficient Storage of Neural Network Weights”, IEEE Electron Device Letters 40, 9,
1403–1406, URL https://ieeexplore.ieee.org/document/8767952/ (2019a).

159

Ma, Y., Y. Cao, S. Vrudhula and J.-s. Seo, “An automatic RTL com-
piler for high-throughput FPGA implementation of diverse deep convolu-
tional neural networks”, in “2017 27th International Conference on Field
Programmable Logic and Applications (FPL)”, pp. 1–8 (IEEE, 2017), URL
http://ieeexplore.ieee.org/document/8056824/.

Ma, Y., Y. Cao, S. Vrudhula and J.-s. Seo, “Optimizing the Convolution Op-
eration to Accelerate Deep Neural Networks on FPGA”, IEEE Transactions
on Very Large Scale Integration (VLSI) Systems 26, 7, 1354–1367, URL
https://ieeexplore.ieee.org/document/8330049/ (2018).

Ma, Y., Y. Cao, S. Vrudhula and J.-S. Seo, “Performance Modeling for CNN Infer-
ence Accelerators on FPGA”, IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems TCAD (2019b).

McCulloch, W. S. and W. Pitts, “A logical calculus of the ideas imma-
nent in nervous activity”, in “Neurocomputing: Foundations of Research”,
edited by J. A. Anderson and E. Rosenfeld (MIT Press, 1988), URL
http://dl.acm.org/citation.cfm?id=65669.104377.

Mehonic, A., A. Sebastian, B. Rajendran, O. Simeone, E. Vasilaki and A. J. Kenyon,
“Memristors – from in-memory computing, deep learning acceleration, spiking neu-
ral networks, to the future of neuromorphic and bio-inspired computing”, (2020).

Mehri, M. and N. Masoumi, “A thorough investigation into active and passive shield-
ing methods for nano-VLSI interconnects against EMI and crosstalk”, AEU - In-
ternational Journal of Electronics and Communications 69, 9, 1199–1207 (2015).

Menshawy, R. S., A. H. Yousef and A. Salem, “Code smells and detection techniques:
A survey”, in “2021 International Mobile, Intelligent, and Ubiquitous Computing
Conference (MIUCC)”, pp. 78–83 (2021).

Minnick, R. C., “Linear-input logic”, IRE Trans. Electron. Comput. 10, 6–16 (1961).

Mitani, H., K. Matsubara, H. Yoshida, T. Hashimoto, H. Yamakoshi, S. Abe,
T. Kono, Y. Taito, T. Ito, T. Krafuji, K. Noguchi, H. Hidaka and T. Ya-
mauchi, “7.6 A 90nm embedded 1T-MONOS flash macro for automotive ap-
plications with 0.07mJ/8kB rewrite energy and endurance over 100M cycles
under Tj of 175°C”, in “2016 IEEE International Solid-State Circuits Con-
ference (ISSCC)”, pp. 140–141 (IEEE, San Francisco, CA, USA, 2016), URL
http://ieeexplore.ieee.org/document/7417946/.

Moolchandani, D., A. Kumar and S. R. Sarangi, “Accelerating CNN Inference
on ASICs: A Survey”, Journal of Systems Architecture 113, 101887, URL
https://linkinghub.elsevier.com/retrieve/pii/S1383762120301612 (2021).

Moons, B., D. Bankman, L. Yang, B. Murmann and M. Verhelst, “Binareye: An
always-on energy-accuracy-scalable binary cnn processor with all memory on chip
in 28nm cmos”, in “2018 IEEE Custom Integrated Circuits Conference (CICC)”,
pp. 1–4 (2018).

160

Mozaffari, S. and S. Tragoudas, “Maximizing the Number of Threshold Logic Func-
tions Using Resistive Memory”, IEEE Transactions on Nanotechnology 17, 5, 897–
905, URL https://ieeexplore.ieee.org/document/8329555/ (2018).

Mozaffari, S., S. Tragoudas and T. Haniotakis, “A Generalized Approach to
Implement Efficient CMOS-Based Threshold Logic Functions”, IEEE Trans-
actions on Circuits and Systems I: Regular Papers 65, 3, 946–959, URL
http://ieeexplore.ieee.org/document/8118301/ (2018).

Mullin, A. A., “Threshold Logic: A Synthesis Approach”, SIAM Review 8, 3, 405–406
(1966).

Muroga, S., Threshold Logic and its Applications (Wiley-Interscience New York,
1971a).

Muroga, S., Threshold Logic and its Applications (1971b).

Muroga, S., Threshold Logic and its Applications (John Wiley & Sons, 1971c).

Mutlu, O., S. Ghose, J. Gómez-Luna and R. Ausavarungnirun, “A mod-
ern primer on processing in memory”, CoRR abs/2012.03112, URL
https://arxiv.org/abs/2012.03112 (2020).

Myers, G., “A fast bit-vector algorithm for approximate string match-
ing based on dynamic programming”, J. ACM 46, 3, 395–415, URL
https://doi.org/10.1145/316542.316550 (1999).

Nagel, M., M. Fournarakis, R. A. Amjad, Y. Bondarenko, M. van Baalen
and T. Blankevoort, “A white paper on neural network quantization”, URL
https://arxiv.org/abs/2106.08295 (2021).

Nakahara, H., H. Yonekawa, T. Sasao, H. Iwamoto and M. Motomura, “A memory-
based realization of a binarized deep convolutional neural network”, in “2016 In-
ternational Conference on Field-Programmable Technology (FPT)”, pp. 277–280
(2016).

Neutzling, A., J. Matos, A. Mishchenko, A. Reis and R. Ribas, “Effective
Logic Synthesis for Threshold Logic Circuit Design”, IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems 38, 5, 926–937, URL
https://ieeexplore.ieee.org/document/8355999/ (2019).

Nii, K., Y. Taniguchi and K. Okuyama, “A Cost-Effective Embedded Nonvolatile
Memory with Scalable LEE Flash®-G2 SONOS for Secure IoT and Computing-in-
Memory (CiM) Applications”, in “2020 International Symposium on VLSI Design,
Automation and Test (VLSI-DAT)”, pp. 1–4 (2020).

Nukala, N. S., N. Kulkarni and S. Vrudhula, “Spintronic threshold logic array
(STLA) - a compact, low leakage, non-volatile gate array architecture”, in
“Proceedings of the 2012 IEEE/ACM International Symposium on Nanoscale
Architectures - NANOARCH ’12”, pp. 188–195 (ACM Press, 2012), URL
http://dl.acm.org/citation.cfm?doid=2765491.2765525.

161

Nurvitadhi, E., G. Venkatesh, J. Sim, D. Marr, R. Huang, J. Ong Gee Hock, Y. T.
Liew, K. Srivatsan, D. Moss, S. Subhaschandra and G. Boudoukh, “Can FPGAs
Beat GPUs in Accelerating Next-Generation Deep Neural Networks?”, in “Pro-
ceedings of the 2017 ACM/SIGDA”, FPGA ’17, pp. 5–14 (ACM, New York, NY,
USA, 2017), URL http://doi.acm.org/10.1145/3020078.3021740.

Ogura, T., N. Ogura, M. Kirihara, Ki Tae Park, Y. Baba, M. Sekine and K. Shimeno,
“Embedded twin MONOS flash memories with 4 ns and 15 ns fast access times”,
in “2003 Symposium on VLSI Circuits. Digest of Technical Papers (IEEE Cat.
No.03CH37408)”, pp. 207–210 (Japan Soc. Appl. Phys, Kyoto, Japan, 2003), URL
http://ieeexplore.ieee.org/document/1221204/.

Ozdemir, H., A. Kepkep, B. Pamir, Y. Leblebici and U. Cilingiroglu, “A capacitive
threshold-logic gate”, IEEE Journal of Solid-State Circuits 31, 8, 1141–1150 (1996).

Padure, M., S. Cotofana, C. Dan, M. Bodea and S. Vassiliadis, “A new latch-
based threshold logic family”, in “2001 International Semiconductor Conference.
CAS 2001 Proceedings (Cat. No.01TH8547)”, p. 531–534 (IEEE, 2001), URL
http://ieeexplore.ieee.org/document/967522/.

Padure, M., S. Cotofana, C. Dan, S. Vassiliadis and M. Bodea, “Compact delay mod-
eling of latch-based threshold logic gates”, in “Proceedings. International Semicon-
ductor Conference”, vol. 2, p. 317–320 vol.2 (2002).

Padure, M., S. Cotofana and S. Vassiliadis, “Design and experimental results of a cmos
flip-flop featuring embedded threshold logic”, in “Proceedings of the 2003 Interna-
tional Symposium on Circuits and Systems, 2003. ISCAS ’03.”, vol. 5, pp. V–253–
V–256 (IEEE, 2003), URL http://ieeexplore.ieee.org/document/1206246/.

Palacharla, S., N. Jouppi and J. Smith, “Complexity-effective superscalar proces-
sors”, in “Conference Proceedings. The 24th Annual International Symposium on
Computer Architecture”, pp. 206–218 (IEEE, USA, 1997).

Park, H., D. Kim, J. Ahn and S. Yoo, “Zero and data reuse-aware fast convolution for
deep neural networks on gpu”, in “2016 International Conference on Hardware/-
Software Codesign and System Synthesis (CODES+ISSS)”, pp. 1–10 (2016).

Park, S., S. Kim and B. Lee, “Development of 2T-SONOS Cell Using a
Contamination-Free Process Integration for a Highly Reliable Code Storage
eNVM”, IEEE Transactions on Electron Devices 67, 3, 922–928 (2020).

Park, S.-K., H.-M. Song, N.-Y. Kim, I.-W. Cho and K.-D. Yoo,
“Novel Select Gate Lateral Coupling Single Poly eNVM for an HVC-
MOS Process”, IEEE Electron Device Letters 35, 3, 351–353, URL
http://ieeexplore.ieee.org/document/6728616/ (2014).

Perricone, R., I. Ahmed, Z. Liang, M. G. Mankalale, X. S. Hu, C. H. Kim,
M. Niemier, S. S. Sapatnekar and J. Wang, “Advanced spintronic memory
and logic for non-volatile processors”, in “Design, Automation & Test in
Europe Conference & Exhibition (DATE), 2017”, pp. 972–977 (2017), URL
http://ieeexplore.ieee.org/document/7927132/.

162

Pisarchyk, Y. and J. Lee, “Efficient memory management for deep neural net infer-
ence”, (2020).

Rajendran, J., H. Manem, R. Karri and G. S. Rose, “Memristor based programmable
threshold logic array”, in “2010 IEEE/ACM International Symposium on Nanoscale
Architectures”, p. 5–10 (2010).

Ramos, J. F., J. L. Garćıa, S. C. Mart́ın and A. G. Bohórquez, “A new theorem in
threshold logic and its application to multioperand binary adders”, International
Journal of Computer Mathematics 80, 11, 1363–1372 (2003).

Raoux, S., G. W. Burr, M. J. Breitwisch, C. T. Rettner, Y.-C. Chen, R. M. Shelby,
M. Salinga, D. Krebs, S.-H. Chen, H.-L. Lung and C. H. Lam, “Phase-change
random access memory: A scalable technology”, IBM Journal of Research and
Development 52, 4.5, 465–479 (2008).

Rastegari, M., V. Ordonez, J. Redmon and A. Farhadi, “Xnor-net: Imagenet classifi-
cation using binary convolutional neural networks”, vol. 9908, pp. 525–542 (2016).

Raszka, J., M. Advani, V. Tiwari, L. Varisco, N. Hacobian, A. Mittal, M. Han,
A. Shirdel and A. Shubat, “Embedded flash memory for security applications in
a 0.13 um CMOS logic process”, in “2004 IEEE International Solid-State Circuits
Conference (IEEE Cat. No.04CH37519)”, pp. 46–512 (IEEE, San Francisco, CA,
USA, 2004), URL http://ieeexplore.ieee.org/document/1332586/.

Ren, S., K. He, R. Girshick and J. Sun, “Faster R-CNN: Towards real-time object
detection with region proposal networks”, in “Advances in Neural Information Pro-
cessing Systems 28”, edited by C. Cortes, N. D. Lawrence, D. D. Lee, M. Sugiyama
and R. Garnett, pp. 91–99 (Curran Associates, Inc., 2015).

Research, I., “Iedm 2020: Advances in memory, analog ai and interconnects point to
the future of hybrid cloud and ai”, (2020).

Richter, D., Fundamentals of Non-Volatile Memories, p. 5–110, Springer Series in
Advanced Microelectronics (Springer Netherlands, 2014).

Rodriguez-Villegas, E., J. M. Quintana, M. J. Avedillo and A. Rueda, “High-speed
low-power logic gates using floating gates”, in “2002 IEEE International Symposium
on Circuits and Systems. Proceedings (Cat. No.02CH37353)”, vol. 5, p. V–V (2002).

Roizin, Y., E. Aloni, A. Birman, V. Dayan, A. Fenigstein, D. Nahmad, E. Pikhay and
D. Zfira, “C-Flash: An Ultra-Low Power Single Poly Logic NVM”, in “2008 Joint
Non-Volatile Semiconductor Memory Workshop and International Conference on
Memory Technology and Design”, pp. 90–92 (2008), iSSN: 2159-4864.

Rosenblatt, F., “The perceptron: A probabilistic model for information storage and
organization in the brain.”, Psychological Review (1958).

Rothenbuhler, A., T. Tran, E. Smith, V. Saxena and K. Campbell, “Reconfigurable
threshold logic gates using memristive devices”, Journal of Low Power Electronics
and Applications 3, 2, 174–193 (2013).

163

Sampath, M., P. S. Mane and C. K. Ramesha, “Hybrid CMOS-memristor based
FPGA architecture”, in “2015 International Conference on VLSI Systems, Archi-
tecture, Technology and Applications (VLSI-SATA)”, pp. 1–6 (IEEE, 2015), URL
http://ieeexplore.ieee.org/document/7050461/.

Scott, K. R. and S. P. Khatri, “A flash-based digital to analog converter for low power
applications”, in “2022 IEEE 40th International Conference on Computer Design
(ICCD)”, pp. 1–8 (2022).

Scott, K. R. and S. P. Khatri, “An extremely low-voltage floating gate artificial neu-
ron”, in “2023 IEEE International Symposium on Circuits and Systems (ISCAS)”,
pp. 1–4 (2023).

Serrano, G., “High performance analog circuit design using floating-gate techniques”,
(2007).

Shi, F., Z. Yan and M. Wagh, “An enhanced multiway sorting net-
work based on n-sorters”, in “2014 IEEE Global Conference on Signal
and Information Processing (GlobalSIP)”, p. 60–64 (IEEE, 2014), URL
http://ieeexplore.ieee.org/document/7032078/.

Shukuri, S., N. Ajika, M. Mihara, K. Kobayashi, T. Endoh and M. Nakashima, “A
60nm NOR Flash Memory Cell Technology Utilizing Back Bias Assisted Band-to-
Band Tunneling Induced Hot-Electron Injection (B4-Flash)”, in “2006 Symposium
on VLSI Technology, 2006. Digest of Technical Papers.”, pp. 15–16 (IEEE, Hon-
olulu, HI, USA, 2006), URL http://ieeexplore.ieee.org/document/1705194/.

Simon Tam, Ping-Keung Ko and Chenming Hu, “Lucky-electron model of channel
hot-electron injection in mosfet’s”, IEEE Transactions on Electron Devices 31, 9,
1116–1125 (1984).

Simonyan, K. and A. Zisserman, “Very deep convolutional networks for large-scale
image recognition”, URL https://arxiv.org/abs/1409.1556 (2014).

Singh, G., A. Wagle, S. Khatri and S. Vrudhula, “Cidan-xe: Computing in dram with
artificial neurons”, vol. 3, p. 834146 (Frontiers Media SA, 2022).

Singh, G., A. Wagle, S. Vrudhula and S. Khatri, “Cidan: Computing in dram with
artificial neurons”, in “2021 IEEE 39th International Conference on Computer
Design (ICCD)”, pp. 349–356 (IEEE, 2021).

Siu, K., V. Roychowdhury and T. Kailath, “Depth-size tradeoffs for neural computa-
tion”, IEEE Transactions on Computers 40, 12, 1402–1412 (1991).

Siu, K., V. Roychowdhury and T. Kailath, Discrete Neural Computation: A Theoret-
ical Foundation (Prentice-Hall, Inc., 1995).

Sohi, G. S., S. E. Breach and T. N. Vijaykumar, “Multiscalar processors”, in “Pro-
ceedings of the 22nd Annual International Symposium on Computer Architecture”,
ISCA ’95, p. 414–425 (Association for Computing Machinery, New York, NY, USA,
1995), URL https://doi.org/10.1145/223982.224451.

164

Song, S., K. C. Chun and C. H. Kim, “A logic-compatible embedded flash memory
featuring a multi-story high voltage switch and a selective refresh scheme”, in “2012
Symposium on VLSI Circuits (VLSIC)”, pp. 130–131 (2012), iSSN: 2158-5636.

Song, S.-H., K. C. Chun and C. H. Kim, “A Logic-Compatible Embedded Flash Mem-
ory for Zero-Standby Power System-on-Chips Featuring a Multi-Story High Voltage
Switch and a Selective Refresh Scheme”, IEEE Journal of Solid-State Circuits 48,
5, 1302–1314, URL http://ieeexplore.ieee.org/document/6472737/ (2013).

Srinivasan, V., G. J. Serrano, J. Gray and P. Hasler, “A Precision
CMOS Amplifier Using Floating-Gate Transistors for Offset Cancel-
lation”, IEEE Journal of Solid-State Circuits 42, 2, 280–291, URL
http://ieeexplore.ieee.org/document/4077175/ (2007).

Strubell, E., A. Ganesh and A. McCallum, “Energy and policy con-
siderations for modern deep learning research”, Proceedings of the
AAAI Conference on Artificial Intelligence 34, 09, 13693–13696, URL
https://ojs.aaai.org/index.php/AAAI/article/view/7123 (2020).

Sun, X., X. Peng, P. Chen, R. Liu, J. Seo and S. Yu, “Fully parallel rram synaptic
array for implementing binary neural network with (+1, -1) weights and (+1, 0)
neurons”, in “2018 23rd Asia and South Pacific Design Automation Conference
(ASP-DAC)”, (2018).

Sze, V., Y.-H. Chen, T.-J. Yang and J. S. Emer, “Efficient processing of deep neural
networks: A tutorial and survey”, Proceedings of the IEEE 105, 12, 2295–2329
(2017).

Taito, Y., M. Nakano, H. Okimoto, D. Okada, T. Ito, T. Kono, K. Noguchi, H. Hidaka
and T. Yamauchi, “7.3 A 28nm embedded SG-MONOS flash macro for automo-
tive achieving 200MHz read operation and 2.0MB/S write throughput at Ti, of
170°C”, in “2015 IEEE International Solid-State Circuits Conference -
(ISSCC) Digest of Technical Papers”, pp. 1–3 (IEEE, San Francisco, CA, USA,
2015), URL http://ieeexplore.ieee.org/document/7062961/.

Tang, W.-C., W.-H. Lo, Y.-L. Wu and S.-C. Chang, “FPGA Technology Map-
ping Optimization by Rewiring Algorithms”, in “2005 IEEE International
Symposium on Circuits and Systems”, pp. 5653–5656 (IEEE, 2005), URL
http://ieeexplore.ieee.org/document/1465920/.

Tang, X., E. Giacomin, A. Alacchi, B. Chauviere and P.-E. Gaillardon,
“OpenFPGA: An Opensource Framework Enabling Rapid Prototyping of Cus-
tomizable FPGAs”, in “2019 29th International Conference on Field Pro-
grammable Logic and Applications (FPL)”, pp. 367–374 (IEEE, 2019), URL
https://ieeexplore.ieee.org/document/8892171/.

Tang, X., G. Kim, P.-E. Gaillardon and G. De Micheli, “A Study on the
Programming Structures for RRAM-Based FPGA Architectures”, IEEE Trans-
actions on Circuits and Systems I: Regular Papers 63, 4, 503–516, URL
http://ieeexplore.ieee.org/document/7430310/ (2016).

165

Tech, A., “The iPhone XS and XS Max Review: Unveiling the Silicon Secrets”,
(2018a).

Tech, I., “Power vr series 3nx neural network accelerator”,
https://www.imgtec.com/vision-ai/powervr-series3nx/ (2018b).

Tehrani, S., J. Pak, M. Randolph, Y. Sun, S. Haddad, E. Maayan and Y. Betser,
“Advancement in Charge-Trap Flash memory technology”, in “2013 5th IEEE In-
ternational Memory Workshop”, pp. 9–12 (2013), iSSN: 2159-4864.

Tomasulo, R. M., “An efficient algorithm for exploiting multiple arithmetic units”,
IBM Journal of Research and Development 11, 1, 25–33 (1967).

Torricelli, F., L. Milani, A. Richelli, L. Colalongo, M. Pasotti and Z. M.
Kovacs-Vajna, “Half-MOS Single-Poly EEPROM Cell in Standard CMOS
Process”, IEEE Transactions on Electron Devices 60, 6, 1892–1897, URL
http://ieeexplore.ieee.org/document/6515639/ (2013).

Trusov, A., E. Limonova, D. Slugin, D. Nikolaev and V. V. Arlazarov, “Fast imple-
mentation of 4-bit convolutional neural networks for mobile devices”, in “2020 25th
International Conference on Pattern Recognition (ICPR)”, pp. 9897–9903 (2021).

Tsuda, S., Y. Kawashima, K. Sonoda, A. Yoshitomi, T. Mihara, S. Narumi,
M. Inoue, S. Muranaka, T. Maruyama, T. Yamashita and et al., “First demon-
stration of FinFET split-gate MONOS for high-speed and highly-reliable em-
bedded flash in 16/14nm-node and beyond”, in “2016 IEEE International
Electron Devices Meeting (IEDM)”, pp. 11.1.1–11.1.4 (IEEE, 2016), URL
http://ieeexplore.ieee.org/document/7838393/.

Vasilakis, E., I. Sourdis, V. Papaefstathiou, A. Psathakis and M. G. H. Katevenis,
“Modeling energy-performance tradeoffs in arm big.little architectures”, in “2017
27th International Symposium on Power and Timing Modeling, Optimization and
Simulation (PATMOS)”, pp. 1–8 (2017).

Viraraghavan, J., D. Leu, B. Jayaraman, A. Cestero, R. Kilker, Ming Yin, J. Golz,
R. R. Tummuru, R. Raghavan, D. Moy, T. Kempanna, F. Khan, T. Kirihata and
S. Iyer, “80Kb 10ns read cycle logic Embedded High-K charge trap Multi-Time-
Programmable Memory scalable to 14nm FIN with no added process complexity”,
in “2016 IEEE Symposium on VLSI Circuits (VLSI-Circuits)”, pp. 1–2 (IEEE, Hon-
olulu, HI, USA, 2016), URL http://ieeexplore.ieee.org/document/7573462/.

Vrudhula, S., S. Khatri and A. Wagle, “Threshold logic gates using flash transistors”,
WO Patent WO2021011394A1 (2021).

Vrudhula, S. and A. Wagle, “Fpga with reconfigurable threshold logic gates for im-
proved performance, power, and area”, US Patent 11,356,100 (2022).

Wagle, A., E. Azari and S. Vrudhula, “Embedding binary perceptrons in fpga to
improve area, power and performance”, in “2019 IEEE/ACM International Con-
ference on Computer-Aided Design (ICCAD)”, pp. 1–8 (IEEE, 2019a).

166

Wagle, A., S. Khatri and S. Vrudhula, “A configurable bnn asic using a network of
programmable threshold logic standard cells”, in “2020 IEEE 38th International
Conference on Computer Design (ICCD)”, pp. 433–440 (2020a).

Wagle, A., S. Khatri and S. Vrudhula, “A configurable bnn asic using a network of
programmable threshold logic standard cells”, in “2020 IEEE 38th International
Conference on Computer Design (ICCD)”, pp. 433–440 (IEEE, 2020b).

Wagle, A., G. Singh, S. Khatri and S. Vrudhula, “A novel asic design flow using
weight-tunable binary neurons as standard cells”, (IEEE, 2022a).

Wagle, A., G. Singh, S. Khatri and S. Vrudhula, “A novel asic design flow using
weight-tunable binary neurons as standard cells”, IEEE Transactions on Circuits
and Systems I: Regular Papers 69, 7, 2968–2981 (2022b).

Wagle, A., G. Singh, J. Yang, S. Khatri and S. Vrudhula, “Threshold logic in a flash”,
in “2019 IEEE 37th International Conference on Computer Design (ICCD)”, pp.
550–558 (IEEE, 2019b).

Wagle, A. and S. Vrudhula, “Heterogeneous fpga architecture using threshold logic
gates for improved area, power, and performance”, vol. 41, pp. 1855–1867 (IEEE,
2021).

Wagle, A., S. Vrudhula and S. Khatri, “Configurable bnn asic using a network of
programmable threshold logic standard cells”, US Patent App. 17/504,279 (2022c).

Wagle, A., J. Yang, A. Dengi and S. Vrudhula, “FPGAs with Reconfigurable Thresh-
old Logic Gates for Improved Performance, Power and Area”, in “2018 28th Interna-
tional Conference on Field Programmable Logic and Applications (FPL)”, pp. 256–
2563 (IEEE, 2018a), URL https://ieeexplore.ieee.org/document/8533505/.

Wagle, A., J. Yang, A. Dengi and S. Vrudhula, “Fpgas with reconfigurable threshold
logic gates for improved performance, power and area”, in “2018 28th International
Conference on Field Programmable Logic and Applications (FPL)”, pp. 256–2563
(IEEE, 2018b).

Wang, Y., H. Shen and D. Duan, “On stabilization of quantized sampled-data neural-
network-based control systems”, IEEE Transactions on Cybernetics 47, 10, 3124–
3135 (2017).

Wang, Y., Y. Wang, H. Li, Z. Cai, X. Tang and Y. Yang, “Cnn hyperparameter opti-
mization based on cnn visualization and perception hash algorithm”, in “2020 19th
International Symposium on Distributed Computing and Applications for Business
Engineering and Science (DCABES)”, pp. 78–82 (2020).

Wang, Z., M. Agung, R. Egawa, R. Suda and H. Takizawa, “Automatic hyperparam-
eter tuning of machine learning models under time constraints”, in “2018 IEEE
International Conference on Big Data (Big Data)”, pp. 4967–4973 (2018).

167

Wong, H.-S. P., H.-Y. Lee, S. Yu, Y.-S. Chen, Y. Wu, P.-S. Chen, B. Lee, F. T. Chen
and M.-J. Tsai, “Metal–oxide rram”, Proceedings of the IEEE 100, 6, 1951–1970
(2012).

Wong, H.-S. P., S. Raoux, S. Kim, J. Liang, J. P. Reifenberg, B. Rajendran,
M. Asheghi and K. E. Goodson, “Phase change memory”, Proceedings of the IEEE
98, 12, 2201–2227 (2010).

Wu, J., C. Leng, Y. Wang, Q. Hu and J. Cheng, “Quantized convolutional neural
networks for mobile devices”, in “2016 IEEE Conference on Computer Vision and
Pattern Recognition (CVPR)”, pp. 4820–4828 (2016).

Yang, J., J. Davis, N. Kulkarni, J. Seo and S. Vrudhula, “Dynamic and leakage
power reduction of ASICs using configurable threshold logic gates”, in “2015 IEEE
Custom Integrated Circuits Conference (CICC)”, pp. 1–4 (IEEE, 2015), URL
http://ieeexplore.ieee.org/document/7338369/.

Yang, J., N. Kulkarni, S. Yu and S. Vrudhula, “Integration of threshold logic gates
with rram devices for energy efficient and robust operation”, in “2014 IEEE/ACM
International Symposium on Nanoscale Architectures (NANOARCH)”, p. 39–44
(IEEE, 2014a), URL http://ieeexplore.ieee.org/document/6880500/.

Yang, J., N. Kulkarni, S. Yu and S. Vrudhula, “Integration of thresh-
old logic gates with RRAM devices for energy efficient and ro-
bust operation”, in “2014 IEEE/ACM International Symposium on
Nanoscale Architectures (NANOARCH)”, pp. 39–44 (IEEE, 2014b), URL
http://ieeexplore.ieee.org/document/6880500/.

Yang, T.-J., Y.-H. Chen and V. Sze, “Designing energy-efficient convolutional neural
networks using energy-aware pruning”, in “2017 IEEE Conference on Computer
Vision and Pattern Recognition (CVPR)”, pp. 6071–6079 (2017).

Yue, J., Z. Yuan, X. Feng, Y. He, Z. Zhang, X. Si, R. Liu, M.-F. Chang, X. Li, H. Yang
and Y. Liu, “14.3 a 65nm computing-in-memory-based cnn processor with 2.9-to-
35.8tops/w system energy efficiency using dynamic-sparsity performance-scaling
architecture and energy-efficient inter/intra-macro data reuse”, in “2020 IEEE In-
ternational Solid- State Circuits Conference - (ISSCC)”, pp. 234–236 (2020).

Zhang, Q., T. Wang, Y. Tian, F. Yuan and Q. Xu, “Approxann: An approximate
computing framework for artificial neural network”, in “2015 Design, Automation
Test in Europe Conference Exhibition (DATE)”, pp. 701–706 (2015).

Zhang, R., P. Gupta, L. Zhong and N. Jha, “Threshold Network Synthesis and
Optimization and Its Application to Nanotechnologies”, IEEE Transaction On
Computer-Aided Design Of Integrated Circuits And Systems 24, 107–118 (2005).

Zhou, Y. and J. Jiang, “An FPGA-based accelerator implementation for deep con-
volutional neural networks”, in “2015 4th International Conference on Computer
Science and Network Technology (ICCSNT)”, pp. 829–832 (IEEE, 2015), URL
http://ieeexplore.ieee.org/document/7490869/.

168

APPENDIX A

CONVERGENCE PROOF:

PERCEPTRON LEARNING ALGORITHM

169

Theorem 1. Let there be a threshold voltage assignment V t∗ for the FTL circuit,

such that the FTL circuit gives the correct response for all the input vectors. The

modified perceptron convergence theorem will converge to such an assignment, if

possible, within a finite number of steps.

Let the threshold function be defined as follows, for a weight vector w∗:

1. w ∗T ·p > 0 for every input vector p ∈ C1

2. w ∗T ·p < 0 for every input vector p ∈ C1

The goal is to find the upper bound on the number of iterations needed for the

Perceptron Learning Algorithm (PLA) to realize this threshold function on the FTL

cell.

Before starting the proof, the following assumptions are made:

1. A solution threshold voltage assignment V t∗ exists, for the algorithm to find.

This assumption is necessary for having any hope of finding a solution using

the algorithm.

2. We assume that the weight vector of the threshold function w is proportional

to the threshold voltage vector V t through some unate, and invertible function

f . The Vt vector can be mapped to the actual threshold voltage V tactual.

3. Let δ be the minimum voltage change that can be done to the threshold voltage

of a flash transistor using programming logic.

Proof. The first objective is to find some weight vector w such that the perceptron

gives the correct response for all the input vectors. The modified perceptron learning

algorithm modifies the V t vector when there is an incorrect classification/response.

170

If the kth member of the training set p(k) is incorrectly classified in the kth iteration,

then the weights are updated using the following equations:

V t(k + 1) = V t(k)− δp(k) if wT · p(k) > 0 and p(k) ∈ C2 (A.1)

V t(k + 1) = V t(k) + δp(k) if wT · p(k) < 0 and p(k) ∈ C1 (A.2)

For correct response, however, there is no change in the Vt vector.

V t(k + 1) = V t(k) if wT · p(k) > 0 and p(k) ∈ C1 (A.3)

V t(k + 1) = V t(k) if wT · p(k) < 0 and p(k) ∈ C2 (A.4)

Without the loss of generality, the above update equations can be combined if we

assume that the minterms are re-assigned sign as follows:

m(k) = p(k) if p(k) ∈ C1 (A.5)

m(k) = −p(k) if p(k) ∈ C2 (A.6)

Let the new set associated with the sign-reassigned minterms be X. Then, by com-

bining equations A.1 and A.2, we get:

V t(k + 1) = V t(k) + δm(k) 3 m(k) ∈ X (A.7)

We can rewrite the above equation in terms of f and w as:

f−1(w(k + 1)) = f−1(w(k)) + δm(k) 3 m(k) ∈ X (A.8)

f−1(w(k)) can be unrolled over all k to produce the following equation:

f−1(w(k + 1)) =
k−1∑
n=1

δm(n) + δm(k) 3 m(k) ∈ X (A.9)

f−1(w(k + 1)) =
k∑

n=1

δm(n) 3 m(k) ∈ X (A.10)

171

If we take the dot product on both sides of the equation using V t∗, we get

V t∗T · f−1(w(k + 1)) = V t∗T ·
k∑

n=1

δm(n) 3 m(k) ∈ X (A.11)

V t∗T · f−1(w(k + 1)) = δV t∗T ·
k∑

n=1

m(n) 3 m(k) ∈ X (A.12)

Let α = min(V t∗T ·m(n));∀n ∈ [1, k]). Then Equation A.12 can be transformed

into the following inequality:

V t∗T · f−1(w(k + 1)) ≥ δkα (A.13)

Using Cauchy-Schwarz inequality for the dot product V t∗T ·f−1(w(k+ 1)), we get

||V t∗T ||2||f−1(w(k + 1))||2>= ||V t∗T · f−1(w(k + 1))||2 (A.14)

Combining Equations A.13 and A.14, we get:

||V t∗T ||2||f−1(w(k + 1))||2>= δ2k2α2 (A.15)

||f−1(w(k + 1))||2>= δ2k2α2/||V t∗T ||2 (A.16)

Equation A.16 represents the upper bound on ||f−1(w(k+1))||2, which is the lower

bound for the squared Euclidian norm of the threshold voltage vector.

For finding the lower bound on ||f−1(w(k+ 1))||2, we will use the following steps:

f−1(w(k + 1)) = f−1(w(k)) + δm(k) 3 m(k) ∈ X (A.17)

||f−1(w(k + 1))||2= ||f−1(w(k))||2+||δm(k)||2+2f−1(w(k)) · δm(k) 3 m(k) ∈ X

(A.18)

||f−1(w(k + 1))||2= ||f−1(w(k))||2+||δm(k)||2+2(
k−1∑
i=1

δm(i)) · δm(k) 3 m(k) ∈ X

(A.19)

172

In the above equation, unrolling the term f−1(w(k)) leads to the following equa-

tion:

||f−1(w(k + 1))||2= ||
k−1∑
i=1

δm(i)||2+||δm(k)||2+2(
k−1∑
i=1

δm(i)) · δm(k) 3 m(k) ∈ X

(A.20)

Since ||δm(k)||2= δm(k) · δm(k), the above equation can be simplified as follows:

||f−1(w(k + 1))||2= ||
k−1∑
i=1

δm(i)||2+||δm(k)||2+2(
k−1∑
i=1

δm(i)) · δm(k) 3 m(k) ∈ X

(A.21)

We replace each m(i) with a θ ∈ X: a vector that has the maximum absolute

value out of all m(i). We also increase the upper bound on the summations from k-1

to k.

||f−1(w(k + 1))||2≤ ||
k∑
i=1

δθ||2+||δθ||2+2(
k∑
i=1

δθ) · δθ 3 θ ∈ X (A.22)

We introduce two additional terms β and γ, which are defined as follows:

β = ||
k∑
i=1

δθ||2 (A.23)

γ = ||δθ||2+2(
k∑
i=1

δθ) · δθ (A.24)

For an n-input FTL cell, we have n+1 flash transistors. Using this fact, we simplify

173

the above equations further, as follows:

β = ||(k)δθ||2 (A.25)

β = k2δ2(n+ 1) (A.26)

γ = δ2(n+ 1) + 2(
k∑
i=1

δθ) · δθ (A.27)

γ = δ2(n+ 1) + 2kδ2(n+ 1) (A.28)

γ ≈ 2kδ2(n+ 1) (A.29)

Using the above two equations, Equation A.22 can be represented as follows:

||f−1(w(k + 1))||2≤ β + γ (A.30)

Equation A.30 represents the upper bound on ||f−1(w(k + 1))||2.

Combining Equation A.16 and A.30, we get the following equation:

δ2k2α2/||V t∗T ||2≤ β + γ (A.31)

δ2k2α2/||V t∗T ||2≤ k2δ2(n+ 1) + 2kδ2(n+ 1) (A.32)

Upon simplifying for k, we get:

k ≤ 2δ2(n+ 1)||V t∗T ||2/α2δ2 (A.33)

Minimum value of α is δ. By substituting α, we get:

k ≤ 2(n+ 1)||V t∗T ||2/δ2 (A.34)

Since the value of k has an upper bound defined using constants, it is guaranteed

to converge to a solution.

174

APPENDIX B

ALL 5-INPUT THRESHOLD FUNCTIONS

175

Table B.1: List of All 117 Unique 5-Input Threshold Functions

Index Weights Threshold Functions (Sum of Products)

[a,b,c,d,e;T]

0 [1,0,0,0,0;1] a

1 [1,1,0,0,0;2] ab

2 [1,1,0,0,0;1] a | b

3 [1,1,1,0,0;3] abc

4 [1,1,1,0,0;1] a | b | c

5 [1,1,1,0,0;2] ab | bc | ca

6 [2,1,1,0,0;3] ab | ac

7 [2,1,1,0,0;2] a | bc

8 [1,1,1,1,0;4] abcd

9 [1,1,1,1,0;1] a | b | c | d

10 [2,2,1,1,0;5] abc | abd

11 [2,2,1,1,0;2] a | b | cd

12 [1,1,1,1,0;3] abc | abd | acd | bcd

13 [1,1,1,1,0;2] ab | ac | ad | bc | bd | cd

14 [2,1,1,1,0;4] abc | abd | acd

15 [2,1,1,1,0;2] a | bc | bd | cd

16 [2,2,1,1,0;4] ab | acd | bcd

17 [2,2,1,1,0;3] ab | bc | ac | ad | bd

18 [3,2,1,1,0;5] ab | acd

19 [3,2,1,1,0;3] a | bc | bd

20 [3,2,2,1,0;5] ab | ac | bcd

176

21 [3,2,2,1,0;4] ab | ac | bc | ad

22 [2,1,1,1,0;3] ab | ac | ad | bcd

23 [3,1,1,1,0;4] ab | ac | ad

24 [3,1,1,1,0;3] a | bcd

25 [1,1,1,1,1;5] abcde

26 [1,1,1,1,1;1] a | b | c | d | e

27 [2,2,2,1,1;7] abcd | abce

28 [2,2,2,1,1;2] a | b | c | de

29 [1,1,1,1,1;4] abcd | abce | abde | acde | bcde

30 [1,1,1,1,1;2] ab | ac | bc | ad | bd | cd | ae | be | ce | de

31 [2,2,1,1,1;6] abcd | abce | abde

32 [2,2,1,1,1;2] a | b | cd | ce | de

33 [2,1,1,1,1;5] abcd | abce | abde | acde

34 [2,1,1,1,1;2] a | bc | bd | cd | be | ce | de

35 [3,3,2,1,1;8] abc | abde

36 [3,3,2,1,1;3] a | b | cd | ce

37 [2,2,2,1,1;6] abc | abde | acde

38 [2,2,2,1,1;3] ab | ac | bc | ad | bd | cd | ae | be | ce

39 [3,2,2,1,1;7] abc | abde | acde

40 [3,2,2,1,1;3] a | bc | bd | cd | be | ce

41 [3,3,2,2,1;8] abc | abd | acde | bcde

42 [3,3,2,2,1;4] ab | ac | bc | ad | bd | cd | ae | be

43 [1,1,1,1,1;3] abc | abd | acd | bcd | abe | ace | bce | ade | bde | cde

44 [4,3,2,2,1;9] abc | abd | acde

177

45 [4,3,2,2,1;4] a | bc | bd | cd | be

46 [3,2,2,2,1;7] abc | abd | acd | bcde

47 [3,2,2,2,1;4] ab | ac | bc | ad | bd | cd | ae

48 [3,3,1,1,1;7] abc | abd | abe

49 [3,3,1,1,1;3] a | b | cde

50 [2,2,1,1,1;5] abc | abd | abe | acde | bcde

51 [2,2,1,1,1;3] ab | ac | bc | ad | bd | ae | be | cde

52 [3,3,2,2,1;7] abc | abd | acd | bcd | abe

53 [3,3,2,2,1;5] ab | ac | bc | ad | bd | cde

54 [3,3,2,2,2;7] abc | abd | acd | bcd | abe | ace | bce | ade | bde

55 [3,3,2,2,2;6] ab | acd | bcd | ace | bce | ade | bde | cde

56 [2,2,2,1,1;5] abc | abd | acd | bcd | abe | ace | bce

57 [2,2,2,1,1;4] ab | ac | bc | ade | bde | cde

58 [3,2,1,1,1;6] abc | abd | abe | acde

59 [3,2,1,1,1;3] a | bc | bd | cde

60 [4,3,2,2,1;8] abc | abd | acd | abe | bcde

61 [4,3,2,2,1;5] ab | ac | bc |

62 [4,3,3,2,1;8] abc | abd | abe | ace | acd | bcd

63 [4,3,3,2,1;6] ab | ac | a | d | bc | bcd | cde

64 [4,3,3,2,2;8] abc | abd | abe | acd | ace | ade | bcd | bce

65 [4,3,3,2,2;7] ab | ac | ade | bcd | bce | bde | cde

66 [3,3,1,1,1;6] ab | acde | bcde

67 [3,3,1,1,1;4] ab | bc | ac | ad | bd | ae | be

68 [2,2,1,1,1;4] ab | acd | bcd | ace | bce | ade | bde

178

69 [3,3,2,1,1;6] ab | acd | bcd | ace | bce

70 [3,3,2,1,1;5] ab | ac | bc | ade | bde

71 [5,3,2,2,1;9] abc | abd | ace | acd

72 [5,3,2,2,1;5] a | bc | bd | cde

73 [3,2,2,1,1;6] abc | abd | acd | abe | ace | bcde

74 [3,2,2,1,1;4] ab | bc | ca | ad | ae | bde | cde

75 [3,2,2,2,1;6] abc | add | acd | bcd | abe | ace | ade

76 [3,2,2,2,1;5] ab | ac | ad | bcd | bce | bde | cde

77 [4,3,1,1,1;7] ab | acde | bcde

78 [4,3,1,1,1;4] a | bc | bd | be

79 [5,4,2,2,1;9] ab | acd | bcde

80 [5,4,2,2,1;6] ab | ac | ad | ae | bc | bd

81 [5,4,3,2,1;9] ab | acd | ace | bcd

82 [5,4,3,2,1;7] ab | ac | ad | bc | bde

83 [5,4,3,2,2;9] ab | acd | ade | ace | bcd | bce

84 [5,4,3,2,2;8] ab | ac | ade | bcd | bde | bce

85 [4,3,3,1,1;7] ab | ac | bcd | bce

86 [4,3,3,1,1;6] ab | bc | ac | ade

87 [4,2,2,1,1;7] abc | abd | acd | abe | ace

88 [4,2,2,1,1;4] a | bc | bde | cde

89 [2,1,1,1,1;4] abc | abd | acd | abe | ace | ade | bcde

90 [2,1,1,1,1;3] ab | ac | ad | bcd | ae | bce | bde | cde

91 [4,3,2,1,1;7] ab | acd | ace | bcde

92 [4,3,2,1,1;5] ab | ac | bc | ad | ae | bde

179

93 [4,3,2,2,1;7] ab | acd | bcd | ace | ade

94 [4,3,2,2,1;6] ab | ac | ad | bcd | bce | bde

95 [3,2,2,1,1;5] ab | ac | bcd | bce | ade

96 [3,1,1,1,1;5] abc | abd | acd | abe | ace | ade

97 [3,1,1,1,1;3] a | bcd | bce | bde | cde

98 [5,3,2,1,1;3] ab | acd | ace

99 [5,3,2,1,1;5] a | bc | bde

100 [3,2,1,1,1;5] ab | acd | ace | ade | bcde

101 [3,2,1,1,1;4] ab | ac | ad | bcd | ae | bce | bde

102 [5,3,3,1,1;8] ab | ac | bcde

103 [5,3,3,1,1;6] ab | ac | ad | ae | bc

104 [5,3,3,2,1;8] ab | ac | ade | bcd

105 [5,3,3,2,1;7] ab | ac | ad | bcd | bce

106 [4,2,1,1,1;6] ab | acd | ace | ade

107 [4,2,1,1,1;4] a | bcd | bce | bde

108 [4,2,2,1,1;6] ab | ac | ade | bcde

109 [4,2,2,1,1;5] ab | ac | ad | bcd | ae | bce

110 [5,2,2,1,1;7] ab | ac | ade

111 [5,2,2,1,1;5] a | bcd | bce

112 [5,2,2,2,1;7] ab | ac | ad | bcde

113 [5,2,2,2,1;6] ab | ac | ad | bcd | ae

114 [3,1,1,1,1;4] ab | ac | ad | ae | bcde

115 [4,1,1,1,1;5] ab | ac | ad | ae

116 [4,1,1,1,1;4] a | bcde

180

APPENDIX C

FLASH TRANSISTORS

181

A flash transistor is functionally similar to a field effect (FET) transistor, except

that it is made to have an additional layer of charge between the control gate and the

channel as a means to adjust the threshold voltage (V T) of the transistor. Program-

ming and erasing these devices correspond to increasing and decreasing V T , and this

is achieved by electrons tunneling into or out of the charge layer via Fowler-Nordheim

(FN) tunneling Fowler and Nordheim (1928). In general, programming is performed

by applying a sequence of high voltage pulses (the duration and magnitude of which

determines V T) Richter (2014) to the control gate and holding the bulk, source, and

drain terminals at 0V . Erasure is achieved by holding the control gate at 0V and

allowing the source and drain to float Richter (2014). In flash memory, the value of

V T , which is determined by sensing the current, represents the state or stored value,

and this can be retained for more than ten years Richter (2014), while the bulk is

driven to a high voltage. Several variants of flash transistors with different struc-

tures and materials have been investigated over the past two decades to reduce the

programming voltage, improve reliability, encode multiple bits, reduce the number of

fabrication steps, and improve yield.

(a) Floating Gate Transis-

tor
(b) Charge Trap Transistor

Figure C.1: Cross Section of Flash transistors.

Figure C.1 shows a cross-section of the two common types of flash transistors: (a)

the floating gate transistor (FGT), which has an additional buried and un-contacted

182

floating gate, and (b) the charge trapping transistor (CTT) which has an oxide-

nitride-oxide (ONO) layer between the gate and the substrate. Floating gate technol-

ogy (Figure C.1a) is fully compatible with and used along with CMOS, and because

of its dominant role as NVM in flash drives and solid-state drives (SSD), its design

and fabrication have been continuously improved over two decades. However, it still

has several drawbacks, including the need for additional masks, the requirement of

higher voltages for programming and erasure, and most importantly, the difficulty in

scaling its dimensions below 40nm due to the poor scaling of the thin oxide.

The following presents a comprehensive survey of the various flash technologies

that are available in the industry today. While other surveys on flash transistors

focus exclusively on their use in memories, this survey focuses on the use of flash

transistors in the implementation of Boolean Logic for high-speed and low-power

applications. From the perspective of fabrication, the flash transistors are mature,

and their characteristics have been thoroughly studied over the years. They have

several important characteristics, such as their non-volatility, speed, long retention,

robustness to process variations, compatibility with standard CMOS circuits, and,

most importantly, their ability to tune threshold voltage, which can be useful to

realize circuits that would otherwise require a large amount of area, power, and delay

if implemented using conventional CMOS-based technology.

There are two commonly used mechanisms to program and erase the floating

gate transistor, FN Tunneling (Fowler-Nordheim Tunneling) Fowler and Nordheim

(1928)and CHEI (Channel Hot Electron Injection) Simon Tam et al. (1984). FN

Tunneling is slower but requires less current than the CHEI. A flash transistor can be

programmed using both FN Tunneling and CHEI, but for erasing, only FN Tunneling

can be used. Details of each technique are provided below:

• FN Tunneling :

183

It is a quantum effect where electrons attaining sufficiently high energy due to

an external electrostatic field, break through a small energy barrier. In the case

of a flash transistor with thin oxide, the electrons can tunnel through it to the

floating gate when an external voltage generates an electric field across the gate

oxide. An oxide thickness of about 10nm is required to achieve FN tunneling.

The tunneling current due to the FN tunneling mechanism can be described by

equation C.1.

IFN = A(Eox)
2exp
−B
Eox

(C.1)

Eox =
V app − V fb

tox
(C.2)

where A and B are constants, Vapp is the applied voltage across the oxide, Vfb

is the flat band voltage and tox is the thickness of the oxide.

• Channel Hot Electron Injection (CHEI):

In the CHEI mechanisms, the electrons gain enough kinetic energy when a

lateral electric field is applied at the transistor channel using drain biasing.

When the drain terminal is positively biased against the source a current channel

is formed from the source to the drain. The electrons accelerate from the source

towards the drain and near the drain terminal, they accumulate enough energy

to overcome the Si-SiO2 energy barrier and get injected into the floating gate.

The CHEI mechanism has been found to be difficult to represent mathematically

due to many unknown physical parameters and characteristics. One model

though, named the ”Lucky Electron” model Simon Tam et al. (1984) has been

able to describe the mechanism analytically. This model makes an assumption

that the electrons do not lose energy due to collisions as they move from source

184

to drain but keep on building the kinetic energy. The CHEI current equation

of the model is given in equation C.3

ICHE = αoxIsubexp
−βox
Eox

(C.3)

where αox and βox are model fitting parameters, Eox is the electric field into the

tunnel dielectric and Isub is the substrate current.

The algorithm used to program a flash transistor to a particular threshold voltage

is known as incremental step pulse programming algorithm (ISPP) Hang-Ting Lue

et al. (2008). It involves sending a sequence of program pulses to the gate of a flash

transistor to gradually raise its threshold voltage. The rate at which the threshold

voltage changes depends on the amplitude and the duration of the high-voltage pulses.

The work in Bayat et al. (2016) demonstrates that it is possible to use ISPP for

programming the flash transistor within 0.3% precision. On a flash transistor, the

algorithm can achieve 1500 levels and store over 10 bits per transistor.

When multiple flash transistors are present in the same system, the presence of

cross-talk and short-channel effects on the voltage programmed tends to shift and

create a distribution for different flash transistors in the circuit Jung et al. (2008).

Therefore flash memory cells are programmed for a much small threshold voltage

distribution. For a two-level flash-based storage cell, there are only two voltage dis-

tributions separated by a sufficient margin to have high reliability. In a multi-level

cell (See Figure C.2), there are several voltage distributions, that are much closer to

each other, as compared to a two-level cell. Consequently, the reliability of the flash

cell degrades when we go from a two-level cell to a multi-level cell.

Reliability in flash memory is determined using two metrics namely; retentivity

and endurance. Retentivity or retention is the measure of the time in years a flash cell

185

Figure C.2: Vth Distribution in a Multi-Level-Cell

holds a charge (threshold voltage) after being programmed to a particular voltage.

Due to various charge leakage mechanisms in the flash transistors, the threshold

voltage of the cell changes over the years. The desired retentivity of flash transistors

is greater than 10 years.

Figure C.3: Vth of Cells Programmed to Different States in a Memory Array

As the flash cell is programmed and erased, it disturbs the flash threshold voltage

distribution for the different storage states. The number of program/erase cycles

that a flash cell can undergo while still maintaining the desired threshold voltage for

different levels is known as endurance. An endurance of at least 105 is desirable for

all flash technologies. With the scaling of the floating gate transistor and use of multi-

level cells, the reliability, and endurance of flash memory are expected to decrease

Cai et al. (2013b) from 10K in 55nm to 3K in 20nm technology. The variation in the

threshold voltage of cells in a memory array programmed to different states is shown

in figure C.3. Figure C.3 shows the variability in the threshold voltages of the cells

programmed to the same state within a memory array. Figure C.3 also shows that

the cell is programmed to a particular voltage distribution rather than a fixed voltage

186

in a memory.

An extensive list of various flash transistors that are currently available in the

industry is provided in Table C.2. The flash transistors are sorted based on their

technology node, with the oldest technology node first, and the smallest and latest

technology node at the bottom. There are several conclusions that can be drawn

based on the data provided in the table:

1. The programming of flash transistors requires a much higher voltage than the

technology’s typical VDD value. As a result, dual voltage rails are needed when

integrating flash transistors with conventional CMOS transistors.

2. Older generations of flash technologies used Polysilicon material to create special

floating gates, whereas newer generations of flash technologies can make use of

the HiK dielectric gates. This means that newer flash transistors do not require

extra masks for creating floating gates. The charges are simply stored in the

oxide of the gates.

3. Since most of the data was extracted from papers that deal with flash transistors

as a memory unit, they are limited to storage of only up to 8 levels. However,

for applications where flash transistors are not acting as memory devices, the

number of storage levels can be substantially increased.

4. Programming voltages in newer generations of flash transistors are much lower

and much closer to VDD as compared to previous generations. Lower program-

ming voltages eliminate the need for transistors that support extremely high

voltages.

5. Flash transistors can support a high number of program-erase cycles, much

higher than what is needed for the work presented in this dissertation.

187

6. Almost all flash transistors can retain their programmed threshold voltage for

at least a decade or more; a time much larger than the typical life cycle of a

chip.

188

Table C.2: Comparison of Various Properties of Embedded Flash Devices

Type Ref Node (nm)

Charge

storage

material

Extra

Masks

Storage

Levels
Vprog Verase Voperating Endurance Retention

EERPOM Cuppens et al. (1984) 2500 Polysilicon 1 4 13 V 13 V 5 V 10 K 10 years

HiV EEPROM Gogl et al. (1997) 2000 Polysilicon 0 2 16 V 16 V 10 V 10 K 1000 hrs

C-Flash Dagan et al. (2012) 180 Polysilicon 3 2 5 V 5 V 1.8 V 1 K 100 years

CMOS Roizin et al. (2008) 180 Polysilicon 0 2 4.75 V 4.75 V 1.8 V 1 K 100 years

EEPROM Cui et al. (2009) 180 Polysilicon 0 2 4 V 4.5 V 1.8 V 10 K NA

MONOS Ogura et al. (2003) 180 Nitride 7 4 4.5 V 4.5 V 1.8 V 100 K 10 years

CMOS Torricelli et al. (2013) 130 Polysilicon NA 2 12 V 12 V 5 V 10 K 10 years

EEPROM Chung and Chang-Liao (2015) 130 Polysilicon NA 4 8 V 14 V 3.3 V 10 K 10 years

Embedded Flash Raszka et al. (2004) 130 Polysilicon 2 2 7 V 7 V 1.2 V NA 10 years

SONOS Cho et al. (2004) 130 Nitride NA 4 5 V 5.5 V 3 V 100 K 10 years

Split-gate noa (2014) 130 Polysilicon NA 2 8 V 8 V 4 V NA 10 years

1T MONOS Mitani et al. (2016) 90 Nitride NA 2 NA NA 3.3 V 100 M NA

2T-SONOS Park et al. (2020) 90 Nitride NA 2 7 V 8 V 3.3 V 1 K 10 years

Charge Trapping Bartoli et al. (2014) 90 Nitride NA 2 10 V 17 V NA 100 K NA

eNVM Park et al. (2014) 90 Polysilicon 0 2 8 V 8 V 3.3 V 500 10 years

eNVM Song et al. (2012) 65 Polysilicon 0 2 8.8 V 8.8 V 2.5 V 10 K 486 hrs

Split-gate Chu et al. (2011) 65 Polysilicon 1 2 11 V 13 V 3.3 V 10 K 10 years

SONOS Pchannel Shukuri et al. (2006) 50 Nitride NA 2 12 V 12 V 1.8 V 10 K 10 years

Split-gate Lee et al. (2014) 45 Polysilicon NA 2 NA NA 1.8 V 1 M 1000 hrs

SG MONOS Kono et al. (2014) 40 Nitride NA 2 NA NA 1.25 V 10 M 20 years

SONOS Agrawal et al. (2020) 40 Nitride 3 2 4 V 4 V 0.6 V 100 K 10 years

Split-gate Luo et al. (2016) 40 Polysilicon 0 2 10.5 V 11.5 V 1.1 V 200 K 10 years

Charge Trapping Tehrani et al. (2013) 32 Polysilicon NA 8 NA NA NA 1 M NA

SG MONOS Taito et al. (2015) 28 Nitride NA 8 NA NA 1 V 10 K NA

Charge Trapping Viraraghavan et al. (2016) 22 HiK dielectric HfO2 0 2 2 V 2 V 1 V 10-1 K 10 years

FINFET eNVM Ma et al. (2019a) 16 HiK dielectric 0 2 2 V 2 V 0.8 V NA 10 years

FinFET CTT Khan et al. (2019a) 14 HiK dielectric HfO2 NA 2 2 V 2 V 0.8 V 10 K 10 years

FinFET MONOS Tsuda et al. (2016) 14 Nitride 3 2 NA NA 0.8 V 250 K 10 years

189

With the matured fabrication technology and extensive development of CMOS-

compatible embedded flash technology, various digital and analog logic circuits and

architectures have been proposed. There are some inherent advantages to design-

ing logic using flash transistors over CMOS stemming from the fact that the flash

transistors can be programmed after the fabrication and the programming can be

controlled precisely to achieve fine granularity in the threshold voltages within the

circuit. These advantages are as follows:

• Speed binning and removal of setup and hold timing errors post fabrications.

• Aging effects and process variation can be compensated by reprogramming the

circuit.

Various digital and analog circuits/architectures designed using flash transistors

are discussed further in this chapter.

The use of flash devices for ternary logic cells was first proposed Abusultan and

Khatri (2016c) in 2016. This work used proposed the use of NAND flash arrays of

floating gate devices as Ternary Logic Clusters (TLCs) to implement digital logic. As

compared to the conventional CMOS-based binary logic design of logic circuits this

work showed improvement in power (11%), energy (29%), and area (83%) at the clock

rate which was 36% as compared to the CMOS design. Ternary Content Address-

able Memories (TCAMs) are popular logic structures in many applications employing

look-up tables. Traditional TCAM cell implemented using CMOS is area and power

inefficient consisting of 17 transistors and an SRAM cell of 6 transistors. The use

of flash transistors as proposed by Fedorov et al. (2014) initially in 2014 and was

improved in 2016 Fedorov et al. (2016) reduced the number of transistors in a TCAM

cell to two flash transistors and SRAM cell from six transistors to a single flash tran-

sistor. Overall, this work demonstrated flash based TCAM is about 7.9x dense than

190

CMOS-based TCAM block with a 2.5x larger look-up delay and 1.64x lower power

consumption. Field programmable gate arrays (FPGAs) are reconfigurable circuits

that provide high design flexibility. One of the basic units of FPGA is the look-up ta-

ble (LUT). LUT traditionally uses SRAMs to store the configuration bits and routing

information. Due to the non-volatile nature of the SRAM, SRAM-based FPGAs suffer

from high power consumption and longer boot time. In the year 2016, Abusultan and

Khatri Abusultan and Khatri (2016b) proposed a flash-based FPGA that embedded

the flash transistors directly with the logic and interconnection fabrics. The Static

LUT showed improvement in performance (10%), power (static- 29%, dynamic- 12%),

and energy (21%) as compared to the SRAM LUT. Whereas, the dynamic flash-based

LUT achieved 32% lower delay but with higher energy consumption of 37% as com-

pared to SRAM LUT. Additionally, the flash-based interconnect structures provide

89% delay and 71% overall power consumption improvements when compared to the

traditional interconnect structures used in SRAM-based FPGAs.

Flash-based neurons with large fan-in Scott and Khatri (2022) (> 1000 inputs)

have also been proposed. In this work, the researchers implemented N flash-transistor-

based current sources with binary-weighted currents to construct an N-bit digital-to-

analog converter (DAC). These current sources were programmable to deliver currents

ranging from the pA-level to the µA-level, providing a wide range of current options

for the DAC output. The use of flash transistors as adjustable current sources results

in fast response time, small size, and low power consumption. A follow-up work Scott

and Khatri (2023) presents the first flash-based artificial neuron design that operates

at an extremely low supply voltage of 100 mV. In this work, the weights of the neuron

are stored in flash transistors using a novel differential conductance encoding scheme,

which accomplishes highly linear voltage output, even with only a 100 mV supply

voltage. Note that the flash transistors used in this work have 128 levels, but by

191

using a novel arrangement of flash transistors, this work shows that weight values of

up to 256 (8-bits) can be reliably realized on the neuron when the supply voltage is

less than the nominal threshold voltage.

Flash memory arrays are extensively used to perform vector-matrix and matrix-

matrix multiplication to implement artificial neural networks (ANNs) and neuromor-

phic computing. In 2017 the work Guo et al. (2017a) designed, fabricated, and tested

a 28x28-binary input, 10 output, 3-layer neuromorphic network. This architecture

was tested on an MNIST dataset and achieved an accuracy of 94.65%. The infer-

ence time of one image was reported to be <1µs. It consumed about 20 nJ energy

- both numbers supposedly show a 103x improvement over 28nm IBM TrueNorth

digital chip for the same dataset and accuracy. Similarly, by Utilizing the CMOS-

compatible flash, a Neuromorphic core for handwritten-digit recognition application

was developed by Kim et al. (2018) in 2018. The core demonstrated an accuracy of

91.8% which was close to software accuracy with the same number of weight levels.

Their architecture achieved maximum throughput of is 1.28G pixels/s and a single

neuron circuit consumed 15.9µw power on average. A three-level flash gate was used

from Song et al. (2013) to implement synapse in this architecture. Using the SONOS

embedded NVM memory at 40nm technology node, Cypress semiconductors demon-

strated analog in memory neuromorphic computing in 2020 Agrawal et al. (2020)

with synaptic weights stored in the SONOS cell having a capacity of 8 levels/cell.

The design achieved an energy efficiency of 100 TOPS/W with 8-bit levels includ-

ing the energy of analog-to-digital converters (ADC) and digital-to-analog-converters

(DAC). They claimed that it was possible to increase the number of levels per cell

to 64 or 128 with a loss in energy efficiency. Another in-memory computing proposal

using SONOS memory was made by Floadia corporation, Japan in 2020 Nii et al.

(2020). Mythic AI, a hardware chip design company for AI, has also developed chips

192

using flash-based analog MAC arrays to perform neural network inference at the edge.

They designed the processor at a 40nm technology node and achieved high energy

efficiency which is difficult to attain even at advanced nodes of 7nm and 5nm.

The flash-based crossbar arrays have advantages over other SRAM, RRAM, and

MRAM-based designs. SRAM-based design can easily be implemented in the stan-

dard CMOS process but it suffers from high variability which cannot be tackled after

fabrication. MTJs, RRAM, and PCRAM are dense but have other shortcomings such

as an MTJ can only store 1 bit per cell, and the difference between its high and low

resistance states is only 2x which is insufficient for analog computing. RRAM suffers

from high variations and its fabrication is not yet matured. PCRAM and RRAM

face structural challenges to implement multi-bit weights. On the other side, flash is

a mature technology and can store multi-bits per cell reliably with fine precision.

In analog circuits, circuit designers face a significant obstacle in the form of transis-

tor mismatch, which manifests as an operational amplifier’s offset voltage. Traditional

methods employed to minimize offset voltage include auto-zeroing, correlated double

sampling, and chopper stabilization. However, in the research conducted by Srini-

vasan et. al Srinivasan et al. (2007), floating gate devices were utilized to compensate

for the offset voltages. Their proposed technique allowed for continuous operation of

the amplifier with long-term offset cancellation and did not necessitate refresh cir-

cuitry. A prototype amplifier was manufactured using 0.5m technology and reduced

the offset voltage to 25V .

In the doctoral thesis presented by Guillermo J. Serra in 2007 Serrano (2007), he

proposed a Vth compensated Digital to Analog Converter (DAC) based on floating

gate (FG) transistors. The FG transistors were used to compensate for intrinsic Vth

mismatch of MOS transistors. When compared to other techniques the main advan-

tage of this approach was to achieve higher accuracy with a considerable decrease in

193

the die area.

194

APPENDIX D

ENERGY EFFICIENCY OF TULIP

195

This chapter explores the reason why the TULIP-PEs architecture delivers better

energy efficiency as compared to a conventional MAC unit in a QNN accelerator

(as detailed in Chapter 5). Before discussing the differences in the energy efficiency

between the two processing elements (PEs), it is necessary to discuss the task that

will be executed on the PEs. To better illustrate this, we first establish the area,

power, and delay values of both these architectures for computing a given unit of

workload (operation), shown in Table D.1:

Area Power Delay (Clock Cycles)

MAC Unit AMAC PMAC DMAC

TULIP-PE AT PT DT

Table D.1: Metric Notation for a MAC Unit and a TULIP-PE

For the purpose of comparison, we establish the following correlations between

the metrics of the two processing elements as follows.

AMAC = αAT

PMAC = βPT

DMAC = γDT

(D.1)

By incorporating Equation D.1 into Table D.1, we obtain Table D.2.

Area Power Delay (Clock Cycles)

MAC Unit αAT βPT γDT

TULIP-PE AT PT DT

Table D.2: Metric Comparison of a MAC Unit Relative to a TULIP-PE

To compare the performance and energy efficiency of both processing elements

quantitatively, we perform an equi-area comparison. Therefore, for every single MAC

196

unit utilized in a SIMD architecture, there is a set of α TULIP-PEs that can serve as

its replacement. Thus, we can compare the performance of a single MAC unit against

α TULIP-PEs for a unit workload, as illustrated in Table D.3.

Area Power Delay (Clock Cycles)

MAC Unit αAT βPT γDT

α TULIP-PE αAT αPT DT/α

Table D.3: Metric Comparison of a MAC Unit Relative to α TULIP-PEs

A SIMD architecture is not just created for a single unit of workload, but for

multiple units of workload that have a common underlying instruction. The number of

workloads that can be initiated at the same time determines the energy cost associated

with retrieving the input data. We assume that the energy cost of fetching the input

data associated with an operation executing in a single cycle is EM . As a result, when

executing α units of work, a MAC unit consumes αEM units of energy, whereas the

group of TULIP-PEs only requires EM . The resulting energy efficiency (Workloads

per unit of energy) and throughput (Workloads per unit of time) are presented in

Table D.4.

For TULIP-PE to outperform an equivalent MAC unit in terms of energy effi-

Energy Efficiency Throughput

MAC Unit 1/(γDTβPT + EM) 1/γDT

TULIP-PE 1/(DTPT + EM/α) α/DT

Improvement (γDTβPT + EM)/(DTPT + EM/α) αγ

Table D.4: Energy Efficiency and Throughput Comparison of a MAC Unit Relative

to α TULIP-PEs

197

ciency during an equi-area comparison while maintaining the same throughput, the

conditions specified in Equations D.2 and D.3 must be satisfied.

α = 1/γ (D.2)

(γDTβPT + EM)/(DTPT + EM/α) > 1 (D.3)

Substituting Equations D.2 in Equation D.3, we get Equation D.4.

(DTβPT + αEM)/(αDTPT + EM) > 1 (D.4)

Since EM >> DTPT in TSMC 40nm LP Technology, the energy efficiency im-

provement of TULIP over MAC is approximately α, which is 16X. Furthermore, the

value of γ in the same technology is 1/10, implying that a set of α TULIP-PEs

collectively exceeds the throughput of a single MAC unit.

It is important to note that the derivation presented in this chapter assumes that

the cost of retrieving the input data for a specific workload is solely EM . However,

this cost can vary depending on the operation. For instance, in the case of QNN

workloads, the process of refetching not only includes fetching the input pixel and its

corresponding weights, but also the neighboring pixels and their respective weights.

198

APPENDIX E

PUBLISHED PRIOR WORKS

I hereby confirm that I have obtained permission from all co-authors of the pre-

viously published paper Wagle et al. (2022a); Wagle and Vrudhula (2021) to include

it as a chapter in my dissertation. All co-authors have agreed to the extent to which

the paper will be used in the dissertation and any changes or additions that will be

made. The terms of the agreement have been discussed, including any potential com-

pensation or credit for the co-authors’ contributions. Additionally, I have checked

the terms of the original publication agreement and obtained any necessary permis-

sions from the publisher to republish the paper in my dissertation. I am committed

to giving proper attribution and credit to all co-authors in the dissertation and any

subsequent publications that result from this work.

199

