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ABSTRACT

Student retention is a critical metric for many universities whose intention is to sup-

port student success. The goal of this thesis is to create retention models utilizing

machine learning (ML) techniques. The factors explored in this research include only

those known during the admissions process. These models have two goals: first, to

correctly predict as many non–returning students as possible, while minimizing the

number of students who are falsely predicted as non–returning. Next, to identify

important features in student retention and provide a practical explanation for a

student’s decision to no longer persist. The models are then used to provide out-

reach to students that need more support. The findings of this research indicate that

the current top performing model is Adaboost which is able to successfully predict

non–returning students with an accuracy of 54 percent.
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Chapter 1

INTRODUCTION

At most universities around the world, including Arizona State University (ASU),

student retention is a critical metric. Positive retention rates signal that students

are successfully completing the programs they entered and further suggests that the

university is providing the resources that students need to thrive. High retention is

attractive to degree–seeking students who are in the process of deciding between uni-

versities as selecting a university with low retention may result in failure to complete

the program. In Fulton Schools of Engineering (FSE), retention is of even greater con-

cern. The infamously difficult course loads of Science, Technology, Engineering, and

Math (STEM) majors can threaten a student’s choice to remain both in engineering

and at ASU.

In FSE, the office of Academic and Student Affairs (ASA) is interested in this

problem as a means of ensuring students’ academic and social success at ASU. Prior

to COVID–19, student retention in FSE was stagnant. In general, around 88 percent

of first–time freshman students returned for their second semester at ASU. While

these metrics are already high, the ASA team wanted to better understand which

students were leaving in order to make data–driven decisions to improve students’

overall experience. ASA has spent the last several years working with student research

teams at ASU to better understand retention. Unfortunately, due to the quantity and

complexity of the data, not much progress has been made outside of data preparation.

This research branches in a new direction and hopes to employ machine learning

techniques to advance ASA’s retention modeling progress. This research aligns with

those goals established by ASA. The first goal is create statistical models to create an
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early identification tool for students who are at risk of not returning. The second goal

is to better understand these students: what exactly is driving these students to leave?

In theory, the same models that flag students are able to identify features relevant to

a student’s choice to stay or leave. Thus, these models are applied, evaluated, and

compared to gather information on which features are top performers.

The models discussed in this research utilize machine learning methods to better

handle the complexity of the data and the problem itself. For simplification purposes,

only domestic, first–time students are considered. In addition, the factors explored

in each of the models consider only those characteristics known about students prior

to the beginning of their first fall semester.

The primary purpose of this research is to establish a methodology for success-

fully predicting students who are not likely to return with an accuracy of 50 percent

or greater. Though machine learning techniques are utilized frequently in this field,

researchers typically select only a few methods to analyze. This research steps away

from that mold by recognizing that all machine learning techniques have strong po-

tential for prediction. Moreover, there is no ”best” method. Thus, in this research,

many different methods are tested and evaluated. In addition, some techniques that

have not seen much use in this field are employed, including Adaboost and Gradient

Boosting.

Beyond the technical scope, several interesting variables are included in this analy-

sis. For example, ASU uses a Calculated Index (CI) Score which provides a measure of

students’ high school academic performance. By including this feature, this research

validates its continued use by the university. Moreover, as this research discusses

STEM students, a variable that tracks students’ enrollment in math classes at ASU

is included. While it seems logical that strong academic students are more likely to

succeed, it is important to verify whether this is actually the case in FSE.
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Overall, this research hopes to provide analysis on many potential machine learn-

ing techniques in this field, including several which are underutilized, expand the

classical set of features considered by retention modelers, and provide an additional

application for early-identification retention modeling in a STEM setting. To ac-

complish this, this research provides a history of retention modeling, a discussion of

which features have been explored in the past and are still of interest today, and how

machine learning techniques have been applied in previous applications. Following

this, the full data set is discussed, including the methodology for processing the data

and which features, as compared to those discussed in the literature review, were

ultimately selected. Then, the machine learning models utilized in this application

are presented, alongside several modeling strategies to improve the prediction quality.

Finally, the results of this research are shared, the best performing model is selected,

and the features selected by each of the models are discussed in further detail in an

attempt to understand the results practically.
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Chapter 2

LITERATURE REVIEW

Student retention is a widely studied field with research dating back to the early

20th century. However, universities did not consider retention as an impactful metric

until the 1970s when college enrollment began to decline (Seidman, 2005). By this

time, universities gradually began to perceive retention as a strategy and wanted to

understand which students were leaving and why.

The first model of student retention came from Spady (1967), who argued that

social factors were the most relevant to a student’s choice to persist at university.

One of the most cited retention researchers of this period is Vincent Tinto. His work,

in agreement with Spady, discusses the impact of students’ social characteristics on

attrition. Tinto and Spady argued that, above all other factors, a student’s successful

integration into college life and their intent to continue are the strongest predictors

for their persistence in a program (Tinto, 1975, 2017). Moreover, freshmen students

are at the highest risk of leaving due to their lack of progress in their respective field

(Tinto, 2013). Students who have already completed several core requirements are

more likely to stay due to an internal cost–benefit analysis; if the student leaves late

in their academic career, it would be a waste of the extensive resources they have

already devoted their success at university.

Though several researchers have proposed adjustments to Tinto’s notions, there

is a dearth of evidence that refutes his conclusions. A model proposed by Bean

(1980) suggests that there is little theoretical justification for Tinto and Spady’s work.

However, the alternative models proposed by Bean fail to account for a large portion

of the variation in persistence (Seidman, 2005). More recently, several extensions
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of Tinto’s work have shown promising results. These applications have revealed that

student satisfaction, confidence, student–university fit, and other social characteristics

are all pertinent to student success (Schreiner and Nelson, 2013; Wright et al., 2013;

Bowman and Denson, 2014; Bowman et al., 2019; Berger and Braxton, 1998). The

amount of research that supports Tinto’s claims suggests that, in retention modeling,

factors should attempt to capture behavior both within and outside of the classroom

setting.

While it is clear that social characteristics have an impact on student retention,

the question then becomes: how can these characteristics be quantified? This re-

search assumes that academics play an important role in STEM student integration.

As such, high school academic performance and a student’s entering math class are

used as potential predictors of successful integration. Here, the assumption is made

that students who did well in high school and have placed into math classes that meet

FSE’s requirements are likely to continue their education because these students fit

into the mold that is expected of most STEM students. Alternatively, students who

do not meet these expectations may feel separated from their peers. In addition to

these academic factors, two more social factors are utilized to assess student inte-

gration. First, whether a student attended an engineering camp the summer prior

to enrollment, which provides students with early opportunities to meet peers and

professors, and second, if the student resided in on–campus housing. A first gener-

ation flag is also considered, as students who are the first in their family to attend

university may have a harder time integrating for a number of reasons.

With improvements in technology, recent models in the field of retention include

far more than merely social characteristics. One of the most extensive areas of research

regards static characteristics, such as race and sex. In terms of race, several studies

agree that underrepresented minority (URM) students are more likely to succeed
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when strong support networks are available to them (Baker and Robnett, 2012; Chang

et al., 2014). Moreover, diversity seems to play a role in the success of the student

body (Chang et al., 2004). As with race, successful integration positively affects the

retention of the sexes (Ayers, 2017). In general, research on static characteristics

shows that better support networks for higher risk students increases the probability

of attrition. This research includes URM status and gender as identified by the

student.

Another factor discussed frequently in retention analysis is the economic status

of students. According to one study, students who transition immediately from high

school to college are more likely to graduate, assuming that their financial needs are

met (Cabrera, 2003). At a glance, this finding appears to suggest that age upon

college entrance and transfer status may affect retention. However, according to the

same study, it is high financial need that serves as the cause both for transferring

and late arrivals to an institution. Though this finding is not unique, research sug-

gests that financial aid can reduce the risk of non–persistence. For example, any

financial offering to a student increases their chance of attending college by nine per-

cent. Beyond that, Pell Grants, loans, and work–study all have a positive impact

on enrollment (Chen and DesJardins, 2008; McKinney et al., 2015). Thus, financial

need status and financial aid offerings, including Pell Grants, are also considered as

features in these retention models.

Many characteristics, even beyond those discussed, have been identified as im-

portant to student persistence. As such, a wide range of factors are included in the

modeling performed in this research. In summary, this includes static characteristics,

like race and sex, financial characteristics, like scholarship and financial need, and sev-

eral social and academic characteristics, which help define student integration. The

one limitation to the factors included is that no factors beyond those known before
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the start of a student’s first fall term as a freshman college student are analyzed.

Of all the research performed on student retention, there is no clear methodol-

ogy for developing retention models. Earlier research, such as that of Tinto, Spady,

and Bean, relied on theoretical models and simple regression techniques. With the

development of better user interfaces and algorithms, more complex statistical and

machine learning (ML) methods have been employed in recent research. Research on

student retention is heavily saturated with the application of machine learning models

in predicting student persistence (Chen et al., 2018; He et al., 2018; Muncie, 2020).

These models aim to effectively identify students who are at risk of not returning

and develop frameworks that highlight key features relevant to a student’s decision to

stay or leave. It is not uncommon for researchers to present a single machine learning

method that produces a prediction of at–risk students. The general procedure follows

that researchers utilize one or several machine learning techniques, apply these to the

freshman student population, and supply a model for early identification of at–risk

students. Many ML methods have been explored, with the most common being neural

networks, decision trees, logistic regression, and support vector machine (Sepulveda,

2020). A clear gap exists in the application of Adaptive and Gradient Boosting meth-

ods. This may be due to the fact that methods such as logistic regression provide

results that offer straightforward interpretations on the qualitative impacts of certain

features on retention, though this research will investigate this further.

This research, similar to these previous efforts, has the primary intention of estab-

lishing models for the early identification of at–risk students. A distinguishing factor

for this research is that only factors known prior to the induction of students will be

included in analysis, providing that a set of at–risk students can be determined before

the semester begins. This research also explores the impact of Adaptive and Gradient

Boosting methods, which are not commonly used. Moreover, this research investi-
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gates the similarities and differences between multiple models to identify and analyze

important features of student retention at ASU. The intention of this research is not

to argue in favor of one modeling method over another. Rather, many techniques are

used to create many different models. The best performing predictive model is then

selected using Area Under the Curve (AUC) and F1 score, acknowledging that any

change in the sample set, features, or other inputs might alter which modeling method

performs best. Moreover, the remaining models are evaluated for interpretability and

utilized to explain any findings further.
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Chapter 3

DATA

3.1 Dataset Description

The data set consists of 9,483 domestic, first–time freshman FSE students from

2015 to 2018. Each year represents a new cohort of students. This data set is a

supervised learning set in which the label is whether or not the student returned for

their first spring semester. Across this four–year range, only 463 students did not

persist for their first spring. This indicates that the data set is heavily unbalanced

which requires detailed analysis that is described later on. Though there are plenty

of features available, the data itself is relatively simple. There are primarily binary

features in the set with very few continuous features. To aid in visualization of the

data set, data for a dummy student is provided in Figure 3.1, using fabricated data.

The data utilized in this project was retrieved directly from ASU’S Management

Information Analysts. The 2015 to 2017 data is the product of several student teams’

capstone and Fulton Undergraduate Research Initiative (FURI) projects.

3.2 Preprocessing

Much of the data utilized in this project was collected and processed by student

teams who had previously worked on this project. The features chosen for analysis

were based on those that they had already collected. Regardless, some feature en-

gineering was required to continue work. Many of the features available for analysis

were binary, meaning that they had only two values. To prepare this data, the fea-

tures were transformed from their original text characteristics to values of zero and
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Figure 3.1: An Example Observation of the Set, Using Fabricated Data

one. Zero implies that the student does not meet the characteristic described by that

feature, whereas one implies that the student does meet the characteristic described

by that feature. For example, when considering a student’s URM status, zero was

assigned to students who did not meet one of the URM categories, and one was as-

signed to the students who met any of the URM categories. In addition, a scaling

factor was applied to the data set to prevent variables such as CI Score, which is on

a much larger scale than the binary data, from being weighted unnecessarily high by

the models.

This set also contains the label, which is whether or not the student enrolled in

spring. Since it is more important to correctly predict students who choose not to

re–enroll than students who do, one was assigned to students who do not persist, and
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zero to students who do persist. This is opposite to the structuring for the features

in this set.

3.3 Missing Data

Because ASU has teams that continuously track student data, there are not many

issues with missing data. Typically, if data is not present, it indicates that the student

does not match that criteria. For example, when a student has no scholarships listed,

it is because they simply do not have scholarships, not that there is missing scholarship

information. Nonetheless, visualizations were performed to identify if the proportion

of blanks in the set appeared greater than what might be expected. None of the

available features appeared to have an issue, save for Calculated Index (CI), where

missing data is expected. Missing CI Scores are relatively common; since CI Score is

calculated from standardized testing scores and high school performance, any student

with a different background is at risk of not having a CI Score. For this reason,

only domestic students were considered in this analysis – international students often

do not have the same standardized testing/high school performance data available

to calculate a CI Score. However, CI Score is also difficult to track for students

who have non–traditional high school backgrounds, such as those who were home–

schooled. As a result, approximately three percent of CI Scores were missing for the

overall set. To combat this, the missing values were replaced with zeroes and a new

variable, No CI?, was created to identify those students who were missing CI Scores.

This feature was created to determine if there was anything unique about students

without CI Scores that might affect their enrollment. A similar issue appears again

when considering financial data. Students are not required to apply for aid, but to

do so, they must submit their Free Application for Federal Student Aid (FAFSA).

If a student chooses not to submit the FAFSA, they cannot be included in any of
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the financial need brackets. Thus, the financial need criteria were broken into several

columns – a student who does not meet any of these criteria is identified by a zero in

all of the financial need features.

3.4 Correlation

Since several features were available for analysis, many of which have logical con-

nections to one another, it was important to determine any potential correlations

between features prior to analysis. As such, a correlation matrix was created, as seen

in Appendix A. A meaningful correlation that appeared was a strong correlation be-

tween CI Score and No CI?. After consideration, both were selected to remain in the

analysis. This decision was made after testing models first with No CI?, next with

CI Score, and finally with both variables included. The results showed that both

were often necessary in the final models. Another correlation that appeared in the

models was a moderate relationship between Pell Eligible? and Very High/High

financial need. Since the correlation was not as extreme as the previous example, the

variables were kept and monitored throughout the modeling process.

3.5 Features

There are approximately 108 features available for processing in this set. Since

the scope of this research only covers factors that are known prior to a student’s

enrollment, this set diminishes to 18 features of interest. A majority of these features

are binary and have been coded with values of zero and one, where zero indicates

that a student does not have the feature in question and one indicates that a student

does have that feature. The full set of features used in this analysis is provided in

Appendix B.
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3.5.1 Label

The class of interest in this research is Enrolled Spring?, which is a binary

variable that returns zero if a student enrolls in classes in the spring following their

first fall, and one if they do not re–enroll. This data set is unbalanced as only 463

out of 9,483 students do not persist to the first spring.

3.5.2 ASU Scholarships?

ASU Scholarships? is a binary variable with a value of one if the student has any

scholarships and zero if otherwise.

3.5.3 CI Score

CI Score is the only continuous variable included in this set. A CI Score are

automatically calculated by the university and are calculated as the intersection be-

tween Arizona Board of Regents (ABOR) Grade Point Average (GPA)/high school

rank and Scholastic Assessment Test (SAT)/American College Testing (ACT) scores.

If any of these variables are missing, a CI Score is not calculated. As such, many

international or home–schooled students do not have a CI Score. Thus, international

students were removed from the data set. Only about three percent of students in

this set do not have a CI Score. Students without a CI Score were assigned a CI

Score of zero.

3.5.4 No CI?

Instead of removing domestic students without a CI Score, a binary variable

No CI? was created with a value of one if the student has no CI Score and zero

if otherwise. This variable was included to identify if not having a CI Score is an

13



important feature in re–enrollment.

3.5.5 Meets MAT Requirements?

Meets MAT Requirements? is a binary variable that checks if the student is en-

rolled in the required (or higher) math class for their first semester. If the student

meets or exceeds this requirement, they receive a value of one and zero if otherwise.

Difference in requirements across both years and majors were considered when cal-

culating this variable. However, this variable is dynamic – a student might choose to

enroll late or drop a class early in the semester, meaning that this variable must be

tracked over time. This data set considers the math class the student was enrolled in

at the start of the first fall semester.

3.5.6 Financial Need

Financial need is not a single variable in the set, but represented by five individual

variables: Very High, High, Moderate, Low, and Very Low – each indicating a stu-

dent’s level of financial need. These variables are all binary. A student only falls into

one of these brackets, and as such, will have a one in the level of financial need they

qualify for, and a zero in the remaining features. Since financial need is determined

after a student submits their FAFSA, there is some missing data based on students

who chose not to submit. This was identifiable by all features equaling zero.
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Chapter 4

MODELING

4.1 Intent

The goal of this research is two–pronged: first, to provide a model that predicts

at least 50 percent of those students who will not return successfully. Second, to

understand what features play a role in a student’s decision to stay or leave. The

final model needs to maintain a good balance of both interpretability and predictive

power. However, models that do not perform well predictively are still useful for their

ability to explain relevant features to a wider audience.

4.2 Initial Steps

As stated previously, several groups worked on this project prior to the start of

this research. These groups primarily collected and processed the data, but also at-

tempted early analysis using basic regression techniques. Due to the binary outcome

and the complexity of the data, these teams were able to achieve only approximately

10 percent prediction accuracy. This project began with several attempts to create

Logistic Regression models in the statistical software, JMP. Logistic Regression is a

popular modeling technique that allows its users to find the probability that a data

point belongs to a certain class using a structure similar to linear regression (James

et al., 2013). It is often employed due to its ability to model binary outcomes. Un-

fortunately, due to the complexity of the software, prediction accuracy only improved

to approximately 30 percent. Several other softwares were explored, such as Matlab

and RapidMiner, but the need for direct control over model parameters greatly out-
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weighed the convenient graphical user interfaces. Thus, the transition to Machine

Learning in Python was made.

4.3 Feature Selection

Feature selection is a unique challenge, particularly when modeling a classification

problem. Most ensemble methods, such as Gradient Boosting and Adaboost, do not

require feature selection due to their ability to select random subsets of features on

each iteration. Regardless, Logistic Regression with an L1 penalty was applied to

identify if any features needed to be removed prior to analysis. This is one of the

only models that is able to perform feature selection (Ng, 2004). The results, which

are discussed in detail later, showed that no features needed to be removed from the

set.

4.4 Tuning Parameter Selection

K–fold cross validation is a technique that splits the training data into subsets, K

– one of which are used for training a model, and one of which is used as a validation

set (de Rooij and Weeda, 2020). Each subset is tested as a validation set and the

results identify the best tuning parameter. First, the original data set was split into

a 75 – 25 training and testing split. All modeling methods applied ten–fold cross

validation to determine their best model tuning parameters for the final iteration

of each model. Ten folds were chosen in order to minimize model variance. Only

Gradient Boosting employed five–fold cross validation, as ten–fold required too much

time to compute. This method also provided a way to calculate feature importance

which was utilized when no coefficients were available for a model.
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4.5 Threshold Selection

Since each model outputs a prediction probability for the observations in the

test set, a threshold is utilized to choose how the model classifies each observation.

The standard threshold is .50, which indicates that an observation with a prediction

probability greater than .50 is classified as a one, or a non–returning student, and

an observation with a prediction probability less than .50 is classified as a zero, or a

returning student. Changing the value of the threshold is very important and often

improves the performance of the model. The threshold for all models was adjusted

both above and below .50 to find the best value of the threshold. The best threshold

was determined by the value of the F1 score for that model, which estimates the

model’s accuracy.

4.6 Model Evaluation

As mentioned previously, the unbalanced nature of the data set poses a problem for

the model output. To combat this, evaluation techniques that consider unbalanced

techniques were applied. The primary evaluation technique was F1 score, which

considers both precision and recall when measuring modeling accuracy (Tharwat,

2018). Precision evaluates the model directly and identifies how accurate the results

are for both values of the label. Recall indicates how well the model correctly predicts

the class of interest, or in this case, correctly predicts non–returning students. The

higher the F1 score, the better the model performance. The second technique for

evaluation was AUC, which aided in the identification of the best possible threshold.

For each model, the AUC and Receiver Operating Characteristic (ROC) curve were

employed primarily to determine if the model was performing better than a coin toss.

Similar to F1 score, the higher the AUC, the better the performance.
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4.7 Modeling Techniques

Many techniques were applied in this research, both with low interpretability

and high interpretability. There are different advantages to both low interpretabil-

ity and high interpretability methods. High interpretability methods are often very

easy to understand - in the case of student retention, they not only produce predic-

tive models, but information about how features impact retention. For example, a

high interpretability model not only provides predictive information, but how much

and in what direction a certain feature impacts retention outcomes. Alternatively,

it is difficult to achieve this same information with low interpretability models, as

there often is not a way to easily understand how the features impact the model.

However, these types of models often perform much better predictively. As such,

low interpretability models are typically suitable for providing early identification of

at-risk students, while high interpretability models are better for making qualitative

assumptions about how the features ultimately impact students.

Of the high interpretability methods, Naive Bayes, Logistic Regression, and Deci-

sion Trees were analyzed. The Naive Bayes algorithm is a very simple model, which

makes the broad assumption that the features are independent. Following this as-

sumption, the probability that a given data point is of a particular class is calculated

according to Bayes Theorem (Domingos and Pazzani, 1997). Logistic Regression is

another popular technique, as mentioned previously. For this analysis, both an L1,

which involves feature selection, and L2 penalty were used. Finally, Decision Trees

start with the entire data set at the ”root” of the tree and create splits from this root,

called nodes, with the goal of producing homogeneous sets in the final nodes, called

leaves (James et al., 2013).

Of the low interpretability methods are Random Forest, Gradient Boosting, and
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Adaboost. Bagging, also called bootstrap aggregating, is an ensemble method that

applies decision trees to randomly sub–sampled sets of the data and and outputs the

average results of those trees (Breiman, 1996). Random Forest is an enhanced version

of Bagging with a similar procedure, the primary difference being that it randomly

sub–samples both data and features for each of its decision trees (Tin Kam Ho, 1995).

Gradient Boosting and Adaboost, or Adaptive Boosting, are the last two ensemble

models utilized in this research. They are very similar techniques – both rely on weak

learners, such as decision trees, to ’boost’ performance by creating new weak learners

to accommodate the gaps in earlier learners. The primary difference between the

two methods is that Adaboost adjusts the performance of its learners by weighting

previously misclassified observations more heavily; Gradient Boosting adds learners

to the model that minimize the overall loss (Freund et al., 1999; Friedman, 2001).

Finally, the question remains as to how each of these methods handle unbalanced

data. Logistic Regression, Decision Trees, and Random Forest all struggle to handle

data with unbalanced classes. To counteract these issues, a weight was applied to

allow each class even consideration by each of the models. Naive Bayes, Gradient

Boosting, and Adaboost do not have these functionalities. However, the nature of

their techniques ensures that they are much better at handling the class difference.

For example, Naive Bayes outputs a likelihood for both classes individually, meaning

each class is considered fully. In addition, Gradient Boosting and Adaboost both

apply equally heavy weights to any observation that is misclassified, regardless of

which class it originally came from. This means that there is no need to transform

the data beforehand, as each of these methods handles the imbalance internally.
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4.8 SHAP Values

As stated earlier, the goal of this research is two-pronged: first, provide a method

for early identification of at-risk students that has at least 50 percent accuracy, and

second, provide qualitative analysis of how the features impact the data set. In

the past, high interpretability methods have been utilized to accomplish these goals,

as they are capable of providing both predictions and information about features,

while low interpretability methods typically lack the latter capability. However, the

increase in model performance seen in low interpretability methods is also valuable.

As such, Shapley Additive Expanations, or SHAP values, are utilized on the low

interpretability techniques in an attempt to gain similar qualitative information about

the features, as seen in high interpretability techniques. SHAP values provide an

estimation of how much each feature contributes to low interpretability models by

calculating the impact of features on each prediction, which in turn explains the

impact of each feature in terms of magnitude and direction (Lundberg and Lee, 2017).

Thus, SHAP values are utilized in this research to better explain low interpretability

methods and bridge the gap in qualitative information learned between low and high

interpretability models.
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Chapter 5

RESULTS

Model performance is summarized in Table 5.1 with the top features for each

model provided in Appendix C. The accuracy, which describes how well the models

meet the overall goal, is described in Table 5.2. The Type I and Type II errors for each

model are summarized in Table 5.3. As expected, the high interpretability methods

tend to perform worse predictively while the low interpretability methods perform

better, based on F1 score. In order of performance, from worst to best, are: Decision

Trees, Naive Bayes, Logistic Regression with L1 and L2 penalty (tie), Random Forest,

Adaboost, and Gradient Boosting. The results of this research indicate that ensemble

methods, including Random Forest, Adaboot, and Gradient Boosting are promising

for modeling student retention in this application.

Though accuracy is not a holistic method for evaluating the models, it provides

information on how close the models are at achieving the original goal of successfully

predicting more than 50 percent of students who are not likely to return. At the

optimal F1 score, which helps minimize Type I and Type II error, the accuracy of all

the models explored in this analysis is greater than the goal of 50 percent (5.2). This

means that any of the machine learning models has the capability to meet the original

requirements of this research. However, when further analyzing Type I and Type II

errors, it is clear that some models perform better than others. In this example,

Type I error refers to the percentage of returning students who are predicted as non–

returning, and Type II error refers to the percentage of non–returning students who

are predicted by the model as returning. Thus, it is ideal to have very low Type I

and Type II errors. The models that perform the best here are Gradient Boosting
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Table 5.1: Model Performance and Top Features

Technique AUC F1 Score Optimal Threshold

Random Forest 0.725 0.171 0.54

Gradient Boosting 0.733 0.209 0.07

Adaboost 0.723 0.196 0.45

Naive Bayes 0.68 0.155 0.53

Logistic Regression – L1 0.719 0.158 0.5

Logistic Regression – L2 0.719 0.158 0.5

Decision Trees 0.711 0.15 0.53

Table 5.2: Accuracy

Technique Accuracy

Random Forest 0.60

Gradient Boosting 0.52

Adaboost 0.54

Naive Bayes 0.58

Logistic Regression – L1 0.65

Logistic Regression – L2 0.65

Decision Trees 0.61

and Adaboost. Recall that the original data set is very unbalanced, indicating that

there are more returning than non–returning students. This means that, although

lower Type II errors are more relevant to the overall goal, a higher Type I error means

a significantly larger number of students are over–predicted as non–returning. Since

the number of non–returning students is so small, having a Type I error of 30 percent
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Table 5.3: Type I and Type II Error

Technique Type I Error Type II Error

Random Forest .28 .40

Gradient Boosting .18 .48

Adaboost .22 .46

Naive Bayes .30 .42

Logistic Regression – L1 .34 .35

Logistic Regression – L2 .34 .35

Decision Trees .32 .39

roughly translates to 30 percent of the students in the entire data set being predicted

as non–returning, when they do actually return. This makes it much more difficult

to target non–returning students that need help and clarifies why Gradient Boosting

and Adaboost are better predictively, despite their lower accuracies.

Referring back to feature selection, which was performed through the Logistic

Regression with the L1 penalty, the top model chose a very high value of C. High

values of C indicate lower penalties on the features. Thus, no features were removed

from the model. This finding validates the assumption to include all features for

the remaining models, as the best performing model occurs with a lower L1 penalty.

Interestingly, there was virtually no difference between the results of either Logistic

Regression models. Both had the same F1 score and chose the same top features

based on coefficient values.

The Decision Tree was by far the worst method applied, despite its potential uses

in this application, with an F1 score of .15. Aside from its low F1 score, its results

were variable – each time the Decision Tree was run, a different set of parameters
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were output by the cross validation. The result was completely different trees upon

each run. It is very likely that this model is overfitting, and for the time being, is not

considered a good model for this application.

The Random Forest method was one of the first ML techniques applied in this

research, but performs the worst of the low interpretability methods. As mentioned

previously, both Gradient Boosting and Adaboost performed the best, with F1 scores

of .209 and .196 respectively. Both Adaboost and Gradient Boosting performed fea-

ture selection, where Adaboost removed six features and Gradient Boosting only

removed Pell Eligible?. This result is of interest as Adaboost chose to remove

Pell Eligible?, High, and No CI?. It appears that the Adaboost chose to remove

all strong correlations from the model, both between CI Score and No CI? and Pell

Eligible? and Very High/High financial need. Gradient Boosting, however, only

removed the correlation from the latter. This appears to indicate that removing these

features has a positive impact on performance, despite other models ignoring these

relationships. As mentioned earlier, both Adaboost and Gradient Boosting achieve

over 50 percent accuracy while minimizing the Type I error. None of the other meth-

ods were able to achieve the same level of accuracy while minimizing the quantity of

students falsely predicted as non–returning.

For all models, none of the F1 scores are too far apart, indicating that all of the

techniques have some potential. In addition, for the best three models, CI Score,

ASU Scholarships?, and Meets MAT Requirements? were always included in the

top five features when ranked by feature importance. Moreover, CI Score was always

in the top two features when ranked by feature importance for the ensemble methods,

including Decision Trees, Random Forest, Adaboost, and Gradient Boosting. It was

also included as the top predictor in both Logistic Regression models, followed by CI.

Even for Naive Bayes, which did not include CI Score in the top five features, No
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CI? was chosen as the top feature.

The only static characteristic in the top five features is Sex?, which appeared as

the fourth most important feature in Adaboost. Both the Logistic Regression and

Naive Bayes models found several financial need variables in their top five, though

the other models did not find the same importance. Still, though all models did not

acknowledge financial need level as a factor, at least one financial variable was present

in the top five features for all of the models.

For the high interpretability models, the coefficient size and their odds ratios pro-

vides information on how the features impact student retention. For example, it is

clear that, according to the Logistic Regression results, CI Score strongly impacts

retention. To obtain the same information for the low interpretability methods, the

SHAP values were calculated and visualized. Unfortunately, compatability with Ad-

aboost is not yet available, so SHAP values were not calculated for this method. The

SHAP visualization for Random Forest is located in Appendix D and the visualization

for Gradient Boosting is located in Appendix E. For Gradient Boosting, it appears

that students with low values of ASU Scholarships? are much more likely to not

return, with different groups of student experiencing this more severely than other

groups. The same can be said for CI Score. Similar is seen with the SHAP values

for Random Forest, which show low values of ASU Scholarships? having a greater

impact on non–returning likelihood. However, honors students and those with higher

values of CI appear to have a greater likelihood of being retained by the model, which

is not as evident in the Gradient Boosting model. Both models show a similar result

for Meets MAT Requirements?, where a student who does not meet their major’s

requirements is more likely to not return, according to the model.
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Chapter 6

CONCLUSION

6.1 Overall Summary

The results of this research provide meaningful information in regards to student

retention. The top three models – Random Forest, Gradient Boosting, and Adaboost

– all included CI Score, ASU Scholarships?, and Meets MAT Requirements in the

top five features when ranked by feature importance. Moreover, CI appeared in

the models in some way, either as CI Score or No CI?. This suggests that CI in

particular may be an indicator of student success. According to the SHAP values for

Gradient Boosting, which was the best performing model overall, lower values of CI

Score and ASU Scholarships? have a stronger impact on a student’s likelihood of not

returning. Considering that CI Score is determined by SAT/ACT scores and high

school GPA/class rank, this warrants a deeper analysis of how these features affect

retention. Given that financial aid appears in all models, it also has some impact –

though in what way, whether it be as scholarships or a student’s financial need, is not

clarified by the SHAP values. Since the top models include the same three features, it

seems logical to conclude that a student’s CI Score, their possession of scholarships,

and their math placement might have some impact on their likelihood to continue for

their first spring.

Unexpectedly, static characteristics do not appear as top features in any of the

models except Adaboost. This may be due to their relatively small proportions – for

example, the quantity of URM and female students is small compared to those who

do not meet this criteria, so it is possible that the models struggle to include these
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features in the final results.

For choosing a model to utilize for early identification of at–risk student, this

research indicates that Gradient Boosting in combination with SHAP values is a

strong contender. It had the highest F1 score, exceeded the original goal of correctly

predicted more than 50 percent of non–returning students, and severely limited the

Type I error, which is much better than previous analysis in JMP or any of the other

methods. In addition, the inclusion of SHAP values in this analysis allow greater

interpretation of the features, similar to a high interpretability method, like Logistic

Regression. Other methods had higher accuracy at the expense of a higher Type I er-

ror, and though Adaboost performed similarly, there was no way to evaluate its results

intuitively, as it does not yet have compatibility with SHAP values. It is important

to note that this does not mean the results of the other methods are not useful – if

interest in the future shifts more from identification to feature interpretation, Logistic

Regression in particular is a well-suited tool.

Another important consideration is the actionability of the features. Knowing

that CI Score impacts retention outcomes, what can be done to help students with

low or no CI? The answer to this question is unclear, as more than advisor outreach

may be required to lead to positive enrollment outcomes. This calls into question the

decision to include these variables, though it is still useful to understand the impact

of these features on a student’s decision to persist. Features that the university can

act more directly upon may be more prudent to future analysis.

These models are now available to provide early identification of students at–risk

of not returning. The models, specifically Gradient Boosting, are run by the student

retention team on incoming student data. The models output a list of students

who are flagged as ”at risk” by the university. This list of students is shared with

the university who perform outreach to the flagged students and provide support
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resources, in hopes of improving their likelihood of returning.

6.2 Future Work

Now that the framework is complete, there are many directions that this project

can take moving forward. First, as with any system, there exists the need to analyze

any gaps between this framework and other, similar implementations. Since the

use of machine learning in student retention analysis is growing, lessons from other

researchers can improve the implementation developed in this research.

To improve the analysis performed above, more relevant data is needed. This

means adding data from the 2019 and 2020 cohorts and removing older cohorts, such

as the 2015 and 2016 sets, from the analysis. In the past, five cohorts were chosen

for analysis, which provided a sample size of approximately 10,000 students. This

selection was made to maximize the amount of data available for examination, but

no minimum or maximum number of cohorts is necessary so long as the sample size

is appropriate. A potential concern when adding this new data is if there exists

some type of significant difference between cohorts. Adding year as a feature or

even performing clustering analysis will be useful in identifying if this concern is

valid. Moreover, the impact of COVID–19 on student retention may warrant separate

analysis of the Fall 2020 and 2021 cohorts. It is recommended to first perform analysis

to determine if COVID–19 had a significant impact on retention before adding these

cohorts to the data set.

Further developments are required to increase the predictive accuracy of these

models. While the prediction accuracy is high, the Type I error for many of the models

is comparatively large. Rectifying this may involve the inclusion of new features,

such as Age, SAT/ACT, AP classes, LGBTQIA+ status, and more, most of which

were not analyzed for simplification purposes. Moreover, it would be interesting
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to call into question the exclusion of international students in this modeling. The

original reasoning was the quantity of missing data these students have as compared

to domestic students – oftentimes, international students lack CI scores and certain

high school characteristics. Keeping these students, performing transformations on

their missing data points, and identifying international status as a feature may be a

better alternative when modeling.

One of the limitations of these models is that they only consider factors known

prior to a student’s college attendance in predicting their enrollment in spring. All of

the machine learning techniques should be re–applied to create three new models. The

first new model will predict enrollment in spring depending on factors known mid–

way through the first fall semester, which requires the same label, but a different set

of features. The second new model will utilize those features known at the end of

a student’s first fall to predict whether or not a student will re–enroll for the fall of

their sophomore year. For this analysis, it is important to only include those students

who were actually enrolled in spring in the data set – in other words, this data set

will be slightly smaller than the previous set as the students who did not enroll for

their first spring are excluded. The last model that needs development is one which

uses factors known mid–way through the first spring to predict re–enrollment in the

fall of sophomore year.

There are also several long–term goals for this data project. First, the data set

should be fully transitioned to Python. In the past, all data pre–processing was

performed in Excel, which was both time consuming and frustrating, given the size of

the set. If the data set were fully integrated into Python, the pre–processing would

require much less time. In addition, it would be a much better way of storing the data

as all files would be in the same location as the modeling code. The second long term

goal is to implement these models into a dashboard that is accessible to advisors. This

29



dashboard should be straightforward – it should provide the list of students who are

currently at risk and some reasoning for why that student was flagged at risk (e.g.,

no scholarships). The dashboard is created for the layman, so that an individual

with no background in machine learning can leverage the knowledge with no previous

training.
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APPENDIX A

CORRELATION MATRIX
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The complete correlation matrix:
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APPENDIX B

FEATURE SET
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The full set of features and their description:
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APPENDIX C

TOP FIVE FEATURES
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The top five features for each model, based on feature importance or coefficient size:
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APPENDIX D

RANDOM FOREST SHAP VISUALIZATION
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SHAP visualization for Random Forest:
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APPENDIX E

GRADIENT BOOSTING SHAP VISUALIZATION
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SHAP visualization for Gradient Boosting:
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