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ABSTRACT

Nowadays, the widespread use of distributed generators (DGs) raises signif-

icant challenges for the design, planning, and operation of power systems. To

avoid the harm caused by excessive DGs, evaluating the reliability and sustain-

ability of the system with high penetration of DGs is essential. The concept of

hosting capacity (HC) is used to achieve this purpose. It is to assess the capabil-

ity of a distribution grid to accommodate DGs without causing damage or up-

dating facilities. To obtain the HC value, traditional HC analysis methods face

many problems, including the computational difficulties caused by the large-scale

simulations and calculations, lacking the considering temporal correlation from

data to data, and the inefficient on real-time analysis. This paper proposes a ma-

chine learning-based method, the Spatial-Temporal Long Short-Term Memory (ST-

LSTM), to overcome these drawbacks using the traditional HC analysis method.

This method will significantly reduce the requirement of calculations and simula-

tions, and obtain HC results in real-time. Using the time-series load profiles and

the longest path method, ST-LSTMs can capture the temporal information and spa-

tial information respectively. Moreover, compared with the basic Long Short-Term

Memory (LSTM) model, this modified model will improve the performance in the

HC analysis by some specific designs, which are the sensitivity gate to consider

voltage sensitivity information, the dual forget gates to build spatial and temporal

correlation.
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Chapter 1

INTRODUCTION

Nowadays, a growing number of renewable energy-based distributed gener-

ators (DGs), especially photovoltaics (PVs), have been widely used in the low-

voltage (LV) distribution grid. While the widespread use of DGs has many advan-

tages, including voltage profile control, line loss reduction, and cost decrease, it

also brings challenges to planning and optimizing the distribution grids. For in-

stance, DGs may integrate into the distribution grid on feeder level or behind-the-

meter. They are highly distributed, variable, and often beyond utility monitoring.

It is currently difficult to receive timely status updates due to the lack of infrastruc-

ture and proper analytics. When penetration level is substantial, DGs inevitably

change load shapes, voltage, and fault current profiles, and other operating condi-

tions. For example, instead of low voltage issues in traditional radial feeders, now

grid operators face overvoltages at solar-rich feeders. For communities with lots

of roof-top PVs, solar energy often peaks at valley load. The net load then turns

negative and introduces reverse power flow and overvoltages at the feeder end,

causing malfunction of voltage regulators and protection coordination. Without

proper situational awareness, grid planners and operators find it challenging to

handle capacity planning and take appropriate control actions.
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To assess the power network, the concept of hosting capacity (HC) is proposed.

HC is denoted as the maximum amount of DGs that an existing distribution grid

can accommodate without causing technical problems or requiring changes to

power system facilities [1]. [2] provides a systematic and comprehensive intro-

duction to the research, development, evaluation, and enhancement of HC. [3]

offers a classification of methods for quantifying HC and accomplishes a detailed

review of three different methods for calculating HC. [1] not only does a similar re-

view work but also summarized current tools using in HC analysis. All the works

about HC illustrate that this concept has been accepted by many researchers and

engineers to evaluate the distributed power system. To obtain the HC value, some

different methods are applied.

In [3], current HC analysis methods are classified into four categories. The

deterministic method [4, 5, 6] is to calculate the HC at the worst-case scenario.

Without considering the complex scenario of a real power system, the obtain HC

value is underestimated and lacks certainty. The stochastic method [7, 8, 9] is to

use the Monte-Carlo-based technique for uncertainties in power system, including

random placement and sizing of PV units and loads. This popular method also has

some drawbacks, e.g., the computational time, and will increase the complexity of

the power system and uncertainty parameters. And this method can not assess the

time-related factors that occurred in the real power system. The time series method

[10, 11] is to apply generated time-series data in simulation and also can be treated
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as a deterministic method. It is a very time-consuming method that requires a lot

of simulation. Although this method can consider the time-series factor, in some

scenarios, it is unable to consider the model changes between two very long time

slots. The optimization-based method targets maximizing the active power injec-

tion of DGs into the distribution network while making sure that the distribution

network operational limits are satisfied. This method needs to do many iterations

to obtain an optimal solution.

Obviously, all of the current methods are based on a large-scale simulation and

calculation to improve the accuracy, and the complexity will significantly increase

accompanied by the uncertainty in the system. Additionally, most of the methods

ignored the time factors in HC analysis. Moreover, all of the above methods are

not designed for real-time analysis, instead, they are focusing on the calculation of

the HC of the system generally, rather than the HC value based on different load

profiles.

Based on the consideration of solving these problems, we choose to use a ma-

chine learning-based method for HC analysis. The input of our model is the his-

torical time-series power system data. Then we can obtain the HC as the corre-

sponding output in real-time, using the trained model. To guarantee the accuracy

of the calculation, choosing a proper machine learning model is very important.

Nowadays, variant machine learning methods have been already widely used

in different power system analyses to solve specific problems. [12] developed a
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Figure 1.1: Overview

new scheme to mitigate the battery energy storage systems (BESS) capacity prob-

lem through Monte-Carlo tree search-based reinforcement learning (MCTS-RL).

[13] used a data-driven regression approach to train a linearized power flow model.

In the recent HC analysis study, some machine learning methods have been ap-

plied as well. [14] proposed a machine learning-based method, in particular sup-

port vector machines (SVM), to classify the grids with a high penetration of DGs,

using sample data. This method can significantly better reflect domain expert as-

sessments. There are also some machine learning-based methods used in HC anal-

ysis. In [15], the author introduced a machine learning-based method, the Bayesian

Optimization, to do HC analysis. It can prove that data-driven learning-based

methods for HC analysis in the power system are feasible. However, this model is
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not good at considering the temporal correlation in HC analysis.

To choose a proper model for machine learning-based HC analysis, we can fo-

cus on the features of power systems. The power system is a well-formed sequen-

tial model which contains temporal and spatial sequences. The Recurrent neural

network (RNN) is proposed to solve the sequential problems, and one of its vari-

ants, the LSTM, has a better performance in practice compared with basic RNNs.

Traditional LSTMs have some drawbacks. The most important one is that it can

only consider one type of sequential information at the same time. However, in

the HC analysis, spatial sequence, including electrically and geographically rela-

tive locations, and temporal sequence, containing time-series load profiles, both

play important roles in HC analysis. The motivation to consider both spatial and

temporal correlation existed in the special power system requires us to develop the

traditional LSTM to the ST-LSTM. ST-LSTM models have been used in many situ-

ations. [16, 17, 18] used this method to do prediction on people’s next destination.

[19] used the LSTM model to mimic the physical action of a person. [20] intro-

duced a tree-structure-based LSTM model, which inspired us to apply a similar

method in our ST-LSTM model.

For my new HC analysis method, first, given historical time-series power sys-

tem data, this deep learning-based approach can compute the HC in real-time.

Second, the longest path method will build a relatively simple spatial sequence for

the complex power system. Third, the new ST-LSTM algorithm builds a tempo-
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ral and spatial correlation, the designed dual forget gates decide what information

needs to be memorized, and the sensitivity gate can filter the input information

based on the voltage sensitivity analysis.

6



Chapter 2

HC ANALYSIS METHOD

2.1 Comparison Between Traditional and Deep Learning-based HC Analysis

Traditional HC analysis methods are based on either extremely large datasets

for instants the time-series method, or repeat simulation, for instants the optimization-

based method. Nevertheless, they are not used to calculate HC in real-time. Our

target is to calculate the HC in real-time with high accuracy.

HC data is very sensitive to temporal and spatial information, both of which

can be treated as sequential data. In the HC analysis deep learning framework, we

use these two kinds of sequential labels, temporal and spatial. The temporal label

means the time interval between two data, and the spatial label means the location

of PV generators. To be more specific, temporal information means the time series

data, and spatial information means the all the buses in the tree-structured power

network can follow a well-setting order, which will be talked about in detail in the

following subsection. HC number is relaid on spatial and temporal information,

both of which are following a well-formed order. Specializing in capturing both

long-term and short-term sequential information, LSTM is chosen to be our deep

learning model.

7



2.2 Voltage Sensitivity Analysis

Moreover, in our analysis, we noticed that when adding PV generators at one

selected bus, the limit of voltage violation for other buses plays a crucial role in HC

analysis. Based on this, we use this voltage sensitivity data as a part of the input

of the sensitivity gate.

The voltage sensitivity of a local bus i is defined as how much impact it has

on the voltage of the other buses when adding a generator with unit generation.

[21] emphasizes that according to the literature, voltage rises at load bus bars are

a serious limiting factor when installing DGs. In [1], the author emphasizes that

over-voltages and under-voltages are the main limiting factor in determining HC.
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Chapter 3

BASIC LSTM

Targeting on capturing temporal correlation among data, a sequence-sensitive

machine learning method is used in our work. To achieve such learning, the map-

ping from historical data on different input features to the hosting capacity is ob-

served to be highly nonlinear, and deep learning is a promising method to deal

with such non-linearity. However, to describe the time-series in power systems, it

is crucial for memory to exist between neighbor neurons to capture the time de-

pendence of the physical process. The RNN is designed for this purpose. In such

a model, RNNs need some past context to predict the present output, but the issue

is how much. It seems that sometimes, less context is sufficient, but it is entirely

possible that the gap between the relevant information and the point where it is

needed becomes very large. This is the issue of long-term dependencies, which is

almost impossible to capture using classical linear or Markov-based systems[22].

In theory, RNNs should be capable of learning memories of arbitrary length, but

in practice, they don’t seem to learn them.

In the mid-90s, a variation of the recurrent net with so-called Long Short-Term

Memory units, or LSTMs [23], was proposed as a solution to the vanishing gradient

problem. The main idea is that long memories were observed to be missing in the
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application results from RNN. However, a power system usually has long-term

patterns, ranging from daily, weekly, and monthly, to seasonal periodicity. For this

purpose, LSTM aims at remembering these long-term relationships, favorable for

power grids. Therefore, using LSTM for calculating hosting capacity is vital for

achieving high accuracy when compared to other learning methods.

3.1 Illustration of the Basic LSTM

An RNN is composed of a series of units which are named cells, and each cell

is constructed as a hidden single-layer neural network in the most basic RNN.

Each RNN cell has two input parts, one is the output from the last one and the

other is a piece of data from the dataset. In this way, these repeating cells can

transfer the information and the network will be trained recurrently. RNNs can be

algebraically described as

ht = φ(W [ht−1, xt] + b), (3.1)

where φ is the activation function.

Though RNNs are designed to process the sequential data, it has drawbacks,

one of which is that RNNs are unable to transfer information correctly between

two cells with relatively more intervals gap. To solve this problem, LSTM [23] is

developed from traditional RNN and capable of learning short-term and long-term

dependencies. This gradient-based algorithm can also avoid gradient exploding

and vanishing which are also significant drawbacks of RNNs.

10



Figure 3.1: The Basic LSTM Cell

Aiming on addressing these problems, LSTM has become an effective model

for sequential prediction problems. Similar to the RNNs, an LSTM network also

has a series of connected cells, shown in Fig 3.1. Differently, the highlight of this

state-of-the-art algorithm is the design of the three gates to control the information

stream. The basic gate functions to update traditional RNNs are

it = σ(Wi[ht−1, xt] + bi), (3.2)

ft = σ(Wf [ht−1, xt] + bf ), (3.3)

ot = σ(Wo[ht−1, xt] + bo), (3.4)

where it, ft and ot represent the input, forget and output gates of the t-th cell,

respectively. The input gate decides what information should be input. The forget

gate decides what information should be forgotten. The output gate decides what

11



information needs to be output. These three gates use the activation function sig-

moid function, which is represented as σ(·). The sigmoid function, which is shown

in the Fig 3.2, is

Sigmoid(x) =
1

1 + e−x
. (3.5)

This nonlinear function, σ(·), represents a sigmoid layer that can map the values

between 0 to 1, where 1 means to keep the information while 0 means to forget the

information.

Figure 3.2: Sigmoid Function

Similar to the basic RNN function, one of the component of the new cell state,

the candidate gt, is

gt = tanh(Wc[ht−1, xt] + bc), (3.6)

12



where the activation function tanh(·), which is shown in Fig 3.3, is

tanh(x) =
ex − e−x

ex + e−x
, (3.7)

This activation function will increase the linearity of the model.

Figure 3.3: Hyperbolic Tangent Function

Each of the gates and the candidate is like a small neural network, in which xt

and ht represent the input feature vector and the hidden output vector. Wi,Wf ,Wo

and Wc are the weights of each gate and bi, bf , bo and bc are corresponding biases.

Fig 3.4 demonstrates the gate structure, using the input gate as the example.

The cell state updating function is

ct = ft � ct−1 + it � gt, (3.8)

where the former part is the previous cell state ct−1 that is controlled by the

forget gate ft, and the latter part is the input vector scaled by new candidate value

13



Figure 3.4: Gates in the Basic LSTM

which to decided how much of input to add state value. The two parts of this func-

tion will work together to update the cell state ct .And � represents the element-

wise (Hadamard) product.

The output function is denoted as

ht = ot � tanh(ct), (3.9)

where the ht is the hidden state that needs to be transferred to the next cell.

What is worthy of notice is the output ht of the last cell is the final result we want

to obtain, which is HC value in our problem.

14



Chapter 4

SPATIAL-TEMPORAL LSTM

Traditional LSTM models use cell state ct to store long-term sequential informa-

tion, streaming through the whole LSTM network, while hidden layer ht process

relatively short-term information. However, both ct and ht come from the same

series of sequential data, which means a cell can only receive information from

the last cell, and this repeating network is trained as a single chain. Thus, the

LSTM network is unable to treat these two different types of sequential data at the

same time. Our target is to calculate the HC in real-time using time series data.

Furthermore, a power system is a complex network, which means geographical

information plays an important role in HC analysis. The basic LSTM model is un-

able to build the spatial correlation among buses and temporal correlation among

time-series datasets in the same model. To solve this problem and take spatial in-

formation into consideration, we need to update the basic LSTM to the ST-LSTM.

The structure of the basic LSTM and the ST-LSTM are shown in Fig 4.1 and Fig

4.2 respectively.

15



Figure 4.1: The Structure of the Basic LSTM
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Figure 4.2: The Structure of the ST-LSTM

17



Figure 4.3: The Comparison Between the Basic LSTM and the ST-LSTM

The comparison between this two models is shown in Fig 4.3.

4.1 Design of the Dual Forget Gates

In order to process two sequences, specifically spatial and temporal sequence,

in parallel in our deep learning neural network, we update the traditional LSTM

algorithm to ST-LSTM. Fig 4.4 illustrates the updated ST-LSTM cell.

The new design of gates in the ST-LSTM are

18



Figure 4.4: The ST-LSTM Cell.

is,t = σ(Wi([hs,t−1, hs−1,t, xs,t]) + bi), (4.1)

fT
s,t = σ(Wft([hs,t−1, hs−1,t, xs,t]) + bft), (4.2)

fS
s,t = σ(Wfs([hs,t−1, hs−1,t, xs,t]) + bfs), (4.3)

gs,t = tanh(Wc([hs,t−1, hs−1,t, xs,t]) + bc), (4.4)

os,t = σ(Wo[hs,t−1, hs−1,t, xs,t] + bo), (4.5)

where hs,t−1 is the hidden state from the last time and the hs−1,t is the hidden

state from the last space. Fig. 4.5 demonstrates the gate structure, using the input

gate as the example.

And more importantly, fT
s,t represents the forget gate based on temporal infor-

mation, while fS
s,t represents the forget gate based on spatial information. These

19



Figure 4.5: Gates in the Basic ST-LSTM

two gates, highlighted in Fig. 4.6, are the designed dual forget gates.

Because of the design of the dual forget gates, the cell state of this cell will be

impacted by both temporal forget gate and spatial forget gate, and the new cell

state function is

cs,t =fT
s,t � cs,t−1 + fS

s,t � cs−1,t + is,t � gs,t. (4.6)

We multiply the cell state cs,t−1 in an element-wise way by our temporal-based

forget gate fT
s,t to decide what temporal information needs to be memorized. Simi-

larly, the element-wise multiplication of the cell state cs−1,t and spatial-based forget

gate fS
s,t is to determine the keeping and forgetting of the spatial information.

20



Figure 4.6: The ST-LSTM Cell with the Dual Forget Gates

The function of hs,t will be remained as

hs,t = os,t � tanh(cs,t). (4.7)

4.2 Design of the Sensitivity Gate

We designed dual forget gates to decide which information should be memo-

rized. To decide which information should be input, besides the current input gate,

we designed a new gate, namely the sensitivity gate, which includes the distance

information. The sensitivity vector is the input of the sensitivity gate, and it con-

tains some different types of distance information. The most obvious information

is the electrical distance, calculated based on the length of the transmission line. In

this way, the model will reinforce the spatial correlation. The highlighted part in

the Fig 4.7 is the designed sensitivity gate.
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Figure 4.7: The ST-LSTM Cell with the Sensitivity Gate

The sensitivity gate is denoted as

Ds,t = σ(Wd∆ds,t + bd), (4.8)

where ∆dt is the sensitivity vector.

In our analysis process, we found that HC is mostly limited by the voltage

violation constrain. Thus, we use the result of voltage sensitivity analysis in our

sensitivity gate. This voltage sensitivity is also based on the network structure and

can be regarded as a kind of distance in a different sense.

The sensitivity gate, collaborating with the input gate, uses the voltage sensi-

tivity information to control the input when adding new information into the cell

state. It is to decide what new information should be added to update the cell state.

The updated cell state calculating function is
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cs,t = fT
s,t � cs,t−1 + fS

s,t � cs−1,t + is,t �Ds,t � gs,t.

4.3 Information Flow

The information flow of the ST-LSTM can be illustrated in Fig 4.8.

Figure 4.8: The Information Flow in the ST-LSTM

The dimension of each data is
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xs,t ∈ Rn, (4.9)

hs,t ∈ Rm, (4.10)

cs,t ∈ Rm, (4.11)

fT
s,t ∈ Rm,Wft ∈ Rm×(2m+n), (4.12)

fS
s,t ∈ Rm,Wfs ∈ Rm×(2m+n), (4.13)

is,t ∈ Rm,Wi ∈ Rm×(2m+n), (4.14)

gs,t ∈ Rm,Wc ∈ Rm×(2m+n), (4.15)

os,t ∈ Rm,Wo ∈ Rm×(2m+n), (4.16)

∆d ∈ Rk, (4.17)

Ds,t ∈ Rm,Wd ∈ Rm×k, (4.18)

where m is the hidden layer size and n is the input vector size. m = 1 in our

problem, because our required output is an HC value.
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Chapter 5

SPATIAL SEQUENCE

5.1 Longest Path Method

Because of the complexity of the power system, it is difficult to put all the buses

into a sequence. Thus, to convert the network into a spatial sequence, I choose

paths in the network. For each time series, the ST-LSTM model will output the HC

of all the buses in this path as a vector.

The longest paths are shown in Fig 5.1. This path contains two important regu-

lators and node 67 which is one of the most critical nodes in HC analysis.

Besides the longest path, different paths will compose the whole network. Thus,

we can extend the definition of the longest path to a path which is from the feeder

head to the feeder end. Since we will get the HC of all the buses in the path when

training it, theoretically, we can find a finite number of paths to cover the whole

network. In this way, we are able to calculate the HC of all buses in the network.

5.2 Tree Structure-based Traversal

If we use all the buses at the same time, we need to decide the traversal order.

Otherwise, the improper, even random, order will weaken the spatial connection

between nodes, because we need to use the context information, which is cs−1,t and
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Figure 5.1: Path 1 in the IEEE 123-bus System

hs−1,t.

The electric system can be treated as a tree structure network. Even though

some power network names their buses following numerical orders, like IEEE 123

bus network, this kind of order can not represent an exactly correct relatively geo-

graphical relationship information among all the buses. For instance, in IEEE 123

bus network, node 33 and node 34 have an adjacent numerical order, but node

33 is at the feeder end, while node 34 is at the feeder middle, away from node 34

geographically. Additionally, in real power system networks, they are more likely

to name their buses using character strings for classification purposes. Both of

the two problems will weaken the spatial relationship if we import the dataset in
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simple chain order.

To solve this problem, we plan to use a bi-direction tree traversal scheme. In

this scheme, the traversal begins from the feeder head, which is treated as a root

node, and visits all the buses in sequence. Once reaching feeder ends, which are

treated as leaf nodes, the traversal will turn backward in the tree. Finally, the whole

traversal will end at the feeder head. In this scheme, each node will be visited at

least twice from two different directions. Thus, in our ST-LSTM model, one cell

will receive cs−1,t and hs−1,t information from both of its neighbour, considering

the adjacent information from both sides. Also, since this traversal will meet each

node twice from a different direction, it can simulate the reverse power flow caused

by the high penetration of PV generators.
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Chapter 6

NUMERICAL RESULTS

Based on the comparison of basic LSTM and our ST-LSTM, we use the simu-

lated data to support our design. To test the performance of the ST-LSTM model,

we use both temporal sequence LSTM and spatial sequence LSTM as our baseline

model.

6.1 Data Preparation

CYME is a power engineering simulation software by EATON which can be

used to analyze power systems. In CYME, the Load Flow module can do power

flow analysis and the Integration Capacity Analysis module in CYME can calculate

the HC. We have 12 time-series models of the 123-bus network in CYME.

We use the result of Load Flow analysis as our input. Specifically, we use the

bus voltage (p.u.), angles, and the thru power of each phase. For the input data, we

use the Min-max normalization method, which means for each type of feature, the

minimum value of that feature is converted to 0, the maximum value is converted

to 1, and all other values are converted to a decimal number between 0 and 1. For

the HC data, we directly use a selected constant to scale the value, which can allow

us to retrieve the output to normal scale easily.

Specifically, simulated HC is the simulation result from CYME and the calcu-
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lated HC is the output of the deep learning models.

6.2 Experiment Setup

As shown in Figure 4.3, the basic LSTM model can only flow one type of se-

quential information, either temporal sequence or spatial sequence. Thus, we used

basic LSTM to test the performance using both of them.

For temporal sequence, we have IEEE 123-bus time series models. In each train-

ing step, we input the dataset from power flow analysis of all the time at one bus

and are able to have the output as the HC data vector for all the time slots at this

bus. The training sets are from 20 buses and the testing sets are from 4 buses.

For spatial sequence, we chose the longest path in the IEEE 123-bus network

which is from the feeder head to the feeder end. This path contains 24 buses and

we picked up their data from all the buses’ data. Then, in each step, we put them

in the network and obtain the HC data vector of all the buses at this time. The

training sets are from 9 timeslots and the testing sets are from 3 timeslots.

For our ST-LSTM model, we did a similar thing as the spatial sequence LSTM.

The difference is that, in each step, we use the outputs from the last time as part

of the input. The training sets are from 9 timeslots and the testing sets are from 3

timeslots.

We use two criteria to evaluate the performance of the models. The first one is

the Mean square error (MSE) criteria and the other one is the percentage error. The

MSE is used by the model to do back-propagation and the percentage error can
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give a direct comparison between simulated HC and the calculated HC.

6.3 Results and Comparison of Different Models

In this section, I will show that the ST-LSTM model is able to build the correla-

tion between spatial sequential and temporal sequential information.

As we can see in Table 6.1, the temporal LSTM has the worst performance. That

is because that HC is highly correlated to spatial information while the LSTM only

using temporal sequence will ignore this kind of crucial information.

Test Scenario Mean Square Error Percentage Error

Temporal LSTM 0.124 252%

Spatial LSTM 0.299 28%

ST-LSTM (without sensitivity gate) 0.0025 5%

Table 6.1: Comparison Between the Basic LSTM and the ST-LSTM on the Longest

Path

For the spatial LSTM and the ST-LSTM model, the ST-LSTM model has lower

MSE and percentage error. Fig 6.1, 6.2, and 6.3, are the comparisons between these

two models at different time-series.
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(a) Spatial LSTM Time-series 9

(b) ST-LSTM Time-series 9

Figure 6.1: Result Comparison Between the Spatial LSTM and the ST-LSTM at

Time-series 9 on Path 1.
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(a) Spatial LSTM Time-series 10

(b) ST-LSTM Time-series 10

Figure 6.2: Result Comparison Between the Spatial LSTM and the ST-LSTM at

Time-series 10 on Path 1.
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(a) Spatial LSTM Time-series 11

(b) ST-LSTM Time-series 11

Figure 6.3: Result Comparison Between the Spatial LSTM and the ST-LSTM at

Time-series 11 on Path 1.
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6.4 Results and Comparison on Different Paths

In this section, I will show that ST-LSTM models will significantly increase the

accuracy of HC calculation of the whole network.

To illustrate this, I chose another two paths in the IEEE 123-bus system. The

numerical result comparison between the spatial LSTM and the ST-LSTM of path

2 and path 3 are shown in Table 6.2. We can see, compared to the spatial LSTM, the

ST-LSTM has a significantly smaller percentage error on both of the two paths.

Furthermore, Fig 6.4 shows the detailed testing result of the ST-LSTM on Path

2, and Fig 6.5 shows the detailed testing result of the ST-LSTM on Path 3.

Percentage Error Path 2 Path 3

Spatial LSTM 28.5% 45.8%

ST-LSTM (without sensitivity gate) 6.5% 6.8%

Table 6.2: Percentage Error Comparison Between the Spatial LSTM and the

ST-LSTM on Other Paths
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(a) Path 2 in the IEEE 123-bus System

(b) ST-LSTM Time Series 9

35



(c) ST-LSTM Time-series 10

(d) ST-LSTM Time-series 11

Figure 6.4: Result of the ST-LSTM on Path 2.
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(a) Path 3 in the IEEE 123-bus System

(b) ST-LSTM Time-series 9
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(c) ST-LSTM Time-series 10

(d) ST-LSTM Time-series 11

Figure 6.5: Result of the ST-LSTM on Path 3.
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6.5 Comparison Between the Spatial LSTM and the ST-LSTM in the Utility

Network

In this section, I will show the result in a real utility network, which will further

verify that the ST-LSTM will reduce the complexity in HC analysis because the

network is more complicated compared with the IEEE 123-bus network.

I divided the utility network into different zones. Division of the zones was

primarily based on the location of the buses and where those buses are connected

into the main 3-phase trunk. The comparison is shown in Table 6.3. The percentage

error of the ST-LSTM is lower as well compared with the spatial LSTM.

Percentage Error Zone 1 Zone 2 Zone 3

Spatial LSTM 18.3% 9.3% 12.5%

ST-LSTM (without sensitivity gate) 12.2% 7.2% 12.1%

Table 6.3: Percentage Error Comparison Between the Spatial LSTM and the

ST-LSTM in the Utility Network

The result of the zone 1 is shown in Fig 6.6, 6.7, and 6.8.
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(a) Spatial LSTM Time-series 16

(b) ST-LSTM Time-series 16

Figure 6.6: Result of Time-series 16 in Zone 1 of the Utility Network.
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(a) Spatial LSTM Time-series 17

(b) ST-LSTM Time-series 17

Figure 6.7: Result of Time-series 17 in Zone 1 of the Utility Network.
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(a) Spatial LSTM Time-series 18

(b) ST-LSTM Time-series 18

Figure 6.8: Result of Time-series 18 in Zone 1 of the Utility Network.
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Chapter 7

CONCLUSION

In this paper, I used a modified deep learning-based method, namely Spatial-

Temporal LSTM, to calculate the HC in the LV distribution grid. There are three

main contributions. First, this method significantly simplifies the HC analysis and

calculates HC in real-time. Second, the ST-LSTM builds a correlation between tem-

poral and spatial sequence. Third, this paper increases the accuracy of the deep

learning-based HC calculation method by modifying the basic LSTM algorithm.

For the temporal sequence, I used historical power system data. For the spatial

sequence, I used the longest path method to construct the sequence.

By conducting the comparison between basic LSTM and the ST-LSTM, I ver-

ified that the ST-LSTM has a considerable increase of both the average and the

respective HC accuracy at the buses.

To further verify the performance of the ST-LSTM deep learning framework, I

used the data from a utility feeder to test the performance. The accuracy is higher

as well compared with the basic LSTM.

In the future, I plan to improve the accuracy of the current model by finding

more highly relevant input features. Moreover, developing an algorithm to merge

all the paths automatically is also listed as my future target.
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